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DHT-based P2P systems provide a fault-tolerant and scalable means to store data blocks in a

fully distributed way. Unfortunately, recent studies have shown that if connection/disconnection

frequency is too high, data blocks may be lost. This is true for most of the current DHT-based
system’s implementations. To deal with this problem, it is necessary to build more efficient

replication and maintenance mechanisms. In this paper, we study the effect of churn on PAST,

an existing DHT-based P2P system. We then propose solutions to enhance churn tolerance and
evaluate them through discrete event simulation.
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1. INTRODUCTION

Distributed Hash Tables (DHTs), are distributed storage services that use a struc-
tured overlay relying on key-based routing (KBR) protocols [Rowstron and Dr-
uschel 2001b; Stoica et al. 2003]. DHTs provide the system designer with a power-
ful abstraction for wide-area persistent storage, hiding the complexity of network
routing, replication, and fault-tolerance. Therefore, DHTs are increasingly used
for dependable and secure applications like backup systems [Landers et al. 2004],
distributed file systems [Dabek et al. 2001; Busca et al. 2005], multi-range query
systems [Schmidt and Parashar 2004; Gupta et al. 2003; Chawathe et al. 2005], and
content distribution systems [Jernberg et al. 2006].

A practical limit in the performance and the availability of a DHT relies in the
variations of the network structure due to the unanticipated arrival and departure of
peers. Such variations, called churn, induce at least performance degradation, due

1This work is an extended version of [Legtchenko et al. 2009]
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to the reorganization in the set of the replicas of the affected data that consumes
bandwidth and CPU cycles, and at worst the loss of some data. In fact, Rodrigues
and Blake have shown that using classical DHTs to store large amounts of data is
only viable if the peer lifetime is in the order of several days [Rodrigues and Blake
2004]. Until now, the problem of churn resilience has been mostly addressed at the
peer-to-peer (P2P) routing level to ensure the reachability of peers by maintaining
the consistency of the logical neighborhood, e.g., the leafset, of a peer [Rhea et al.
2004; Castro et al. 2004]. At the storage level, avoiding data migration is still an
issue when a reconfiguration of the peers has to be done.

In a DHT, each peer and each data block is assigned a key (i.e., an identifier).
A data block’s key is usually the result of a hash function performed on the block.
Each data block is associated a root peer whose identifier is numerically the closest
to its key. The traditional replication scheme uses the subset of the root’s leafset
containing the closest logical peers to store the copies of a data block [Rowstron and
Druschel 2001b]. Therefore, if a peer joins or leaves the leafset, the DHT enforces
the placement constraint on the closest peers and may migrate many data blocks.
In fact, it has been shown that the cost of these migrations can be high in terms of
bandwidth consumption [Landers et al. 2004].

This paper proposes RelaxDHT, a variant of the leafset replication strategy de-
signed to tolerate higher churn rates than traditional DHT protocols. Our goal is
to avoid data block migrations when the desired number of replicas is still available
in the DHT. We relax the “logically closest” placement constraint on block copies
and allow a peer to be inserted in the leafset without forcing migration. Then,
to reliably locate the block copies, the root peer of a block maintains replicated
localization metadata. Metadata management is integrated to the existing leafset
management protocol and does not incur substantial overhead in practice.

We have implemented both PAST and RelaxDHT, on top of PeerSim [Jelasity
et al. 2008]. The main results of our evaluations are:

—We show that RelaxDHT achieves higher data availability in presence of churn,
than the original PAST replication strategy. For a connection or disconnection
occurring every six seconds (for 1000 peers) our strategy looses three times less
blocks than the PAST’s one.

—We show that our replication strategy induces less unnecessary block transfers
than the PAST’s one.

—If message compression is used, our maintenance protocol is more lightweight
than the maintenance protocol of PAST.

The rest of this paper is organized as follows. Section 2 first presents an overview
of the basic replication schemes and maintenance algorithms commonly used in
DHT-based P2P systems, then their limitations are highlighted. Section 3 intro-
duces RelaxDHT, an enhanced replication scheme for which the DHT’s placement
constraints are relaxed so as to obtain a better churn resilience. Evaluation of this
algorithm is presented in Section 4. Section 5 presents an analysis of RelaxDHT
maintenance cost before Section 6 concludes with an overview of our results.
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2. BACKGROUND AND MOTIVATION

DHT based P2P systems are usually structured in three layers: 1) a routing layer,
2) the DHT itself, 3) the application that uses the DHT. The routing layer is based
on keys for peer identification and is therefore commonly qualified as Key-Based
Routing (KBR). Such KBR layers hide the complexity of scalable routing, fault
tolerance, and self-organizing overlays to the upper layers. In recent years, many
research efforts have been made to improve the resilience of the KBR layer to a high
churn rate [Rhea et al. 2004]. The main examples of KBR layers are Pastry [Row-
stron and Druschel 2001a], Chord [Stoica et al. 2003], Tapestry [Zhao et al. 2004]
and Kademlia [Maymounkov and Mazieres 2002]. The DHT layer is responsible for
storing data blocks. It implements a distributed storage service that provides per-
sistence, fault tolerance and can scale up to a large number of peers. DHTs provide
simple get and put abstractions that greatly simplify the task of building large-scale
distributed applications. PAST [Rowstron and Druschel 2001b] and DHash [Dabek
et al. 2004] are DHTs respectively built on top of Pastry [Rowstron and Druschel
2001a] and Chord [Stoica et al. 2003]. Thanks to their simplicity and efficiency,
the DHTs became standard components of modern distributed applications. They
are used in storage systems supporting multi-range queries [Schmidt and Parashar
2004; Gupta et al. 2003; Chawathe et al. 2005], mobile ad hoc networks [Zahn and
Schiller 2006], aswell as massively multiplayer online gaming [Varvello et al. 2009],
or robust backup systems [Landers et al. 2004].

