
A Failure Detector for k-Set Agreement
in Dynamic Systems

Elise Jeanneau∗, Thibault Rieutord∗†, Luciana Arantes∗ and Pierre Sens∗
∗Sorbonne Universités, UPMC Univ Paris 06, CNRS, Inria, LIP6

Email: {denis.jeanneau, thibault.rieutord, luciana.arantes, pierre.sens}@lip6.fr
†ENS Rennes

Abstract—The k-set agreement problem is a generalization
of the consensus problem where processes can decide up to k
different values. Very few papers have tackled this problem in
dynamic networks, and to the best of our knowledge, every
algorithm proposed so far for k-set agreement in dynamic
networks assumed synchronous communications or made strong
failure pattern assumptions. Exploiting the formalism of the Time-
Varying Graph model, this paper proposes a new quorum-based
failure detector for solving k-set agreement in dynamic networks
with asynchronous communications. We present two algorithms
that implement this new failure detector using graph connectivity
and message pattern assumptions. We also provide an algorithm
for solving k-set agreement using our new failure detector.

I. INTRODUCTION

Modern distributed architectures such as clouds or ad-hoc
networks are characterized by their high number of nodes and
strong dynamics. On the other hand, traditional models and
algorithms of distributed computing are not always adapted to
face the challenges brought by those new architectures. Indeed,
they rely on static and known membership networks, where the
communication graph does not change for the whole duration
of the run and every process knows the number of processes in
the system and each of their unique identifiers. By contrast, in
dynamic networks, nodes can join and leave the system during
the run and communication between them varies over the time.

Agreement problems such as consensus are the keystone
of distributed computing problems and have numerous appli-
cations. Notably, machine state replication in a distributed
system requires to solve an agreement problem. However,
these problems have been less studied in dynamic models
than they have been in static ones. In this paper, we are
interested in a particular agreement problem, namely k-set
agreement [1], and how to solve it in dynamic systems with
asynchronous communications. The k-set agreement problem
is a generalization of the consensus problem where processes
eventually agree on at most k different values. It cannot be
solved in asynchronous systems prone to f failures when k ≤ f .
To circumvent this impossibility, solutions enriched with failure
detectors have been used. Failure detectors [2] are distributed
oracles that provide processes with unreliable information on
processes failures. They address questions such as the minimal
information about failures needed to solve agreement problems.

In asynchronous message passing model with n nodes and
f < n, it has been proved in [3] that the weakest failure

This work was performed within the Labex SMART, supported by French
state funds managed by the ANR within the Investissements d’Avenir
programme under reference ANR-11-LABX-65.

detector for solving consensus (1-set agreement) is the class of
eventual leader failure detector, denoted Ω, combined with the
quorum failure detector, denoted Σ [4]. For k-set agreement, the
weakest failure detector in message passing systems is unknown
but the failure detector Σk was proved to be necessary [5].

Recently, Rieutord et al. [6] proposed the failure detector
Σ⊥, which is an adaptation of Σ [4] in the absence of initial
information regarding system membership. It is, therefore,
suitable for implementations in dynamic networks. Hence, our
proposal in this paper is to combine the properties of both Σk
and Σ⊥ in order to solve k-set agreement in dynamic systems.

For modeling the dynamics of the system and evolving
communication between nodes, we exploit the formalism of
the Time-Varying Graphs (TVG), proposed by Casteigts et al.
in [7]. In this article, the authors also defined several classes
of TVGs and compare them according to the strength of the
assumptions made on graph connectivity. Thus, by introducing
new classes, which are extensions of TVG class 5 (recurrent
connectivity), we can express our required model assumptions.

Contributions. This paper brings four main contributions:

1) The conception of new TVG classes for efficiently implement-
ing k-set agreement in dynamic systems with asynchronous
communications.

2) The new failure detector Σ⊥,k, which combines the proper-
ties of both Σk and Σ⊥.

3) Two algorithms for the failure detector Σ⊥,k, making
different connectivity and message pattern assumptions.

4) An algorithm for solving k-set agreement in our model,
using Σ⊥,z with k ≥ n − b n

z+1c. The algorithm is adapted
from a protocol proposed in [8], solving k-set agreement in
static networks with known membership.

Roadmap. The rest of the paper is organized as follows: Sec-
tion II discusses related work. Section III presents background
on models and the formal definition of the k-set agreement
problem. Section IV introduces the failure detector class Σ⊥,k
and Section V presents the new TVG classes used by our Σ⊥,k
algorithms whose implementations are presented in Section VI.
Section VII proposes an algorithm solving k-set agreement
using Σ⊥,k and Section VIII concludes the paper.

II. RELATED WORK

Aside from the failure detector approach of [2], other models
have been proposed to solve agreement problems. Dwork et

al. introduced in [9] partially synchronous systems, where
communication delays are bounded but the bound is not initially
known by processes. Fetzer proposed in [10] the MCM model,
where received messages are assumed to be correctly classified
as “slow” or “fast”. Robinson and Schmid proposed in [11]
the message driven Asynchronous Bounded-Cycle model.

In order to solve problems in modern dynamic networks, a
number of papers in the literature have introduced formalisms
to express dynamic system models. In [12], Aguilera presents
different system models where an infinite number of processes
can join the system during a given run. Cao et al. presented
in [13] a model made of two sets of nodes: fixed support
stations forming a static complete graph, asynchronous but
entirely known, and mobile hosts which follow the finite
arrival model of [12] and communicate through the support
stations. Ferreira introduced in [14] a model, namely Evolving
Graphs, in which the communication graph evolves over time.
Based also on communication graph evolution, Casteigts et al.
presented in [7] the formalism of the Time-Varying Graph
(TVG) and defined several classes of TVGs, according to
different graph connectivity assumptions. As our work uses
the TVG model, its formalism is described in Section III.
Kuhn et al. proposed in [15] a model considering an evolving
communication graph where connectivity assumptions rely on
stable subgraphs connected for a certain number of synchronous
rounds. Biely et al. presented in [16] a dynamic model, which
is close to the model of Kuhn et al. [15], but based on directed
graphs and weaker connectivity assumptions. A survey of
dynamic system models can be found in [17] and [18].

