Fault Tolerant K-Mutual Exclusion Algorithm Using Failure Detector

Mathieu Bouillaguet, Luciana Arantes, and Pierre Sens

Université Pierre et Marie Curie-Paris 6, LIP6/Regal,
UMR 7606, 4 place Jussieu, 75252 Paris cedex 05, France;
INRIA Paris - Rocquencourt,

Domaine de Voluceau, BP 105, 78153 Le Chesnay Cedex, France

{mathieu. bouillaguet,luciana.arantes,pierre. sens}@lipﬁ fr

Abstract

We present in this paper a fault tolerant permission-
based k-mutual exclusion algorithm, which is an exten-
sion of Raymond’s algorithm [18]. Tolerating up to
n — 1 failures, our algorithm keeps its effectiveness de-
spite failures. It uses information provided by unreli-
able failure detectors to dynamically detect crashes of
nodes. Performance evaluation experiments show the
performance of our algorithm compared to Raymond’s
when faults are injected.

1 Introduction

The k-mutual exclusion problem is a fundamental
distributed problem which guarantees the integrity of
the k units of a shared resource by restricting the num-
ber of process that can simultaneous access them. Tt
then involves N processes which communicate via mes-
sage passing and ask for accessing one of the k units
of the shared resource, i.e., to execute a critical section
(CS). Hence, a distributed k-mutual exclusion algo-
rithm must ensure that at most k processes are in the
CS at a given time (safety property) and that every CS
request is eventually satisfied (liveness property).

Distributed k-mutual exclusion algorithms can be
classified into two families: permission-based [18], [17],
[8], [9], [15] and token-based [20], [12], [2] [23]. In the
algorithms of the first family, a node gets into the crit-
ical section only after having received permission from
all or a subset of the other nodes of the system. In
the second family, the possession of the single token
or one of the tokens gives a node the right to enter
into the CS. The latter usually presents an average
lower message cost, of messages, but is less fault toler-
ant than permission-based algorithms which, by using

broadcast, are naturally more resilient to failures.

Raymond’s k-mutual exclusion algorithm [18] is an
extension of Ricart-Agrawala’s [19] permission-based 1-
mutual exclusion algorithm. When a node wants to en-
ter the CS, it broadcasts a message to the other (N —1)
nodes of the system. The requesting node can enter the
CS if no more than k£ —1 nodes are currently executing
the CS. That is, only after gathering IV — k permissions
from the other nodes.

Even if Raymond’s algorithm does not explicitly
consider failure of nodes, the fact that it does not need
to wait for a permission from all the participants im-
plicitly renders it fault tolerant to some extent. It tol-
erates up to k — 1 faults. In other words, if instead of
executing the CS, k—1 nodes were crashed, a node ask-
ing to execute a CS would still get it. However, each
crash reduces the effectiveness of the algorithm since
the number of processes that can concurrently execute
the CS decreases by one. Therefore, we propose in this
paper to extend Raymond’s algorithm in order to both
tolerate up to IV — 1 node crashes, instead of just k —1,
and avoid that the algorithm degrades when failure oc-
curs, i.e., to ensure that it is always possible to have
k processes in the CS simultaneously, despite failures.
Another reason that motivates the current work is the
fact that fault tolerant permission-based k-mutual ex-
clusion algorithms which don’t use a quorum approach
are quite rare in the literature.

In order to get information about crashes of nodes,
our solution exploits the information about the liveness
of processes provided by distributed unreliable failure
detectors. An unreliable failure detector (FD) [4] is a
well-known basic block which offers information about
process failures. It can be informally considered as a
per process oracle, which periodically informs the list
of current processes suspected of being crashed. It is
unreliable in the sense it can make mistakes. Our solu-

tion basically relies on the unreliable detector of class 7
[7] since it is the weakest one to solve the fault-tolerant
1-mutual exclusion problem. Thus, a per process fail-
ure detector 7 module periodically gives information
to the corresponding process about the actual state of
the system. Such an information allows each process
to dynamically update its knowledge about the actual
number of running processes and therefore our algo-
rithm becomes more effective in presence of failures
than Raymond’s algorithm. Just at the initialization
phase, our algorithm also needs an unreliable failure
detector of class S.