In the rest of this section we present replication techniques that are used to
implement the DHT layer. Then, we describe the related work that considers the
impact of churn on the replicated data stored in the DHT.

2.1 Replication in DHTs

In a DHT, all the peers are arranged in a logical structure according to their iden-
tifiers, commonly a ring as used in Chord [Stoica et al. 2003] and Pastry [Rowstron
and Druschel 2001a] or a d-dimensional torus as implemented in CAN [Ratnasamy
et al. 2001] and Tapestry [Zhao et al. 2003].

A peer possesses a restricted local knowledge of the P2P network, i.e., the leafset,
which amounts to a list of L close neighbors in the ring. For instance, in Pastry the
leafset contains the addresses of the L/2 closest neighbors in the clockwise direction
of the ring, and the L/2 closest neighbors counter-clockwise. Periodically, each peer
monitors its leafset, removing peers that have disconnected from the overlay and
adding new neighbor peers as they join the ring.

In order to tolerate failures, each data block is replicated on k peers which com-
pose the replica set of a data block. Two protocols are in charge of the replica
management, the initial placement protocol and the maintenance protocol. We
now describe existing solutions to implement these two protocols.

2.1.1 Replica placement protocols. There are two main basic replica placement
strategies, leafset-based and multiple-key-based:

Leafset-based replication. The data block’s root is responsible for storing one copy
of the block. The block is also replicated on the root’s closest neighbors in a subset of
the leafset. The neighbors storing a copy of the data block may be either immediate
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Fig. 1. Leafset-based and multiple-key-based replication (k = 5).

successors of the root in the ring as in DHash [Dabek et al. 2004], immediate
predecessors or both as in PAST [Rowstron and Druschel 2001b]. Therefore, the
different copies of a block are stored contiguously in the ring as shown by Figure 1.

Multiple key replication. This approach relies on computing k different storage
keys corresponding to different root peers for each data block. Data blocks are then
replicated on the k root peers. This solution has been implemented by CAN [Rat-
nasamy et al. 2001] and Tapestry [Zhao et al. 2003]. GFS [Ghemawat et al. 2003]
uses a variant based on random placement to improve data repair performance.
Path and symmetric replication are variants of multiple-key-based replication [Gh-
odsi et al. 2005; Ktari et al. 2007].

Lian et al. propose a hybrid stripe replication scheme where small objects are
grouped in blocks and then randomly placed [Lian et al. 2005]. Using an analytical
framework, they show that their scheme achieves on near-optimal reliability. Fi-
nally, several works have focused on the placement strategies based on availability
of nodes. Van Renesse [van Renesse 2004] proposes a replica placement algorithm
on DHT by considering the reliability of nodes and placing copies on nodes until the
desired availability is achieved. To this end, he proposes to track the reliability of
each node such that each node knows the reliability information about each peer. In
FARSITE [Adya et al. 2002], dynamic placement strategies improve the availability
of files. Files are swapped between servers according to the current availability of
these latter. With theses approaches, the number of copies can be reduced. How-
ever, such approaches may lead to a high unbalanced distribution whereby highly
available nodes contain most of the replicas and can become overloaded. Further-
more, such solutions are complementary, and taking nodes-availability into account
could be done on top of RelaxDHT.

2.1.2 Maintenance protocols. The maintenance protocols have to maintain k

copies of each data block without violating the initial placement strategy. It means
that the k copies of each data block have to be stored on the root-peer-contiguous
neighbors in the case of the leafset-based replication scheme and on the root peers
in the multiple-key-based replication scheme.

The leafset-based maintenance mechanism is based on periodic information ex-
changes within the leafsets. Leafset-based maintenance mechanisms have good
scalable properties: the number of messages of the protocol does not depend on
the number of data blocks managed by a peer, but only on the leafset size. Yet,
even if the overall quantity of maintenance data linearly grows with the number of
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blocks, it is possible to efficiently aggregate and compress the data. For instance, in
the fully decentralized PAST maintenance protocol [Rowstron and Druschel 2001b],
each peer sends a bloom filter to all the peers in its leafset. The bloom filter is a
compact probabilistic data structure containing the set of block identifiers stored
by the peer [Broder et al. 2002]. When a leafset peer receives such a request, it
uses the bloom filter to determine whether it stores one or more blocks that the
requester should also store. It then answers with the list of the keys of these blocks.
The requesting peer can then fetch the missing blocks listed in all the answers it
receives. Notice that the maintenance interval at the KBR layer is much smaller
than the maintenance interval of blocks (for instance in PAST the default value of
leafset maintenance interval is 1 minute whereas the data block interval is set to 10
minutes).