Some algorithms have been presented to solve the consensus
problem in dynamic systems. Those solutions make strong
assumptions on either the timeliness of communications or
the number of process failures. An algorithm for consensus
exploiting the model of Kuhn et al. [15] is provided in [19],
along with an algorithm for simultaneous consensus (all the
nodes decide in the same synchronous round) and another
one for ∆-coordinated consensus (all the nodes decide within
∆ rounds of each other). An algorithm for consensus is also
presented in [16], considering assumptions on vertex-stable root
component: in every synchronous round, there must be exactly
one strongly connected component that has only out-going
links to some of the remaining processes and can reach every
process in the system. Recently, an algorithm for consensus in
asynchronous dynamic systems has been presented in [20].
The solution makes use of the One-Third Rule algorithm
and epidemic routing. It assumes that no more than a third
of the processes involved in the consensus crash. Several
implementations of the eventual leader failure detector Ω [21],
which is necessary to solve consensus, have been adapted for
dynamic systems in [13], [18], [22]. The algorithm in [18] relies
on partial synchrony assumptions, whereas the ones in [13],
[22] are asynchronous and use message pattern assumptions.

Very few articles have attempted to solve the k-set agree-
ment problem in dynamic networks. Exploiting the formalism
of [15] and considering an upper bound on the number of pro-
cesses, Sealfon and Sotiraki present in [23] an algorithm solving
k-set agreement in partitioned dynamic networks. Biely et al.
in [24] proposed in their model [16] an algorithm for consensus
which gracefully degrades to k-set agreement whenever network
conditions do not guarantee consensus. We should point out that

both algorithms assume synchronous communications between
processes: to the best of our knowledge, there is no algorithm
in the literature that solves the k-set agreement problem in
dynamic networks with asynchronous communications.

III. MODELS AND DEFINITIONS

A. Process Model

The system is made up of a finite set of n processes denoted
Π = {p1, p2, ..., pn}. Processes in the system are uniquely
identified, but are initially only aware of their own identity. We
assume that there is a bound on the relative speed of processes:
the latter are, therefore, synchronous.

Assuming that processes are synchronous may appear as
a strong assumption, but it is very weak when compared to
synchronous communication. Indeed, if communications are not
bounded, to the other processes point of view the synchrony of
processes cannot be used for inter-process synchronization. To
the opposite, if communications are synchronous and processes
asynchronous, a message sent to all neighbors will arrive to
all in a fixed range of time and may be used to synchronize
their local estimation of time. This difference between the
computation synchrony and communication synchrony power
is used in Dwork et al. paper on partial synchrony [9].

Processes follow the n-arrival model of [12]: processes may
join and leave the system, but only a total of n processes can
join the system in a run. A run is a sequence of steps executed
by the processes while respecting the causality of operations
(each received message has been previously sent). A process
may leave the system and rejoin it later, but then a new identity
will be attributed to it: for all intents and purposes, it will be
treated as a new process.

A process that never leaves the system in a run is said
to be correct in that run, otherwise it is faulty: we make no
difference between a process that crashes and a process that
purposely leaves the system. The set of all correct processes
in a run is denoted C. We assume an upper bound f < n on
the number of faulty processes in the system.

B. Communication Model

Time-Varying Graph. We model the system dynamics using the
formalism of the Time-Varying Graph (TVG) [7]. The topology
of the network is dynamic, which means that the relations
between two nodes take place over a time span T = N.

Definition 1 (Time-Varying Graph). A time-varying graph is
a tuple G = (V,E, T , ρ, ζ, ψ) where (1) V = Π is the set of
nodes in the system, (2) E ⊆ V × V is the set of edges, (3)
T = N is a time span, (4) ρ : E × T → {0, 1} is the edge
presence function, indicating whether a given edge e ∈ E is
active at a given time t ∈ T , (5) ζ : E×T → N is the latency
function, indicating the time taken to cross an edge e ∈ E
if starting at given time t ∈ T , (6) ψ : V × T → {0, 1} is
the node presence function, indicating whether a given node
p ∈ V is present in the system at a given time t ∈ T .

The graph G(V,E) is the underlying graph of G, indicating
which nodes have a relation at some time in T .

Although we make use of the latency function ζ to express
communication constraints, processes do not have access to

ζ and its values are expected to be finite but not necessarily
bounded: communications in the system are thus asynchronous.

Journeys. The connectivity assumptions of our model are
expressed in terms of journeys, as defined in the TVG formalism.

Definition 2 (Journey). A journey is a sequence of couples
J = {(e1, t1), (e2, t2), ..., (em, tm)} such that {e1, e2, ..., em}
is a walk in G and:
∀i, 1 ≤ i < m : (ρ(ei, ti) = 1) ∧ (ti+1 ≥ ti + ζ(ei, ti)).

t1 is denoted departure(J) and tm+ζ(em, tm) is denoted
arrival(J). Intuitively, a journey is a path over time. As such,
it has both a topological length (|J | = m, the length of the path
in G) and a temporal length (arrival(J)− departure(J)).

If a journey exists between two nodes u and v, we say that
u can reach v, which is denoted u v. We denote J ∗(u,v) all
the journeys starting at node u and ending at node v.

Definition 3 (Direct journey). A direct journey J is a journey
such that every next edge in J is directly available:
∀i, 1 ≤ i < |J | : ρ(ei+1, ti + ζ(ei, ti)) = 1.

Broadcast primitive. Processes communicate by using a broad-
cast primitive. When a process pi initiates a broadcast of
message m, it simply sends m to every process currently in
its neighborhood, including itself. This is therefore a low-level
broadcast, which notably does not handle message forwarding
(forwarding will be explicitly handled by our algorithms).