The paper is organized as follows. Section 2 de-
scribes our model. The concept of unreliable FD and
the properties of the FDs of class 7 are presented in
section 3. Section 4 briefly describes Raymond’s algo-
rithm. Section 5 presents our fault-tolerant algorithm
while section 6 outlines its proof. Some related work
is given in section 7. Simulation performance results
are shown in section 8. Finally, section 9 concludes the

paper.
2 System model

We consider a distributed system consisting of a fi-
nite set of N > 1 nodes. The set of participants as well
as N are known by all nodes. There is one process per
node and processes communicate by message passing.
No assumptions on the relative speed of processes nei-
ther on message transfer delays are made. Thus the
system is asynchronous. Communication channels are
reliable, but messages might be delivered out of order.

A process can fail by crashing and crashes are per-
manent. A correct process is a process that does not
crash during a run; otherwise, it is faulty. The maxi-
mum number of processes that may crash in the system
is equal to f (f < N).

The number of units of the resource is k. We assume
that k is known to every process. The duration of the
CS is bounded.

As we consider one process per node, the words node
and process are interchangeable.

3 Unreliable Failure Detectors

Chandra and Toueg [4] have introduced the concept
of unreliable failure detectors which are distributed or-
acles that provide information about liveness of sys-
tem’s nodes. Each process has access to a local failure
detector module which outputs the list of processes
that it currently suspects of having crashed. A local
failure detector is unreliable since it can make mistake

by erroneously adding to its list a process which is ac-
tually correct or not suspecting a crashed node. How-
ever, if later the FD realizes its mistake it corrects it
by either removing or adding the node to its list.

Failure detectors (FDs) are formally characterized
by two abstract properties: (1) the completeness prop-
erty which characterizes the FD capability of suspect-
ing every faulty node permanently and the (2) accuracy
property which characterizes the FD capability of not
suspecting correct nodes.

A class of FD is a set of FDs that have both the same
completeness and accuracy properties. The strongest
one is the class of perfect FD P. It is character-
ized by the strong completeness property which defines
that eventually every faulty process is permanently sus-
pected by every correct process and the strong accu-
racy property where no process is suspected before
it crashes. The class of FD S keeps the strong com-
pleteness property but relaxes the accuracy property
to weak accuracy which states that some correct pro-
cess is never suspected.

Delporte-Gallet and al. 7] have introduced the FD
of class 7, also called the trusting FD. The authors
proved that this class of FD is the weakest one to solve
the fault-tolerant 1-mutual exclusion problem, i.e., the
FD of class 7 is sufficient and necessary to solve such a
problem. This class of FD has the strong completeness
property and satisfies the following accuracy proper-
ties:

Eventual strong accuracy: There is a time after which
correct processes are not suspected by any correct
process.

Trusting accuracy: Every process j that is suspected
by a process i after being trusted once by i (i.e., j
was never suspected by ¢ before) is crashed.

FDs of class 7 are strictly weaker than FDs of class
P. Roughly speaking, 7 can temporarily suspect a
correct process, as long as it had never been removed
from its list of suspects.

Figure 1 depicts a possible scenario of failure detec-
tion using the FD 7. For sake of simplicity, the mes-
sages exchanged between the four nodes are not shown
in the figure. H(i,t) denotes the set of processes that
i suspects (does not trust) at time ¢.

Initially, the FD at process 1 outputs {2,3,4}, i.e.,
process 1 does not trust anyone, but itself. Thus, pro-
cess 1 falsely suspects the other processes since no pro-
cess has actually crashed. At time to > 1, process 2
and 3 get trusted by 1 (H(1,t2) = 4). However, after
that, process 3 crashes and process 1 suspects it again
at ts3, after having trusted it at to. Therefore, consider-
ing the trusting accuracy property of 7, process 1 can

H(1,t) = {2,3,4} H(1,t2) = {4} H(1,t3) = {3,4}

4 — X

Figure 1: Example of execution with FD 7

be sure of process 3’s crash. However, even if processes
4 has also crashed, process 1 can not be sure of its crash
since it never trusts it.

