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Abstract

Routing protocols are at the core of distributed systems performances, espe-

cially in the presence of faults. A classical approach to this problem is to build

a spanning tree of the distributed system. Numerous spanning tree construc-

tion algorithms depending on the optimized metric exist (total weight, height,

distance with respect to a particular process, . . . ) both in fault-free and faulty

environments. In this paper, we aim at optimizing the diameter of the spanning

tree by constructing a minimum diameter spanning tree. We target environ-

ments subject to transient faults (i.e. faults of finite duration).

Hence, we present a self-stabilizing algorithm for the minimum diameter

spanning tree construction problem in the state model. Our protocol has the

following attractive features. It is the first algorithm for this problem that op-

erates under the unfair and distributed adversary (or daemon). In other words,

no restriction is made on the asynchronous behavior of the system. Second,

our algorithm needs only O(log n) bits of memory per process (where n is the

number of processes), that improves the previous result by a factor n. These

features are not achieved to the detriment of the convergence time, which stays

polynomial.

Keywords: Self-stabilization, Spanning tree, Center, Diameter, MDST, Unfair

daemon
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1. Introduction

Self-stabilization [19, 20, 43] is one of the most versatile techniques to sus-

tain availability, reliability, and serviceability in modern distributed systems.

After the occurrence of a catastrophic failure that placed the system compo-

nents in some arbitrary global state, self-stabilization guarantees recovery to a

correct behavior in finite time without external (i.e. human) intervention. This

approach is particularly well-suited for self-organized or autonomic distributed

systems.

In this context, one critical task of the system is to recover efficient commu-

nications. A classical way to deal with this problem is to construct a spanning

tree of the system and to route messages between processes only on this struc-

ture. Depending on the constraints required on this spanning tree (e.g. minimal

distance to a particular process, minimum flow, ...), we obtain routing protocols

that optimize different metrics.

In this paper, we focus on the minimum diameter spanning tree (MDST)

construction problem [32]. The MDST problem is a particular spanning tree

construction in which we require spanning trees to minimize their diameters.

Indeed, this approach is natural if we want to optimize the worst communication

delay between any pair of processes (since this latter is bound by the diameter

of the routing tree, that is minimal in the case of the MDST).

The contribution of this paper is to present a new self-stabilizing MDST

algorithm that operates in any asynchronous environment, and that improves

existing solutions on the memory space required per process. Namely, we de-

crease the best-known space complexity for this problem by a factor of n (where

n is the number of processes). Note that this does not come at the price of

degrading time performance.

Related works. Spanning tree construction was extensively studied in the con-

text of distributed systems either in a fault-free setting or presence of faults.

There is an extensive, literature on self-stabilizing construction of various kinds

of trees, including spanning trees (ST) [15, 39], breadth-first search (BFS)

trees [1, 12, 16, 24, 34], depth- first search (DFS) trees [14, 35], minimum-weight
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spanning trees (MST) [38, 6], shortest-path spanning trees [30, 36], minimum-

degree spanning trees [9], Steiner Tree [8], etc. A survey on self-stabilizing

distributed protocols for spanning tree construction can be found in [27].

The MDST problem is closely related to the determination of centers of the

system [31]. Indeed, a center is a process that minimizes its eccentricity (i.e. its

maximum distance to any other process of the system). Then, it is well-known

that a BFS spanning tree rooted to a center is an MDST. As many self-stabilizing

solutions to BFS spanning tree construction exist, we focus, in the following part

on the hardest part of the MDST problem: the center computation problem.

A natural way to compute the eccentricity of processes of a distributed sys-

tem (and beside, to determine its centers) is to solve first the all-pairs shortest

path (APSP) problem. This problem consists in computing, for any pair of pro-

cesses, the distance between them in the system. This problem was extensively

studied under various assumptions. For instance, [33] provides an excellent sur-

vey on recently distributed solutions to this problem and presents an almost

optimal solution in synchronous settings. Note that there also exist some ap-

proximation results for this problem, e.g. [40, 42], but they fall outside the scope

of this work since we focus on exact algorithms. In conclusion, this approach

is appealing since it allows to use well-known solutions to the APSP problem,

but it yields automatically to a O(n log n) space requirement per process (due

to the very definition of the problem).

In contrast, only a few works focused directly on the computation of cen-

ters of a distributed system to reduce space requirement as we do in this work.