Channels. Channels are fair-lossy, which means that messages
may be lost, but, if the edge is active for the entire time of
the message transfer, a message sent infinitely often will be
received infinitely often. There is no creation or alteration of
messages, but messages may be duplicated (provided that each
message is only duplicated a finite number of times) or arrive
in any order (we do not require channels to be FIFO).

TVG classes. Several classes of TVGs have been defined in [7]
with respect to temporal properties on the network dynamics.
We are particularly interested in class 5:

Definition 4 (Class 5: recurrent connectivity). TVGs of class
5 ensure that every process can reach every other process
infinitely often:
∀u, v ∈ V,∀t ∈ T ,∃J ∈ J ∗(u,v) : departure(J) > t.

C. The k-Set Agreement Problem

The problem of k-set agreement was introduced by Chaud-
huri in [1] as a generalization of the consensus problem for
1 ≤ k ≤ n− 1. Each process starts by proposing a value, and
each correct process eventually decides a value in such a way
that the following three properties are satisfied:

Validity. A decided value is a proposed value.

Termination. Every correct process eventually decides a value.

Agreement. At most k different values are decided.

IV. A NEW FAILURE DETECTOR: Σ⊥,k

The quorum failure detector Σ [4] provides every process
with a set of process identities, denoted quorum, such that
any two quorums formed at any time necessarily intersect,

and eventually all quorums are included in C. Note that this
property must hold over time: two quorums formed at two
different times by two different processes must intersect.

Similarly, the quorum failure detector family Σk [5]
provides processes with quorums of process identities such
that two out of any k + 1 quorums necessarily intersect, and
eventually all quorums are included in C.

Given that Σk was proved in [5] to be necessary for solving
k-set agreement in asynchronous systems, it seems natural to
implement it using the TVG formalism as a stepping stone
towards dynamic k-set agreement. However, the intersection
property of Σk requires to be fulfilled from the start of the run,
which poses a problem in a dynamic system where processes
do not necessarily know each other’s identities from the start.

A solution to this problem for the case k = 1 was proposed
in [6] by the Σ⊥ failure detector. The detector can return the
special value ⊥ instead of a quorum to indicate that it has
not yet gathered sufficient knowledge of the system to form
a quorum. We apply the same concept to Σk to propose a
failure detector which can be used to solve k-set agreement in
dynamic asynchronous systems.

At any time, the Σ⊥,k detector provides each process with
either the default value ⊥ or a set of process identities (quorum).
The output of the detector on process p at time t is denoted
Σ⊥,k,p(t). The following properties must be satisfied:

Intersection. Out of any k + 1 non-⊥ quorums, at least two
intersect: ∀t1, ..., tk+1 ∈ T ,∀p1, ..., pk+1 ∈ Π,∃i, j :
1 ≤ i 6= j ≤ k + 1, (Σ⊥,k,pi(ti) 6= ⊥ ∧ Σ⊥,k,pj (tj) 6= ⊥)
=⇒ Σ⊥,k,pi(ti) ∩ Σ⊥,k,pj (tj) 6= ∅.

Completeness. Eventually, all quorums are different from ⊥
and contain only correct processes: ∃τ ∈ T ,∀p ∈ C,
∀t ∈ T , t ≥ τ : Σ⊥,k,p(t) 6= ⊥ ∧ Σ⊥,k,p(t) ⊆ C.

Intuitively, Σ⊥,k ensures the same properties as Σk except
that initially, the detector can return the special value ⊥ instead
of a quorum to indicate that sufficient knowledge about process
identities has not been reached, and therefore the intersection
property is not expected to hold yet. By convention, the detector
outputs ⊥ forever on crashed processes.

For the sake of simplicity, we assume that processes always
include themselves in their respective non-⊥ quorums. Our
algorithms in Section VI will implement such an inclusion.

V. NEW TVG CLASSES FOR RELIABLE MESSAGE
TRANSMISSION

As described in Section III, TVGs of class 5 (recurrent
connectivity) ensure that every process can reach every other
process infinitely often. However, the latter is insufficient to
guarantee that a message will eventually cross an edge, even if
the message is sent infinitely often: the edge could be present
only in between two emissions of the message. A naive solution
would be to send the message constantly, such that at any instant
there is a message being sent. This assumption is unrealistic,
as it would require processes to send an infinite number of
messages in a finite time.

A solution to this problem, proposed in [25], is to assume
that when an edge appears or disappears, the adjacent nodes

are notified of the corresponding event without delay. With this
information, it is possible to implement a send retry primitive
which re-sends the message upon reappearance of the edge.
Eventual message reception is thus ensured, provided that there
is a long enough edge activation period in the future.

In [26], Gómez-Calzado et al. consider that the assumption
of instantaneous edge detection is too strong. Instead, they
define β-journeys, in which edges are guaranteed to stay active
at least β time, with β strictly longer than the message transfer
time. The authors consider synchronous communications and
therefore define β-journeys using an upper bound on the transfer
time. To overcome these drawbacks, we define γ-journeys.

Similarly to β-journeys, γ-journeys assume that every edge
stays active strictly longer than the transfer delay in order to
give the sender process the necessary time to send the message.

Definition 5 (γ-Journey). A γ-journey J (where γ > 0 is a
time duration) is a journey such that every node on the path
can wait up to γ units of time after the next edge becomes
active before forwarding the message. Since the message may
be sent at any time during the γ time window and the channel
latency may vary during that time, the edge must remain active
long enough for the worst case duration:
1) ∀i, 1 ≤ i ≤ |J |, ei stays active from time ti until, at least,
time ti +max0≤j≤γ{j + ζ(ei, ti + j)}.
2) ∀i, 1 ≤ i < |J |, ti+1 ≥ ti +max0≤j≤γ{j + ζ(ei, ti + j)}.

