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Abstract—Distributed Hash Tables (DHTs) provide the sub-
strate to build large scale distributed applications over Peer-
to-Peer networks. A major limitation of DHTs is that they only
support exact-match queries. In order to offer range queries over
a DHT it is necessary to build additional indexing structures.
Prefix-based indexes, such as Prefix Hash Tree (PHT), are
interesting approaches for building distributed indexes on top
of DHTs. Nevertheless, the lookup operation of these indexes
usually generates a high amount of unnecessary traffic overhead
which degrades system performance by increasing response time.

In this paper, we propose a novel distributed cache system
called Tabu Prefix Table Cache (TPT-C), aiming at improving
the performance of the Prefix-trees. We have implemented our
solution over PHT, and the results confirm that our searching
approach reduces up to a 70% the search latency and traffic
overhead.

Keywords-Distributed Cache, Information Retrieval, Complex
Queries, Peer-to-Peer, DHT.

I. INTRODUCTION

Peer-to-peer (P2P) networks are now widely used to build
distributed information systems. In this context, Distributed
Hash Tables (DHTs) have shown to be a very efficient solution
to implement large scale distributed applications. DHTs are
scalable, fault tolerant, and provide load balancing. Well-
known DHT-based overlays used to build distributed appli-
cations are, for instance, Pastry [17] and Chord [20].

DHTs are distributed systems based on a numerical space in
which every node has a unique identifier (nodeld) generated
using a cryptographic hash function, such as SHA-1. Each data
object is associated with a key and stored in the network by
mapping its key to a peer. The lookup(key) operation returns
the identifier of the node that stores the key. This operation
gives support to hash table operations put(key, object) and
get(key) that respectively stores and retrieves an object iden-
tifier associated to key. A significant advantage of hashing
techniques used in DHTs is that they provide a uniform
distribution of the objects within the numerical space. On the
other hand, uniform hashing destroys data locality [21]. While
this does not hinder lookup operations based on exact match
queries, it precludes direct methods for the efficient support
of complex queries such as range queries.

Range queries are required in a wide variety of distributed
applications like music or movie storage, P2P persistent
games, scientific computation, data mining, and many types
of large scale distributed databases.

A range query retrieves all the objects with values within
a given range. For example: “find all the computers with
memory capacity between 1GB and 3GB” or “find all the
movies between years 2000 and 2011”.

A solution that improves search latency over such indexes
is not trivial: DHT properties should be preserved and there
must be a trade-off between the provided improvement and
the overhead induced by the solution. Techniques such as
data replication in upper levels of the index tree are typical
solutions. However, they introduce higher index maintenance
costs and bottleneck issues.

In order to support range queries, many P2P data indexing
solutions have been proposed. Among them, those that build
an index over the DHT allow to preserve the properties of the
underlying overlay, which provides the substrate for building
scalable applications [12], [14], [16], [21], [22]. We discuss
related work in Section II.

In this paper we focus on Prefix Trees (or trie) and present
our solution in the context of Prefix Hash Tree (PHT) [16].

PHT is one of the most well-known solutions to support
range queries over a DHT. It is a trie-like indexing data
structure, fully distributed among the peers of the network that
can easily be implemented over any DHT. Section III details
PHT: its operations and its data structure.

We claim that it is possible to significantly improve the
performance of the search in Prefix Tree-like structures. In this
paper, we propose a new cache for Prefix-Trees which is based
on the principle of the Tabu search heuristic [9]; we call it Tabu
Prefix Table Cache (TPT-C). TPT-C uses a distributed shared
tabu list in order to reduce the search space. By avoiding
internal nodes of the trie, it provides a lightweight cache
solution. These and others features of TPT-C are discussed
in Section IV.

Our main contribution is a cache approach which improves
the search process over prefix tree indexes. It works indepen-
dently of data distribution and provides good load balancing.
Extensive range query simulation experiments have shown
that TPT-C search significantly outperforms the classic PHT
approach: it reduces in average traffic overhead and latency by
up to 70%. One of the strong features of our cache technique
is that its performance does not degrade in dynamic scenarios
since it does not store static references. Comparative evalua-
tion performance results based on simulation are presented in
Section V. The last section of the paper is dedicated to the
conclusion of our work.



