
Enabling Minimal Dominating Set in Highly
Dynamic Distributed Systems?

Swan Dubois, Mohamed-Hamza Kaaouachi, and Franck Petit

Sorbonne Universités, UPMC Univ Paris 06, CNRS, INRIA, LIP6 UMR 7606

Abstract. We address the problem of computing a Minimal Dominating
Set in highly dynamic distributed systems. We assume weak connectivity,
i.e., the network may be disconnected at each time instant and topolog-
ical changes are unpredictable. We make only weak assumptions on the
communication: every process is infinitely often able to communicate
with other processes (not necessarily directly).
Our contribution is threefold. First, we propose a new definition of min-
imal dominating set suitable for the context of time-varying graphs that
seems more relevant than existing ones. Next, we provide a necessary and
sufficient topological condition for the existence of a deterministic algo-
rithm for minimal dominating set construction in our settings. Finally,
we propose a new measure of time complexity in time-varying graph in
order to allow fair comparison between algorithms. Indeed, this measure
takes account of communication delays attributable to dynamicity of the
graph and not to the algorithms.

1 Introduction

In modern networks, items (users, links, equipments, etc.) may join, leave, or
move inside the network at unforeseeable times. A common feature of these
networks is their high dynamic, meaning that their topology keeps continuously
changing over time. Classically, distributed systems are modeled by a static undi-
rected connected graph where vertices are processes (nodes, servers, processors,
etc.) and edges represent bidirectional communication links. Clearly, such mod-
eling is not suitable for high dynamic networks. Numerous models taking into
account topological changes over time have been proposed since several decades,
e.g., [1–4]. Some works aim at unifying most of the above approaches. For in-
stance, in [5], the authors introduced the evolving graphs. They proposed mod-
eling the time as a sequence of discrete time instants and the system dynamic
by a sequence of static graphs, one for each time instant. More recently, another
graph formalism, called Time-Varying Graphs (TVG), has been provided in [6].
In contrast with evolving graphs, TVGs allow systems evolving within contin-
uous time. Also in [6], TVGs are gathered and ordered into classes depending
mainly on two main features: the quality of connectivity among the participating
nodes and the possibility/impossibility to perform tasks.

? This work was performed within the Labex SMART, supported by French state
funds managed by the ANR within the “Investissements d’Avenir” programme under
reference ANR-11-LABX-65.

In this paper, we focus on the Minimal Dominating Set (MDS) problem. A
dominating set is a subset of vertices of a graph such as each vertex of this
graph is either in the dominating set or neighbor of a vertex in the dominating
set. A minimal dominating set is such that none of its proper subsets is also
a dominating set of the graph. Like many distributed covering structure (such
as trees, coloring, matching, etc.), Minimal Dominating Set is a key building
block for numerous network protocols, e.g., hierarchical routing and clustering,
multicast, topology control, media access coordination, to name only a few.

Minimal Dominating Set and some of related problems (such as Maximal
Independent Set and Connected Dominating Set) receive some attention in the
context of dynamic networks, e.g., [7–9]. The difficulty to define covering struc-
tures in dynamic networks (including MDS) is pointed out in [10]. Indeed, the
authors show that the definition of such structures may become ambiguous, in-
correct, or even irrelevant when applied in dynamic systems. As an example, if
the dynamicity of the graph is modeled as a sequence of static graphs and a
new MDS is computed at each topological change as in [7], the stability of the
MDS fully depends on the dynamic rate of the network (i.e., the relative speed
of appearance/disappearance of edges). This natural definition may hence lead
to a high instability (or even impossibility of use) of the MDS. We discuss more
precisely this issue in Section 4.

This paper aims at proposing a new approach suitable for Minimal Domi-
nating Set construction in time-varying graph with weak connectivity, i.e., the
graph may be disconnected at each time instant and topological changes are
unpredictable. The only assumption on communications is that every process
is infinitely often able to communicate with other processes (not necessarily di-
rectly). In this context, our contribution is threefold. First, we propose a new
definition of MDS for time-varying graphs that increases stability of this struc-
ture. More precisely, we require each dominated node to be infinitely often neigh-
bor of at least one dominating node. Next, we provide a necessary and sufficient
topological condition for the existence of a deterministic algorithm for MDS con-
struction in our settings. Finally, we propose a new measure of time complexity
in time-varying graphs. This measure takes account of communication delays
attributable to the dynamicity of the graph and not to the algorithm in order
to allow fair comparison between algorithms.

The paper is organized as follows. Section 2 presents formally the time-
varying graph model and our new measure of time complexity. We devote the
Section 3 to some preliminaries necessary to our main results on MDS presented
in Section 4. Finally, Section 5 concludes the paper.

2 Time-Varying Graph: Model and Complexity

2.1 Model

Let us first borrow the formalism introduced in [6] in order to describe the dis-
tributed systems prone to high dynamic. We consider distributed systems made
of n processes. A process has a local memory, a local sequential and determinis-
tic algorithm, and message exchange capabilities. We assume that each proccess

has a unique identifier. Moreover, given two distinct processes p and q identified
respectively by idp and idq, either idp < idq or idq < idp. All these processes
are gathered in a set V . Let E be a set of edges (or relations) between pairwise
processes, that describes interactions between processes, namely communication
exchange. The presence of an edge between two processes p and q at a given
time t means that each process among {p, q} is able to send a message to the
other at t. For any given (static) graph g, we denote by diam(g) the diameter
of g (that is, the longest distance between two processes of g).

