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Abstract—Distributed Hash Tables (DHTs) provide the sub-
strate to build scalable and efficient Peer-to-Peer (P2P) networks:
distributed systems with the potential to handle massive amounts
of data on a very large scale. However, traditional DHTs provide
very poor support for range queries.

In this article we present a search mechanism that efficiently
supports range queries over a ring-like DHT structure using
a prefix tree index. Load balancing is improved by delegating
the routing of queries to the nodes that store data, and by
updating neighbor information through an optimistic approach.
Our solution reduces latency and message traffic in environments
where queries are more frequent than data insertion operations.
We evaluate the performance of the system through simulations
and show that our solution in not affected by data skewness.

Keywords-Peer-to-Peer, DHT, Information Retrieval, Range
Queries.

I. INTRODUCTION

Supporting range queries in large-scale, dynamic networks
and acquiring an exhaustive list of results in a timely manner
is now a common issue for a wide variety of distributed ap-
plications such as music/movie storage, peer-to-peer persistent
games, scientific computation, data mining, and many types of
data warehouses. A range query retrieves all the objects with
values within a given range.

Peer-to-peer (P2P) systems offer an abundance of resources,
with a huge data storage capacity [1]. They are autonomous,
fully decentralized, self-organized and highly scalable with
the potential to grow up to millions of nodes. In particular,
Distributed Hash Tables (DHTs) provide an efficient lookup
functionality. They are scalable, fault tolerant, and offer load
balancing. Some well-known DHT-based overlays found in
the literature are Pastry [2], Chord [3], and Kademlia [4] on
top of which a lookup operation is performed in O(log(N))
hops, where N is the total number of nodes of the network.
However, DHTs do not support range queries efficiently since
the use of uniform hashing destroys data locality.

Several solutions in the literature attempt to provide efficient
support of range queries over DHT-based P2P networks.
However, none of them manage to combine load balancing,
low message overhead, and low search latency simultaneously
while preserving the scalability of the system. The existing
solutions mainly fall into two categories: over-DHT and
overlay-Dependent solutions. Over-DHT approaches build an
additional structure or index, which preserves data locality
and thus allows to support range queries [5]–[10]. Several of

these approaches rely on a tree-based indexing structure (e.g.
PHT [5], RST [7], DST [6], and LIGHT [10]). On one hand,
as over-DHT solutions are built over a generic DHT, they
preserve the good properties of the latter, are portable, and are
easy to implement. On the other hand, their main drawbacks
lie in the extra maintenance cost, in the significant query
latency due to the top down nature of traversal searches over
the structure, and in the load balancing problems associated
to the search process. Overlay-Dependent approaches directly
support range queries by adapting the DHT (e.g. Yarqs [11],
Skipnet [12], Skipgraph [13], Hivory [14]), by using non-
uniform mapping techniques which preserve data locality
(e.g. MANN [15], AR [16], Mercury [17]) or by adopting
a tree-based approach (e.g. Pgrid [9], BATON [18], Skip tree
graph [19], Hyperring [20], Ptree [21]). Nevertheless, overlay-
Dependent solutions present load balancing and portability
problems while some of them induce high latency and sub-
stantial maintenance costs.

In this paper we aim at improving range queries search in
environments where queries significantly outnumber data in-
sertion operations; resource discovery and data mining belong
to this category of applications. We thus propose a solution
which focuses on the search process; it works independently
of the data distribution and can perform range queries in the
order of O(log(L)) steps, where L is the number of nodes that
store data. Based on the indexing structure of Prefix Hash Tree
(PHT) [5], our approach provides a high performance range
query management: it reduces search latency, achieves good
load balancing among the nodes, and produces low message
traffic overhead by diverting the queries to the nodes that store
the data. We conducted an extensive set of simulations which
demonstrates a significant improvement when compared to the
original PHT approach with a reduction of traffic overhead by
at least 65%.

The rest of this paper is organized as follows. Section II
briefly describes the overlay and the indexing approach on
top of which we build our solution, while Section III presents
the structure and search operations. In Section IV we present a
performance evaluation conducted through simulation on top
of PeerSim [22]. Finally, Section V concludes this paper.