We then define direct γ-journeys similarly to direct journeys.
We call J γ(u,v) the set of all γ-journeys from u to v, and J dγ(u,v)
the set of all direct γ-journeys from u to v. We then obtain
the following new class of TVGs:

Definition 6 (Class 5-γ: γ-recurrent connectivity). TVGs of
class 5-γ ensure that every process can reach every other
process infinitely often through γ-journeys:
∀u, v ∈ V,∀t ∈ T ,∃J ∈ J γ(u,v) : departure(J) > t .

Class 5-γ is strictly stronger than class 5. Trivially, ∀γ1, γ2 :
γ1 ≥ γ2 ⇒ class 5-γ1 ⊆ class 5-γ2 (class 5 would be
equivalent to “class 5-0”, if γ could be equal to 0).

Class 5-γ’ (γ-direct recurrent connectivity) is defined
similarly, except that it uses J dγ(u,v) instead of J γ(u,v). It is
significantly stronger than class 5-γ: the assumption of recurrent
direct journeys reduces the dynamics of the system.

Although classes 5-γ and 5-γ’ present the advantage of
being easily comparable to class 5, they are slightly too strong
for our algorithms: we only require a limited number of nodes
to be connected. To this end, we define two more TVG classes:

Definition 7 (Class 5-(α, γ): (α, γ)-recurrent connectivity).
Every correct process can reach and be reached through γ-
journeys infinitely often by at least α correct processes.
∀pi ∈ C,∃Pi ⊆ C, |Pi| ≥ α,∀t ∈ T ,∀pj ∈ Pi,∃Ji ∈ J γ(pi,pj) :

departure(Ji) ≥ t ∧ ∃Jj ∈ J γ(pj ,pi) : departure(Jj) ≥ t.

Definition 8 (Class 5-(α, γ)′: (α, γ)-direct recurrent receiver
connectivity). Every correct process can be reached through
direct γ-journeys infinitely often by at least α correct processes.
∀pi ∈ C,∃Pi ⊆ C, |Pi| ≥ α,∀t ∈ T ,∀pj ∈ Pi,∃J ∈ J dγ(pj ,pi)

:

departure(J) ≥ t.

Note that class 5-(α, γ) requires two-way recurrent con-
nectivity, whereas class 5-(α, γ)′ does not. The latter, however,
requires direct γ-journeys.

VI. ALGORITHMS FOR Σ⊥,k IN DYNAMIC NETWORKS

In this section, we present two implementations of Σ⊥,k
relying on the TVG classes presented in Section V and message
pattern assumptions. The first algorithm requires a TVG of class
5-(α, γ)′ whereas the second requires class 5-(α, γ).

The principle of both algorithms is the following: each
process broadcasts their identity regularly and, infinitely often,
waits for messages from α processes and forms a new quorum
with the received process identities. Since our broadcast
primitive does not handle forwarding, each process needs to
rebroadcast the information it receives. The properties of class
5-(α, γ) and class 5-(α, γ)′ ensure that correct processes will
always receive enough messages to form quorums.

The algorithms are compatible with any value of α that fits
the definition of our TVG classes, but the processes are required
to know the same α value (α ≤ |C|). γ is the maximum delay
between two broadcasts of the same message by a process. We
also require processes to receive their own broadcast messages
within γ units of time. Note that the bound value of γ implies
that the relative speed of processes must be bounded: processes
are therefore synchronous.

Since we make use of infinite rebroadcasts, messages
originally issued by faulty processes will be continuously
retransmitted by the other correct processes, even after all
faulty processes have left the system preventing the satisfaction
of the completeness property. As both algorithms use different
solutions to this problem, it will be discussed further in the
subsections presenting the algorithms themselves.

A. Message pattern

In order to ensure the intersection property, some assump-
tions must be added. Instead of using a constraint on the ratio
of correct processes, we present here assumptions based on the
message pattern approach proposed by Mostéfaoui et al. [27].

The message pattern model consists in assuming some
properties on the relative order of message deliveries. When a
certain number of messages (α) are waited by processes for
continuing algorithm progress, the principle is to assume that
the message from some specific process will be among the first
received. This model provides asynchronous implementations
and avoids timer-based approaches.

We propose two different message pattern assumptions,
either of which is sufficient to implement Σ⊥,k. Both are
generalizations of the message pattern assumption used by
Rieutord et al. in [6] applied to k-set agreement.

Assumption 1 (Multiple winning quorums).
∃Qw1, Qw2, ..., Qwk ⊆ Π : ∀p ∈ Π, every time p attempts to
form a new quorum, ∃i ∈ [1, k] such that Qwi 6= ∅ and out of
the next α processes from which p receives a message, at least
b |Qwi|

2 c+ 1 of them are in Qwi.

We refer to the Qwi sets as winning quorums. The property
on the size of each winning quorum ensures that any two

processes forming a quorum using the same winning quorum
will necessarily intersect. Since there are only k different such
winning quorums, two out of any k + 1 quorums formed by
the algorithm will intersect. Assumption 1 implies that there is
at least one winning quorum Qwi such that a strict majority of
the processes in Qwi are correct.

Assumption 2 (Global winning quorum). ∃Qw ⊆ Π, Qw 6=
∅ : ∀p ∈ Π, every time p attempts to form a new quorum, out
of the next α processes from which p receives a message, at
least b |Qw|

k+1 c+ 1 of them are in Qw.

This assumption implies that at least b |Qw|
k+1 c+ 1 processes

in Qw are correct. Assumption 2 requires a single winning
quorum, but the constraint on the size of Qw is weaker than
the one of Assumption 1. Moreover, it can be shown that for
every α ≥ 2 and k ≥ 2, both assumptions are incomparable
and none is weaker than the other one.

Note that if α ≥ b n
k+1c+ 1, then Assumption 2 is trivially

verified with Qw = Π. This particular case is the method used
to implement Σk in static networks in [8].

The two algorithms that we present in the following require
either Assumption 1 or Assumption 2 to hold.