The interactions between processes are assumed to take place over a time
span T ⊆ T called the lifetime of the system. The temporal domain T is generally
assumed to be either N (discrete-time systems) or R+ (continuous-time systems).

Definition 1 (Time-varying graph [6]). A time-varying graph (TVG for
short) g is a tuple (V,E, T , ρ, ζ, φ) where V is a (static) set of processes {v1, . . . ,
vn}, E a (static) set of edges between these processes E ⊆ V × V , ρ : E × T →
{0, 1} (called presence function) that indicates whether a given edge is available
(i.e. present) at a given time, ζ : E × T → T (called edge latency function)
indicates the time it takes to cross a given edge if starting at a given date, and
φ : V × T → T (called process latency function) indicates the time an internal
action of a process takes at a given date.

Given a TVG g, let Tg be the subset of T for which a topological event
(appearance/disappearance of an edge) occurs in g. The evolution of g during
its lifetime T can be described as the sequence of graphs Sg = g1, g2, . . ., where
gi = (V,Ei) corresponds to the static snapshot of g at time ti ∈ Tg, i.e. e ∈ Ei
if and only if ∀t ∈ [ti, ti+1[, ρ(e, t) = 1. Note that gi 6= gi+1 for any i.

We consider asynchronous distributed systems, i.e. no pair of processes has
access to any kind of shared device that could allow to synchronize their exe-
cution rate. Furthermore, at any time, no process has access to the output of
ζ, i.e. none of them can (a priori) predict a bound on the message delay. Note
that the ability to send a message to another process at a given time does not
mean that this message will be delivered. Indeed, the dynamicity of the commu-
nication graph implies that the edge between the two processes may disappear
before the delivery of this message leading to the lost of messages in transit.

The presences and absences of an edge are instantly detected by its two
adjacent processes. We assume that our system provides to each process a non-
blocking communication primitive named Send retry that ensures the following
property. When a process p invokes Send retry(m, q) (where m is an arbitrary
message and q another process of V) at time t, this primitive delivers m to
q in a finite time provided that there exists a time t′ ≥ t such that the edge
{p, q} is present at time t′ during at least ζ({p, q}, t′) units of time. In other
words, the delivery of the message is ensured if there is, after the invocation
of the primitive, an availability of the edge that is sufficient to overcome the
communication delay of the edge at this time. Note that this primitive may never
deliver a message (e.g. if the considered edge never appears after invocation).
Details of the implementation of this primitive are not considered here but it
typically consists in resending m at each apparition of the edge {p, q} until its
reception by q. This primitive allows us to abstract from topology changes and
asynchronous communication and to write high-level algorithms.

Configurations and executions. The state of a process is defined by the
values of its variables. Given a TVG g, a configuration of g is a vector of n+ 2
components (gi,Mi, p1, p2, . . . , pn) such that gi is a static snapshot of g (i.e.
gi ∈ Sg), Mi is the set of messages carried by each edge of Ei (one multi-set
of messages per edge), and p1 to pn represent the state of the n processes in
V . We say that a process p outputs a value v in a configuration γ if one of its
variable (called an output variable) has the value v in γ. An execution of the
distributed system modeled by g is a sequence of configurations e = γ0, . . . , γk,
γk+1, . . ., such that for each k ≥ 0, during an execution step (γk, γk+1), one of
the following event occurs: (i) gk 6= gk+1, or (ii) at least one process receives a
message, sends a message, or executes some internal actions changing its state.
The algorithm executed by g describes the set of all allowed internal actions
of processes (in function of their current state or external events as message
receptions or time-out expirations) during an execution of g. We assume that
during any configuration step (γk, γk+1) of an execution, if gk 6= gk+1, then for
each edge e such that e ∈ Ek and e /∈ Ek+1 (i.e. e disappears during the step
(γk, γk+1), none of the messages carried by e belongs to Mk+1. Also, for each
edge e such that e ∈ Ek+1 and e /∈ Ek (i.e. e appears during the step (γk, γk+1)),
e contains no message in configuration γk+1.
Connected over time TVGs. A key concept of time-varying graphs has been
identified in [6]. The authors shows that the classical notion of path in static
graphs in meaningless in TVGs. Indeed, some processes may communicate even
if there is no (static) path between them at each time. To perform communi-
cation between two processes, the existence of a temporal path (a.k.a. journey)
between them is sufficient. They define such a temporal path of a TVG g as
a sequence of ordered pairs {(p1, t1), (p2, t2), ..., (pk−1, tk−1), (pk, tk)} such that
p1, p2, . . . , pk−1, pk is a (static) path of (V,E) and, for every i ∈ {1, . . . , k − 1},
ρ({pi, pi+1}, ti) = 1 and ti+1 ≥ ti+ζ({pi, pi+1}, ti)+φ(pt+1, ti+ζ({pi, pi+1}, ti)).
In other words, a temporal path from process p to process q is a sequence of ad-
jacent edges from p to q such that availability and latency of edges and processes
allow the sending of a message from p to q using the Send retry primitive at
each intermediate process (refer to [6] for a formal definition). Note that the
existence of a temporal path is a non symmetric relation between two processes,
even though the graph may be undirected. Based on various assumptions made
about journeys (e.g. recurrence, periodicity, symmetry, and so on), [6] proposes
a relevant hierarchy of TVG classes. In this paper, we choose to make mini-
mal assumptions on the dynamicity of our system since we restrict ourselves on
connected-over-time TVGs defined as follows:

Definition 2 (Connected-over-time TVG [6]). A TVG (V,E, T , ρ, ζ, φ) is
connected-over-time if, for any time t ∈ T and for any pair of processes p and
q of V , there exists a journey from p to q after time t. The class of connected-
over-time TVGs is denoted by COT 1.