II. BACKGROUND

A DHT is a self-organizing structured substrate built over
P2P overlay networks in which any data can be located within



a bounded number of routing hops. Several existing DHT
overlays like Chord [3], Pastry [2] or Tapestry [23] logically
organize the nodeID space of nodes into a ring.

Our work uses Pastry [2], a ring-like structured DHT. Every
node in Pastry is associated to a unique nodeID in an m-bit
space using the SHA-1 hash function. Numeric keys represent
application data (objects) and are chosen from the same name-
space as the node identifiers. Pastry assigns each key k to the
node whose nodeID is numerically closest to k.

While lookup operations can be efficiently executed over
DHTs, the latter do not provide support for complex queries,
such as range queries. To this end, several indexing schemes
have been proposed in the literature [5]–[7], [10], [15], [17].
We base our work on Prefix Hash Tree (PHT) [5], which
provides an indexing data structure built over DHT-based P2P
networks.

In PHT, keys of objects to be indexed are within the domain
{0, 1}D, where D is the length of the string. PHT is thus a
binary prefix tree (binary trie) where the left branch of a node
is labeled 0 and the right branch is labeled 1. Each node n of
the trie is identified with a chain of P bits (prefix) produced
by the concatenation of the labels of all branches in the path
from the root to n. PHT builds a prefix tree in which objects
are stored at leaf nodes. Hence, an object with key k is stored
at a leaf node whose label is a prefix of k. Fig. 1 illustrates
an example of a PHT.

Compared to other tree-linked solutions [6], [7] where a
B-tree with O objects requires log(O) lookups, PHT requires
only log(D) lookups, where D is the key size. Additionally,
replication over the DHT can prevent data loss.

The PHT trie is completely distributed among the peers of
the network by hashing the prefix labels of the PHT nodes over
the underlying DHT identifier space. We call internal nodes
those nodes that belong to the PHT trie but are not leaves
while those nodes that do not participate to the PHT trie we
denote external nodes.

Fig. 1. PHT indexing structure.

Whenever a leaf node X reaches its maximum storage
capacity, it splits into two children so as to distribute its storage
load. The left child will have the prefix label of its parent
concatenated with 0 and the right child with 1.

Classic searches in PHT follow either a linear or a binary
method. A linear search starts with the node that corresponds
to the smallest possible prefix of a given key k. The next step
consists in a DHT lookup operation in order to find the next
node in the trie whose prefix is one bit more similar to k. The

lookup operation is repeated until a leaf node is reached. This
search method produces a number of DHT-lookups of order
D. A binary search is a half-interval process that starts by
querying a middle prefix of D. If the prefix corresponds to an
internal node of the PHT, the search discards the lower half
of the interval and continues querying a new middle prefix of
the remaining interval. If the prefix corresponds to an external
node, the search discards the upper half of the interval. This
search method produces a number of DHT-lookups of order
log(D). However, in dynamic scenarios the binary search can
fail, i.e. be unable to correctly locate the leaf node [5].

PHT maintains a double list which links all leaf nodes
(Threaded leaves), as shown in Fig. 1 by the dashed lines.
This list allows to search all data of the requested range
sequentially, starting from the lower bound. The sequential
scan of the list can be avoided by parallelizing the search
within the range. PHT [5] proposes to start from the node that
corresponds to the prefix that completely covers the requested
range and then continue making a number of searches that
correspond to the number of children which overlap the range,
until reaching all the leaf nodes. However, if the trie is
highly unbalanced, the number of messages will grow without
decreasing the latency when retrieving all data. In Section IV,
we refer to this type of search as PHT-parallel.

III. OPTIMIZING RANGE QUERIES

This section details PORQUE (Peer Optimized Range
QUEries), a two-layer ring structure that effectively supports
range queries. A node exploits information provided by range
queries that it has previously issued. When performing a new
query, such information is used to contact the leaf nodes
directly, thus reducing search latency. In order to further
optimize search latency, we take into account range coverage.
PORQUE is an extension of our previous work DRing [24]
which proposes a new method to improve the retrieval process.

A. Building a Double-ring Architecture

PHT nodes are uniformly distributed among the nodes of
the DHT, based on the prefix of their key. In order to improve
the performance of range queries, our approach maintains a
second ring structure over the DHT overlay. This second ring,
denoted Leaf Ring, has a structure based on Skipnet [12] and
comprises only the leaf nodes, i.e. nodes that store data. The
identifier of a node in the Leaf Ring is its corresponding label
identifier in the trie. Such a choice improves sequential data
search, and therefore facilitates range querying.

