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Abstract. A snap-stabilizing protocol, starting from any configuration,
always behaves according to its specification. In this paper, we are in-
terested in message forwarding problem in a message-switched network.
In this problem, we must manage resources of the system to deliver
messages to any processor of the network. In this purpose, we use in-
formation given by a routing algorithm. By the context of stabilization
(in particular, the system starts in any configuration), this information
can be corrupted. In [1], authors show that there exists snap-stabilizing
algorithms for this problem (in the state model). That implies that we
can ask the system to begin forwarding messages without losses even if
routing informations are initially corrupted.

In this paper, we propose another snap-stabilizing algorithm for this
problem which improves the space complexity of the one of [1].

1 Introduction

The quality of a distributed system depends on its fault-tolerance. Many fault-
tolerant schemes have been proposed. For instance, self-stabilization [2] allows
to design a system tolerating arbitrary transient faults. A self-stabilizing system,
regardless of the initial state of the system, is guaranteed to converge into the
intended behavior in a finite time. Another paradigm is snap-stabilization ([3]).
A snap-stabilizing protocol guarantees that, starting from any configuration, it
always behaves according to its specification. Hence, a snap-stabilizing protocol
is a self-stabilizing protocol which stabilizes in 0 time unit.

In a distributed system, it is commonly assumed that each processor can ex-
change messages only with its neighbors (i.e. processors with which it shares a
communication link) but processors may need to exchange messages with any
processor of the network. To perform this goal, processors have to solve two
problems: the determination of the path which messages have to follow in the
network to reach their destinations (it is the routing problem) and the man-
agement of network resources in order to forward messages (it is the message
forwarding problem). These two problems received a great attention in litera-
ture. The routing problem is studied for example in [4,5,6] and self-stabilizing
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approaches can be found in [7,8,9]. The forwarding problem has also been well
studied, see [10,11,12,13,14,15]. As far we know, only [1] deals with this problem
using a stabilizing approach.

Informally, the goal of forwarding is to design a protocol which allows all
processors of the network to send messages to any destination of the network
(knowing that a routing algorithm computes the path that messages have to
follow to reach their destinations). Problems come of the following fact: messages
traveling through a message-switched network ([16]) must be stored in each
processor of their path before being forwarded to the next processor on this
path. This temporary storage of messages is performed with reserved memory
spaces called buffers. Obviously, each processor of the network reserves only a
finite number of buffers to the message forwarding. So, it is a problem of bounded
resources management which exposes the network to deadlocks and livelocks if
no control is performed. In this paper, we focus about a message forwarding
protocol which deals withthe problem using a stabilizing approach. The goal is
to allow the system to forward messages regardless of the state of the routing
tables. Obviously, we need that these routing tables repair themselves within a
finite time. So, we assume the existence of a self-stabilizing protocol to compute
routing tables.

In the following, a valid message is a message which has been sent out by
a processor. As a consequence, an invalid message is present in the initial con-
figuration. We can now specify the problem. We propose a specification of the
problem where duplications (i.e. the same message reaches many time its desti-
nation while it has been sent out only once) are forbidden:

Specification 1 (SP). Specification of the message forwarding problem.
- Any message can be sent out in a finite time.
- Any valid message is delivered to its destination once and only once in a finite
time.

In [1], authors show that it is possible to transform a forwarding algorithm of
[11] into a snap-stabilizing one without any significant over cost (with respect
to time of forwarding and amount of memory per processor). But this algorithm
needs Θ(n) buffers per processor (where n is the number of processors of the
networks). The scope of this paper is the improvement of this space complexity.
We achieve this goal by providing a snap-stabilizing forwarding algorithm which
requires Θ(D) buffers per processor (where D is the diameter of the network).
Even if this improvement can be seen as quite useful from a theoretical point of
view (since n and D are close values in the worst case), we believe that it could
be very interesting from a practical point of view. Indeed, practical networks
have in general a diameter which is very smaller than the number of nodes (for
example, [17] shows that the diameter of Internet is near to 6 in 2000 although
it had near to 14,000 nodes).

