
Fault Tolerant K-Mutual Ex
lusion Algorithm Using Failure Dete
torMathieu Bouillaguet, Lu
iana Arantes, and Pierre SensUniversité Pierre et Marie Curie-Paris 6, LIP6/Regal,UMR 7606, 4 pla
e Jussieu, 75252 Paris
edex 05, Fran
e;INRIA Paris - Ro
quen
ourt,Domaine de Volu
eau, BP 105, 78153 Le Chesnay Cedex, Fran
e{mathieu.bouillaguet,lu
iana.arantes,pierre.sens}�lip6.frAbstra
tWe present in this paper a fault tolerant permission-based k-mutual ex
lusion algorithm, whi
h is an exten-sion of Raymond's algorithm [18℄. Tolerating up to
n− 1 failures, our algorithm keeps its e�e
tiveness de-spite failures. It uses information provided by unreli-able failure dete
tors to dynami
ally dete
t
rashes ofnodes. Performan
e evaluation experiments show theperforman
e of our algorithm
ompared to Raymond'swhen faults are inje
ted.1 Introdu
tionThe k-mutual ex
lusion problem is a fundamentaldistributed problem whi
h guarantees the integrity ofthe k units of a shared resour
e by restri
ting the num-ber of pro
ess that
an simultaneous a

ess them. Itthen involves N pro
esses whi
h
ommuni
ate via mes-sage passing and ask for a

essing one of the k unitsof the shared resour
e, i.e., to exe
ute a
riti
al se
tion(CS). Hen
e, a distributed k-mutual ex
lusion algo-rithm must ensure that at most k pro
esses are in theCS at a given time (safety property) and that every CSrequest is eventually satis�ed (liveness property).Distributed k-mutual ex
lusion algorithms
an be
lassi�ed into two families: permission-based [18℄, [17℄,[8℄, [9℄, [15℄ and token-based [20℄, [12℄, [2℄ [23℄. In thealgorithms of the �rst family, a node gets into the
rit-i
al se
tion only after having re
eived permission fromall or a subset of the other nodes of the system. Inthe se
ond family, the possession of the single tokenor one of the tokens gives a node the right to enterinto the CS. The latter usually presents an averagelower message
ost of messages, but is less fault toler-ant than permission-based algorithms whi
h, by using

broad
ast, are naturally more resilient to failures.Raymond's k-mutual ex
lusion algorithm [18℄ is anextension of Ri
art-Agrawala's [19℄ permission-based 1-mutual ex
lusion algorithm. When a node wants to en-ter the CS, it broad
asts a message to the other (N−1)nodes of the system. The requesting node
an enter theCS if no more than k−1 nodes are
urrently exe
utingthe CS. That is, only after gathering N −k permissionsfrom the other nodes.Even if Raymond's algorithm does not expli
itly
onsider failure of nodes, the fa
t that it does not needto wait for a permission from all the parti
ipants im-pli
itly renders it fault tolerant to some extent. It tol-erates up to k − 1 faults. In other words, if instead ofexe
uting the CS, k−1 nodes were
rashed, a node ask-ing to exe
ute a CS would still get it. However, ea
h
rash redu
es the e�e
tiveness of the algorithm sin
ethe number of pro
esses that
an
on
urrently exe
utethe CS de
reases by one. Therefore, we propose in thispaper to extend Raymond's algorithm in order to bothtolerate up to N −1 node
rashes, instead of just k−1,and avoid that the algorithm degrades when failure o
-
urs, i.e., to ensure that it is always possible to have
k pro
esses in the CS simultaneously, despite failures.Another reason that motivates the
urrent work is thefa
t that fault tolerant permission-based k-mutual ex-
lusion algorithms whi
h don't use a quorum approa
hare quite rare in the literature.In order to get information about
rashes of nodes,our solution exploits the information about the livenessof pro
esses provided by distributed unreliable failuredete
tors. An unreliable failure dete
tor (FD) [4℄ is awell-known basi
 blo
k whi
h o�ers information aboutpro
ess failures. It
an be informally
onsidered as aper pro
ess ora
le, whi
h periodi
ally informs the listof
urrent pro
esses suspe
ted of being
rashed. It isunreliable in the sense it
an make mistakes. Our solu-1