In the Leaf Ring, every node maintains a reference both
to its successor and predecessor leaf in the trie, similarly to
the double list structure of PHT. Notice that PHT exploits this
list for data retrieval only, not for searching. Fig. 2 presents
the double-ring proposed architecture, where nodes in grey
represent leaf nodes.

In addition to successor and predecessor references, every
node in the Leaf Ring maintains a Search Table which stores
references to other leaf nodes in the Leaf Ring. Fig. 3 shows an
example of a Search Table. The maximum number of entries



Fig. 2. Double structure: Leaf Ring over the overlay ring

is the maximum object key size D. The ith row of the Search
Table contains two references to nodes that are at a distance of
2i hops in both directions (forward and backward) to a prefix
label identifier. For example, for node L5 in Fig. 2, the nodes
that are 2 (21) hops forward and backward are L7 and L3
respectively.

Each reference comprises both the prefix label of a leaf
node, and a static reference (IP Address) to this leaf node.
Maintaining the prefix label is paramount in dynamic envi-
ronments, where static references become obsolete very fast.
When the access to a static reference fails, PORQUE contacts
the leaf node by hashing the corresponding prefix label and
looking it up in the DHT.

In order to optimize access the Leaf Ring structure, infor-
mation from past queries is stored on every node in the P2P
network. This information allows any DHT node to contact
the Leaf Ring directly, thus skipping the internal level of the
PHT trie-structure (see Section III-D).

Within the Leaf Ring layer, searching follows the routing
technique of the underlying DHT structure: using a greedy
technique that forwards the search to the node which is closest
to the key.

Fig. 3. A Search Table of a node

A node iteratively fills its Search Table the first time it joins
the Leaf Ring. To complete the forward reference at distance
2i+1 in the Search Table, a node X asks the node at distance 2i

for the ith forward reference in its table. For example, to find
the node at forward distance 21, X can obtain the information
from its successor (since it is at distance 20); and to find the

node at distance 25, X can ask the node at distance 24 to
return the 4th entry of its Search table. The same goes for
backward references, with the predecessor set as the node at
a backward distance of 1.

The approach described above performs efficiently if the
trie is balanced. Indeed, join and leave operations induce a
global change in the tables of the leaf nodes, which grow
linearly with the number of nodes. This happens because we
take into account distances instead of making a static partition
of the name-space. It is worth noticing that a static partition
of the index space is not efficient either: when the trie is
unbalanced, the load distribution follows the disequilibrium. In
order to overcome this balancing problem and repair the Leaf
Tables of nodes, we propose an optimistic approach which
consists in updating tables only when performing a range
query (see Section III-C). We argue that this suffices to achieve
good performance in scenarios where queries significantly
outnumber data insertion operations.

B. Split Operation

Every split operation in the logical PHT trie induces two
joins and one leave operation in the Leaf Ring. The split node
is removed from the Leaf Ring and both its children join the
Leaf Ring.

Whenever a node splits, this node – denoted parent – must
inform its children about the identifier of its predecessor and
successor nodes in the Leaf Ring: the predecessor of the left
child is its parent’s predecessor in the Leaf Ring and its
successor is its right brother; similarly, the predecessor of the
right child is its left brother and the successor is its parent’s
successor in the Leaf Ring. The children Search Tables are
thus initialized with the information provided by their parent
node and they are further updated in an optimistic way as
described in Section III-C.

Fig. 4 shows an example of a split operation in the Leaf
Ring. The node with identifier 10 reaches its storage capacity
and is replaced by two other nodes with prefixes 100 and 101.
The information from the node with prefix 10 is used by its
children in order to update the successor and predecessor links
as well as the Search Table.

Fig. 4. A split operation in the Leaf Ring

In case of concurrent splits by neighbor nodes in the Leaf
Ring, the obtained information that a child gets from its parent
might be out of date. Thus if the parent’s successor Y is no
longer in the Leaf Ring, the right child will contact the left
child of Y . Notice that the prefix label of Y ’s left child can
be obtained by the concatenation of Y ’s prefix label with ’0’;
similarly, if the parent’s predecessor Z is no longer in the Leaf
Ring, the left child will contact Z’s right child. The nodeID



of the latter is obtained by concatenating of Z’s prefix label
with ’1’.

