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Abstract. We propose a crash safe and pseudo-stabilizing algorithm for
implementing an atomic memory abstraction in a message passing sys-
tem. Our algorithm is particularly appealing for multi-core architectures
where both processors and memory contents (including stale messages
in transit) are prone to errors and faults. Our algorithm extends the
classical fault-tolerant implementation of atomic memory that was orig-
inally proposed by Attiya, Bar-Noy, and Dolev (ABD) to a stabilizing
setting where memory can be initially corrupted in an arbitrary manner.
The original ABD algorithm provides no guaranties when started in such
a corrupted configuration. Interestingly, our scheme preserves the same
properties as ABD when there are no transient faults, namely the lin-
earizability of operations. When started in an arbitrarily corrupted initial
configuration, we still guarantee eventual yet suffix-closed linearizability.
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1 Introduction

Distributed computing theory has proven extremely relevant in the daily practice
of current networked systems. The important properties in today’s distributed
systems include availability, reliability, serviceability, and fault-tolerance. The
multi-core systems for example have to be able to mask the unexpected yet
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possible faults of processors and memory transient errors. In these architectures
applying the classical technique consisting in restarting the system anytime an
error or a fault occurs (at least once a day in current systems, but at least once
every few minutes –or even seconds– in forecast exascale supercomputers) at-
tains the limits both in terms of energy cost and the time spent in rebooting
the system. In these particular systems, fault recovery mechanisms that rely
on the paradigm that combines self-stabilization and fault-tolerance techniques
at the application level are particularly appealing. Self-stabilization [8] is a ver-
satile technique that permits forward recovery from any kind of transient fault
(i.e. there exists a point in the execution after which there is no fault), while
Fault-tolerance [15] is traditionally used to mask the effect of a limited num-
ber of permanent faults. Providing core building blocks for application designers
(such as atomic memory construction) that are highly resilient to various kinds
of failures is essential for the next generation of those systems. However, mak-
ing distributed systems tolerant to both transient and permanent faults proved
difficult [3,17] as impossibility results are expected in many cases.

Related Works. In the context of self-stabilization, the simulation of an atomic
single-writer single-reader shared register in a message-passing system was pre-
sented in [12]. This simulation does not address the multiple readers case, and
does not consider that crash faults of processors may occur in the system dur-
ing execution. More recent work [11,19] focused on self-stabilizing simulation
of shared registers using shared registers with weaker properties than atom-
icity, and still do not consider crash faults. Self-stabilizing timestamps imple-
mentations using single writer multiple readers atomic registers were suggested
in [1,13], and assume that there already exists a shared memory abstraction.
Most related to our work are [2], where a crash-fault tolerant and “practically”
stabilizing scheme for simulating atomic memory in a message passing system
is presented. There, practically means that after stabilization, the linearizability
is guaranteed for practically infinite time (say time required for a process to
execute 264 steps). Still, in every infinite execution suffix of [2], linearizability is
violated infinitely often, leaving open the question of suffix-closed linearizability
guaranteeing algorithms that are both stabilizing and crash resilient.

Our contribution. In this paper, we answer positively to the open question of [2].
In more details, we propose a crash-safe and pseudo-stabilizing algorithm for
implementing an atomic memory abstraction in a message passing system (pro-
vided that the writer does not crash before the first “stabilized” read, see below).
Pseudo-stabilization guarantees that, starting from any configuration, any exe-
cution contains a suffix satisfying linearizability. Hence, pseudo-stabilization is
stronger than practical stabilization since we ensure the closure of linearizability.

Our algorithm extends the classical fault-tolerant implementation of atomic
memory that was originally proposed in [4] to a stabilizing setting where mem-
ory can be initially corrupted in an arbitrary manner. Note that the original
algorithm of [4] provides no guarantees when started in such corrupted config-
uration. Interestingly, we preserve the same properties as the [4] scheme when
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there are no transient faults, namely the linearizability of the operations. Ad-
ditionally, when started in a corrupted initial configuration the algorithm still
guarantees eventual yet suffix closed linearizability.

In the current paper, the writer has the major responsibility for updating the
last value, unlike [4] where readers assist each other to spread the most up-to-
date value. Note that when the system is started in an arbitrary configuration
and the writer is crashed before the stabilization, this cascade-like update may
lead to executions where the specification is never verified unless an additional
mechanism is used. In [2] we used an epoch-based technique in order to cir-
cumvent this drawback. However, the solution proposed in [2] respects a weaker
specification (i.e., practically stabilization) while the current work respects the
pseudo-stabilization specifications.

