
On co-distance hereditary graphs

S. Dubois a V. Giakoumakis a,∗ and C.B. Ould El Mounir a

aMIS, Université d’Amiens, France

Abstract

We present a linear time recognition algorithm as well as a 4-expression for calculating the
clique-width for the co-distance hereditary graphs which is the complementary class of the
well known family of distance hereditary graphs.
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1 On distance hereditary graphs

For terms not dened here the reader is referred to [1]. Given a graph G = (V,E),
V will denote its vertex set, E its edge set and N(x) the neighborhood of x ∈ V .
A vertex having exactly one neighbor is called a pendant vertex. Two vertices x
and y are twins iff N(x) = N(y), they are true twins iff (xy) ∈ E and false twins
iff (xy) /∈ E. The distance between two vertices x and y, denoted by dG(x, y),
is the length of a shortest path between x and y. The class of Distance Heredi-
tary (DH for shortly) graphs have been widely studied and many results have been
obtained for these graphs (see [1]). Among them we recall that DH graphs are to-
tally decomposable using split decomposition. We recall also that DH graphs are
also known as HHDG-free graphs since they can be characterized by four forbid-
den congurations: the House (i.e. the complementary graph of a chordless chain
of 5 vertices or P5 ), the Hole (i.e. a chordles cycle of at least ve vertices), the
Domino (i.e. a cycle of 6 vertices abcdef having exactly one chord cf ) and the
Gem (i.e. the graph formed by a P4 = abcd and a universal vertex w.r.t. this
P4). Finally, a graph G is distance hereditary iff for any connected subgraph H
of G dG(x, y) = dH(x, y) holds for every pair of vertices of H . A pruning se-
quence (S, σ) of G is a total ordering σ[x1, . . . , xn] of its vertex set and a sequence
S[s1, . . . , sn] of triples, such that for 1 ≤ i ≤ n − 1 and i < j, in the induced
subgraph Gi of G[V \ {x1, . . . , xi−1}], si is one the following words :(xi, P, xj), if
N(xi) = {xj} (xj is a pendant vertex) or (xi, F, xj) (xi and xj are false twins) or
(xi, T, xj) (xi and xj are true twins). The pruning sequence is used for the recog-
nition of a DH graph G: starting from a vertex of G we construct successively
subgraphs of G by adding true twins, false twins or pendant vertices. In [5] was
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proposed a linear time recognition algorithm for DH graphs by constructing the
corresponding pruning sequence. But this algorithm recognizes also the domino
and the house as DH graphs, problem that was resolved in [3]. The recognition
algorithm of DH graphs presented in [3] will be for us the framework for the recog-
nition of a co-distance hereditary graph G. We shall show in the next section that
for testing ifG is distance hereditary we do not need to computeG but we can work
on G and make the necessary transformations to this algorithm in order to remain
in linear time on the size of G. We give below the recognition algorithm in [3] and
we enumerate the 6 steps needed these transformations.

Algorithm 1 ([3]). The pruning sequence of a connected DH graph
Build the distance levels Lv= L1, . . . , Lk from a vertex v of G (1); j ← 1;
For i = k downto 1 do
For every connected component C of G[Li] (2) Do
z ← Prune-cograph (C, j) (3) ; j ← j+ | C | −1; End_For

Sort the vertices of Li by increasing inner degree (4)
For every vertex x of Li having exactly one neighbor y (5) do
σ(j) ← y and sj ← (xPy); j ← j + 1; End_For

For every vertex x ∈ Li taken in increasing inner degree order Do;
y ← Prune-cograph (G[Ni−1(x)], j) (6); j ← j+ | Ni−1(x) | −1; σ(j) ← x
and sj ← (xPy); j ← j + 1; End_For

End_For

Let us explain some terms used in the above algorithm. LetG be a connected graph
and v be a vertex of G. A distance level Lv in G is the set L1, . . . , Lk of vertices of
G such that x ∈ Li if dG(v, x) = i. For every vertex x of G and for every integer
i such that 1 ≤ i ≤ k , we denote by Ni(x) = N(x) ∩ Li. The inner degree of
x is the cardinality of Ni(x). The algorithm Prune-cograph (C, j) constructs the
pruning sequence (S, σ) of the cograph corresponding to the connected component
C and contracts C to the last vertex z of σ. We must point out that Prune-cograph
(C, j) works on the cotree T (C) corresponding to the cographC and by [2] a cotree
can been obtained in linear time on the size of the considered cograph.

2 Linear recognition of co-distance hereditary graphs

We shall show now how the recognition algorithm of DH graphs presented in pre-
vious section can be transformed in order to recognize a co-distance hereditary
(co-DH for shortly) graph G in linear time on the size of G. We assume that G
is a connected graph as well as G. If G is not connected we shall work in each
connected component of G. Let us explain now how we can process the 6 steps in
algorithm 1 in G using the edges of the graph G.

