
The Byzantine Brides Problem

Swan Dubois1, Sébastien Tixeuil2, and Nini Zhu3

1 UPMC Sorbonne Universités & Inria, France
2 UPMC Sorbonne Universités & Institut Universitaire de France, France

3 UPMC Sorbonne Universités, France

Abstract. We investigate the hardness of establishing as many stable
marriages (that is, marriages that last forever) in a population whose
memory is placed in some arbitrary state with respect to the considered
problem, and where traitors try to jeopardize the whole process by be-
having in a harmful manner. On the negative side, we demonstrate that
no solution that is completely insensitive to traitors can exist, and we
propose a protocol for the problem that is optimal with respect to the
traitor containment radius.

1 Introduction

After 1123 years of existence, the Byzantine Empire finally collapsed soon after
the fall of Constantinople in 1453 by the Ottoman army (see Figure 1). The
various wars that opposed armies in the previous years ravaged their homeland
as well as the capital city, as a contemporary reported [1]: “The blood flowed in
the city like rainwater in the gutters after a sudden storm.”

Allegedly, the main reason for the Byzantine defeat is that there were traitors
amongst its leading generals [2,3]. With traitors at their cores, armies suffered
significant losses, leaving mostly widows, orphans, and devastated homes. After
the country was taken and the truce signed, the city was to rebuild, starting
with its core roots: families. In the ancient days, strict guidelines were followed

Fig. 1. Scene from the battle defending Constantinople, Paris 1499

E. Kranakis, D. Krizanc, and F. Luccio (Eds.): FUN 2012, LNCS 7288, pp. 107–118, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

108 S. Dubois, S. Tixeuil, and N. Zhu

to form new marriages, like coming from the same social circles or being of
opposite sex. In a wasted land with few homes still standing, those were no longer
sustainable options. Stability of marriages was decided to be the most important
criterium, rendering every other consideration irrelevant. So, general guidelines
were to be followed by all survivors: (i) do your best to make your marriage
last, (ii) don’t be picky about whom you are married to, and (iii) don’t make
others’ marriage fail. Still, the Byzantine traitors that led the armies to their
doom were hidden amongst the surviving population, and managed somehow
to remain unnoticed. Their purpose was to cause as much havoc as possible,
by any means necessary, without being caught for their socially inconvenient
behavior. So, the reconstruction of the city could have been jeopardized by few
nasty Byzantine brides or bridegrooms.

The core problem Byzantine authorities were facing to establish as many
stable marriages as possible lied in the following two observations:

1. the population was heavily shocked by the war that just stopped, and their
state of mind was somewhat erratic: some could not remember they were
previously married, some though they were previously married but never
were, some though they were engaged and expected a response that would
never come because the engagement was not remembered by the expected
bride or bridegroom, etc,

2. the traitors could simulate emotional shock in order to stay undiscovered yet
try to perturbate the global marriage process.

So, the only difference between the general population and the traitors was their
willingness to accommodate the stable marriage doctrine in their daily life.

In this paper, we investigate the hardness of establishing as many stable mar-
riages (that is, marriages that last foverer) in a population whose memory is
placed in some arbitrary state with respect to the considered problem, and where
traitors try to jeopardize the whole process by behaving in a harmuful manner.
On the negative side, we demonstrate that no solution that is completely insen-
sitive to traitors can exist, and we propose a protocol for the problem that is
optimal with respect to the traitor containment radius.

2 Model and Definitions

2.1 State Model

A Byzantine city S = (V, L) consists of a set V = {v1, v2, . . . , vn} of potential
brides1 (or simply brides) and a set L of potential marriages. A potential mar-
riage is an unordered pair of distinct potential brides (this takes place before
the Internet ages, so long distance marriage is not supposed to last forever, and
only marriages occurring in a vicinity may be stable). A Byzantine city S can
be regarded as a graph whose vertex set is V and whose link set is L, so in

1 Note that we use the word “bride” in the sequel of this paper to denote both brides
and bridegrooms.

The Byzantine Brides Problem 109

the sequel we use graph terminology to describe a Byzantine city S. We use the
following notations: n = |V |, m = |L| and d(u, v) denotes the distance between
two nodes u and v (i.e the length of the shortest path between u and v).

