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Abstract11

Consider a dynamic network and a given distributed problem. At any point in time, there might12

exist several solutions that are equally good with respect to the problem specification, but that are13

different from an algorithmic perspective, because some could be easier to update than others when14

the network changes. In other words, one would prefer to have a solution that is more robust to15

topological changes in the network; and in this direction the best scenario would be that the solution16

remains correct despite the dynamic of the network.17

In [6], the authors introduced a very strong robustness criterion: they required that for any18

removal of edges that maintain the network connected, the solution remains valid. They focus on19

the maximal independent set problem, and their approach consists in characterizing the graphs in20

which there exists a robust solution (the existential problem), or even stronger, where any solution21

is robust (the universal problem). As the robustness criteria is very demanding, few graphs have a22

robust solution, and even fewer are such that all of their solutions are robust. In this paper, we23

ask the following question: Can we have robustness for a larger class of networks, if we bound the24

number k of edge removals allowed?25

To answer this question, we consider three classic problems: maximal independent set, minimal26

dominating set and maximal matching. For the universal problem, the answers for the three cases27

are surprisingly different. For minimal dominating set, the class does not depend on the number of28

edges removed. For maximal matching, removing only one edge defines a robust class related to29

perfect matchings, but for all other bounds k, the class is the same as for an arbitrary number of30

edge removals. Finally, for maximal independent set, there is a strict hierarchy of classes: the class31

for the bound k is strictly larger than the class for bound k + 1.32

For the robustness notion of [6], no characterization of the class for the existential problem is33

known, only a polynomial-time recognition algorithm. We show that the situation is even worse34

for bounded k: even for k = 1, it is NP-hard to decide whether a graph has a robust maximal35

independent set.36
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1 Introduction44

In the field of computer networks, the phrase “dynamic networks” refers to many different45

realities, ranging from static wired networks in which links can be unstable, up to wireless ad46

hoc networks in which entities directly communicate with each other by radio. In the latter47

case, entities may join, leave, or even move inside the network at any time in completely48

unpredictable ways. A common feature of all these networks is that communication links49

keep changing over time. Because of this aspect, algorithmic engineering is far more difficult50

than in fixed static networks. Indeed, solutions must be able to adapt to incessant topological51

changes. This becomes particularly challenging when it comes to maintaining a single52

leader [3] or a (supposed to be) “static” covering data structure, for instance, a spanning53

tree, a node coloring, a Maximal Independant Set (MIS), a Minimal Dominating Set (MDS),54

or a Maximal Matching (MM). Most of the time, to overcome such topological changes,55

algorithms compute and recompute their solution to try to be as close as possible to a correct56

solution in all circumstances.57

Of course, when the network dynamics is high, meaning that topological changes are58

extremely frequent, it sometimes becomes impossible to obtain an acceptable solution. In59

practice, the correctness requirements of the algorithm are most often relaxed in order to60

approach the desired behavior, while amortizing the recomputation cost. Actually, this61

sometimes leads to reconsider the very nature of the problems, for example: looking for a62

“moving leader”, a leader or a spanning tree per connected component, a temporal dominated63

set, an evolving MIS, a best-effort broadcast, etc.— we refer to [3, 4] for more examples.64

In this paper, we address the problem of network dynamics under an approach similar65

to the one introduced in [1, 6]: To what extent of network dynamics can a computation be66

performed without relaxing its specification? Before going any further into our motivation,67

let us review related work on which our study relies.68

Numerous models for dynamic networks have been proposed during the last decades–refer69

to [3] for a comprehensive list of models– some of them aiming at unifying previous modeling70

approaches, mainly [4, 11]. As is often the case, in this work, the network is modeled as a71

graph, where the set of vertices (also called nodes) is fixed, while the communication links72

are represented by a set of edges appearing and disappearing unexpectedly over the time.73

Without extra assumptions, this modeling includes all possibilities that can occur over the74

time, for example, the network topology may include no edges at some instant, or it may also75

happen that some edge present at some time disappears definitively after that. According to76

different assumptions on the appearance and disappearance (frequency, synchrony, duration,77

etc.), the dynamics of temporal networks can be classified in many classes [4].78