C. Optimistic Table Maintenance

We propose to repair the Search Tables optimistically:
reference updates only occur when a range query takes place.

In Pastry, data corresponding to a leaf node with prefix label
A is stored on the node whose identifier is closest to SHA(A).
Since DHT nodes can crash or leave the network, Pastry
replicates data on several nodes in the numerical vicinity
of SHA(A) so as to avoid information loss. Therefore in
dynamic environments, the node responsible for another node
can change. When a leaf node leaves the network or crashes,
its static reference is no longer valid. In this case, Pastry falls
back on the new current node whose identifier is numerically
closest to SHA(A) as the holder of the data. Given the prefix
label, this new node can easily be contacted through a DHT
lookup operation and the static reference to its IP address is
updated. It is worth pointing out that no other static reference
in the Search Table requires an update.

Every split of a leaf node of the trie produces inconsistency
in its Search Table. Similarly, this table is only updated when a
range query takes place. As will be described in Section III-D,
a range query is forwarded to a leaf node which is numerically
closest to one of the bounds of the range query. Upon receiving
the query, this node looks into its Search Table references and
forwards a message to the i reference which is numerically
closest to the searched node, also including its table reference
i+1 in the message (maintenance). The node that receives
the message checks if this reference corresponds to its own at
row i in its table. If such is not the case, it passes on its entry
reference to the sender which will then update its table.

Since queries are necessary to keep the Search Table
updated, PORQUE performs optimally when range queries
outnumber insertions of data significantly. In the opposite case,
the nodes in PORQUE cannot update their tables efficiently
enough and the performance diminishes (see Section IV for
details). No matter how many splits occur, the number of
maintenance messages will be the same: one for each query
transmission. If a query reaches its target in d hops, PORQUE
may generate d maintenance messages if every entry is out of
date. Since these messages are at the leaf level and they are
one-hop messages, the impact on performance remains low.

D. Range Query Strategies over the Leaf Ring

Every node in the DHT maintains a Cache List which
contains the leaf nodes contacted during previous range query
requests. Contact nodes are thus potential starting points for
direct access searches over the Leaf Ring.

The size of the Cache List is a parameter of the system.
Every entry stores both the static IP address reference and the
prefix label that identifies a leaf node in the trie (and in the
Leaf Ring). If an access first fails, a DHT lookup operation
finds the new contact node by applying the hash function over
the prefix label kept by the entry. When the Cache List is

full, new entries replace old entries following a Least Recently
Used (LRU) strategy.

If a node has never performed any query yet, its Cache List
is empty: it knows no contact node. In order to fill its Cache
List, a node first asks for the Cache List of its neighbors.
However, if such an information is not available either, it
applies one of the PHT search mechanisms (linear or binary),
as explained in Section II.

A range query corresponds to an interval of data to be
searched. It has the form Rq = [l, u], where l is the lower
bound and u is the upper bound. To collect the data in the
range, we propose two search protocols:

Algorithm 1: Route Operation: Sequential Search

input : Query Q, the query

1 maintenance (Q.maintenanceEntry, Q.direction )
2 if iamClosest to Q.targetBound then
3 getRange (Q)

4 else
5 n = getClosest in Search Table to Q.targetBound
6 Q.maintenanceEntry = getEntry(n.index + 1)
7 Q.direction = getDirection(n.index)
8 send: route (Q) to n.address

Algorithm 2: GetRange: Sequential Search

input : Query Q, the query

1 sendData
2 if Q.targetBound = Q.lowerBound then
3 if successor =< Q.upperBound then
4 forward: Q to successor

