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Abstract. A fault-tolerant and stabilizing simulation of an atomic register is pre-
sented. The simulation works in asynchronous message-passing systems, and al-
lows a minority of processes to crash. The simulation stabilizes in a pragmatic
manner, by reaching a long execution in which it runs correctly. A key element in
the simulation is a new combinatorial construction of a bounded labeling scheme
accommodating arbitrary labels, including those not generated by the scheme it-
self.

1 Introduction

Distributed systems have become an integral part of virtually all computing systems,
especially those of large scale. These systems must provide high availability and re-
liability in the presence of failures, which could be either permanent or transient. A
core abstraction for many distributed algorithms simulates shared memory [3]; this ab-
straction allows to take algorithms designed for shared memory, and port them to asyn-
chronous message-passing systems, even in the presence of failures. There has been
significant work on creating such simulations, under various types of permanent fail-
ures, as well as on exploiting this abstraction in order to derive algorithms for message-
passing systems. (See a recent survey [2].)

All these works, however, only consider permanent failures, neglecting to incorpo-
rate mechanisms for handling transient failures. Such failures may result from incorrect
initialization of the system, or from temporary violations of the assumptions made by
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the system designer, for example the assumption that a corrupted message is always
identified by an error detection code. The ability to automatically resume normal op-
eration following transient failures, namely to be self-stabilizing [9], is an essential
property that should be integrated into the design and implementation of systems.

This paper presents a stabilizing simulation of an atomic register in asynchronous
message-passing systems where a minority of processors may crash. The simulation is
based on reads and writes to a (majority) quorum in a system with a fully connected
graph topology. A key component of the simulation is a new bounded labeling scheme
that needs no initialization, as well as a method for using it when communication links
and processes are started at an arbitrary state. To the best of our knowledge, our scheme
is the first constructive labeling scheme presenting the above properties.

Overview of our simulation. Attiya, Bar-Noy and Dolev [3] showed how to simulate a
single-writer multi-reader (SWMR) atomic register in a message-passing system, sup-
porting two procedures, read and write, for accessing the register. This simple simula-
tion is based on a quorum approach: In a write operation, the writer makes sure that a
quorum of processors (consisting of a majority of the processors, in its simplest variant)
store its latest value. In a read operation, a reader contacts a quorum of processors, and
obtains the latest values they store for the register; in order to ensure that other readers
do not miss this value, the reader also makes sure that a quorum stores its return value.

A key ingredient of this scheme is the ability to distinguish between older and newer
values of the register; this is achieved by attaching a sequence number to each register
value. In its simplest form, the sequence number is an unbounded integer, which is
increased whenever the writer generates a new value. This solution is appropriate for
an initialized system, which starts in a consistent configuration, in which all sequence
numbers are zero, and are only incremented by the writer or forwarded as is by readers.
Pragmatically, a 64-bit sequence number will not wrap around for a number of writes
that lasts longer than the life-span of any reasonable system.

However, when there are transient failures in the system, as is the case in the con-
text of self-stabilization, the simulation starts at an uninitialized state, where sequence
numbers are not necessarily all zero. It is possible that, due to a transient failure, the
sequence numbers hold maximal values when the simulation starts running, and thus,
will wrap around very quickly. Traditionally, techniques like distributed reset [5, 6] are
used to overcome this problem. However, in asynchronous crash-prone environments
the reset may not terminate waiting for the crashed processes to participate. Hence, a
reset invocation will not ensure that the sequence numbers are set to zero.

Our solution is to partition the execution of the simulation into epochs, namely pe-
riods during which the sequence numbers are supposed not to wrap around. Whenever
a “corrupted” sequence number is discovered, a new epoch is started, overriding all
previous epochs; this repeats until no more corrupted sequence numbers are hidden in
the system, and the system stabilizes. In a steady state, after the system stabilizes, it
remains in the same epoch (at least until the sequence number wrap around, which is
unlikely to happen).