One of these classes, Class T CR, is particularly important. In this class, a temporal path79

between any two vertices appears infinitely often. This class is arguably the most natural80

and versatile generalization of the notion of connectivity from static networks to dynamic81

networks: every vertex is able to send (not necessarily directly) a message to any other vertex82

at any time.83

For a dynamic network of the class T CR on a vertex set V , one can partition V × V into84

three sets: the edges that are present infinitely often over the time –called recurrent edges–,85

the edges that are present only a finite number of times –called eventually absent edges–, and86

the edges that are never present. The union of the first two sets defines a graph called the87

footprint of the network [4], while its restriction to the edges that are infinitely often present88

is called the eventual footprint [2]. In [2], the authors prove that Class T CR is actually the89

set of dynamic networks whose eventual footprint is connected.90
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In conclusion, from a distributed computing point of view, it is more than reasonable to91

consider only dynamic networks such that some of their edges are recurrent and their union92

does form a connected spanning subgraph of their footprint.93

Unfortunately, it is impossible for a node to distinguish between a recurrent and an94

eventually absent edge. Therefore, the best the nodes can do is to compute a solution relative95

to the footprint, hoping that this solution still makes sense in the eventual footprint, whatever96

it is. In [6], the authors introduce the concept of robustness to capture this intuition, defined97

as follows:98

I Definition 1 (Robustness). A property P is robust over a graph G if and only if P is99

satisfied in every connected spanning subgraph of G (including G itself).100

Another way to phrase this definition is to say that a property P is robust if it is still101

satisfied when we remove any number of edges, as long as the graph stays connected.102

In [6], the authors focus on the problem of maximal independent set (MIS). That is, they103

study the cases where a set of vertices can keep being an MIS even if we remove edges. They104

structure their results around two questions:105

Universal question: For which networks are all the solutions robust against any edge106

removals that do not disconnect the graph?107

Existential question: For which networks does there exist a solution that is robust against108

any edge removals that do not disconnect the graph?109

The authors in [6] establish a characterization of the networks that answer the first110

questions for the MIS problem. Still for the same problem, they provide a polynomial-time111

algorithm to decide whether a network answers the second question.112

Note that the study of robustness was also very recently addressed for the case of metric113

properties in [5]. In that paper, the authors show that deciding whether the distance between114

two given vertices is robust can be done in linear time. However, they also show that deciding115

whether the diameter is robust or not is coNP-complete.116

1.1 Our approach117

Our goal is to go beyond [6], and to get both a more fine-grained and a broader understanding118

of the notion of robustness.119

Let us start with the fine-grain dimension. In [6], a solution had to be robust against any120

number of edge removals as long as the graph remains connected. In this paper, we want to121

understand what are the structures that are robust against k edge removals while keeping122

the connectivity constraint, for any specific k, adding granularity to the notion. We call this123

concept k-robustness (see formal definition below) and we focus on the universal and the124

existential question of [6] for this fined-grain version of the robustness.125

Now for the broader dimension, let us discuss the problems studied. In [6], the problem126

studied is MIS, which is a good choice in the sense that it leads to an interesting landscape.127

Indeed, robustness being a very demanding property, one has to find problems to which it128

can apply without leading to trivial answers. In this direction, one wants to look at local129

problems, because a modification will only have consequences in some neighborhood and not130

on the whole graph, which leaves the hope that it actually does not affect the correctness at131

all. Among the classic local problems, as studied in the LOCAL model (see [9] for the original132

definition and [8] for a recent book), there are mainly coloring problems and packing/covering133

problems. The coloring problems (with a fixed number of colors) are not meaningful in134
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our context: an edge removal can only help. But the packing/covering problems are all135

interesting, thus we widen the scope to cover three classic problems in this paper: maximal136

independent set (MIS) as before, but also maximal matching (MM) and minimal dominating137

set (MDS).138

To help the reader grasp some intuition on our approach, let us illustrate the 1-robustness139

for the maximal matching, i.e. a set of edges that do not share vertices and that is maximal140

in the sense that no edge can be added. To be 1-robust, a matching must still be maximal141

after the removal of one arbitrary edge that does not disconnect the graph. Let us go over142

various configurations illustrated in Figure 1 (the matched edges are bold ones).143

(a) (b) (c)

Figure 1 Three examples of MMs in various graphs.

For the two graphs in Figure 1a, that are cycles of 6 vertices, we can observe that two144

instances of maximal matching can have different behaviors. Indeed, in the top one, if we145

remove one matched edge, we are left with a matching that is not maximal in the new graph:146

the two edges adjacent to the removed one could be added. By contrast, in the bottom147

graph, any edge removal leaves a graph that is still a maximal matching. Now, in the graph148

of Figure 1b, a complete balanced bipartite graph, all the maximal matchings are identical149

up to isomorphism. After one arbitrary edge removal, we are left with a graph where no150

new edge can be matched. Therefore in this graph, any matching is robust to one edge151

removal. Note that this is not true for any number of edge removals, illustrating the fact152

that k-robustness and robustness are not equivalent. Finally, in Figure 1c, all the maximal153

matchings consists of only one edge, and they are not robust to an edge removal. Indeed,154

after the matched edge is removed, one can choose any of the two remaining ones.155