II. RELATED WORK

In order to support range queries which preserve data
locality, many P2P data indexing solutions have been proposed
in the literature. They can be separated into two classes: over-
DHT indexing class [8], [12], [14], [16], [21], [22], which
indexes data over DHTs, and the overlay-dependent indexing
class which indexes data directly on a customised overlay [2],
[3], [5], [7], [10], [11]. The advantage of the first class is that
it is entirely built on top of the DHT interface, and it is thus
portable to any DHT. However, all the indexing data structure
solutions produce overhead since it generates extra traffic due
to the data index structure itself.

Overlay-dependent indexing solutions adopt either a DHT-
free indexing approach which re-designs its own overlay, or
a DHT-modification approach where the DHT is adapted in
order to provide data locality. However, they suffers of load
balancing and traffic message overhead problems because
they do not maintain the DHT properties. Prefix Hash Tree
(PHT) [16] is a well-known example of over-DHT indexing
solution and has been widely exploited in [6], [15], [18], [19].
More details about PHT structure and operations are presented
in the following section.

PHT main drawback relies in the top down traversal of
the structure when search is performed. This index structure
only store data at leaf nodes, as consequence traffic overhead
and latency are increased compared with tree-linked solutions
like [8], [12], [22] which replicate information at internal
levels. Replication on internal level is a typical solution to
improve latency and traffic overhead, however the maintenance
cost of the index and load balancing still a concern for these
approaches.

To improve the PHT search, Chawathe et al. have introduced
in [6] a client-side cache system which stores information
about leaf nodes. When a new lookup takes place, the client
node cache is checked. If it contains the leaf node that stores
the searched data, a DHT lookup operation is performed so as
to verify that the tree structure has not changed and that the
node is still a leaf. Therefore, the leaf node is located with
a single lookup. Nevertheless, if the trie structure changes
or the cache entry is out of date, the traditional search of
PHT is carried out. In this article we denote such an approach
as PHT + Cache. The PHT + Cache approach improves
the PHT performance in static environments. However, this
is quite unrealistic since P2P systems are essentially dynamic
environments. In this case, static references such as IP ad-
dresses may become useless, forcing a reversion to traditional
search methods which generate higher latencies and message
overhead. In Section V we will show that our approach
outperforms this cache solution.

III. PHT: PREFIX HASH TREE

Introduced in [16], the Prefix Hash Tree (PHT) is a trie-
like indexing data structure over DHT-based P2P networks.
It supports range queries by simply exploiting lookup(key),
get(key), and put(key, object) operations.

The indexes built over a DHT preserve the good properties
of the latter such as scalability, fault resilience, and load
balancing.
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Fig. 1. PHT structure: Mapping trie nodes over the DHT.

Data Structure

The PHT structure is a binary trie built over the data set
where the left branch of a node is labeled 0 and the right
branch is labeled 1. Each node n of the trie is identified with
a chain of D bits or a prefix produced by the concatenation
of the labels of all branches in the path from the root to n.
Under the assumption that all objects can be represented by
a binary key k, PHT builds a prefix tree in which objects are
stored at leaf nodes. Hence, an object with key k is stored at
a leaf node with a label that is a prefix of k. Each leaf node
stores at most B keys.

The trie structure of PHT is completely distributed among
the peers in the network. This is achieved by hashing the prefix
labels of the PHT nodes over the underlying DHT identifier
space. As a consequence, each node of the trie will have an
assigned node in the DHT. Fig. 1 illustrates an example of
PHT node mapping.

In PHT there are three types of peers: leaf, internal, and
external. The first two belong to the PHT trie-structure, while
the last one does not, however it participates to the DHT
overlay.

In order to improve the performance of range queries, PHT
maintains a double list which links all leaf nodes (dashed lines
in Fig. 1).

Search: Lookup Operations

Considering a key k with a length of D bits, the PHT-lookup
returns a unique leaf node leaf(k), that stores k. The label
of this node is a prefix of k. Since there are D + 1 different
prefixes of k, there are D + 1 potential candidates [16].

Two different search methods can be used to locate a leaf
node: linear search and binary search.

In the linear search method, the PHT-lookup starts by
invoking the DHT-lookup operation with the shortest prefix
of k. If no leaf node is reached, a new lookup operation with
a one-bit longer prefix is performed. This step gets repeated
until a leaf node is reached. In the worst case, the linear search



executes D + 1 lookup operations to reach the leaf node. Note
that the linear search can also be performed in parallel, i.e.,
D —+ 1 lookup operations are executed in parallel, one for each
of the D+ 1 prefixes. However, even if this approach provides
low-latency lookups, it generates a high overhead in terms of
the number of messages.

