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Abstract. Distributed R-trees (DR-trees) are appealing infrastructures for im-
plementing range queries, content based filtering or k-NN structures since they
inherit the features of R-trees such as logarithmic height,bounded number of
neighbors and balanced shape. Interestingly, the mapping between the DR-tree
logical nodes and the physical nodes has not yet received sufficient attention. In
previous works, this mapping was naively defined either by the order physical
nodes join/leave the system or by their semantics. Therefore, an important gap in
terms of load and latency can be observed while comparing thetheoretical work
and the simulation/experimental results. This gap is partially due to the place-
ment of virtual nodes. A naive placement that totally ignores the heterogeneity
of the network may generate an unbalanced load of the physical system. In order
to improve the overall system performances, this paper proposes mechanisms for
placement and dynamic migration of virtual nodes that balances the load of the
networkwithout modifying the DR-tree virtual structure. That is, we reducethe
gap between the theoretical results and the practical ones by injecting (at the mid-
dleware level) placement and migration strategies for virtual nodes that directly
exploit the physical characteristics of the network. Extensive simulation results
show that significant performance gain can be obtained with our mechanisms.
Moreover, due to its generality, our approach can be easily extended to other
overlays or P2P applications (e.g. multi-layer overlays orefficient P2P stream-
ing).

1 Introduction

From the very beginning of the theoretical study of P2P systems, one of the topics that
received a tremendous attention is the way these systems aremapped to the real (physi-
cal) network. Even early DHT-based systems such as Pastry [19] or CAN [18] included
in their design the notion of geographical locality. Later,middlewares designed on top
of DHT-based or DHT-free P2P systems exploit various degrees of similarity between
peers following criteria such as the geographical vicinityor the semantic of their inter-
ests. One of the most relevant example in that sense are content-based publish/subscribe
systems. These communication primitives completely decouple the source of events
(a.k.a. publishers) from their users (a.k.a. subscribers). Their efficient implementations
in P2P settings are optimized with respect to a broad class ofmetrics such as latency
or load balancing. To this end the similarity between different subscribers is fully ex-
ploited and various logical infrastructures have been recently proposed. Most exploited
architectures are tree-based due to their innate adaptability to easy filter. In the de-
sign of tree-based publish/subscribe there is a trade-off between the maintenance of an
optimized tree infrastructure following various criteria(e.g. bounded degree, max/min



number of internal nodes or leaves) and the placement of logical nodes on physical
machines in order to optimize the overall system load or latency.

Our paper follows this research direction by addressing theplacement of virtual
nodes in tree-filtering architectures. In particular, we address the case of DR-trees over-
lays where the quality of service of the overlay greatly depends on the way virtual
nodes are mapped on the physical nodes. DR-trees [2] are a distributed P2P version of
R-trees [11] which are used to handle objects with a poly-rectangular representation.
DR-trees are P2P overlays with a bounded degree and search/diffusion time logarith-
mic in size of the network. By their natural construction they are adapted to represent
subscriptions with rectangle shape in content based systems. The efficient construction
of a DR-tree overlay raises several problems. In particular, it should be noted that the
design of DR-trees may bring a single physical machine to be responsible for several
virtual nodes. Therefore, a wrong choice in the placement ofvirtual nodes may have a
huge impact on overall system performances; in terms of latency, bandwidth etc. . .

Our contribution tends to address this issue. We investigate the problem of place-
ment and migration of virtual nodes. We define valid migrations (with respect to the
logical topology of the DR-trees) and, using some techniques borrowed from trans-
actional systems, we propose strategies for solving conflicts generated by concurrent
migrations.

2 Related work

The placement of virtual nodes has been evoked in several works addressing different
ad hoc issues. In publish-subscribe systems such as Meghdoot [10], Mirinae [7], Re-
beca [20], SCRIBE [6] or Sub-2-Sub [17], virtual nodes correspond to subscriptions and
they are mapped on the physical node that created them. In BATON [13] and VBI [14],
two AVL based frameworks, virtual nodes are divided in two categories: leaves and
internal nodes. The former are used for storage while the latter are used for routing.
A structural property of AVL ensures that there there are roughly as much leaves as
internal nodes: each physical node holds one leaf and one internal node. In a DR-tree,
due to its degree (m : M, with m > 1), there are fewer internal nodes than leaves; each
physical node holds exactly one leaf and may hold one or more internal nodes.