tion basi
ally relies on the unreliable dete
tor of
lass T[7℄ sin
e it is the weakest one to solve the fault-tolerant1-mutual ex
lusion problem. Thus, a per pro
ess fail-ure dete
tor T module periodi
ally gives informationto the
orresponding pro
ess about the a
tual state ofthe system. Su
h an information allows ea
h pro
essto dynami
ally update its knowledge about the a
tualnumber of running pro
esses and therefore our algo-rithm be
omes more e�e
tive in presen
e of failuresthan Raymond's algorithm. Just at the initializationphase, our algorithm also needs an unreliable failuredete
tor of
lass S.The paper is organized as follows. Se
tion 2 de-s
ribes our model. The
on
ept of unreliable FD andthe properties of the FDs of
lass T are presented inse
tion 3. Se
tion 4 brie�y des
ribes Raymond's algo-rithm. Se
tion 5 presents our fault-tolerant algorithmwhile se
tion 6 outlines its proof. Some related workis given in se
tion 7. Simulation performan
e resultsare shown in se
tion 8. Finally, se
tion 9
on
ludes thepaper.2 System modelWe
onsider a distributed system
onsisting of a �-nite set of N > 1 nodes. The set of parti
ipants as wellas N are known by all nodes. There is one pro
ess pernode and pro
esses
ommuni
ate by message passing.No assumptions on the relative speed of pro
esses nei-ther on message transfer delays are made. Thus thesystem is asyn
hronous. Communi
ation
hannels arereliable, but messages might be delivered out of order.A pro
ess
an fail by
rashing and
rashes are per-manent. A
orre
t pro
ess is a pro
ess that does not
rash during a run; otherwise, it is faulty. The maxi-mum number of pro
esses that may
rash in the systemis equal to f (f < N).The number of units of the resour
e is k. We assumethat k is known to every pro
ess. The duration of theCS is bounded.As we
onsider one pro
ess per node, the words nodeand pro
ess are inter
hangeable.3 Unreliable Failure Dete
torsChandra and Toueg [4℄ have introdu
ed the
on
eptof unreliable failure dete
tors whi
h are distributed or-a
les that provide information about liveness of sys-tem's nodes. Ea
h pro
ess has a

ess to a lo
al failuredete
tor module whi
h outputs the list of pro
essesthat it
urrently suspe
ts of having
rashed. A lo
alfailure dete
tor is unreliable sin
e it
an make mistake

by erroneously adding to its list a pro
ess whi
h is a
-tually
orre
t or not suspe
ting a
rashed node. How-ever, if later the FD realizes its mistake it
orre
ts itby either removing or adding the node to its list.Failure dete
tors (FDs) are formally
hara
terizedby two abstra
t properties: (1) the
ompleteness prop-erty whi
h
hara
terizes the FD
apability of suspe
t-ing every faulty node permanently and the (2) a

ura
yproperty whi
h
hara
terizes the FD
apability of notsuspe
ting
orre
t nodes.A
lass of FD is a set of FDs that have both the same
ompleteness and a

ura
y properties. The strongestone is the
lass of perfe
t FD P . It is
hara
ter-ized by the strong
ompleteness property whi
h de�nesthat eventually every faulty pro
ess is permanently sus-pe
ted by every
orre
t pro
ess and the strong a

u-ra
y property where no pro
ess is suspe
ted beforeit
rashes. The
lass of FD S keeps the strong
om-pleteness property but relaxes the a

ura
y propertyto weak a

ura
y whi
h states that some
orre
t pro-
ess is never suspe
ted.Delporte-Gallet and al. [7℄ have introdu
ed the FDof
lass T , also
alled the trusting FD. The authorsproved that this
lass of FD is the weakest one to solvethe fault-tolerant 1-mutual ex
lusion problem, i.e., theFD of
lass T is su�
ient and ne
essary to solve su
h aproblem. This
lass of FD has the strong
ompletenessproperty and satis�es the following a

ura
y proper-ties:Eventual strong a

ura
y : There is a time after whi
h
orre
t pro
esses are not suspe
ted by any
orre
tpro
ess.Trusting a

ura
y : Every pro
ess j that is suspe
tedby a pro
ess i after being trusted on
e by i (i.e., jwas never suspe
ted by i before) is
rashed.FDs of
lass T are stri
tly weaker than FDs of
lass
P . Roughly speaking, T
an temporarily suspe
t a
orre
t pro
ess, as long as it had never been removedfrom its list of suspe
ts.Figure 1 depi
ts a possible s
enario of failure dete
-tion using the FD T . For sake of simpli
ity, the mes-sages ex
hanged between the four nodes are not shownin the �gure. H(i, t) denotes the set of pro
esses that
i suspe
ts (does not trust) at time t.Initially, the FD at pro
ess 1 outputs {2, 3, 4}, i.e.,pro
ess 1 does not trust anyone, but itself. Thus, pro-
ess 1 falsely suspe
ts the other pro
esses sin
e no pro-
ess has a
tually
rashed. At time t2 > t1, pro
ess 2and 3 get trusted by 1 (H(1, t2) = 4). However, afterthat, pro
ess 3
rashes and pro
ess 1 suspe
ts it againat t3, after having trusted it at t2. Therefore,
onsider-ing the trusting a