In the case of the multiple-key-based replication strategies, the maintenance has
to be done on a “per data block” basis. For each data block stored in the system, it
is necessary to periodically check if the different root peers are still alive and are still
storing a copy of the data block. This replication method has the drawback that a
maintenance message has to be sent to each root of each data block, which means
that the number of messages linearly grows with the number of blocks. Therefore,
it seems impossible to aggregate maintenance information in order to optimize its
propagation ,e.g., by compressing the messages like in leafset-based replication. For
backup and file systems that may store up to thousands of data blocks per peer,
this is a severe limitation.

2.2 Impact of the churn on the DHT performance

A high churn rate induces consequent changes in the P2P network, and the main-
tenance protocol must frequently adapt to the new structure by migrating data
blocks. While some migrations are mandatory to restore k copies, some others are
only necessary to enforce placement invariants.

For example, as a new peer joins the system, if its identifier is closer to a block’s
key than the identifier of the current block’s root, the data block needs to be
migrated on the new peer. A second example occurs in leafset-based replication if
a peer joins the DHT between two nodes storing replicas of the same block. One
of the replicas then needs to be migrated on the new peer in order to maintain
the contiguity between replicas. It should be noticed that larger the replica set is,
higher is the probability for a new peer to induce migrations. Kim and Park try to
limit this problem by allowing data blocks to interleave in leafsets [Kim and Park
2006]. However, they have to maintain a global knowledge of the complete leafset:
each peer has to know the content of all the peers in its leafset. Unfortunately, the
maintenance algorithm is not described in detail and its real cost is unknown.

In the case of the multiple-key-based replication strategy, a new peer may be
inserted between two replicas without requiring the migration of data blocks, as
long as the new peer identifier does not make it one of the data block roots.

3. RELAXING THE DHT’S PLACEMENT CONSTRAINTS TO TOLERATE CHURN

The goal of this work to is to design a DHT that tolerates a high rate of churn
without degradation of performance. In order to achieve this, we avoid to copy
data blocks when this is not mandatory to restore a missing replica. We introduce
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a leafset based replication that relaxes the placement constraints in the leafset. Our
solution, named RelaxDHT, is presented thereafter.

3.1 Overview of RelaxDHT

RelaxDHT is built on top of a KBR layer such as Pastry or Chord. Our design
decisions are to use replica localization metadata and separate them from data
block storage. We keep the notion of a root peer for each data block. However, the
root peer does not necessarily store a copy of the blocks for which it is the root. It
only maintains metadata describing the replica set and periodically sends messages
to the replica set peers to ensure that they keep storing their copy. It is possible,
but not mandatory, for a peer to be both root and part of the replica set of the
same data block. Using localization metadata allows a data block replica to be
anywhere in the leafset; a new peer may join a leafset without necessarily inducing
data block migrations.

We choose to restrain the localization of replicas within the root’s leafset for two
reasons. First, we believe that it is more scalable, because the number of messages
of our protocol does not depend on the number of data blocks managed by a peer,
but only on the leafset size 2. Second, since the routing layer already induces many
exchanges within leafsets, the local view of the leafset at the DHT-layer can be used
as a failure detector. We now detail the salient aspects of the RelaxDHT algorithm.

3.1.1 Insertion of a new data block. To be stored in the system, a data block
b with key key is inserted using the put(k,b) operation. This operation produces
an “insert” message which is sent to the root peer through the KBR layer. Then,
the root randomly chooses a replica set of k peers around the center of the leafset.
The peer belongs to the center of a root’s leafset if its hop-distance to the root
is less than a fixed value ε1. The algorithm chooses the replica-peers inside the
center to reduce the probability that a chosen peer quickly quits the leafset due to
the arrival of new peers. Finally, the root sends to the replica set peers a “store
message” containing:

(1) the data block itself,

(2) the identity of the peers in the replica set,

(3) the identity of the root.

As a peer may be root for several data blocks and part of the replica set of other
data blocks, it stores:

(1) a list rootOfList of data block identifiers with their associated replica-set-peer
list for blocks for which it is the root;

(2) a list replicaOfList of data blocks for which it is part of the replica set. Along
with data blocks, this list also contains: the identifier of the data block, the
associated replica set peer-list and the identity of the root peer.

A lease counter is associated to each stored data block. This counter is set
to the value “Lease” which is a constant. It is then decremented at each leafset

2see section 2.1.2.
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maintenance time. The maintenance protocol described below is responsible for
periodically resetting this counter to “Lease”.

3.1.2 Maintenance protocol. The goal of this periodic protocol is to ensure that:
1) a root peer exists for each data block. The root is the peer that has the closest
identifier to the data block’s one; 2) each data block is replicated on k peers located
in the data block root’s leafset.

At each period T , a peer p executes Algorithm 1, so as to send maintenance
messages to the other peers of the leafset. It is important to notice that Algorithm 1
uses the leafset knowledge maintained by the peer routing layer which is relatively
accurate because the inter-maintenance time of the peers is much smaller than the
DHT-layer’s one.

Algorithm 1: RelaxDHT maintenance message construction.
Result: msgs, the built messages.
for data ∈ rootOfList do1

for replica ∈ data.replicaSet do2
if NOT isInCenter ( replica,leafset) then3

newPeer =choosePeer (replica,leafset);4
replace (data.replicaSet, replica,newPeer);5

for replica ∈ data.replicaSet do6
add(msgs [ replica ],<STORE, data.blockID, data.replicaSet >);7

for data ∈ replicaOfList do8
if NOT checkRoot (data.rootPeer,leafset) then9

newRoot =getRoot (data.blockID,leafset);10
add(msgs [ newRoot ],<NEW ROOT, data.blockID, data.replicaSet >);11

for p ∈ leafset do12
if NOT empty (msgs [ p ]) then13

send(msgs [ p ],p);14

The messages constructed by Algorithm 1 contain a set composed of the following
elements:

STORE. elements for asking a replica node to keep storing a specific data block
(i.e., resetting the lease counter).