In a synchronous and fault-free environment, we can cite [37] that present the

first algorithm for computing directly centers of a distributed system. In a self-

stabilizing setting, some works [2, 11, 17] described solutions that are specific

to tree topologies. The most related work to ours is from Butelle et al. [13].

The self-stabilizing distributed protocol proposed in this latter makes no as-

sumptions on the underlying topology of the system and works in asynchronous

environments. Its main drawback lies in its space complexity of O(n log n) bits

per process, that is equivalent to those of APSP-based solutions.
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Our contribution. At the best of our knowledge, the question whether it is

possible to compute centers of any distributed system in a self-stabilizing way

using only a sublinear memory per process is still open. Our main contribu-

tion is to answer positively to this question by providing a new deterministic

self-stabilizing algorithm that requires only O(log n) bits per process, which im-

proves the current results by a factor n. Moreover, our algorithm is suitable

for any asynchronous environment since we do not make any assumption on the

adversary (or daemon) and has a convergence time in O(n2) rounds (that is

comparable to existing solutions [13]).

Organization of the paper. This paper is organized as follows. In section 2, we

formalize the model used afterwards. Section 3 is devoted to the description of

our algorithm while Section 4 contains its correctness proof. Finally, we discuss

some open questions in Section 5.

2. Model and Definitions

State model. We model the system as an undirected connected graph G =

(V,E) where V is a set of processes and E is a binary relation that denotes the

ability for two processes to communicate, i.e. (u, v) ∈ E if and only if u and v

are neighbors. We consider only identified systems (i.e. there exists a unique

identifier idv for each process v taken in the set [0, nc] for some constant c).

The set of all neighbors of v, called its neighborhood, is denoted by Nv. In the

following, n denotes the number of processes of the network.

We consider the classical state model (see [20]) where communications be-

tween neighbors are modeled by direct reading of variables instead of an ex-

change of messages. Every process has a set of shared variables (henceforth,

referred to as variables). A process v can write to its own variables only, and

read its own variables and those of its neighbors. The state of a process is

defined by the current value of its variables. The state of a system (a.k.a. the

configuration) is the product of the states of all processes. We denote by Γ the

set of all configurations of the system. The algorithm of every process is a finite

set of rules. Each rule consists of: <label>:<guard>−→<statement>. The
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label of a rule is simply a name to refer the action in the text. The guard of a

rule in the algorithm of v is a boolean predicate involving variables of v and its

neighbors. The statement of a rule of v updates one or more variables of v. A

statement can be executed only if the corresponding guard is satisfied (i.e. it

evaluates to true). The process rule is then enabled, and process v is enabled in

γ ∈ Γ if and only if at least one rule is enabled for v in γ.

A step γ → γ′ is defined as an atomic execution of a non-empty subset of

enabled rules in γ that transitions the system from γ to γ′. An execution of

an algorithm A is a maximal sequence of configurations ε = γ0γ1 . . . γiγi+1 . . .

such that, ∀i ≥ 0, γi → γi+1 is a step if γi+1 exists (else γi is a terminal

configuration). Maximality means that the sequence is either finite (and no

action of A is enabled in the terminal configuration) or infinite. E is the set of

all possible executions of A. A process v is neutralized in step γi → γi+1 if v is

enabled in γi and is not enabled in γi+1, yet did not execute any rule in step

γi → γi+1.

The asynchronism of the system is modeled by an adversary (a.k.a. daemon)

that chooses, at each step, the subset of enabled processes that are allowed

to execute one of their rules during this step (we say that such processes are

activated during the step). The literature proposed a lot of daemons depending

on their characteristics (like fairness, distribution, ...), see [26] for a taxonomy

of these daemons. Note that we assume an unfair distributed daemon in this

work. This daemon is the most challenging since we made no assumption of the

subset of enabled processes chosen by the daemon at each step. We only require

this set to be non-empty if the set of enabled processes is not empty in order to

guarantee progress of the algorithm.

To compute time complexities, we use the definition of round [23]. This

definition captures the execution rate of the slowest process in any execution.

The first round of ε ∈ E , noted ε′, is the minimal prefix of ε containing the

execution of one action or the neutralization of every enabled process in the

initial configuration. Let ε′′ be the suffix of ε such that ε = ε′ε′′. The second

round of ε is the first round of ε′′, and so on.
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Self-stabilization. Let P be a problem to solve. A specification of P is a pred-

icate that is satisfied by every execution in which P is solved. We recall the

definition of self-stabilization.