B. A Message Expiration-Based Algorithm for Σ⊥,k

Algorithm 1 provides completeness by limiting the number
of times a message can be rebroadcast. It requires a TVG of
class 5-(α, γ)′.

Algorithm 1. Implementation of Σ⊥,k with message expiration
for process pi

1: init recv fromi ← {pi}; Σi ← ⊥
2:
3: task T1: repeat forever
4: broadcast(pi, 1)
5: end task
6:
7: task T2: upon reception of message(src, age) from pj
8: recv fromi ← recv fromi ∪ {src}
9: if |recv fromi| ≥ α then

10: Σi ← recv fromi; recv fromi ← {pi}
11: end if
12: if age < α− 1 then broadcast(src, age+ 1) end if
13: end task

Notations. Broadcast messages contain the parameters: (1) src,
the identity of the original sender of the broadcast and (2) age,
the number of times this message has been already broadcast.

Process pi uses the following local variables:
(1) recv fromi, a set that serves as a buffer to contain the
quorum currently being formed, and (2) Σi, the quorum
returned by the algorithm.

Algorithm Description. Initially, the return value Σi of process
pi is ⊥. The algorithm keeps two parallel tasks: T1 is an
infinite loop that keeps broadcasting query messages at least
once every γ units of time; T2 handles any incoming message.

Every process identity received in a message by T2 is
simply added to the quorum buffer recv fromi. If the latter
contains α identities or more, then its size ensures a valid
quorum. In this case, pi saves the recent computed quorum and

resets the quorum buffer in order to start the computing of the
next quorum (lines 11 and 12). The received message is then
rebroadcast unless it has already been broadcast α− 1 times.

The mechanism of message expiration requires a TVG of
class 5-(α, γ)’, which implies direct journeys. Every process
rebroadcasts the messages it receives: if the next edge of the
journey was not active yet, as it might happen in class 5-(α, γ),
the only way the message could “wait” would be to locally
rebroadcast it in the meantime, which would imply in increasing
its age. As a result, the message might not reach the number
of processes necessary for each process to form a quorum.

C. A Round-Based Algorithm for Σ⊥,k

Algorithm 2 presents an implementation of Σ⊥,k requiring
a TVG of class 5-(α, γ). Since it does not make use of the
message expiration mechanism, it does not require class 5-
(α, γ)’ and relies on asynchronous rounds to eliminate old
messages from faulty processes. Its implementation uses a
query-response mechanism.

Algorithm 2. Implementation of Σ⊥,k with asynchronous
rounds for process pi

1: init midi ← 0; last knowni ← ∅; recv fromi ← {pi};
Σi ← ⊥

2:
3: task T1: repeat forever
4: broadcast(pi, {pi}, midi)
5: end task
6:
7: task T2: upon reception of message(src, qr, mid src) from pj
8: if src = pi and mid src = midi then . RESPONSE
9: recv fromi ← recv fromi ∪ qr

10: if |recv fromi| ≥ α then
11: Σi ← recv fromi; recv fromi ← {pi}
12: midi ← midi + 1
13: end if
14: else if src 6= pi then . QUERY
15: if 〈src, last mid〉 ∈ last knowni

16: and last mid ≤ mid src then
17: replace in last knowni 〈src, last mid〉
18: with 〈src,mid src〉
19: broadcast(src, qr ∪ {pi}, mid src)
20: else if 〈src,−〉 /∈ last knowni then
21: last knowni ← last knowni ∪ {〈src,mid src〉}
22: broadcast(src, qr ∪ {pi}, mid src)
23: end if
24: end if
25: end task

Notations. A message contains the following parameters: (1)
src: the identity of the original sender of the broadcast,
(2) qr: the identities of every process which received the
message and retransmitted it, (3) mid src: the timestamp of
the quorum that the last query issued by src is attempting to
form (corresponding to the midi of process src).

Besides recv fromi and Σi, similarly to Algorithm 1, pi
keeps the following two other local variables: (1) midi: a round
counter used to timestamp every quorum formed by process pi.
Every time a new quorum is completed, midi is incremented.
(2) last knowni: the knowledge pi has of the round counter
of other processes. It is used to prevent pi from uselessly
rebroadcasting outdated messages. The variable contains tuples

of the form 〈pj ,midj〉 where pj is a process identity and midj
is the last round number known by pi for pj .

Algorithm Description. Initially, the return value Σi of process
pi is ⊥. The algorithm keeps two parallel tasks: T1 is an
infinite loop that simply keeps broadcasting query messages
at least once every γ units of time. T2 handles any incoming
message, considering two main cases:

Case 1: if the source process identity contained in the
message is pi, then the message is considered as a response to
a query previously broadcast by pi. If the round number is the
current one, then the identities contained in the message are
added to the quorum buffer recv fromi. If the latter contains
α identities or more, its size ensures a valid quorum (line 10).
The task then saves the recently computed quorum, resets the
quorum buffer recv fromi, and increments the round number
in order to start computing a new quorum (lines 11 – 12).

Case 2: if the source process identity is different from
pi, then the message is considered as a query broadcast by
another process which pi needs to forward and respond to. If
last knowni contains a more recent round number than the
one received by pi in the message, pi ignores the message.
Otherwise, it updates last knowni (lines 18 and 21) and
broadcasts the same message with its own identity added in the
qr parameter of the message (lines 19 and 22). This broadcast
acts both as a response mechanism and as a forward of the
query which allows other processes to respond to it.

D. Comparison between Algorithms 1 and 2

Although the two algorithms solve the same problem, they
present different strengths. Algorithm 2 does not make the
strong assumption of direct journeys, as opposed to Algorithm 1.
However, Algorithm 2 has the inconvenient of requiring two-
way recurrent connectivity. Algorithm 1 also has the advantage
of simplicity.

E. Proof of Correctness of Algorithms 1 and 2

Theorem 1. Algorithms 1 and 2 ensure the intersection
property of Σ⊥,k.

