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Abstract. Distributed R-trees (DR-trees) are appealing infrastmas for im-
plementing range queries, content based filtering or k-NDMNcaires since they
inherit the features of R-trees such as logarithmic heigbtinded number of
neighbors and balanced shape. Interestingly, the mapgtwelen the DR-tree
logical nodes and the physical nodes has not yet receivéidisnf attention. In
previous works, this mapping was naively defined either leydfder physical
nodes join/leave the system or by their semantics. Thexgéorimportant gap in
terms of load and latency can be observed while comparinthtéwretical work
and the simulation/experimental results. This gap is alytdue to the place-
ment of virtual nodes. A naive placement that totally igisotiee heterogeneity
of the network may generate an unbalanced load of the physsistem. In order
to improve the overall system performances, this paperga@pmechanisms for
placement and dynamic migration of virtual nodes that bdarthe load of the
networkwithout modifying the DR-tree virtual structure. That is, we redtice
gap between the theoretical results and the practical gniegdating (at the mid-
dleware level) placement and migration strategies fousirhodes that directly
exploit the physical characteristics of the network. Eztesm simulation results
show that significant performance gain can be obtained withneechanisms.
Moreover, due to its generality, our approach can be eastigneded to other
overlays or P2P applications (e.g. multi-layer overlay®fficient P2P stream-

ing).

1 Introduction

From the very beginning of the theoretical study of P2P systene of the topics that
received a tremendous attention is the way these systemsagmged to the real (physi-
cal) network. Even early DHT-based systems such as PagfpfLCAN [18] included

in their design the notion of geographical locality. Latarddlewares designed on top
of DHT-based or DHT-free P2P systems exploit various degoésimilarity between
peers following criteria such as the geographical vicinitghe semantic of their inter-
ests. One of the most relevant example in that sense arentdrgsed publish/subscribe
systems. These communication primitives completely dpleothe source of events
(a.k.a. publishers) from their usersd.k.a. subscribers). Their efficient implementations
in P2P settings are optimized with respect to a broad classetfics such as latency
or load balancing. To this end the similarity between défarsubscribers is fully ex-
ploited and various logical infrastructures have beenmg@roposed. Most exploited
architectures are tree-based due to their innate adaptabileasy filter. In the de-
sign of tree-based publish/subscribe there is a tradeedffden the maintenance of an
optimized tree infrastructure following various crite(eg. bounded degree, max/min



number of internal nodes or leaves) and the placement ofdbgiodes on physical
machines in order to optimize the overall system load onlate

Our paper follows this research direction by addressingptheement of virtual
nodes in tree-filtering architectures. In particular, wdrads the case of DR-trees over-
lays where the quality of service of the overlay greatly dejseon the way virtual
nodes are mapped on the physical nodes. DR-trees [2] aréridulisd P2P version of
R-trees [11] which are used to handle objects with a polyaregular representation.
DR-trees are P2P overlays with a bounded degree and sefftdidoh time logarith-
mic in size of the network. By their natural constructionyttaee adapted to represent
subscriptions with rectangle shape in content based sgstEme efficient construction
of a DR-tree overlay raises several problems. In particittahould be noted that the
design of DR-trees may bring a single physical machine toeBpansible for several
virtual nodes. Therefore, a wrong choice in the placementrafal nodes may have a
huge impact on overall system performances; in terms ofitgtdbandwidth etc. ..

Our contribution tends to address this issue. We investitie problem of place-
ment and migration of virtual nodes. We define valid mignagigwith respect to the
logical topology of the DR-trees) and, using some techrscguarrowed from trans-
actional systems, we propose strategies for solving césfjenerated by concurrent
migrations.

2 Related work

The placement of virtual nodes has been evoked in sever&svaatdressing different
ad hoc issues. In publish-subscribe systems such as MegHd@jpMirinae [7], Re-
beca [20], SCRIBE [6] or Sub-2-Sub [17], virtual nodes cepend to subscriptions and
they are mapped on the physical node that created them. I©OBAL3] and VBI [14],
two AVL based frameworks, virtual nodes are divided in twoegaries: leaves and
internal nodes. The former are used for storage while therlare used for routing.
A structural property of AVL ensures that there there areghdy as much leaves as
internal nodes: each physical node holds one leaf and ceeadtnode. In a DR-tree,
due to its degreenf: M, with m > 1), there are fewer internal nodes than leaves; each
physical node holds exactly one leaf and may hold one or nmbeerial nodes.