This raises, naturally, the question of identifying epochs. The natural idea, of using
integers, is bound to run into the same problems as for the sequence numbers. Instead, we
use a bounded labeling scheme [14, 18] for the epochs; this is a function for generating



Pragmatic Self-stabilization of Atomic Memory in Message-Passing Systems 21

labels (in a bounded domain), that guarantees that two labels can be compared to deter-
mine the largest among them. Existing labeling schemes, however, assume that labels
have specific initial values, and that new labels are introduced only by means of the label
generation function. In contrast, transient failures, of the kind the self-stabilizing simu-
lation must withstand, can create incomparable labels, so it is impossible to tell which is
the largest among them or to pick a new label that is bigger than all of them.

To address this difficulty, we introduce a bounded labeling scheme that allows to de-
fine a label larger than any set of labels, provided that its size is bounded. We assume
links have bounded capacity, and hence the number of epoch labels initially hidden in
the system is bounded.

The writer tracks the set of epoch labels it has seen recently; whenever the writer
discovers that its current epoch label is not the largest, or is incomparable to some existing
epoch label, the writer generates a new epoch label that is larger than all the epoch labels
it has. The number of bits required to represent an epoch label depends on m, the maximal
size of the set, and it is in O(m log m). We ensure that the size of the set is proportional
to the total capacity of the communication links, namely, O(cn2), where c is the bound
on the capacity of each link (expressed in number of messages) and n is the number of
processors, and hence, each epoch label requires O((cn2(log n + log c)) bits.

It is possible to reduce this complexity, making c constant, using a self-stabilizing
data-link protocols for communication among the processors for bounded capacity links
over FIFO and non-FIFO communication links [10, 15].1

We show that, after a bounded number of write operations, the results of reads and
writes can be totally ordered in a manner that respects the real-time order of non-
overlapping operations, so that the sequence of operations satisfies the semantics of
a SWMR register. This holds until the sequence numbers wrap around, as can happen
when the unbounded simulation of [3] is deployed in realistic systems, where all values
are bounded.

Note that the original design of [3] copes with non-FIFO and unreliable links. We as-
sume that our atomic register simulation runs on top of an optimal stabilizing data-link
layer that emulates a reliable FIFO communication channel over unreliable capacity
bounded non-FIFO channels [10].

Related work. Self-stabilizing simulation of an single-writer single-reader atomic shared
register in a message-passing system was presented in [12]. This simulation does not
tolerate processor crashes. More recent papers [11, 19] focused on self-stabilizing sim-
ulation of shared registers from weaker shared registers. Self-stabilizing timestamps
implementations using SWMR atomic registers were suggested in [1, 13]. These simu-
lations already assume the existence of a shared memory, while, in contrast, we simulate
a shared SWMR atomic register in a message-passing system.

2 Preliminaries

A message-passing system consists of n processors, p0, p1, p2, . . . , pn−1, connected by
communication links through which messages are sent and received. We assume that

1 Note that these protocols are also snap-stabilizing—starting in an arbitrary configuration, the
first invoked send operation succeeds to deliver the message.
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the underlying communication graph is completely connected, namely, every pair of
processors, pi and pj , have a communication link of bounded capacity c.

A processor is modeled as a state machine that executes steps. In each step, the
processor changes its state, and executes a single communication operation, which is
either a send message operation or a receive message operation. The communication
operation changes the state of an attached link, in the obvious manner.

The system configuration is a vector of n states, a state for each processors and
2(n2 − n) queues, each bounded by a constant capacity c. Note that in the scope of
self-stabilization, where the system copes with an arbitrary starting configuration, there
is no deterministic data-link simulation that use bounded memory when the capacity
of links is unbounded [12]. Note further that non-FIFO communication links can be
accommodated by mimicking FIFO delivery [10].