Proof: By lines 9 and 10 of Algorithm 1 and lines 10 and
11 of Algorithm 2, the size of returned quorums is ≥ α.

If Assumption 1 holds, then it follows that any two quorums
using the same winning quorum Qwi intersect, since each
quorum contains at least b |Qwi|

2 c+ 1 process identities taken
from Qwi. Given that there are only k different winning
quorums, at least two out of any k + 1 quorums contain the
majority of the same winning quorum and therefore intersect.

If Assumption 2 holds, then it follows trivially that at least
two out of k+1 quorums intersect since both contain b |Qw|

k+1 c+1
process identities taken from Qw.

Lemma 1. Every correct process executing Algorithm 1 forms
a new quorum infinitely often.

Proof: Our algorithm imposes a size of at least α for
every quorum: as a result, a process may not be able to form
new quorums after some time. Thus, every correct process
must be reached by α processes infinitely often. The message

expiration mechanism can prevent a process from receiving
messages from α processes, even in a class 5-(α, γ) TVG,
simply because a message can age needlessly by waiting for
an edge to be activated. As a result, the (α, γ)-direct recurrent
receiver connectivity of class 5-(α, γ)’ is needed to ensure
that Algorithm 1 will form quorums infinitely often. This class
guarantees direct γ-journeys, which means that messages can
cross all the necessary edges without waiting.

Lemma 2. Every correct process executing Algorithm 2 forms
a new quorum infinitely often.

Proof: Since it uses a query-response mechanism, Algo-
rithm 2 requires every correct process to reach and be reached
by α processes infinitely often. This is exactly the guarantee
provided by the (α, γ)-recurrent connectivity property of TVG
class 5-(α, γ). Even if a journey includes waiting time during
which the process holding the message is isolated, the process
keeps memory of the message by rebroadcasting it to itself,
and transmits it to other processes as soon as it it stops being
isolated. As a result, every correct process will receive messages
from α infinitely often.

Lemma 3. There is a time τ after which every new quorum
formed by Algorithms 1 and 2 contains only correct processes.

Proof: By definition, faulty processes will leave the system
in a finite time. Messages arrive in a finite time and, with
Algorithm 1, are rebroadcast a finite number of times. Therefore
with Algorithm 1, there is a time after which no information
related to faulty processes remains in the system. Since
processes form new quorums from fresh messages infinitely
often (Lemma 1), there is a time after which every new quorum
formed will contain only correct processes.

For Algorithm 2, let t ∈ T be the time at which the last
faulty process crashes or leaves the system: since f < n, there
are correct processes in the system. Lemma 2 ensures that each
of these processes will form a new quorum sometime after t.
Let τ ∈ T be a time such that τ > t and every remaining
process has formed a quorum between t and τ . Therefore,
every quorum being currently built at τ has been started after
t, which means no faulty process can possibly respond to the
corresponding query message. As a result, every new quorum
formed after τ contains only correct processes.

Theorem 2. Algorithms 1 and 2 ensure the completeness
property of Σ⊥,k.

Proof: The proof follows directly from Lemmas 1, 2, 3.

F. Necessity of TVG classes 5-(α, γ) and 5-(α, γ)′

Theorem 3. The class 5-(α, γ) (resp. class 5-(α, γ)′) is a
necessary requirement for Algorithm 2 (resp. Algorithm 1).

Proof: Let us assume a TVG model that does not belong to
class 5-(α, γ) or class 5-(α, γ)′. By definition, in such a model
there is a correct process pi that is unable to communicate
with α correct processes infinitely often. Thus, there is a time
τ ∈ T at which pi will stop forming new quorums, since both
algorithms need α processes to form a quorum.

Let pj be a faulty process. We can imagine a run where pj
broadcasts a message before crashing, and pi uses this message,
and therefore includes pj’s identity in its last formed quorum
before τ . As a result pi will forever keep a faulty process in its
quorum, thus violating the completeness property of Σ⊥,k.

VII. AN ALGORITHM FOR k-SET AGREEMENT IN
DYNAMIC NETWORKS USING Σ⊥,z

Algorithm 3 is derived from the algorithm presented by
Bouzid and Travers in [8]. Similarly to the original one,
processes are partitioned into z + 1 disjoint sets of processes
A1, ..., Az+1 such that ∀i, j, i 6= j, Ai ∩Aj = ∅;

⋃
Ai = Π;

∀i ∈ [1..z]|Ai| = b n
z+1c; |Az+1| = b n

z+1c+ nmod(z + 1).

The original algorithm requires Σz with k ≥ n − b n
z+1c

while ours relies on Σ⊥,z (with the same value for k). Our
algorithm requires the following assumption to hold:

Assumption 3 (Quorum recurrent connectivity). ∀i, j ∈ C, if
the Σ⊥,z quorums formed by i and j intersect infinitely often,
then there is a recurrent connectivity from i to j: ∀τ ∈ T ,∃J ∈
J γ(i,j) : departure(J) > τ .

Similarly to Algorithms 1 and 2, γ is the maximum delay
between two broadcasts of the same message by a process. We
also require processes to receive their own broadcast messages
within γ units of time.

Note that many implementations of Σ⊥,z ensure quorum re-
current connectivity, as is the case with Algorithm 2. Therefore,
Assumption 3 consists in relying on the assumptions already
made to implement the failure detector instead of introducing
new ones. This is not an additional assumption compared to
the original algorithm: the connectivity it implies is still weaker
than the full recurrent connectivity of a static network.

For the conception of the new version of the algorithm, we
have had to cope with the following constraints of the original
algorithm: (1) The use of one-time broadcasts and eventual
reception of the message by other processes. To fulfill this
in a TVG, processes need to rebroadcast received messages.
(2) The use of a selective multicast (line 1 of the original
algorithm). We can translate this mechanism in a dynamic
network by having every process broadcasting the message to
their respective current neighbors while destination processes
filter it and may not deliver it. (3) The assumption that every
process knows from the start, the identifiers of the processes in
its own partition. In the new version of the algorithm, at the start
every process only knows the number of the partition to which
it belongs and, during the run, dynamically gets knowledge of
its partition membership (or part of it).