Many publish/subscribe are based on multicast trees whedveonk characteristics
are exploited to build efficient multicast structures inmerof latency and/or bandwidth
([3,1, 8,5]). Our approach does not require any extra oysrta structures. Network
characteristics are taken into account through a mecharfisirtual node migrations;
this mechanism was not conceived for a particular evalonatietric. Metrics can be
defined independently making our work more general.

Brushwood [4] is a kd-tree based overlay targeting locaglitgservation and load
balancing. Each physical node holds one virtual node whactesponds to a k-dimensional
hyperplane. When a physical node joins the network, it isedto a physical node. If
the joined physical node is overloaded, it will split its leyplane and delegate half of
it to the new node. In addition, Brushwood provides a spa@adbad evaluation mech-
anism: overloaded physical nodes may force underloadesltorreinsert themself and
thus benefit from the join mechanism.



Chordal graph [15] is a range queriable overlay. Efficientyweries is measured
in terms of distance (that could be expressed in terms ofdstebandwidth etc...)
between physical nodes. Similarly to SkipNet [12, 9], eabligical node belongs to
different rings. For each ring, the physical node holds @eaof values which can be
dynamically resized to balance load. During joins, phylsicales are routed according
to their relative distance. Conceptually, hyperplanesrandes are virtual nodes. While
Chordal graph [15] and Brushwood [4] modify virtual nodesidg hyperplane splitting
or range scaling while our approach neither modifies vir@des nor the DR-tree
structure.

3 Background

In this section we recall some generic definitions and thenraharacteristics of the
DR-trees [2] overlay. Moreover, we discuss the main issakegad to the virtual nodes
distribution.

3.1 Distributed R-trees

R-trees were first introduced in [11] as height-balancee trandling objects whose
representation can be circumscribed in a poly-space rgletaBach leaf-node in the
tree is an array of pointers to spatial objects. A R-tree &atiterized by the following
structural properties:

— Every non-leaf node has a maximumMfand at least entries wheren < M /2,
except for the root.

— The minimum number of entries in the root node is two, unleissd leaf node. In
this case, it may contain zero or one entry.

— All the leaf nodes are at the same level.

Distributed R-trees (DR-trees) introduced in [2] extenel Brtree index structures
where peers are self-organized in a balanced virtual treglayvbased on semantic
relations The structure preserves the R-trees index steiftatures: bounded degree
per node and search time logarithmic in the size of the nétviworeover, the proposed
overlay copes with the dynamism of the system.

Physical machines connected to the system wille be furtsferned agp-nodes
(shortcut for physical nodes). A DR-tree is a virtual staretdistributed over a set of
p-nodes. In the following, terms related to DR-tree will brefixed with “v-". Thus,
DR-trees nodes will be callednodes (shortcut for virtual nodes). The root of the DR-
tree is called thes-root while the leaves of the DR-tree are calledeaves. Except
the v-root, each v-node has a v-father\-father(n)), and, if it is not a v-leaf, some
v-children {-children(n)). These nodes are denoted neighborsof n.

The physical interaction graph defined by the mapping of ati2B-to p — nodes
of the system is a communication graph where there jis-aedge (p,q), p # q, in
the physical interaction graph if: there is a v-edgg) in the DR-treep is the p-node
holding v-nodes, andq is the p-node holding v-node



Figure 1 shows a representation of a DR-tree composed ofles{w0, ...,n12}
mapped on p-nodell, ..., p9}. Dashed boxes represent nodes distribution. There is
a p-edgd pl, p5) in the interaction graph because there is a v-dt§en6) in the DR-
tree,pl is the p-node holding v-nod®, andp5 is the p-node holding v-nod.

The key points in the construction of a DR-Tree are the jea/e procedures. When
a p-node joins the system, it creates a v-leaf. Then the g-nodtacts another p-node
to insert its v-leaf in the existing DR-tree. During thisénton, some v-nodes may split
and then Algorithm 1 is executed.