Definition 1 (Self-stabilization [19]) Let P be a problem, and SP a specifi-

cation of P. An algorithm A is self-stabilizing for SP if and only if for every

configuration γ0 ∈ Γ, for every execution ε = γ0γ1 . . ., there exists a finite prefix

γ0γ1 . . . γl of ε such that every execution of A starting from γl satisfies SP .

3. Presentation of the Algorithm

In this section, we present our self-stabilizing algorithm for the computation

of centers of the distributed system, named SSCC (for Self Stabilizing Centers

Computation). We organize this section in the following way. First, we give a

global overview of our algorithm in Section 3.1. Then, Sections 3.2, 3.3, 3.4, and

3.5 are devoted to the detailed presentation of each module of our algorithm,

respectively a leader election module, a token circulation module, an eccentricity

computation module, and finally the center computation module.

3.1. High-level Description

Our algorithm is based on several layers, each of them performing a spe-

cific task. Of course, these layers operate concurrently but, for the clarity of

presentation, we present them sequentially in a “down-to-top” order.

The first layer is devoted to the construction of a rooted spanning tree. As

we have a uniform model (that is, all processes execute the same self-stabilizing

algorithm), there is no a priori distinguished process that may take the role of

the root of the system. Therefore, we need first to elect a leader. We use an

algorithm that performs such an election and constructs a spanning tree in the

same time. To our knowledge, only the algorithm proposed by [18] corresponds

to our criteria regarding daemon, memory requirement and convergence time.

Indeed, Datta et al. [18] designed a self-stabilizing algorithm to construct a BFS

tree rooted at the process of minimum identity. This algorithm self-stabilizes

even under the distributed unfair daemon, it uses O(log n) bits of memory per
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process, and it converges in O(n) rounds. Throughout the rest of the paper, we

call the BFS tree constructed by this first layer the Backbone of the system.

The second layer is a token circulation on the Backbone. Along with all

existing self-stabilizing algorithms for token circulation, we choose to slightly

adapt an algorithm of Petit and Villain [41]. The aim of this token circulation

is to synchronize the temporal multiplexing of variables of the third layer of our

algorithm that computes the eccentricity of each process. Indeed, to reduce the

space requirement of our algorithm to O(log n) bits per process, all processes

compute their eccentricities using the same variables, but one at a time and

in a sequential fashion. To avoid conflicts, we manage this mutual exclusion

by a token circulation. In more details, we distinguish, for each process, the

forward token circulation (that is, the process gets the token from its parent in

the Backbone) and the backward token circulations (that is, the process gets

back the token from one of its children in the Backbone).

A process starts the execution of the third layer of our algorithm (that is,

computation of process eccentricity) only on the forward token circulation. On a

backward token circulation, the process sends the token to the following process

in the Backbone in a DFS order, without performing any extra task. A process

v computes its eccentricity in the following way. When it receives the forward

token, v starts a self-stabilizing BFS tree construction rooted at itself. We

denote this BFS by BFS(v). Once the construction of BFS(v) is done, the leaves

of this tree start a feedback phase that consists in propagating back to v the

maximum depth of a process in BFS(v) (which is exactly the eccentricity of v).

Once process v has collected its eccentricity, it releases the token to the following

process in the Backbone.

Finally, the fourth layer aim is the center determination. The minimum

eccentricity (computed for each process by the third layer) is collected all the

time from the leaves of the Backbone to its root. Then, the root propagates

this minimum eccentricity to all processes along the Backbone. The processes

with the minimum eccentricity become centers. Also, among the centers, we

elect the one with the highest identity to be the root of the minimum diameter

spanning tree.
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Figure 1: Illustration of the variable next of the token circulation layer. The gray
process is the root of the Backbone. D stands for the value done.

We claim that each layer of this algorithm stack is self-stabilizing and that

their composition self-stabilizes to a minimum diameter spanning tree of the

system under the distributed unfair daemon within O(n2) rounds. As each

layer of our algorithm needs at most O(log n) bits per process, we obtain the

desired space complexity.

3.2. Leader Election and Spanning Tree Construction

The first layer of our algorithm executes a self-stabilizing algorithm from

Datta et al. [18] that elects the process of smallest identity in the system and

constructs a BFS spanning tree rooted at this leader. This algorithm works

under the distributed unfair daemon, uses O(log n) bits of memory per process,

and stabilizes within O(n) rounds.