The remaining of this paper is organized as follows: we present first our model
(section 2), then we give and prove our solution in the state model (section 3).
Finally, we conclude in section 4.
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2 Preliminaries

We consider a network as an undirected connected graph G = (V, E) where V is
a set of processors and E is the set of bidirectional asynchronous communication
links. In the network, a communication link (p, q) exists if and only if p and q are
neighbors. We assume that the labels of neighbors of p are stored in the set Np.
We also use the following notations: respectively, n is the number of processors,
Δ the maximal degree, and D the diameter of the network. If p and q are two
processors of the network, we denote by dist(p, q) the length of the shortest path
between p and q. In the following, we assume that the network is identified, i.e.
each processor has an identity which is unique on the network. Moreover, we
assume that all processors know the set I of all identities of the network.

State model. We consider the classical local shared memory model of computa-
tion (see [16]) in which communications between neighbors are modeled by direct
reading of variables instead of exchange of messages. In this model, the program
of every processor consists in a set of shared variables (henceforth, referred to as
variables) and a finite set of actions. A processor can write to its own variables
only, and read its own variables and those of its neighbors. Each action is consti-
tuted as follows: < label >::< guard >−→< statement >. The guard of an action
in the program of p is a boolean expression involving variables of p and its neigh-
bors. The statement of an action of p updates one or more variables of p. An action
can be executed only if its guard is satisfied. The state of a processor is defined by
the value of its variables. The state of a system is the product of the states of all
processors. We refer to the state of a processor and the system as a (local) state
and (global) configuration, respectively. We note C the set of all configurations of
the system. Let γ ∈ C and A an action of p (p ∈ V ). A is said enabled at p in γ if
and only if the guard of A is satisfied by p in γ. Processor p is said to be enabled in
γ if and only if at least one action is enabled at p in γ. Let a distributed protocolP
be a collection of binary transition relations denoted by →, on C. An execution of
a protocol P is a maximal sequence of configurations Γ = (γ0, γ1, ..., γi, γi+1, ...)
such that, ∀i ≥ 0, γi → γi+1 (called a step) if γi+1 exists, else γi is a terminal con-
figuration. Maximality means that the sequence is either finite (and no action of P
is enabled in the terminal configuration) or infinite. All executions considered here
are assumed to be maximal. E is the set of all executions of P . As we already said,
each execution is decomposed into steps. Each step is shared into three sequential
phases atomically executed: (i) every processor evaluates its guards, (ii) a daemon
chooses some enabled processors, (iii) each chosen processor executes its enabled
action. When the three phases are done, the next step begins. A daemon can be
defined in terms of fairness and distribution. There exists several kinds of fair-
ness assumption. Here, we use only the weakly fairness assumption, meaning that
we assume that every continuously enabled processor is eventually chosen by the
daemon. Concerning the distribution, we assume that the daemon is distributed
meaning that, at each step, if one or more processors are enabled, then the dae-
mon chooses at least one of these processors to execute an action. We consider
that any processor p is neutralized in the step γi → γi+1 if p was enabled in γi and
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not enabled in γi+1, but did not execute any action in γi → γi+1. To compute the
time complexity, we use the definition of round [18]. This definition captures the
execution rate of the slowest processor in any execution. The first round of Γ ∈ E ,
noted Γ ′, is the minimal prefix of Γ containing the execution of one action or the
neutralization of every enabled processor from the initial configuration. Let Γ ′′ be
the suffix of Γ such that Γ = Γ ′Γ ′′. The second round of Γ is the first round of
Γ ′′, and so on.