ura
y property of T , pro
ess 1
an2

1

H(1, t1) = {2, 3, 4} H(1, t2) = {4} H(1, t3) = {3, 4}

2

3

4Figure 1: Example of exe
ution with FD Tbe sure of pro
ess 3's
rash. However, even if pro
esses4 has also
rashed, pro
ess 1
an not be sure of its
rashsin
e it never trusts it.4 Raymond's algorithmIn Raymond's algorithm [18℄, when a node i wants toexe
ute the
riti
al se
tion, it broad
asts a REQUESTmessage to the other (N − 1) nodes. Ea
h request istimestamped with Lamport's logi
al
lo
k (sequen
enumber) + the identity of the node [11℄. Upon re
eiv-ing this message, if node j is not requesting a unit ofthe resour
e, it immediately gives its permission to iby sending it ba
k a REPLY message. If j is in the
riti
al se
tion, it defers the sending of the REPLYmessage till it ends the
riti
al se
tion. Finally, if jis also requesting a unit of the shared resour
e, the se-quen
e numbers of both requests are
ompared. If theyare equal, the identity of the nodes breaks tie. If i's re-quest takes priority, j sends it ba
k a REPLY message,otherwise j defers it till it releases the CS. When i hasgathered (N − k) REPLY messages it enters its CSsin
e it is sure that no more than (k − 1) of the othernodes are
urrently exe
uting the
riti
al se
tion, whi
hensures the safety property. The timestamp of requestmessages guarantees the liveness property of the algo-rithm sin
e it de�nes a total order for the requests.As previously said, Raymond's algorithm impli
itlytolerates k − 1
rashes, i.e., the safety property stillholds until up to k − 1 failures o

ur. Thus, even ifone or more nodes
rash a se
ond node is still able toa

ess a unit of the resour
e if it
an
olle
t (N − k)permissions. On the other hand, ea
h time a failureo

urs, the maximum number of pro
esses that
an
on
urrently exe
ute the
riti
al se
tion de
reases byone, redu
ing the e�e
tiveness of the algorithm.Figure 2 depi
ts a possible s
enario of Raymond'salgorithm. The system
onsists of 6 pro
esses and 2units of a shared resour
e. At t1, node 6 has ex
lusivea

ess to the �rst unit of the resour
e. Node 3 thenrequests a unit of the resour
e at t2 by broad
asting arequest to all the pro
esses but itself. Sin
e nodes 1,2, 4, 5 are not requesting a resour
e, they immediatelysend ba
k a REPLY message to 3. On the other hand,

node 6 defers its reply sin
e it is in
riti
al se
tion.As soon as node 3 has re
eived 4 (N − k) REPLYmessages, it enters the
riti
al se
tion.If a node other than node 3 had
rashed at t1, node 3would be able to a

ess a resour
e as it
ould still
olle
tfour permissions. However, the number of nodes thatwould
on
urrently exe
ute the
riti
al se
tion woulddrop to one. In this parti
ular
ase, node 3 would needto wait node 6 to release the
riti
al se
tion in order toget the four permissions, whi
h degrades the e�e
tive-ness of the algorithm.
4

1

2

35

6

critical section

(a) t1: node 6 is in
rit-i
al se
tion 4

1

2

35

6

critical section

requesting(b) t2: node 3 broad
astsits request
4

1

2

35

6

critical section

(
) t3: 1, 2, 4 and 5 sendtheir permission, 6 de-fers it 4

1

2

35

6

critical section

critical section(d) t4: 3 enters
riti
al se
-tionFigure 2: Example of Raymond's algorithm exe
ution5 The k-mutual ex
lusion problem inpresen
e of failures using FDsRaymond's algorithm has no information aboutnode
rashes. The number of parti
ipants of the algo-rithm is �xed to N despite node failures. On the otherhand, in our algorithm every pro
ess i keeps in its lo-
al variable ni the
urrent number of
orre
t pro
esses.Whenever i is noti�ed about the
rash of a node, itde
rements ni. Hen
e,
ontrarily to Raymond's algo-rithm, the number of REPLY messages needed by arequesting pro
ess is (ni −k), whi
h de
reases at everynew
rash of whi
h i is aware.In order to obtain information about node failures,our solution uses a FD of
lass T . The trusting a
-
ura
y property of T guarantees that if a node j issuspe
ted by i of having
rashed after previously beingtrusted by i, j is a
tual
rashed. Noti
e that the FD
T is used by our algorithm all along its exe
ution for3

dete
ting
rashes. However, just at the initializationphase, our algorithm also needs a FD of
lass S in or-der to guarantee that at the end of this phase, for ea
h
orre
t pro
ess i, there is at least one
orre
t pro
essthat trusts i.
5.1 Description of the algorithmAlgorithm 1 is the
omplete pseudo-
ode of our faulttolerant k-mutual ex
lusion algorithm. We
onsiderthat ea
h pro
ess in�nitely exe
utes the fun
tions Re-quest_resour
e() to ask a