A more efficient approach in terms of the number of
messages is to perform a binary search: Binary search is a
half-interval process that starts by querying a middle prefix of
D. If the prefix corresponds to an internal node of the PHT,
the search discards the lower half of the interval and continues
querying a new middle prefix of the remaining interval. If the
prefix corresponds to an external node, the search discards
the upper half of the interval. This search method produces a
number of lookup in the order of log(D). The drawback of
the binary search is that if an internal node fails or leaves the
system, it might be impossible to locate a given leaf node.
Additionally, binary search cannot be performed in parallel.

Range Queries

Given two keys L and U with U > L , a range query
over PHT will return all the keys within the range [L, U]. To
perform the search, the lower bound key L is used to find
the first leaf node in charge of such a key. Once this node
is reached, the bidirectional links over the leaves are used to
collect all the keys until the leaf node that is in charge of the
upper bound key U.

Range queries can also be performed in parallel (PHT-
Parallel). By performing a DHT lookup operation, it is possible
to locate the node whose label corresponds to the greatest-
common-prefix that completely covers the specified range.
If the latter is an internal node, then it recursively forwards
the query to those children which overlap with the specified
range. This process continues until the leaf nodes overlapping
the query are reached. This approach generates searches with
low-latency and higher overhead in terms of the number of
messages when the query span is large [16].

IV. TPT-C: TABU PREFIX TABLE CACHE

In this section, we describe our proposal of a new cache
technique for Prefix Trees indexing. This cache provides a
very efficient and persistent shortcut mechanism that avoids
re-visiting internal nodes of the tree. The goal of our solution
is to improve search performance. We explain our solution
over PHT, but other Prefix Tree solutions like P-grid [1] can
also exploit our approach.

Tabu Prefixes Table Cache (TPT-C) is inspired by the Tabu
Search optimisation method [9]. This heuristic is used to solve
combinatorial optimisation problems, such as the traveling
salesman problem (TSP). Tabu search maintains a Tabu list
which stores the solutions already used and thus avoids re-
visiting the same solutions. The principle of Tabu Search is
to reduce the search space in order to speed up the process
of finding an optimal solution. Like Tabu Search, the idea of
TPT-C is to reduce the search space in the trie, thus improving
latency and reducing both the message traffic overhead and
the load at internal levels of the trie. Note that TPT-C is not

a heuristic like Tabu search, however it exploits the principle
of the tabu list.

PHT

Trie TPT-C TPT-C

0 . 1 ?g insertinCache ,rm) g?

2 % 11 —» |

0 1 o 1 i
@ @ @ ﬁ Before After
0 10/ 0 10 1 | TPT-C TPT-C

- § ! ?\ § 4\<-> <'>' <'> | g? insertinCache (1) g‘?

.\kO_ | \\L,r 9( \\1L & Internal node || 10 ’ 10

R & |71 Leaf node L 11

& Avoided node|  Before After

Fig. 2. TPT-C insert operation

TPT-C is a flexible and distributed cache solution which
provides knowledge about the trie shape. It stores prefix
labels of nodes visited in previous searches. Thus, in a search
operation, cache information of every visited node is exploited
in a distributed manner. Furthermore, since cached information
is related with the logical structure of the index which is
independent of the DHT, churn on the overlay hardly affects
the performance of TPT-C.

A. Insert in Cache

Each entry in TPT-C stores a prefix label p, which corre-
sponds to an internal node of the PHT. The number of entries
per node is limited to e. When the number of entries reaches e,
traditional strategies can be used for entry replacement: First
in First Out (FIFO), Least Recently Used (LRU) or Least
Frequently Used (LFU).

Whenever a node wants to insert a prefix in its local cache, it
calls the InsertInCache function. The prefix will be inserted in
the node cache if it is not already stored and it is not redundant.

Algorithm 1: Insert Operation in Cache (InsertInCache)

input : Entry e

strategy € {FIFO, LRU, LFU};
Boolean insert_flag = true;
foreach Entry f in TPT-C do
/* check if e is not redundant */
if commonPrefixLength (e, f) > e.size then
L insert_flag = false;
f insert_flag then
foreach Entry f in TPT-C do
/* remove redundant entries after the insert */
if commonPrefixLength (e, f) = f.size then
| removeEntry (f);

insert (e);

if TPT-C.size > ¢ then
| removeEntry (strategy);

The information about the prefix related to an internal node
is redundant if it has a child already present in the node
cache. The idea is to preserve, whenever possible, the longest
prefixes in the cache and remove the unnecessary entries. The
InsertInCache function is described in Algorithm 1.