Message-switched network. Today, most of computer networks use a variant
of the message-switching method (also called store-and-forward method). It’s
why we have chosen to work with this switching model. In this section, we quickly
present this method (see [16] for a detailed presentation). The model assumes
that each buffer can store a whole message and that each message needs only one
buffer to be stored. The switching method is modeled by four types of moves:

1- Generation:when a processor sends a new message, it “creates” a new mes-
sage in one of its empty buffers. We assume that the network may allow this
move as soon as at least one buffer of the processor is empty.
2- Forwarding:a message m is forwarded (copied) from a processor p to an
empty buffer in the next processor q on its route (determined by the routing
algorithm). We assume that the network may allow this move as soon as at least
one buffer buffer of the processor is empty.
3- Consumption:A message m occupying a buffer in its destination is erased
and delivered to this processor. We assume that the network may always allow
this move.
4- Erasing:a message m is erased from a buffer. We assume that the network
may allow this move as soon as the message has been forwarded at least one
time or delivered to its destination.

Stabilization. We recall here some formal definitions.

Definition 1 (Self-Stabilization [2]).
Let T be a task, and ST a specification of T . A protocol P is self-stabilizing for
ST if and only if ∀Γ ∈ E, there exists a finite prefix Γ ′ = (γ0, γ1, ..., γl) of Γ
such that all executions starting from γl satisfies ST .

Definition 2 (Snap-Stabilization [3]).
Let T be a task, and ST a specification of T . A protocol P is snap-stabilizing for
ST if and only if ∀Γ ∈ E, Γ satisfies ST .

This definition has the two following consequences. We can see that a snap-
stabilizing protocol for ST is a self-stabilizing protocol for ST with a stabilization
time of 0 time unit. A common method used to prove that a protocol is snap-
stabilizing is to distinguish an action as a “starting action” (i.e. an action which
initiates a computation) and to prove the following property for every execution
of the protocol: if a processor requests it, the computation is initiated by a
starting action in a finite time and every computation initiated by a starting
action satisfies the specification of the task. We use these two remarks to prove
snap-stabilization of our protocol in the following.
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3 Proposed Protocol

3.1 Description

To simplify the presentation, we assume that the routing algorithm induces only
minimal paths in number of edges. We have seen that, by default, the network
always allows message moves between buffers. But, if we do no control on these
moves, the network can reach unacceptable situations such as deadlocks, livelocks
or message losses. If such situations appear, specifications of message forwarding
are not respected. Now, we quickly present solutions brought by the literature in
the case where routing tables are correct in the initial configuration. In order to
avoid deadlocks, we must define an algorithm which permits or forbids various
moves in the network (functions of the current occupation of buffers) in order to
prevent the network to reach a deadlock. Such algorithms are called deadlock-free
controllers (see [16] for a much detailed description). Livelocks can be avoided by
fairness assumptions on the controller for the generation and the forwarding of
messages. Message losses are avoided by the using of identifier on messages (for
example, the concatenation of the identity of source and a two-value flag). [11]
introduced a generic method to design deadlock-free controllers. The key idea
is to restrict moves of messages along edges of an oriented graph BG (called
buffer graph) defined on the network buffers. Authors show that cycles on BG
can lead to deadlocks and that, if BG is acyclic, they can define a deadlock-free
controller on this buffer graph. The main idea in [1] is to adapt a graph buffer
of [11] in order to obtain a snap-stabilizing forwarding protocol.

In this paper, we are interested in another buffer graph introduced in [11].
Each processor have D + 1 buffers ranked from 1 to D + 1. New messages are
always generated in the buffer of rank 1 of the sender processor. When a message
occupying a buffer of rank i is forwarded to a neighbor q, it is always copied in the
buffer of rank i+1 of q. It is easy to see that this graph is acyclic since messages
always "come upstairs" the buffer rank (the reader can find an example of such a
graph in Figure 1). We need D +1 buffers per processor since, in the worst case,
there are D forwarding of a message between its generation and its consumption.