ess to one of the k units ofthe shared resour
e, i.e., to exe
ute the
riti
al se
tion(CS), and Release_resour
e() to release it.There are �ve types of messages: (1) REQUESTmessages are broad
ast by a pro
ess whi
h exe
utes the
Request_resource() in order to inform the other pro-
esses that it wants to a

ess one unit of the resour
e.They in
lude the identity of the sender and the
urrentvalue of the lo
al logi
al
lo
k. (2) REPLY messagesare permission ones sent by pro
esses in response toa REQUEST message. Multiple permissions
an beaggregated into a single REPLY message whi
h then
arries an additional
ounter whose value equals to thenumber of deferred replies in
luded in the message. (3)An INIT message is sent on
e by ea
h pro
ess duringthe initialization phase. When a pro
ess re
eives su
ha message, it a
knowledges its re
eption by returningan (4) ACK message. Finally, when a pro
ess dete
tsa
rash of a se
ond one, it broad
asts a (5) CRASHmessages in order to inform the other nodes of the pro-
ess failure.Pro
ess i keeps the following lo
al variables:
• ni : the number of
orre
t pro
esses of whi
h i is
urrent aware
• statei: the
urrent state of i (requesting,not_requesting, or CS)
• Hi: i's logi
al
lo
k
• lasti : the value of Hi when i sent its last request
• perm_counti: the
urrent number of permissionsre
eived by i to its last request
• reply_counti[N]: number of outstanding

REPLY messages still to be re
eived fromea
h other node. It is ne
essary for preventinga REPLY message of an earlier request to be
onsidered as a reply to the
urrent request
• defer_counti[N℄: number of replies that havebeen deferred by i to ea
h other node
• trustedi, crashedi: sets whi
h respe
tively keepthe set of nodes that i on
e trusted and the set of
rashed ones

Algorithm 1 Raymond's extended algorithm1: ni = N ; statei := not_requesting ⊲ Initialization2: Hi := 0; lasti := 03: perm_counti := 04: reply_counti[N] := 05: defer_counti[N] := 06: trustedi := ∅; crashedi := ∅7: send INIT (i) to all8: wait until re
eive ACK from all j /∈ SiRequest_resour
e(): ⊲ Node wishes to enter CS9: statei := requesting10: lasti := Hi + 111: perm_count := 012: for all j 6= i : j /∈ crashedi do13: send REQUEST (i, lasti) to j14: reply_counti[j] + +15: wait until (perm_counti ≥ ni − k)16: statei := CSRelease_resour
e(): ⊲ Node exits the CS17: statei := not_requesting18: for all (j 6= i : defer_counti[j] 6= 0 and j /∈ crashedi) do19: send REPLY (i, defer_counti[j]) to j20: defer_counti[j] := 021: upon re
eive REQUEST (j,Hj) do22: Hi := max(Hi, Hj)23: if (j /∈ crashedi) then24: if (statei = CS) or (statei = requesting and25: (lasti, i) < (lastj , j)) then26: defer_counti[j] + +27: else28: send REPLY (i, 1) to j29: upon re
eive REPLY (j, x) do30: if (j /∈ crashedi) then31: reply_counti[j] := reply_counti[j] − x32: if (statei = requesting) and (reply_counti[j] = 0)then33: perm_counti + +34: upon re
eive INIT (j) do35: wait until j /∈ Ti36: trustedi := trustedi ∪ {j}37: send ACK(i) to j38: upon re
eive CRASH(j) do39: if (j /∈ crashedi) then40: crashedi := crashedi ∪ {j}41: if (statei = requesting) and (reply_counti[j] = 0)then42: perm_counti −−43: ni −−44: upon (j ∈ trustedi and j ∈ Ti) do45: ⊲ A
rash of pro
ess j is dete
ted46: trustedi := trustedi − {j}47: for all k 6= i : k /∈ crashedi do48: send CRASH(j) to kNode i
an always interrogate its lo
al FD T and
S (initialization phase) about node failures. They pro-4

vide the list of suspe
ted nodes in Ti and Si sets re-spe
tively.The Initialization phase (lines 1-8) is exe
uted on
eby ea
h pro
ess at the beginning of the algorithm. The"wait"
ondition of line 8 and the use of failure dete
torof
lass S ensure that at the end of this phase ea
h
or-re
t pro
ess is in
luded in at least one trusted set. Bythe strong
ompleteness property of S, eventually allpro
esses not in Si are
orre
t. Thus, these pro
esseseventually re
eive the INIT message of i. Upon re-
eiving it, they will exe
ute lines 34 to 37. Noti
e thatby the weak a