Fig. 2 shows two examples of an entry insertion in TPT-C.
When the InsertInCache; (01) is performed, the prefix entry



01 is inserted because it is neither present nor redundant in
cache. On the other hand, in InsertInCaches(1) call, an
entry with label 1 is not included in the cache because it is
redundant.

B. TPT-C Search Algorithm

In original PHT, when a PHT-lookup of a key k is per-
formed, the querying node @,, iteratively generates a lookup
operation whose key P;(k), at each step i, is a prefix of length
1 according to the selected search method (linear or binary).

Algorithm 2: Check in Cache (CheckInCache)

input : Key k, int prefizLength
output: Entry hit

int gep = prefixzLength;
/* gcp denotes the greatest common prefix length */
Entry hit = null;
foreach Entry e in TPT-C do
if commonPrefixLength (e, k) > gcp then
gcp = commonPrefixLength (e, k);
hit = Pyep(k);
/* P;(k) denotes the prefix label of length i of
the key k */

In TPT-C, when @Q,, starts the PHT-lookup, it first checks
its own cache in order to find an entry which can reduce the
search space.

Algorithm 3: New Query at Q,,

input : Key k
output: Message m

prefixzLength = 0;
Entry e = checkInCache (k, prefixLength);
if e = null then
L m = lookup (nextPrefix (k, prefizLength));

else
| m=1lookup (nextPrefix (k, e.prefizLength));

The C'heckInCache function is presented in Algorithm 2.
It iteratively searches the cache in order to find the most
useful cached information, i.e., the entry which has the greatest
common prefix length (gcp) with k. Notice that in order to go
on with the search, the size of the entry prefix must be longer
than the prefix length of the current lookup operation. If an
entry is found (cache hit), it can be used to continue the search,
otherwise, the function returns null and the search reverts to
a normal PHT search.

Algorithm 3 shows how a query with a key k is managed by
a node @,,. When a local cache entry hit takes place, the node
performs a new lookup operation starting from one step further
(nextPrefix) than the prefix corresponding to this cache
hit. This shortcut allows to go directly to lower levels of the
index. If no entry is found, the lookup operation is performed
as usual. The next prefix used by the lookup (nextPrefix)
is based on the linear search method, i.e., a one bit longer
prefix.

Algorithm 4 presents the reception of the ),, lookup op-
eration by node R,,. The reply sent by R?,, includes the type
of the node (leaf, internal, or external). Furthermore, if R,, is
an internal node, it checks its local cache to find if there is

Algorithm 4: Lookup Processing at R,,

input : Key k, int prefizLength
output: Message m

if myNodeType = "leaf’ then
L lookupReply (leaf’, null);

else
Entry ¢ = checkInCache (k, prefizLength);
if ¢ /= null then
L m =lookupReply (myNodeType, c);

else
L m = lookupReply (myNodeType, null);

Algorithm 5: Lookup-Reply Processing at @,

input :Key k, int prefixLength, NodeType type, CacheEntry ¢
Output: Message m

if type = 'leaf’ then
L m=getData ();
else
if ¢ /= null then
insertInCache (c);
m = lookup (nextPrefix (k, c.prefizLength));

else
m = lookup (nextPrefix (k, prefixzLength));
if type = "internal’ then
| insertInCache (PprefizLength(k));

an entry which can reduce the search space. If an entry e is
found, R,, also includes e in the reply message to Q..

The reception of a lookup-reply message by node @, is
described by Algorithm 5. Upon reception, (,, executes one
of the following actions: if the reply is from a leaf node, @,
knows that the search has ended and gets the searched data
by contacting node R,; if the lookup-reply message includes
a cache entry, the latter is inserted in the cache of @, and
the lookup continues one step further; otherwise, the search
continues as usual. Note that if the reply is from an internal
node, the searched prefix is also stored in the cache of Q.