4 Raymond’s algorithm

In Raymond’s algorithm [18], when a node ¢ wants to
execute the critical section, it broadcasts a REQU EST
message to the other (N — 1) nodes. Each request is
timestamped with Lamport’s logical clock (sequence
number) + the identity of the node [11]. Upon receiv-
ing this message, if node j is not requesting a unit of
the resource, it immediately gives its permission to
by sending it back a REPLY message. If j is in the
critical section, it defers the sending of the REPLY
message till it ends the critical section. Finally, if j
is also requesting a unit of the shared resource, the se-
quence numbers of both requests are compared. If they
are equal, the identity of the nodes breaks tie. If i’s re-
quest takes priority, j sends it back a REPLY message,
otherwise j defers it till it releases the CS. When ¢ has
gathered (N — k) REPLY messages it enters its CS
since it is sure that no more than (k — 1) of the other
nodes are currently executing the critical section, which
ensures the safety property. The timestamp of request
messages guarantees the liveness property of the algo-
rithm since it defines a total order for the requests.

As previously said, Raymond’s algorithm implicitly
tolerates k — 1 crashes, i.e., the safety property still
holds until up to & — 1 failures occur. Thus, even if
one or more nodes crash a second node is still able to
access a unit of the resource if it can collect (N — k)
permissions. On the other hand, each time a failure
occurs, the maximum number of processes that can
concurrently execute the critical section decreases by
one, reducing the effectiveness of the algorithm.

Figure 2 depicts a possible scenario of Raymond’s
algorithm. The system consists of 6 processes and 2
units of a shared resource. At ¢1, node 6 has exclusive
access to the first unit of the resource. Node 3 then
requests a unit of the resource at to by broadcasting a
request to all the processes but itself. Since nodes 1,
2,4, 5 are not requesting a resource, they immediately
send back a REPLY message to 3. On the other hand,

node 6 defers its reply since it is in critical section.
As soon as node 3 has received 4 (N — k) REPLY
messages, it enters the critical section.

If a node other than node 3 had crashed at ¢1, node 3
would be able to access a resource as it could still collect
four permissions. However, the number of nodes that
would concurrently execute the critical section would
drop to one. In this particular case, node 3 would need
to wait node 6 to release the critical section in order to
get the four permissions, which degrades the effective-
ness of the algorithm.

@
@ e
® ®
O,

(a) t1: node 6 is in crit-
ical section

critical section

requesting

(b) t2: node 3 broadcasts
its request

©)

critical section

O ®
BEN

critical section

critical section

(c) ta: 1,2, 4 and 5 send (d) ta: 3 enters critical sec-
their permission, 6 de- tion
fers it

Figure 2: Example of Raymond’s algorithm execution

5 The k-mutual exclusion problem in
presence of failures using FDs

Raymond’s algorithm has no information about
node crashes. The number of participants of the algo-
rithm is fixed to NV despite node failures. On the other
hand, in our algorithm every process ¢ keeps in its lo-
cal variable n; the current number of correct processes.
Whenever i is notified about the crash of a node, it
decrements n;. Hence, contrarily to Raymond’s algo-
rithm, the number of REPLY messages needed by a
requesting process is (n; — k), which decreases at every
new crash of which ¢ is aware.

In order to obtain information about node failures,
our solution uses a FD of class 7. The trusting ac-
curacy property of 7 guarantees that if a node j is
suspected by ¢ of having crashed after previously being
trusted by ¢, j is actual crashed. Notice that the FD
T is used by our algorithm all along its execution for

detecting crashes. However, just at the initialization
phase, our algorithm also needs a FD of class § in or-
der to guarantee that at the end of this phase, for each
correct process i, there is at least one correct process
that trusts .

5.1 Description of the algorithm

Algorithm 1 is the complete pseudo-code of our fault
tolerant k-mutual exclusion algorithm. We consider
that each process infinitely executes the functions Re-
quest_resource() to ask access to one of the k units of
the shared resource, i.e., to execute the critical section
(CS), and Release_resource() to release it.