2 Model and Definitions

This section is devoted to the presentation of the background of this paper. First,
we present the distributed system and fault-tolerance model in Sections 2.1 and
2.2, we specify formally our problem in Section 2.3. Finally, we present in details
the ABD simulation on which our protocol is built in Section 2.4.

2.1 Message Passing Model

A message-passing distributed system consists of n vertices (a.k.a. processes),
v0, v1, v2, . . . , vn−1, connected by communication links through which messages
are sent and received. Two vertices connected through a communication link are
referred in the following as neighboring vertices. The communication graph of
the distributed system is assumed to be fully connected (i.e. any pair of vertices
are neighboring vertices).

We assume in the following that the capacity of each communication link is
bounded and that its capacity is c packets (i.e. low level messages). We assume
that c is known to the protocol. Note that in the scope of self-stabilization, where
the system copes with an arbitrary starting configuration, the initial content of
each communication link may be arbitrary.

The channels are unreliable and non-FIFO (i.e. packets may not follow the
FIFO order and may be lost). Additionally, their delivery time is unbounded -
the system is asynchronous. That is, any non lost packet is received in a finite
but unbounded time. Each communication link is weakly fair in the sense that
if the sender sends infinitely often a packet on the channel, then the receiver
receives this packet an infinite number of time. Sending a packet to a channel
whose capacity is exhausted (i.e. the channel already contains c packets) results
in losing a packet (either a packet already in the channel or the packet being
sent).

As we deal with arbitrary initial corruptions, a channel may initially contain
up to c ghost packets (i.e. packets that have never been sent and contain arbitrary
content).
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A vertex is modeled by a state machine that executes steps. Channels are
modeled as sets (rather than queues to reflect the non-FIFO order). For example,
the c-bounded channel (i, j) (used to send messages from vi to vj) is modeled
by a c-sized set denoted by sij .

In each step, a vertex changes its local state (i.e. the state of its local memory),
and executes a single communication operation, which is either a send operation
or a receive operation. The communication operation changes the state of an
attached channel. In case the communication operation is a send operation from
vi to vj then sij is a union of sij in the previous state with the sent packet. If the
obtained union does not respect the bound |sij | ≤ c then an arbitrary message in
the obtained union is deleted. In case the communication operation is a receive
operation of a (non null) packet m (m must exist in sji of the previous state),
then m is removed from sji. A receive operation by pi from pj may result in a
null packet even when the sji is not empty, thus allowing unbounded delay for
any particular packet. Packet losses are modeled by allowing spontaneous packet
removals from the set.

A configuration of the system is the product of the local states of processes
in the system and of their incident channels. An execution is a sequence of
configurations, σ = (γ1, γ2, . . .) such that γi, i > 1, is obtained from γi−1 when
at least one process in the system executes a step. We assume that executions
are fully asynchronous.

Finally, we assume that the distributed system is simultaneously subject to
transient (i.e. of finite duration) faults and to (permanent) crash faults (i.e.
faults in which affected processes stop to execute steps). The number of crash
faults is bounded by a constant f . Transient faults may be arbitrary in nature
but there exists a point of the execution after that they no longer occur. Hence,
we assumed that the processes local state and channels contents are arbitrary
in the initial configuration of the system (and that transient faults no longer
corrupt the system during the execution).

2.2 Pseudo-Stabilization and Fault-Tolerance

In this paper, we focus on joint tolerance to transient and crash faults. The clas-
sical approach for such a tolerance is fault-tolerant self-stabilization (FTSS for
short) [3,17] that ensures that the distributed system stabilizes to its specification
in a finite time from any arbitrary initial configuration in spite of crash faults.
This strong fault tolerance property leads to numerous impossibility results, see
e.g. [5]. Hence, we choose in this paper a weaker fault tolerance definition, called
pseudo-stabilization [6], in which any execution contains a suffix satisfying the
specification. Note that, contrarily to self-stabilization, it is not required that
this suffix is reached in a finite time.