Algorithm 1 void onSplit:VNode)

if n.isvRoot() then
newV Root = n.createV Node() > newV Root is held by the same p-node than
n.v— father = newV Root

end if

m = selectChildIn(n.v— children)

newVM Node = m.createV Node() > newVM Node is held by the same p-node than

n.v— children, new Node.v — children = divide(n.v — children)

newV Node.v— father =n.v— father

Distribution invariants: The following two properties are invariant in the imple-
mentation of DR-tree proposed in [2]:

— Invl: each p-node holds exactly one v-leaf;
— Inv2: if p-node p holds v-noden, eithern is a v-leaf orp holds exactly one v-
children ofn.

We denote théop andbottom v-node of a p-node the v-node which is at the top and
bottom of the chain of v-nodes kept by the p-node respegtivdle above invariants
ensure that the communication graph is a tree:

— The p-root is the p-node holding the v-root;
— A p-nodep is the p-father of the p-nodg (p-father(q)) if p holds the v-father of
the v-node at the top of the chain of v-nodes heldjby

For instance in Figure 1@:father(p5) = p-father(p7) = p1. The above distribution in-
variants also guarantee that p-nodes have a bounded nuffbeeghbors. In a system
with N p-nodes and a DR-tree with degmee- M, the DR-tree height isogm(N); the
p-root holdslogm(N) v-nodes. Since each v-node has uptw-neighbors, the p-root
may have up td xlogm(N) p-neighbors.

3.2 Virtual Nodes Distribution

A DR-tree is a logical structure distributed across a sethyfjral machines. That is,
each v-node is assigned to a p-node of the system. Figured 2 show the same
DR-tree differently distributed over the same set of phgisimdes{ p1,...,p9}. The



(a) A distribution of a given R-tree (b) Corresponding physical interaction graph

Fig. 1: A distribution of a given DR-tree and its corresponding pbgkinteraction graph

(b) Corresponding physical interaction graph

Fig. 2. A second distribution of the same DR-tree leading to a diffiephysical interaction graph

distribution of DR-tree nodes determines the communioatiteractions between the
physical nodes and thus has a strong impact on system pexfices.

In [2] the distribution of the DR-tree depends both on tha joider of machines
and on the implementation of the join/split procedures Q#ifthm 1). This approach
has two main drawbacks. Firstly, the characteristics ofpimgsical machines are not
taken into account in the distribution of the DR-tree no&eondly, this distribution
is static. Virtual nodes are placed at their creation orreujdin/split operations. Their
location is not changed even if system performances degiduefirst point is prob-
lematic in heterogeneous networks, where system perfarasaare highly related to
the distribution of the DR-tree root (and its “close” neighibood). For example, if we
evaluate the quality of the system in terms of bandwidtiplithas a bad one angb
a good one, the mapping proposed in Figure 2a is better tleaoné proposed in Fig-
ure la. Static distribution is problematic if the qualitytbe communications in the
physical interactions graph evolves over time. Therefargyal nodes that are close to
the root of the DR-tree and that are placed on the best pessithines at a given time
may induce poor system performances if their guest machieesme less performant.



To address these issues, we propose a mechanism for dynamation of DR-tree
nodes over the physical network. It allows to dynamicallydifyothe DR-tree distribu-
tion (without any modification of the logical structure) inder to match the perfor-
mance changes of the physical system. Our migration mesimamses feed-backs from
some cost functions (e.g. load of nodes) based on the plhysiesaction graph and
also exploits the virtual relations defined by the DR-tregdal structure.

4 Migration mechanism

In this section we analyze the migration of a v-nodes whiéeDIiR-tree overlay evolves
over time. We start by explaining which v-nodes are canéidatmigrate and which
destination p-nodes can accept the former with respectstitaition invariants de-
scribed in section 3.1. Then, we present our migration jpaitand discuss when it is
triggered.

In the following, we denot@ — ¢ the migration of the v-node from p-nodep to

p-nodeq.

4.1 Migration policy

Our migration policy prevents migrations that would viel#he two invariants of DR-
tree distribution. Note that the invariants can be violdigdhe wrong choice of both
the v-node to migrate and the destination p-node where tiede-will be placed.

The p-nodep can migrate its v-node provided that the distribution invariants will
still hold if p no longer keeps, i.e., if the migration oh takes place.