Step 1. Algorithm 2 : constructing all distance levels Lv of a connected compo-
nent of G
Input : A graph G with n vertices, a list L = {1, ..., n} of all vertices of G and an
array index[1..n] such that index[i] = 0 for all i.
Output : The set Lv = {L1, ..., Lk} of distance levels from a vertex v of a con-
nected component of G.
i := 0; Pick an arbitrary vertex x of L, Li := x and delete it from L.
While L is non empty Do
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[For every vertex y ∈Li, and for every vertex z ∈ N(y) ∩ L increase by 1
index[z]. If index[z]=| Li | move z from L to Li+2 and put index[z] = 0];
If L = ∅ then exit; {L0 ∪ .. ∪ Li is a connected component of G}
Li+1 := L; i := i+ 1; L := Li+1

End_While

Complexity of Step 1. When constructing L we construct also an array A[1..n]
such that A[i] contains a direct access in the list containing i during the execution
of the above algorithm. Hence, we can nd in constant time the neighbors of every
vertex y ∈Li. It is easy to see that the complexity of the above algorithm is linear
on the size of G.
Steps 2,3. Since G[Li] must be a cograph we check this by obtaining in linear
time the corresponding cotree T by using the algorithm in [2]. Then we obtain the
corresponding cotree as well as the connected components of G[Li] by changing
the 0-nodes of T into 1-nodes and its 1-nodes into 0-nodes.
Steps 4,5. We shall sort the vertices of Li by decreasing inner degree, y will be the
vertex whose inner degree will be | Li−1 | −1.
Steps 6. Once the vertices of Li have been sorted by decreasing inner degree, using
the arrayAwe nd rst the non-neighborhood in Li−1 of each vertex x of Li within
O(degree(x)) complexity and then proceed in an analogous manner described on
Steps 2 and 3 above.

It is clear now that we can apply the Algorithm 1 inGwithin linear time complexity
on the size ofG. It remains a last verication presented in [3] that consists to check
if the obtained pruning sequence (S, σ) corresponds to an HD graph. Due to the
space limitations of this extended abstract, we leave to the reader to verify that this
can be done in linear time on the size of G.

2 Clique width of co-distance hereditary graphs

The well known notion of clique-width of a graph G denoted cwd(G), is the min-
imum number of labels needed for constructing G using four graph operations:
labeling by i a new vertex v(denoted i(v)), disjoint union of H and H � denoted
H ⊕H �, ηi,j(G), i �= j, is the graph obtained by connecting all the vertices labeled
i to all the vertices labeled j in G and ρi,j(G) the graph obtained by renaming i
into j in G. An expression obtained from the above four operations using k labels
is called a k-expression. We denote by G(t) a graph dened by the expression t.
In [4], it is proved that every distance hereditary graph, has clique-width at most
3 and a 3−expression dening it can be obtained in linear time. This expression
is constructed as follows: from the pruning sequence (S, σ) associated with a DH
graph G we construct a special tree T (G), the pruning tree, whose vertices are the
vertices of G and whose edges {x, y} are labeled l, F or T if there exists si in σ
such that si is (xlf),(xFy) or (xTy) respectively. Let α be a node of T (G), Tα is
the set of vertices of G of the sub-tree rooted at a and G(Tα) the subgraph of G
induced by the vertices of Tα. Let u and v be two vertices of Tα, then u is a twin
descendant of v if all the edges connected u to v are labeled with true or false. Let
α1, ..., αl be the sons of a ordered from left to right. In [4] it is proved that for every
αi the set of edges relying the vertices of G(Tαi

) and G(a ∪ Tαi+1
∪ ... ∪ Tαl

) is
empty whenever αi is a false twin son of a and it is formed by all {u, v} where
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u is a twin descendant of αi in Tαi
and v is either α or a twin descendant of α

in Tαi+1
∪ ... ∪ Tαl

. This result allowed to obtain a 3 − expression for a distance
hereditary graph by labeling the twin descendants of any node β in Tβ with 2 and
by 1 all the other vertices of Tβ . Using this labeling for the vertices of G and using
the pruning tree of G we can obtain a 4 − expression for G in linear time. For
this we shall calculate the expression ei associated with G(Tαi

∪ Tαi+1
∪ ... ∪ Tαl

)
by assuming that we know the 3− expression tαi

associated with G(Tαi
) and the

3− expression ei+1 associated with G(Tαi+1
∪ ... ∪ Tαl

). We then have:
1. If ai is a leaf son of α then
ei = ρ4→1(ρ3→1(η1,4(η1,3(η2,3(ei+1⊕ (ρ2→4(ρ1→3(tαi

))))))))
2. If ai is a true twin son of α then ei = ρ4→2(ρ3→1(η1,4(η1,3(η2,3(ei+1⊕(ρ2→4(ρ1→3(tαi

))))))))
3. If ai is a false twin son of α then ei = ρ4→2(ρ3→1(η1,4(η1,3(η2,4(η2,3(ei+1 ⊕
(ρ2→4(ρ1→3(tαi

))))))))).

It is now to see how we can obtain a 4−expression forG in linear time on the size
of G. It follows that many optimization problems have linear solution for co-DH
graphs (see [4]).
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