Definition 1 (Fault-tolerant pseudo-stabilization [7]). A distributed pro-
tocol π is f -fault-tolerant and pseudo-stabilizing (f -ftps for short) for specifica-
tion spec if and only if starting from any arbitrary configuration every execution
of π involving at most f crashed vertices has a suffix satisfying spec.
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Fig. 1. In this example, op1 happens before op2 while op3 is concurrent with op2, op4,
and op5. Operation op2 and op4 are consecutive.
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Fig. 2. If r2 returns the value written by w1 and r1 returns the value written by w2,
we have a new/old inversion

2.3 Problem and Specification

In this paper, we emulate an atomic register on top of a message passing system.
Registers have been introduced by Lamport [20,21] as a model of communication
between vertices of a distributed system. A register is a variable (over a domainD)
sharedby all vertices of the distributed system that provides two operations: a read
operation that returns the value of the register to the invoking vertex and a write
operation that allows the invoking vertex tomodify the value of the register. Given
a register, we call readers the vertices that are able to invoke the read operation of
the register and writers the vertices that are able to invoke the write operation of
the register. In the following, we consider only single-writer registers. As readers
of a register may be distinct from its writer, read and write operations may be
interleaved in some executions of the distributed system. Then, wemust clarify the
result of read operations in such cases. Lamport [20,21] distinguishes three types
of registers according to read operation properties: safe, regular and atomic. In the
following, we focus on the strongest one, the atomic register.

Note that read and write operations on the register are not instantaneous.
Each operation starts when a vertex invokes it and ends when it returns. We say
that an operation op1 happens before an operation op2 if op1 ends before op2
starts. Two operations op1 and op2 are concurrent if they satisfy: op1 does not
happen before op2 and op2 does not happen before op1. Two operations op1 and
op2 are consecutive if op1 is the most recent operation that happens before op2.
See Figure 1 for an illustration. We introduce now new/old inversions. Consider
two consecutive read operations r1, r2 and two consecutive write operations w1,
w2 such that r1 is concurrent with both w1 and w2 and r2 is concurrent only
with w2 (see Figure 2). We say that a new/old inversion occurs when r2 returns
the value written by w1 and r1 returns the value written by w2.
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The writer that is supplied with two operations: read and write while other
vertices, the readers, are supplied with only one operation: read. Each read
invocation needs no parameter and returns a value from D, the domain of the
register. Each write invocation needs a parameter from D and returns no value.
We say that a value v is written to the register when the operation write(v)
returns. Intuitively, an atomic register is a register such that all its read and
write operations appear as if they have been executed sequentially, this sequential
total order respecting the real time order of the operations. More formally, we
can define it as follows.

Specification 1 (specARS). An execution σ satisfies specARS if and only if it
complies with the following two properties:

Regularity: Each read operation returns either the value written by the most
recent write operation that happens before it or a value written by a concurrent
write operation.

No new/old Inversion: If a read operation r returns a value written by a
concurrent write operation w then no read operation that happens after r returns
a value written by a write operation that happens before w.

2.4 The ABD Simulation

This section aims to present in details the fault-tolerant single-writer multi-
reader atomic register ABD simulation provided by Attiya, Bar-Noy, and Dolev
[4]. Their assumptions on the distributed system follow. They assume a complete
identified communication graph (i.e. each process has a distinct identifier) and
an asynchronous distributed system subject to a minority of crash faults (that
is, 2n > f). Vertex v0 (also denoted w in the sequel) is the writer (that is, it can
invoke both the write and the read operation) while vertices from v1 to vn−1 are
readers (that is, they can invoke the read operation only).

In the following, we present only the bounded ABD simulation (the unbounded
version makes use of natural numbers to label values of the register and can be
easily derived from the bounded version). In this simulation, the authors assume
the existence of a sequential bounded labeling system [18]. Israeli and Li defined
in [18] time-stamps as “numerical labels which enable a system to keep track of
temporal precedence relation among its data elements”. Labels are elements of
a set enhanced with a total antisymmetric binary relation (to compare labels)
and a function to compute a new label given a set of existing labels.

The ABD simulation works as follows. First, they define a communication
primitive, called Communicate, that ensures the communication by quorum.
This primitive broadcasts a given message to all vertices and waits until getting
an acknowledgment for a majority of them (it is always possible since at most n

2−
1 vertices may crash in any execution). Note that this communication primitive
is designed to deal with the properties of the considered message passing model
(non reliable and non FIFO communication links).

A label (from the sequential bounded labeling system) is associated to each
value of the register. As the labeling system is bounded, the writer must take in
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account all existing labels in the distributed system before computing a new one
to ensure correctness. Indeed, the new label does not depend only of the writer
label as in the unbounded version. Note that the set of gathered labels may be
greater and contains obsolete labels.

To reach this goal, the Write operation operates as follow. The writer collects
(via the primitive Communicate) the existing labels in the distributed system
(readers send labels that they have for the writer and the most recent labels that
they have sent to other vertices). The writer computes then a new label greater
than each label it collected. The problem is that the primitive Communicate
ensures only the collect from a majority of vertices. In consequence, any correct
vertex must ensure that its labels are stored at a majority (at least) of vertices
at any time. In this way, the writer is able to gather all existing labels when it
collects labels from any majority.