Note that the lifetime of a connected-over-time TVG is necessarily infinite
by definition. The class COT allows us to capture highly dynamic systems since
we only require that any process will be always able to communicate with any

1 Authors of [6] refer to this class as C5 in their hierarchy of TVG classes.

other one without any extra assumption on this communication (such as delay,
periodicity, or used route). In particular, note that a connected-over-time TVG
may be disconnected at each time and that the presence of an edge at a given
time does not preclude that this edge will appear again after this time. Define
an eventual missing edge as en edge that appears only a finite number of time
during the lifetime of the TVG. The main difficulty encountered in the design
of distributed algorithms in COT is to deal with such eventual missing edges
because no process is able to predict if a given adjacent edge is an eventual
missing edge or not. Note that the time of the last presence of such an eventual
missing edge cannot even be bounded.

Definition 3 ((Eventual) Underlying Graph). Given a TVG g = (V,E, T ,
ρ, ζ, φ), the underlying graph of a g is the (static) graph Ug = (V,E). The even-
tual underlying graph of g is the (static) subgraph Uωg = (V,Eωg) with Eωg =
E \Mg, where Mg is the set of eventual missing edges of g.

Intuitively, the underlying graph (sometimes referred to as footprint) of a
TVG g gathers all edges that appear at least once during the lifetime of g,
whereas the eventual underlying graph of g gathers all edges that are infinitely
often present during the lifetime of g. Note that, for any TVG of COT , both
underlying graph and eventual underlying graph are connected by definition. Let
us define the neighborhood Np of a process p is the set of processes with which
p shares an edge in the underlying graph.
Induced subclasses. In the following, we focus on specific subclasses of the
class COT to establish our impossibility result. Informally, we focus on sub-
classes that gather all TVGs whose underlying graph belongs to a given set.
The intuition behind this restriction is the following. In practice, some techni-
cal reasons may restrict or prevent the communication between some processes,
that induces a given underlying graph for the TVG that models our system. In
contrast, we cannot predict in general the availabilities of communication edges,
that leads us to consider all TVGs sharing this underlying graph.

Definition 4 (Induced subclass). Given a set of (static) graphs F and a
class of TVGs C, the subclass of C induced by F (denoted by C|F) is the set of
all TVGs of C whose underlying graph belongs to F .

2.2 Complexity Measures

To our knowledge, there exists no time complexity measure that is suitable for
any class of TVGs. Some previous works deal with complexity measure in the
TVG model but restrict themselves to synchronous systems (see e.g. [11, 12]),
to message complexity (see e.g. [13]), or to specific class of TVGs in which an
existing notion of complexity naturally makes sense (e.g. [14, 13]).

The first contribution of this paper is to propose a definition of a time com-
plexity measure suitable for our model. To ease the reading of the formal defini-
tion (Definition 5), we first informally describe our approach. Let us first provide
a definition that captures the “quality” of an algorithm independent of delays
introduced by asynchronous communications but also by topological changes. A
typical example of such a delay is the waiting after the next apparition of an

incident edge to a disconnected process that may introduce a long delay that is
not imputable to the algorithm but only to the dynamicity of the system. To
perform our goal, we propose to extend the classical notion of time complexity
commonly adopted in asynchronous message passing (static) systems.

The classical way to deal with communication delays in time complexity mea-
sure in asynchronous message passing models is to consider as the unit of time of
an execution the worst delay between the sending and the reception of a message
during this execution (see [15] for example). Using this time measure, we can
bound the termination time of any execution of an algorithm independently of
communication delays in this execution. This leads to a time complexity measure
(the worst termination time over all possible executions of the algorithm) that
induces a fair comparison between algorithms. Our proposal is to extend this
idea to dynamic environments by including delays introduced by the dynamic-
ity in this definition. In other words, we will consider as the unit of time of an
execution the worst delay between the invocation of the Send retry primitive
and the delivery of the message by this primitive during this execution.

This natural extension of the definition of time complexity measure of asyn-
chronous message passing systems is not sufficient. Indeed, the dynamicity of
the system may introduce another possibly arbitrarily long delay that we call
initial delay. As an example, consider a problem that requires each process to
propagate an initial value (think about consensus-like problems). An easy way
to delay the termination of any algorithm for this problem is to disconnect one
process for an arbitrary long (but bounded) time that leads all other processes
to wait after its first apparition. Such delay is not due to the algorithm but to
the dynamicity of the system and our complexity measure have to ignore such
initial delay. To deal with this issue, we propose to define for each problem a
starting time as follows. Informally, it is the smallest time of an execution where
the dynamicity of the system “shows” to processes the minimal topological in-
formation to solve the problem. Note that this starting time depends only of
the problem (e.g. first connexion of the last process for consensus-like problems)
and that, in a static system, the starting time and the initial time are identical
(since the system cannot delay apparition of any topological information).