There are five types of messages: (1) REQUEST
messages are broadcast by a process which executes the
Request _resource() in order to inform the other pro-
cesses that it wants to access one unit of the resource.
They include the identity of the sender and the current
value of the local logical clock. (2) REPLY messages
are permission ones sent by processes in response to
a REQUEST message. Multiple permissions can be
aggregated into a single REPLY message which then
carries an additional counter whose value equals to the
number of deferred replies included in the message. (3)
An INIT message is sent once by each process during
the initialization phase. When a process receives such
a message, it acknowledges its reception by returning
an (4) ACK message. Finally, when a process detects
a crash of a second one, it broadcasts a (5) CRASH
messages in order to inform the other nodes of the pro-
cess failure.

Process i keeps the following local variables:

e n; : the number of correct processes of which i is
current aware

e state;: the current state of ¢ (requesting,
not_ requesting, or CS)

e H;: i’s logical clock

e last; : the value of H; when i sent its last request

e perm__count;: the current number of permissions
received by 7 to its last request

o reply count;[N]: number of outstanding
REPLY messages still to be received from
each other node. It is necessary for preventing
a REPLY message of an earlier request to be
considered as a reply to the current request

e defer count;|N|: number of replies that have
been deferred by i to each other node

e trusted;, crashed;: sets which respectively keep
the set of nodes that i once trusted and the set of
crashed ones

Algorithm 1 Raymond’s extended algorithm

1: n; = N; state; := not_requesting > Initialization
2: H; :=0; last; :=0
3: perm_count; :=0
4: reply count;[N]:=0
5: defer count;[N]:=0
6: trusted; := 0; crashed; :=(
7: send INIT (i) to all
8: wait until receive ACK from all j ¢ S;
Request resource(): > Node wishes to enter CS
9: state; := requesting
10: lasti = Hl + 1
11: perm_count :=0
12: for all j #1i:j ¢ crashed; do
13: send REQUEST(i,last;) to j
14: reply count;[j] + +
15: wait until (perm_count; > n; — k)
16: state; := CS
Release resource(): > Node exits the CS
17: state; ::_'notirequesting
18: for all (j # i: defer count;[j] # 0 and j ¢ crashed;) do
19: send REPLY (i,defer count;[j]) to j
20: defer counti[j] :==0

21: upon receive REQUEST(j,H;) do
22: H; := max(H;, Hj)
23: if (j ¢ crashed;) then

24: if (state; = CS) or (state; = requesting and
25: (last;, i) < (lastj, j)) then
26: defer count;[j] + +

27: else

28: send REPLY (i,1) to j

29: upon receive REPLY (j,z) do
30: if (j ¢ crashed;) then

31: reply count;[j] := reply count;[j] — x

32: if (state; = requesting) and (reply count;[j] = 0)
then

33: perm__count; + +

34: upon receive INIT(j) do
35: wait until j ¢ 7;

36: trusted; := trusted; U {j}
37: send ACK (3) to j

38: upon receive CRASH(j) do
39: if (j ¢ crashed;) then

40: crashed; := crashed; U {5}

41: if (state; = requesting) and (reply count;[j] = 0)
then

42: perm_count; — —

43: n; — —

44: upon (j € trusted; and j € 7;) do

45: > A crash of process j is detected
46: trusted; := trusted; — {j}

47: for all k # i : k ¢ crashed; do

48: send CRASH (j) to k

Node ¢ can always interrogate its local FD 7 and
S (initialization phase) about node failures. They pro-

vide the list of suspected nodes in 7; and S; sets re-
spectively.

The Initialization phase (lines 1-8) is executed once
by each process at the beginning of the algorithm. The
"wait" condition of line 8 and the use of failure detector
of class S ensure that at the end of this phase each cor-
rect process is included in at least one trusted set. By
the strong completeness property of S, eventually all
processes not in S; are correct. Thus, these processes
eventually receive the INIT message of . Upon re-
ceiving it, they will execute lines 34 to 37. Notice that
by the weak accuracy property of S, there is at least
one correct process that is never suspected which im-
plies that the "wait" condition will not block, i.e., i will
receive at least one ACK message from this process.

When node i requests a unit of the resource (lines
9-15), it broadcasts a REQU EST message to all other
processes it believes to be correct. It then increments
reply _count[j] for each node j # i and waits for
(n; — k) REPLY messages before entering the CS,
(perm__count; > n; — k).