Following migrations of the v-nodewould violate one of the two invariants:

— if p holds exactly one v-node: if p migratesn, p would no longer hold exactly
one leaf (nv1);

— if p holds at least two v-nodes: jf migrates itdottomv-node,p would no longer
hold exactly one leaflwvl); if p migrates a v-noda which is neither itdottom
nor itstop v-node,p would no longer hold exactly one child of v-father(hi2).

However, if p decides to migrate itoop v-noden, the distribution invariants con-
tinue to be verified if théop v-node of the destination p-node is the v-chilchofThen,
we define amigrable v-node as follows:

Definition 1. A v-node n of p-node p is migrableif p holds at least two v-nodes and n
isthetop v-node of p.

For instance, in Figure 1a, onhd, n6, andn9 aremigrabl e.

Let's now discuss how to chose a destination p-node, dereotatd destination,
which ensures that if the migration nhappens the two invariants will still be verified.

Consider thah is amigrablev-node ofp and letq be a candidate destination p-node
to receiven. Following cases would violate one of the two invariants:

— if g holds no v-neighbor of: n would not be a v-leaf 0§, andg would hold no
v-children(n) (nv2);



— if g holds v-father ofn: n would not be a v-leaf of}, andqg would hold two v-
children(n) (nv2).

However, ifg holdsm € v-children(n) and ifn was migrated taj, thenn would
becomeg’'s top v-node. Therefore, we define valid destination afigrable v-noden
as follows:

Definition 2. A p-node q is a valid destination for v-node n held by p, if g holds a
v-children of n.

In Figure 1a,pl can migratenO. Valid destinations are p-nodes which hold a v-
children ofn0: p5 andp?7.

Since the degree of DR-tree is m-M (with> 2), the p-root may chose between 1
and M-1 migrations while a p-node holding more than one venrody chose between
m-1 and M-1 migrations.

4.2 Migration conflict solver

Our migration policy guarantees a “local” coherency of ratgpns. However, two con-
current migrations could lead to invalid configurationst Fstance, in Figure 1g1

can decide to executgl -, p5 while p5 concurrently decides to execyib e, p6.

These two migrations are possible according to our mignataicy. On the other hand,
executing them concurrently will lead to a configuration vehine set of v-nodes held
by p5 is{n0,n7}, which violated nv2: n0 is not a v-leaf bup5 holds no v-children(n0).

When a v-nodea is migrated from p-nodp to p-nodey, p andq are obviously con-
cerned in the migration protocol since they exchange sofoenvation for ensuring the
migration policy ¢ can accept or not the migration). In order to avoid incohiecen-
figurations due to concurrent migrations as the one destabeve, p-nodes holding
some v-neighbors af must also be involved in the migration protocol. Therefdine,
principle of our migration protocol is that a p-nodé¢hat wants to perforrm=p LN q
should ask permission for it to p-nodes that could conctiyexecute some migration
conflicting withm. The protocol is basically a distributed transaction whikeadestina-
tion p-node and all p-nodes involved in possible concumeigtations must give their
agreement in order to commit the migration; otherwise itisréed.

Defining which p-nodes could execute a conflicting migratidth p — q is in
close relation with our migration policy. As the latter mgsts migration, a p-node can
only receive migration requests from its p-father. Therefeigrations that could con-
flict with p —— q are:

_ p—father(p)" ™

— ™™ - wherer holds a v-children of)

There is some locality in potential conflicts: when p-nqdigies to perform a mi-
gration, concurrent conflicts may happen with its p-fathewith nodes having as
p-father.



In order to prevent the concurrent execution of conflictingnattions, our protocol
adopts the following strategy: whenevemwants to execut® SLUIN g, the latter is per-
formed if p is the p-root; otherwis@ must have the permission of its p-father before
performingp — q.

Figure 3 illustrates our migration protocol fpri> g which is in fact a best-effort
protocol.pis a non root p-node.

try(p SN q) is invoked by the migration planner process (describedb@ivhen
the latter wishes to migrate the v-nodé&om p-nodep to the p-node.

The migration request will be dropped (DROP CASE) if eithés already execut-
ing the migration protocol due to a previous v-node migratiequest or the SLUN q
lasts too long (to avoid disturbing too much the applicatlwat run on top of it). Drop-
ping the request will prevent further conflicts. Notice thmagrations are expected to be
sporadic and not very frequent for a given p-node. Thus, tbe df a migration request
will be quite rare.