ura
y property of S, there is at leastone
orre
t pro
ess that is never suspe
ted whi
h im-plies that the "wait"
ondition will not blo
k, i.e., i willre
eive at least one ACK message from this pro
ess.When node i requests a unit of the resour
e (lines9-15), it broad
asts a REQUEST message to all otherpro
esses it believes to be
orre
t. It then in
rements
reply_count[j] for ea
h node j 6= i and waits for
(ni − k) REPLY messages before entering the CS,(perm_counti ≥ ni − k).Upon re
eption of a REQUEST message (lines 21-28), node j updates its logi
al
lo
k and sends ba
k a
REPLY message (line 28) only if it is not in the CS orif its
urrent request has no priority over i's one. Oth-erwise, it defers the request (line 26). When i re
eives a
REPLY message from j it de
rements reply_counti[j]and if j has replied to all the previous requests sent by
i (line 32), perm_count is in
remented.When i exits the CS by
alling the
Release_resource() (lines 17-20), it replies to allthe deferred requests of those nodes that it believes tobe
orre
t.If a node
rashes, at least one pro
ess exe
utes lines44-48. It thus broad
asts a CRASH message to allthe other pro
esses it supposes to be
orre
t. When
i re
eives a CRASH message whi
h informs that j isfaulty, if i was not already aware of it, it de
rementsthe number of
urrent
orre
t pro
esses (line 43). Inaddition, if j had previously given its permission to
i, su
h a permission is
an
eled, i.e., perm_counti isde
remented (line 42).
5.2 Example of executionFigure 3 depi
ts a possible exe
ution of our algo-rithm. The system
onsists of N=4 pro
esses and k=2units of a shared resour
e. The initialization phase isnot shown. We
onsider that node 2 is in CS sin
e t0.Node 1 requests a unit of the resour
e at t1 by broad-
asting a REQUEST message to all the other pro-
esses. At t2, node 3 sends a REPLY message to 1and node 4
rashes. When node 3 inquires its lo
al FD

1

n = 3 CSREQ

t1 t4
2

CS deferred

t0
3

(⊔3 = {4})
REPLY

t3

CRASH

4

t2Figure 3: Example of an exe
ution of our algorithmwith N = 4 and k = 2

T module, the
ondition of line 44 (4 ∈ trusted3 and
4 ∈ T3) is veri�ed. Hen
e, node 3 learns that node 4is faulty and it then broad
asts a CRASH message to
1 and 2. At time t4, node 1 re
eives this message andthus exe
utes lines 38-43 of the same algorithm where
n1 is de
remented and the
ondition to enter
riti
alse
tion (perm_count1 ≥ 3 − 2) is veri�ed (line 15).Node 1
an then exe
ute its
riti
al se
tion. It is worthremarking that if we
onsidered the same s
enario withRaymond's algorithm, node 1 would have to wait tillnode 2 exited its CS in order to re
eive the two (N−k)permissions ne
essary to get into the CS.6 Sket
h of proofWe must prove that our algorithm satis�es the safetyand liveness properties. Noti
e that in our approa
h,we
onsider that pro
esses do not
rash before the ini-tialization phase. On the other hand, if they
rash dur-ing the initialization, the safety property would still beensured up to k − 1 failures.
6.1 SafetyLemma 1. No more than k di�erent pro
esses are intheir
riti
al se
tion at the same time.Proof. Let us suppose that more than k pro
esses
anbe in the CS at the same time. Assume that at time
tc, m > k nodes are exe
uting the CS. Let the pairs(S,N)= (sequen
e number, node identity), in
luded inthe REQUEST messages, be the sequen
e used bythe m nodes to gain a

ess to the CS. These pairs de-�ne a total order. Hen
e, the nodes in
riti
al se
tionare labeled with N1, . . . , Nk, Nk+1, . . . , Nm su
h that
(SN1

, N1) < · · · < (SNk
, Nk) < (SNk+1

, Nk+1) < · · · <
(SNm

, Nm). Consider the node Nk+1. In order to enterthe CS, Nk+1 has re
eived (n − k) REPLY messages,i.e., at most k − 1 nodes did not send a REPLY mes-sages to Nk+1. Thus, among the k nodes N1, . . . , Nkone of them NX(≤k) sent a reply to Nk+1. Considerthe re
eption of the REQUEST (SNk+1
, Nk+1) by NX .Four
ases are possible:5

• Case 1. NX is in the state not_requesting or
requesting with sequen
e number (SNX

, NX) >
(SNk+1

, Nk+1). Upon re
eiving the REQUESTmessage, SNX
be
ame ≥ SNk+1

. Hen
e NX
ouldnot be in the CS at time tc with (SNX
, NX) <

(SNk+1
, Nk+1)

• Case 2. NX is in the state CS or requesting withsequen
e number (SNX
, NX) < (SNk+1

, Nk+1). Inthis
ase, NX would defer replying to Nk+1.
• Case 3. NX is exe
uting or attempting to ex-e
ute the
riti
al se
tion in a previous requestwith sequen
e number R su
h that (R, NX) ≤

(SNX
, NX) < (SNk+1

, Nk+1). Hen
e SNX
wouldbe
ome ≥ SNk+1 and so NX
ould not be in theCS at time tc with (SNk

, Nk) < (SNk+1
, Nk+1).