Our idea is to adapt this scheme in order to tolerate transient faults. To per-
form this goal, we assume the existence of a self-stabilizing silent algorithm A
to compute routing tables (see e.g. [7,8,9]) which runs simultaneously to our
message forwarding protocol provided in Algorithm 1 (SSMFP means Snap-
Stabilizing Message Forwarding Protocol). Moreover, we assume that A has
priority over SSMFP (i.e. a processor which has enabled actions for both algo-
rithms always chooses the action of A). This guarantees us that routing tables
are correct and stable within a finite time. We assume that SSMFP can have
access to the routing table via a function, called nextHopp(d). This function
returns the identity of the neighbor of p to which p must forward messages of
destination d. Our idea is as follows: we allow the erasing of a message only if we
are ensured that the message has been delivered to its destination. In this goal,
we use a scheme with acknowledgment which guarantees the reception of the
message. More precisely, we associate to each copy of the message a type which
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have 3 values: E (Emission), A (Acknowledgment) and F (Fail). Forwarding of
a valid message m (of destination d) follows the above scheme:

1- Generation of m with type E in a buffer of rank 1 by (R1).
2- Forwarding1 of m with type E without any erasing by (R8) or (R12)).
3- If m reaches d:
3.1- It is delivered and the copy of m takes type A by (R4) or (R10).
3.2- Type A is spread to the sink following the incoming path by (R7).
3.3- Buffers are allowed to free themselves once the type A is propagated to the
previous buffer on the path by (R9), (R11), or (R14).
3.4- The sink erases its copy by (R3) or (R5), thus m is erased.
4- If m reaches a buffer of rank D + 1 without crossing d:
4.1- The copy of m takes type F by (R13).
4.2- Type F is spread to the sink following the incoming path by (R7).
4.3- Buffers are allowed to free themselves once the type F is propagated to the
previous buffer on the path by (R9), (R11), or (R14)).
4.4- Then, the sink of m gives the type E to its copy, that begin a new cycle: m
is sending once again by (R2) or (R6).

Obviously, it is necessary to take in account invalid messages: we have chosen to
let them follow the forwarding scheme and to erase them if they reach step 4.4
(by rules from (R15) to (R18)). The key idea of the snap-stabilization of our
algorithm is the following: since a valid message is never erased, it is sent again
after the stabilization of routing tables (if it never reaches its destination before)
and then it is normally forwarded. To avoid livelocks, we use a fair scheme of
selection of processors allowed to forward a message for each buffer. We can
manage this fairness by a queue of requesting processors. Finally, we use a spe-
cific flag to prevent message losses. It is composed of the identity of the next
processor on the path of the message, the identity of the last processor crossed
over by the message, the identity of the destination of the message and the type
of the message (E, A or F ).

We must manage a communication between our algorithm and processors in
order to know when a processor has a message to send. We have chosen to create
a boolean shared variable requestp (for any processor p). Processor p can set it
at true when it is at false and when p has a message to send. Otherwise, p must
wait that our algorithm sets the shared variable to false (when a message is
sent out).

3.2 Proof of the Snap-Stabilization

In this section, we give ideas2 to prove that SSMFP is a snap-stabilizing mes-
sage forwarding protocol for specification SP . We introduce a second specifi-
cation SP ′ of the problem. This specification is identical to SP but it allows
message duplications. Our proof has the following map. First, we prove that
1 With copy in buffers of increasing rank.
2 Due to the lack of place, formal proofs are omitted. A full version of this work is

available in [19].
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Algorithm 1. SSMFP : protocol for processor p

Data:
- n, D : natural integers equal resp. to the number of processors and to the diameter
of the network.
- I = {0, ..., n − 1} : set of processor identities of the network.
- Np : set of neighbors of p.
Message:
- (m, r, q, d, c) with m useful information of the message, r ∈ Np identity of the next
processor to cross for the message (when it reaches the node), q ∈ Np identity of the
last processor cross over by the message, d ∈ I identity of the destination of the mes-
sage, c ∈ {E, A, F} color of the message.
Variables:
- ∀i ∈ {1, ..., D+1}, bufp(i) : buffer which can contain a message or be empty (denoted
by ε)
Input/Output:
- requestp : boolean. The higher layer can set it to "true" when its value is "false" and
when there is a waiting message. We consider that this waiting is blocking.
- nextMesp: gives the message waiting in the higher layer.
- nextDestp: gives the destination of nextMesp if it exists, null otherwise.
Procedures:
- nextHopp(d): neighbor of p computed by the routing for destination d (if d = p, we
choose arbitrarily r ∈ Np).
- ∀i ∈ {2, ..., D + 1}, choicep(i): fairly chooses one of the processors which can
send a message in bufp(i), i.e. choicep(d) satisfies predicate ((choicep(i) ∈ Np) ∧
(bufchoicep(i)(i − 1) = (m,p, q, d, E)) ∧ (choicep(i) �= d)). We can manage this fair-
ness with a queue of length Δ + 1 of processors which satisfies the predicate.
- deliverp(m): delivers the message m to the higher layer of p.
Rules:

/* Rules for the buffer of rank 1 */
/* Generation of messages */
(R1) :: requestp ∧ (bufp(1) = ε) ∧ (nextDestp = d) ∧ (nextMesp = m) ∧
(bufnextHopp(d)(2) �= (m,r′, p, d, c)) −→ bufp(1) := (m, nextHopp(d), r, d, E) with
r ∈ Np; requestp := false
/* Processing of acknowledgment */
(R2) :: (bufp(1) = (m, r, q, d, F )) ∧ (d �= p) ∧ (bufr(2) �= (m, r′, p, d, F )) −→
bufp(1) := (m, nextHopp(d), q, d, E)
(R3) :: (bufp(1) = (m,r, q, d, A)) ∧ (d �= p) ∧ (bufr(2) �= (m,r′, p, d, A)) −→
bufp(1) := ε
/* Management of messages which reach their destinations */
(R4) :: bufp(1) = (m, r, q, p,E) −→ deliverp(m); bufp(1) := (m, r, q, p, A)
(R5) :: bufp(1) = (m, r, q, p,A) −→ bufp(1) := ε
(R6) :: bufp(1) = (m, r, q, p, F ) −→ bufp(1) := (m,r, q, p, E)

/* Rule for buffers of rank 1 to D : propagation of acknowledgment */
(R7) :: ∃i ∈ {1, ..., D}, ((bufp(i) = (m, r, q, d,E)) ∧ (p �= d) ∧ (bufr(i + 1) =
(m, r′, p, d, c))∧ (c ∈ {F, A})) −→ bufp(i) := (m, r, q, d, c)
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End of Algorithm 1:

/* Rules for buffers of rank 2 to D */
/* Forwarding of messages */
(R8) :: ∃i ∈ {2, ..., D}, ((bufp(i) = ε) ∧ (choicep(i) = s) ∧ (bufs(i −
1) = (m, p, q, d,E))∧ (bufnextHopp(d)(i + 1) �= (m,r, p, d, c))) −→ bufp(i) :=
(m, nextHopp(d), s, d, E) /* Erasing of messages which acknowledgment has been
forwarded */
(R9) :: ∃i ∈ {2, ..., D}, ((bufp(i) = (m, r, q, d, c))∧(c ∈ {F, A})∧(d �= p)∧(bufq(i−
1) = (m,p, q′, d, c)) ∧ (bufr(i + 1) �= (m, r′, p, d, c)) −→ bufp(i) := ε

/* Rules for buffers of rank 2 to D + 1 */
/* Consumption of a message and generation of the acknowledgment A */
(R10) :: ∃i ∈ {2, ..., D + 1}, bufp(i) = (m, r, q, p, E) −→ deliverp(m); bufp(i) :=
(m, r, q, p, A)
/* Erasing of messages for p which acknowledgment has been forwarded */
(R11) :: ∃i ∈ {2, ..., D+1}, ((bufp(i) = (m,r, q, p, c))∧(c ∈ {F, A})∧(bufq(i−1) =
(m, p, q′, p, c))) −→ bufp(i) := ε