Then, we propose to measure the complexity of an algorithm by the worst
time (expressed in the time unit described above) between the starting time and
the termination of the algorithm over all its possible executions. We believe that
this time complexity measure allows us to fairly compare algorithms designed in
our model based on TVGs since it exhibits their intrinsic communication costs
and does not take into account delays introducing by asynchronous communica-
tions and topological changes.

We now formally state the complexity measure. In the following, we first
restrict to fixed point computation problems on a TVG class C, i.e. problems
that admit a specification of the following form: it is required that the execution
e = γ0, γ1, . . . on every TVG of C reaches in a finite time a suffix ei = γi, γi+1, . . .
where each process outputs constantly a given value. The required value depends
on the considered problem and is not necessarily the same at each process. Using
this definition, leader election or spanning structure construction are fixed point
computation problems whereas mutual exclusion or broadcast are not.

We consider now a (deterministic) distributed algorithm A that satisfies the
specification of a fixed point computation problem P on a TVG class C. Let e
be the execution of A on a given TVG of class C. For any message m sent during
e, we call delay (of m) the time between the invocation of the Send retry
primitive by the sender of m and the delivery of m to its destination. Now,
we call communication step (or simply step) of e the worst delay over the set
of messages that are actually delivered during e (note that we do not consider
messages that are never delivered in e).

We associate to P a function NPSP , called the necessary presence sets func-
tion of P, that returns, for any TVG (V,E, T , ρ, ζ, φ) of C, a set of subsets of
E. Note that the actual definition of this function depends on the problem itself
and not of a TVG nor an execution. Each element of NPSP(g) describes one of
the set of edges whose apparition is necessary and sufficient to start the effec-
tive solving the problem (independently of the used algorithm). We give some
examples in the following. For the underlying graph computation problem UG,
we have NPSUG(g) = {E} since each edge of E must appear in the output of
any process. For a broadcast problem B, we have NPSB(g) = {{(p, q)}|q ∈ Np}
(where process p is the initiator) since the apparition of any edge adjacent to
p (that is, the first connexion of p to the system) is necessary and sufficient to
begin the broadcast of a message by p.

We define the starting time of the execution e of A over a TVG g as the
smallest time t ∈ T such that each edges of at least one element of NPSP(g) are
present at least once before t in this execution. Note that, in a static distributed
system, the initial time and the starting time are always identical since all edges
of all elements of NPSP(g) are present in the initial configuration whatever
the definition of NPSP is. Finally, the convergence time of A on g is the time
(expressed in communication steps of e) between the starting time of e and the
smallest time in e where the specification of P is satisfied.
Definition 5 (Time complexity on a TVG class). . The time complexity
of a distributed algorithm A that satisfies the specification of a fixed point com-
putation problem P on a TVG class C is the worst convergence time of A on all
TVGs of C.

Note that this definition may be naturally extended to so-called service prob-
lems in the following way. First, we consider as starting time the maximum be-
tween the starting time defined above and the time of request of a service (e.g.
the sending of a message for a broadcast algorithm, the request of critical section
for a mutual exclusion algorithm). Second, we substitute the convergence time of
the algorithm by the time of achievement of the required service by the algorithm
(e.g. the delivery of a message to its destinations for a broadcast algorithm, the
starting of critical section for a mutual exclusion algorithm).

3 Underlying Graph Computation

In this section, we present an underlying graph computation algorithm (see Sec-
tion 3.1) and proves its time optimality with respect to our new measure (see
Section 3.2). This algorithm is used as a building block in the next section for
our minimal dominating set construction algorithm. Before presenting our algo-
rithm, we need to specify the underlying graph computation problem.

Algorithm 1 Underlying graph computation for process p.

Variables:
gp = (Vp, Ep) initially ({p}, ∅)
Np initially ∅

Upon appearance of an edge {p, q}:
if {p, q} /∈ Ep then

Np := Np ∪ {q}
gp := (Vp ∪ {q}, Ep ∪ {{p, q}})

foreach r ∈ Np do
Send retry(add(gp), r)

On reception of add(gq) from q:
if Eq \ Ep 6= ∅ then

gp := (Vp ∪ Vq, Ep ∪ Eq)
foreach r ∈ Np \ {q} do

Send retry(add(gp), r)

Specification 1 (Underlying graph) An algorithm A satisfies the underly-
ing graph specification for a class of TVGs C if the execution e = γ0, γ1, . . . of A
on every TVG g of C has a suffix ei = γi, γi+1, . . . for a given i ∈ N such that
each process outputs the underlying graph of g in any configuration of ei.

3.1 Algorithm

Our underlying graph computation algorithm is presented in Algorithm 1. The
intuition behind this algorithm is simple. Each process stores locally a graph,
initially empty, that eventually gathers all edges of the underlying graph. At the
first appearance of an edge, the two adjacent processes add this edge to their
graph. Then, they try to propagate the last version of their graph to all processes
that they have as neighbor at least once since the beginning of the execution.
When a process receives such a message (that contains the current underlying
graph of another process), it add to its own underlying graph every edge it does
not already know. If its underlying graph grows during this operation, then the
process propagates again its underlying graph to all processes that it has as
neighbor at least once since the beginning of the execution.