Many publish/subscribe are based on multicast trees where network characteristics
are exploited to build efficient multicast structures in terms of latency and/or bandwidth
([3, 1, 8, 5]). Our approach does not require any extra overlays or structures. Network
characteristics are taken into account through a mechanismof virtual node migrations;
this mechanism was not conceived for a particular evaluation metric. Metrics can be
defined independently making our work more general.

Brushwood [4] is a kd-tree based overlay targeting localitypreservation and load
balancing. Each physical node holds one virtual node which corresponds to a k-dimensional
hyperplane. When a physical node joins the network, it is routed to a physical node. If
the joined physical node is overloaded, it will split its hyperplane and delegate half of
it to the new node. In addition, Brushwood provides a sporadical load evaluation mech-
anism: overloaded physical nodes may force underloaded ones to reinsert themself and
thus benefit from the join mechanism.



Chordal graph [15] is a range queriable overlay. Efficiency of queries is measured
in terms of distance (that could be expressed in terms of latency, bandwidth etc. . . )
between physical nodes. Similarly to SkipNet [12, 9], each physical node belongs to
different rings. For each ring, the physical node holds a range of values which can be
dynamically resized to balance load. During joins, physical nodes are routed according
to their relative distance. Conceptually, hyperplanes andranges are virtual nodes. While
Chordal graph [15] and Brushwood [4] modify virtual nodes during hyperplane splitting
or range scaling while our approach neither modifies virtualnodes nor the DR-tree
structure.

3 Background

In this section we recall some generic definitions and the main characteristics of the
DR-trees [2] overlay. Moreover, we discuss the main issues related to the virtual nodes
distribution.

3.1 Distributed R-trees

R-trees were first introduced in [11] as height-balanced tree handling objects whose
representation can be circumscribed in a poly-space rectangle. Each leaf-node in the
tree is an array of pointers to spatial objects. A R-tree is characterized by the following
structural properties:

– Every non-leaf node has a maximum ofM and at leastm entries wherem ≤ M/2,
except for the root.

– The minimum number of entries in the root node is two, unless it is a leaf node. In
this case, it may contain zero or one entry.

– All the leaf nodes are at the same level.

Distributed R-trees (DR-trees) introduced in [2] extend the R-tree index structures
where peers are self-organized in a balanced virtual tree overlay based on semantic
relations The structure preserves the R-trees index structure features: bounded degree
per node and search time logarithmic in the size of the network. Moreover, the proposed
overlay copes with the dynamism of the system.

Physical machines connected to the system wille be further referred asp-nodes
(shortcut for physical nodes). A DR-tree is a virtual structure distributed over a set of
p-nodes. In the following, terms related to DR-tree will be prefixed with “v-”. Thus,
DR-trees nodes will be calledv-nodes (shortcut for virtual nodes). The root of the DR-
tree is called thev-root while the leaves of the DR-tree are calledv-leaves. Except
the v-root, each v-noden has a v-father (v-father(n)), and, if it is not a v-leaf, some
v-children (v-children(n)). These nodes are denotedv−neighbors of n.

The physical interaction graph defined by the mapping of a DR-tree top− nodes
of the system is a communication graph where there is ap− edge (p,q), p 6= q, in
the physical interaction graph if: there is a v-edge(s,t) in the DR-tree,p is the p-node
holding v-nodes, andq is the p-node holding v-nodet.



Figure 1 shows a representation of a DR-tree composed of v-nodes{n0, . . . ,n12}
mapped on p-nodes{p1, . . . , p9}. Dashed boxes represent nodes distribution. There is
a p-edge(p1, p5) in the interaction graph because there is a v-edge(n0,n6) in the DR-
tree,p1 is the p-node holding v-noden0, andp5 is the p-node holding v-noden6.

The key points in the construction of a DR-Tree are the join/leave procedures. When
a p-node joins the system, it creates a v-leaf. Then the p-node contacts another p-node
to insert its v-leaf in the existing DR-tree. During this insertion, some v-nodes may split
and then Algorithm 1 is executed.