/* Rules for the buffer of rank D + 1 */
/* Forwarding of messages */
(R12) :: (bufp(D+1) = ε)∧ (choicep(D+1) = s)∧ (bufs(D) = (m,p, q, d, E)) −→
bufp(D + 1) := (m,nextHopp(d), s, d,E)
/* Generation of the acknowledgment F */
(R13) :: (bufp(D + 1) = (m, r, q, d, E))∧ (d �= p) −→ bufp(D + 1) := (m,r, q, d, F )
/* Erasing of messages of which the acknowledgment has been forwarded */
(R14) :: (bufp(D + 1) = (m, r, q, d, c)) ∧ (c ∈ {F, A}) ∧ (d �= p) ∧ (bufq(D) =
(m, p, q′, d, c)) −→ bufp(D + 1) := ε

/* Correction rules: erasing of tail of abnormal caterpillars of type F, A */
(R15) :: ∃i ∈ {2, ..., D}, ((bufp(i) = (m,r, q, d, c)) ∧ (c ∈ {F, A}) ∧ (bufr(i + 1) �=
(m, r′, p, d, c)) ∧ (bufq(i − 1) �= (m, p, q′, d, c′))) −→ bufp(i) := ε
(R16) :: ∃i ∈ {2, ..., D}, ((bufp(i) = (m,r, q, d, c)) ∧ (c ∈ {F, A}) ∧ (bufr(i + 1) �=
(m, r′, p, d, c)) ∧ (bufq(i − 1) = (m, p, q′, d, c′)) ∧ (c′ ∈ {F, A}\{c} ∨ q = d)) −→
bufp(i) := ε
(R17) :: (bufp(D + 1) = (m, r, q, d, c)) ∧ (c ∈ {F, A}) ∧ (bufq(D) �=
(m, p, q′, d, c′)) −→ bufp(D + 1) := ε
(R18) :: (bufp(D+1) = (m, r, q, d, c))∧(c ∈ {F, A})∧(bufq(D) = (m, p, q′, d, c′))∧
(c′ ∈ {F, A}\{c} ∨ q = d) −→ bufp(D + 1) := ε

a
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d

a b c d
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Location of buffers

Rank of buffers

Fig. 1. Example of our buffer graph (on the right) for the network on the left
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SSMFP is a snap-stabilizing message forwarding protocol for specification SP ′

if routing tables are correct in the initial configuration (Proposition 1). Then,
we can show that SSMFP is a self-stabilizing message forwarding protocol for
specification SP ′ even if routing tables are corrupted in the initial configuration
(Proposition 2). Finally, we obtain that SSMFP is a snap-stabilizing message
forwarding protocol for specification SP even if routing tables are corrupted in
the initial configuration (Proposition 3). In this proof, we consider that the no-
tion of message is different from the notion of useful information. This implies
that two messages with the same useful information sent by the same processor
are considered as two different messages. We must prove that the algorithm does
not lose one of them thanks to the use of the flag. Let γ be a configuration of
the network. A message m is existing in γ if at least one buffer contains m in γ.

Definition 3 (Caterpillar of a message m). Let m be a message of desti-
nation d existing in a configuration γ. We define a caterpillar associated to m
(noted Cm) as the longest sequence of buffers Cm = bufp1(i)...bufpt(i + t − 1)
(with t ≥ 1) which satisfies:

- ∀j ∈ {1, ..., t− 1}, pj �= d and pj+1 �= pj.
- ∀j ∈ {1, ..., t}, bufpj (i + j − 1) = (m, rj , qj , d, cj).
- ∀j ∈ {1, ..., t− 1}, rj = pj+1.
- ∀j ∈ {2, ..., t}, qj = pj−1.

- ∃k ∈ {1, ..., t + 1},
{
∀j ∈ {1, ..., k − 1}, cj = E and

(∀j ∈ {k, ..., t}, cj = A) ∨ (∀j ∈ {k, ..., t}, cj = F )

We call respectively bufp1(i), bufpt(i+ t− 1) and lgCm = t the tail, the head and
the length of Cm.

