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Abstract—Tolerating Byzantine failures in the context of
cloud computing is costly. Traditional BFT protocols induce a
fixed degree of replication for computations and are therefore
wasteful. This paper explores probabilistic Byzantine tolerance,
in which computation tasks are replicated on dynamic repli-
cation sets whose size is determined based on ensuring proba-
bilistic thresholds of correctness. The probabilistic assessment
of a trustworthy output by selecting reputable nodes allows a
significant reduction in the number of nodes involved in each
computation task. The paper further studies several reputation
management policies, including the one used by BOINC as well
as a couple of novel ones, in terms of their impact of the possible
damage inflicted on the system by various Byzantine behavior
strategies, and reports some encouraging insights.
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I. INTRODUCTION

A. Background

Heavy computational tasks are often performed these
days in cloud computing environments by splitting the
computation into multiple tasks using platforms such as
Apache Hadoop [1] and Spark [2], or using volunteer
computing platforms such as BOINC [3]. Commonly, these
platforms are structured around a scheduler whose role is
to disseminate the computation tasks into available compute
nodes, who are responsible for computing the results of these
tasks and returning their results. Obviously, this involves an
implicit assumption that the scheduling and routing costs
of tasks to compute nodes is considerably cheaper than
calculating them, as otherwise it would not make sense to do
so. An illustration of such a typical computing environment
appears in Figure 1.

When trying to make such systems resilient to Byzantine
behavior, one is faced with the large replication costs of
masking Byzantine failures. Specifically, under the assump-
tion that there could be up to f Byzantine nodes in the
system, each computation task must be executed by 3f + 1
nodes in naive application of traditional Byzantine fault tol-
erance approaches [4], [5]. More sophisticated mechanisms
that distinguish between execution and validation require
between f + 1 [6] to 2f + 1 [7], [8]. As an example, if 10
nodes might be Byzantine, this means that each computation

task needs to be executed on 11 or 21 nodes, as the case
may be.

The principle of elasticity in cloud computing is to adapt
resource provisioning as a means to optimize the trade-
off between cost and performance. Conversely, tolerating
Byzantine failures induces unavoidable costs. Traditional
BFT protocols require making strong assumptions on the
number of Byzantine nodes that exist in the system assuming
for instance some known and fixed bound f on the number
of Byzantine nodes.

In this paper, we extend the direction proposed in [9]
and explore an alternative design path to the above: instead
of fixing f arbitrarily, we replicate computations so that
the probability of obtaining a correct result is satisfactory
for the application. By trading the provable correctness of
each computation step for a probabilistic one, we reduce the
amount of resources required by the system. Specifically,
we assume that each node j has a given probability pj of
acting in a Byzantine manner during an arbitrary calculation
of a computation task. We define the reputation rj of j as
1 − pj . In addition, rather than requiring absolute masking
of Byzantine failures, we only require obtaining a correct
answer to each computation task with probability above a
given threshold. Consequently, each computation task needs
to be replicated only over the minimal number of compute
nodes that will ensure meeting this probabilistic threshold.

As a motivating example, when a computation is sent to a
group of compute nodes S, if only part of them generate an
incorrect answer, the scheduler can send the same computa-
tion task to additional nodes until the probability of obtain-
ing the correct result is above the given threshold. Otherwise,
if all replies are the same, only if all the nodes have chosen to
return a false answer it will go undetected by the scheduler.
In case the probabilities of acting in a Byzantine manner
are independent and identically distributed (IID) and equal
to 0.1, then we can ensure that such an undetected Byzantine
failure will occur with a probability of at most 0.0001 by
replicating the computation on 4 nodes only. Hence, there
is a great potential for reduction of resources compared
to traditional approaches, propelling the exploration of this
approach to Byzantine fault tolerance.
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Figure 1. Typical cloud computing environments

There are several scenarios where treating Byzantine be-
havior as a probabilistic event rather than a binary property
of the nodes makes sense. One such scenario is when
Byzantine behavior is a result of a heisenbug rather than
an intrusion. Even when Byzantine behavior is caused by
malice, if the scheduler picks nodes for replicated executions
in a random manner, and assuming such nodes cannot
control this choice, we can model the probability of one
of these nodes being Byzantine as a probabilistic event.
Finally, in order to avoid detection and in order to conserve
resources, an intruder or attacker might prefer to return bad
results only occasionally. Specific examples of the above are
discussed later in this paper.