Since we use this algorithm as a black box, we do not need to present it for-

mally here. The interested reader is referred to the original paper [18]. Remem-

ber that we call Backbone the BFS tree built by this layer of our algorithm. For

the remainder of the presentation, we denote the parent of any process v in the

Backbone by pv, the set of children of v in the Backbone by child(v), and the set

of neighbors of v in the Backbone by NBackbone(v). That is, if the Backbone is de-

fined by the 1-factor {(v, pv), v ∈ V }, then we have child(v) = {u ∈ V : pu = v}
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and NBackbone(v) = child(v) ∪ {pv}. We also define the predicate BRoot(v) over

variables of this layer. This predicate is true if and only if the process v is the

root of the Backbone.

It is important to note that the construction of the backbone has higher

priority than the other layers of our algorithm (that is, token circulation, eccen-

tricity computation, and centers determination). In other words, if a process

v has a neighbor with a different root in the Backbone or a neighbor with an

incoherent distance in the Backbone, v cannot execute a rule related to any

other layer. This priority is needed for our algorithm to operate under an unfair

daemon.

3.3. Token Circulation

The second layer of our algorithm is a slight adaptation of a self-stabilizing

token circulation algorithm by Petit and Villain [41]. The (eventually unique)

token circulates infinitely often over the Backbone in a DFS order. This al-

gorithm operates under the distributed unfair daemon, it uses O(log n) bits of

memory per process and converges in O(n) rounds.

This algorithm uses only one variable for each process v: nextv ∈ {⊥, done, Nv}.

This variable stores the state of the process on the current token circulation.

The value ⊥ means that the process has not already been visited by the to-

ken during the current circulation. When nextv points to a child of v in the

Backbone, that means that v has been already visited during the current circu-

lation by the token and that v sent the token to its child pointed by nextv. The

value done means that the process and all its children in the Backbone have

already been visited by the token during the current circulation. In other words,

the token is held by the first process v with nextv = ⊥ along the path issued

from the root of the Backbone following (non-⊥ and non-done) next variables.

Refer to Figure 1 for an illustration. We define a total order � over the values of

variable next by extending the natural order > over identities with the following

assumption: for any process v, we have done � idv � ⊥.

The formal presentation of this layer is provided in Algorithm 1, the presen-

tation of functions and predicates used by this algorithm is postponed in the
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detailed description (see subsection 3.3.1). This algorithm consists of two rules.

The first one, RErToken, is used to perform the convergence towards a unique

token and the reset of the next variables at the completion of a token circulation

while the second one, RBackward, performs the backward circulation of the token.

Note that the forward circulation rule is left to the next layer of our protocol

(see below for more explanations on the relationship between these two layers).

Algorithm 1 Token circulation for process v

RErToken : ErValues(v) ∨
(
¬BRoot(v) ∧ (nextpv

6= v) ∧ (nextv ∈ child(v) ∪ {done})
)

→ nextv := ⊥;

RBackward : ¬ErValues(v) ∧ (BackNd(v) ∨ BackR(v)) ∧ (RBFSNext(v) 6= id(Next(v)))
→ nextv := Next(v);

We modify the original algorithm of [41] in the following way. When a

process v receives the token, this latter is blocked by v until the third layer

of our protocol computes the eccentricity of this process. This is done by the

construction of a BFS tree rooted at v and by the gathering of the maximum

distance between v and any other process in the system (refer to Section 3.4 for

more details on this layer). This is the reason why the forward token circulation

is not performed by a rule of Algorithm 1 but by the rule REndBFS in Algorithm 2

(that described the third layer of our algorithm). Communication between these

two layers on the state of the token is performed using the predicate TokenD(v).

When the token circulation layer gives the token to process v, this predicate

becomes true, that allows the eccentricity computation layer to start. Once

the eccentricity of process v is computed, this latter updates nextv (see REndBFS

in Algorithm 2) that perform the forward token circulation (exactly as in the

original algorithm of [41]).