To this end, whenever a vertex adopts a new label (that it believes to be the
maximum label of the writer), it invokes a procedure Record that stores this
label and all the recent labels it has sent to other vertices using the primitive
Communicate. A vertex receiving a recording message simply stores all the
labels in its memory. In response to a query from the writer, a reader sends all
labels it has stored. This implies that no label may be lost (since a majority of
vertices stores these labels). Note that, to avoid chain reaction where a recording
message causes other recording messages, vertices ignore the labels carried by
recording messages even if their label is greater than their current writer label.

However, when the environment faces both crashes and transient corruptions
of the memory the ABD simulation fails to satisfy its specification. This fact is
due to the building blocks that compose the ABD simulation: the communication
primitive and the labeling scheme and also to the way the labels are included in
the viable set. First, the primitive Communicate is not resilient to an arbitrary
initial content of communication links. Second, the underlying labeling scheme
used by the ABD simulation may be unable to compute a new label greater
than the existing ones when started in an arbitrary configuration. Finally, the
ABD simulation itself cannot deal with arbitrary initialization of labels since
some initially corrupted labels may remain unknown to the writer and may be
included infinitely often in the Read function decision sets.

The next section presents two recent achievements in the area of self-stabiliza-
tion that allow us to bypass the problems related to the communication primitive
and the labeling scheme. Section 4 extends the ABD simulation in order to
manage also corrupted labels that have not been generated by the scheme itself
but are present in the system due to some transient memory corruptions.

3 Necessary Tools

3.1 Data-Link Protocol

This section sums up the contributions of [10] in which we provided a data-link
protocol that ensures optimal fault resiliency above bounded, non-reliable but
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fair, non-FIFO communication channels. The main goal is to provide a com-
munication protocol between two vertices that allows us to neglect the actual
characteristics of the communication channel. The specification we provide in
this paper is borrowed from [22] but we adapt it to the stabilizing context. In
particular, we introduce the idea to bound the number of lost, duplicated, ghost
and re-ordered messages by some constants.

Consider a system of two vertices vi and vj . A distributed application needs to
send some messages from vi to vj . We say that the application layer of vi sends
a message when it requests the communication protocol to carry this message to
vj . This message is delivered to vj when the communication protocol releases this
message to the application layer of vj . A ghost message is a message delivered
to vj whereas vi did not send it previously (due to the arbitrary content of
communication channels in the initial configuration). A duplicated message is
a message that is delivered several times to vj whereas vi sent it only once. A
message is lost when vi sends it but vj never delivers it. A messagem is reordered
when it is delivered to vj before a message m′ whereas m has been sent after m′

by vi. Intuitively, the goal of a data-link protocol is to provide a communication
black box that ensures there is no lost, duplicated, ghost, or reordered messages
during any execution. In the sequel, we formally specify the data-link problem.

Specification 2 (Data-link communication). For any non negative integers
α, β, γ, and δ, the (α, β, γ, δ)-Stabilizing Data-Link communication over
c-bounded channels satisfies the following properties starting from an arbitrary
configuration (with vi and vj being respectively the sender and the receiver) for
any execution σ:

- α-Loss: The first α messages sent by vi (in the worst case) may be lost.
- β-Duplication: The first β messages delivered to vj (in the worst case) may
be duplicated ones.
- γ-Creation: The first γ messages delivered to vj (in the worst case) may be
ghost messages.
- δ-Reordering: The first δ messages delivered to vj (in the worst case) may be
reordered.

In [10], we proved that it is impossible to perform a (α, β, γ, δ)-Stabilizing Data-
Link communication with β = 0, γ = 0, or δ = 0. We also provided a data-link
protocol (called SDL) that achieves this optimal fault-resiliency.

In the following of this paper, we reuse this data-link protocol that provides
to each vertex several functions. For each neighbor vj , a vertex vi is supplied
with two functions: SDL-Sendj(m) that allows vi to send messages to vj using
SDL and DeliverMessagei(m) that allows vi to receive messages sent by vj
using SDL.

3.2 Bounded Labeling Scheme

To the best of our knowledge, any existing bounded labeling system including the
scheme used in the ABD simulation ([18,9,16]) does not tolerate corrupted initial
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Algorithm 1. PSARS: FTPS single-writer multi-reader atomic register simu-
lation (read operation for any vertex vi, write operation for the writer w = v0).