• Case 4. Nx
rashes. Obviously it
an not reply to
Nk+1.Thus, it is impossible for any node NX(≤k) to reply tothe request of node Nk+1.

6.2 LivenessLemma 2. If a
orre
t pro
ess requests to exe
ute the
riti
al se
tion, and it has the most priority requestthen at some time later the pro
ess exe
utes it.Proof. Suppose that a
orre
t pro
ess i is requesting aunit of the resour
e at some time tc with lasti = li, i'srequest has priority over all the others, and i is neverin its
riti
al se
tion after tc, i.e., i never rea
hes line16 of algorithm 1. Thus, i is blo
ked at a �wait�
lauseeither at line 8 or at line 15.The �wait� of line 8
an not blo
k the pro
ess due tothe strong
ompleteness property of S. Eventually allpro
esses not in Si are
orre
t. Therefore, these pro-
esses eventually re
eive the INIT message of i. Uponre
eiving su
h a message, they exe
ute lines 34-37. Fur-thermore, by the weak a

ura
y property of S, there isat least one
orre
t pro
ess that is never suspe
ted.Hen
e, i waits for the reply of at least one
orre
t pro-
ess. By the eventual strong a

ura
y property of T ,every
orre
t pro
ess is eventually trusted by all
or-re
t pro
esses. Hen
e, the �wait�
lause of line 35 isnot blo
king, and the pro
esses add i to their trustedset and send ba
k an ACK message to i, unblo
kingthe �wait�
lause line 8.Consider then that i is blo
ked at the �wait�
lause ofline 15 after having sent a REQUEST (i, lasti) messageto all pro
esses su
h that j 6= i and j /∈ crashedi. Four
ases are possible for j:

(a) Pro
ess j is in the state not_requesting. The
on-dition of line 25 is not satis�ed and the pro
esssends a permission (line 28).(b) Pro
ess j is in the state requesting. Sin
e i haspriority over all the others requests, j sends ba
kits permission.(
) Pro
ess j is in its
riti
al se
tion. The duration ofthe
riti
al se
tion is bounded so it will eventuallysend ba
k a reply message to i when exe
uting theRelease_resour
e() routine (lines 17-20).(d) Pro
ess j
rashes. By the trusting a

ura
y prop-erty of T , some
orre
t pro
ess m eventually andpermanently will suspe
t it. In other words, the
ondition of line 44 is eventually satis�ed at somepro
ess m for j (j ∈ trustedm and j ∈ Tm). Thus,
m will send a CRASH message to all
orre
t pro-
esses and every
orre
t pro
ess will eventually re-
eive it. Upon re
eiving the CRASH(j) message,
i de
rements the number of parti
ipating nodes ni,and, if it had already re
eived a permission from j,it also de
rements the number of re
eived permis-sions. Thus, the
ondition of line 44 will informthe new state of the system, sin
e ni eventuallyrepresents the number of
orre
t pro
esses. Hen
e
i will eventually re
eive exa
tly ni replies, with
ni
hara
terizing the number of
orre
t pro
esses.But i is blo
ked at line 15. It's a
ontradi
tion.Thus as pro
ess i is never blo
ked at the "wait" ofline 8 neither at the "wait" of line 15 of algorithm 1, itrea
hes line 16 and thus exe
utes the
riti
al se
tion.Lemma 3. If a
orre
t pro
ess requests to exe
ute the
riti
al se
tion, then at some time later the pro
ess ex-e
utes it.Proof. By lemma 2, the pro
ess that has priority overthe others will eventually exe
utes its
riti
al se
tion.On
e it exits the
riti
al se
tion, the pro
ess's requestwas satis�ed and will not be
onsidered anymore. Sin
erequests are totally ordered, ea
h of them will eventu-ally have the highest priority, obtaining then right toexe
ute the
riti
al se
tion.Theorem 1. The algorithm 1 solves the fault tolerant

k-mutual ex
lusion problem using FDs of
lass T and
S, in an environment εf with f < N − 1 faults providedthat no pro
ess
rashes before the initialization.Proof. The theorem 1 follows dire
tly from Lemmas 1and 3.6