To summarize, Figure 1 illustrates the effect of 1-robustness in three different cases: one156

where some matchings are 1-robust, one where all matchings are 1-robust, and one where no157

matching is 1-robust.158

1.2 Our results159

Our first contribution is to introduce the fine-grained version of robustness in Section 2.160

After that, every technical section of this paper is devoted to provide some answer to the161

fine-grained version of one of the two questions highlighted above (existential vs. universal)162

for one of the problems we study. Our focus is actually in understanding how do the different163

settings compare, in terms of both problems and number of removable edges.164

Let us start with the universal question. Here, we prove that the three problems have165

three different behaviors.166

For minimal dominating set, the class of the graphs for which any solution is k-robust is167

exactly the same for every k (a class that already appeared in [6] under the name of sputnik168

graphs) as proved in Section 3.169
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For maximal matching, the case of k = 1, which we used previously as an example, is170

special and draws an interesting connection with perfect matchings, but then the class is171

identical for every k ≥ 2. These results are presented in Section 4.172

Finally, for maximal independent set, we show in Section 5 that there is a strict hierarchy:173

the class for k edge removals is strictly smaller than the one for k − 1. For this case, we do174

not pinpoint the exact characterization, but give some additional structural results on the175

classes.176

The existential question is much more challenging. Section 6 presents some preliminary177

results on the study of this question. For maximal independent set, we show that for any k,178

deciding whether a graph has a maximal independent set that is robust to k edge removals179

is NP-hard. This is the first NP-hardness result for this type of question.180

2 Model, definitions, and basic properties181

In the paper, except when stated otherwise, the graph is named G, the vertex set V and the182

edge set E.183

2.1 Robustness and graph problems184

The key notion of this paper is the one of k-robustness.185

I Definition 2. Given a graph problem and a graph, a solution is k-robust if after the186

removal of at most k edges, either the graph is disconnected, or the solution is still valid.187

Note that k-robustness is about removing at most k edges, not exactly k edges.188

We will abuse notation and write ∞-robust when mentioning the notion of robustness189

from [6], with an unbounded number of removals. Hence k is a parameter in N ∪∞.190

I Notation 1. We define Uk
P and Ek

P the following way:191

Let Uk
P be the class of graphs such that any solution to the problem P is k-robust.192

Let Ek
P be the class of graphs such that there exists a solution to the problem P that is193

k-robust194

Note that to easily incorporate the parameter k, we decided to not follow the exact same195

notations as in [6].196

Graph problems.197

We consider three graph problems:198

1. Minimal dominating set (MDS): Select a minimal set of vertices such that every vertex of199

the graph is either in the set or has a neighbor in the set.200

2. Maximal matching (MM): Select a maximal set of edges such that no two selected edges201

share endpoint.202

3. Maximal independent set (MIS): Select a maximal set of vertices such that no two selected203

vertices share an edge.204

A perfect matching is a matching where every vertex is matched. We will also use the205

notion of k-dominating set, which is a set of selected vertices such that every vertex is either206

selected or is adjacent to two selected vertices. Note that k-dominating set sometimes refer to207

another notion related to the distance to the selected vertices, but this is not our definition.208

SAND 2023
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The case of robust maximal matching.209

For maximal matching, the definition of robustness may vary. The definition we take is the210

following. A maximal matching M of a graph G is k-robust if after removing any set of211

at most k edges such that the graph G is still connected, what remains of M is a maximal212

matching of what remains of G.213

2.2 Graph notions214

We list a few graph theory definitions that we will need.215

I Definition 3. The neighborhood of a node v, denoted N(v), is the set of nodes that are216

adjacent to v. The closed neighborhood of a node v, denoted N [v], is the neighborhood of v,217

plus v itself.218

I Definition 4. A graph is t-(edge)-connected if, after the removal of any set of (t − 1)219

edges, the graph is still connected. A t-(edge)-connected component is a subgraph that is220

t-(edge)-connected.221

In the following we are only interested in edge connectivity thus we will simply write222

t-connectivity to refer to t-edge-connectivity. In our proofs, we will use the following easy223

observation multiple times : in a 2-connected graph every vertex belongs to a cycle.224

I Definition 5. In a connected graph, a bridge is an edge whose removal disconnects the225

graph.226

I Definition 6. Given two graphs G and H, the join of these two graphs, join(G, H), is the227

graph made by taking the union of G and H, and adding all the possible edges (u, v), with228

u ∈ G and v ∈ H. See Figure 2a.229

I Definition 7. A sputnik graph ([6]) is a graph where every node that is part of a cycle230

has an antenna, that is a neighbor with degree 1. See Figure 2b.231

(a) The join of two graphs: the black edges are
the original edges, the doted edges are the one
added by the join operation.