We also slightly modify the backward token circulation to ensure the con-

vergence of the eccentricity computation layer. If the process v wants to send

the token in a backward circulation to a neighbor u, v has to wait in the case

where u is currently computing its own eccentricity (this situation is possible if

u wrongly believes to have the token). We perform this waiting using a vari-
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able RBFSu dedicated to the BFS construction (see Section 3.4 for the definition

of this variable). This variable stores the identity of the root of the BFS tree

construction in which u is currently involved. Then, v postpones its backward

circulation to u until RBFSu is equal to u. If u wrongly believes to have the token,

it can detect it locally and to correct this error within a finite time (see Section

3.4), that ensures us that the token is never infinitely blocked by v.

The composition between the backbone construction layer and the token

circulation layer of our algorithm must withstand the unfairness of the daemon.

Indeed, we have to ensure that the daemon cannot choose exclusively processes

enabled only for the token circulation (recall that we assume that the backbone

construction has priority over the token circulation) since this may lead to a

starvation of the backbone construction. To deal with this issue, we choose to

block the token circulation at process v if v has a neighbor that do not belong to

the backbone or if v detects an inconsistency between distances in the backbone

(refer to the definition and the use of predicate ErValues). Since, before the

stabilization of the backbone, the overlay structure induced by variables pv

for all v ∈ V may be composed only of subtrees or cycles, we can ensure the

starvation-freedom of the backbone construction. Indeed, the daemon cannot

activate infinitely the token circulation rules of processes in a given subtree

because at least one of them has a neighbor that does not belong to the same

subtree, which blocks the token at this process. Similarly, the daemon cannot

activate infinitely the token circulation rules of processes in a given cycle because

the token detects an inconsistency with distances in the backbone and then gives

the priority to the backbone construction.

3.3.1. Detailed description of the Token Circulation

We start by the detailed description of the rule rule RErToken. Remember that

the rule RErToken is used to perform the convergence towards a unique token but

also to reset the next variables to ⊥ at the end of each token circulation.

RErToken : ErValues(v) ∨
(
¬BRoot(v) ∧ (nextpv

6= v)∧

(nextv ∈ child(v) ∪ {done})
)
−→ nextv := ⊥;

(1)
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Figure 2: Token circulation

This rule is dedicated to the detection of an error by process v. When an

error is detected by v, it deletes its variable nextv. The predicate ErValues(v)

is dedicated to detecting an error in process v. The value ⊥ means that the

process has not already been visited by the token. When nextv points to a

children of v in the Backbone, that means that v has been visited by the token

and that v sent the token to its child pointed by nextv. The value done means

that the process and all its children in the Backbone have already been visited

by the token. So, if the token is not equal of one of these variables (e.g. towards

a neighbor of v that do not belong to child(v)) then an error is detected.

ErValues(v) ≡ nextv 6∈ child(v) ∪ {⊥, done} (2)

The second part of the guard of rule RErToken is dedicated to detecting an other

inconsistency of the variables dedicated to the token circulation. Indeed, if a

process v is not the root of the Backbone and its variable nextv points toward

one of its children that mean the token is kept by one of these descendants,

so its parent must point toward itself (see Figure 2(b)). Finally, this rule also

detects the case where the token already explores the whole subtree rooted to

the parent of the process and then set its next variable to ⊥ to prepare the next

token circulation. Indeed, in this case, we have: nextv = done and nextpv
= done

and the execution of the rule reset nextv to ⊥.

The rule RBackward performs the backward circulation of the token. Remem-
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ber that the forward circulation rule is left to the next layer of our protocol.

RBackward : ¬ErValues(v) ∧ (BackNd(v) ∨ BackR(v))∧

(RBFSNext(v) 6= id(Next(v))) −→ nextv := Next(v);

(3)

The rule is activated if and only if the process v is not in error (see predi-

cate ¬ErValues(v)). To explain this rule, we need to explain first the function

Next(v). This function returns the next neighbor of v to which send the token

(in a round-robin fashion on identities) or done is the whole subtree rooted at

the process was already explored. Note that this function also allows the root

of the tree to initiate the reset of next variables to ⊥ when it locally detects the

termination of a token circulation.

Next(v) =
u if ∃u ∈ child(v), idu = min{idw | w ∈ child(v) ∧ (idw � nextv)}

⊥ if BRoot(v) ∧ nextv ∈ child(v) ∧ (∀u ∈ child(v), nextv � idu ∨ nextv = idu)

done otherwise

(4)

The predicates BackR(v) and BackNd(v) used in the guard of RBackward (v

denotes respectively the root of the Backbone and another process) are basically

used to detect when the token has finished its circulation in the subtree rooted

at the process currently pointed by nextv (indicated by the done value).