Potential brides u and v are called neighbors if (u, v) ∈ L. The set of neighbors
of a potential bride v is denoted by Nv. We do not assume existence of unique
identifiers for potential brides (Birth records have been destroyed by the war, and
memory of each potential bride is unreliable). Instead we assume each potential
bride may distinguish its neighbors from each other by locally labeling them.

For the sake of generality and the lack of reports concerning the remains
of Constantinople after it has fallen, we consider that the Byzantine city has
arbitrary yet connected topology. We adopt the shared state model [4] as a com-
munication model, where each potential bride can directly and instantaneously
get the current status of its neighbors.

The current memory that is maintained by a potential bride is denoted by the
term of state, and may be further divided into variables. A potential bride may
take actions that are prescribed by the authorities during the reconstruction
of the Byzantine city. An action is simply a function that is executed in an
atomic manner by the potential bride. The action executed by each potential
bride is described by a finite set of guarded commands of the form 〈guard〉 −→
〈statement〉. Each guard of potential bride u is a Boolean expression involving
the state of u and its neighbors.

A global state of a Byzantine city is called a configuration and is specified
by the product of states of all potential brides. We define C to be the set of all
possible configurations of a Byzantine city S. For a potential bride set R ⊆ V

and two configurations γ and γ′, we denote γ
R�→ γ′ when γ changes to γ′ by

executing an action of each potential bride in R simultaneously. Notice that γ
and γ′ can be different only in the states of potential brides in R. For complete-
ness of execution semantics, we should clarify the configuration resulting from
simultaneous actions of neighboring potential brides. The action of a potential
bride depends only on the current state at γ and the states of the neighbors at
γ, and the result of the action reflects on the state of the potential bride at γ′.

We say that a potential bride is enabled in a configuration γ if the guard of
at least one of its actions evaluates as true in γ. A schedule of a Byzantine city
is an infinite sequence of potential bride sets. Let Q = R1, R2, . . . be a schedule,
where Ri ⊆ V holds for each i (i ≥ 1). An infinite sequence of configurations
e = γ0, γ1, . . . is called an execution from an initial configuration γ0 by a schedule

Q, if e satisfies γi−1
Ri�→ γi for each i (i ≥ 1). Potential bride actions are executed

atomically, and we distinguish some properties on the scheduler (or daemon).
A distributed daemon schedules the actions of potential brides such that any
subset of potential brides can simultaneously execute their actions. We say that
the daemon is central if it schedules action of only one potential bride at any
step. The set of all possible executions from γ0 ∈ C is denoted by Eγ0 . The set
of all possible executions is denoted by E, that is, E =

⋃
γ∈C Eγ . We consider

asynchronous Byzantine cities but we add the following assumption on schedules:
any schedule is central and fair (meaning that only one enabled potential bride

110 S. Dubois, S. Tixeuil, and N. Zhu

is chosen at any step and that no potential bride can be infinitely often enabled
without being chosen by the scheduler).

In this paper, we consider (permanent) Byzantine faults : a Byzantine potential
bride (i.e. a Byzantine-faulty potential bride) can exhibit arbitrary behavior
independently of its actions. If v is a Byzantine-faulty potential bride, v can
repeatedly change his (or her) state arbitrarily. For a given execution, the number
of faulty potential brides is arbitrary.

2.2 Self-stabilizing Protocols Resilient to Byzantine Faults

As the problem we solve is meant for stability and should reach a global fixed
point, we use a specification predicate (shortly, specification) to define it. This
specification predicate is denoted by spec(v), for each potential bride v. A config-
uration is a desired one if every potential bride satisfies spec(v). A specification
spec(v) is a Boolean expression on variables of Pv (⊆ P) where Pv is the set
of potential brides whose state (or part of) appear in spec(v). The variables
appearing in the specification are called output variables (shortly, O-variables).