An execution is a sequence of configurations and steps, E = (C1, a1, C2, a2 . . .)
such that Ci, i > 1, is obtained by applying ai−1 to Ci−1, where ai−1 is a step of a
single processor, pj , in the system. Thus, the vector of states, except the state of pj , in
Ci−1 and Ci are identical. If the single communication operation in ai−1 is a send oper-
ation from pj to processor pk then sjk in Ci is obtained from sjk in Ci−1 by enqueuing
the message sent in ai−1. If the resulting queue sjk exceeds its size, i.e., |sjk| = c,
then an arbitrary message is deleted from sjk. The rest of the message queues are un-
changed. If the single communication operation in ai−1 is a receive operation of a (non
null) message M , then M (which is the first message to be dequeued from skj in Ci−1)
is removed from skj , all the other queues are unchanged. A receive operation by pj

from pk may result in a null message even when the skj is not empty, thus allowing
unbounded delay for any particular message. Message losses are modeled by allowing
spontaneous message removals from (any place in) the queue. An edge (i, j) is opera-
tional if a message sent infinitely often by pi is received infinitely often by pj .

Atomic register. For the simulation of a single writer multi-reader (SWMR) atomic
register, we assume p0 is the writer and p1, p2, . . . , pn−1 are the readers. There is a
procedure for executing a write operation by p0, and procedures for executing read
operations by the readers.

Each invocation of a read or write operation translates into a sequence of compu-
tation steps, following the appropriate procedure. Concurrent invocations of read and
write operations yield an execution in which the computation steps corresponding to
invocations by different processors are interleaved. An operation op1 precedes an oper-
ation op2 in this execution, if op1 returns before op2 is invoked. Two operations overlap
if neither of them precedes the other.

Each interleaved execution of an atomic register is required to be atomic, namely,
equivalent to an execution in which the operations are executed sequentially and the
order of non-overlapping operations is preserved [4]. As advocated in [7], the above
definition is equivalent to say that the atomic register has to satisfy the following two
properties:

– Regularity. A read operation returns either the value written by the most recent
write operation that completes before the read or a value written by a concurrent
write.



Pragmatic Self-stabilization of Atomic Memory in Message-Passing Systems 23

– No new / old inversions. If a read operation R returns the value of a concurrent
write operation W , then no read operation that is started after R completes returns
the value of a write operation that completes before W starts.

Pragmatically stabilizing atomic register. A message passing system simulates an
atomic register is a r-pragmatically stabilizing, if there exist an integer r′ > r, such
that every execution with r′ write operations has a segment of execution (fragment)
with r write operations that satisfies the atomicity requirements. In particular, a large r
implies the existence of a long segment with the desired behavior. In the sequel, when
no confusing is possible we refer to r-pragmatically stabilizing simply as pragmatically
stabilizing.

Pragmatic stabilization is reminiscent of pseudo-stabilization [9] in the sense that
an execution has a finite number of specification violation during a long execution;
in pseudo-stabilization the length of the long execution is infinite while in pragmatic
stabilization the length considered is practically infinite. Roughly speaking, the use of
the pigeonhole principle ensures that a partition of r′ by the bound on the number of
violations ensures the existence of r.

3 Overview of the Algorithm

3.1 The Basic Quorum-Based Simulation

We describe the basic simulation, which follows the quorum-based approach of [3], and
ensures that our algorithm tolerates (crash) failures of a minority of the processors.

The simulation relies on a set of read and write quorums, each being a majority
of processors.2 The simulation specifies the write and read procedures, in terms of
QuorumRead and QuorumWrite operations. The QuorumRead procedure sends a
request to every processor, for reading a certain local variable of the processor; the
procedure terminates with the obtained values, after receiving answers from proces-
sors that form a quorum. Similarly, the QuorumWrite procedure sends a value to every
processor to be written to a certain local variable of the processor; it terminates when ac-
knowledgments from a quorum are received. If a processor that is inside QuorumRead
or QuorumWrite keeps taking steps, then the procedure terminates (possibly with ar-
bitrary values). Furthermore, if a processor starts QuorumRead procedure execution,
then the stabilizing data link [15, 16] ensures that a read of a value returns a value
held by the read variable some time during its period; similarly, a QuorumWrite(v)
procedure execution, causes v to be written to the variable during its period.