Variables:
Li: a matrix n × n with the following constraints:
- For any j �= k, the element Li[j, k] contains two fields: Li[j, k].sent and Li[j, k].ack. The first
field is the last label that vj sent to vk in the last Read operation of vj known at vi. The second
field contains the last label known at vi sent by vj to vk when vj replied to the vk label request.
- For any j, the element Li[j, j] has two fields. The field Li[j, j].value provides information on
the last label of the writer known by vj . The second field Li[j, j].conflict gives information on a
label that conflicts with the current label of a vertex and that may be not known at the writer.
label seti: a set of labels
Functions:
MaxLabel: returns the maximum label (according to ≺) of the label set supplied as parameter if
it exists, ⊥ otherwise
Next: returns a label greater than (according to ≺) any label of the set given as parameter
PickValue: returns an arbitrary element of any circuit (according to ≺) of the label set supplied
as parameter if possible, ⊥ otherwise

Readi()

01: label seti :=ReadQuorumi(read)
02: if MaxLabel(label seti) �= ⊥ then
03: if Li[i, i].value ≺MaxLabel(label seti)
04: Li[i, i].value :=MaxLabel(label seti)
05: Li[i, i].conflict := ⊥
06: WriteQuorumPromotei()
07: WriteQuorumRecordi()
08: return Li[i, i].value
09: else
10: Li[i, i].conflict :=PickValue(label seti)
11: WriteQuorumRecordi()
12: return abort

Write0()

01: label set0 := ReadQuorum0(write)
02: L0(0, 0).value := Next(label set0)
03: WriteQuorumPromote0()

configurations. We defined and provided in [2] for the first time a stabilizing
bounded labeling system: for any subset of at most k labels, there exists a label
that dominates each label of the subset. In this way, we are ensured that a
stabilizing bounded labeling system can deal with any arbitrary initialization
since it is always possible to compute a label greater than the existing ones. We
can define formally a stabilizing bounded labeling system in the following way:

Definition 2 (Stabilizing bounded labeling system). A k-stabilizing
bounded labeling system (k ≥ 2) is a triplet (L,≺, next) where L is a finite
set, ≺ is a total antisymmetric binary relation over L and next is a function
next : Lk → L such that:

∀L′ ⊆ L, |L′| ≤ k ⇒ ∀� ∈ L′, � ≺ next(L′)

4 Our FTPS Simulation

This section proposes our extension to the ABD simulation that can tolerate,
in addition to permanent crash faults, any transient memory corruption. We
present a fault-tolerant pseudo-stabilizing single-writer multi-reader atomic reg-
ister simulation over the message passing model. As far as we know, it is the first
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time when a simulation with such strong guarantees is designed. Note that our
previous work, [2], proposed a simulation that satisfies a weaker property than
the pseudo-stabilization. That is, in each infinite run of system the atomicity
specification is violated infinitely often. The significant amelioration of our cur-
rent simulation stems from guaranteeing that each infinite run of the system has
an infinite suffix where the atomicity specification is satisfied. First, we describe
our distributed protocol in Section 4.1. We prove its correctness and provide its
space complexity in Section 4.2.

4.1 Distributed Protocol

As we previously claimed, our distributed protocol is the pseudo-stabilizing ver-
sion of the ABD simulation presented in details in Section 2.4. In this section,
we explain first the differences between our simulation and the ABD simulation.
Then, we present formally our distributed protocol. Note that, for the sake of
simplicity, we ignore the actual value of the register and we concentrate only on
the label associated to it (as in [4]).

Recall that we assume an asynchronous distributed system simultaneously
subject to transient and (permanent) crash faults (with a maximal number of
crashed vertices f such that 2n > f). The communication graph is complete and
identified. One vertex is distinguished to be the writer. We denote this vertex
by w = v0. Vertices from v1 to vn−1 are readers. We also assume that any
pair of vertices are able to communicate using the data-link protocol defined in
Section 2. More precisely, if a vertex vi has a message m to send to vj , it invokes
SDL-Sendj(m). The data-link protocol delivers this message to vj by invoking
DeliverMessagei(m). Finally, we assume the existence of a stabilizing bounded
labeling system as the one described in Section 2. This labeling system provides
a set of labels L and two functions. The first one,Next, computes a label greater
than (according to ≺) any label of the set given as parameter. The second one,
MaxLabel, returns the maximum label (according to ≺) of the label set supplied
as parameter if this maximum exists, ⊥ otherwise. Note that MaxLabel returns
⊥ when there exists a circuit in the set of labels supplied as parameter (that is,
there exists a subset of labels �0, . . . , �t such that �0 ≺ �1 ≺ . . . ≺ �t ≺ �0).