5 else
6 if predecessor => Q.lowerBound then
7 forward: Q to predecessor

• Sequential Search: The simplest mechanism is to start
the search at one of the bounds. Therefore, the requester
must select a node in its Cache List (contact node) with a
prefix label numerically close either to the lower or to the
upper bound. The search will start from the bound value
that has the greatest common prefix label with the nodes
referenced in the Cache List of the requester. If both
bound values satisfy this condition or if the Cache List is
empty, either of the bound values can work as the starting
search node. From the contact node, the target bound
can be easily found through the Leaf Ring. The routing
process followed to retrieve the query information is
presented in Algorithm 1. The query is then routed to the
closest node including entry i+1 of its Search Table (line
6). Firstly, the contact node must check if it is in charge of
the query target by invoking the function iamClosest.
If it is the case, the getRange sequential function is
invoked to start the retrieval process (line 3). To retrieve
all the data comprised in the range query, the search can
continue along the successor or predecessor links of the
Leaf Ring. On the other hand, the getRange sequential
is presented in Algorithm 2. Fig. 5(a) presents an example



(a) Sequential Search (b) Optimized Search

Fig. 5. Search Schemes

where the lower bound is the starting point of the range
search.

Algorithm 3: Route Operation: Optimised Search

input : Query Q, the query

1 maintenance (Q.maintenanceEntry, Q.direction)
2 if iamWithinRange then
3 Q.direction = null
4 Q.bound = null
5 getRangeOp (Q)

6 else
7 n = getClosest in Search Table to Q.targetBound
8 Q.maintenanceEntry = getEntry(n.index + 1)
9 Q.direction = getDirection(n.index)

10 send: route (Q) to n.address

• Optimized Search: In order to reduce search latency, the
information of the entries of the Search Table allows
concurrent access to the leaf nodes that contain data
within the range of the query. In this case, the starting
search node is the one that stores the keys associated to
(l + u)/2, i.e. the node in the middle of the requested
range. However, as the routing forwards the query to
the node which is numerically closest to this value,
it is highly possible that the query will reach a node
within the range before it reaches the middle of the
requested range. The routing process is presented in
Algorithm 3. In the optimized case, when the query
reaches any node within the lower and upper bound
the data can be retrieved. Therefore, when the request
arrives at any leaf node contained in the searched range,
this node forwards/backwards the search messages to all
the nodes of its Search Table able to answer the query.
All receiving nodes will apply this same approach. The
retrieval process is presented in Algorithm 4.
So as to avoid redundant forwarding/backwarding mes-
sages, the query message collects information about
previously visited leaf nodes. Fig. 5(b) illustrates this
scheme. Node n, the initial receiver of the query, forwards
the query to its successor and two other nodes of its
Search Table. In parallel, it also backwards it to its
predecessor and one other node of its Search Table. All
these nodes have a prefix that covers part of the range
query.

Our approach also supports other complex queries in a
simple, efficient way. For instance Min/max queries look for

Algorithm 4: GetRangeOpt: Optimised Search

input : Query Q, the query

1 sendData
2 foreach Entry e in Search Table do
3 if Q.direction = forward or null then
4 if e.fwdPrefix < Q.upperBound then
5 if Q.bound = null or e.fwdPrefix < Q.bound then
6 Q.bound = next_fwd_entry_in_table
7 Q.direction = forward
8 forward: Q to e.fwdAddress

9 if Q.direction = backward or null then
10 if e.bwdPrefix > Q.lowerBound then
11 if Q.bound = null or e.bwdPrefix > Q.bound then
12 Q.bound = next_bwd_entry_in_table
13 Q.direction = backward
14 forward: Q to e.bwdAddress

the smallest and largest value of the indexed data. PORQUE
carries them out with a single lookup operation. K-NN queries
return the K nearest data values to a given key. The successor
and predecessor links of the Leaf Ring allow to find the
required data efficiently.

IV. PERFORMANCE EVALUATION

In this section we discuss performance evaluation results
when using PORQUE and PHT to perform queries. Our
experiments were conducted on top of Peersim [22] using an
event-driven model.

Queries are generated over data sets with different distribu-
tions: Uniform, Gaussian, and the real dataset of DBLP1. The
indexed attribute in DBLP dataset is the author name. Nodes
that generate queries are selected randomly.

We consider a network of 10, 000 peers, where each peer
can store at most 100 objects. During every simulation we
perform a total of 50, 000 queries, and take a snapshot of
the simulation every 1, 000 queries. The range span of the
queries is minimal in the first experiments so as to give a
separate analysis. We present our most interesting results in
Fig. 6.