Each processor pi maintains a variable, MaxSeqi, supposed to be the “largest” se-
quence number the processor has read, and a value vi, associated with MaxSeqi, which
is supposed to be the value of the implemented register.

The write procedure of a value v starts with a QuorumRead of the MaxSeqi vari-
ables; upon receiving answers l1, l2, . . . from a quorum, the writer picks a sequence
number lm that is larger than MaxSeq0 and l1, l2, . . . by one; the writer assigns lm to

2 Standard end-to-end schemes [17] can be used to implement the quorum operation in the case
of general communication graph.
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MaxSeq0 and calls QuorumWrite with the value 〈lm, v〉. Whenever a quorum mem-
ber pi receives a QuorumWrite request 〈l, v〉 for which l is larger than MaxSeqi, pi

assigns l to MaxSeqi and v to vi.
The read procedure by pi starts with a QuorumRead of both the MaxSeqj and

the (associated) vj variables. When pi receives answers 〈l1, v1〉, 〈l2, v2〉 . . . from a quo-
rum, pi finds the largest epoch label lm among MaxSeqi, and l1, l2, . . . and then calls
QuorumWrite with the value 〈lm, vm〉. This ensures that later read operations will re-
turn this, or a later, value of the register. When QuorumWrite terminates, after a write
quorum acknowledges, pi assigns lm to MaxSeqi and vm to vi and returns vm as the
value read from the register.

Note that the QuorumRead operation, beginning the write procedure of p0, helps to
ensure that MaxSeq0 holds the maximal value, as the writer reads the biggest accessi-
ble value (directly read by the writer, or propagated to a quorum that will be later read
by the writer) in the system during any write.

Let g(C) be the number of distinct values greater than MaxSeq0 that are accessible
in some configuration C, and let C1, C2, . . . be the configurations in the execution.
Since all the processors, except the writer, only copy values and since p0 can only
increment the value of MaxSeq0 it holds for every i ≥ 1 that

g(Ci) ≥ g(Ci+1) .

Furthermore,
g(Ci) > g(Ci+1) ,

whenever the writer discovers (when executing step ai) a value greater than MaxSeq0.
Roughly speaking, the faster the writer discovers these values, the earlier the system
stabilizes. If the writer does not discover such a value, then the (accessible) portion
of the system in which its values are repeatedly written, performs reads and writes
correctly.

3.2 Epochs

As described in the introduction, it is possible that the sequence numbers wrap around
faster than planned, due to “corrupted” initial values. When the writer discovers that
this has happened, it opens a new epoch, thereby invalidating all sequence numbers
from previous epochs.

Epochs are denoted with labels from a bounded domain, using a bounded labeling
scheme. Such a scheme provides a function to compute a new label, which is “larger”
than any given set of labels.

Definition 1. A labeling scheme over a bounded domain L, provides an antisymmetric
comparison predicate ≺b on L and a function Nextb(S) that returns a label in L,
given some subset S ⊆ L of size at most m. It is guaranteed that for every L ∈ S,
L ≺b Nextb(S).

Note that the labeling scheme of [18], used in the original atomic memory simula-
tion [3], cannot cope with transient failures. Section 4 describes a bounded labeling
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scheme that accommodates badly initialized labels, namely, those not generated by us-
ing Next.

This scheme ensures that if the writer eventually learns about all the epoch labels
in the system, it will generate an epoch label greater than all of them. After this point,
any read that starts after a write of v is completed (written to a quorum) returns v (or a
later value), since the writer will use increasing sequence numbers. The eventual con-
vergence of the labeling scheme depends on invoking Nextb with a parameter S that
is a superset of the epoch labels in the system. Estimating this set is another challenge
for the simulation, as described next.

Guessing Game. We explain the intuition of this part of the simulation through the
following two-player guessing game, between a finder, representing the writer, and a
hider, representing an adversary controlling the system.