7 Related workSeveral authors have proposed fault-tolerant exten-sions both to token-based [16℄,[13℄,[5℄ and permission-based 1-mutual ex
lusion algorithms [1℄,[3℄. The latterusually use the quorum approa
h.Similarly to Raymond's algorithm [18℄, the token-based k-mutual ex
lusion algorithm proposed by Sri-mani and Reddy [20℄ naturally supports failures. Itis inspired in Suzuki and Kasami's algorithm [21℄ and
ontrols k tokens. If a node holds one of the k tokens,it
an enter the
riti
al se
tion. However, likewise Ray-mond's, ea
h
rash redu
es the number of nodes that
an
on
urrently exe
ute the
riti
al se
tion.The majority of fault-tolerant permission-based k-mutual ex
lusion found in the literature use quorums[8℄,[9℄,[6℄,[10℄,[15℄. Some of these algorithms exploit the
k-
oteries approa
h [9℄,[15℄,[10℄. Informally, a k-
oterieis a set of node quorums, su
h that any (k+1) quorums
ontain a pair of quorums interse
ting ea
h other. Apro
ess
an enter a
riti
al se
tion whenever it re
eivespermission from every pro
ess in a quorum. The avail-ability of a
oterie is de�ned as the probability that aquorum
an be su

essfully formed and it is
losely re-lated to the degree of fault toleran
e that the algorithmsupports. On the other hand, Chang et. al propose in[6℄ an extended binary tree quorum for k-mutual ex
lu-sion whi
h imposes a logi
al stru
ture to the networkand tolerates in the best
ase up to (n−k∗(log2(2n/k)))node failures. Although quorum-based algorithms areresilient to node failures and/or network partitioning,the drawba
k of su
h approa
h is the
omplexity of
onstru
ting the quorums themselves.Two other k-mutual ex
lusion algorithms, [22℄ and[14℄ provide fault toleran
e but for wireless ad-ho
 net-works. The authors in [22℄ propose a token-base algo-rithm whi
h indu
es a logi
al dire
t a
y
li
 graph onthe network whi
h dynami
ally adapts to the
hangingtopology of ad-ho
 networks. Mellier et al. addressin [14℄ the problem of at most k ex
lusive a

esses toa
ommuni
ation
hannel by nodes that
ompete tobroad
ast on it, i.e., at most k mobile nodes
an simul-taneously broad
ast on it. Message
ollision problemsare solved by the proto
ol. However, neither of thealgorithms tolerate node failures, but just link failures.8 Performan
e evaluation
8.1 EffectivenessIn order to evaluate the e�
ien
y of Raymond's al-gorithms and our algorithm, we have developed a simu-lator. The initial number of nodes N is equal to 15 and

Figure 4: E�
ien
y
omparison of Raymond algorithmand our extensionthe number of resour
e's units k is �xed to 5. Both al-gorithms exe
ute the same s
enario. Faults are inje
tedduring the run (signaled by a triangle in Figure 4).For both algorithms, we have measured the numberof resour
e's units that
an be simultaneously in use.We
an
learly observe in Figure 4 that in Raymond'salgorithm at every
rash, the maximum number of
on-
urrent a

esses is de
remented by one. When faultsstart being inje
ted, some of the requests
an still besatis�ed provided that the total number of
rashes issmaller than k = 5. However, after this bound, no newrequest is satis�ed. On the other hand, our algorithmgoes on progressing till N − 1 = 14 failures. Further-more, the maximum number of units of the resour
e
on
urrently in use is not bounded by the number offailures. It just de
reases be
ause the number of
on-
urrent requests de
reases as well when faults are in-je
ted.
8.2 Number of messagesIn our algorithm, at the initialization, ea
h pro
esssends on
e between N−1 and 2(N−1) messages. Whenno
rash o

urs, the number of messages per CS ofour algorithm is equivalent to Raymond's algorithm,i.e., between 2N − k − 1 and 2N − 1 messages. Inthe presen
e of
rashes, N − 1 − |crashedi| messagesare sent by node i whi
h dete
ts the failure. However,in this
ase, the number of REQUEST messages perCS de
reases to N − 1− |crashedi| and the number of7