Upon reception of a REQU EST message (lines 21-
28), node j updates its logical clock and sends back a
REPLY message (line 28) only if it is not in the CS or
if its current request has no priority over i’s one. Oth-
erwise, it defers the request (line 26). When 4 receives a
REPLY message from j it decrements reply _count;[j]
and if j has replied to all the previous requests sent by
i (line 32), perm__count is incremented.

When ¢ exits the CS by calling the
Release _resource() (lines 17-20), it replies to all
the deferred requests of those nodes that it believes to
be correct.

If a node crashes, at least one process executes lines
44-48. It thus broadcasts a CRASH message to all
the other processes it supposes to be correct. When
i receives a CRASH message which informs that j is
faulty, if ¢ was not already aware of it, it decrements
the number of current correct processes (line 43). In
addition, if j had previously given its permission to
i, such a permission is canceled, i.e., perm_count; is
decremented (line 42).

5.2 Example of execution

Figure 3 depicts a possible execution of our algo-
rithm. The system consists of N=4 processes and k=2
units of a shared resource. The initialization phase is
not shown. We consider that node 2 is in CS since tg.

Node 1 requests a unit of the resource at ¢; by broad-
casting a REQUEST message to all the other pro-
cesses. At ta, node 3 sends a REPLY message to 1
and node 4 crashes. When node 3 inquires its local FD

Figure 3: Example of an execution of our algorithm
with N =4 and k =2

7T module, the condition of line 44 (4 € trusteds and
4 € 7T3) is verified. Hence, node 3 learns that node 4
is faulty and it then broadcasts a CRASH message to
1 and 2. At time t4, node 1 receives this message and
thus executes lines 38-43 of the same algorithm where
n1 is decremented and the condition to enter critical
section (perm__count; > 3 — 2) is verified (line 15).
Node 1 can then execute its critical section. It is worth
remarking that if we considered the same scenario with
Raymond’s algorithm, node 1 would have to wait till
node 2 exited its CS in order to receive the two (N —k)
permissions necessary to get into the CS.

6 Sketch of proof

We must prove that our algorithm satisfies the safety
and liveness properties. Notice that in our approach,
we consider that processes do not crash before the ini-
tialization phase. On the other hand, if they crash dur-
ing the initialization, the safety property would still be
ensured up to k — 1 failures.

6.1 Safety

Lemma 1. No more than k different processes are in
their critical section at the same time.

Proof. Let us suppose that more than k processes can
be in the CS at the same time. Assume that at time
t., m > k nodes are executing the CS. Let the pairs
(S,N)— (sequence number, node identity), included in
the REQUEST messages, be the sequence used by
the m nodes to gain access to the CS. These pairs de-
fine a total order. Hence, the nodes in critical section
are labeled with Ny,..., Nk, Ngt1,..., Ny, such that
(SNUNl) << (SNk,7Nk3) < (SNA-,+1aNk+1) <- - <
(SN,,, Nm). Consider the node Ni41. In order to enter
the CS, Niy1 has received (n — k) REPLY messages,
i.e., at most k — 1 nodes did not send a REPLY mes-
sages to Ni41. Thus, among the k nodes Ny, ..., Ng
one of them Nx (<) sent a reply to Niy1. Consider
the reception of the REQUEST (SN, ,, Nk+1) by Nx.
Four cases are possible:

e Case 1. Nx is in the state not requesting or
requesting with sequence number (Sy,,Nx) >
(SNis1» Nkg1). Upon receiving the REQUEST
message, Sy, became > Sy, ;. Hence Nx could
not be in the CS at time ¢, with (Syy,Nx) <
(SNk+17Nk+1)

e (Case 2. Nx is in the state CS or requesting with
sequence number (Sny, Nx) < (Sn,,» Nes1). In
this case, Nx would defer replying to Ngy1.

e Case 3. Nx is executing or attempting to ex-
ecute the critical section in a previous request
with sequence number R such that (R,Nx) <
(Snx»Nx) < (SNyi1s Nis1). Hence Sy, would
become > Syi+1 and so Nx could not be in the
CS at time t. with (SNk,Nk) < (SN,C+1,N;€+1).

e (Case /. N, crashes. Obviously it can not reply to
N1

Thus, it is impossible for any node Ny (<) to reply to
the request of node Ny1. O

6.2 Liveness

Lemma 2. If a correct process requests to execute the
critical section, and it has the most priority request
then at some time later the process executes it.