This algorithm ensures that, upon the first apparition of the last edge of the
underlying graph, this edge is added to the output of adjacent processes and then
propagated (at least) to their neighbors in the eventual underlying graph in one
step, and so on (note that we have no guarantees for neighbors in the underlying
graph in general since some eventual missing edges may exist). Hence, in any
execution, after at most diam(Uωg) steps, this edge (and all others) appears in
the output graph of any process. In other words, we have the following result:

Theorem 1. Algorithm 1 satisfies the underlying graph specification for COT .
Moreover, its convergence time on any TVG g of COT is diam(Uωg) steps.

3.2 Time Optimality

In this section, we interest in a lower bound result on the time complexity of
underlying graph computation. We restrict ourselves to greedy algorithms that
are the most natural ones for this problem. We define a greedy algorithm for
the underlying graph computation as an algorithm that satisfies the following
property. The initial output of any process is an empty graph and the graph

outputted by a process can only grow (in the sense of inclusion) over time. In
other words, such an algorithm ensures that, once a process start to output a
given edge or process, this latter always appears in the output of this process
afterwards. Note that Algorithm 1 falls in this category.

In the following, we prove that no greedy algorithm for underlying graph
computation on COT can exhibit a better time complexity than our algorithm.
Indeed, we prove that there exists, for any greedy algorithm, a TVG g in COT
such that this algorithm needs diam(Uωg) steps to compute the underlying graph
of g. Note that the complexity of the underlying graph computation depends
surprisingly of a parameter of the eventual underlying graph. Before proving
this result, we need a technical lemma for the proof of this optimality result.

Lemma 1. For any greedy algorithm A that satisfies the underlying computation
graph, for any TVG g = (V,E, T , ρ, ζ, φ) in COT , for any edge e ∈ E that is
not a cut-edge of Uωg , for any process p ∈ V , for any t ∈ T , e cannot belong to
the graph outputted by p in the execution of A on g at time t if there exists no
temporal path from one extremity of e to p that starts after the first appearance
of e in g and ends before t.

Theorem 2. For any greedy algorithm A that satisfies the underlying graph
specification on COT , there exists a TVG g of COT such that the convergence
time of A is at least diam(Uωg) steps.

Proof. Let A be a greedy algorithm that satisfies the underlying graph specifi-
cation on COT . let us define the family of TVGs (gk)k∈N∗ described by Figure
1. Note that, for any k ∈ N∗, we have diam(Uωgk) = 2k (and diam(Ugk) <
diam(Uωgk) since diam(Ugk) = k + 1). As this graph is connected, gk belongs to
COT . By construction of gk, the starting time of the execution of A on gk is 1
for any k ∈ N∗ (recall that NPSUG(g) = {E}). Note that, due to the choice of
the latency function, any communication step of the execution of A on gk takes
exactly one time unit.

Consider ek the execution of A on gk for any k ∈ N∗. From Lemma 1, we
know that the edge {pk−1, pk} cannot appear in the graph outputted by p3k in ek
before there exists at least one temporal path from pk−1 or pk to p3k. Note that
the construction of gk implies that such a temporal path (after time 1) needs at
least 2k steps (the length of the path from pk−1 or pk to p3k since gk is static
after time 1). As the edge {pk−1, pk} must eventually appear in the output of
any process in ek by assumption on A, we obtain that the convergence time of
A is at least diam(Uωgk) steps, that ends the proof. ut

4 Minimal Dominating Set Construction

Minimal dominating set construction is a classical problem in distributed com-
puting since this spanning structure have interesting properties for a lot of prac-
tical problems as clustering. Recall that, in a static distributed system, a domi-
nating set D is a subset of processes of the system such that each process that
does not belong to D have at least one neighbor in D. Such a dominating set is
minimal when it has is no strict subset that is also a dominating set.

[1, +1]

[1, +1]

[1, +1]

[1, +1]

[1, +1]

[1, +1]

[1, +1]

[0, 1[

p1pk�2

pk�1

pk

pk+1

p2k

p2k�1

p2k�2

p2k+1 p2k+2 p3k�2 p3k�1 p3k

[1, +1] [1, +1] [1, +1] [1, +1] [1, +1]

[1, +1]
p0

[0, 1[

Fig. 1. An illustration of the TVGs family in the proof of Theorem 2.

Regarding dynamic distributed systems, two different approaches have been
proposed to handle minimal dominating set problem. We survey them quickly
here and show that these definitions seem not relevant in our context, that
motivates the need of our new definition presented in this section.

The most natural way to extend minimal dominating set definition in the
context of dynamic systems is presented in [7]. In this work, the dynamic graph
is seen as a sequence of static graphs and a new minimal dominating set is
computed at each topological change. This approach is not suitable in the case
of highly dynamic systems since the system may be always in computation phase
(the computation of the new dominating set at each topological change is not
instantaneous). In this case, the dominating set may be never stable and is then
useless for the application that required it.

The second approach, proposed by [10], consists in computing a stable dom-
inating set on the underlying graph of the TVG. This approach is interesting
since the outputted dominating set is stable in spite of the dynamicity of the
system but is still not suitable for our purpose. Indeed, as the dominating set
is computed on the underlying graph that may contain eventual missing edges,
it is possible for a process to be dominated only through such edges. In other
words, a dominated process may have eventually only dominated neighbors, that
is counter-intuitive for a minimal dominating set and makes sense only in TVGs
where there is no eventual missing edges.