B. Contributions

In this paper, we explore the impact of probabilistic
reliability, coupled with a reputation management mecha-
nism, on mitigating the ability of Byzantine behavior to
disrupt the computation in a cloud computing environment.
In particular, we analyze the probability that a given reply
is the correct answer for a given compute task when the
task has been sent to a replication set of compute nodes
with an assumed individual reputation level. Based on this
model, we derive a corresponding scheduler’s algorithm
that greedily contacts minimal sets of compute nodes until
obtaining enough confidence in a given value.

Next, we use our model to explore the ability of Byzantine
behavior to damage the system under two axes. First, trying
to cause the system to waste as much resources as possible.
This is by deliberately returning false answers, which forces
the scheduler to allocate additional nodes to the same
compute task. The main defence of the scheduler in this
case is its reputation management scheme, in which it can
dynamically adjust the reputation of each compute node
based on whether this node returned a value that was deemed
to be the correct one or not. We explore three such reputation
management strategies, namely the one used by BOINC [3]
and two novel ones introduced by us. We show that all three
schemes serve as an effective tool in limiting the influence
of Byzantine behavior on the resources consumed by the

system over time. It is worth pointing out that our original
strategies do better than the one used in BOINC.

Last, the other direction of Byzantine behavior we explore
is trying to hurt the correctness of the computation result
by returning false answers. Yet, in order to avoid detection
and therefore to increase the likelihood of success, in this
attack the Byzantine nodes only return bad results when
all compute nodes chosen for the replication set of the
same compute task are Byzantine. Here, we show that when
the scheduler picks compute nodes in a uniform random
independent manner, Byzantine nodes must contribute to a
very large number of useful computation for each successful
attempt to return a false value. Further, we identify a large
and an important family of problems for which even such
occasional success in returning a false undetected value
cannot prevent the system from obtaining an overall correct
result. This means that for these problems, Byzantine nodes
help the system much more than they hurt it, so their overall
impact on the system is positive!

In summary, our contribution is a study of the impact of
reputation management on the potential damage caused by
Byzantine behavior in cloud computing environments when
the goal is probabilistic reliability. We provide a formal
model for this analysis, and use it to explore the ability
of various reputation management systems in mitigating the
damage caused by Byzantine behavior such as the extra
resources the system is forced to consume and the ability
to drive it into computing wrong results. We hope that our
encouraging findings will serve as a motivation for further
exploration of this direction.

C. Paper Roadmap

The rest of this paper is organized as follows: We survey
related work in Section II. The model assumptions and goals
are specified in Section III. The formal analysis is presented
in Section IV including the resulting scheduler’s algorithm.
We explore various reputation management strategies, in-
cluding the one used by BOINC and two novel ones in
Section V as well as the cost to the Byzantine processes
when trying to hide their behavior in Section VI. Finally,
we conclude with a discussion in Section VII.

II. RELATED WORK

Probabilistic consensus protocols ensure correct execution
with probabilistic termination [10]–[13]. Alternatively, they
can be stopped after a finite amount of execution rounds in
which case their termination is guaranteed, but their safety
becomes probabilistic. Several papers study the trade-off
between termination probability and total step complexity
of randomized consensus algorithms [14]–[16].

At any event, these protocols whose aim is to ensure
consensus among the nodes despite Byzantine failures re-
quire at least 3f + 1 nodes (and some even more than that)
[17], [18]. Notice that the typical definition of Byzantine



tolerant consensus is that if all correct nodes propose the
same value, then this value has to be chosen. Hence, in
scientific computing in which the result of each computation
is deterministic based on the input, as in our model, these
protocols can indeed be used to completely mask Byzantine
occurrence, yet at a cost of high resource utilization.

Non-probabilistic BFT protocols always ensure safety,
yet their termination depends on making synchrony timing
assumptions [4], [19], [20]. They also require that the
number of nodes participating would be at least 3f + 1.

The idea of separating ordering from execution was ex-
plored in [7]. It was shown that given a trusted ordering
entity, e.g., one that is created using a traditional BFT
protocol, specific operations can be replicated only 2f + 1
times.

In the SETI@HOME project [21], jobs are replicated
by default on 2 machines. The scheduler then compares
the results and if they do not match, it sends the job
to additional machines until enough replies agree (2 by
default). In the more advanced BOINC project [3], there is
also an adaptive replication scheme whose goal is to reduce
the computation overhead. When enabled, BOINC maintains
an estimate E(H) of host H’s recent error rate according
to the following scheme: E(H) is initialized to 0.1. It is
multiplied by 0.95 when H reports a correct (replicated)
result. It is incremented by 0.1 when H reports an incorrect
(replicated) result. Notice that it takes a long time to earn a
good reputation and a short time to lose it.