BackR(v) ≡ BRoot(v) ∧ (nextv = u) ∧ (nextu = done) ∧ PermR(v) (5)

BackNd(v)≡ ¬BRoot(v) ∧ (nextpv
= v) ∧ (nextv ∈ child(v))∧

(nextNext(v) = done) ∧ PermNd(v)

(6)

These predicates make respectively use of PermR(v) and PermNd(v). These

latter are used to ensure that the process u returned by the application of the

function Next(v) satisfies nextu = ⊥ (to avoid the sending of the token on a

subtree in an illegal state).

PermR(v) ≡ (Next(v) = ⊥) ∨ (nextNext(v) = ⊥) (7)
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PermNd(v) ≡ (Next(v) = done) ∨ (nextNext(v) = ⊥) (8)

The communication between the token circulation and the eccentricity com-

putation is performed using the predicate TokenD(v). When the token circula-

tion layer gives the token to process v, this predicate becomes true, that allows

the eccentricity computation layer to start. Once the eccentricity of process v is

computed, this latter updates nextv that performs the forward token circulation

(exactly as in the original algorithm of [41]).

TokenD(v) ≡ (nextv = ⊥)∧
(
(BRoot(v) ∧ PermR(v))∨

(¬BRoot(v) ∧ (nextpv
= v) ∧ PermNd(v)

) (9)

3.4. Eccentricity Computation

The third layer of our algorithm is devoted to the computation of the ec-

centricity of each process. Recall that the token circulation performed by the

second layer eventually ensures that at most one process computes its eccentric-

ity at a time (that allows us to re-use the same variables). Roughly speaking,

the eccentricity of each process is computed as follows. First, the process starts

the construction of a BFS spanning tree rooted at itself. Once done, we gather

the maximum distance in this tree (namely, the eccentricity of its root) from

its leaves. Then, the process obtains its eccentricity and releases the token.

This algorithm works under the distributed unfair daemon, uses O(log n) bits

of memory per process, and stabilizes within O(n) rounds (for the computation

of the eccentricity of one process).

For the clarity of the presentation, let us denote by r a process that ob-

tains the token at a given time (that is, TokenD(r)=true from this time up

to the release of the token by this process). Then, our algorithm starts the

construction of BFS(r) (the BFS spanning tree rooted at r). The first step is

to inform all processes of the identity of r in order to synchronize their eccen-

tricity computation algorithms. We do that by broadcasting the identity of r

along the Backbone (we perform this broadcast by re-orienting temporarily the

Backbone towards r) Then, we use a classical BFS spanning tree construction

borrowed from [34] that consists, for each process, to choose as its parent in the
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tree the process among its neighbors that proposes the smallest distance to the

root (obviously, the process updates then its own distance to be consistent with

the one of its new parent).

The delicate part is to collect the maximum distance to the root after the

stabilization of BFS(r) (and not earlier). As we already said, this gathering is

made by a wave from the leaves to the root of BFS(r). Each leave of BFS(r) prop-

agates to its parent its own eccentricity value while other processes propagate

to their parent the maximum between the eccentricity values of their children

in BFS(r). Due to the asynchrony of the system, some difficulties may appear

during this process. Indeed, if we collect an eccentricity value in a branch of

BFS(r) whereas this branch is not yet stabilized (that is, some processes may

still join it), we can obtain a wrong eccentricity for the process r. In this case,

r may release the token earlier than expected. To prevent that, we manage

the gathering of the maximum distance in the following way. When a process

v changes its distance in BFS(r), this process “cleans” its eccentricity variable

(that is, it erases the current value of this variable and replaces it with a specific

value). Then, all processes on the path of BFS(r) between r and v clean their

eccentricity variables in an upward process. In other words, we maintain at

least one path in BFS(r) in which all the eccentricity variables are cleaned until

BFS(r) is stabilized. The existence of this path ensures us that r does not obtain

its eccentricity and release the token precociously.

We are now in measure to present formally our eccentricity computation

algorithm. First, recall that, in order to broadcast the identity of the process

that the algorithm currently computes the eccentricity, we need to re-orientate

the Backbone to root it at the process r with TokenD(r)=true. We call this ori-

ented tree Backbone(r). For this purpose, we introduce the function p next(v)

for each process v. This function returns the identity of the neighbor of v that

belongs to the path of Backbone from v to r. More precisely, p next is defined
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as follow:

p next(v) =


pv if TokenD(v) = false ∧ nextv ∈ {⊥, done}

⊥ if TokenD(v) = true

nextv otherwise

(10)

We define also the function chNext(v) that returns the set of children of v

in Backbone(r), i.e. neighbors u of v satisfying p next(u) = v.