Algorithm 1 void onSplit(n:VNode)

1: if n.isV Root() then
2: newV Root = n.createV Node() ⊲ newV Root is held by the same p-node thann
3: n.v− f ather = newV Root
4: end if
5: m = selectChildIn(n.v−children)
6: newV Node = m.createV Node() ⊲ newV Node is held by the same p-node thanm
7: n.v−children,newV Node.v−children = divide(n.v−children)
8: newV Node.v− f ather = n.v− f ather

Distribution invariants: The following two properties are invariant in the imple-
mentation of DR-tree proposed in [2]:

– Inv1: each p-node holds exactly one v-leaf;
– Inv2: if p-node p holds v-noden, eithern is a v-leaf orp holds exactly one v-

children ofn.

We denote thetop andbottom v-node of a p-node the v-node which is at the top and
bottom of the chain of v-nodes kept by the p-node respectively. The above invariants
ensure that the communication graph is a tree:

– The p-root is the p-node holding the v-root;
– A p-nodep is the p-father of the p-nodeq (p-father(q)) if p holds the v-father of

the v-node at the top of the chain of v-nodes held byq.

For instance in Figure 1a,p-father(p5) = p-father(p7) = p1. The above distribution in-
variants also guarantee that p-nodes have a bounded number of p-neighbors. In a system
with N p-nodes and a DR-tree with degreem−M, the DR-tree height islogm(N); the
p-root holdslogm(N) v-nodes. Since each v-node has up toM v-neighbors, the p-root
may have up toM ∗ logm(N) p-neighbors.

3.2 Virtual Nodes Distribution

A DR-tree is a logical structure distributed across a set of physical machines. That is,
each v-node is assigned to a p-node of the system. Figures 1 and 2 show the same
DR-tree differently distributed over the same set of physical nodes{p1, . . . , p9}. The
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Fig. 1: A distribution of a given DR-tree and its corresponding physical interaction graph
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Fig. 2: A second distribution of the same DR-tree leading to a different physical interaction graph

distribution of DR-tree nodes determines the communication interactions between the
physical nodes and thus has a strong impact on system performances.

In [2] the distribution of the DR-tree depends both on the join order of machines
and on the implementation of the join/split procedures (Algorithm 1). This approach
has two main drawbacks. Firstly, the characteristics of thephysical machines are not
taken into account in the distribution of the DR-tree nodes.Secondly, this distribution
is static. Virtual nodes are placed at their creation or during join/split operations. Their
location is not changed even if system performances degrade. The first point is prob-
lematic in heterogeneous networks, where system performances are highly related to
the distribution of the DR-tree root (and its “close” neighborhood). For example, if we
evaluate the quality of the system in terms of bandwidth, ifp1 has a bad one andp9
a good one, the mapping proposed in Figure 2a is better than the one proposed in Fig-
ure 1a. Static distribution is problematic if the quality ofthe communications in the
physical interactions graph evolves over time. Therefore,virtual nodes that are close to
the root of the DR-tree and that are placed on the best possible machines at a given time
may induce poor system performances if their guest machinesbecome less performant.



To address these issues, we propose a mechanism for dynamic migration of DR-tree
nodes over the physical network. It allows to dynamically modify the DR-tree distribu-
tion (without any modification of the logical structure) in order to match the perfor-
mance changes of the physical system. Our migration mechanism uses feed-backs from
some cost functions (e.g. load of nodes) based on the physical interaction graph and
also exploits the virtual relations defined by the DR-tree logical structure.

4 Migration mechanism

In this section we analyze the migration of a v-nodes while the DR-tree overlay evolves
over time. We start by explaining which v-nodes are candidate to migrate and which
destination p-nodes can accept the former with respect to distribution invariants de-
scribed in section 3.1. Then, we present our migration protocol and discuss when it is
triggered.

In the following, we denotep
n

−→ q the migration of the v-noden from p-nodep to
p-nodeq.

4.1 Migration policy

Our migration policy prevents migrations that would violate the two invariants of DR-
tree distribution. Note that the invariants can be violatedby the wrong choice of both
the v-node to migrate and the destination p-node where the v-node will be placed.

The p-nodep can migrate its v-noden provided that the distribution invariants will
still hold if p no longer keepsn, i.e., if the migration ofn takes place.