If p LN g is in conflict with another concurrent migration thatas already al-
lowed, the migration protocol is aborted (ABORT CASE 1). ther words, ifp has

_ . . —child . .
given its permission tq mev Lren(n) r, p must abortp SLUN g in order to avoid the

concurrent executions of these two conflicting migratigds.the other hand, if there
is no conflict,p invokespermission(p LN g) asking its p-father if the latter is not try-
ing to perform any migration that would conflict wiﬂnL g. If it is the case p will
receive a negative answer (ABORT CASE 2); otherwise, pefdf) addsp LN gto
its set of granted migrations and returns a positive answpnthich means that it al-
lows p to execute the migration for which it asked permission. Rimtiaat ABORT
CASE 2 happens when p-node attempts to exepu{& g but its p-father does not
gives it permission for such a migration, i.e., p-fatherg)xoncurrently executing
v—father(n)
p— father(p) —

Upon receiving its p-father’'s permissiop,invokesexecutep SLUN q) for actually
performing the migratiomp — q. If some error happens durin— q (e.g. technical
issues, timeouts, etc.), the migration protocol aborts@&8B CASE 3). Otherwise, the
migration is accomplished.

Finally, complete(p SLUN qg) is invoked byp in order to inform its p-father that the
migration p SLUN g, which it has allowed, was correctly performed. p-fathgt{gen
removesp — q from its set of granted migrations.

4.3 Migration planner

Migration planner defines the exact time the migration sthdoa executed, i.e., when
the migration protocol must be invoked. Such an invocatim either take place peri-
odically or whenever there is an event that changes thedbsficicture of the DR-Tree.
Furthermore, an evaluation of the added value of the migmnatiill have on the system
must be taken into account in both cases.

In the first case, the migration planner can be implementedseparated process.
Some cost functions (e.g., load of nodes) may be perioglieathluated and when a
given value is reached, the planner process is woken up ér tsdnvoke the migration
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Fig. 3: A straightforward execution of the migration ofrom ptoq

conflict solver. In the second case, the invocation of theratiign conflict solver is trig-
gered in reaction to some event that changes the DR-Tredn$tance, when a v-node
split occurs, the migration planner should call the mignatonflict solver protocol in
order to try to map the new v-nodes to the most suitable p-sofleis approach can
also be exploited for the initial placement of the DR-tree.

The migration planner will invoke the migration providedsttone improves the
performance of the system. Thus, a cost function is evadupgeiodically or when-
ever a DR-Tree event might induce a migration. If this fumetsignals that a proposed
migration will degrade the system, the migration will ndédaplace.

A cost function can concern one or more different metricg.(enessage traffic,
capacity of machines, etc.) armL g involves p-nodes holding v-neighborsmfas
described in section 4.1. Theest function called byp is thus evaluated based on the
information about the cost gi's p-neighborp can dynamically update this information
by spoofing or sporadically evaluating the network traffin.@ample otost function
is presented in Section 6.

The lack of global knowledge of a p-node cost function (d.jgist exchanges infor-
mation with its neighbors at the physical interaction gaphy limit the effectiveness
of our migration mechanism, i.e., some performance enttbcmafigurations might not
be reachable. For instance, let suppose that in the configuraf Figure 3.2,p2 has
the best bandwidth; it should hold v-nodes of higher levélthe DR-tree since the
latter are usually more loaded nodes than v-leaves. Howiévaccording topl’s cost

function, bothpl o, p5 andpl o, p7 would degrade the bandwidth of the commu-

nication graphpl does not migrate0. Therefore, whilepl holdsn0, pl M, p2 is
forbidden since it violates the distribution invarianthiellocal view of cost functions
will not allow the migration of v-nodes t@2, even if such migrations would would
enhance the bandwidth of the communication graph.

5 Fault tolerance

This section investigates different strategies to presa®R-tree structure when some
p-node fails. In the classical DR-tree implementation psmal in [2] when a p-node



fails all its subtrees are reinserted in the non-faultytre (p-node by p-node) in
order to guarantee the DR-tree invariants.

In the following we study an alternative strategy that ekplmternal v-nodes repli-
cation.