The adaptive replication policy then works as described
below. When the scheduler needs to assign a job to a host,
the scheduler decides whether to trust the host according
to the following rule: Given a trust threshold parameter
A, currently hard-coded to 0.05, if E(H) > A, do not
trust the host. Otherwise, trust the host with probability
1−
√
E(H)/A. If the scheduler trusts the host, it prefers to

send it non replicated jobs. Otherwise, the scheduler sends
replicated jobs to it. We applied, as in SETI@HOME and
BOINC, these mechanisms and their associated magic num-
bers in our work. However, we seek to systematically and
rigorously study the impact of a given choice of replication
strategy on the confidence that the scheduler can obtain in
the results.

A closely related work to ours is [22], where the au-
thors propose a reputation-based scheduler. Similarly to our
approach, each node has a probability of being Byzantine
and tasks are replicated over a set of nodes that ensure a
probability of returning a correct response, which should be
above a threshold. However, in order to determine the size
and composition of such a group, the scheduler relies not
only on the reputation of the nodes but also on the majority-
based voting criterion of verification. In our approach, on
the other hand, tasks are just replicated over the minimum
number of nodes that meet the threshold. Moreover, in that
work, the probability that a majority of nodes return the same

wrong answer is neglected. In our case, the probability that
all nodes return the same wrong answer must be below a
threshold.

In [6], a trusted scheduler routes computation tasks to
f + 1 nodes. It is assumed that the computations take
a long time to compute, and therefore the replicas take
periodic checkpoints of their state. A separate set of auditors
occasionally verify that all f + 1 checkpoints are consis-
tent using a consensus protocol, and if not, they rollback
the computation to a previously consistent checkpoint and
restart it on different nodes. Such a strategy is also used
to detect which nodes were Byzantine and eliminate them
from the pool of compute nodes. As we take a probabilistic
correctness approach, we can replicate the computation on
fewer nodes (for moderate and large values of f ).

A similar idea under the name of spot-checking was
discussed in [23]. In that work, the results returned from
compute nodes of a volunteer computing platform are
sporadically verified by trusted spot-checkers. Whenever a
mismatch is revealed, the nodes that returned false answers
are blacklisted and never chosen again.

The closest work to ours is [9], who define the concept
of iterative redundancy, which improves on the concept
of progressive redundancy proposed in [24]. In progressive
redundancy, when trying to obtain a threshold of t agreeing
results, a compute task is sent to t compute nodes. If all
replies are the same, then the single result is deemed correct.
Otherwise, when there are multiple results, the compute task
is sent to additional t − l nodes until one result obtains
the required threshold of support, where l is the number of
occurrences of the most common value returned. In contrast
to our approach, the goal of iterative redundancy is that
one value will have at least t more supporters than any
other value. It also starts by sending the compute task to
t compute nodes and increasing the number of contacted
nodes iteratively until the threshold is met. Yet, in iterative
redundancy, the threshold t is determined based on the
probabilistic reliability that such an answer will be correct
given the assumed average reliability of nodes in the system.

There are several major differences between the work
in [9] and ours. First, our model allows for various compute
nodes to have different levels of reliability (reputation [25],
[26]). Second, we explore several strategies of reputation
management and the corresponding malicious behavior that
Byzantine nodes may employ against them. In particular,
we investigate the performance of the reputation manage-
ment strategy of the popular BOINC system in the face
of Byzantine compute nodes as well as the performance
penalty for Byzantine compute nodes who try to hide and
only return (the same) wrong answer when all chosen nodes
are Byzantine. Let us also note that the scheduler algorithm
in [9] is similar to ours, but specified in terms of their
assumptions, analysis, and goals.



III. SYSTEM AND THREAT MODELS

We consider a typical cloud IaaS architecture, i.e., one
in which computing tasks continuously arrive and need to
be scheduled on a large pool of available compute nodes
(physical or VMs), similar to the one depicted in Figure 1.
To that end, we assume a trusted node that acts as a scheduler
for these computing tasks. In particular, the scheduler is
assumed to be fault-tolerant, always available, and always
obey its prescribed protocol.

The communication in the system is performed by sending
and receiving messages over a communication network. The
network is assumed to be authenticated and reliable, with a
bounded communication latency. That is, a message is only
received if it was indeed sent by some node, and the receiver
always knows who the true sender of a message is.

Unlike the scheduler, the compute nodes may occasionally
act in a Byzantine manner. That is, while executing a com-
puting task, each compute node j may return an incorrect
answer (or not answer at all) with probability pj . We refer to
the probability rj = 1−pj that j returns a correct answer as
the reputation of j. Notice that rj’s may change overtime.

