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Abstract. We present in this article a theoretical study and performance
results about the impact of the Grid architecture on token-based mutual ex-
clusion algorithms. To this end, both the original token-based Naimi-Tréhel’s
algorithm and a hierarchical approach, suitable to cope with the intrinsic het-
erogeneity of communication latencies of Grid environments, are studied and
evaluated.

1 Introduction

A Grid is usually composed of a large number of machines gathered into
small groups called clusters. Nodes within a cluster are linked using local
networks (LAN) whereas clusters are connected by wide area network (WAN)
links. Therefore, Grids present a hierarchy of communication delays where
the latency of sending a message between nodes of different clusters is much
higher than sending a message between nodes within the same cluster.

As Grid resources can be shared, applications that run on top of a Grid
usually require their processes to get exclusive access to one or more of these
shared resources (critical section). Thus, a distributed mutual exclusion algo-
rithm, which ensures that exactly one process can execute the critical section
(CS) at any given time (safety property) and that all CS requests will eventu-
ally be satisfied (liveness property), is an important building block for Grid
applications. Moreover, the performance of a mutual exclusion algorithm can
have a major impact on the overall performance of these applications.

Mutual exclusion algorithms can be divided into two groups: permission-
based (e.g. Lamport [5], Ricart-Agrawala [11], Maekawa [6], etc.) and token-
based (Suzuki-Kazami [15], Naimi-Tréhel [8], Raymond [10], etc.). The al-
gorithms of the first group are based on the principle that a node enters a
CS only after having received a permission from all the other nodes (or the
majority of them [6]). In the second group, a unique system-wide token is
shared among all nodes, and its possession gives a node the exclusive right
to enter the critical section. Token-based algorithms usually have an average
lower message cost than permission-based ones and many of them have a log-
arithmic message complexity O(log(N)) with regard to the number of nodes
N. Hence, they are more suitable for controlling concurrent access to shared
resources of Grids since N is often very large.

However, existing token-based algorithms do not take into account the
above-mentioned hierarchy of communication latencies. To overcome this



problem, we have presented in a previous article [14] a generic composition
approach which enables the combination of any two token-based mutual ex-
clusion algorithms: one at intra-cluster level and a second one at inter-cluster
level. By using our composition mechanism, efficient mutual exclusion algo-
rithms for Grids can be built where communication latency heterogeneity is
not neglected. Furthermore, they can be easily deployed by just “plugging in”
token-based algorithms on each levels of the hierarchy. Performance evalua-
tion tests conducted on a Grid platform have shown that the good choice for
an inter-cluster mutual exclusion algorithm depends on the frequency with
which the distributed processes of the application request for the shared re-
source, i.e., the degree of parallelism of the application.

We now propose in this article to study the impact of the Grid archi-
tecture on token-based mutual exclusion algorithms with and without our
composition approach, i.e., hierarchical and flat mutual exclusion algorithms
respectively. Basically, we would like to know if our hierarchical approach
is more suitable for a Grid platform than the flat one when the number of
clusters increases, and which is the number of clusters that a Grid platform
should have such that the hierarchical algorithm presents the highest perfor-
mance gain when compared to the flat one.

In order to answer to the above questions, we did both a theoretical
study about the probability of an algorithm’s message to be sent over an
inter cluster link and we conducted evaluation performance experiments on
a Grid emulation cluster platform. For the experiments, we have chosen the
Naimi-Trehel’s [8] token-based mutual exclusion algorithm, which maintains
a dynamic logical tree to transmit processes requests for the execution of
the critical section. Thus, the flat algorithm consists of the original Naimi-
Trehel’s algorithm while the hierarchical one uses our composition approach
with Naimi-Trehel’s algorithm at both intra and inter levels. Our choice can
be explained based on the results published in our previously mentioned ar-
ticle [14]: when using Naimi-Trehel’s algorithm at inter-cluster level, we ob-
tained the smallest delay to get access to the shared resource when compared
to other token-based algorithms that use other approaches for transmitting
critical section requests such as a logical ring structure or broadcasting. We
should also emphasize that we considered applications with different behav-
iors in our experiments since we also would like to know if the degree of the
parallelism of an application has an influence on our study.