NEW ROOT. elements for notifying a node that it has become the new root of
a data block.

Each element contains both a data block identifier and the associated replica-set-
peer list.

Algorithm 1 sends at most one single message to each leafset member.
Algorithm 1 is composed of three phases: the first one computes STORE elements

using the rootOfList structure (lines 1 to 7), the second one computes NEW
ROOT elements using the replicaOfList structure (from line 8 to 11), the last
one sends messages to the destination peers in the leafset (line 12 to the end).
Message elements computed in the two first phases are added to msgs[]. msgs[q] is
a message containing all the elements to send to node q at the last phase.
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Therefore, each peer periodically sends a maximum of leafset-size mainte-
nance messages to its neighbors. The size of these messages depends on the num-
ber of blocks. However, we will show in the performance section that our approach
remains scalable even if the number of blocks per node is huge.

In the first phase, for each block for which the peer is the root, it checks if all
the replicas are placed sufficiently far from the extremity of the leafset (line 3)
using its local view provided by the KBR layer. We define the extended center of
a root’s leafset as the set of the peers which distance to the root is less than a
system-defined value ε2 (with ε2 > ε1, i.e., the center of the leafset is a subset of
the extended center of the leafset3). If a peer is out of the extended center, its
placement is considered to be too close to the leafset extremity. In that case, the
algorithm replaces the peer by randomly choosing a new peer in the center of the
leafset. It then updates the replica set of the block (lines 4 and 5). Finally, the
peer adds a STORE element in each replica-set-peer message (lines 6 and 7). In
the second phase, for each block stored by the peer (i.e., the peer is part of the
block’s replica set), it checks if the root node did not change.

This is done by checking that the identifier of the current root is still the closest
to the block’s key (line 9). If the root has changed, the peer adds a NEW ROOT
message element to announce to the future root peer that it is the new root of the
data block. Finally, from line 12 to line 14, a loop sends the computed messages to
each leafset member.

Note that it is possible to temporarily have two different peers acting as a root
peer for the same data block. However, this phenomenon is rare. This may happen
when a peer joins, becomes root of a data block and then receive a NEW ROOT
message element from a replica node for this data block before the old ROOT (its
direct neighbor in the leafset) detects its insertion. Moreover, even if this happens,
it does not lead to data loss. The replica set of the root will simply receive more
STORE messages, and the anomaly will be resolved with the next maintenance of
the wrong root (i.e. at most 10 minutes later in our system).

Algorithm 2: RelaxDHT maintenance message reception.
Data: message, the received message.
for elt ∈ message do1

switch elt.type do2
case STORE3

if elt.id ∈ replicaOfList then4
newLease(replicaOfList,elt.id);5
updateRepSet(replicaOfList,<elt.id,elt.replicaSet >);6

else7
requestBlock(elt.id,elt.replicaSet);8

case NEW ROOT9
addRootElt(rootOfList,<elt.id,elt.replicaSet >);10

3.1.3 Maintenance message treatment

3see section 3.1.1 for the definition of the leafset center
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For a STORE element. (line 3), if the peer already stores a copy of the corre-
sponding data block, it resets the associated lease counter and updates the corre-
sponding replica set if necessary (lines 4, 5 and 6). If the peer does not store the
associated data block (i.e., it is the first STORE message element for this data
block received by this peer), it fetches the latter from one of the peers mentioned
in the received replica set (line 8).

For a NEW ROOT element. , a peer adds the data block id and the correspond-
ing replica set in the rootOfList structure (line 10).

3.1.4 End of a lease treatment. If a data block lease counter reaches 0, it means
that no STORE element has been received for a long time. This can be the result
of numerous insertions that have pushed the peer outside the leafset center of the
data block’s root. The peer sends a message to the root peer of the data block to
ask for the authorization to delete the block. Then, the peer receives an answer
from the root peer, either allowing to remove the data block or asking to put the
data block again in the DHT (if the data block has been lost).

3.1.5 Impact of the ε1 and ε2 values on the protocol performance. The place-
ment constraints of RelaxDHT are defined by the parameters ε1 and ε2. The first
parameter defines a set of nodes around a block’s root (called the center of the leaf-
set) on which the replicas of the block are initially placed. The second one defines
the tolerance threshold of the protocol: the replacement of the replica inside the
center is performed only its hop distance to the root exceeds ε2 due to node arrival.

It is thus important to set optimal values for ε1 and ε2. We varied these parame-
ters to study how they affect the churn resilience of the protocol. As it can be seen
on the figure 2, ε1 has the most important impact on the churn resilience. Low
values of ε1 reduce the churn tolerance of the DHT, because they strengthen the
initial placement constraints. Strong placement constraints increase the correlation
between the blocks stored by a node, thus reducing the number of sources that can
be used to restore replicas when a node fails. For example, if ε1 = k, the replicas
of a block are necessarily placed on the root and its k− 1 contiguious neighbors. It
means that in case of the failure of a node n, the replicas of all the blocks stored
on n are located on k + 1 nodes, which is less than for larger values of ε1.