To overcome flaws of precedent definitions in our context of highly dynamic
distributed systems (captured by the class of TVGs COT), we propose a third
definition in which we require the outputted minimal dominating set to be sta-
ble and each dominated process to be infinitely often neighbor of at least one
dominating process. In other words, we want to compute a minimal dominating
set on the eventual underlying graph. Note that this definition is exactly the
same as the one of [10] in TVGs where there is no eventual missing edges. We
specify the minimal dominating set construction problem over TVGs as follows.

Definition 6 (Minimal dominating set over time). A set of processes M
is a minimal dominating set over time (MDST for short) of a TVG g if M is a
minimal dominating set of Uωg .

Specification 2 (Minimal dominating set) An algorithm A satisfies the
minimal dominating set specification for a class of TVGs C if the execution

e = γ0, γ1, . . . of A on every TVG g of C has a suffix ei = γi, γi+1, . . . for a given
i ∈ N such that each process outputs constantly a boolean value in any configura-
tion of ei and that the set of processes outputting true is a minimal dominating
set over time of g.

4.1 Preliminaries

In this section, we present some preliminary results that are needed in the fol-
lowing. First, we introduce the definition of a strong minimal dominating set of
a graph as a dominated set of any connected spanning subgraph of this graph.
In Section 4.2, we prove that the existence of such a set in the underlying graph
of a TVG is necessary to the existence of an algorithm to construct a minimal
dominating set over time of this TVG. We claim in Section 4.3 that this condi-
tion is also sufficient. To prove this result, we use the following characterization
of graphs that admit a strong minimal dominating set.

Definition 7 (Strong minimal dominating set). A strong minimal domi-
nating set (SMDS for short) of a (static) graph g is a subset of processes of g
that is a minimal dominating set of every connected spanning subgraph of g.

The following lemma follows directly from definitions and legitimates our
interest for strong minimal dominating sets.

Lemma 2. If the underlying graph of a TVG g ∈ COT admits a strong minimal
dominating set M then M is a minimal dominating set over time of g.

The next result provides us a characterization of (static) graphs that admits a
SMDS. We use this characterization in our minimal dominating set construction
algorithm. The quite simple proof of this lemma is delegated to the appendix.

Lemma 3. For any (static) graph g and any minimal dominating set M of
g, M is a strong minimal dominating set of g if and only if the set of edges
{{p, q}|q ∈M ∩Np} is a cut-set in g for every process p ∈ V \M .

4.2 Impossibility Result

The proof of our impossibility result presented in Theorem 4 makes use of a
generic framework we proposed in another work. We recall here the minimal
definitions and results to understand our proof. Due to the lack of space, the
interested reader is referred to [16] for more details.
Summary of [16]. For a given time domain T, a given static graph (V,E) and
a given latency function ζ, let us consider the set G(V,E),T,ζ of all TVGs over T
that admit (V,E) as underlying graph and ζ as latency function. For the sake of
clarity, we will omit the subscript (V,E),T, ζ and simply denote this set by G.
Remark that two distinct TVGs of G can be distinguished only by their presence
function. For any TVG g in G, let us denote its presence function by ρg. We define
now the following metric dG over G. If g = g′, then dG(g, g′) = 0. Otherwise,
dG(g, g′) = 2−λ with λ = Sup {t ∈ T|∀t′ ≤ t, ∀e ∈ E, ρg(e, t′) = ρg′(e, t

′)}.
For a given algorithm A and a given TVG g, let us define the (A, g)-output

as the function that associate to any time t ∈ T the state of g at time t when it

executes A. We say that g is the supporting TVG of this output. Let us consider
the set OA,G of all (A, g)-outputs over all TVGs g of G. For the sake of clarity,
we will omit the subscript A,G and simply denote this set by O. Remark that
two distinct output of O can be distinguished only by their supporting TVG.
For any output o in O, let us denote its supporting TVG by go. We define
now the following metric dO over O. If o = o′, then dO(o, o′) = 0. Otherwise,
dO(o, o′) = 2−λ with λ = Sup {t ∈ T|∀t′ ≤ t, o(t′) = o′(t′)}.

Once we have observed that the metric spaces (G, dG) and (O, dO) are com-
plete, we are now able to recall the main result of [16]. Intuitively, this theorem
ensures that, if we take a sequence of TVGs with ever-growing common prefixes,
then the sequence of corresponding outputs also converges. Moreover, we are
able to describe the output to which it converges as the output that corresponds
to the TVG that shares all commons prefixes of our TVGs sequence. This re-
sult is useful since it allows us to construct counter-example in the context of
impossibility results. Indeed, it is sufficient to construct a TVG sequence (with
ever-growing common prefixes) and to prove that their corresponding outputs
violates the specification of the problem for ever-growing time to exhibit an
execution that violates infinitely often the specification of the problem.

Theorem 3. For any deterministic algorithm A, if a sequence (gn)n∈N of G
converges to a given gω ∈ G, then the sequence (on)n∈N of the (A, gn)-outputs
converges to oω ∈ O. Moreover, oω is the (A, gω)-output.
Application to minimal dominating set. We are now in measure to prove
our impossibility result. This result states that there exists no deterministic
algorithm that satisfies the minimal dominating set specification on a TVG of
COT as soon as the underlying graph of the considered TVG does not admit
a strong minimal dominating set. Intuitively, this impossibility comes from the
following fact. As no process is able to detect eventual missing edges, the minimal
dominated set computed by any algorithm must be a minimal dominated set of
any possible eventual underlying graph, that is of any connected subgraph of
the underlying graph. In other words, the computed minimal dominated set is a
strong minimal dominating set. The existence of such a set is then a necessary
condition to the existence of an algorithm to compute a minimal dominating
set over time. The main difficulty of the formal proof of this result lies in the
construction of the TVGs sequence that allows us to apply Theorem 3.