Following migrations of the v-noden would violate one of the two invariants:

– if p holds exactly one v-noden: if p migratesn, p would no longer hold exactly
one leaf (Inv1);

– if p holds at least two v-nodes: ifp migrates itsbottom v-node,p would no longer
hold exactly one leaf (Inv1); if p migrates a v-noden which is neither itsbottom
nor itstop v-node,p would no longer hold exactly one child of v-father(n) (Inv2).

However, if p decides to migrate itstop v-noden, the distribution invariants con-
tinue to be verified if thetop v-node of the destination p-node is the v-child ofn. Then,
we define amigrable v-node as follows:

Definition 1. A v-node n of p-node p is migrable if p holds at least two v-nodes and n
is the top v-node of p.

For instance, in Figure 1a, onlyn0, n6, andn9 aremigrable.
Let’s now discuss how to chose a destination p-node, denoteda valid destination,

which ensures that if the migration ofn happens the two invariants will still be verified.
Consider thatn is amigrable v-node ofp and letq be a candidate destination p-node

to receiven. Following cases would violate one of the two invariants:

– if q holds no v-neighbor ofn: n would not be a v-leaf ofq, andq would hold no
v-children(n) (Inv2);



– if q holds v-father ofn: n would not be a v-leaf ofq, andq would hold two v-
children(n) (Inv2).

However, if q holdsm ∈ v-children(n) and ifn was migrated toq, thenn would
becomeq’s top v-node. Therefore, we define valid destination of amigrable v-noden
as follows:

Definition 2. A p-node q is a valid destination for v-node n held by p, if q holds a
v-children of n.

In Figure 1a,p1 can migraten0. Valid destinations are p-nodes which hold a v-
children ofn0: p5 andp7.

Since the degree of DR-tree is m-M (withm ≥ 2), the p-root may chose between 1
and M-1 migrations while a p-node holding more than one v-node may chose between
m-1 and M-1 migrations.

4.2 Migration conflict solver

Our migration policy guarantees a “local” coherency of migrations. However, two con-
current migrations could lead to invalid configurations. For instance, in Figure 1a,p1

can decide to executep1
n0
−→ p5 while p5 concurrently decides to executep5

n6
−→ p6.

These two migrations are possible according to our migration policy. On the other hand,
executing them concurrently will lead to a configuration where the set of v-nodes held
by p5 is{n0,n7}, which violatesInv2: n0 is not a v-leaf butp5 holds no v-children(n0).

When a v-noden is migrated from p-nodep to p-nodeq, p andq are obviously con-
cerned in the migration protocol since they exchange some information for ensuring the
migration policy (q can accept or not the migration). In order to avoid incoherent con-
figurations due to concurrent migrations as the one described above, p-nodes holding
some v-neighbors ofn must also be involved in the migration protocol. Therefore,the
principle of our migration protocol is that a p-nodep that wants to performm =p

n
−→ q

should ask permission for it to p-nodes that could concurrently execute some migration
conflicting withm. The protocol is basically a distributed transaction wherethe destina-
tion p-node and all p-nodes involved in possible concurrentmigrations must give their
agreement in order to commit the migration; otherwise it is aborted.

Defining which p-nodes could execute a conflicting migrationwith p
n

−→ q is in
close relation with our migration policy. As the latter restricts migration, a p-node can
only receive migration requests from its p-father. Therefore, migrations that could con-
flict with p

n
−→ q are:

– p− f ather(p)
v− f ather(n)

−→ p

– q
m∈v−children(n)

−→ r (wherer holds a v-children ofq)

There is some locality in potential conflicts: when p-nodep tries to perform a mi-
gration, concurrent conflicts may happen with its p-father or with nodes havingp as
p-father.



In order to prevent the concurrent execution of conflicting migrations, our protocol
adopts the following strategy: wheneverp wants to executep

n
−→ q, the latter is per-

formed if p is the p-root; otherwisep must have the permission of its p-father before
performingp

n
−→ q.

Figure 3 illustrates our migration protocol forp
n

−→ q which is in fact a best-effort
protocol.p is a non root p-node.

try( p
n

−→ q) is invoked by the migration planner process (described bellow) when
the latter wishes to migrate the v-noden from p-nodep to the p-nodeq.