5.1 Replication pattern
We propose a simple pattern of internal v-nodes replication

— the p-root holds no replica
— each p-node holds a replica of the v-father ot@p v-node

Each non leaf v-node is replicated on each p-node holdingbitev-children. For
a DR-tree of degree m-Mnt{> 2), it ensures that the v-root is replicated on 1 to M-1
p-nodes and that each internal v-node is replicated on mvig-nodes.

In Figure 1a, DR-tree has four non leaf v-node8; n1, n6 andn9. The following
table shows on which p-nodes they are replicated:

internal v-node ||n0 nl n6 n9
replicated on p-nodéges, p7 p2, p3, p4|p6 p8, p9
When a p-node fails each p-node holding the leftmost replica of a v-nodd bg
p replaces that v-node. The restoration of a given v-nodencerns p-nodes holding
a replica ofn: them— 1 to M — 1 p-node holding v-children afi. Moreover, the dis-
tribution invariants ensure that with p-nodes, no p-nodes holds more tHaogm(N) |
v-nodes.

In Figure 1a, ifpl fails, two internal v-nodes have to be restore@;andnl. The
former concern®5 andp7 while the latter concerng2 p3 andp4.

5.2 Replication cost

Replicas are created during joins and modified during jontssplits. When a v-node
is modified its holder should notify the p-nodes which hotdréplicas.

In the sequel we'll consider a DR-tree wibh participants, a degree ofi: M and
that updating one replica costs one message.

Figure 4 illustrates what happens at the R-tree level when@den splits. Basically
n creates a new v-node and delegates half of its childs b n’ is added tof childs. If
that wayf gets more thaM childs, it splits according the same algorithm.

To evaluate the cost of replicas update we have to evaluatentemy v-nodes are
modified during a split. Figure 4 shows that when a v-nodgplits, half of its childs
and its father are also modified. Each split modifies 2 v-nodes. As each v-node has
M — 1 replicas and that each update costs one message we have:

split_cost = (M+2) « (M —1)

A p-node joining the system triggers between 0 &kahm(N) | splits. Its v-leaf is
added to the v-children of another v-node that we will calthe sequel the joined
v-node. The joined v-node has:



(b) Afte

Fig. 4: R-tree split of v-noden

— betweemrmandM v-children
— [logm(N) — 1] v-ancestors
— betweerm— 1 andM — 1 replicas

In the following calculation we will define an upper bound be humber of updates
considering that each v-node hds- 1 replicas.

A v-node may havento M v-children and thus hagl — m+ 1 possible v-children
quantities. It splits only when it has exachyv-children. The probability for a v-node
to split is:

1

P=M_m+1

The probability for a p-node to triggdrsplits is the probabilitypy that the joined
v-node and itk — 1 first v-ancestors have exaclly v-children.

pc = P (1 p)

The average cost of replicas updates when a p-node joins @deRs thus:

Llogm(N)]
replication_cost = po* (M — 1)+ z (pk *x k* split_cost)
—— =1

no split

some splits

The first term corresponds to the case where no splits ageteg;M — 1 replicas
of the joined v-node are to be updated. The second term gamels to other cases.
We could have distinguished the case where the v-root sfifitsplitting probability is
different; it hasM — 1 possible v-children quantities. But for > 2 this probability is
smaller tharp so we just majorate it to keep things simple.
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Wbrst case In the worst case, the joined v-node and all its v-ancestocduding the
v-root) split. The probability of that case is:

logrm(N)]—1 1 Mogm(N)1-1
)11~ (G )
[logm(N)] v-nodes are modified. Thus the overcost in terms of messagesodthe
replication in a join triggerindglogm(N)] splits is:

[logm(N)] + (M —1)
Average cost The average overcost of messages caused by replicatiorgdujoin is:

[logm(N)]

z Pk—split * COStk—split
K=o

According previous calculations, this sum may be decompge two terms:

[logm(N)]-1
[ (Pepi )= (1. Pepi) * (k-+ 1)+ (M~ )|
k=0

(Psplit) "N 1= [logm(N)] + (M — 1)

Replication implies no time overcost. Its overcost is thertity of additional mes-
sages sent during joins. That quantity depends on the nuofilparticipant to the sys-
tem and on the DR-tree degree.