Data distributions: The trie structure shape is tightly related
to the indexed data keys. Uniform distributions generate uni-
form tries where all leaf nodes are located at almost the same
level. On the other hand, skewed distributions (eg. Gaussian

1DBLP Dataset http://dblp.uni-trier.de/xml/



and DBLP) generate unbalanced tries where clustered data
(ie. frequent data keys within a given range) are stored on the
deeper leaf nodes of the trie.

Gaussian and DBLP dataset present skewed data distribu-
tions where keys are clustered on small parts of the whole
key range. The DBLP dataset distribution is different from
the Gaussian in that keys are clustered in many spots. A com-
parison between the Gaussian and DBLP dataset distributions
used for our simulations is given in Fig. 6(r).

Traffic Message Overhead: We have compared the total
number of messages generated in the search processes. Fur-
thermore, each simulation starts by inserting 20, 000 objects in
the network. In the case of PORQUE the results also include
the maintenance messages, which actually represent only 0.1%
of the total traffic.

Fig. 6(a), 6(b), and 6(c) show the message traffic for Uni-
form, Gaussian, and DBLP dataset distribution respectively.
These figures illustrate how strongly the performance of PHT
searches depends on the distribution of data, which defines the
shape of the index trie. Linear PHT generates more messages
on deep tries. This occurs in the case of DBLP (Fig. 6(c)),
where data distribution is skewed.

The traffic associated to the binary PHT search also depends
on the shape of the index trie structure: for the Gaussian and
DBLP distributions, PHT binary search can find a leaf node
very fast. We should point out that this result relies heavily
on the maximum key prefix size (which in our experiments is
set to 40) and on the size of the searched branch.

Comparatively, the number of messages generated by our
PORQUE search process is far smaller than for both PHT
searches. In addition, PORQUE search performance does not
depend on data distribution, as it avoids access to internal
nodes of the indexing structure and performs the search only
over the leaf nodes. At the beginning of the experiment peers
do not know any leaf node, so nodes will use the default PHT
linear search. Every node quickly starts adding leaf nodes
to its Cache List as it handles queries. After 10,000 queries
PHT search is not longer used, and the beneficial impact
of PORQUE in terms of messages becomes obvious. In the
case of the Uniform distribution, the number of messages is
reduced by over 80% and the improvement reaches almost
70% for the Gaussian and DBLP distributions.

Latency: In highly dynamic environments exhibiting signif-
icant churn, static references are useless and DHT-lookup
allows to find data. Therefore, in order to assess latency, we
measure the number of hops necessary to reach a leaf node
during DHT-lookup operations. We then compare the results
for PHT and PORQUE searches.

Fig. 6(d), 6(e), and 6(f) show the number of hops relative
to the search process for all three distributions when the
cumulative number of queries grows till 50,000. The gain
in performance of PORQUE over PHT binary search is not
significant in this context since it can no longer use direct static
references. In the case of Gaussian and DBLP distributions

(Fig. 6(e) and 6(f)), PHT binary search performance is very
similar to PORQUE: the former is barely better with Gaussian
distribution, and worse than the latter with DBLP distribution.
Since it diverts the search directly to the leaf node, our
approach reduces by at least 50% the number of hops in
comparison with PHT linear search.

Data insertions make the trie structure grow, so we also
compare the impact of data size on the search processes with
respect to different distributions. Fig. 6(g) and 6(h) show the
results with Uniform and DBLP distributions respectively. In
the case of Uniform distribution, the cost of a PHT linear
search increases faster than PORQUE. Indeed in our system
the number of hops grows logarithmically with the number
of leaf nodes. PHT binary search, on the other hand, exhibits
a fluctuating but overall good performance. The fluctuation
of the curve can be explained since the number of iterations
to find a leaf node can vary depending on the size of the
searched branch of the trie and the maximum key prefix size.

Query Rate: One direct consequence of the latency reduction
is the increment on the number of queries processed per time
unity (Query Rate). Fig. 6(m), 6(n), 6(o) show that PORQUE
outperforms both PHT search methods allowing to process
a higher number of queries per simulation window. PORQUE
can process up to 5 times more queries than PHT. Such a result
is reached after performing 10, 000 when PORQUE search
performance remains stable. Fig. 6(p) presents the average
results obtained for the three data distributions.