A self-stabilizing protocol ([4,5,6]) is a protocol that eventually reaches a legit-
imate configuration, where spec(v) holds at every potential bride v, regardless of
the initial configuration. Once it reaches a legitimate configuration, every poten-
tial bride never changes its O-variables and always satisfies spec(v). From this
definition, a self-stabilizing protocol is expected to recover from any number
and any type of transient faults. However, the recovery from any configura-
tion is guaranteed only when every potential bride honestly executes its action
from the configuration, i.e., self-stabilization does not consider the possibility of
Byzantine-faulty potential brides.

When (permanent) Byzantine-faulty potential brides exist, they may not sat-
isfy spec(v). In addition, honest potential brides near the Byzantine-faulty po-
tential brides can be influenced and may be unable to satisfy spec(v). Nesterenko
and Arora [7] define a strictly stabilizing protocol as a self-stabilizing protocol
resilient to unbounded number of Byzantine-faulty actors.

Definition 1. (c-honest potential bride) A potential bride is c-honest if it is
honest (i.e. not Byzantine-faulty) and located at distance more than c from any
Byzantine-faulty potential bride.

Definition 2. ((c, f)-containment) A configuration γ is (c, f)-contained for
specification spec if, given at most f Byzantine-faulty potential brides, in any ex-
ecution starting from γ, every c-honest potential bride v always satisfies spec(v)
and never changes its O-variables.

The parameter c of Definition 2 refers to the containment radius defined by
Nesterenko and Arora [7]. The parameter f refers explicitly to the number of
Byzantine-faulty potential brides, while [7] dealt with an arbitrary number of
Byzantine faults (that is, f ∈ {0 . . . n}).
Definition 3. ((c, f)-strict stabilization) A protocol is (c, f)-strictly stabilizing
for specification spec if, given at most f Byzantine-faulty potential brides, any ex-
ecution e = γ0, γ1, . . . contains a configuration γi that is (c, f)-contained for spec.

The Byzantine Brides Problem 111

A specification is r-restrictive [7] if it prevents combinations of states that belong
to two potential brides u and v that are at least r hops away. An important
consequence for our purpose is that the containment radius of protocols solving
r-restrictive specifications is at least r.

3 Specification

The problem of maximal marriage construction is a well known problem in Dis-
tributed Computing. Given a graph G = (V,E), a marriage M on G is a subset
of E such that any node of V belongs to at most one edge of M . A marriage is
maximal if there exists no marriage M ′ such that M � M ′.

Specification 1. (Maximal Marriage)

Liveness: The protocol terminates in a finite time.

Safety: In the terminal configuration, there exists a maximal marriage

Each potential bride v has a variable prefv which belongs to the set Nv∪{null}.
This variable refers to the preferred neighbor of v for a marriage. For example, if
prefv = u then v wants to add the edge {v, u} to the marriage. For any potential
bride v, we define the following set of predicates over the Byzantine city: (i)
proposingv denotes the fact that v is proposing marriage to some neighbor u,
but that u has not shown interest yet, (ii) marriedv denotes that v has proposed
u and u has proposed v back, (iii) doomedv denotes that v has proposed neighbor
u, but u has proposed somebody else than v, (iv) deadv denotes that v has no
hope of getting married ever (all neighbors proposed to somebody else), and (v)
singlev means that v has not proposed anyone and has at least one neighbor
likewise. Formally:

proposingv ≡ (prefv = u) ∧ (prefu = null)
marriedv ≡ (prefv = u) ∧ (prefu = v)
doomedv ≡ (prefv = u) ∧ (prefu = w) ∧ (w �= v)
deadv ≡ (prefv = null) ∧ (∀u ∈ Nv,married(u) = true)
singlev ≡ (prefv = null) ∧ (∃u ∈ Nv,married(u) �= true)

It is easy to verify that for any configuration γ and for any potential bride v,
exactly one of these predicates holds for v in γ.