Based on the above, whenever a scheduler node receives
a compute task, it sends it to multiple compute nodes. When
the replies arrive, the scheduler compares them. If they all
agree, then the scheduler knows that this is the correct
answer with a certainty that depends on the reputations of
the nodes chosen. Otherwise, if some replies do not return
within the deadline, the scheduler knows that these nodes are
faulty and sends the same compute task to additional nodes.
Similarly, if the replies do not match, then the scheduler
knows that at least some of the nodes acted in a Byzantine
manner and may send the compute task to additional nodes
until it has enough probabilistic confidence in one of the
replies.

We further assume that each compute task i has a nor-
malized compute time Ti and that each compute node j has
a known computing speed Cj . Hence, when there are no
failures, a task i that is scheduled to be computed on a node
j completes its execution on j within time Ti/Cj .

The number of nodes needed to execute each compute
task in order to gain a certain confidence level in the reply
is the main topic of this paper.

IV. PROBABILISTIC BYZANTINE TOLERANCE BASED ON
REPUTATION

In this section, unless specified otherwise, we assume that
failure probabilities are independent.

A. Basic Formal Analysis

When the scheduler sends a compute task to a set S of
compute nodes, the probability that all of them are correct
is given by

PC =
∏
j∈S

ri (1)

Similarly, the probability that all are Byzantine is

PB =
∏
j∈S

(1− rj) (2)

Further, the probability that a specific subset S1 of S is
Byzantine and all others are correct is

PSB =
∏
j∈S1

(1− rj) ·
∏

j∈(S\S1)

rj (3)

while the probability that all nodes in S1 are correct and
all others are Byzantine is

PSC =
∏
j∈S1

rj ·
∏

j∈(S\S1)

(1− rj) (4)

In particular, the probability of having at least one correct
node is 1 − PB and the probability of having at least one
Byzantine node is 1−PC . The probability of having exactly
i correct answers is∑

Si⊂S

∏
j∈Si

rj ·
∏

j∈(S\Si)

(1− rj),

where Si denotes subsets of S of size i. In the particular
case in which all compute nodes have identical reputation
and uniform choosing probability, we get(

|S|
i

)
(rj)

i · (1− rj)n−i

where n = |S|. The goal of the scheduler is to send the task
to enough nodes such that the chances of not detecting a
false answer is below a given threshold, denoted TB . The
latter may occur only if all the chosen nodes are Byzantine
since, in this case, they may all return the same false answer.
Hence, S needs to be chosen such that PB is bounded by the
required threshold TB . For example, if pj = 0.1 (rj = 0.9)
for each compute node j and the threshold is 0.0001, then S
should include at least 4 compute nodes. Notice that in this
case, the a-priori chance of obtaining a correct answer from
all nodes in S is 0.94 = 0.6561. Further, with probability
4 · 0.93 · 0.1 = 0.2916, there are exactly 3 correct answers,
etc.

Similarly, the probability that the correct answer will
be returned by at least i nodes is the summation of the
probabilities of having k correct answers for all i ≤ k ≤ n.
In the above example, the probability of having at least 3
correct replies is therefore 0.6561 + 0.2916 = 0.9477, etc.

B. When All Replies are the Same

Once the results are returned by the chosen nodes, the
scheduler can compute the following probabilities in order
to decide whether to accept any of the values or to submit
the compute task to additional compute nodes in order
to increase its trust in the correctness of the reply. For
example, suppose that all replies included the same value
v. This means that either all compute nodes were correct



or all compute nodes were Byzantine. Clearly, the situation
in which all nodes are Byzantine is the worst, since the
scheduler cannot detect that the result is incorrect.

We define by α the probability that all replies are incorrect
and by β the probability that all replies are the same. Hence,
we are interested in the probability P (α|β) = P (β|α)P (α)

P (β)
(from Bayes theorem). Since Byzantine nodes can do what-
ever they want, we have no expression for P (β|α), but
it can be upper bounded by 1. Also, P (α) = PB while
PC ≤ P (β) ≤ (PC+PB) (again, it is not equal to PC+PB
since the Byzantine nodes do not necessarily return the same
answer even when all selected nodes are Byzantine). This
gives a bound on P (α|β):

P (α|β) < PB
PC
≤ TB (5)

Using the numbers and assumptions of the example above,
we get that the probability that all replies are incorrect is still
close to 0.0001.