6 Evaluation

Our evaluation experiments were conducted on a discretmadimulator. At the start
of a cycle, a p-node may check if it can try to improve the perfance of the system
by migrating itsmigrable v-node, if it has one. To this end, the p-node calls a score
function which evaluates the benefit of a possible migratiothis v-node.

A migrationm=p —— q concerns p-nodes holding v-neighborsmoflet note this
set of p-nodesoncerned(m). We assume thagpv has some knowledge about tbest
between its p-neighbors. To decide whetheis worth or not, we use the following
score function:



concerned(m)
score(m) = z cost(p,r) —cost(q,r)

r

If p computes thascore(m) > 0 then, according t@, m may enhance system per-
formances. Having scores of possible migration,qf will try to execute the migration
with the best positive score. In our experiments, the medieted to the cost function
is the latency between p-nodes.

One thousand simulations were performed with differenfigomations of DR-tree,
with the following parameters:

— 500 p-nodes

— DR-tree degreewithm=2and M =4

— each experiment lasts 500 cycles

— the probability that a p-node checks for migrations is 1/10

DR-trees were populated with v-leaves represented by 5@fb0ectangles ran-
domly distributed in a 1024*1024 map. In order to simulatethay between p-nodes,
we use the Meridian data set [16]; it is a latency matrix te#iects the median of round-
trip times between 2500x2500 physical nodes spreads omatté-or our experiments,
we extracted a 500x500 sub-matrix.

6.1 Impact of migrations in all DR-tree configurations

Impact on latency. We firstly studied the impact of migrations on the latencyntssn
two p-nodes of the interaction graph.

Figure 5a shows the average latency gain due to migratiomail&ions with dif-
ferent DR-tree configurations were ordered by increasimyage latency without mi-
gration (X-axis). Y-axis corresponds to the average latémenillisecond in the com-
munication graph when the system is stabilized, i.e., ncemugration takes place.

The average latency obtained without migrations -and thitrsowt taking latency
heterogeneity into account- is highly dependent on the mngpgf v-root and its close
neighborhood. In a small number of cases, this mapping wdlsswi¢éed (resp. bad-
suited), leading to an average latency of 300ms (resp. 18p0#owever, in almost
80% of simulations, the average latency was between 350ch6@0ms.

As we can observe in the same figure, migration of v-nodeslgleahances av-
erage latency. The peaks of the curve can be similarly exgdhiin a small number
of cases, many and/or very effective (resp. few and/or l&ssteve) migrations were
applied, leading to an average latency of 150ms (resp. 800mmsnost cases, the gain
is around 50%.

Figure 5b shows the gain distribution. X-axis is the peragatof enhancement
reached during a simulation. Y-axis is the percentage ofilsitions wherex gain has
been reached. The gain distribution is quite gaussian%8fisimulations raise a gain
between 40% and 60%.
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Fig. 5: Measurements on 1000 simulations

Sabilization time. Figure 5¢ shows the distribution of the stabilization tirKeaxis is
the last cycle where a migration was executed while Y-axiséspercentage of simula-
tions where the last migration was executed at tkne

The distribution of stabilization time is also quite gaassi92.9% of simulations
converge in a number of cycles between 20 and 40. Even withdes‘rarely” checking
if they can perform migrations, stabilization is reachedyvast: simulations last 500
cycles and 96.1% of them converge in less than 40 cycles (1008s than 55 cycles).

Overall number of migrations. Figure 5d shows the number of migrations executed per
simulation.

We observe a relatively stable number of migrations arouthitd of p-nodes with
a low standard deviation. This suggests that different gonditions of DR-tree with the
same degree has low impact on the overall number of migmatiarfact, this number



depends in fact on the distribution of latencies betweemwges which is fixed in our
experiments.

6.2 Analysis of migrations in a given DR-Tree configuration

Among the previous simulations, we have chosen one whetinesponding DR-tree
configuration presents a distribution enhancement of 50¢u(E 5b), a stabilization
time of 25 cycles (Figure 5c¢), and 173 migrations executigigure 5d). Evaluation
results presented in the following are based on this sinoulat
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Fig. 6: Measurements on a very “average” simulation

In Figure 6a, we can observe the number of migration per e mdling the refer-
enced simulation. More than half of p-nodes do not partieijfaany migration and no
p-node participates in more than five migrations. Furtheemthe distribution of per
p-node migrations is relatively well-balanced since noogenis overloaded by a high
number of migrations and only 4 % of nodes perform more thanmigrations.