If the Byzantine city is subject to Byzantine failures, obviously no protocol
can satisfy the classical specification of the problem. Now, a potential bride v is
considered locally legitimate when it satisfies the following predicate: spec(v) ≡
marriedv ∨ deadv. We now describe the global properties that are satisfied by a
(c, f)-contained configuration for spec. Informally, we can prove that there exists
a maximal marriage on a subset of S in such a configuration and that this subset
includes at least the set of c-honest potential brides. In the following, Vc denotes
the set of c-honest potential brides (i.e., Vc = {v ∈ V |∀b ∈ B, d(v, b) > c}).

112 S. Dubois, S. Tixeuil, and N. Zhu

Definition 4. ((c, γ)-marriage subset) Given an integer c > 0 and a configura-
tion γ, the (c, γ)-marriage subset S∗

c,γ of S is the subset induced by the following
set of potential brides:

V ′ = Vc ∪ {v ∈ V \ Vc|∃u ∈ Vc, prefv = u ∧ prefu = v}
Now, we can state formally the property satisfied by any (c, f)-contained con-
figuration for spec.

Lemma 1. In any (c, f)-contained configuration for spec, there exists a maxi-
mal marriage on the subset S∗

c,γ.

Proof. Let γ be a (c, f)-contained configuration for spec. Hence, γ satisfies ∀v ∈
Vc, marriedv ∨ deadv. Let us define the following edge set Mc = {{v, prefv}|v ∈
Vc ∧ prefv �= null}.

First, we show that Mc is a marriage on S∗
c,γ . Indeed, if {v, prefv} is an edge

of Mc, then v satisfies marriedv (since v satisfies spec(v) and prefv �= null by
construction of Mc). Hence, we have prefprefv = v. Consequently, v and prefv
appear only once in Mc.

Now, we show that Mc is maximal. By contradiction, assume it is not the
case. Consequently, there exists two neighbors v and u (with v ∈ V ′ and u ∈ V ′)
such that {v, u} /∈ Mc and M ′

c = Mc ∪ {{v, u}} is a marriage on S∗
c,γ . Let us

study the following cases:

Case 1: u ∈ Vc and v ∈ Vc.
If marriedv ∧marriedu holds, then {v, u} ∈ Mc by construction that con-
tradicts the hypothesis. If deadv ∧ deadu holds, then we can deduce that
(prefv = null) ∧ (marriedu) (since deadv holds), that contradicts deadu. If
deadv∧marriedu (resp. marriedv∧deadu) holds, then {v, prefv} ∈ Mc with
prefv �= u (resp. {u, prefu} ∈ Mc with prefu �= v) and we can deduce that
v (resp. u) appears in two distinct edges of M ′

c. Then, M
′
c is not a marriage

that contradicts the hypothesis.
Case 2: u /∈ Vc and v /∈ Vc.

According to the assumption, {u, v} /∈ Mc. Since v ∈ V ′ \Vc∧u ∈ V ′ \Vc, we
have {v, prefv} ∈ Mc with prefv �= u ∧ prefv ∈ Vc (resp. {u, prefu} ∈ Mc

with prefu �= v ∧ prefu ∈ Vc) and we can deduce that v (resp. u) appears in
two distinct edges of M ′

c. Then, M
′
c is not a marriage that contradicts the

hypothesis.
Case 3: u ∈ Vc and v /∈ Vc.

According to the assumption, {v, u} /∈ Mc. Since v ∈ V ′ \ Vc ∧ u ∈ Vc,we
have {v, prefv} ∈ Mc with prefv �= u ∧ prefv ∈ Vc (since if prefv = u,
then {v, u} ∈ Mc that contradicts the hypothesis) and we can deduce that
v appears in two distinct edges of M ′

c. Then, M
′
c is not a marriage that

contradicts the hypothesis.