Definition 4 (Characterization of caterpillar of a message m). Let m be
a message of destination d in a configuration γ and Cm = bufp1(i)...bufpt(i +
t − 1) (t ≥ 1) a caterpillar associated to m. Then,

- Cm is a normal caterpillar if i = 1. It is abnormal if i ≥ 2.
- Cm is a caterpillar of type E if ∀j ∈ {1, ..., t}, cj = E ( i.e. k = t + 1).
- Cm is a caterpillar of type A if ∃j ∈ {1, ..., t}, cj = A ( i.e. k < t + 1).
- Cm is a caterpillar of type F if ∃j ∈ {1, ..., t}, cj = F ( i.e. k < t + 1).

The reader can find in Figure 2 an example for some type of caterpillar. It is
obvious that, for each caterpillar Cm, either Cm is normal or abnormal. In the
same way, Cm is only of type E, A or F .

When we study the behavior of these caterpillars from some configurations,
we obtain the following properties:

Lemma 1. Let γ be a configuration and m be a message existing in γ. Under
a weakly fair daemon, every abnormal caterpillar of type F (resp. A) associ-
ated to m disappears in a finite time or becomes a normal caterpillar of type F
(resp. A).
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Fig. 2. Examples of caterpillar: abnormal of type A (left) and normal of type E (right)

Lemma 2. Let γ be a configuration and m be a message existing in γ. Under a
weakly fair daemon, every normal caterpillar of type A associated to m disappears
in a finite time.

Lemma 3. Let γ be a configuration and m be a message existing in γ. Under a
weakly fair daemon, every normal caterpillar of type F associated to m becomes
a normal caterpillar of type E of length 1 in a finite time.

Lemma 4. Let γ be a configuration and m be a message existing in γ. Under
a weakly fair daemon, every caterpillar of type E associated to m becomes a
caterpillar of type A or F in a finite time.

Assume that there exists a normal caterpillar of type E in a configuration γ in
which routing tables are correct, then we can observe that, under a weakly fair
daemon:
- by lemma 4, Cm becomes a caterpillar of type A or F in a finite time.
- in the latter case, lemma 3 allows us to say that Cm becomes a caterpillar of
type E in a finite time. Then, Cm becomes of type A in a finite time by lemma
4 and the fact that routing tables are correct. So, we have the lemma:

Lemma 5. Let γ be a configuration in which routing tables are correct and m be
a message existing in γ. Under a weakly fair daemon, every normal caterpillar
of type E associated to m becomes a caterpillar of type A in a finite time.

Assume that a processor p has a message m to forward in a configuration in
which routing tables are correct. Lemmas 3, 5 and 2 allow us to say that the
buffer of rank 1 of p is empty in a finite time. Then, it is easy to see that the rule
(R1) is enabled in a finite time and remains forever. So, the weakly fair daemon
allows us to state:

Lemma 6. If routing tables are correct, every processor can generate a message
( i.e. execute (R1)) in a finite time under a weakly fair daemon.

Assume that a processor generate a message in a configuration in which routing
tables are correct. This implies the creation of a normal caterpillar of type E.
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By the lemma 5, this caterpillar become of type A in a finite time. That means
that the message has been delivered to its destination by rule (R1) or (R4).
Then, we have:

Lemma 7. If a message m is generated by SSMFP in a configuration in which
routing tables are correct, SSMFP delivers m to its destination in a finite time
under a weakly fair daemon.

Assume that routing tables are correct in the initial configuration. To prove that
our algorithm is a snap-stabilizing message forwarding protocol for specification
SP ′, we must prove that (R1) (the starting action) is executed within a finite
time if a computation is requested. Lemma 6 proves this. After a starting action,
the protocol is executed in accordance to SP ′. If we consider that (R1) have
been executed at least one time, we can prove that: the first property of SP ′

is always verified (by Lemma 6 and the fact that the waiting for the sending
of new messages is blocking) and the second property of SP ′ is always verified
(by Lemma 7). By the remark which follows the definition 2, this implies the
following result:

Proposition 1. SSMFP is a snap-stabilizing message forwarding protocol for
SP ′ if routing tables are correct in the initial configuration.