Figure 6b shows the evolution of average latency betweerdesin the interaction
graph till stabilization time. All p-nodes start migratipfanner at the first cycle of the



simulation. However, the first migrations actually occurshe fourth cycle since our

migration protocol takes four cycles to fully commit a v-mochigration. Due to our

migration protocol too, during the first cycles, migratiafshigh level p-nodes (and

thus v-nodes closer to v-leaves) are likely to be abortetheis tespective fathers are
also likely to be executing other migrations. Therefore, finst executed migrations
are more likely to concern lower level p-nodes (and thus level v-nodes, close to
the v-root) than higher level ones. Furthermore, the furfram the v-root a v-node

is, the longer the path to the v-root is, and thus its migratias a higher impact in

the overall average latency. After these first migratioms,dthers are more likely to be
small adjustments just inducing local communication eckaments which thus do not
reduce average latency.

The number of migrations executed per cycle for the samelation is given in
Figure 6¢. Y-axis is the number of executed migrations. Eselts shown in this figure
confirm our previous analysis of Figure 6b: since all p-ncdad the migration planner
during first cycle, many of them execute migrations durirgftburth cycles. Since all
p-node join the system during the first cycle, the higher thralper of cycles executed,
the smaller the number of executed migrations.

6.3 Abortrate

Our migration protocol is based on a best effort approackthwhmplies that attempts
of v-node migration may be aborted. Moreover, abortion ajnations has a cost due
to the messages exchanged by the involved p-nodes till titeqwl is aborted.

| min | max | avg [stddey
| [51.929%64.591%58.130% 1.969)

9% of simulations

Fig. 7: Abort rate distribution

Figure 7 shows the abort rate distribution. X-axis is thecpatage of aborted mi-
grations while Y-axis is the percentage of simulations hgx®6 of aborted migrations.

The rate of aborted migration is related to both the frequeri@-nodes attempts
for migrating a v-node and the DR-tree degree. The highsiftaguency is, the higher
chances are that a p-node and its p-father try to executeuo@mtly conflicting mi-
grations are. On the other hand, the higher the degree of Ragd® is, the higher the
chances are that a p-node can execute a migration and thusaine of its p-neighbors
migration attempts.



6.4 Migration scheduling impact

In this section, we compare two migration scheduling sgiatefor executing the mi-
gration plannemeriodical strategy where the planner is executed periodicallytege
gered strategy where the planner is executed whenever a v-nogétis s

Each simulation is basically composed of two main phasestery building and
system “lifetime”. The former starts at the simulationigization and ends when the
last p-node has joined the system while the latter starts Hfe last p-node has joined
the system and ends at the simulation termination. In thiegieally (resp. triggered)
strategy, migrations only takes place during the systefatitthe” (resp. building);

T T
Periodical migrations
grat

On split migrations

N | min | max | avg [stddey
Periodical [|-23.173-80.161-51.994 8.460
Split triggered|-25.241-80.168-51.979 8.823

9% of simulations

20 30 40 50 60 70 80
9% of enhancement

Fig. 8: Migration scheduling impact on average latency enhancemen

Figure 8 shows the distribution gain of the two migrationestiing. X-axis is the
percentage of enhancement reached during a simulatioe W4gkis is the percentage
of simulations where gain has been reached. We can observe that both strategies ar
rather similar in terms of gain.

7 Conclusion

Our article has shown that it is very interesting to explioé telation between the log-
ical structure of a DR-tree [2] and its corresponding phaisiateraction graph. By ex-
pressing some invariants, a dynamic migration mechanismmuadify the distribution
of DR-tree v-nodes over the physical network without moidifyits logical structure.
Evaluation results have confirmed that even a very simpleddést dynamic migra-
tion protocol substantially improves system performamceerms of latency. Finally,
we should point out that our dynamic v-node migration medrarcould be applied
to other logical structures. Concepts such as v-nodesdpsalistribution invariants,
migration policy, migration conflict management, migratfganner, etc. can be easily
generalized in order to satisfy other logical structuregirements.
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