The remainder of this paper is organized as follows. Section 2 briefly de-
scribes Naimi-Tréhel algorithm. In section 3, we present our compositional
approach for mutual exclusion algorithms. Performance evaluation results
and a theoretical study about the effect of clustering on token-based algo-
rithms with and without our composition approach are presented in section
4. Some related work is given in section 5. Finally, the last section concludes
our work.



2 Naimi-Tréhel’s algorithm

Naimi-Tréhel’s algorithm [8] is a token-based algorithm which keeps two
data-structures: (1) A logical dynamic tree structure in which the root of
the tree is always the last node that will get the token among the current
requesting ones. Initially, the root is the token holder, elected among all
nodes. This tree is called the last tree, since each node 7 keeps the local
variable last which points to the last probable owner of the token; (2) A
distributed queue which keeps critical section requests that have not been
satisfied yet. This queue is called the next queue, since each node i keeps
the variable next which points to the next node to whom the token will be
granted after 7 leaves the critical section.

When a node ¢ wants to enter the critical section, it sends a request to
its last. Node 7 then sets its last to itself and waits for the token. It becomes
the new root of the tree. Upon receiving i’s token request message, node j
can take one of the following action depending on its state: (1) j is not the
root of the tree. It forwards the request to its last and then updates its last
to i. (2) j is the root of the tree. It updates its last to i and if it holds an
idle token, it sends the token to i. However, if j holds the token but is in
the critical section or is waiting for the token, it just sets its next to i. After
executing the critical section itself, j will send the token to its next.

3 Composition approach to mutual exclusion algorithms

In this section we present our mutual exclusion composition approach.
We consider that there is one process per node, called application process.

Our approach consists in a hierarchy of mutual exclusion algorithms: a per
cluster token-based mutual exclusion algorithm that controls critical section
requests for processes within the same cluster and another algorithm that
controls inter-cluster requests. The former is called the intra algorithm while
the latter is called the inter algorithm. Each intra algorithm controls an intra
token while the inter algorithm controls an inter token. An intra algorithm of
a cluster runs independently from the other intra algorithms. An important
advantage of our approach is that the original algorithms chosen for both lay-
ers do not need to be modified. Furthermore, it is completely transparent for
application processes which just call the classical mutual exclusion functions
CS_Request() and CS_Release(). Thus, whenever an application process wants
to access the shared resource, it calls the CS_Request() (Figure 1, line 14) of
the intra algorithm. Upon receiving the intra token, the process executes the
CS. After executing it, the process calls the CS_Release() (line 17) of the
same intra algorithm to release it.

In order to avoid that application processes of different clusters simul-
taneously access the critical section, we have introduced a special process
within each cluster, called the coordinator. The inter algorithm runs on top
of the coordinators and allows a coordinator to request access to the shared
resource on behalf of an application process of its own cluster. Coordinators
are in fact hybrid processes which participate in both the inter algorithm with



the other coordinators and the intra algorithm with their cluster’s application
processes. Holding the intra token of its cluster is sufficient and necessary for
an application process to enter the CS since the intra token is granted to it
only if the coordinator of its cluster holds the inter token, which is unique for
the whole system.

The guiding principle of our approach is described in the pseudo code of
Figure 1. The pendingRequest( ) function (line 21) informs the coordinator if
there are token requests of the respective level waiting to be satisfied.

Coordinator Algorithm () 14 CS_Request ()
/* Initially, it holds the intra-token */ 15
while TRUE do 16 Wait for Token
if = intra.pendingRequest() then B
L Wait for intra.pendingRequest() 1# S Release 0
inter.CS_Request() 18
/* Holds inter-token. CS */ 19 if pendingRequest() then
intra.CS_Release() 20 L Send Token

if — inter.pendingRequest() then

| Wait for inter.pendingRequest()
intra.CS_Request() 21 pendingRequest ()
/* Holds intra-token CS */ TRUE  if 3 pending request
| inter.CS_Release() 292 return FALSE otherwise

Fig. 1. Coordinator algorithm

Initially, every coordinator holds the intra token of its cluster and only
one of them holds the inter token. Thus, when an application process wants
to enter the critical section, it sends a request to its local intra algorithm by
calling the Intra. CSRequest() function. The coordinator of the cluster, which
is the current holder of the intra token in this case, will also receive such a re-
quest. However, before granting the intra token to the requesting application
process, the coordinator must hold the inter token too. The coordinator then
calls the Inter.CSRequest() function (line 6) in order to request the inter to-
ken. Upon receiving it, the coordinator gives the intra token to the requesting
application process by calling the Intra.CSRelease() function (line 8). After
executing the CS, the application process calls the Intra. CSRelease() function
in order to release the intra token.