The result of Lemma 1 motivates the design of a strictly stabilizing protocol for
spec. Indeed, even if this specification is local, it induces a global property in
(c, f)-contained configuration for spec since there exists a maximal marriage of
a well-defined sub-graph in such a configuration.

The Byzantine Brides Problem 113

4 Strictly Stabilizing Maximal Marriage

This section presents our strictly stabilizing solution for the maximal marriage
problem. We also prove its correctness and its optimality with respect to con-
tainment radius.

4.1 Our Protocol

Our strictly-stabilizing maximal marriage protocol, called SSMM is formally
presented as Algorithm 1. The basis of the protocol is the well-known self-
stabilizing Maximal Marriage protocol by Huang and Hsu [8], but we allow
potential brides to remember their past sentimental failures (e.g. an aborted
marriage du to the mate being Byzantine-faulty, or a proposal that didn’t end
up in an actual marriage) in order not to repeat the same mistakes forever when
Byzantine-faulty brides participate to the global marriage process. The ideas
that underly the marriage process for honest potential brides follows the direc-
tives discussed in the introduction: (i) once married, honest brides never divorce
and never propose to anyone else, (ii) honest brides may propose to any neigh-
bor, and if proposed, will accept marriage gratefully, (iii) if they realize they
previously proposed to somebody that is potentially married to somebody else,
they will cancel their proposal and refrain proposing to the same potential bride
soon. A potential bride v maintain two variables: prefv, that was already dis-
cussed in the problem specification section, and old prefv that is meant to recall
past sentimental failures. Specifically, old prefv stores the last proposal made to
a neighbor that ended up doomed (because that neighbor preferred somebody
else, potentially because of Byzantine-faulty divorce, or because of genuine other
interest that occurred concurrently). Then, the helper function next v helps v
to move on with past failures by preferring the next mate not to be the same
as previously (in a Round Robin order): the same potential bride that caused a
sentimental breakup may be chosen twice in a row only if the only one available.

4.2 Proof of Strict Stabilization

In their paper [8], Hsu and Huang prove the self-stabilizing property of their
maximal marriage algorithm using a variant function. A variant function is a
function that associates to any configuration a numerical value. This function is
designed such that: (i) the function is bounded, (ii) any possible step of the algo-
rithm decreases strictly the value of the function, and (iii) the function reaches
its minimal value if and only if the corresponding configuration is legitimate.
Once such a function is defined and its properties are proved, we can easily de-
duce the convergence of the protocol. Indeed, whatever the initial configuration
is, the associate value by the variant function is bounded (by property (i)) and
any execution starting from this configuration reaches in a finite time the min-
imal value of the function (by property (ii)). Then, property (iii) allows us to
conclude on the convergence of the algorithm.

114 S. Dubois, S. Tixeuil, and N. Zhu

Algorithm 1. SSMM: Strictly-stabilizing maximal marriage for potential
bride v
Variables:

prefv ∈ Nv ∪ {null}: preferred neighbor of v
old prefv ∈ Nv: previous preferred neighbor of v

Function:
For any u ∈ {v, null}, nextv(u) is the first neighbor of v greater than old prefv
(according to a round robin order) such that prefnextv(u) = u

Rules:
/* Don’t be picky: Accept any mate (round robin priority) */
(M) :: (prefv = null) ∧ (∃u ∈ Nv, prefu = v) −→ prefv := nextv(v)
/* Don’t be picky: Propose to anyone (round robin priority) */
(S) :: (prefv = null) ∧ (∀u ∈ Nv, prefu �= v) ∧ (∃u ∈ Nv, prefu = null) −→
prefv := nextv(null)
/* Don’t cause others to break up: give up proposing if doomed */
(A) :: (prefv = u)∧ (prefu �= v)∧ (prefu �= null) −→ old prefv := prefv; prefv :=
null