Theorem 4. For any set of (static) graphs F containing at least one graph that
does not admit a strong minimal dominating set, there exists no deterministic
algorithm that satisfies the minimal dominating set specification for COT |F .
Proof. Let us introduce some notation first. We define, for any TVG g =
(V,E, T , ρ, ζ, φ), the TVG g � {(Ei, Ti)|i ∈ I} (with I ⊆ N and for any i ∈ I,
Ei ⊆ E and Ti ⊆ T) as the TVG (V,E, T , ρ′, ζ, φ) with:

ρ′(e, t) =

0 if ∃i ∈ I, e ∈ Ei and t ∈ Ti
1 if ∃i ∈ I, e ∈ E \ Ei and t ∈ Ti
ρ(e, t) otherwise

By contradiction, assume that there exists a set of (static) graphs F contain-
ing at least one graph that does not admit a strong minimal dominating set and

gi

g3

g2

g1

g0
⌘0

↵0

⌘1
↵1

⌘2
↵2 ↵3

⌘3
↵i

gi+1

g!

M0

M0

M0

M0

M0

M0

M’0

M’0

M’0

M’0

M’0

M’0

M1

M1

M1

M1

M1

M’1

M’1

M’1

M’1

M’1

M2

M2

M2

M2

M3

M3

M3

M’2

M’2

M’2

M’2

M’3

M’3

M’3

Mi

Mi

M’i

M’i Mi+1

⌘i ⌘i+1

Fig. 2. An illustration of the sequence (gn)n∈N used in the proof of Theorem 4.

that there exists a deterministic algorithm A that satisfies the minimal domi-
nating set specification for COT |F . In consequence, any process that executes A
outputs a boolean value at any time.

Let g = (V,E, T , ρ, ζ, φ) be a TVG of COT |F such that Ug does not admit a
strong minimal dominating set and that all edges of Ug are present during the
first communication step of the execution of A on g (g exists by construction
of F and by definition of COT |F). Let t0 be the time of completion of the first
communication step of the execution of A on g. We construct then a sequence
(gn)n∈N of TVGs as follows. We set g0 = g. Assume that we have already gi =
(V,E, T , ρ′, ζ, φ) for a given i ∈ N such that gi ∈ COT |F , Ugi = Ug, and ∃αi >
t0,∀e ∈ E,∀t ≤ αi, ρ

′(e, t) = ρ(e, t). Then, we define inductively gi+1 as follows
(refer to Figure 2 for an illustration, gray boxes represent portions of executions
where A outputs a stable minimal dominating set):
1. Consider the execution of A over gi and let ηi ∈ T be the smallest time strictly
greater than αi from which the set of processes that output true is constant (ηi
exists by assumption on A since gi ∈ COT |F);
2. Let Mi be the minimal dominating set computed by A on gi (i.e. the set of
processes of gi outputting true after ηi). As Ugi = Ug, we know by assumption
on Ug that Ugi does not admit a SMDS. In particular, Mi is not a SMDS of
Ugi . Hence, there exists a process pi of V \Mi such that the set of edges Ei =
{{pi, q}|q ∈Mi ∩Npi} is not a cut-set of Ugi ;
3. Let g′i = gi � {(Ei, T ∩]ηi,+∞[)}.
4. Remark that Ug′i = Ugi = Ug (by construction of g′i since ηi > t0) and that

Uωg′i
is connected (since E(Uωg′i

) = E(Ug) \ Ei by construction2 and Ei is not a

cut-set of Ug). Hence, g′i ∈ COT |F and we can consider the execution of A over
g′i. Let αi ∈ T be the smallest time strictly greater than ηi from which the set
of processes that output true is constant. Let M ′i be the minimal dominating set
computed by A on g′i (i.e. the set of processes of g′i outputting true after αi).
Note that M ′i 6= Mi since Mi is not a minimal dominating set of Uωg′i

(recall that,

in Uωg′i
, pi has no neighbor in Mi);

2 where E(g) denotes the set of edges of g.

5. Let gi+1 = gi � {(Ei, T ∩]ηi, αi])}.
It is straightforward to check that this construction ensures that, if there

exists gi = (V,E, T , ρ′, ζ, φ) for a given i ∈ N such that gi ∈ COT |F , Ugi = Ug,
and ∃αi > t0,∀e ∈ E,∀t ≤ αi, ρ

′(e, t) = ρ(e, t), then gi+1 satisfies the same
property. Moreover, as g0 = g, this property is naturally satisfied for i = 0 with
any α0 > t0. Hence, the sequence (gn)n∈N is well-defined. Note that, for any
i ∈ N, ηi < αi and αi < ηi+1 (by construction).

That allows us to define the following TVG: gω = g�{(Ei, T ∩]ηi, αi])|i ∈ N}.
Note that Ugω = Ug and then that gω belongs to COT |F . Observe that, for any
k ∈ N∗, we have dG(gk, gω) = 2−ηk by construction of (gn)n∈N and gω. Thus,
(gn)n∈N converges in COT |F to gω.

