Exploiting player behavior in distributed architectures for online games

Ph.D. defense of Sergey Legtchenko

INRIA/LIP6/UPMC/CNRS

Supervision: Sébastien Monnet

Pierre Sens

Massively Multiplayer Online Games (MMOGs)

Market: \$2.7 billions in 2010

MMOGs rely on expensive large-scale infrastructures

Data partitioning

Datacenter-based:

- 1000's of server-blades
- 100's of terabytes of DRAM
- Up to 80% of the financial revenue [Kesselman'05]

Problem: architectures are static. workload is dynamic

Normal load Normal load Normal load

Static game partitioning unadapted to player density evolutions

Problem: architectures are static, workload is dynamic

Normal load Normal load Normal load

Static game partitioning unadapted to player density evolutions

Problem statement

Problem: architectures are static, workload is dynamic

Normal load Normal load Normal load

Static game partitioning unadapted to player density evolutions

Conclusion

Problem: architectures are static, workload is dynamic

Problem statement

Static game partitioning unadapted to player density evolutions

Conclusion

Consequence: high cost, low efficiency

Data partitioning

Current MMOGs:

- Lots of empty servers [Cheslack-Postava et al, USENIX'12]
- Lots of overloaded servers [Varvello et al, NetGames'09]
- Independent game instances limited to few 100's of players
- Low quality of service
- No geo-scale seamless virtual universe
- No epic battles

Extensive efforts on adaptative mechanisms:

- Load balancing
- Interest management

Why no impact?

lack of robustness/performance

State of the art: Peer-to-peer (p2p)

[Colyseus, NSDI'06] [Donnybrook, SIGCOMM'08] [Solipsis, PDPTA'03] [Hydra, NetGames'07] [Walkad, IPTPS'09]

Server based

[Sirikata, USENIX'12] [Najaran et al., NetGames'10] [ALVIC-NG, NetGames'08]

Hybrid

[Jardine et al., NetGames'08]

large scale MMOGs

Well suited

for:

ast paced

Contributions of the Thesis

Data partitioning

Guideline:

improving MMOGs by making them aware of player behavior

Improving robustness:

• BlueBanana: increasing resilience of p2p MMOGs to player movement [DSN10]

Improving performance:

- DONUT: improving routing in large-scale p2p MMOGs with heterogeneous peer distributions [SRDS11]
- QuakeVolt: Efficient data management in server-based MMOGs with strong latency requirements [ongoing work]

Outline of the talk

Data partitioning

Focusing on performance improvement:

- Part 1: Improving routing in p2p MMOGs with heterogeneous peer distributions with DONUT (approx 20 minutes)
- Part 2: efficient data management for large-scale virtual battlegrounds with QuakeVolt (approx 15 minutes)

Part 1: Improving routing in peer-to-peer MMOGs

Conclusion

Context: large-scale p2p MMOGs

Nearest-neighbor overlays

Useful properties:

- Data locality
- Greedy routing
- Cheap
- Good fault resilience

Nearest-neighbors p2p overlays: [Mercury, VON, VoroNet, RayNet]

Problem: lack of routing efficiency

Efficient greedy routing:

- $O(log^d(N))$ with Small-World shortcuts [Kleinberg, STOC'2000]
- Requires estimation of hop distances between peers

Estimating hop distance

Real distributions: non-uniform

- Joins
- Player teleportation

Real distributions: non-uniform

- Joins
- Player teleportation

Real distributions: non-uniform

- Joins
- Player teleportation

Real distributions: non-uniform

- Joins
- Player teleportation

Real distributions: non-uniform

- Joins
- Player teleportation

Contribution: DONUT, density-aware shortcut rewiring mechanism

Idea: Make peers "density-aware"

On each peer:

- Step 1: Dynamically create map of game space density
- Step 2: Use map to build density-aware small-world shortcuts

Step 1: Making peers "density aware"

Naive solution: Locally store coordinates of all peers

Heterogeneous host distribution (Second Life trace snapshot)

Problem: not scalable!

- Thousands of peers
- High churn rates
- Peer mobility

Need to approximate the distribution.

Approximate the density distribution

ioximate the density distribution

Density map creation: two tasks

Task 1: Compute local density *Locally, using direct neighbors*

Task 2: Exchange density info *Piggybacking and gossiping*

Step 2: Log-partitioning for Small-World

Shortcut link to one random peer in each partition

 Obtained distribution enables small-world property...

 $[\mathit{Girdzijauskas}, \mathit{ICDEW}'05]$

 ...if hop distances are accurately approximated Log partitions of overlay graph by A and Small-World shortcuts of A

 P_1 , P_2 ,..., $P_{log(N)}$ partitions $\forall B \in P_i$, $2^{-i} \le d(A,B) \le 2^{-i+1}$ with d(A,B) **in hops**

Hop distance estimation using map

Estimate hop distance between A & B:

- Find the regions that intersect [AB]
- Estimate hops in each region
- Sum hops for all regions

Jniform density inside region

Small-world shortcuts with Monte-Carlo sampling

On local map:

- Find max hop distance to peer
- 2 Approximate log partition

Cost:

- Depends on sampling precision
- No remote operations

Position of A in game space

Farthest coordinate

Small-world shortcuts with Monte-Carlo sampling

On local map:

- Find max hop distance to peer
- Approximate log partition

Cost:

- Depends on sampling precision
- No remote operations

Simulation based on real data

Latency traces:

• collected between 2500 hosts spread over the internet.