The migration request will be dropped (DROP CASE) if eitherp is already execut-
ing the migration protocol due to a previous v-node migration request or thep

n
−→ q

lasts too long (to avoid disturbing too much the applicationthat run on top of it). Drop-
ping the request will prevent further conflicts. Notice thatmigrations are expected to be
sporadic and not very frequent for a given p-node. Thus, the drop of a migration request
will be quite rare.

If p
n

−→ q is in conflict with another concurrent migration thatp has already al-
lowed, the migration protocol is aborted (ABORT CASE 1). In other words, ifp has

given its permission toq
m∈v−children(n)

−→ r, p must abortp
n

−→ q in order to avoid the
concurrent executions of these two conflicting migrations.On the other hand, if there
is no conflict,p invokespermission(p n

−→ q) asking its p-father if the latter is not try-
ing to perform any migration that would conflict withp

n
−→ q. If it is the case,p will

receive a negative answer (ABORT CASE 2); otherwise, p-father(p) addsp
n

−→ q to
its set of granted migrations and returns a positive answer to p which means that it al-
lows p to execute the migration for which it asked permission. Remark that ABORT
CASE 2 happens when p-node attempts to executep

n
−→ q but its p-father does not

gives it permission for such a migration, i.e., p-father(p)is concurrently executing

p− f ather(p)
v− f ather(n)

−→ p.
Upon receiving its p-father’s permission,p invokesexecute(p n

−→ q) for actually
performing the migrationp

n
−→ q. If some error happens duringp

n
−→ q (e.g. technical

issues, timeouts, etc.), the migration protocol aborts (ABORT CASE 3). Otherwise, the
migration is accomplished.

Finally, complete(p n
−→ q) is invoked byp in order to inform its p-father that the

migration p
n

−→ q, which it has allowed, was correctly performed. p-father(p) then
removesp

n
−→ q from its set of granted migrations.

4.3 Migration planner

Migration planner defines the exact time the migration should be executed, i.e., when
the migration protocol must be invoked. Such an invocation can either take place peri-
odically or whenever there is an event that changes the logical structure of the DR-Tree.
Furthermore, an evaluation of the added value of the migration will have on the system
must be taken into account in both cases.

In the first case, the migration planner can be implemented asa separated process.
Some cost functions (e.g., load of nodes) may be periodically evaluated and when a
given value is reached, the planner process is woken up in order to invoke the migration



Fig. 3: A straightforward execution of the migration ofn from p to q

conflict solver. In the second case, the invocation of the migration conflict solver is trig-
gered in reaction to some event that changes the DR-Tree. Forinstance, when a v-node
split occurs, the migration planner should call the migration conflict solver protocol in
order to try to map the new v-nodes to the most suitable p-nodes. This approach can
also be exploited for the initial placement of the DR-tree.

The migration planner will invoke the migration provided this one improves the
performance of the system. Thus, a cost function is evaluated periodically or when-
ever a DR-Tree event might induce a migration. If this function signals that a proposed
migration will degrade the system, the migration will not take place.

A cost function can concern one or more different metrics (e.g., message traffic,
capacity of machines, etc.) andp

n
−→ q involves p-nodes holding v-neighbors ofn, as

described in section 4.1. Thecost function called byp is thus evaluated based on the
information about the cost ofp’s p-neighbor.p can dynamically update this information
by spoofing or sporadically evaluating the network traffic. An example ofcost function
is presented in Section 6.

The lack of global knowledge of a p-node cost function (e.g. it just exchanges infor-
mation with its neighbors at the physical interaction graph) may limit the effectiveness
of our migration mechanism, i.e., some performance enhanced configurations might not
be reachable. For instance, let suppose that in the configuration of Figure 3.2,p2 has
the best bandwidth; it should hold v-nodes of higher levels of the DR-tree since the
latter are usually more loaded nodes than v-leaves. However, if, according top1’s cost

function, bothp1
n0
−→ p5 andp1

n0
−→ p7 would degrade the bandwidth of the commu-

nication graph,p1 does not migraten0. Therefore, whilep1 holdsn0, p1
n1
−→ p2 is

forbidden since it violates the distribution invariants. The local view of cost functions
will not allow the migration of v-nodes top2, even if such migrations would would
enhance the bandwidth of the communication graph.

5 Fault tolerance

This section investigates different strategies to preserve a DR-tree structure when some
p-node fails. In the classical DR-tree implementation proposed in [2] when a p-node



fails all its subtrees are reinserted in the non-faulty structure (p-node by p-node) in
order to guarantee the DR-tree invariants.