REPLIES de
reases as well from N − k − |crashedi|to N − 1 − |crashedi|.9 Con
lusionWe have presented in this arti
le a new fault tol-erant k-mutual ex
lusion algorithm. We assume anasyn
hronous network augmented with the failure de-te
tor of
lass T , whi
h is the weakest failure dete
torto solve the mutual ex
lusion problem, and the fail-ure dete
tor S for the initialization phase. Contrarilyto Raymond's, our algorithm
an dynami
ally dete
tnode failures, tolerates (N − 1) failures instead of just
k−1 as Raymond's naturally does, and always allows atmost k pro
esses to simultaneously exe
ute the
riti
alse
tion, i.e., failures do not degrade the e�e
tiveness ofthe algorithm as happens in Raymond's.Referen
es[1℄ D. Agrawal and A. E. Abbadi. An e�
ient andfault-tolerant solution for distributed mutual ex
lu-sion. ACM Trans. Comput. Syst., 9(1):1�20, 1991.[2℄ S. Bulgannawar and N. H. Vaidya. A distributed k-mutual ex
lusion algorithm. In Int. Conferen
e onDistributed Computing Systems, pages 153�160, 1995.[3℄ G. Cao, M. Singhal, and N. Rishe. A delay-optimalquorum-based mutual ex
lusion s
heme with fault-toleran
e
apability. In The 8th ACM symposium onPrin
iples of Distributed Computing, page 271, 1999.[4℄ T. D. Chandra and S. Toueg. Unreliable failure dete
-tors for reliable distributed systems. Journal of ACM,43(2):225�267, Mar
h 1996.[5℄ I. Chang, M. Singhal, and M. Liu. A fault tolerantalgorithm for distributed mutual ex
lusion. In Pro
.of the IEEE 9th Symp. on Reliable Distrib. Systems,pages 146�154, 1990.[6℄ Y.-I. Chang and B.-H. Chen. An extended binarytree quorum strategy for k-mutual ex
lusion in dis-tributed systems. In Pro
. of the 1997 Pa
i�
 RimInternational Symposium on Fault-Tolerant Systems,page 110, 1997.[7℄ C. Delporte-Gallet, H. Fau
onnier, R. Guerraoui, andP. Kouznetsov. Mutual ex
lusion in asyn
hronous sys-tems with failure dete
tors. J. Parallel Distrib. Com-put., 65(4):492�505, 2005.[8℄ S. Huang, J. Jiang, and Y. Kuo. k-
oteries for fault-tolerant k entries to a
riti
al se
tion. DistributedComputing Systems, 1993., Pro
eedings the 13th In-ternational Conferen
e on, pages 74�81, 1993.[9℄ J.-R. Jiang, S.-T. Huang, and Y.-C. Kuo. Cohortsstru
tures for fault-tolerant k entries to a
riti
al se
-tion. IEEE Transa
tions on Computers, 46(2):222�228, 1997.

[10℄ H. Kakugawa, S. Fujita, M. Yamashita, and T. Ae.Availability of k-
oterie. IEEE Trans. Comput.,42(5):553�558, 1993.[11℄ L. Lamport. Time,
lo
ks, and the ordering of eventsin a distributed system. Commun. ACM, 21(7):558�565, 1978.[12℄ K. Makki, P. Banta, K. Been, N. Pissinou, andE. Park. A token based distributed k mutual ex
lusionalgorithm. Pro
. of the 4th IEEE Symposium on Par-allel and Distributed Pro
essing, pages 408�411, 1992.[13℄ D. Manivannan and M. Singhal. An e�
ient fault-tolerant mutual ex
lusion algorithm for distributedsystems. In Int'. Conf. on Parallel and DistributedComputing Systems, pages 525�530, 1994.[14℄ R. Mellier and M. J. Fault tolerant mutual and k-mutual ex
lusion algorithms for single-hop movile adho
 networks. Int. Journal Ad Ho
 and UbiquituosComputing, 1(3):156�167, 2006.[15℄ M. L. Neilsen and M. Mizuno. Nondominated k-
oteries for multiple mutual ex
lusion. Inf. Pro
ess.Lett., 50(5):247�252, 1994.[16℄ S. Nishio, K. F. Li, and E. G. Manning. A resilient mu-tual ex
lusion algorithm for
omputer networks. IEEETrans. on Parallel and Distributed Systems, 1(3):344�355, july 1990.[17℄ N. Pissinou, K. Makki, E. K. Park, Z. Hu, andW. Wong. An e�
ient distributed mutual ex
lusionalgorithm. In ICPP, Vol. 1, pages 196�203, 1996.[18℄ K. Raymond. A distributed algorithm for multiple en-tries to a
riti
al se
tion. Inf. Pro
ess. Lett., 30(4):189�193, 1989.[19℄ G. Ri
art and A. K. Agrawala. An optimal algorithmfor mutual ex
lusion in
omputer networks. Commun.ACM, 24(1):9�17, 1981.[20℄ P. K. Srimani and R. L. N. Reddy. Another distributedalgorithm for multiple entries to a
riti
al se
tion. Inf.Pro
ess. Lett., 41(1):51�57, 1992.[21℄ I. Suzuki and T. Kasami. A distributed mutual ex
lu-sion algorithm. ACM Trans. Comput. Syst., 3(4):344�349, 1985.[22℄ J. Walter, G. Cao, and M. Mitrabhanu. A k-mutualex
lusion algorithm for wireless ad ho
 networks. InACM POMC'01, 2001.[23℄ S. Wang and S. D. Lang. A tree-based distributedalgorithm for the k-entry
riti
al se
tion problem. InPro
. of the 1994 International Conferen
e on Paralleland Distributed Systems, pages 592�599, 1994.

8