(b) A sputnik graph. The white vertices are part
a cycles, the grey vertices are their antennas,
and the black vertices do not belong to any cycle,
nor are antennas.

Figure 2 Illustration of the definitions of Subsection 2.2.

2.3 Basic properties232

The following properties follow from the definitions.233

I Property 1. For any problem P , for any k, Uk+1
P ⊆ Uk

P and Ek+1
P ⊆ Ek

P .234
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In particular, U∞
P ⊆ Uk

P ⊆ U1
P and E∞

P ⊆ Ek
P ⊆ E1

P , for all k.235

I Property 2. If a graph is (k + 1)-connected then a solution is k-robust if and only if after236

the removal of any set of k edges the solution is still correct.237

3 Minimal dominating set238

I Theorem 8. For all k in N ∪∞, Uk
MDS is the set of sputnik graphs.239

Proof. We know from [6] that the theorem holds for k =∞. Hence, thanks to Property 1,240

it is sufficient to prove that the theorem is true for k = 1. For the sake of contradiction,241

consider a graph G in U1
MDS that is not a sputnik graph. Then there is a node u that belongs242

to a cycle, and that has no antenna. Let S be the closed neighborhood of u, S = N [u]. We243

say that a node of S, different from u, is an inside node if it is only connected to nodes244

in S. We now consider two cases depending on whether there is an inside node or not. See245

Figure 3.246

1. Suppose there exists an inside node v. Note that v has at least one neighbor different from247

u because otherwise it would be an antenna. Let the set W be the closed neighborhood of248

v, except u. The set D = V \W is a dominating set of the graph, because all the nodes249

either belong to D or are neighbors of u (which belongs to D). Now, we transform D250

into a minimal dominating set greedily: we remove nodes from D in an arbitrary order,251

until no more nodes can be removed without making D non-dominating. We claim that252

this minimal dominating set is not 1-robust. Indeed, if we remove the edge (u, v), v is253

not covered any more (none of its current neighbors belongs to D), and the graph is still254

connected (because v has a neighbor different from u).255

2. Suppose there is no inside vertex. Let a be a neighbor of u in the cycle. Let W be the set256

S \ a. Again we claim that V \W is a dominating set. Indeed, because there is no inside257

node, every node in S different from u is covered by node outside W , and u is covered258

by a, which belongs to V \W . As before we can make this set an MDS by removing nodes259

greedily, and again we claim it is not 1-robust. Indeed, if we remove the edge (u, a), we260

do not disconnect the graph (because of the cycle containing u), and u is left uncovered.261

J262

u

v

W
u W

a

Figure 3 The two cases of the proof of Theorem 8: with an inside node, on the left, and without
an inside node on the right. The cycle is represented by the dashed line, and the dotted lines
represent outgoing edges of non-inside nodes.

SAND 2023
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4 Maximal matching263

We now turn our attention to the problem of maximal matching, and get the following264

theorem.265

I Theorem 9. The class U1
MM is composed of the set of trees, of balanced complete bipartite266

graphs, and of cliques with an even number of nodes. For any k ≥ 2, the class Uk
MM is267

composed of the cycle on four nodes and of the set of trees.268

The core of this part is the study of the case where only one edge is removed. At the end269

of the section we consider the more general technically less interesting case of multiple edges270

removal.271

4.1 One edge removal272

In this subsection we characterize the class of graphs where every maximal matching is273

1-robust.274

I Lemma 10. U1
MM is composed of the set of trees, of balanced complete bipartite graphs,275

and of cliques with an even number of nodes.276

The rest of this subsection is devoted to the proof of Lemma 10.277

A result about perfect matchings278

The core of the proof is to show a connection to perfect matchings. Once this is done, we279

can use the following theorem from [10].280

I Theorem 11 ([10]). The class of graphs such that any maximal matching is perfect is the281

union of the balanced complete bipartite graphs and of the cliques of even size.282

First inclusion283

We start with the easy direction of the theorem, which is to prove that the graphs we284

mentioned are in U1
MM . In trees, any property is robust, since no edge can be removed285

without disconnecting the graph. For the two other types, we will use the following claim.286

B Claim 12. Perfect matchings are 1-robust maximal matchings.287

Consider a perfect matching in a graph, and remove an arbitrary edge (that does not288

disconnect the graph). If this edge was not in the matching, and then we still have a perfect289

matching, thus a maximal matching. If this edge was in the matching, then there are only290

two non-matched nodes in the graph (the ones that were adjacent to the edge), and all their291

neighbours are matched, thus the matching is still maximal. This proves the claim. C292