The ε2 parameter should not be too low because it would reduce the placement
tolerance of the protocol, and should not be to high, because if a replica shifts out
the extended center and out of the leafset, its lease is no more renewed, which may
lead to the loss of the replica. However, the figure 2 shows that the parameter has
less influence on data loss than ε1, because its value is important only when the
leafset faces an important node arrival. For our evaluation, we choose ε1 = 4 and
ε2 = 8.

3.2 Side effects and limitations

By relaxing placement constraints of data block copies in leafsets, our replication
strategy for DHTs significantly reduces the number of data blocks to be transferred
when peers join or leave the system. Thanks to this, we show in the next section
that our maintenance mechanism allows us to better tolerate churn. However, this
enhancement has several possibly inconvenient effects. The two main ones concern
the data block distribution on the peers and the lookup performance. While the
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Fig. 2. Number of blocks lost on a 100 peer-DHT after one hour churn in function of the ε1 ans

ε2 parameters.

changes in data block distribution can provide positive effects, the lookup perfor-
mance can be slightly reduced.

3.2.1 Data blocks distribution. With usual replication strategies in DHT’s, the
data blocks are distributed among peers according to some hash function. There-
fore, if the number of data blocks is big enough, data blocks should be uniformly
distributed among all the peers. When using RelaxDHT, this remains true if there
are no peer connections/disconnections. However, in presence of churn, as our
maintenance mechanism does not transfer data blocks if it is not necessary, new
peers will store much less data blocks than peers involved for a longer time in the
DHT. It is important to notice that this side effect is rather positive: the more
stable a peer is, the more data blocks it will store. Furthermore, it is possible to
easily counter this effect by taking into account the quantity of stored data blocks
while randomly choosing peers to add in replica sets.

3.2.2 Lookup performance. Our strategy also induces additionnal delay while
retrieving blocks from the DHT because the placement of the data block on its root
is no more mandatory. During a lookup, if no replica is stored on the root, the root
has to forward the request to one of the k replica nodes. This adds one hop to the
request, and the latency of the last link is added to the overall lookup latency. This
never happens in PAST, because the root of a block necessarily stores it.

We compared the lookup performance of both strategies by simulating a DHT
with 1000 nodes in presence of churn. As we can see in figure 3.a, the lookup
latency is in average about 13% lower with PAST than with RelaxDHT. The figure
3.b shows that the percentage of failed lookups increases the same way for the
two strategies as the churn intensifies. RelaxDHT has a slightly better failure
percentage, because all the nodes of the replica set (i.e., the root and the k replica
nodes) have the complete list of the replicas, thus allowing to re-route the request
if the root does not have the block. In PAST, if the block on the root is missing,
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the lookup fails.

(a) (b)

Fig. 3. For 1000 nodes, varying the churn rate: (a) Average lookup latency, (b) Percentage
of failed lookups.

The observed latency overhead is constant and relatively low, because the root has
the list of all the replica-nodes, and is able to choose the least expensive link for
the last hop. As the main concern of DHTs is to provide large scale persistent data
storage, we consider that the slight latency overhead in data retrieval is affordable
in most of the cases. Moreover, if the lookup performance is essential to the applica-
tion, it is possible to lower the probability that a root does not to store a replica by
choosing small values for ε1

4. Small values of ε1 increase the placement constraints,
reducing the churn resilience, but a tradeoff between the lookup efficiency and the
churn resilience can be found.

4. EVALUATION

This section provides a comparative evaluation of RelaxDHT and PAST [Rowstron
and Druschel 2001b]. This evaluation, based on discrete event simulations, shows
that RelaxDHT provides a considerably better tolerance to churn: for the same
churn levels, the number of data losses is divided by more than two when comparing
both systems.

4.1 Experimental setup

To evaluate RelaxDHT, we have built a discrete event simulator using the Peer-
Sim [Jelasity et al. 2008] simulation kernel. We have implemented both PAST and
RelaxDHT strategies. It is important to note that all the different layers and all
message exchanges are simulated. Our simulator also takes into account network
congestion because DHT maintenance during churn incurs a lot of simultaneous
downloads that are likely to congest the links. Moreover, we used real-life latency
traces. Measurements performed by Madhyastha et al. [Madhyastha et al. 2006]

4e.g., if ε1 = k, k being the replica rate, all the replicas are contiguously stored around the root,

forcing the root to store a replica.
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between DNS servers in 2004 were injected in the simulation to simulate a realistic
latency distribution.

For all the simulation results presented in the section, we used a 1000-peer net-
work with the following parameters (for both PAST and RelaxDHT):

—a leafset size of 24, which is the Pastry default value;

—an inter-maintenance duration of 10 minutes at the DHT level;

—an inter-maintenance duration of 1 minute at the KBR level;

—100,000 data blocks of 10,000 KB replicated 3 times;

—network links of 1 Mbits/s for upload and 10 Mbits/s for download.

—for RelaxDHT maintenance protocol, the leafset center is set to the 8 central
nodes, while the extended center is set to the 16 central nodes of the leafset5.

—the replica set lease is set to 5 DHT maintenance periods, i.e., 50 minutes.