– The hider maintains a set of labels H, whose size is at most m (a parameter fixed
later).

– The finder does not know H, but it needs to generate a label greater than all labels
in H.

– The finder generates a label L and if H contains a label L′, such that it does not
hold that L′ ≺b L then the hider exposes L′ to the finder.

– In this case, the hider may choose to add L to H, however, it must ensure that the
size of H remains at most m, by removing another label. (The finder is unaware of
the hiders decision.)

– If the hider does not expose a new label L′ from H, the finder wins this iteration
and continues to use L.

The strategy of the finder is based on maintaining a FIFO queue of 2m labels, meant
to track the most recent labels. The queue starts with arbitrary values, and during the
course of the game, it holds up to m recent labels produced by the finder, which turned
out to be overruled by existing labels (provided by the hider). The queue also holds up
to m labels that were revealed to overrule these labels.

Before the finder chooses a new label, it enqueues its previously chosen label and
the label received from the hider in response. Enqueuing a label that is already in the
queue pushes the label to the front of the queue; if the bound on the size of the queue
is reached, then the oldest label in the queue is dequeued. This semantics of enqueue is
used throughout the paper.

The finder chooses the next label by applying Next, using as parameter the 2m
labels in the queue. Intuitively, the queue eventually contains a superset of H, and the
finder generates a label greater than all the current labels of the hider.

Clearly, when the finder chooses the ith label, i > 0, the 2i items in the front of the
queue consist of the first i labels generated by the finder, and the first i labels revealed
by the hider. This is used to show the following property of the game.

Lemma 1. After at most m + 1 labels, the finder generates a label that is larger than
all the labels held by the hider.

Proof. Note that a response cannot expose a label that has been introduced or previously
exposed in the game since the finder always choose a label greater than all labels in the
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queue. Thus, if the finder does not win when introducing the mth label, all the m labels
that the hider had when the game started were exposed and therefore, stored in the
queue of the finder together with all the recent m labels introduced by the finder, before
the m + 1st label is chosen. Therefore, the m + 1st label is larger than every label held
by the hider, and the finder wins. �	
Note that a step of the hider that exposes more than one label unknown to the finder,
accelerates the convergence to a winning stage.

4 A Bounded Labeling Scheme with Uninitialized Values

Let k > 1 be an integer, and let K = k2 + 1. We consider the set X = {1, 2, .., K} and
let L (the set of labels) be the set of all ordered pairs (s, A) where s ∈ X is called in
the sequel the Sting of the label, and A ⊆ X has size k and is called in the sequel the
Antistings of the label. It follows that |L| =

(
K
k

)
K = k(1+o(1))k.

The comparison operator ≺b among the bounded labels is defined to be:

(sj , Aj) ≺b (si, Ai) ≡ (sj ∈ Ai) ∧ (si �∈ Aj)

Note that this operator is antisymmetric by definition, yet may not be defined for every
pair (si, Ai) and (sj , Aj) in L (e.g., sj ∈ Ai and si ∈ Aj).

We define now a function to compute, given a subset S of at most k labels of L, a
new label which is greater (with respect to ≺b) than every label of S. This function,
called Nextb (see the left side of Figure 1) is as follows. Given a subset of k labels
(s1, A1), (s2, A2), . . . , (sk, Ak), we take a label (si, Ai) that satisfies:

– si is an element of X that is not in the union A1 ∪ A2 ∪ . . . ∪ Ak (as the size of
each As is k, the size of the union is at most k2, and since X is of size k2 + 1 such
an si always exists).

– Ai is a subset of size k of X containing all values (s1, s2, . . . , sk) (if they are not
pairwise distinct, add arbitrary elements of X to get a set of size exactly k).

It is simple to compute Ai and si given a set S with k labels, and can be done in time
linear in the total length of the labels given, i.e., in O(k2) time.