In balanced complete bipartite graphs and cliques of even size, any maximal matching is293

perfect (Theorem 11), and since perfect matchings are 1-robust maximal matchings, we get294

the first direction of Lemma 10.295

Second inclusion: three useful claims296

We now tackle the other direction. The following lemma establishes a local condition that297

1-robust matchings must satisfy. See Figure 4 for an illustration.298
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u

v1

v2

w2
w1

z

Figure 4 Illustration of Claim 13. Here we have a maximal matching, and in particular all the
neighbors of u are matched, but it is not a 1-robust matching. Indeed, removing (v1, w1) gives
the possibility of adding (u, v1) and (w1, z). Also, having a triangle with a matched edge and
an unmatched node, like (u, v2, w2) is impossible (Claim 14), since removing (v2, w2) gives the
possibility of adding either (u, v2) or (u, w2) to the matching, contradicting the maximality. Hence
we need the bridge condition.

B Claim 13. In a 1-robust maximal matching M , if a node u is not matched, then all the299

nodes of N(u) are matched, and their matched edges are bridges of the graph.300

The fact that all the nodes in N(u) are matched follows from M being a maximal301

matching. Now, suppose that there exists (v, w) ∈M , such that v ∈ N(u) and (v, w) is not302

a bridge. In other words, the removal of (v, w) does not disconnect the graph. After this303

removal, both u and v are unmatched, and since (u, v) is an edge of the graph, the matching304

in the new graph cannot be maximal. This contradicts the 1-robustness of M , and proves305

the lemma. C306

The following claim follows directly from Claim 13.307

B Claim 14. In a 1-robust maximal matching M , if there is an unmatched node u, two308

nodes a, b ∈ N(u) with (a, b) ∈ E, then (a, b) /∈M .309

We now study the shape of 1-robust maximal matchings in cycles.310

B Claim 15. In every maximal matching of a graph in U1
MM , if a node belongs to a cycle,311

then it is matched.312

Our proof of Claim 15 consists in proving that if a maximal matching does not satisfy the313

condition, then either it is not 1-robust, or we can use it to build another maximal matching314

that is not 1-robust. In both cases this means the graph was not in U1
MM .315

Consider a node u in a cycle. Let a and b be its direct neighbors in the cycle, and let its316

other neighbors be (ci)i. There can be several configurations, with a adjacent to b or not,317

etc. The proof is generic to all these cases, but Figure 5 illustrates different cases. Consider318

a 1-robust maximal matching M where u is unmatched. Because of Claim 13, we know that319

there exists nodes a′, b′, and c′
i for all i, such that respectively (a, a′), (b, b′) and (ci, c′

i) (for320

all i) are bridges of the graph. Because of the bridge condition, these nodes a′, b′ and c′
i (for321

all i) are all different, and are different from a, b, u and the ci’s. Let us also denote d the322

neighbor of a in the cycle that is not u. Note that d can be a ci or b, but no other named323

node. (See Figure 5 for an illustration.) Now we create a new matching M ′ from M in the324

following way. First remove all the edge of the matching that are not adjacent to one of the325

nodes above. Then, remove (a, a′) and any edge matching d (if it exists). Note that this last326

edge matching d could be a (cj , c′
j) or (b, b′). Add (a, d) to the matching (note that both327

nodes are unmatched before this operation). In this matching, all the neighbors of u are328

matched. We complete this matching into a maximal matching M ′. The edge (a, d) is in M ′
329
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and u is unmatched, which is a contradiction with Claim 13, thus M ′ cannot be 1-robust,330

and this proves the claim. C331

u

a

d

b

c1 c′
1

c2 c′
2

b′

a′

u

a b

c1 c′
1

c2 c′
2

b′

a′
u

a b

c2
c′

2

b′a′

Figure 5 Illustration of the proof of Claim 16, in three cases: d is not b nor a ci, d is one of the
ci, d is b. The dashed lines represent paths with at least one edge. The dotted lines represent the
change we operate: the edges that are crossed out are removed from the matching, the edges that
are have a dotted double are added to the matching.