C. Multiple Answers

If the scheduler receives more than one answer, then
obviously at most one answer is correct and any other answer
was generated by Byzantine nodes. Suppose one of the
replies is v1 and denote by S1 the set of compute nodes that
returned v1. The a-priori probability that S1 includes correct
nodes (and therefore v1 is correct) and all other nodes are
Byzantine is PSC (formula 4). Denote by γ the event in
which all nodes in S1 are correct and all others acted in a
Byzantine manner. Denote by δ the event in which either all
nodes in S1 are correct and all other nodes are Byzantine or
all nodes in S1 are Byzantine (and we do not know anything
about the other nodes). The probability that v1 is the correct
value is the same as the probability that S1 are correct and is
expressed by P (γ|δ) = P (δ|γ)P (γ)

P (δ) . Obviously, P (δ|γ) = 1

and P (γ) = PSC . Further,

P (δ) =
∏
j∈S1

(1− rj) + PSC

and therefore

P (γ|δ) = PSC∏
j∈S1

(1− rj) + PSC
(6)

Hence, in this scenario, the scheduler needs to send the
compute task to additional nodes until one value meets the
correctness threshold.

Let us note that the chance of a split vote, in which there
are two answers each having a similar number of supports,
is very low and becomes negligible as the size of the set of
compute nodes performing the compute task is increased.
For example, with 4 nodes as above, the chance of an
equally split vote is only 0.0486 and rapidly diminishes with
additional nodes.

If we consider b Byzantine nodes with the same reputation
rB and that every correct node has the same reputation r,
the probability that P (γ|δ) is above a correctness threshold
TC is given by the following formula:

r|S1|(1− rB)b

(1− r)|S1| + r|S1|(1− rB)b
> TC .

We can deduce that

|S1| >
log(TC/(1− TC))− b · log(1− rB)

log(r/(1− r))
(7)

Note that TC = 1 − TB . Finally, it is possible that
some replies did not arrive at all. Since we assume failure
independence in this section, the scheduler needs to send the
compute task to additional nodes until enough nodes return
an answer whose probability of being correct is above the
given threshold.

D. The Scheduler’s Algorithm

In this section, we assume that the scheduler’s main
goal is to conserve resources in expectation while obtaining
the minimal thresholds for correct values. This leads to a
scheduling algorithm as listed in Algorithm 1, executed for
each compute task. The algorithm takes as input a task
CT and the threshold value TB . Specifically, the scheduler
selects a minimal set of nodes R1 for which if all of them
return the same reply, then the probability that it is the
incorrect result is below the TB threshold. To that end, it
can use the formula (5) for P (α|β), by setting S = R1 for
PC and PB in formulae (1) and (2) respectively.

Let us denote by M1 the set of nodes in R1 that returned
the value v that was most popular among the values returned
by nodes in R1. If all results are the same (M1 = R1), then
v is chosen (lines 8 and 9). Otherwise, the scheduler finds a
second disjoint subset R2 such that if all nodes in R2 return
the same value as the one returned by nodes in M1, then
the probability that this value is the correct one is above
the required correctness threshold, TC = 1 − TB (line 12).
To that end, it uses the formula (6) for computing P (γ|δ),
setting S = R1 ∪R2 and S1 =M1 ∪R2.

If now all nodes in R2 return the same result as the ones
in M1, then this value is chosen and the protocol terminates
(lines 10 and 11). Otherwise, we define M2 to be the set of
nodes from R1 ∪R2 (line 4) that returned the most popular
value and the scheduler searches for a set R3 such that if all
its members return the same result as the ones in M2, then
this value will be correct with probability above the required
threshold TC , etc.

Notice that while the for loop in the scheduler’s algorithm
is not bounded, in practice, it terminates with high proba-
bility. For preventing it from terminating, different values
should be returned often enough such that the correctness
threshold TC is never reached, which would mean that con-
tinuously nodes need to act in a Byzantine fashion. However,



Algorithm 1: Scheduler’s Algorithm
input : Compute task CT; Threshold TB

1 R← ∅;
2 Choose a minimal set of nodes R1 s.t. cond1(R1,TB);
3 for i← 1 to ∞ do
4 Set R← R ∪Ri;
5 Send CT to all members of Ri;
6 Wait for replies from Ri;
7 Let v be a most frequent value in all replies received and let Mi

be the set of all nodes that returned it;
8 if (i == 1) and (Mi == R) then
9 return v;

10 if cond2(R, Mi, T) then
11 return v;

12 Choose a minimal set Ri+1 s.t. Ri+1 ∩R == ∅ and
cond2(R ∪Ri+1, Mi ∪Ri+1, TB);

13 cond1(set S, threshold th)
14 calculate PB and PC over S according to formulae (2) and (1);
15 return (PB/PC ≤ th);

16 cond2(set S, set S1, threshold th)
17 calculate P (γ|δ) over S and S1 according to formula (6);
18 return (P (γ|δ) > (1− th));
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Figure 2. Expected convergence time of scheduler’s algorithm (in number
of iterations required for convergence). The algorithm quickly converges
when the reputation of nodes increases.

the probability of not terminating diminishes exponentially
with the size of the set of contacted nodes (R in the
algorithm).