We have injected churn following two different scenarii:

One hour churn. This scenario allows us to study 1) how many data blocks are
lost after a perturbation period and 2) how long it takes to the system to return to
a state where all remaining/non-lost data blocks are replicated k times. It consists
of one perturbation phase with churn during one hour followed by another phase
without connections/disconnections. In real-life, there are some period without
churn within a leafset, and the system has to take advantage of them to converge
to a safer state.

Continuous churn. This scenario focuses on the perturbation period: it provides
the ability to study how the system resists when it has to repair lost copies in
presence of churn. For this set of simulations, we focus on phase one of the previous
case observing a snapshot of the DHT during churn.

During the churn phase at each perturbation period we randomly choose either a
new peer connection or a peer disconnection. This perturbation can occur anywhere
in the ring (uniformly chosen). We have run numerous simulations varying the
inter-perturbation delay.

4.2 Single failure

In order to better understand the simulation results using the two scenarii, we start
by measuring the impact of a single peer failure/disconnection. When a single peer
fails, data blocks it stored have to be replicated on a new one. Those blocks are
transferred to the new peer in order to rebuild the initial replication degree k. In
our simulations, with the parameters given above, it takes 4609 seconds to PAST
to recover the failure: i.e., to create a new replica for each block stored on the
faulty peer, while with RelaxDHT, it takes only 1889 seconds. The number of
peers involved in the recovery is indeed much more important. This gain is due to
the parallelization of the data block transfers:

—in PAST, the content of contiguous peers is really correlated. With a replication
degree of 3, only peers located at one or two hops of the faulty peer in the ring

5i.e., ε1 = 4 and ε2 = 8, see section 3 for the description of these sets.
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may be used as sources or destinations for data transfers. In fact, only k+1 peers
are involved in the recovery of one faulty peer, where k is the replication factor.

—in RelaxDHT, all of the peers in the extended center of the leafset (the extended
center contains 16 peers in our simulations) may be involved in the transfers.

4.3 One hour churn

We first study the number of lost data blocks (data block for which the 3 copies
are lost) in PAST and in RelaxDHT under the same churn conditions. Figure 4.a
shows the number of lost data blocks after a one-hour churn period. The inter-
perturbation delay is increasing along the X axis. With RelaxDHT and our main-
tenance protocol, the number of lost data blocks is 2 to 3 times lower than with
the PAST’s one.

The main reason of the result presented above is that, using the PAST replica-
tion strategy, the peers have more data blocks to download. It implies that the
mean download time of one data block is longer using PAST replication strategy.
Indeed, the maintenance of the replication scheme location constraints generate a
continuous network traffic that slows down critical transfers, preventing efficient
data block copy restoration.

(a) (b)

(c)

Fig. 4. (a) Number of data block lost (i.e., all copies are lost) after one hour of churn,
(b) Number of exchanged data blocks to restore a stable state after one hour of churn, (c)
Recovery time: time for retrieving all the copies of every remaining data block.
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Figure 4.b shows the total number of blocks exchanged in both cases. There again,
the X axis represents the inter-perturbation delay. The figure shows that with
RelaxDHT the number of exchanged blocks is always smaller than with PAST.
This is mainly due to the fact that in PAST’s case some transfers are not critical
and are only done to preserve the replication scheme constraints. For instance, each
time a new peer joins, it becomes root of some data blocks 6 or is inserted within
replica sets that should remain contiguous. As a consequence, a reorganization of
the storage has to be performed. In RelaxDHT, most of the non-critical bandwidth
consumption is replaced by critical data transfers: the maintenance traffic is more
efficient.

Using PAST replication strategy, a newly inserted peer may need to download
data blocks during many hours, even if no failure/disconnection occurs. During all
this time, its neighbors need to send it the required data blocks, using a large part
of their upload bandwidth.

In the case of RelaxDHT, no or very few data block transfers are required when
new peers join the system. It becomes mandatory only if some copies become too
far from their root-peer in the logical ring (i.e., they leave the leafset center, which
is, in our simulation, formed of the 16 peers that are the closest to the root peer).
In this case, they have to be transferred closer to the root before their hosting peer
leaves the root-peer’s leafset. With a replication degree of 3 and a leafset size of
24, many peers can join a leafset before any data block transfer is required.

Finally, we have measured the time the system takes to return to a normal state
in which every remaining data block is replicated k times. Blocks for which all
copies are lost can not be recovered and are thus not taken into account. Figure 4.c
shows the results obtained while varying the delay between perturbations. We can
observe that the recovery time is four to five times longer in the case where PAST
is used compared to RelaxDHT. This result is mainly explained by the efficiency of
the maintenance protocol: RelaxDHT transfers only very few blocks for placement
constraints compared to PAST’s one.

This last result shows that the DHT using RelaxDHT repairs damaged data
blocks (data blocks for which some copies are lost) faster than PAST. It means
that it will be promptly able to cope with a new churn phase. The next section
describes our simulations with continuous churn.

4.4 Continuous churn

The above simulation results show that: 1) RelaxDHT induces less data transfers,
and 2) remaining data transfers are more parallelized. Thanks to this two points,
even if the system remains under continuous churn, RelaxDHT provides a better
churn tolerance.

Figure 5.a shows the number of data block losses under continuous churn using the
parameters described at the beginning of this section. Here again, we can see that
PAST starts to loose data blocks with lower churn rate than RelaxDHT. This delay
needs to be of less than 20 seconds 7 for RelaxDHT to loose a significative amount of
blocks, whereas PAST continues to loose blocks even for inter-perturbation intervals

6because its identifier is closer than the current root-peer’s one
7for 1000 nodes
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greater than 40 seconds. If the inter-perturbation delay continues to decrease, the
number of lost data blocks using RelaxDHT strategy remains less than the third of
the number of data blocks lost using PAST strategy.