A coordinator which holds the inter token must also treat inter token
requests received from the inter algorithm. However, it can only grant the
inter token to another coordinator if it holds its local intra token too. Holding
the token ensures that there is no application process within its cluster in the
critical section. Thus, before releasing the inter token, the coordinator sends
a request to its intra algorithm asking for the intra token by calling the
Intra. CSRequest() function (line 11). Upon obtaining the intra token, the
coordinator can grant the inter token to the requesting coordinator by calling
the Inter.CSRelease() function (line 13).



4 Performance Evaluation

Our performance evaluation aims at studying and comparing the influence
of the Grid architecture in both the original Naimi-Tréhel mutual exclusion
algorithm (flat algorithm) and with our composition approach using Naimi-
Tréhel at both levels (hierarchical algorithm). To this end, the number of
nodes of the Grid was set to 120 but the number of clusters varied: 2, 3,
4, 6, 8, 12, 20, 30, 40, 60, and 120. The experiments were conducted on a
dedicated cluster of twenty-four Bi-Xeon 2.8 Ghz with 2GB of RAM machines
where a Grid environment with 120 virtual nodes was emulated. There is one
process per virtual node. For those configurations where the number of virtual
clusters is greater than the number of available machines, nodes of the same
virtual cluster run on the same machine. This approach prevents side effects
of intra cluster communication.

Network latencies between clusters were emulated by using the flexible
tool DUMMYNET [12] which allows injection of network delay, bandwidth
limitation, and packet loss. Hence, for emulating several virtual clusters, every
message exchanged between two virtual clusters goes through a dedicated
machine, a P4 3Ghz machine, which runs a FreeBSD DUMMYNET. Intra
cluster communication latency is 0.5ms while ¢nter cluster latency is 20ms.
Machines are connected by a 140 Gbits/s Ethernet switch.

The mutual exclusion algorithms and the coordinator were written in C
using UDP sockets. Each application process that runs on a single virtual
node executes 100 critical sections. Each of them lasts 10ms. Every experi-
ment was executed 10 times and the presented results are the average value.

The behavior of an application can be characterized by p which expresses
the frequency with which the CS is requested. p is equal to the ratio (/a,
where « is the time taken by a node to execute the CS while § is the mean
time interval between the release of the CS by a process and its next request.

We have developed several applications having low, intermediate, and
high degrees of parallelism. Considering /N as the total number of application
processes, the three degrees of parallelism can be expressed respectively by:

- Low Parallelism (p < N): An application where the majority of appli-
cation processes request the critical section. Thus, almost all coordinators
wait for the inter token in the inter algorithm.

- Intermediate parallelism (N < p < 3N): A parallel application where
some nodes compete to get the CS. Hence, only some coordinators wait
for the inter token.

- High Parallelism (3N < p): A highly parallel application where con-
current requests to the CS are rare. The whole number of requesting
application processes is small and usually distributed over the Grid.

In order to evaluate the flat algorithm as well as the hierarchical one, two
metrics have been considered: (1) the number of inter-cluster messages and
(2) the obtaining time, i.e., the time between the moment a node requests
the critical section and the moment it gets it.