Churn traces:

Overnet, Skype, Microsoft corporate desktops

Game space density traces:

• Traces derived from Second Life avatar distribution.

Data Credit:

[Latency: Madhyastha et al., Churn: http://fta.inria.fr/, Second Life: La et al.]

Comparison: DONUT vs

Non-small-world shortcuts:

Random Uniform shortcut distribution

Small-world shortcuts:

- Uniform: no density information
- Oscar: density sampling with random walks
- Optimal: each peer holds the overlay graph

DONUT is close to optimal

DONUT latency is within 2% of optimal

Collecting global state is cheap

Contributions in p2p MMOGs:

Technique to aggregate distributed game space information.

• Cheap: a few bytes per second per peer.

Technique to build density aware shortcuts in the overlay

- Improves state-of-the-art by 20%
- Accurate: within 10% of optimal

Part 2: MMOGs with tight latency requirements

Work in progress!

Problem statement P2P routing (Data partitioning) Conclusion

Context: server-based MMOFPS

Large scale First Person Shooters

Partition-based design:

Problem statement P2P routing (Data partitioning) Conclusion

Context: server-based MMOFPS

Large scale First Person Shooters

Partition-based design:

Problem statement P2P routing (Data partitioning) Conclusion

Context: server-based MMOFPS

Large scale First Person Shooters

Partition-based design:

Problem: scalability ruins performance

Scalability mechanism:

Game space

Logical topology

Ensures scalability...

- Fair load balancing
- Elastic horizontal scalability

...but fragments game space:

- Increase of inter-zone transfers
- Increase of network traffic

Problem: scalability ruins performance

Scalability mechanism:

Game space

Logical topology

Ensures scalability...

- Fair load balancing
- Elastic horizontal scalability

...but fragments game space:

- Increase of inter-zone transfers
- Increase of network traffic

What to do?

Fragmentation is harmful, so how to:

- Ensure scalability
- Limit fragmentation

Contributions:

- Scalability analysis of Quake III, a popular server-based game
- Scalable architecture that limits game space fragmentation

Quake III First Person Shooter

Not quite an MMOFPS:

- Single server
- Limited to less than 100 players

Benefits of using Quake III:

- Still popular and open source
- High responsiveness requirements
- Design similar to many MMOG servers

Q3 Server execution tasks

20 frames per second (fps) when not overloaded

Quake III bandwidth consumption

Quake III CPU consumption/framerate

QuakeVolt MMOG architecture

Result of scalability analysis:

Game progression scales much better than view propagation

Idea: Decouple Game progression from View propagation

3-tier architecture:

- Quake III server ensures Game progression
- Low latency (in-memory) database stores game state
- View propagation is delegated to a set of Snapshot Mirrors

Problem statement P2P routing (Data partitioning) Conclusion

Benefits of the design

Eases dynamic adaptation to workload:

- Limited data fragmentation
- Easy dynamic reconfiguration
- Elastic scale out
- No client-side modification

Distributed frame computation

Promising work

- VoltDB used as in-memory database
- Runs on our cluster and on Grid'5000 with 10's of clients
- Native protocol unmodified (legacy Q3 clients can connect)
- Already playable (and fun!)
- ullet Easy to implement (modification of < 0.03% of Q3 code)

Conclusion

Conclusion

Integration of player behavior is good for MMOG architectures

Contribution summary

- Better robustness of p2p MMOGs through prediction of player trajectories (not detailed in the talk)
- Better routing performance in p2p MMOGs thanks to player distribution monitoring
- See Less data fragmentation in server-based MMOGs thanks to accurate player view management

Behavior-aware mechanisms are lightweight and generic

Future work and perspectives

Short term:

- DONUT on top of existing overlays for range querying
- Extensive evaluation of QuakeVolt
- Adaptative mechanisms for QuakeVolt elasticity and scale out

Long term: exploiting player behavior for future MMOGs

- Improvement of player behavior modeling
- Design of enhanced monitoring techniques
- Better integration of player behavior at systems level

Thank you for your attention!

Data partitioning

Publications related to subject:

- DONUT: Building Shortcuts in Large-Scale Decentralized Systems with Heterogeneous Peer Distributions. S. Legtchenko, S.Monnet and P.Sens [SRDS11]
- BlueBanana: resilience to avatar mobility in distributed MMOGs. S.Legtchenko, S.Monnet and G.Thomas [DSN10]

Other publications:

- RelaxDHT: a churn-resilient replication strategy for peer-to-peer distributed hash-tables. S. Legtchenko, S. Monnet, P.Sens and G.Muller [TAAS11]
- Churn-Resilient Replication Strategy for Peer-to-Peer Distributed Hash-Tables. S.Legtchenko, S.Monnet, P.Sens and G.Muller [SSS09]