(a) (b)

Fig. 5. While the system is under continuous churn: (a) Number of data block transfers,
(b) Number of data block losses (all k copies lost)

Finally, Figure 5.b confirms that even with a continuous churn pattern, during
a 5 hour run, the proposed solution behaves better than PAST. The number of
data transfers required by RelaxDHT is still always smaller than the number of
data transfers induced by the PAST’s replication strategy (about 10% smaller for
a 10 second inter-perturbation delay and 50% smaller for a 35 second delay). In
that case, the continuous churn rate induces more critical data exchange than in
the first scenario. For RelaxDHT, the bandwidth gained by relaxing the placement
constraints is mostly re-used to exchange critical data. Therefore, the bandwidth
consumption of our protocol is closer to the PAST’s one than in the first scenario,
but the bandwidth management is more efficient.

5. MAINTENANCE PROTOCOL COST

In the simulation results presented above, we have considered that the maintenance
protocol cost was negligible. This section evaluates the network cost of PAST and
RelaxDHT maintenance protocols. Both RelaxDHT and PAST peers send at most
one maintenance message to each leafset member, that is why it is appropriate
to compare the global amount of data to be sent by a node in order to perform
a maintenance. Then, we evaluate the optimizations that can be made to reduce
network cost of the protocols.

5.1 Amount of exchanged data

Let: 1) M be the overall number of blocks in the DHT, 2) N be the number of
DHT nodes, 3) m be the number of peers in the center of the leafset RelaxDHT
uses to replicate a block, 4) k be the mean replication factor and 5) |leafset| the
size of the leafset of the DHT (PAST and RelaxDHT have the same |leafset|).

Let S be the set of blocks a node has to maintain. As the blocks are uniformly
distributed by the hash function, we have in average |S| = M×k

N .
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PAST maintenance cost. While performing a maintenance, a PAST peer sends
all the identifiers of blocks it stores to every member of its leafset. Therefore,
the average cost of the maintenance is MaintenancePAST = |S| × |leafset| =
M×k
N × |leafset| identifiers to send to the leafset neighbors.

RelaxDHT maintenance cost. In RelaxDHT, on each node, S can be partitioned
in 3 subsets:

(1) Subset R. Data blocks for which the node is the root and is not part of the
replica set. Since the DHT hash-function is uniform, and each block has a root,
|R| = M

N blocks.

(2) Subset T . Data blocks for which the node is not the root of the block, but is
part of its replica set. Let T be the subset of S formed of such blocks. Since
S = R ∪ T ∪ (T ∩R), |T | = M×k

N − M
N − |T ∩R|.

(3) Subset T ∩ R. Data blocks for which the node is both the root of the block
and part of the replica set. As a block is inserted, the root chooses k replica-
peers among m central leafset-members. Let p be the probability for the root
to choose itself as a replica8. Thus, |T ∩R| = M

N × p blocks.

Each maintenance time, Algorithm 1 computes STORE and NEW ROOT ele-
ments: 1) For each block of the set R, k STORE elements are created. 2) For each
block of the set T ∩ R, only k − 1 STORE elements are created. 3) There are no
STORE elements for blocks that belong to the set T .

Therefore, to perform a maintenance, a node has to send #ST = |R| × k + |T ∩
R| × (k − 1) STORE elements.

Moreover, depending on the churn rate, some NEW ROOT elements are sent for
the members of the set T . If there is no churn at all, no NEW ROOT elements are
sent. On the other hand, in the worst case, it could be mandatory to send a NEW
ROOT element per member of T . In the worst case, the number of NEW ROOT
elements is therefore: #NR = |T | ≈ M

N × (k − 1). It is important to notice that
this occurs only in case of a massive node failure. In practice, the amount of NEW
ROOT messages induced by churn is considerably smaller.

Each element contains k + 1 identifiers: the identifier of the block and the k
identifiers of the replica set members. Thus, in average, a RelaxDHT node has
to send MaintenanceRelaxDHT = (#NR + #ST ) × (k + 1) ≈ M×k

N × p × (k + 1)
identifiers per maintenance.

Comparison. Putting aside all optimisations that are made for both RelaxDHT
and PAST, the cost of both protocols can now be compared. As we usually have
k � |leafset| (for example, in our simulations, k = 3 and |leafset| = 24) ,
MaintenanceRelaxDHT < M×k

N × p× |leafset|
Therefore, since p < 1, MaintenanceRelaxDHT < MaintenancePAST .
This result is mainly due to the fact that PAST peers send their content to all

the members of their leafset while RelaxDHT peers use extra metadata to locally
compute the information that needs to be transferred from one peer to another.
Moreover, as there are less NEW ROOT messages when there is less churn means

8in our case, the choice is made at random with a uniform distribution, therefore p = k
m

.
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that the RelaxDHT protocol is able to adapt itself to be more lightweight as churn
drops, whereas PAST protocol cost is constant, even if there is no churn.

We now discuss the impact of the optimizations that can be made to both pro-
tocols on their network load.