Algorithm 6: TPT-C Parallel Search
input: Key pre fiz, Query-Range r

List newTarget = null;

/* add both children to newTarget */

newTarget < prefiz.append(0);

newTarget < prefiz.append(l);

/* optimise search with cache entries */

foreach cache-entry ¢ € r do

for : = 0 to i = c.lenght do

foreach Entry p € newT arget do
if p = c.subPrefixz(0, i) then

/* c.subPrefiz(0,i) delivers a sub-string
of size i of ¢ ¥/
newTarget.remove(p);
newTarget < p.append(0);
newTarget < p.append(1);

/* performing parallel lookups */
foreach Key k € newTarget do
if £ € r then

L lookup (k);

C. TPT-C Parallel Range Query Search

In order to provide low-latency lookups TPT-C can be
performed in parallel. Given a range query r, TPT-C Parallel



will reach all the leaf nodes within r. Its principle is similar
to that of the TPT-C key search algorithm presented above:
it avoids unnecessary lookup operations over internal node
prefixes. TPT-C Parallel exploits the information kept in the
node cache to identify all those prefixes related to internal
nodes that cover r. Contrarily to PHT Parallel which visits all
the internal and leaf nodes contained in the specified range r,
TPT-C Parallel exploits cache information in order to avoid
contacting internal nodes unnecessarily. Such an approach
reduces response latency and message traffic compared to orig-
inal PHT Parallel. Algorithm 6 describes the TPT-C Parallel
search executed at each visited node. The algorithm receives
the prefix of the current node and the range of the query. At
the end of the algorithm, newT arget contains a list of node
prefixes to be contacted. The internal nodes that are avoided
correspond to those entries in cache which are within range.
The corresponding lookup operations are therefore performed
in parallel.

V. PERFORMANCE EVALUATION
A. Experiments Setup

To conduct our experiments, we used an event-driven
simulation over Peersim [13] with Pastry as overlay. We
implemented a PHT layer on top of Pastry as well as both
cache approaches: TPT-C and PHT+Cache (see section II).
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Fig. 3. Gaussian and DBLP data distribution

We considered a network of 10,000 peers, where a PHT
node stores at most 1,000 objects (B = 1,000). 500,000
objects were inserted in the system. Queries are generated
using both synthetic and real data sets: Uniform, Gaussian,
and the DBLP Computer Science Bibliography [4] dataset.
The indexed attribute in the DBLP dataset is the author name
which has been converted to a floating number in the range
[0, 1]. For the Uniform dataset, keys were generated so as to
be uniformly distributed in the range [0, 1]. In the case of the
Gaussian dataset, keys follow a gaussian distribution with a
mean g = % and standard deviation o = %. Note that in the
Gaussian distribution almost 98% of the data keys are within
the range [0, 1]. Fig. 3 presents the Gaussian and the DBLP
data key distribution. The number of cache entries was fixed
to 100 entries and the Least Recently Used (LRU) replacement
strategy is used as cache policy.

All our experiments comprise a total of 1,000,000 queries
generated using the three above-mentioned distributions. A
snapshot of the system is taken every 100,000 queries.

In the following section, we present our evaluation per-
formance results related to query latency and message traffic
overhead as well as load balancing among the trie nodes. We
also discuss the impact of the number of cache entries, data
distribution, range query size, and churn on the performance
of the different solutions.

B. Message Traffic Overhead and Query Latency

In order to evaluate the performance of TPT-C compared
to the original PHT and PHT+Cache, we measured the query
latency and message traffic overhead in the system. Latency
is measured by the number of lookup operations necessary to
reach the corresponding leaf node. Each simulation starts by
inserting 500, 000 objects in the network.

Table I compares the message traffic generated by PHT
Linear, PHT Binary, PHT+Cache Linear, and TPT-C Linear
searches. The percentage of improvent was calculated in
relation to PHT Linear: for example % PHT+Cache Gain
reflects the percentage of traffic reduction obtained by using
PHT+Cache compared to PHT Linear. We can observe that
TPT-C strongly reduces the total message traffic. Note that
TPT-C induces a reduction of more than 67% of the total
message traffic in the case of a Uniform distribution. In distri-
butions similar to that of DBLP, the reduction exceeds 73%.
On the other hand, PHT+Cache reduces the total message
traffic by only 15% and 20% when the data keys follow a
Uniform and DBLP-like distribution respectively.

A second interesting result can be deduced from Table I.
Our approach “artificially decreases” the height of the trie by
avoiding internal nodes. The practical consequence is that the
height of the trie no longer has an impact on the message
traffic, similarly to PHT and PHT+Cache. Our solution thus
produces approximately the same amount of messages inde-
pendently of the height of the trie.