Figure 2 shows the average number of steps of the
scheduler’s algorithm when the threshold TB varies. The
fraction of Byzantine nodes in the system is fixed to 15%
and all the nodes have the same reputation r. If the latter is
high (r = 0.99), then the algorithm quickly converges in just
1.345 steps, i.e, within a very small number of iterations.

V. ON THE COST OF BYZANTINE BEHAVIOR

A. Impact of reputation strategies

We first study the impact of reputation update policies on
the correctness threshold TC and the size of required same
value set, S1.
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Figure 3. Reputation strategies evolution. BOINC and asymmetric punish
nodes severely, while asymmetric and symmetric better reward good
behavior.

Reputation strategies: Considering formula (7), the
chosen strategy to increase and decrease nodes’ reputation
has an impact on the size of S1. Thus, for evaluation sake,
we consider the following three strategies:
• The BOINC strategy presented in Section II where

reputations are computed as 1 - error rate.
• The symmetrical strategy, where the reputation of a

node is increased (respectively, decreased) by X% each
time it returns a correct (respectively, wrong) value.

• The asymmetrical strategy, where Byzantine nodes are
more punished than the others: the reputation of a node
is increased by X% each time it returns a correct value
and is decreased by 2X% when it returns a wrong value.

The threshold TC is equal to 0.97 and in order to avoid
that Byzantine nodes’ reputation slows down too fast, we
consider that these nodes return a bad value with probability
p = 0.5. For the symmetrical and asymmetrical strategies,
X was set to 20%.

Exploiting the three described update reputation strategies,
Figure 3 gives the evaluation of the reputation of both the
correct and Byzantine nodes at each time step. BOINC
punishes compute nodes for Byzantine behavior severely and
rewards their trust for good behaviour very slowly. On the
other hand, the reputation of correct nodes in BOINC grows
much slower than in the symmetric and asymmetric strategy.
Ultimately, the goal of the reputation system is to obtain
efficient resource utilization, which is explored in the next
section.

Cost of one Byzantine behavior: We first consider only
one Byzantine node (b = 1). Figure 4 shows the evolution of
the size of S1, i.e., as each strategy updates differently the
reputation of correct and Byzantine nodes, we have evaluated
how the size of S1 decreases over the time.

We can observe in the figure that, as expected, strategies
have different impact in S1’s size. BOINC, which strongly
punishes the Byzantine node, is less efficient because the
reputation of correct nodes increases slowly. However, in the
asymmetric strategy, the size converges faster to small values
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than in the other strategies since the Byzantine node is more
severely punished when it returns a wrong value, compared
to the other two strategies. In summary, the asymmetric
strategy converges to the smallest set size faster due to its
combined harsh punishment for Byzantine behavior with
favorable rewards for good behavior. It is, therefore, the best
strategy.

We denote a “smart” Byzantine node, the one which,
aiming at keeping a better reputation, does not always return
a wrong value. Hence, in order to evaluate the impact of a
“smart” Byzantine node on the asymmetric strategy, the best
one, we have also measured the time for S1 to be of size
1, which characterizes the convergence time, i.e., the period
during which the Byzantine node can slow down the system.
After that, the reputation value of the Byzantine node will
be too small to have any impact on the system. To this end,
we have varied the probability p of the Byzantine node of
returning a wrong value and consider 3 correctness threshold
values. The results are given in Figure 5.
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Figure 6. Size of S1 for TC = 0.97 when b varies. When the system
is stable, the adding of several Byzantine nodes increases the number of
nodes needed to be contacted.
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Figure 7. Overhead according to the fraction of Byzantine nodes. When
the proportion of Byzantine nodes is high, the probability of having wrong
responses in larger sets increases, inducing a higher overhead.