We are now in measure to apply the Theorem 3 that states that the (A, gω)-
output is the limit of the sequence of the (A, gn)-outputs. In other words, the
(A, gω)-output shares a prefix of length ηi with the (A, gi)-output for any i ∈ N
(recall that the sequence of the (A, gn)-outputs is Cauchy since it converges).
That means that, for any i ∈ N∗, the set of processes that output true in gω at
ηi is Mi and the set of processes that output true in gω at αi is M ′i . As we know
that Mi 6= M ′i for any i ∈ N, we obtain that the set of processes that output
true in gω never converges, that contradicts the fact that A satisfies the minimal
dominating set specification for COT |F and ends the proof. ut

4.3 Algorithm

We are now able to prove the sufficiency of the existence of a strong minimal
dominating set on the underlying graph for the construction of a minimal dom-
inating set over time of any TVG of COT . This result is proved by presenting
an algorithm based on our underlying graph computation algorithm presented
in Section 3. This algorithm works as follows. Once a process has computed the
underlying graph, it is easy to decide if this process belongs to the outputted
minimal dominating set: the process enumerates (locally and in a deterministic
order based e.g. on process identities) all minimal dominating sets of the un-
derlying graph (it is sufficient to enumerate all subsets of processes and to keep
only minimal dominating sets) and chooses the first one that satisfies Lemma 3.
This latter is then a strong minimal dominating set of the underlying graph and
hence a minimal dominating set over time of the TVG by Lemma 2. In order to
avoid the use of an algorithm of termination detection (for the underlying graph
computation), each process repeats the local computation of its output at each
update of its local copy of the underlying graph by the algorithm of Section 3.

Theorem 5. For any set of (static) graphs F containing only graphs that admit
a strong minimal dominating set, there exists a deterministic algorithm that
satisfies the minimal dominating set specification for COT |F .

5 Conclusion

This paper addressed the construction of a minimal dominating set over time
(MDST) in highly dynamic distributed systems. We considered the weakest con-
nectivity assumption in the hierarchy of time-varying graphs: the graph may be

disconnected at each time, topological changes are unpredictable but we know
that any process is able to communicate with any other infinitely often using so-
called temporal paths. We proposed a new definition of minimal dominating set
increasing the stability of the computed MDST. Next, we provided a necessary
and sufficient topological condition for the existence of a deterministic MDST
algorithm. We then proposed a new measure of time complexity that takes into
account the communication delays due to network dynamic.

The above results used the construction of an underlying graph. We showed
the time optimality of our algorithm with respect to our measure. Note that our
result (Theorem 2) is valid for greedy algorithms only. We conjecture that all
distributed underlying graph algorithms are greedy. This would lead to generalize
our result of optimality. Also, we would like to extend our approach to other
related overlay constructions.

References

1. Anagnostopoulos, A., Kumar, R., Mahdian, M., Upfal, E., Vandin, F.: Algorithms
on evolving graphs. In: ITCS. (2012) 149–160

2. Awerbuch, B., Even, S.: Efficient and reliable broadcast is achievable in an even-
tually connected network. In: PODC. (1984) 278–281

3. Ferreira, A.: Building a reference combinatorial model for manets. Network 18(5)
(2004) 24–29

4. Schneider, J., Wattenhofer, R.: Coloring unstructured wireless multi-hop networks.
In: PODC. (2009) 210–219

5. Xuan, B., Ferreira, A., Jarry, A.: Computing shortest, fastest, and foremost jour-
neys in dynamic networks. IJFCS 14(02) (2003) 267–285

6. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. IJPEDS 27(5) (2012) 387–408

7. Whitbeck, J., Dias de Amorim, M., Conan, V., Guillaume, J.L.: Temporal reach-
ability graphs. In: MobiCom. (2012) 377–388

8. Schneider, J., Wattenhofer, R.: An optimal maximal independent set algorithm for
bounded-independence graphs. Distributed Computing 22(5-6) (2010) 349–361

9. Casteigts, A., Mans, B., Mathieson, L.: On the feasibility of maintenance algo-
rithms in dynamic graphs. Technical report, arXiv – abs/1107.2722 (2011)

10. Casteigts, A., Flocchini, P.: Deterministic algorithms in dynamic networks: Prob-
lems, analysis, and algorithmic tools. Technical report, DRDC 2013-020 (2013)

11. Kuhn, F., Moses, Y., Oshman, R.: Coordinated consensus in dynamic networks.
In: PODC. (2011) 1–10

12. Kuhn, F., Lynch, N.A., Oshman, R.: Distributed computation in dynamic net-
works. In: STOC. (2010) 513–522

13. Casteigts, A., Flocchini, P., Mans, B., Santoro, N.: Deterministic computations in
time-varying graphs: Broadcasting under unstructured mobility. In: ICTCS. (2010)
111–124

14. Ilcinkas, D., Klasing, R., Wade, A.: Exploration of constantly connected dynamic
graphs based on cactuses. In: SIROCCO. (2014) 250–262

15. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and
Advanced Topics (2nd edition). John Wiley Interscience (2004)

16. Braud-Santoni, N., Dubois, S., Kaaouachi, M.H., Petit, F.: A generic framework
for impossibility results in time-varying graphs. In: APDCM. (2015) to appear