Our distributed protocol makes use of a similar data structure as the ABD
simulation. Each vertex vi stores an n × n label matrix Li. For any j �= k, the
element Li[j, k] contains the same fields as in the ABD simulation: Li[j, k].sent
and Li[j, k].ack. The ith row Li[i] is updated dynamically by vi according to
messages it sends while other rows Li[j] (j �= i) are updated by messages that
vi received from vj (that is, Li[j] is the latest view of vi on Lj[j]). Each element
Li[i, j] (for j �= i), contains two fields: Li[i, j].sent and Li[i, j].ack that store
respectively the last label that vi sent to vj and the last label acknowledged by
vj to vi.

The only difference with the ABD simulation matrix is that, for any j, the
element Li[j, j] contains now two fields: Li[j, j].value and Li[j, j].conflict. The
field Li[j, j].value provides the last label of the writer known by vj . In particular
Li[i, i].value contains the last label of the writer that the vi is aware. Note that



Crash Resilient and Pseudo-Stabilizing Atomic Registers 145

this field is equivalent to the field Li[j, j] of the ABD simulation. The second
field Li[j, j].conflict gives information on a label that conflicts with the current
label of a vertex and that may be not known at the writer. This field is used to
avoid that some initially corrupted label remains unknown to the writer but is
included infinitely often in Read function decision set.

Our distributed protocol is composed of two primitives: Read (for any vertex)
and Write (only for the writer v0). When a reader vi invokes its Read primitive,
it collects first the labels of at least a majority of vertices and computes the
maximum with MaxLabel. Two cases can appear:
1) MaxLabel returns a label. This value (if it exceeds the current label of the
reader) is recorded in the distributed system in order to refresh the views of the
other vertices on the last label of vi. Note that, after the reception of this new
value, a vertex updates the corresponding entry in its matrix. Vertex vi finishes
its Read operation by promoting its value in the distributed system. Upon the
reception of the value to be promoted, the vertex vj compares its current label
with the label of the received value. If its local value is obsolete (the local label
is less than the received label), then vj adopts the new value and pushes it in
the distributed system.
2) MaxLabel returns bottom whenever the maximum cannot be computed
(when the set of collected labels contains a circuit). Then, the Read operation
aborts. The circuit in the label set may have been introduced either by a cor-
rupted label present in the system at the initialization or by the writer that
computed the next label based on partial information from the non stabilized
system. Then, the reader changes its Li[i, i].conflict field to one of the labels
that form a circuit. The idea is to help in revealing all the corrupted labels.
Indeed, the conflicting value is then recorded in the matrices of a majority of
vertices that prevents such conflicting values to disturb furtherRead operations.
This case is the main difference with the ABD simulation.

The Write operation is similar to the one of the ABD simulation. When the
writer invokes this primitive, it first collects the latest labels in the system (by
asking any majority of vertices), then computes its next label using the Next
function. Finally it starts a promotion of the new value in the distributed system.

Algorithms 1 and 2 provide the formal implementation of our fault-tolerant
pseudo-stabilizing single-writer multi-reader atomic register simulation.

4.2 Proof of Correctness

This section is devoted to the proof of the fault-tolerant pseudo-stabilization of
PSARS for specARS . According to properties of our data-link protocol described
in Section 2, we know that any execution has an infinite suffix in which no
ghost, duplicated or re-ordered messages are delivered (since there is only a finite
number of communication links in the distributed system). We can conclude that
any execution has an infinite suffix in which any delivered message was actually
sent. For the sake of simplicity, we consider only such suffixes of executions
in the sequel of this proof. Note that this assumption does not restrict the
generality of the proof since we want to prove the pseudo-stabilization of our
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Algorithm 2. PSARS : Auxiliary functions (for any vertex vi).

Notations:
For any j, the notation Li[j] represents the jth row of the matrix Li.
Variables:
return seti : a set of labels
read answeri: array of n booleans
record answeri: array of n booleans
promote answeri: array of n booleans

ReadQuorumi(type)

01: read answeri := [0, 0, . . . , 0]
02: read answeri[i] := 1
03: return seti := ∅
04: foreach j ∈ {0, . . . , n − 1} \ {i} do
05: SDL-Sendj(Inquiry(type))
06: while |{j, read answeri[j] = 1}| ≤ n/2 do
07: wait
08: return (return seti)
—————————————————————–
upon DeliverMessagej(Inquiry(type))
09: if type =′ read′ then
10: SDL-Sendj(Answer Read(Li[i, i]))
11: Li[i, j].ack := Li[i, i].value
12: WriteQuorumRecordi()
13: else
14: SDL-Sendj(Answer Write(Li))
—————————————————————–
upon DeliverMessagej(Answer Read(Lj [j, j])
15: Li[j, j] := Lj[j, j]
16: read answeri[i] := 1
17: return seti := return seti ∪ Li