Intuitively, at the algorithm initialization, every process has
its own proposed value and whenever a process decides, it
broadcasts the decided value. Notice that processes do not stop
after deciding but must keep broadcasting their decision.

Notations. The algorithm uses the following local variables:
(1) v: variable that contains the value that process p expects to
decide, or has decided, (2) dec: a boolean variable indicating
whether p has decided or not, thus preventing p from deciding
twice, (3) known: the current knowledge that p has of the
processes in partition Ai. We denote Σ⊥,z the process identities
(or special value ⊥) returned by the Σ⊥,z failure detector.

Two types of messages are defined: (1) DEC(v): a message
indicating that the sender has decided value v. Any process
receiving it will immediately decide v in turn, unless it has
already decided. (2) VAL(p, i, v): a message indicating that a
process p of partition Ai proposed the value v. Processes of
partitions Aj with j < i will ignore this message, but a process
of a higher partition receiving the message will immediately
decide v unless it has already decided, and a process of partition
Ai receiving this message will add p to its known set.

Algorithm 3. Solving k-set agreement with Σ⊥,z: p ∈ Ai
1: init v ← initial value; dec← false; known← {p}
2:
3: task T0: repeat every γ
4: if dec then broadcast DEC(v)
5: else broadcast VAL(p, i, v) end if
6: end task
7:
8: task T1: upon reception of message VAL(src, j, w)
9: if dec 6= true then

10: if i > j then v ← w; dec← true; decide(v)
11: else if i = j then known← known ∪ {src} end if
12: broadcast VAL(src, j, w)
13: end if
14: end task
15:
16: task T2: repeat X ← Σ⊥,z until X ⊆ known
17: if dec 6= true then dec← true; decide(v) end if
18: end task
19:
20: task T3: upon reception of message DEC(w)
21: if dec 6= true then v ← w; dec← true; decide(v) end if
22: end task

Algorithm Description. Initially, v is set to the initial value
proposed by p and dec is set to false. The algorithm keeps four
parallel tasks:

Task T0 keeps broadcasting messages at least once every γ
units of time. Before p has decided (dec = false), it broadcasts
VAL(p, i, v) messages informing processes in higher partitions
of its initial value v and processes of partition Ai that they
belong to the same partition as p. After p has decided (dec =
true), T0 broadcasts DEC(v) messages informing neighbors
of the decided value.

Tasks T1 and T3 handle the reception of messages of type
VAL(.) and DEC(.) respectively. T3 checks if p has already
decided and if not, p decides the received value, updates v and
switches dec to true. T1 only handles VAL(.) messages coming
from lower (or the same) partitions. If the receiver process
is in a higher partition and has not decided yet, then it acts
exactly as just described for T3. If the sender of the message
(src) belongs to the same partition of p (Ai), p adds src to
known. Unless p has already decided, it always rebroadcasts
the VAL(.) messages it receives.

Finally, T2 is a safety mechanism that allows decision in
the case when all correct processes are in the same partition.
This case is detected using Σ⊥,z and known, which is p’s
estimation of the membership of partition Ai. When and if it
occurs, p just decides its initial value and switches dec to true.

To prevent a process from deciding multiple values, the
deciding lines (10, 17 and 21) need to be executed atomically.

A. Proof of Correctness of Algorithm 3

The proof strongly relies on the proof of the original
algorithm provided in [8]. Nevertheless, a few adaptations
and additional assumptions needed to be made.

Theorem 4. Algorithm 3 ensures the validity property.

Proof: The proof for validity is trivial and similar to the
one presented for the original algorithm in [8]. A process
decides either its own proposed value (line 17) or a value
proposed by another process (lines 10 and 21).

Theorem 5. Algorithm 3 ensures the termination property.

Proof: For any correct process p, let Rp be the set of
correct processes such that Rp = {q ∈ C | ∀τ ∈ T ,∃τp, τq >
τ : qr

τp
p ∩ qrτqq 6= ∅}. Note that p ∈ Rp, therefore Rp cannot

be empty. It follows from Assumption 3 that there is recurrent
connectivity within each set Rp.

If one correct process p decides, it will continuously
broadcast a DEC(.) message. All processes in Rp will
eventually receive this message and decide in turn. Hence,
it is sufficient to prove that one process in each Rp set decides.

For each correct process p, let mp = max{i | Ai∩Rp 6= ∅}.
We consider two cases:

Case 1: ∀i 6= mp, Ai ∩ Rp = ∅. Since there is recurrent
connectivity within Rp, all the processes in Amp ∩ Rp will
eventually receive each other’s V AL(.) messages. Hence, there
exists a time after which ∀q ∈ Amp

∩Rp, Rp = Amp
∩Rp ⊆

known. It then follows from the completeness property of
Σ⊥,z and the definition of Rp that each q ∈ Amp

∩ Rp will
eventually exit the repeat loop of task T2 and decide.

Case 2: ∃l 6= mp : Al ∩ Rp 6= ∅. Let r ∈ Al ∩ Rp and
q ∈ Amp

∩Rp. r sends a V AL(.) message which q receives at
some point thanks to recurrent connectivity within Rp. Since
mp > l, q decides upon reception of the message.

Theorem 6. Algorithm 3 ensures the agreement property.

Proof: In order to account for the difference between Σz
and Σ⊥,z , we need to take the convention that ∀i,⊥ /∈ Ai.
The proof for agreement in [8] relies only on the properties
of the chosen partitioning of processes (which is the same as
the one used for our algorithm), Σz , and the assumption that
k ≥ n− b n

z+1c. Most importantly, no assumption is made on
graph connectivity, which allows the original proof to hold for
our algorithm as well. The usage of known instead of Ai in
task T2 cannot possibly break the agreement property, because
we ensure by construction that known ⊆ Ai.