Our proof of strict-stabilization for our protocol also relies on a variant func-
tion (borrowed from the one of [9]). We choose a variant function where we
consider only potential brides of V2. For any configuration γ ∈ Γ , let us define
the following functions:

w(γ) = |{v ∈ V2|proposingv}|
c(γ) = |{v ∈ V2|doomedv}|
f(γ) = |{v ∈ V2|singlev}|
P (γ) = (w(γ) + c(γ) + f(γ), 2c(γ) + f(γ))

Note that our variant function P satisfies property (i) by construction.
Then, we define the following configuration set:

LC2 = {γ ∈ Γ |∀v ∈ V2, spec(v)}

In other words, LC2 is the set of configurations in which any potential bride v
of V2 satisfies spec(v).

We can now explain the road-map of our proof. After two preliminaries results
(Lemmas 2 and 3) that are used in the sequel, we first show that any configura-
tion of the set LC2 is (2, n)-contained for spec (Lemma 4), that is, the set LC2 is
closed by actions of SSMM. Then, there remains to prove the convergence of
the protocol to configurations of LC2 (starting from any configuration) to show
the strict-stabilization of SSMM. The remainder of the proof is devoted to the
study of properties of our variant function P . First, we show in Lemma 5 that
any configuration γ that satisfies P (γ) = (0, 0) belongs to LC2. This proves that
P satisfies the property (iii). Unfortunately, we can prove that our variant func-
tion P does not satisfy property (ii) (strict decreasing) since Byzantine faults
may lead some potential brides to take actions that increase the function value.
Nevertheless, we prove in Lemmas 6, 7, and 8 that this case may appear only

The Byzantine Brides Problem 115

a finite number of times and that our variant function is eventually strictly de-
creasing, which is sufficient to prove the convergence to LC2 in Lemma 9. Finally,
Lemmas 4 and 9 permit to conclude with Theorem 1 that establishes the (2, n)-
strict stabilization of SSMM. A sketch of the proof follows. Note that, due to
space limitations, formal proofs are omitted but are available in a companion
technical report.

The proofs of the following lemmas come from simple observations of the
protocol.

Lemma 2. For any execution e = γ0, γ1 . . .,
- if marriedv holds in γ0 for a potential bride v ∈ V1, then marriedv holds in
γi for all i ∈ N; and
- if deadv holds in γ0 for a potential bride v ∈ V2, then deadv holds in γi for all
i ∈ N.

Lemma 3. For any configuration γ ∈ LC2, no potential bride of V2 is enabled
by SSMM in γ.

The definition of LC2 and Lemma 2 allow us to state the following lemma:

Lemma 4. Any configuration of LC2 is (2, n)-contained for spec.

Lemma 5. Any configuration γ ∈ Γ satisfying P (γ) = (0, 0) belongs to LC2.

The following lemma is proved in a similar way as the corresponding one of [9]
(considering only potential brides of V2).

Lemma 6. For any configuration γ /∈ LC2 and any step γ → γ′ in which a
potential bride of V2 is activated by SSMM, we have P (γ′) < P (γ).

The two following lemmas come from analysis of the behaviour of our variant
function in presence of Byzantine actions.

Lemma 7. In any execution, P only increases a finite number of times.

Lemma 8. For any configuration γ0 /∈ LC2 and any execution e = γ0, γ1, γ2, . . .
starting from γ0, there exists a configuration γi such that P (γi+1) < P (γi).

This set of Lemmas allows us to conclude on the following results:

Lemma 9. Any execution of SSMM reaches a configuration of LC2 in a finite
time under the central fair daemon.

Theorem 1. SSMM is a (2, n)-strictly stabilizing protocol for spec under the
central fair daemon.

116 S. Dubois, S. Tixeuil, and N. Zhu

4.3 Optimality of Containment Radius

This section is devoted to the impossibility result that proves the optimality of
the containment radius performed by SSMM.