In the following we study an alternative strategy that exploits internal v-nodes repli-
cation.

5.1 Replication pattern

We propose a simple pattern of internal v-nodes replication:

– the p-root holds no replica
– each p-node holds a replica of the v-father of itstop v-node

Each non leaf v-node is replicated on each p-node holding oneof its v-children. For
a DR-tree of degree m-M (m ≥ 2), it ensures that the v-root is replicated on 1 to M-1
p-nodes and that each internal v-node is replicated on m-1 toM-1 p-nodes.

In Figure 1a, DR-tree has four non leaf v-nodes;n0, n1, n6 andn9. The following
table shows on which p-nodes they are replicated:

internal v-node n0 n1 n6 n9
replicated on p-nodesp5, p7 p2, p3, p4 p6 p8, p9
When a p-nodep fails each p-node holding the leftmost replica of a v-node held by

p replaces that v-node. The restoration of a given v-noden concerns p-nodes holding
a replica ofn: the m− 1 to M − 1 p-node holding v-children ofn. Moreover, the dis-
tribution invariants ensure that withN p-nodes, no p-nodes holds more than⌊logm(N)⌋
v-nodes.

In Figure 1a, ifp1 fails, two internal v-nodes have to be restored;n0 andn1. The
former concernsp5 andp7 while the latter concernsp2 p3 andp4.

5.2 Replication cost

Replicas are created during joins and modified during joins and splits. When a v-node
is modified its holder should notify the p-nodes which hold its replicas.

In the sequel we’ll consider a DR-tree withN participants, a degree ofm : M and
that updating one replica costs one message.

Figure 4 illustrates what happens at the R-tree level when a v-noden splits. Basically
n creates a new v-noden′ and delegates half of its childs ton′. n′ is added tof childs. If
that way f gets more thanM childs, it splits according the same algorithm.

To evaluate the cost of replicas update we have to evaluate how many v-nodes are
modified during a split. Figure 4 shows that when a v-noden splits, half of its childs
and its father are also modified. Each split modifiesm+2 v-nodes. As each v-node has
M−1 replicas and that each update costs one message we have:

split cost = (m+2)∗ (M−1)

A p-node joining the system triggers between 0 and⌊logm(N)⌋ splits. Its v-leaf is
added to the v-children of another v-node that we will call inthe sequel the joined
v-node. The joined v-node has:
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– betweenm andM v-children
– ⌈logm(N)−1⌉ v-ancestors
– betweenm−1 andM−1 replicas

In the following calculation we will define an upper bound on the number of updates
considering that each v-node hasM−1 replicas.

A v-node may havem to M v-children and thus hasM−m+1 possible v-children
quantities. It splits only when it has exactlyM v-children. The probabilityp for a v-node
to split is:

p =
1

M−m+1

The probability for a p-node to triggerk splits is the probabilitypk that the joined
v-node and itsk−1 first v-ancestors have exactlyM v-children.

pk = pk ∗ (1− p)

The average cost of replicas updates when a p-node joins a DR-tree is thus:

replication cost = p0∗ (M−1)
︸ ︷︷ ︸

no split

+
⌊logm(N)⌋

∑
k=1

(pk ∗ k ∗ split cost)

︸ ︷︷ ︸

some splits

The first term corresponds to the case where no splits are triggered;M−1 replicas
of the joined v-node are to be updated. The second term corresponds to other cases.
We could have distinguished the case where the v-root splits. Its splitting probability is
different; it hasM −1 possible v-children quantities. But form > 2 this probability is
smaller thanp so we just majorate it to keep things simple.
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Worst case In the worst case, the joined v-node and all its v-ancestors (including the
v-root) split. The probability of that case is:

(psplit)
⌈logm(N)⌉−1 =

(
1

M−m+1

)⌈logm(N)⌉−1

⌈logm(N)⌉ v-nodes are modified. Thus the overcost in terms of messages due to the
replication in a join triggering⌈logm(N)⌉ splits is:

⌈logm(N)⌉ ∗ (M−1)

Average cost The average overcost of messages caused by replication during a join is:

⌈logm(N)⌉

∑
k=0

pk−split ∗ costk−split

According previous calculations, this sum may be decomposed into two terms:

–
⌈logm(N)⌉−1

∑
k=0

[

(psplit)
k ∗ (1− psplit)∗ (k +1)∗ (M−1)

]

–
(psplit)

⌈logm(N)⌉−1 ∗ ⌈logm(N)⌉ ∗ (M−1)

Replication implies no time overcost. Its overcost is the quantity of additional mes-
sages sent during joins. That quantity depends on the numberof participant to the sys-
tem and on the DR-tree degree.