VIII. CONCLUSION

This paper provided an algorithm to solve the k-set
agreement problem in dynamic networks with asynchronous
communications, where both system membership and the
communication graph evolve over time.

To this end we extended class 5 (recurrent connectivity) of
TVG, defined a new failure detector Σ⊥,k, and provided two
implementations for the latter.

REFERENCES

[1] S. Chaudhuri, “More Choices Allow More Faults: Set Consensus
Problems in Totally Asynchronous Systems,” Inf. Comput., vol. 105,
no. 1, pp. 132–158, 1993.

[2] T. D. Chandra and S. Toueg, “Unreliable Failure Detectors for Reliable
Distributed Systems,” JACM, vol. 43, no. 2, pp. 225–267, 1996.

[3] C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, V. Hadzilacos,
P. Kouznetsov, and S. Toueg, “The weakest failure detectors to solve
certain fundamental problems in distributed computing,” in PODC’04,
2004, pp. 338–346.

[4] C. Delporte-Gallet, H. Fauconnier, and R. Guerraoui, “Tight failure
detection bounds on atomic object implementations,” JACM, vol. 57,
no. 4, 2010.

[5] F. Bonnet and M. Raynal, “Looking for the Weakest Failure Detector
for k-Set Agreement in Message-Passing Systems: Is Πk the End of
the Road?” in SSS, vol. 5873, 2009, pp. 149–164.

[6] T. Rieutord, L. Arantes, and P. Sens, “Détecteur de défaillances minimal
pour le consensus adapté aux réseaux inconnus,” in Algotel, 2015.

[7] A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro, “Time-
varying graphs and dynamic networks,” IJPEDS, vol. 27, no. 5, pp.
387–408, 2012.

[8] Z. Bouzid and C. Travers, “(anti-Ωx × Σz)-Based k-Set Agreement
Algorithms,” in OPODIS, vol. 6490, 2010, pp. 189–204.

[9] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence
of partial synchrony,” JACM, vol. 35, no. 2, pp. 288–323, 1988.

[10] C. Fetzer, “The Message Classification Model,” in PODC, 1998, pp.
153–162.

[11] P. Robinson and U. Schmid, “The Asynchronous Bounded-Cycle Model,”
in SSS, 2008, pp. 246–262.

[12] M. K. Aguilera, “A pleasant stroll through the land of infinitely many
creatures,” SIGACT News, vol. 35, no. 2, pp. 36–59, 2004.

[13] J. Cao, M. Raynal, C. Travers, and W. Wu, “The eventual leadership in
dynamic mobile networking environments,” in PRDC, 2007, pp. 123–
130.

[14] A. Ferreira, “Building a reference combinatorial model for MANETs,”
IEEE Network, vol. 18, no. 5, pp. 24–29, 2004.

[15] F. Kuhn, N. A. Lynch, and R. Oshman, “Distributed computation in
dynamic networks,” in STOC, 2010, pp. 513–522.

[16] M. Biely, P. Robinson, and U. Schmid, “Agreement in Directed Dynamic
Networks,” in SIROCCO, vol. 7355, 2012, pp. 73–84.

[17] F. Kuhn and R. Oshman, “Dynamic networks: models and algorithms,”
SIGACT News, vol. 42, no. 1, pp. 82–96, 2011.

[18] C. Gómez-Calzado, A. Lafuente, M. Larrea, and M. Raynal, “Fault-
Tolerant Leader Election in Mobile Dynamic Distributed Systems,” in
PRDC, 2013, pp. 78–87.

[19] F. Kuhn, Y. Moses, and R. Oshman, “Coordinated consensus in dynamic
networks,” in PODC, 2011, pp. 1–10.

[20] A. Benchi, P. Launay, and F. Guidec, “Solving consensus in opportunistic
networks,” in ICDCN, 2015, pp. 1:1–1:10.

[21] T. D. Chandra, V. Hadzilacos, and S. Toueg, “The Weakest Failure
Detector for Solving Consensus,” JACM, vol. 43, no. 4, pp. 685–722,
1996.

[22] L. Arantes, F. Greve, P. Sens, and V. Simon, “Eventual leader election
in evolving mobile networks,” in OPODIS, vol. 8304, 2013, pp. 23–37.

[23] A. Sealfon and A. Sotiraki, “Agreement in Partitioned Dynamic
Networks,” CoRR arXiv:1408.0574, 2014.

[24] M. Biely, P. Robinson, U. Schmid, M. Schwarz, and K. Winkler,
“Gracefully Degrading Consensus and k-Set Agreement in Directed
Dynamic Networks,” CoRR, vol. abs/1501.02716, 2015.

[25] A. Casteigts, P. Flocchini, B. Mans, and N. Santoro, “A Strict Hierarchy
of Dynamic Graphs for Shortest, Fastest, and Foremost Broadcast,”
CoRR, vol. abs/1210.3277, 2012.

[26] C. Gómez-Calzado, A. Casteigts, A. Lafuente, and M. Larrea, “A
Connectivity Model for Agreement in Dynamic Systems,” in Euro-Par,
2015.

[27] A. Mostéfaoui, E. Mourgaya, and M. Raynal, “Asynchronous implemen-
tation of failure detectors,” in DSN, 2003, pp. 351–360.

	Introduction
	Related Work
	Models and Definitions
	Process Model
	Communication Model
	The k-Set Agreement Problem

	A New Failure Detector: ,k
	New TVG Classes for reliable message transmission
	Algorithms for ,k in Dynamic Networks
	Message pattern
	A Message Expiration-Based Algorithm for ,k
	A Round-Based Algorithm for ,k
	Comparison between Algorithms 1 and 2
	Proof of Correctness of Algorithms 1 and 2
	Necessity of TVG classes 5-(,) and 5-(,)'

	An Algorithm for k-Set Agreement in Dynamic Networks Using ,z
	Proof of Correctness of Algorithm 3

	Conclusion
	References