TABLE 1
NUMBER OF TRAFFIC MESSAGES

Uniform Gaussian DBLP
PHT Linear 45,119, 200 49,641,018 58,929, 556
PHT + Cache 38,211,964 43,519,742 46, 728, 556
PHT Binary 12, 856, 326 20, 853, 420 21,985,418
TPT-C 14, 563, 486 16,455, 180 15,452,542
% PHT + Cache Gain 15.30 12.33 20.70
% PHT Binary Gain 71.50 57.99 62.69
% TPT-C Gain 67.72 66.85 73.77

As mentioned in Section III, binary search is an effective
search method but, in dynamic scenarios, it can present some
drawbacks. In PHT, binary search may fail to locate leaf
nodes. Since both PHT insert and delete operations produce
trie-shape modifications, wrong answers about the state of
the nodes in the trie can compromise the search. As binary
search does not go backwards, the search might finish without
result. Such a behaviour introduces extra traffic overhead and
latency, because a new search must then be performed, using
the same method or the linear search. Table I also shows the
total message traffic when a binary search is used. Compared
to PHT Linear, the total traffic of Uniform and DBLP datasets
are respectively reduced by 71% and 63%. However, binary



search performance is not constant as we can see in Fig. 4(1).
It can produce different performance results, depending on the
indexed data distribution and the maximum key prefix.

In order to evaluate latency, we measured the number
of lookup operations necessary to reach a leaf node. We
compared the results of TPT-C with PHT Linear, PHT+Cache,
and PHT Binary. Fig. 4(a), 4(b), and 4(c) show the numbers of
lookup operations performed for all three distributions when
the cumulative number of queries grows until 1,000, 000. As
can be observed, TPT-C effectively reduces latency, offering
better performance than the search techniques we compared it
to. In Fig. 4(a), the performance of TPT-C and PHT Binary
searches are very similar. In the case of Gaussian and DBLP
distributions (Fig. 4(b) and 4(c)), TPT-C search performance is
25% better than binary search due to the irregular performance
of the latter.

The results obtained are quite promising since TPT-C
shows better performances than PHT Binary and PHT+Cache.
Furthermore, using the real dataset of DBLP, TPT-C has
an average of 3.15 lookup operations, reaching 73% better
performance than Linear PHT and 67% better performance
than PHT+Cache. These results are also valid for the two other
distributions. It is worth emphasising that the use of TPT-C is
more attractive than binary search since the former effectively
supports dynamic conditions whereas the latter does not. For
instance, binary search may fail because of churn; moreover,
insertion and delete operations can also compromise the result
of the binary search.

Another interesting property of TPT-C is that it gathers
cache information faster than cache techniques which col-
lect information only about the leaf nodes of the trie (e.g.
PHT+Cache). During every query operation, TPT-C can col-
lect a higher amount of information about internal nodes,
while PHT+Cache only gets one cache entry per lookup. This
explains why better performance is attained faster with TPT-C
search than with other cache search techniques.

The difference between Uniform and skewed distributions
(e.g. Gaussian, DBLP) is the height of the trie. In the case
of Uniform distribution, the trie tends to grow horizontally,
while in skewed distributions the growth is vertical. Since data
insertions make the trie structure grow, we also compared the
impact of data size on the search processes with respect to
different distributions. Fig. 4(1) and 4(m) show the results with
Uniform and DBLP distributions respectively. In the case of
Uniform distribution, the cost of a PHT Linear search increases
faster than TPT-C. On the other hand, PHT Binary exhibits a
fluctuating but overall good performance. The fluctuation of
the curve can be explained since the number of iterations to
find a leaf node can vary depending on the size of the searched
branch of the trie and the maximum key prefix size.

C. Load Balance

One of the typical problems of tree-like data structures
is that a top-down traversal methods is the standard search.
Hence, upper levels nodes, close to the root, have to deal with
higher traffic than lower levels nodes. Notice that at level e of
the trie there are 2° nodes. The worst case is the first level,
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Fig. 5. PHT generated with Uniform, Gaussian, and DBLP datasets.

where there are only 21 nodes. On the other hand, at lower
levels the messages are distributed among a higher number of
nodes. Linear search performs iteratively by trying a greater
prefix at every step until a leaf node is reached. This search
overloads the upper level internal nodes, that can thus become
a bottleneck.