6 Evaluation

Our evaluation experiments were conducted on a discrete ad-hoc simulator. At the start
of a cycle, a p-node may check if it can try to improve the performance of the system
by migrating itsmigrable v-node, if it has one. To this end, the p-node calls a score
function which evaluates the benefit of a possible migrationof this v-node.

A migration m=p
n

−→ q concerns p-nodes holding v-neighbors ofn; let note this
set of p-nodesconcerned(m). We assume thatp has some knowledge about thecost
between its p-neighbors. To decide whetherm is worth or not, we use the following
score function:



score(m) =
concerned(m)

∑
r

cost(p,r)− cost(q,r)

If p computes thatscore(m) > 0 then, according top, m may enhance system per-
formances. Having scores of possible migration ofn, p will try to execute the migration
with the best positive score. In our experiments, the metricrelated to the cost function
is the latency between p-nodes.

One thousand simulations were performed with different configurations of DR-tree,
with the following parameters:

– 500 p-nodes
– DR-tree degree with m = 2 and M = 4
– each experiment lasts 500 cycles
– the probability that a p-node checks for migrations is 1/10

DR-trees were populated with v-leaves represented by 50*502D rectangles ran-
domly distributed in a 1024*1024 map. In order to simulate latency between p-nodes,
we use the Meridian data set [16]; it is a latency matrix that reflects the median of round-
trip times between 2500x2500 physical nodes spreads on Internet. For our experiments,
we extracted a 500x500 sub-matrix.

6.1 Impact of migrations in all DR-tree configurations

Impact on latency. We firstly studied the impact of migrations on the latency between
two p-nodes of the interaction graph.

Figure 5a shows the average latency gain due to migrations. Simulations with dif-
ferent DR-tree configurations were ordered by increasing average latency without mi-
gration (X-axis). Y-axis corresponds to the average latency in millisecond in the com-
munication graph when the system is stabilized, i.e., no more migration takes place.

The average latency obtained without migrations -and thus without taking latency
heterogeneity into account- is highly dependent on the mapping of v-root and its close
neighborhood. In a small number of cases, this mapping was well-suited (resp. bad-
suited), leading to an average latency of 300ms (resp. 1000ms). However, in almost
80% of simulations, the average latency was between 350ms and 600ms.

As we can observe in the same figure, migration of v-nodes clearly enhances av-
erage latency. The peaks of the curve can be similarly explained: in a small number
of cases, many and/or very effective (resp. few and/or less effective) migrations were
applied, leading to an average latency of 150ms (resp. 800ms). In most cases, the gain
is around 50%.

Figure 5b shows the gain distribution. X-axis is the percentage of enhancement
reached during a simulation. Y-axis is the percentage of simulations wherex gain has
been reached. The gain distribution is quite gaussian: 78.7% of simulations raise a gain
between 40% and 60%.
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Fig. 5: Measurements on 1000 simulations

Stabilization time. Figure 5c shows the distribution of the stabilization time.X-axis is
the last cycle where a migration was executed while Y-axis isthe percentage of simula-
tions where the last migration was executed at timex.

The distribution of stabilization time is also quite gaussian: 92.9% of simulations
converge in a number of cycles between 20 and 40. Even with p-nodes “rarely” checking
if they can perform migrations, stabilization is reached very fast: simulations last 500
cycles and 96.1% of them converge in less than 40 cycles (100%in less than 55 cycles).

Overall number of migrations. Figure 5d shows the number of migrations executed per
simulation.

We observe a relatively stable number of migrations around athird of p-nodes with
a low standard deviation. This suggests that different configurations of DR-tree with the
same degree has low impact on the overall number of migrations. In fact, this number



depends in fact on the distribution of latencies between p-nodes which is fixed in our
experiments.