Note that the results obtained are different from those of
the previous section. Latency experiments count hops, and
one hop is a DHT-lookup operation in the case of the PHT
search. PORQUE, on the other hand, normally uses direct
messages.

Load Balancing: One of the main advantages of the PORQUE
approach is that traffic is spread over the leaf nodes of the
trie. Generally, search over tree-based approaches traverse part
of the trie structure to find data. The upper levels of the
trie are thus highly overloaded, since queries are distributed
among a small amount of nodes. This introduces bottleneck
problems into the upper levels of the trie. PORQUE, however,
diverts queries from the upper levels directly to the leaf nodes.
Therefore, searches occur at the leaf level only and messages
are distributed over a greater number of nodes. Our approach
avoids bottlenecks by distributing these messages at the leaf
level. In the case of PHT binary search, even if there are fewer
accesses to overloaded levels, bottleneck problems still persist.

Fig. 6(i) shows how the load is distributed among the levels
of the trie in the case of the DBLP distribution for a total
of 50, 000 queries. The lowest levels of the trie have very
similar loads, but PHT linear search introduces much more
load on the 5 first levels. This has a significant impact on the
average load per node. In Fig. 6(j) we can observe that the
first levels incur a huge load of messages in the case of linear
search, reaching 25, 655, 12, 922, and 7, 148 messages per
node in the first, second and third levels respectively. PHT
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binary search, on the other hand, only suffers a bottleneck at
level 4 (i.e., some middle level of the trie).

Range Span analysis: We have compared different strategies
for gathering the results of a range query: PHT linear, PHT
binary, PHT-parallel, and PORQUE searches.

Fig. 6(k) and 6(l) show respectively the number of hops
and messages for PHT linear, PHT-parallel and optimized
PORQUE searches for different range sizes (spans), starting
from 1% up to 5% of the data space for the Uniform
distribution. Linear search has the highest latency since it
accesses all the nodes sequentially. Latency increases linearly
with the range span. The PHT-parallel search, however, has to
perform several linear searches. Since it does so concurrently,
it incurs no extra time for traversing nodes that store the data:
the number of hops will be equal to the longest branch that
overlap the range span. Nevertheless, the traffic in terms of
messages grows linearly with the range span: this can strongly
degrade the performance of the system.

We can observe that the optimized search approach
of PORQUE is more efficient when compared to PHT
searches, reducing latency and generating lower traffic. It
is worth pointing out that the slope is less steep than for
the linear search and the PHT parallel search in Fig. 6(k)
and 6(l) respectively. Such an improvement is the result of
parallelizing the search over the leaf nodes only, and also of
starting data retrieval from every node encountered inside the
range as the search progresses.

Impact of Data Insertion Operation: When data insertion
operations are performed in PORQUE, neither the Search
Table nor the Cache List get updated. We use range queries
to disseminate table information and update their entries.
However, if the insertion operation rate is similar to or greater
than the query rate, the performance of PORQUE degrades.
Fig. 6(q) shows the results of experiments performed where
the percentage of the insertion operations increases with regard
to range query rate. The range span is 1% of the data space.
The figure shows a continuous but slow degradation of the
performance of the PORQUE search algorithm.

V. CONCLUSION

This paper presents PORQUE, a new approach for range
queries on top of ring-like DHT systems. By exploiting a prefix
index scheme, PORQUE maintains a second ring overlay,
called a Leaf Ring, composed of all the nodes that store data.
We also propose an efficient method to access this Leaf Ring
through information obtained from past range queries. Our
solution efficiently reduces query latencies and message traffic.

Simulation results show that our system outperforms
PHT [5] searches, reducing the traffic of messages by at least
50% in environments where queries significantly outnumber
data insertion operations. Latency is reduced by up to 50%
compared to PHT. As a direct consequence of latency reduc-
tion, PORQUE can process up to 5 times more queries than
PHT. Load balancing improvements introduced in PORQUE

minimize bottleneck occurrences: the load among the storage
nodes is balanced, hence reducing bottleneck issues in the
upper levels of the indexing structure. Simulation results using
different data distributions confirm that our approach ensures
good performances, even in the presence of skewed data.
Although our solution is limited to scenarios where insert
operations are less frequent than queries.
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