Lemma 2. Given a subset S of k labels from L, (si, Ai) = Nextb(S) satisfies:

∀(sj , Aj) ∈ S, (sj , Aj) ≺b (si, Ai)

Proof. Let (sj , Aj) be an element of S. By construction, sj ∈ Ai and si /∈ Aj , and the
result follows from the definition of ≺b. �	
Timestamps. Each value is tagged with a timestamp—a pair (l, i) where l is a bounded
label, and i is a sequence number, and integer between 0 and a fixed bound r ≥ 1.

The Nexte operator compares between two timestamps, and is described in the
right part of Figure 1. Note that in Line 3 of the code we use S̃ for the set of labels
(with sequence numbers removed) that appear in S. The comparison operator ≺e for
timestamps is:

(x, i) ≺e (y, j) ≡ x ≺b y ∨ (x = y ∧ i < j)

In the sequel, we use ≺b to compare timestamps only by their labels (ignoring their
sequence numbers).
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Nextb

input: S = (s1, A1), (s2, A2), . . . , (sk, Ak): labels set
output: (s, A): label
function: For any ∅ �= S ⊆ X , pick(S) returns arbitrary
(later defined for particular cases) element of S
1: A := {s1} ∪ {s2} ∪ . . . ∪ {sk}
2: while |A| �= k
3: A := A ∪ {pick(X \ A)}
4: s := pick (X \ (A ∪ A1 ∪ A2 ∪ . . . ∪ Ak))
5: return (s, A)

Nexte

input: S: set of k timestamps
output: (l, i): timestamp
1: if ∃(l0, j0) ∈ S such that

∀(l, j) ∈ S, (l, j) �= (l0, j0),
(l, j) ≺e (l0, j0) ∧ j0 < r

2: then return (l0, j0 + 1)

3: else return (Nextb(S̃), 0)

Fig. 1. Nextb and Nexte. S̃ is the set of labels appearing in S

5 Putting the Pieces Together

Each processor pi, holds, in MaxTSi, two fields 〈mli, cli〉, where mli is the timestamp
associated with the last write of a value to the variable vi and cli is a canceling times-
tamp possibly empty (⊥), which is not smaller than mli in the ≺b order. The canceling
field is used to let the writer (finder in the game) know an evidence on the existence
of unknown (non smaller) epoch label. A timestamp (l, i) is an evidence for timestamp
(l′, j) if and only if l �≺b l′. When the writer faces an evidence it changes the current
epoch label.

The pseudo code for the read and write procedures appears in Figure 2. Note that in
Lines 2 and 10 of the write procedure, an epoch label is enqueued if and only if it is not
equal to MaxTS0. Note further, that Nexte in Line 5 of the write procedure, first tries
to increment the sequence number of the epoch label in MaxTS0 and if the sequence
number already equals to the upper bound r then p0 enqueues the value of MaxTS0

and uses the updated epochs queue to choose a new value for MaxTS0, which is a new
epoch label Nextb(epochs) and sequence number 0.

write0(v)

1:〈〈ml1, cl1〉, v1〉, 〈〈ml2, cl2〉, v2〉, · · · :=QuorumRead
2:∀i, if mli �= MaxTS0.ml then enqueue(epochs,mli)
3:∀i, if cli �= MaxTS0.ml then enqueue(epochs, cli)
4:if ∀ l ∈ epochs l �e MaxTS0.ml then
5: MaxTS0 := 〈Nexte(MaxTS0.ml ∪ epochs),⊥〉
6:else
7: enqueue(epochs,MaxTS0.ml)
8: MaxTS0 := 〈(Nextb(epochs), 0),⊥〉
9:QuorumWrite(〈MaxTS0, v〉)

Upon a request of QuorumWrite 〈l, v〉
10:if l �= MaxTS0.ml then enqueue(epochs, l)

read

1:〈〈ml1, cl1〉, v1〉, 〈〈ml2, cl2〉, v2〉, · · · :=QuorumRead
2:if ∃m such that clm = ⊥ and
3: (∀ i �= m mli ≺e mlm and cli ≺e mlm) then
4: QuorumWrite〈mlm, vm〉
5: return(vm)
6:else return(⊥)