6.2 Analysis of migrations in a given DR-Tree configuration

Among the previous simulations, we have chosen one where thecorresponding DR-tree
configuration presents a distribution enhancement of 50% (Figure 5b), a stabilization
time of 25 cycles (Figure 5c), and 173 migrations executions(Figure 5d). Evaluation
results presented in the following are based on this simulation.
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Fig. 6: Measurements on a very “average” simulation

In Figure 6a, we can observe the number of migration per p-node during the refer-
enced simulation. More than half of p-nodes do not participate in any migration and no
p-node participates in more than five migrations. Furthermore, the distribution of per
p-node migrations is relatively well-balanced since no p-node is overloaded by a high
number of migrations and only 4 % of nodes perform more than two migrations.

Figure 6b shows the evolution of average latency between p-nodes in the interaction
graph till stabilization time. All p-nodes start migrationplanner at the first cycle of the



simulation. However, the first migrations actually occurs at the fourth cycle since our
migration protocol takes four cycles to fully commit a v-node migration. Due to our
migration protocol too, during the first cycles, migrationsof high level p-nodes (and
thus v-nodes closer to v-leaves) are likely to be aborted as their respective fathers are
also likely to be executing other migrations. Therefore, the first executed migrations
are more likely to concern lower level p-nodes (and thus low level v-nodes, close to
the v-root) than higher level ones. Furthermore, the further from the v-root a v-node
is, the longer the path to the v-root is, and thus its migration has a higher impact in
the overall average latency. After these first migrations, the others are more likely to be
small adjustments just inducing local communication enhancements which thus do not
reduce average latency.

The number of migrations executed per cycle for the same simulation is given in
Figure 6c. Y-axis is the number of executed migrations. The results shown in this figure
confirm our previous analysis of Figure 6b: since all p-nodesstart the migration planner
during first cycle, many of them execute migrations during the fourth cycles. Since all
p-node join the system during the first cycle, the higher the number of cycles executed,
the smaller the number of executed migrations.

6.3 Abort rate

Our migration protocol is based on a best effort approach which implies that attempts
of v-node migration may be aborted. Moreover, abortion of migrations has a cost due
to the messages exchanged by the involved p-nodes till the protocol is aborted.
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Fig. 7: Abort rate distribution

Figure 7 shows the abort rate distribution. X-axis is the percentage of aborted mi-
grations while Y-axis is the percentage of simulations havingx% of aborted migrations.

The rate of aborted migration is related to both the frequency of p-nodes attempts
for migrating a v-node and the DR-tree degree. The higher this frequency is, the higher
chances are that a p-node and its p-father try to execute concurrently conflicting mi-
grations are. On the other hand, the higher the degree of the DR-tree is, the higher the
chances are that a p-node can execute a migration and thus abort some of its p-neighbors
migration attempts.



6.4 Migration scheduling impact

In this section, we compare two migration scheduling strategies for executing the mi-
gration planner:periodical strategy where the planner is executed periodically, andtrig-
gered strategy where the planner is executed whenever a v-node is split.

Each simulation is basically composed of two main phases: system building and
system “lifetime”. The former starts at the simulation initialization and ends when the
last p-node has joined the system while the latter starts after the last p-node has joined
the system and ends at the simulation termination. In the periodically (resp. triggered)
strategy, migrations only takes place during the system “lifetime” (resp. building);
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Figure 8 shows the distribution gain of the two migration scheduling. X-axis is the
percentage of enhancement reached during a simulation while Y-axis is the percentage
of simulations wherex gain has been reached. We can observe that both strategies are
rather similar in terms of gain.

7 Conclusion

Our article has shown that it is very interesting to exploit the relation between the log-
ical structure of a DR-tree [2] and its corresponding physical interaction graph. By ex-
pressing some invariants, a dynamic migration mechanism can modify the distribution
of DR-tree v-nodes over the physical network without modifying its logical structure.
Evaluation results have confirmed that even a very simple best-effort dynamic migra-
tion protocol substantially improves system performance in terms of latency. Finally,
we should point out that our dynamic v-node migration mechanism could be applied
to other logical structures. Concepts such as v-nodes, p-nodes, distribution invariants,
migration policy, migration conflict management, migration planner, etc. can be easily
generalized in order to satisfy other logical structures requirements.
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