Second inclusion: putting pieces together332

B Claim 16. A graph in the class U1
MM is either a tree or is 2-connected.333

Consider a graph that is neither a tree nor a 2-connected graph. There necessarily exists334

a bridge (u, v) such that u belongs to a cycle. We distinguish two cases.335

1. Node v is linked only to u, that is, v is a pendant node. Then we build a maximal336

matching M by first forcing u to be matched to a node that is not v, and then completing337

it greedily. Now, if we remove the edge that matches u, we do not disconnect the graph338

since u was part of a cycle, but neither u nor v is matched, thus the matching is not339

maximal ((u, v) could be added). Thus the matching M was not 1-robustness.340

2. Node v is linked to another node w. Let consider (vi)i the set of nodes such that vi 6= v341

and (u, vi) is a bridge. By the previous point, we know that there exists some wi 6= u342

in N(vi). Moreover, those (wi) must be distinct pairwise and from all the other named343

nodes, otherwise (u, vi) would not have been a bridge. The node w and the nodes (wi)i344

cannot be part of the 2-connected component of u, otherwise (u, v) and (u, vi) would not345

be a bridge. We build a maximal matching M by first forcing (u, v) and (vi, wi) for all346

i, and then completing it greedily. As observed earlier, in the 2-connected component347

of u every node must belong to a cycle, thus by Claim 15, we get that every node of348

this component must be matched. We now build a second matching M ′. We start from349

M and remove from the matching (u, v) and every edge that is in v’s side of the bridge.350

Then we force (v, w) in the matching, and complete it greedily. The matching M ′ is351

maximal and u is unmatched, since all of its neighbors are matched, hence by Claim 15 it352

is not 1-robust, since it belongs to a 2-connected components thus to a cycle.353

This concludes the proof of the claim. C354

To conclude a graph in the class is either a tree, or is 2-connected, and in this last355

case because of Claim 15, every node must be matched in every maximal matching. Then356

Lemma 10 follows from Theorem 11.357

4.2 More than one edge removal358

I Lemma 17. For any k ≥ 2, Uk
MM is composed of the cycle on four nodes and of the set of359

trees.360
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Proof. We first prove the reverse inclusion. As before, trees are in Uk
MM for any k because361

any edge removal disconnects the graph. Then for C4, note that it belongs to U1
MM , and362

that the removal of more than one edge disconnects the graph.363

For the other direction, we can restrict to U2
MM , and by definition it is included in U1

MM .364

Thus we can simply study the case of the balanced complete bipartite graphs and of the365

cliques on an even number of nodes. Consider first a complete bipartite graph Bk,k with366

k > 2 (that is any Bk,k larger than C4), and a maximal matching M . Take two arbitrary367

edges (a1, b1) and (a2, b2) from the matching and remove them from the graph. The graph368

is still connected. Now the nodes a1 and b2 are unmatched and there is an edge between369

them, thus the resulting matching is not maximal and M is not 2-robust. Thus the only370

Bk,k left in the class U2
MM is C4. For the cliques on an even number of nodes, consider one371

that has strictly more than two vertices. A maximal matching M contains at least two edges372

(u1, v1) and (u2, v2). When we remove these edges from the graph, we still have a connected373

graph, u1 and u2 are unmatched, but (u1, u2) still exists, thus the resulting matching is not374

maximal and M was not 2-robust. J375

5 Maximal independent set376

Maximal independent set illustrates yet another behavior for the classes (Uk
MIS)k: they form377

an infinite strict hierarchy.378

5.1 An infinite hierarchy379

I Theorem 18. For every k ≥ 1, Uk+1
MIS is strictly included in Uk

MIS.380

Proof. Let k ≥ 1. We will define a graph Gk, and prove that it belongs to Uk
MIS but not to381

Uk+1
MIS .382

To build Gk, consider a bipartite graph with k + 2 nodes on each of the sides A and B,383

and add a pendant neighbor v to a node u on the side A. See Figure 6. This graph has384

only three MIS: A, v ∪B, and v ∪ (A \ u). Indeed: (1) if the MIS contains u, then it cannot385

contain vertices outside of A, and to be maximal it contains all of A, (2) if it contains a386

vertex of B, it cannot contain a vertex of A, and by maximality it contains all of B and v,387

and (3) if it contains v, and no vertex of B, then by maximality it is v ∪ (A \ u).388

A B

v u b

Figure 6 . Illustration of the graph Gk in the proof of Theorem 18.