—————————————————————–
upon DeliverMessagej(Answer Write(Lj))
18: Li[j] := Lj [j]
19: read answeri[i] := 1
20: return seti := return seti ∪ Li ∪ Lj

WriteQuorumPromotei()

01: promote answeri := [0, 0, . . . , 0]
02: promote answeri[i] := 1
03: foreach j ∈ {0, . . . , n − 1} \ {i} do
04: SDL-Sendj(Promote(Li[i, i]))
05: while |{j, promote answeri[j] = 1}| ≤ n/2
06: wait
07: foreach promote answeri[j] �= 0 do
08: Li[i, j].sent := Li[i, i].value
—————————————————————
upon DeliverMessagej(Promote(Lj[j, j]))
10: if Li[i, i].value ≺ Lj[j, j].value then
11: Li[i, i] := Lj[j, j]
12: WriteQuorumRecordi()
13: SDL-Sendj(Ack Promote())
—————————————————————
upon DeliverMessagej(Ack Promote())
14: promote answeri[j] := 1

WriteQuorumRecordi()

01: record answeri := [0, 0, . . . , 0]
02: record answeri[i] := 1
03: foreach j ∈ {0, . . . , n − 1} \ {i} do
04: SDL-Sendj(Record(Li[i])
05: while |{j, record answeri[j] = 1}| ≤ n/2
06: wait
—————————————————————
upon DeliverMessagej(Record(Lj[j])
07: Li[j] := Lj[j]
08: SDL-Sendj(Ack Record())
—————————————————————
upon DeliverMessagej(Ack Record())
09: record answeri[j] := 1

distributed protocol (that is, only the existence of an infinite suffix satisfying the
specification, not the finiteness of a prefix that does not satisfy the specification).

The main difficulty in proving our atomic register simulation comes from the
presence of corrupted labels (due to the arbitrary initialization of matrices) in
the distributed system that may disturb the good functioning of the distributed
protocol.

The key idea of our proof is to show that the writer includes in its decision set
(records) all the viable labels in the system (defined below). A label � is viable
and in the responsibility of vertex vi if it satisfies one of the following properties:

- Li[i, i].value = � or Li[i, i].conflict = �
- Li[i, k].sent = � or Li[i, k].ack = �
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- there is a vertex vj such that Lj[i] contains � in one of the fields sent, ack,
value or conflict.

A viable label is recorded if this label is stored in the writer matrix or the
matrix of any majority of vertices. In the following, we show that any label in
the responsibility of a vertex eventually becomes recorded. Note that once a label
is stored in the matrix of the writer or in the matrix of a majority of vertices,
this label is included in the computation of the new label of the writer and it
does not generate new conflicts.

This observation motivates the following necessary assumption for the fault-
tolerant pseudo-stabilization of PSARS: if the writer crashes in an execution,
then this crash must happen after the first stabilized Write invocation (that
is, a Write invocation during which the label set supplied to Next includes
all the viable labels in the distributed system). In other words, an execution
has an infinite suffix that satisfies specARS if the writer does not crash during
this execution or if the writer crashes after the first stabilized Write invoca-
tion (we cannot provide any properties in the contrary case). In the sequel of
this section, we consider only such executions. Otherwise, corrupted labels may
generate incoherent read outputs. Note that when started in a correct state this
assumption is not necessary and the behavior of our simulation is exactly the
same as the ABD’s simulation. Also note that the ABD simulation cannot cope
with corrupted labels.

Lemma 1. Any execution of PSARS has an infinite suffix where every Read
invocation does not abort if n > 2f .

Lemma 2. Any execution of PSARS has an infinite suffix where, for any ver-
tex, the labels in its responsibility become recorded either at the writer or in a
majority, or are never included in the label set of a read operation if n > 2f .

From now, a viable label refers only to labels that do not stay forever out of the
computation.

Lemma 3. Any execution of PSARS has an infinite suffix that satisfies the
regularity property of specARS if n > 2f .

Proof. Let σ be an infinite execution of PSARS. Following Lemma 1 and
Lemma 2, σ contains an infinite suffix, σ′, where no Read invocation aborts
and any Write operation includes in its decision set all the viable labels in the
distributed system. By contradiction, assume there is a vertex vi such that its
Read invocations return an obsolete label infinitely often in σ′.