Proof. Suppose that a correct process i is requesting a
unit of the resource at some time t. with last; = [;, i’s
request has priority over all the others, and ¢ is never
in its critical section after t., i.e., i never reaches line
16 of algorithm 1. Thus, i is blocked at a “wait” clause
either at line 8 or at line 15.

The “wait” of line 8 can not block the process due to
the strong completeness property of S. Eventually all
processes not in S; are correct. Therefore, these pro-
cesses eventually receive the I NIT message of i. Upon
receiving such a message, they execute lines 34-37. Fur-
thermore, by the weak accuracy property of S, there is
at least one correct process that is never suspected.
Hence, ¢ waits for the reply of at least one correct pro-
cess. By the eventual strong accuracy property of 7,
every correct process is eventually trusted by all cor-
rect processes. Hence, the “wait” clause of line 35 is
not blocking, and the processes add 7 to their trusted
set and send back an ACK message to i, unblocking
the “wait” clause line 8.

Consider then that 7 is blocked at the “wait” clause of
line 15 after having sent a REQU EST (i, last;) message
to all processes such that j # ¢ and j ¢ crashed;. Four
cases are possible for j:

(a) Process j is in the state not _requesting. The con-
dition of line 25 is not satisfied and the process
sends a permission (line 28).

(b) Process j is in the state requesting. Since i has
priority over all the others requests, j sends back
its permission.

(c) Process j is in its critical section. The duration of
the critical section is bounded so it will eventually
send back a reply message to ¢ when executing the
Release resource() routine (lines 17-20).

(d) Process j crashes. By the trusting accuracy prop-
erty of 7, some correct process m eventually and
permanently will suspect it. In other words, the
condition of line 44 is eventually satisfied at some
process m for j (j € trusted,, and j € 7,,). Thus,
m will send a CRASH message to all correct pro-
cesses and every correct process will eventually re-
ceive it. Upon receiving the CRASH (j) message,
1 decrements the number of participating nodes n;,
and, if it had already received a permission from 7,
it also decrements the number of received permis-
sions. Thus, the condition of line 44 will inform
the new state of the system, since n; eventually
represents the number of correct processes. Hence
i will eventually receive exactly n; replies, with
n; characterizing the number of correct processes.
But i is blocked at line 15. It’s a contradiction.

Thus as process i is never blocked at the "wait" of
line 8 neither at the "wait" of line 15 of algorithm 1, it
reaches line 16 and thus executes the critical section.

O

Lemma 3. If a correct process requests to execute the
critical section, then at some time later the process ex-
ecutes it.

Proof. By lemma 2, the process that has priority over
the others will eventually executes its critical section.
Once it exits the critical section, the process’s request
was satisfied and will not be considered anymore. Since
requests are totally ordered, each of them will eventu-
ally have the highest priority, obtaining then right to
execute the critical section. O

Theorem 1. The algorithm 1 solves the fault tolerant
k-mutual exclusion problem using FDs of class T and
S, in an environment € with f < N — 1 faults provided
that no process crashes before the initialization.

Proof. The theorem 1 follows directly from Lemmas 1
and 3. O

7 Related work

Several authors have proposed fault-tolerant exten-
sions both to token-based [16],[13],[5] and permission-
based 1-mutual exclusion algorithms [1],[3]. The latter
usually use the quorum approach.

Similarly to Raymond’s algorithm [18], the token-
based k-mutual exclusion algorithm proposed by Sri-
mani and Reddy [20] naturally supports failures. It
is inspired in Suzuki and Kasami’s algorithm [21] and
controls k tokens. If a node holds one of the k tokens,
it can enter the critical section. However, likewise Ray-
mond’s, each crash reduces the number of nodes that
can concurrently execute the critical section.