TPT-C improves load balancing associated to linear search
since it diverts queries to the lower levels of the trie, closer to
the leaf nodes. Therefore, traffic is distributed among a higher
number of nodes when compared to upper levels ones. The
load per level in the trie structure is presented in Fig. 4(d),
4(e) and 4(f), where the horizontal axis represents the levels
of the trie (root = level 0, i.e., the highest level).

PHT Linear search entails the same load at every internal
level of the trie. Since there are less nodes at higher levels
than there are at lower ones, their load can become critical.
TPT-C avoids bottlenecks by distributing messages at the leaf
level. It spreads queries directly at the lower levels of the trie,
hence avoiding lookup operations among higher level nodes.
Fig. 4(f) shows how the load is distributed among the levels
of the trie in the case of the DBLP distribution for a total
of 1,000,000 queries. The lowest levels of the trie have very
similar loads, but PHT Linear search introduces much more
load on the first 5 levels. This has a significant impact on the
average load per node as is presented in Fig. 4(g), 4(h) and
4(i). We can observe that the first levels incur a huge load of
messages in the case of PHT Linear search, with the risk of
causing a serious bottleneck jam.

D. Data Distribution

PHT search effectiveness is very sensitive to data distribu-
tions. Since the latter modifies the trie shape, it has an impact
over the lookup performance. Fig. 5 illustrates the influence
of data distribution over trie shape. For instance, in clustered
datasets (a high density of objects within a given range of
keys), data is placed at lower levels of the trie. Therefore,
querying such data will require a higher number of lookup
operations.

Uniform distributions of keys generate balanced tries in
which leaf nodes are located on a similar level. The number
of lookup operations required to find a leaf node is almost
constant. On the other hand, skewed distributions generate
unbalanced tries. Consequently, in order to locate the clustered
data, a higher number of lookup operations is necessary.

We evaluated the impact of Uniform, Gaussian and DBLP
dataset distributions in the performance of TPT-C. Fig. 4(j)



[ e —— 10 Fmmr %
2 s o faaa SRV 2 9p [ R
S 7 PHT Linear —— 5 8 PHT Linear ——
S . PHT + Cache -~ S . PHT + Cache -~
= PHT Binary = PHT Binary %
5 5 o TPT-C —8B 5 ¢ TPT-C &
-
* 4 Bego g #*® 5 .
B oK *
3 85 4 &]
, s e e e R R 5 Bego.g g o o4

0 200 400 600 800 1000 0 200 400 600 800 1000
Queries x 1.000 Queries x 1.000

(a) Latency - Uniform (b) Latency - Gaussian

1e+06 1 1e+06 1 PHT Linear ——
TPT-C —»—
¢ 800000 o 800000
S )
& 600000 & 600000
0 n
@ o p
= 400000 = 400000 /
* / = %
X
200000 X.v.x PHT Linear —— 200000 [/
S TPT-C - X St
2 4 6 8 10 12 14 5 10 15 20 25 30

Trie Level

(f) Load per level - DBLP

Trie Level
(e) Load per level -Gaussian

100000 11

PHT Linear —— ok Uniform ——
80000 TPT-C —%— Gaussian -~
a 9
) 3 DBLP %
g g
2 60000 g
8 3
[0 = 6
S 40000 E
a
* *
20000 4
004K, 3
0 2
5 10 15 20 25 30 0 200 400 600 800 1000
Trie Level Queries x 1.000

(i) Load per node - DBLP (j) Data Distribution

12 60
11 o 55
o 10 o o 50
2 9 - . 2 %
S g o PHT Linear —— S 40
S PHT + Cache —x— S s PHT Linear ——
= PHT Binary - [ PHT-Parallel -
P TPT-C —& 3 TPT-Parallel -
5% * * * 2
* 4 * 20
= =] B R
3 = 15 X ) *
2 10
100 200 300 400 500 0.01 0.02 0.03 0.04 0.05
Data Size x 1.000 Range Span

(m) Data Size - DBLP (n) Range - Latency

Fig. 4. Performance evaluation

shows how the number of lookups evolves during the simu-
lation. We can observe that TPT-C efficiently reduces query
latencies independently of data distribution and that there is
almost no difference between the three distributions. Notice
that query latency quickly decreases as caches are being filled.
After 200,000 queries, the caches are full and the query
latency decreases slowly.