That is, there exists a Read invocation r by vi such that the label returned
by r is either a corrupted label or a label corresponding to a previous write but
not the most recent. In σ′, r returns the output value of MaxLabel invoked
over the set of labels returned by ReadQuorum.

Let w1 and w2 be two Write operations such that w1 happens before w2

and r. Since w1 happens before r then the label computed by w1 is promoted
and recorded in at least a majority of vertices and is greater than any label in
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the distributed system. When r starts invoking ReadQuorum two cases may
appear: (i) w2 did not modify the writer label and did not start the promotion
of the new label via WriteQuorumPromote or (ii) w2 executed WriteQuo-
rumPromote. In the first case, w1’s label is the largest label in the distributed
system. When r invokes the ReadQuorum, it gets w1’s label (otherwise w1

is not terminated) and returns this label. Hence, r cannot return a value older
than the one written by w1. In the second case, some vertices contacted during
the ReadQuorum execution may send the w1’s label, other vertices the w2’s
label. Since the label computed in w2 is greater than the label computed in w1,
MaxLabel invoked in r returns w2’s label. Hence, r returns the last written
value, that contradicts its construction.

Lemma 4. Any execution of PSARS has an infinite suffix that satisfies the no
new/old inversion property of specARS if n > 2f .

Proof. Let σ be an execution of PSARS. Following Lemmas 1 and 3, σ has an
infinite suffix, σ′, that satisfies the regularity property of specARS and in which
any Read invocation does not abort. In the following, we prove that σ′ does not
violate the new/old inversion property of specARS .

Consider two Write operations w1 and w2 in σ′ such that w1 happens before
w2. Consider also two Read operations r1 and r2 such that r1 happens before
r2 and w1 happens before r1 (following the transitivity of the relation “happens
before”, w1 also happens before r2). Assume that r1 and r2 are concurrent with
w2 and that a new/old inversion happens. That is, r1 returns the label �2 written
by w2 and r2 returns the label �1 written by w1.

Since r1 happens before r2, then r1 executes the following actions (before the
start of r2): it modifies its local label to �2, it also executes WriteQuorumPro-
mote in order to help w2 to push its label in the distributed system and finally
it executes WriteQuorumRecord in order to inform the distributed system on
its new value. Since WriteQuorumPromote returns before r1 finishes, then
the label �2 is already adopted by at least a majority of vertices. That is, since
�2 � �1 (w1 happens before w2), then �2 replaces �1 in the matrices of at least
a majority of vertices and also a majority of vertices proceeds to the record of
their new label.

We assumed r2 returns �1. Since r1 happens before r2 then r2 starts its Read-
Quorum after r1 returned, in particular after r1 completed its WriteQuo-
rumPromote operation. This implies that �2 is the label adopted by at least
a majority of vertices and at least one vertex in this majority responds while r2
invokes its ReadQuorum. That is, r2 collects at least one label �2 and since
�2 � �1, r2 should return this value. This contradicts the assumption r2 returns
�1. It follows that σ

′ satisfies the no new/old inversion property of specARS .

Lemma 5. PSARS requires O(n5× log2(n)) bits per vertex. Consequently, the
total amount of memory on the distributed system is in O(n6 × log2(n)) bits.

Proof. Note that the set label set which is the input of Next contains 2n3 labels.
Hence, following [2], one label needs O(n3× log2(n)) bits to be stored. Since any
vertex must store 2n2 labels, we have the result.
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Theorem 1. PSARS is a f -ftps distributed protocol for specARS provided that
n > 2f and that the writer can crash only after its first stabilized Write invo-
cation. It requires O(n6log2(n)) bits of memory on the whole distributed system.

5 Conclusion

We presented a distributed solution for implementing a shared register in a
network where processors communicate by exchanging messages. To our knowl-
edge, this is the first such construction to be both pseudo-stabilizing and fault
tolerant. Note that our simulation verifies also the eventual linearizability spec-
ification [14,23]. Differently from the eventual linearizable simulations proposed
so far our simulation tolerates initial corrupted memory. Also, we do not reorder
operations nor maintain locally the history of the system execution.

We expect future research to tackle the following open issues. A generalization
to the multi-writer (and multi-reader) case looks challenging. Indeed, previous
transformers for the crash fault model do handle memory corruption, and the
multiplicity of writers enable the possibility that fake writers (i.e. stale writer
identifiers) are initially present in the network.
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