We claim that these three MIS are k-robust, therefore Gk is in Uk
MIS . Suppose an MIS389

is not k-robust. Then there exists a vertex w that is not part of the MIS, such that after390

at most k edge removals, it has no neighbor in the MIS anymore. Let us make a quick391

case analysis depending on who is this vertex w. It cannot be v, since removing the edge392

(u, v) would disconnect the graph. It cannot be a vertex of A, nor of B, because in all MIS393

mentioned, all non selected nodes (except v) have at least k + 1 selected neighbors.394
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Now we claim that v ∪ (A \ u) is not (k + 1)-robust, thus Gk does not belong to Uk+1
MIS .395

We choose a vertex b on the B side, and remove all the edges (a, b) for a ∈ A \ u. This is a396

set of k + 1 edges whose removal does not disconnect the graph, but leaves b without selected397

neighbors. This v ∪ (A \ u) is not (k + 1)-robust. J398

5.2 A structure theorem for Uk
MIS399

The construction used in the proof of Theorem 18 is very specific and does not really inform400

about the nature of the graphs in Uk
MIS . It can be generalized, with antennas on both sides401

and arbitrarily large (unbalanced) bipartite graphs with arbitrary number of antennas per402

nodes, but it is still specific. Moreover these construction heavily rely on pendant nodes,403

that are in some sense abusing the fact that we do not worry about the correctness of the404

solution if the graph gets disconnected.405

In order to better understand these classes, and to give a more flexible way to build such406

graphs, we prove a theorem about how the class behaves with respect to the join operation407

(Definition 6).408

We denote by Gp the class of graphs where every maximal independent set has size at409

least p. We say that a graph class is stable by an operation if, by applying this operation to410

any (set of) graph(s) from the class, the resulting graph is also in the class.411

I Theorem 19. For all k, the class Uk
MIS ∩ Gk+1 is stable by join operation. Also, if either412

G or H is not in Uk+1
MIS, then join(G, H) is not in Uk+1

MIS either.413

Proof. Let us start with the first statement of the theorem. Consider two graphs G and H414

in Uk
MIS ∩ Gk+1. We prove that J = join(G, H) is also in Uk

MIS ∩ Gk+1.415

B Claim 20. Any MIS of J is either completely contained in the vertex set of G, and is an416

MIS of G, or contained in the vertex set of H, and is an MIS of H.417

Consider an independent set in J . If it has a node u in G, then it has no node in H, as by418

construction, all nodes of H are linked to u. The analogue holds if the independent set has419

a node in H. Thus any independent set is either completely contained in G or completely420

contained in H. Now, a set is maximal independent in G (resp. H) alone if and only if it is421

maximal independent in G (resp. H) inside J . Indeed the only edges that we have added422

are between nodes of G and nodes of H. This proves the claim. C423

Therefore, the resulting graph is in Gk+1. Now for the k-robustness, consider without loss424

of generality an MIS of J that is in part G, and suppose it is not k-robust. In this case there425

must exists a non-selected vertex v, that has no more selected neighbors after the removal of426

k edges (while the graph stays connected). This node cannot be in the part G, otherwise427

the same independent set in the graph G would not be k-robust. And it cannot be in the428

part H, since every node of H is linked to all the vertices of the MIS, and this set has size at429

least k + 1 since G ∈ Gk+1.430

Now, let us move on to the second statement of the theorem. Let’s assume that G has431

an MIS S and k + 1 edges such that their removal makes that S is not longer maximal (i.e.432

there exists some u that can be added to the set). Then, S is also an MIS of join(G, H),433

and the removal of the same edges will allow to add u to the set, as the only new neighbors434

of u are from H that does not contain any node of the chosen MIS J435
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6 The existence of a robust MIS is NP-hard436

Remember that we have defined two types of graph classes related to robustness. For a given437

problem, and a parameter k, the universal class is the class where every solution is k-robust.438

This is the version we have explored so far. For this version, recognizing the graphs of the439

class is easy since these have simple explicit characterization. The second type of class is the440

existential type, where we want that there exists a solution that is k-robust. And here the441

landscape is much more complex. Indeed, in [6] in the simpler case of robustness without442

parameter, there is no explicit characterization of the existential class, only a rather involved443

algorithm. In this section we show that, when we add the parameter k the situation becomes444

even more challenging: the algorithm of [6] runs in polynomial time, and here we show that445

the recognition of E1
MIS is NP-hard.446

I Theorem 21. For every odd integer k, it is NP-hard to decide whether a graph belongs to447

Ek
MIS.448

The rest of this section is devoted to the proof of this theorem. It is based on the449

NP-completeness of the following problem.450

451

Perfect stable452

Input: A graph G = (V, E).453

Question: Does there exists a subset of vertices S ⊂ V that is independent 2-dominating?454

455

Remember that a set is independent 2-dominating if no two neighbors can be selected,456

and every non-selected vertex should have at least two selected neighbors. Just to get457

some intuition about why we are interested in this problem, note that with independent458