E. Cache Size

Since the storage capacity of every node is limited, it is not
realistic to consider infinite node caches. TPT-C requires very
little storage (o) per node; therefore it is possible to maintain
a high number of entries (¢) in cache. Each cache entry of
TPT-C consists of a key prefix which in the worst case is the
number of bits of the indexed space (D bits). In [6] an 80 bit
key was used for a real application. In TPT-C, for the same
key size, 100 entries would only require 100 x 80 = 8000 bits,
approximately 1Kb.

We evaluated the impact of the number of cache entries on
the performance of TPT-C in terms of lookup operations.

The results are presented in Fig. 4(k). As shown, cache
size has a direct impact on the performance of TPT-C. When
dropping from 200 entries to 100, latency is degraded by up
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to 13%. On the other hand, by tripling the cache size from
100 entries to 300, the latency is improved by 17%.

F. Range Query

We compared different strategies for obtaining the results
from range queries. Both PHT Linear and PHT Binary
searches traverse the double list of leaf nodes. PHT-Parallel
search performs a linear search until it reaches the prefix that
completely covers the range size and then — if this is an internal
node — it forwards the request concurrently to the nodes that
overlap the range.

Fig. 4(o) shows the number of lookup operations for PHT
Linear, PHT Parallel, and TPT-C Parallel searches for dif-
ferent range sizes (spans). The range span varies from 1%
to 5% of the data space for the DBLP distribution and is
generated randomly. As expected, PHT Linear search has the
highest latency since it accesses all nodes sequentially: latency
increases linearly with the range size. PHT Parallel search,
however, has to perform several linear searches. Since it is
done concurrently, there is no overhead for traversing nodes
that store the data: the number of hops will be equal to the
longest branch that overlaps the range span. Nevertheless, the
traffic in terms of messages grows linearly with the range span:



this can strongly degrade the performance of the system.

When compared to PHT searches, TPT-C Parallel approach
is more efficient at reducing latency, which is improved up
to 20% in average. It is worth pointing out that the slope is
gentler than the ones for PHT Linear search and PHT Parallel
search. Such an improvement is the result of parallelising the
search while exploiting TPT-C information.

G. Dynamic Scenarios

Traditional cache techniques for prefix trees maintain static
references to directly access data. In the case of PHT+Cache,
only references to leaf nodes are stored in cache. By exploiting
this information, a node can directly contact the leaf node.
However, this cache information usually consists of a key and
an IP address. Hence, if the node leaves the network, such an
entry will be useless for future queries. TPT-C does not use
static references; instead, it only exploits logical information
about the tree (prefix labels). By gathering information from
internal nodes, TPT-C can reduce the search space over the
tree even when nodes join or leave the DHT. Therefore, it
supports churn.

Since P2P systems are highly dynamic, we evaluated the
performance of both PHT+Cache and TPT-C when nodes
randomly join and leave the DHT under churn conditions.

Simulation was divided into windows of 100,000 queries.
Churn is introduced during a full window followed by another
without churn. A 10% churn ratio in relation to the total
number of nodes during every simulation window is enough
to show the impact of dynamic scenarios on the performance
of the two cache approaches.

Fig. 4(p) presents how PHT+Cache and TPT-C performance
is degraded in a dynamic scenario. Performance degradation
percentage corresponds to the relation of latency values be-
tween simulations with and without churn.

TPT-C outperforms PHT+Cache in dynamic scenarios. It is
hardly affected by churn as its performance is degraded by
only 3.6%, conversely to PHT+Cache whose performance is
degraded by 70%. The small difference of TPT-C performance
with and without churn is due to new nodes that join the
system with empty caches.

VI. CONCLUSION

In this paper, we propose a new cache for distributed Prefix
Trees called Tabu Prefix Table Cache (TPT-C). TPT-C is a
solution based on the Tabu Search, and it aims at improving
the performance of Prefix Trees search. By exploiting the Tabu
principle, TPT-C optimises the number of lookup operations
performed over internal nodes; therefore it improves both
message traffic and query latencies up to 70%. As internal
nodes of the trie are free of unnecessary traffic, load balancing
among the nodes is also improved.

The obtained results confirm that our solution produces
approximately the same amount of messages independently of
the height of the trie. Thus TPT-C is efficient independently
of the data distribution.

Another interesting feature of TPT-C is that it supports
churn. Our results shows that performance is degraded only in
3% in highly dynamic environments, instead traditional PHT
cache is degraded up to a 70%.
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