5.2 Optimization of maintenance message size

In PAST, the optimization of maintenance traffic relies on the usage of bloom fil-
ters. This space-efficient probabilistic data structure helps each peers to propagate
the information about the data blocks it stores. Given a data block identifier, the
bloom filter is used to determine whether or not this identifier belongs to the set
of identifiers from which the bloom filter has been formed. With a certain proba-
bility, depending on its size and on the size of the set, the bloom filter allows false
positives [Broder et al. 2002]. It means that a peer examining a neighbor’s bloom
filter searching for missing data blocks could decide that this neighbor stores a data
block, while it is actually missing. In order to minimize the probability of false pos-
itives, the size of the bloom filter needs to be increased. For example, allocating an
average size of 10 bits per element in the bloom filter provides approximatively 1%
of false positives [Broder et al. 2002].
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Fig. 6. (a) Compression rate of RelaxDHT maintenance messages in function of the num-
ber of blocks per node, (b) Compressed RelaxDHT maintenance message size compared
to PAST maintenance message size using bloom filters with 1% false positive rate (9.6 bits
per element).

RelaxDHT is unable to use bloom filters for traffic optimization, because its
maintenance messages have a well defined structure. Each data block key is asso-
ciated a set of its replica-peers, whereas bloom filters are only capable of providing
information about the belonging of a key to a key-set. Therefore, RelaxDHT uses
non-probabilistic lossless compression, such as dictionary coders [Ziv and Lempel
1977]. This kind of compression is efficient for maintenance message compression,
because they contain many redundant digit sequences. This is due to two main fac-
tors: 1) All peer identifiers and data block keys are close in the DHT ring because
they are located in the same leafset. It means that digital distance between two
identifiers is low and decreases as the number of blocks/peers increases. 2) All the
replica-peers are located inside the middle of the block’s root leafset. Therefore,
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the sets of peer identifiers associated with different STORE and NEW ROOT el-
ements are likely to be close to each other. This phenomenon also increases with
the number of blocs.

Thanks to the two factors, the compression rate of messages increases with the
load of the DHT. Figure 6.a recapitulates the results obtained while compressing
maintenance messages generated by the simulation. Assuming that a standard
DHT node is able to allocate at least 10Gbytes of local storage space, it is able
to store more than 1000 blocks of 10Mbytes each. Therefore, it is reasonable to
suppose that a compressed message is commonly 6 to 8 times smaller than the
original one9.

We compared the cost of both maintenance protocols, using 1% acceptable false-
positive bloom filter rate for PAST. Figure 6.b shows that uncompressed RelaxDHT
messages are more voluminous than PAST’s ones. However, if compression is ac-
tivated, RelaxDHT messages are 3 to 4 times smaller than PAST’s ones. Further-
more, it is important to notice that in absence of churn (i.e., when the leafset does
not change between two maintenance times), a RelaxDHT root node may replace a
regular maintenance message by a simple ping to perform maintenance. Therefore,
taking this optimization into account, the average maintenance message size should
be very limited. In other words, RelaxDHT maintenance protocol is more efficient
than the PAST’s one because: 1) in absence of churn, the maintenance is almost
negligible: the protocol is able to adapt itself to the churn rate; 2) in presence of
churn, its messages are less voluminous than PAST ones; 3) there is no information
loss (no false positives as in PAST).

Regardless of the data compression efficiency, the size of the RelaxDHT mainte-
nance messages linearly grows with the overall number of data blocks stored in the
DHT (cf. logarithmic-scaled figure 6.b). However, in order to provide an acceptable
rate of false positives induced by the bloom filters, PAST maintenance algorithm
also should gradually increase the size of the its bloom filters as the number of
stored blocks grows. It means that PAST maintenance message size also linearly
grows with the number of stored blocks.

Finally, the linear growth of maintenance message size is not a problem for Re-
laxDHT. Indeed, consider that 1,000,000 blocks stored on a 100-peer RelaxDHT
with replica rate of 3 induce 70Kbytes of data per maintenance message (see Fig-
ure 6.b). Knowing that these messages are sent by a peer with a sparse interval (the
default PAST value is 10 minutes) and only to peers located “in the middle” of its
leafset (i.e., its 16 closest neighbors in our simulations), this size may be considered
as negligible compared to data block transfer.

6. CONCLUSION

Distributed Hash Tables provide an efficient, scalable and easy-to-use storage sys-
tem. However, existing solutions loose many data in presence of a high churn rate
or are not really scalable in terms of stored data block number. We have identified
one of the reasons why they do not tolerate high churn rate: they impose strict
placement constraints that induce unnecessary data transfers.

9We used the gzip software to compress messages [ZZZ-gzip ].
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In this paper, we propose a new replication strategy, RelaxDHT that relaxes
the placement constraints: it relies on metadata (replica-peers/data identifiers) to
allow a more flexible location of data block copies within leafsets. Thanks to this
design, RelaxDHT entails fewer data transfers than classical leafset-based replica-
tion mechanisms. Furthermore, as data block copies are shuffled among a larger
peer set, peer contents are less correlated. This benefits to RelaxDHT because in
case of failure, more data sources are available for the download of a missing block,
which makes the recovery more efficient and thus the system more churn-resilient.
Our simulations, comparing the PAST system to ours, confirm that RelaxDHT 1)
induces less data block transfers, 2) faster recovers lost data block copies and 3)
looses less data blocks. Furthermore, we show that the churn-resilience does not
involve a prohibitive maintenance overhead.
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