Theorem 2. There exists no (1, 1)-strictly stabilizing protocol for spec under
any daemon.

Proof. Consider a Byzantine city reduced to a chain of 5 potential brides labelled
from left to right by v0, v1, ..., v4. Consider the configuration γ in which v0 (resp.
v3) is married with v1 (resp. v4). Hence, v2 is dead. Observe that γ belongs to
LC1 if the potential bride v0 is Byzantine-faulty (i.e any potential bride of V1 is
either married or dead).

By definition, any (1, 1)-strictly stabilizing protocol for spec must ensure the
closure of LC1 for any execution starting from γ. But we can observe that it
is not the case. Indeed, it is sufficient that the Byzantine-faulty potential bride
breaks its marriage with v1 during the first step for violating the closure of LC1

(since v2 ∈ V1 becomes single). As no protocol can prevent a Byzantine fault by
definition, we have the result.

5 Related Works

Self-stabilization [4,5,6] is a versatile technique that permits forward recovery
from any kind of transient faults, while Byzantine fault-tolerance [3] is tradi-
tionally used to mask the effect of a limited number of malicious faults. In
the context of self-stabilization, the first algorithm for computing a maximal
marriage was given by Hsu and Huang [8]. Goddard et al. [10] later gave a syn-
chronous self-stabilizing variant of Hsu and Huang’s algorithm. Finally, Manne
et al. [11] gave an algorithm for computing a maximal marriage under the dis-
tributed daemon. When it comes to improving the 1

2 -approximation induced by
the maximal mariage property, Ghosh et al. [12] and Blair and Manne [13] pre-
sented a framework that can be used for computing a maximum mariage in a
tree, while Goddard et al. [14] gave a self-stabilizing algorithm for computing a
2
3 -approximation in anonymous rings of length not divisible by three. Manne et
al. later generalized this result to any arbitrary topology [15]. Note that contrary
to our proposal, none of the aforementioned marriage construction algorithms
can tolerate Byzantine behaviour.

Making distributed systems tolerant to both transient and malicious faults
is appealing yet proved difficult [16,17] as impossibility results are expected in
many cases (even with complete communication topology and in a synchronous
setting). A promising path towards multi-tolerance to both transient and Byzan-
tine faults is Byzantine containment. For local tasks (i.e. tasks whose correctness
can be checked locally, such as vertex coloring, link coloring, or dining philoso-
phers), strict stabilization [7,18] permits to contain the influence of malicious
behavior to a fixed radius. This notion was further generalized for global tasks
(such as spanning tree construction) using the notion of topology-aware strict
stabilization [19,20]. Our proposal is a strictly stabilizing maximal marriage pro-
tocol that has optimal containement radius.

The Byzantine Brides Problem 117

6 Conclusion

We investigated the problem of recovering a catastrophic war by establishing
long standing marriages, despite starting from an arbitrarily devastated state
and having traitors trying make the global process fail. We presented evidence
that no protocol can be completely resilient to traitors (as far as their influence
containment is concerned), and designed and formally proved a protocol to solve
the problem that is optimal in that respect. Further work is still needed for
determining the global possible efficiency of the marriage process. It is known
that in a scenario without traitors, a given maximal marriage [8,11] is a factor
2 from the optimal (over all possible maximal marriages), yet more efficient
solutions (with respect to the approximation ration) are possible [15]. Extending
those works to Byzantine-faulty setting is a challenging further work.