Considering N = 120, for each experiment, we have measured the ob-
taining time (Figures 2(a), 2(b), and 2(c)) and the number of inter cluster
messages (Figures 2(d), 2(e), and 2(f)) for both algorithms when the number
of cluster ranges from 2 to 120. Figures 2(a) and 2(d) correspond to a low
parallel degree application (p = N/2); Figures 2(b) and 2(e) correspond to
an intermediate parallel degree application (p = 2N); Figures 2(c) and 2(f)
correspond to a high parallel degree application (p = 5N).

p=N/2 p=2N p=>5N
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Fig. 2. Impact of the number of clusters

4.1 Flat algorithm

We start by studying the impact of the number of clusters of the Grid
on both the obtaining time and the number of inter cluster messages in the
original flat Naimi-Tréhel algorithm. We can observe in Figure 2, that the
curves related to this algorithm have a quite similar form. Independently of p,
all curves present a hyperbolic form: a significant growth when the number of
clusters varies from 2 to 12. This growth is then strongly reduced, becoming
almost null, when the number of clusters is greater than 40.

In order to explain the form of such curves, we propose to theoretically
study the frequency with which a flat mutual exclusion algorithm sends an
inter cluster message, i.e., the probability P that the destination node of
a message does not belong to the same cluster of the message’s sender. To
this end, we consider a Grid architecture composed of N nodes uniformly
distributed over ¢ clusters. Without loss of generality, we also suppose that
a node can send a message to itself. This assumption models two successive
accesses to the critical section by the same node. Then, we get the following
probability P:

N-X 1

- ¢ _1_=
P N c



This equation is totally in accordance with the form of the curves of
Figures 2 for the flat algorithm. It also shows that such a probability does not
depend on the number of nodes N whenever they are uniformly distributed
over the Grid, i.e., it depends only on c. A last important conclusion from
this equation is that the clustering effect due to the communication latency
heterogeneity of a Grid has a negligible impact on the order of CS accesses. In
other words, such a heterogeneity does not change the order of priority of the
requests in such a way that request from closer nodes would be satisfied before
distant ones. In the above equation, any node can be chosen among N with
the same probability, independently of the Grid topology. Furthermore, if
theoretical curves were drawn from the equation, they would be similar to the
ones of Figure 2. Thus, we can deduce that the assumption of equiprobability
is reasonable and that the algorithm does not naturally adapt itself to the
Grid topology.

Let’s come back to the curves in order to study the impact of the number
of clusters with respect to the application behavior. The results of Figures
2(a), 2(b), and 2(c) show that the degree of parallelism of an application
has an impact on the obtaining time. Furthermore, the curves of Figures
2(d), 2(e), and 2(f) show that the parallelism degree of an application has no
influence on the number of inter cluster messages even if we observe a small
reduction of this number for low parallel applications.

4.2 Hierarchical algorithm

We are now going to study the impact of the Grid architecture on our
hierarchical approach. The number of clusters has an influence on the o0b-
taining time as well as in the number of inter cluster which increase with the
number of clusters. However, if we exclude the configuration with one node
per cluster where there is in fact no hierarchy of communication at all, our
approach always presents a smaller obtaining time and number of inter clus-
ter messages when compared to the flat algorithm. Notice that the benefit of
using our composition approach is considerable even for a Grid composed of
60 two-node clusters.

Since the topology of the Grid has not the same impact on our composi-
tion approach as on the flat algorithm, it would be interesting to study the
mean deviation between the hierarchical curves and the flat ones for both the
obtaining time and the number of inter cluster messages. Thus, based on the
curves of Figure 2, Figure 3 shows such mean deviations.

In Figure 3, we can observe that the gain of our composition approach
increases when the number of clusters ranges from 2 to 12. This is in ac-
cordance with the curves of Figures 2 where the obtaining time as well the
number of inter cluster messages increase sharply for the original algorithm
but smoothly for our composition approach. Such a different behavior ex-
plains why the maximum mean deviation between the two curves is reached
with 12 clusters. Beyond this threshold value, the clustering effect neither
has an influence on the obtaining time nor on the number of inter cluster



messages since in our hierarchical approach the curves progressively increase
while in the curves of the flat algorithm remain linear. Thus, the respective
mean deviations inversely decrease until they become null for the configura-
tion where each node represents a cluster (120 clusters).
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We would like to theoretically evaluate the above threshold in a Grid
composed of N nodes uniformly divided into ¢ clusters. Hence, similarly to
section 4.1, we need to find the probability P that a node sends an inter
cluster message in our own hierarchical approach on top of such a Grid.
Without loss of generality, we consider the case where the cluster locality is
maximum, i.e., every time a coordinator of a cluster gets the inter token, all
the N/c nodes of this cluster execute a critical section which corresponds to
a low parallel application. Thus, the probability P is equal to the probability
of executing the last of the N/c critical section executions:

P:

0\2‘}—‘
=

Therefore, the mean deviation F(c) between our composition approach
and the flat algorithm in function of the number of clusters c¢ is equal to:
1 c
Elc)=1—-——
(c) iy
and according to the derivative of E, the mentioned threshold, ¢ipreshotd, 1S

equal to:
1 1

E/(C) = 0*2 - N =0= Cthreshold = V N
Such an equation shows that the maximum benefit when using our com-
position approach is reached for a Grid architecture composed of v/ N nodes.
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This result can be verified by the curves of Figure 3 since v/120 = 10.95.
Consequently, for p = N/2 and p = 2N, the maximum mean deviation is
reached between 8 and 12 clusters. It is also worth noting that for low paral-
lel applications (p = 5N), the Grid architecture corresponding to the highest
benefit is equal to 6 clusters.

Finally, contrarily to the flat algorithm, the parallelism degree of an appli-
cation has an influence on our hierarchical approach. Indeed, we can observe
in the curves of Figure 2 that it becomes less effective with higher parallel
applications when the number of clusters increases, i.e., it does not present
a linear behavior anymore as it does with low parallel applications.

5 Related work

Some works have proposed to adapt existing mutual exclusion algorithms
to a hierarchical architecture. In [7], the author presents an extension to
Naimi-Tréhel’s algorithm, introducing the concept of priority. A token request
is associated with a priority and the algorithm first satisfies the requests
with the higher priority. Bertier and al. [1] adopt a similar strategy based
on the Naimi-Tréhel’s algorithm which treats intra-cluster requests before
inter-cluster ones.

Several authors have propose hierarchical approaches for combining dif-
ferent mutual exclusion algorithms. Housni and al. [4] and Chang and al.
[2] mutual exclusion algorithms gather nodes into groups. Both consider a
hybrid approach where the algorithm for intra-group requests is different
from the inter-group one. In Housni and al. [4], sites with the same priority
are gathered at the same group. Raymond’s tree-based token algorithm [10]
is used inside a group, while Ricart-Agrawala [11] diffusion-based algorithm
is used between groups. Chang and al. [2] algorithm applies diffusion-based
algorithms at both levels: Singhal’s algorithm [13] locally, and Maekawa’s
algorithm [6] between groups. The former uses a dynamic information struc-
ture while the latter is based on a voting approach. Similarly, Omara et al.
[9]’s solution is a hybrid of Maekawa’s algorithm and Singhal’s modified al-
gorithm which provides fairness. Erciyes [3] proposes an approach based on
a ring of clusters where each node in the ring represents a cluster of nodes.
The author then adapts Ricart-Agrawala’s algorithm to this architecture.

Our work is close to these hybrid algorithms about gathering machines
into groups (clusters in our case) which has in influence on the conception of
the algorithm. However, none of the articles present an evaluation study of
the impact of the number of groups (or clusters) on the performance of the
proposed algorithms.

6 Conclusion

Our evaluation results show that clustering induces an important over-
head in the flat algorithm but does not cause any side effects, i.e., it does
not change the order of critical section accesses. Moreover, the impact of the
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number of clusters on the flat algorithm does not depend on the parallelism
degree of the application.

In the case of our hierarchical algorithm, the number of clusters has an
impact on its performance. However, our approach always presents a shorter
obtaining time and a smaller number of inter cluster messages compared to
the flat algorithm when the number of nodes per cluster is greater than one
even for a Grid composed of a large number of clusters. Contrarily to the flat
algorithm, the parallelism degree of an application has an influence on our
hierarchical approach.

Finally, based both on our evaluation experiments and a theoretical study,
we can conclude that the optimal number of clusters that a platform should
present in order to provide the highest performance gain for the hierarchical
algorithm is around VN , where N is the total number of nodes on the Grid.
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