2-dominating after removing an edge between a selected and a non-selected vertex, the459

non-selected vertex is still dominated. It was proved in [7] that Perfect stable is NP-hard460

in general. We will need the following strengthening of this hardness result.461

I Lemma 22. Deciding whether a 2-connected graph has an independent 2-dominating set462

is NP-complete.463

Note that this lemma does not follow directly from [7] because the reduction there does464

use some non-2-connected graphs.465

Proof. Let G be an arbitrary connected graph with at least one edge. Consider G′ to be the466

same as G but with a universal vertex, that is, G with an additional vertex u that is adjacent467

to all the vertices of G. This graph is 2-edge connected. Indeed, since G is connected and468

has at least two vertices, removing any edge (u, v) with v ∈ V (G) cannot disconnect the469

graph, and removing an edge from G does not disconnect the graph because all nodes are470

linked through v.471

We claim that G′ has an independent 2-dominating set if and only if G has one. First,472

suppose that G has such a set S. Note that the set S has at least two selected vertices.473

Indeed, G has at least one edge, which implies that at least one vertex is not selected (by474

independence), and such a vertex should be dominated by at least two selected vertices. Now475

we claim that S is also a solution for G′. Indeed, the addition of u to the graph does not476

impact the independence of S, nor the 2-domination of the nodes of G, and v is covered at477

least twice, since there are at least two selected vertices in G. Second, if G′ has independent478

2-dominating set S′, it cannot contain v. Indeed, because of the independence condition, if v479
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is selected, then no other node can be selected, and then the 2-domination condition is not480

satisfied. Then S′ is contained in G and is an independent 2-dominating set of G. J481

Now, let us formalise the connection between robustness and independent 2-domination.482

I Lemma 23. In a 2-connected graph, the 1-robust maximal independent sets are exactly483

the independent 2-dominating sets.484

Proof. As a consequence of Property 2, in a 2-connected graph, a 1-robust MIS is an MIS485

that is robust against the removal of any edge (that is, we can forget about the preserved486

connectivity in the robustness definition). This means that every node not in the MIS is487

covered twice, otherwise one could break the maximality by removing the edge between the488

node covered only once and the node that covers it. In other words, the independent set must489

be 2-dominating. For the other direction it suffices to note that any independent dominating490

set is a maximal independent set. J491

At that point, plugging Lemma 22 and Lemma 23 we get that deciding whether there492

exists a 1-robust MIS in a graph is NP-hard, even if we assume 2-connectivity. This last493

lemma is the final step to prove Theorem 21.494

I Lemma 24. For any 2-connected graph G and any integer k > 1, we can build in polynomial-495

time a graph G′, such that: G has a 1-robust MIS if and only if G′ has a 2k − 1-robust496

MIS.497

Proof. We build G′ in the following way. Take k copies of G, denoted G1, ..., Gk, with the498

notation that ux is the copy of vertex u in the x-th copy. For every edge (u, v) of G, we add499

the edge (ux, vy) for any pair x, y ∈ 1, ..., k.500

Let us first establish the following claim. An MIS in the graph G′ necessarily has the501

following form: it is the union of the exact same set repeated on each copy. Indeed, let ui be502

in the MIS. For any j 6= i, all the neighbors of uj in the copy Gj are a neighbor of ui, which503

implies that they are not in the MIS. Hence, no neighbor of u in any copy can be in the MIS.504

As those nodes are the only neighbors of uj , it implies that uj is also in the MIS.505

Now suppose that G has a 1-robust MIS. We can select the clones of this MIS in each506

copy, and build an MIS for G′ (the independence and maximality are easy to check). In this507

MIS of G′, every non-selected vertex has at least 2k selected neighbors, therefore this MIS is508

2k − 1 robust.509

Finally, suppose that G′ has a 2k−1 robust MIS. Thanks to the claim above, we know that510

this MIS is the same set of vertices repeated on each copy. We claim that when restricted to a511

given copy, this MIS is 1-robust. Indeed, if it were not, then there would be one non-selected512

vertex with at most one selected neighbor, and this would mean that in G′ this vertex would513

have only k selected neighbors, which contradicts the 2k − 1 robust (given the connectivity).514

J515

7 Conclusions516

In this paper we have developed the theory of robustness in several ways: adding granularity517

and studying new natural problems to explore its diversity. The next step is to fill in518

the gaps in our set of results: characterizing exactly the classes Uk
MIS , and understanding519

the complexity of answering the existential question for maximal matching and minimum520

dominating set. We believe that a polynomial-time algorithm can be designed to answer the521

existential question in the case of maximal matching with k = 1, with an approach similar522
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to the one of [6] for MDS (that is, via a careful dynamic programming work on a tree-like523

decomposition of the graphs). A more long-term goal is to reuse the insights gathered by524

studying robustness to help the design of dynamic algorithms.525
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