References

1. Barbaro, N.: Diary of the Siege of Constantinople. Translation by John Melville-
Jones, New York (1453)

2. Pease, M.C., Shostak, R.E., Lamport, L.: Reaching agreement in the presence of
faults. J. ACM 27(2), 228–234 (1980)

3. Lamport, L., Shostak, R.E., Pease, M.C.: The byzantine generals problem. ACM
Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

4. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

5. Dolev, S.: Self-stabilization. MIT Press (March 2000)
6. Tixeuil, S.: Self-stabilizing Algorithms. Chapman & Hall/CRC Applied Algorithms

and Data Structures. In: Algorithms and Theory of Computation Handbook, 2nd
edn., pp. 26.1–26.45. CRC Press, Taylor & Francis Group (November 2009)

7. Nesterenko, M., Arora, A.: Tolerance to unbounded byzantine faults. In: 21st Sym-
posium on Reliable Distributed Systems (SRDS 2002), pp. 22–29. IEEE Computer
Society (2002)

8. Hsu, S.C., Huang, S.T.: A self-stabilizing algorithm for maximal matching. Inf.
Process. Lett. 43(2), 77–81 (1992)

9. Tel, G.: Maximal matching stabilizes in quadratic time. Inf. Process. Lett. 49(6),
271–272 (1994)

10. Goddard, W., Hedetniemi, S.T., Jacobs, D.P., Srimani, P.K.: Self-stabilizing pro-
tocols for maximal matching and maximal independent sets for ad hoc networks.
In: IPDPS, p. 162 (2003)

11. Manne, F., Mjelde, M., Pilard, L., Tixeuil, S.: A new self-stabilizing maximal
matching algorithm. Theoretical Computer Science (TCS) 410(14), 1336–1345
(2009)

12. Ghosh, S., Gupta, A., Hakan, M., Sriram, K., Pemmaraju, V.: Self-stabilizing dy-
namic programming algorithms on trees. In: Proceedings of the Second Workshop
on Self-Stabilizing Systems, pp. 11.1–11.15 (1995)

13. Blair, J.R.S., Manne, F.: Efficient self-stabilizing algorithms for tree network. In:
ICDCS, pp. 20–26 (2003)

14. Goddard, W., Hedetniemi, S.T., Shi, Z.: An anonymous self-stabilizing algorithm
for 1-maximal matching in trees. In: PDPTA, pp. 797–803 (2006)

0001710
Note
Dear Author,Please check the ref.no.12 , page numbers are correct are shall we need to change?Regards,meenas

118 S. Dubois, S. Tixeuil, and N. Zhu

15. Manne, F., Mjelde, M., Pilard, L., Tixeuil, S.: A self-stabilizing 2/3-approximation
algorithm for the maximum matching problem. Theoretical Computer Science
(TCS) 412(40), 5515–5526 (2011)

16. Dolev, S., Welch, J.L.: Self-stabilizing clock synchronization in the presence of
byzantine faults. J. ACM 51(5), 780–799 (2004)

17. Daliot, A., Dolev, D.: Self-stabilization of Byzantine Protocols. In: Tixeuil, S.,
Herman, T. (eds.) SSS 2005. LNCS, vol. 3764, pp. 48–67. Springer, Heidelberg
(2005)

18. Masuzawa, T., Tixeuil, S.: Stabilizing link-coloration of arbitrary networks with
unbounded byzantine faults. International Journal of Principles and Applications
of Information Science and Technology (PAIST) 1(1), 1–13 (2007)

19. Dubois, S., Masuzawa, T., Tixeuil, S.: The Impact of Topology on Byzantine Con-
tainment in Stabilization. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010.
LNCS, vol. 6343, pp. 495–509. Springer, Heidelberg (2010)

20. Dubois, S., Masuzawa, T., Tixeuil, S.: On Byzantine Containment Properties of
the min + 1 Protocol. In: Dolev, S., Cobb, J., Fischer, M., Yung, M. (eds.) SSS
2010. LNCS, vol. 6366, pp. 96–110. Springer, Heidelberg (2010)

	The Byzantine Brides Problem
	Introduction
	Model and Definitions
	State Model
	Self-stabilizing Protocols Resilient to Byzantine Faults

	Specification
	Strictly Stabilizing Maximal Marriage
	Our Protocol
	Proof of Strict Stabilization
	Optimality of Containment Radius

	Related Works
	Conclusion