The majority of fault-tolerant permission-based k-
mutual exclusion found in the literature use quorums
[8],19],[6],[10],[15]. Some of these algorithms exploit the
k-coteries approach [9],[15],[10]. Informally, a k-coterie
is a set of node quorums, such that any (k+1) quorums
contain a pair of quorums intersecting each other. A
process can enter a critical section whenever it receives
permission from every process in a quorum. The avail-
ability of a coterie is defined as the probability that a
quorum can be successfully formed and it is closely re-
lated to the degree of fault tolerance that the algorithm
supports. On the other hand, Chang et. al propose in
[6] an extended binary tree quorum for k-mutual exclu-
sion which imposes a logical structure to the network
and tolerates in the best case up to (n—kx*(log,(2n/k)))
node failures. Although quorum-based algorithms are
resilient to node failures and/or network partitioning,
the drawback of such approach is the complexity of
constructing the quorums themselves.

Two other k-mutual exclusion algorithms, [22] and
[14] provide fault tolerance but for wireless ad-hoc net-
works. The authors in [22] propose a token-base algo-
rithm which induces a logical direct acyclic graph on
the network which dynamically adapts to the changing
topology of ad-hoc networks. Mellier et al. address
in [14] the problem of at most k exclusive accesses to
a communication channel by nodes that compete to
broadcast on it, i.e., at most k mobile nodes can simul-
taneously broadcast on it. Message collision problems
are solved by the protocol. However, neither of the
algorithms tolerate node failures, but just link failures.

8 Performance evaluation
8.1 Effectiveness
In order to evaluate the efficiency of Raymond’s al-

gorithms and our algorithm, we have developed a simu-
lator. The initial number of nodes IV is equal to 15 and

Raymond’s algorithm

o
[0}
(%2}
=}
£ 3
172}
(o}
e
g 2
123
[&)
[
1
0 Al
0 0 20 3 w50 70 C) S
Time
Our extended algorithm
5
o
[0}
(%2}
=}
£ 3
: m
(o}
e
g 2
123
[&)
[
1
o | AlA AN A A \Aﬂ A
60

o AT AL
Time
Figure 4: Efficiency comparison of Raymond algorithm
and our extension

the number of resource’s units k is fixed to 5. Both al-
gorithms execute the same scenario. Faults are injected
during the run (signaled by a triangle in Figure 4).

For both algorithms, we have measured the number
of resource’s units that can be simultaneously in use.
We can clearly observe in Figure 4 that in Raymond’s
algorithm at every crash, the maximum number of con-
current accesses is decremented by one. When faults
start being injected, some of the requests can still be
satisfied provided that the total number of crashes is
smaller than k£ = 5. However, after this bound, no new
request is satisfied. On the other hand, our algorithm
goes on progressing till N — 1 = 14 failures. Further-
more, the maximum number of units of the resource
concurrently in use is not bounded by the number of
failures. It just decreases because the number of con-
current requests decreases as well when faults are in-
jected.

8.2 Number of messages

In our algorithm, at the initialization, each process
sends once between N —1 and 2(N —1) messages. When
no crash occurs, the number of messages per CS of
our algorithm is equivalent to Raymond’s algorithm,
i.e., between 2N — k — 1 and 2N — 1 messages. In
the presence of crashes, N — 1 — |crashed;| messages
are sent by node ¢ which detects the failure. However,
in this case, the number of REQU EST messages per
CS decreases to N — 1 — |crashed;| and the number of

REPLIES decreases as well from N — k — |crashed;|
to N — 1 — |crashed,]|.

9 Conclusion

We have presented in this article a new fault tol-
erant k-mutual exclusion algorithm. We assume an
asynchronous network augmented with the failure de-
tector of class 7, which is the weakest failure detector
to solve the mutual exclusion problem, and the fail-
ure detector S for the initialization phase. Contrarily
to Raymond’s, our algorithm can dynamically detect
node failures, tolerates (N — 1) failures instead of just
k—1 as Raymond’s naturally does, and always allows at
most k processes to simultaneously execute the critical
section, i.e., failures do not degrade the effectiveness of
the algorithm as happens in Raymond’s.

References

[1] D. Agrawal and A. E. Abbadi. An efficient and
fault-tolerant solution for distributed mutual exclu-
sion. ACM Trans. Comput. Syst., 9(1):1-20, 1991.

[2] S. Bulgannawar and N. H. Vaidya. A distributed k-
mutual exclusion algorithm. In Int. Conference on
Distributed Computing Systems, pages 153 160, 1995.