Upon a request of QuorumWrite 〈l, v〉
7:if MaxTSi.ml ≺e l and MaxTSi.cl ≺e l then
8: MaxTSi := 〈l,⊥〉
9: vi := v
10:else if l �≺b MaxTSi.ml and MaxTSi.ml �= l

then MaxTSi.cl := l

Fig. 2. write(v) and read
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The write of a value v starts with a QuorumRead of the MaxTSi variables, and
upon receiving answers l1, l2, . . . from a quorum, the writer p0 enqueues the epoch la-
bels of the received ml and non-⊥ cl which are not equal to MaxTS0, to the epochs
queue (Lines 1-3). The writer then computes MaxTS0 to be the Nexte timestamp,
namely if the epoch label of MaxTS0 is the largest in the epochs queue and the se-
quence number of MaxTS0 less than r, then p0 increments the sequence number of
MaxTS0 by one, leaving the epoch label of MaxTS0 unchanged (Lines 4-5). Other-
wise, it is necessary to change the epoch label: p0 enqueues MaxTS0 to the epochs
queue and applies Nextb to obtain an epoch label greater than all the ones in the
epochs queue; it assigns to MaxTS0 the timestamp made of this epoch label and a
zero sequence number (Lines 7-8). Finally, p0 executes the QuorumWrite procedure
with 〈MaxTS0, v〉 (Line 9).

Whenever the writer p0 receives (as a quorum member) a QuorumWrite request
containing an epoch label that is not equal to MaxTS0, p0 enqueues the received epoch
label in the epochs queue (Line 10). (Recall the rules for enqueuing the queue from
Section 3.2.)

The read of a reader pi starts with a QuorumRead of the MaxTSj and the (associ-
ated) vj variables (Line 1). When pi receives answers 〈〈ml1, cl1〉, v1〉, 〈〈ml2, cl2〉, v2〉 . . .
from a quorum, pi tries to find a maximal timestamp mlm according to the ≺e oper-
ator from among mli, cli, ml1, cl1, ml2, cl2 . . .. If pi finds such maximal timestamp
mlm, then pi executes the QuorumWrite procedure with 〈mlm, vm〉. Once the Quo-
rumWrite terminates (the members of a quorum acknowledged) pi assigns MaxTSi :=
〈mlm,⊥〉, and vi := vm and returns vm as the value read from the register (Lines 2-5).
Otherwise, in case no such maximal value mlm exists, the read is aborted (Line 6).

When a quorum member pi receives a QuorumWrite request 〈l, v〉, it checks whether
both MaxTSi.ml ≺b l and MaxTSi.cl ≺b l. If this is the case, then pi assigns
MaxTSi := 〈l,⊥〉 and vi := v (Lines 7-9). Otherwise, pi checks whether l �≺b

MaxTSi.ml and if so assigns MaxTSi.cl := l (Line 10). Note that ⊥ ≺b l, for
any l.

Diffusing labels over the data-link. Note that we assume an underlying stabilizing data-
link protocol [9, 15]. The data-link protocol is used for repeatedly diffusing the value of
MaxTS from one processor to another. If the MaxTSi.cl of a processor pi is ⊥ and pi

receives from processor pj a MaxTSj such that MaxTSj.ml �≺b MaxTSi.ml then pi

assigns MaxTSi.cl := MaxTSj.ml, otherwise, when MaxTSj.cl �≺b MaxTSi.ml
then pi assigns MaxTSi.cl := MaxTSj.cl Note also that the writer will enqueue
every diffused value that is different from MaxTS0.ml (similarly to lines 10 of the
reader and the writer, where each of MaxTSj.ml and MaxTSj.cl are considered l).

6 Outline of Correctness Proof

The correctness of the simulation is implied by the game and our previous observations,
which we can now summarize, recapping the arguments explained in the description of
the individual components. Note that the writer may enqueue several unknown epochs
in a single write operation and only then introduce a greater epoch, such a scenario will
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result in a shorter winning strategy in the game as the writer gains more knowledge
concerning the existing (hidden) labels before introducing a new epoch.