With a reliable threshold of TC = 0.97, p has a high
impact on the convergence time. For instance, a “smart”
Byzantine node which only returns one wrong value within
10 times (p = 0.1), increases 5 times the convergence time
compared to a Byzantine node which always returns a wrong
value (p = 1). On the other hand, for greater threshold value,
p has a lower impact. For instance, if we set TC = 0.999, the
same “smart” Byzantine node only doubles the convergence
time whereas with TC = 0.9999 (not illustrated in the figure)
the smart node only increases by 10% the convergence time.

Cost of several Byzantine behaviors: Figure 6 shows
the size of S1 when the number of Byzantine nodes varies
(x-axis) for a threshold TC = 0.97 in the asymmetrical
strategy. Considering a stable system (|S1| = 1) where
r = 0.99856 and rb = 0.9, the number of Byzantine nodes
is increased. Each Byzantine node arrives with a reputation
rb = 0.9 and we observe an increase by one of S1 every
3 Byzantine nodes. We can thus conclude that the initial
reputation value of nodes has a direct impact on the increase
of S1 size. For instance, if we consider an initial reputation
value equal to 0.7, the size of S1 is increased every 5
Byzantine nodes insertions.



B. Additional cost of Byzantine nodes

We now express the cost to obtain a given number of
correct responses. We denote Nact(s) the number of nodes
necessary to be contacted in order to obtain s responses from
correct nodes. Nact(s) is at least equal to s plus possibly
additional nodes, if some of the first s responses concern
Byzantine nodes. Considering fb as the fraction of Byzantine
nodes of the system, the number of responses returned by
Byzantine nodes, NByz , in a set of size s, is given by:

NByz(s) =

s∑
i=1

i.

(
s

i

)
.f ib

Then, Nact for a set of size s is given by the following
formula:

Nact(s) = s+Nact(bNByz(s)c) (8)

Figure 7 shows the percentage of overhead, i.e., the
cost of contacting additional nodes (=(Nact(s) − s)/s),
when fb varies for different sizes of response set s in the
asynchronous strategy. An overhead of 50% means that, in
average, 1.5s nodes must be contacted in order to obtain s
values returned by correct nodes.

C. The impact of churn

Cloud or volunteer computing environments are subject
to frequent variations of their available resources due to the
unanticipated arrival and departure of nodes. Such variations,
called churn, may have a strong impact in the evaluation of
the size of S1 since new correct (resp., Byzantine) nodes
which arrive in the system can have an initial reputation
value underestimated (resp., overestimated), when compared
to the reputation of those nodes which are already in
the system. We have thus evaluated the impact of nodes
churn on the size of S1 by considering the asymmetrical
strategy. We set the threshold TC to 0.97 and the number of
Byzantine nodes b to 5. Churn was simulated by increasing
the proportion of new nodes that arrive in the system at each
time. Their initial reputation was fixed to 0.9. The results are
given in figures 8.

We can observe that even a low churn of 10% (churn =
0.1 in the figures) has a high impact in the convergence time:
the time to reach a set of size 1 is 1.625 times longer than
with no churn. For high levels of churn (churn ≥ 0.3), the
convergence time increases drastically. Figure 8(b) shows
the convergence time in relation to the churn rate.

VI. ON THE COST OF HIDING BYZANTINE BEHAVIOR

Byzantine nodes whose main goal is to hurt the correct-
ness of the computation and avoid the discovery of their
behavior as much as possible, may act as follows: Whenever
all compute nodes chosen for a given compute task are
Byzantine, then they all collaborate to return the same false
value. Otherwise, they all return the correct result for the
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Figure 8. Impact of churn with TC = 0.97. As expected, high churn
delays convergence since the system has less chance to learn and adjust
the reputation of nodes.

compute task. Note that here we move to a model in which
Byzantine behavior is deterministic and dependant on the
choice of compute node. Since in this model an incorrect
answer is never detected, the reputation of all nodes is
always the same.

We analyze the case in which the number of Byzantine
nodes is a fraction of all other nodes, and the scheduler
picks compute nodes uniformly at random and independently
for each compute task. In this case, when the fraction of
Byzantine nodes is fb, where 0 ≤ fb ≤ 1, whenever the
scheduler chooses a set S of compute nodes for a given task,
the probability that all of them will be Byzantine is f |S|b .
Hence, in a long running system, in expectation, once every
1

f
|S|
b

all nodes will be Byzantine, returning an undetectable
false answer. In all other times, a correct answer will be
returned.

Given the way the scheduler chooses nodes, each Byzan-
tine node participates in 1

f
|S|
b

computations for each time
in which all other nodes are also Byzantine. At this time,
all of them can return a bogus answer without computing
the real task, and thus they do not waste any computational
resources. However, in the other times, Byzantine nodes
need to compute the task in order to know the correct answer
returned by correct nodes. Assume that all computation tasks



consume similar resources denoted by C. The amount of
computation resources that each Byzantine node consumes
in order to avert a single computation result is

(
1

f
|S|
b

− 1) · C.