We recall that a self-stabilizing silent algorithm A for computing routing tables
is running simultaneously to SSMFP . Moreover, we assume that A has priority
over SSMFP (i.e. a processor which have enabled actions for both algorithms
always chooses the action of A). This guarantees us that routing tables are
correct and stable within a finite time regardless of their initial states. As we are
guaranteed that SSMFP is a snap-stabilizing message forwarding protocol for
specification SP ′ from a such configuration by Proposition 1, we can conclude:

Proposition 2. SSMFP is a self-stabilizing message forwarding protocol for
SP ′ even if routing tables are corrupted in the initial configuration when A runs
simultaneously.

Assume that a processor p generate a message m. This implies the creation of a
normal caterpillar of type E. While m is not deliver to its destination, we know
by lemma 4 and 3 that Cm is continuously transforming in type F (not A since
m is not deliver) then in type E. This implies that there exists a copy of m in
the buffer of rank 1 of p until m is deliver to its destination, that proves:

Lemma 8. Under a weakly fair daemon, SSMFP does not delete a valid mes-
sage without deliver it to its destination even if A runs simultaneously.

It is obvious that the emission of a message by rule (R1) only creates one cater-
pillar of type E. Then, we can observe that all rules are designed to obtain the
following property: if a caterpillar has one head in a configuration, it has also one
head in the following configuration whatever rules have been applied. Indeed, it is
important to remark that the next processor on the path of a message is computed
when the message is copied into a buffer not when it is forwarded to a neighbor
(this why routing table moves have no effects on caterpillars). Then, we have:
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Lemma 9. Under a weakly fair daemon, SSMFP never duplicates a valid mes-
sage even if A runs simultaneously.

Proposition 2 and Lemma 8 allows us to conclude that SSMFP is a snap-
stabilizing message forwarding protocol for specification SP ′ even if routing
tables are corrupted in the initial configuration on condition that A run si-
multaneously. Using this remark and Lemma 9, we have:

Proposition 3. SSMFP is a snap-stabilizing message forwarding protocol for
SP even if routing tables are corrupted in the initial configuration when A run
simultaneously.

3.3 Time Complexities

In this section, we give time complexities results3. Since SSMFP needs a weakly
fair daemon, there is no points to study complexities in terms of steps. It’s why
all results of this section are given in terms of rounds. Let RA be the stabilization
time of A in terms of rounds.

Proposition 4. In the worst case, Θ(nD) invalid messages are delivered to a
processor.

Proposition 5. In the worst case, an accepted message needs O(max{RA,
nDΔD}) rounds to be delivered to its destination.

Proposition 6. The delay (waiting time before the first emission) and the waiting
time (between two consecutive emissions) of SSMFP is O(max {RA, nDΔD})
rounds in the worst case.

The complexity obtained in Proposition 5 is due to the fact that the system
delivers a huge quantity of messages during the forwarding of the considered
message. It’s why we are now interested in the amortized complexity (in rounds)
of our algorithm. For an execution Γ , this measure is equal to the number of
rounds of Γ divided by the number of delivered messages during Γ (see [20] for
a formal definition).

Proposition 7. The amortized complexity (to forward a message) of SSMFP
is O(max{RA, D}) rounds if there is no invalid messages.

4 Conclusion

In this paper, we provide an algorithm to solve the message forwarding problem
in a snap-stabilizing way (when a self-stabilizing algorithm for computing routing
tables runs simultaneously) for a specification which forbids message losses and
duplication. This property implies the following fact: our protocol can forward
3 Due to the lack of space, proofs are omitted but available in [19].
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any emitted message to its destination regardless of the state of routing tables in
the initial configuration. Such an algorithm allows the processors of the network
to send messages to other without waiting for the routing table computation.
As in [1], we show that it is possible to adapt a fault-free protocol into a snap-
stabilizing one without memory over cost. This new algorithm improve the one
proposed in [1] since it needs Θ(D) buffers per processor versus Θ(n) for the
former. But the following problem is still open: what is the minimal number of
buffers to allow snap-stabilization on the message forwarding problem ?
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