In the simulation, the finder/writer may introduce new epoch labels even when the
hider does not introduce an evidence. We consider a timestamp (l, i) to be an evidence
for timestamp (l′, j) if and only if l �≺b l′. Using a large enough bound r on the se-
quence number, we ensure that either there is an execution with r writes in which the
finder/writer introduces new timestamps with no epoch label change, and therefore with
growing sequence numbers, and well-defined timestamp ordering, or a new epoch label
is frequently introduced due to the exposure of hidden unknown epoch labels. The last
case follows the winning strategy described for the game.

The sequence numbers allow the writer to introduce many timestamps, exponential
in the number of bits used to represent r, without storing all of them, as their epoch label
is identical. The sequence numbers are a simple extension of the bounded epoch labels
just as a least significant digit of a counter; this allows the queues to be proportional to
the bounded number of the epoch labels in the system. Thus, either the writer introduces
an epoch label greater than any one in the system, and hence will use this epoch label
to essentially implement a register for an execution of r writes, or the readers never
introduce some existing bigger epoch label letting the writer increment the sequence
number practically infinitely often. Note that if the game continues, while the finder is
aware of (a superset including) all existing epoch labels and introduces a greater epoch
label, there exist an execution of r writes before a new epoch label is introduced.

In the simulation of a SWMR atomic register, following the first write of a timestamp
greater than any other timestamp in the system, with a sequence number 0, to a majority
quorum, any read in an execution with r writes, will return the last timestamp that has
been written to a quorum. In particular, if a reader finds a timestamp introduced by
the writer that is larger than all other timestamps but not yet completely written to a
majority quorum, the reader assists in completing the write to a majority quorum before
returning the read value.

The simulation fails when the set of timestamps does not include a timestamp greater
than the rest. That is, read operations may be repeatedly aborted until the writer writes
new timestamps. Moreover, a slow reader may store a timestamp unknown to the rest
(and in particular to the writer) and eventually introduce the timestamp. In the first case,
the convergence of the system is postponed till the writer is aware of a superset of the
existing timestamps. In the second case, the system operates correctly, implementing
read and write operations, until the timestamp unknown to the rest is introduced.

Each read or write operation requires O(n) messages. The size of the messages
is linear in the size of a timestamp, namely the sum of the size of the epoch label and
log r. The size of an epoch label is O(m log m) where m is the size of the epochs queue,
namely, O(cn2), where c is the capacity of a communication link.

Note that the size of the epochs queue, and with it, the size of an epoch label, is
proportional to the number of epoch labels that can be stored in a system configuration.
Reducing the link capacity also reduces the number of epoch labels that can be “hid-
den” in the communication links. This can be achieved by using a stabilizing data-link
protocol,[10, 15, 16], in a manner similar to the ping-pong mechanism used in [3].
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7 Discussion

We have presented a self-stabilizing simulation of a single-writer multi-reader atomic
register, in an asynchronous message-passing system in which at most half the proces-
sors may crash.

Given our simulation, it is possible to realize a self-stabilizing replicated state ma-
chines [20]. The self-stabilizing consensus algorithms presented in [13] uses SWMR
registers, and our simulation allows to port them to message-passing systems. More
generally, our simulation allows the application of any self-stabilizing algorithm that is
designed using SWMR registers to work in a message-passing system, where less than
the majority of the processors may crash.

Our work leaves open many interesting directions for future research. Note that our
algorithms can be initialized [8] to respect the atomicity requirements for the beginning
of a practically infinite execution. Still one of the most interesting research directions is
to find a stabilizing simulation, which will operate correctly even after sequence num-
bers wrap around, without an additional convergence period. This seems to mandate
a more careful way to track epoch labels, perhaps by incorporating a self-stabilizing
analogue of the viability construction [3].

Acknowledgments. We thank Ronen Kat and Eli Gafni for helpful discussions.
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