[3] G. Cao, M. Singhal, and N. Rishe. A delay-optimal
quorum-based mutual exclusion scheme with fault-
tolerance capability. In The 8th ACM symposium on
Principles of Distributed Computing, page 271, 1999.

[4] T. D. Chandra and S. Toueg. Unreliable failure detec-
tors for reliable distributed systems. Journal of ACM,
43(2):225 267, March 1996.

[5] I. Chang, M. Singhal, and M. Liu. A fault tolerant
algorithm for distributed mutual exclusion. In Proc.
of the IEEE 9th Symp. on Reliable Distrib. Systems,
pages 146-154, 1990.

[6] Y.-I. Chang and B.-H. Chen. An extended binary
tree quorum strategy for k-mutual exclusion in dis-
tributed systems. In Proc. of the 1997 Pacific Rim
International Symposium on Fault-Tolerant Systems,
page 110, 1997.

[7] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, and
P. Kouznetsov. Mutual exclusion in asynchronous sys-
tems with failure detectors. J. Parallel Distrib. Com-
put., 65(4):492-505, 2005.

[8] S. Huang, J. Jiang, and Y. Kuo. k-coteries for fault-
tolerant k entries to a critical section. Distributed
Computing Systems, 1993., Proceedings the 13th In-
ternational Conference on, pages 74-81, 1993.

[9] J.-R. Jiang, S.-T. Huang, and Y.-C. Kuo. Cohorts
structures for fault-tolerant k entries to a critical sec-
tion. IEEE Transactions on Computers, 46(2):222—
228, 1997.

[10] H. Kakugawa, S. Fujita, M. Yamashita, and T. Ae.
Availability of k-coterie. IEEE Trans. Comput.,
42(5):553-558, 1993.

[11] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Commun. ACM, 21(7):558-
565, 1978.

[12] K. Makki, P. Banta, K. Been, N. Pissinou, and
E. Park. A token based distributed k mutual exclusion
algorithm. Proc. of the 4th IEEE Symposium on Par-
allel and Distributed Processing, pages 408-411, 1992.

[13] D. Manivannan and M. Singhal. An efficient fault-
tolerant mutual exclusion algorithm for distributed
systems. In Int’. Conf. on Parallel and Distributed
Computing Systems, pages 525 530, 1994.

[14] R. Mellier and M. J. Fault tolerant mutual and k-
mutual exclusion algorithms for single-hop movile ad
hoc networks. Int. Journal Ad Hoc and Ubiquituos
Computing, 1(3):156 167, 2006.

[15] M. L. Neilsen and M. Mizuno. Nondominated k-
coteries for multiple mutual exclusion. Inf. Process.
Lett., 50(5):247 252, 1994.

[16] S. Nishio, K. F. Li, and E. G. Manning. A resilient mu-
tual exclusion algorithm for computer networks. IEEE
Trans. on Parallel and Distributed Systems, 1(3):344—
355, july 1990.

[17] N. Pissinou, K. Makki, E. K. Park, Z. Hu, and
W. Wong. An efficient distributed mutual exclusion
algorithm. In ICPP, Vol. 1, pages 196 203, 1996.

[18] K. Raymond. A distributed algorithm for multiple en-
tries to a critical section. Inf. Process. Lett., 30(4):189
193, 1989.

[19] G. Ricart and A. K. Agrawala. An optimal algorithm
for mutual exclusion in computer networks. Commun.
ACM, 24(1):9-17, 1981.

[20] P. K. Srimani and R. L. N. Reddy. Another distributed
algorithm for multiple entries to a critical section. Inf.
Process. Lett., 41(1):51 57, 1992.

[21] T. Suzuki and T. Kasami. A distributed mutual exclu-
sion algorithm. ACM Trans. Comput. Syst., 3(4):344—
349, 1985.

[22] J. Walter, G. Cao, and M. Mitrabhanu. A k-mutual
exclusion algorithm for wireless ad hoc networks. In
ACM POMC’01, 2001.

[23] S. Wang and S. D. Lang. A tree-based distributed
algorithm for the k-entry critical section problem. In
Proc. of the 1994 International Conference on Parallel
and Distributed Systems, pages 592 599, 1994.