Another way of looking at this problem is that, with such
a hiding strategy, Byzantine nodes actually contribute with
a significant amount of useful work for valid computations.
That is, for each compute task that they sabotage, they do
useful work for ( 1

f
|S|
b

−1) computations. For example, in the

case that fb is 0.2 and |S| = 4, they contribute to 624 valid
computations for each disrupted one, which suggests that
this strategy is highly inefficient for the Byzantine nodes.

In fact, for a large family of important (iterative) prob-
lems, we show below that using the hiding strategy, the
worst damage Byzantine nodes can do is to slightly delay
the computation. However, while doing so, they in fact spent
more resources with useful work for the computation than
the amount of extra resources necessary to correct their
wrong-doing.

Specifically, the idea is that in many iterative computing
problems, there is a bound on the difference between the
partial result obtained in a given iteration and the partial
result that is expected in the following iteration. Further, if
the convergence is guaranteed regardless of the exact value
with which each iteration started, that is, the iterative method
is globally convergent, then the worst damage that such
coordinated Byzantine behavior may causes is a setback
of at most a single (or very few) iterations. In particular,
most iterative methods for systems of linear equations are
globally converging. In case the method is only locally
convergent, such as Newton’s method, small deviations made
by Byzantine nodes will typically not prevent convergence
whenever the initial guess enabled convergence.

On the other hand, large deviations can usually be de-
tected and ruled out as they noticeably diverge from the
values expected by the rate of convergence of the iterative
method, which again prevents hiding Byzantine nodes from
employing them. In the above example, this means that, for
each iteration it disrupts, a Byzantine node contributes to
624 valid iterations and, therefore, its damage is at most the
equivalent of executing a small number of valid iterations. In
other words, in the above examples, when nodes are selected
uniformly at random by the scheduler for each iteration
independently, hiding Byzantine nodes contribute to much
more useful work than the damage they do and, even if they
can slightly prolong the computation process, they cannot
halt it.

VII. CONCLUSION

The main contribution of this paper is a study of prob-
abilistic reliability in Byzantine cloud computing environ-
ments. In particular, we have found promising evidence that

reputation-based replication substantially helps in mitigating
Byzantine behaviors and its impact on the correctness of the
computation in such environments.

Assuming an environment where most compute nodes
are trustworthy, the approach is simple. It replicates task
executions on a varying number of nodes to ensure that a
consistent answer from all nodes has a significant probability
of being correct. When no returned value obtains enough
support to be deemed correct, additional nodes are contacted.
Yet, in order to conserve resources, if all these additional
nodes return the most popular returned value up to that point
then the probability that this value is the correct one is above
the required correctness threshold.

Iterations of this process converge fast towards a trust-
worthy answer, with the additional advantage that they
detect incorrect nodes with a significant degree of accuracy
and actively discourage malicious behaviors. Nodes with
consistently incorrect responses will quickly get discarded.
Nodes that respond correctly most of the time in order to
acquire a good reputation before injecting wrong data incur
a very high effort/reward ratio, and end up actually taking a
positive part in the system’s computation. Further, we have
also identified important sets of problems in which such
nodes cannot disrupt the system from eventually reaching
a correct answer. The worst damage they can do is a slight
slowdown and, in fact, they end up helping the system more
than disrupting it.

We have also investigated the effectiveness of multiple
reputation management strategies, including the one em-
ployed by BOINC as well as a couple of novel ones. We
found that all three are effective, but our new method,
nicknamed asymmetric, was the best in terms of its impact
on the consumed resources and convergence times.

Given the encouraging results of this work, we plan to
extend this direction by taking the computational power of
nodes into account when forming the replication sets. The
goal will be to identify beneficial trade-offs between the
total computation time and the trustworthiness of the result.
More precisely, the scheduler algorithm consists of multiple
iterations that end when some value obtains the reliability
threshold. Choosing very fast nodes can reduce the time to
compute each iteration. However, if these nodes are less
reliable, then additional iterations may be needed. Hence,
when the goal is the expected compute time until a reliable
answer is obtained, one should look for an optimal tradeoff
point between the positive impact of high compute power
and the negative influence of lower reliability. We should
point out that in cloud computing environment, usually, the
higher the compute power of a node, the higher the cost of
reserving it. Thus, there exists also a tradeoff between cost
and reliability to be exploited.
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