Our algorithm uses the following variables for each process v in order to

construct BFS(r) and to compute the eccentricity of r:

− Eccv ∈ N ∪ {⊥} is the eccentricity of process v;

− RBFSv ∈ N is the identity of the root in BFS(r);

− PBFSv ∈ N ∪ {⊥} is the identity of the parent of v in BFS(r);

− dBFSv ∈ N ∪ {⊥,∞} is the distance between v and the root in BFS(r);

− DBFSv ∈ N∪{⊥, ↓, ↑} is the maximum distance between the root r and the

farthest leaf in the sub-tree of v in BFS(r);

Now, we can present rules of the third layer of our algorithm. These rules

make use of some predicates and functions whose descriptions are postponed

in subsection 3.4.1. For the clarity of presentation, we split the rules of our

algorithm in two sets. The first one (refer to Algorithm 2) contains rules enabled

for a process that holds the token (that is, a process v such that TokenD(v) =

true) while the second one (refer to Algorithm 3) described rules for a process

that does not hold the token

We discuss first of rules enabled only when the process holds the token

presented in Algorithm 2. Recall that these rules are applied only when the

process receives the token in a forward circulation (refer to Section 3.3). Once

the process r received the token, its predicate TokenD(r) becomes true. In this

state, the process r can apply only three rules.

The rule RStartBFS starts the computation of BFS(r) since r takes a state in-

dicating that it is the root of the current BFS spanning tree. The rule RCleanEcc

cleans the eccentricity variable of r when needed (that is, after a fake compu-
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Algorithm 2 Computation of BFS and eccentricity for a process v such that
TokenD(v) = true

RStartBFS : ¬RootBFS(v)
−→ (RBFSv, dBFSv,DBFSv) := (idv, 0,⊥)

RCleanEcc(v) : RootBFS(v) ∧ SameBFS(v) ∧ (Down(v) ∨ Bot(v))
−→ DBFSv := DCE(v)

REndBFS : RootBFS(v) ∧ SameBFS(v) ∧ ChN(v)
−→ Eccv := Dis(v); nextv := Next(v);

MinEUPv := MinEcc(v);

tation of eccentricity due to the asynchrony of the system). Finally, the rule

REndBFS is executed when the leaves-to-root propagation of the eccentricity is

over. This rule computes the eccentricity of r, releases the token by updating

the variable nextr of the token circulation layer (see Section 3.3), and updates

one variable for communicating the new eccentricity to the centers determina-

tion layer (see Section 3.5 for more details on the use of this variable).

We then focus on rules enabled when the process does not hold the token

presented in Algorithm 3. The first rule RTree is dedicated to flood the iden-

tity of the root r of the current BFS spanning tree along the Backbone. This

flooding is possible since we re-orientate the Backbone (refer to the definition of

p next above). In the same time, the rule RTree also detects some local errors.

As an example, the variable DBFSv of a process (used to collect the eccentricity

of r) must not have an integer value if one of the children (in BFS(r)) of this

process is not in the same case. The rule RBFS performs the BFS construction in

itself. Finally, the rule REcc deals with the tricky phase of eccentricity leaves-to-

root gathering with the cleaning mechanism explained above. These rules are

implemented with the help of predicates and functions defined and detailed in

subsection 3.4.1.

3.4.1. Detailed description of eccentricity computation

In this section, we detail the rules of Algorithms 2 and 3. The rule RStartBFS

is executed only by the process v with TokenD(v) = true. The process v starts
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Algorithm 3 Computation of BFS and eccentricity for process v with
TokenD(v) = false

RTree : ¬GoodBFS(v)
−→ (RBFSv,PBFSv, dBFSv,DBFSv) := (RBFSp next(v),⊥,∞,⊥)

RBFS : GoodBFS(v) ∧ SameBFS(v) ∧ (Best(v) 6= ⊥)
−→ (PBFSv, dBFSv,DBFSv) := (Best(v), dBFSBest(v) + 1,DBFS(v));

REcc : GoodBFS(v) ∧ SameBFS(v) ∧ (∀u ∈ Nv : dBFSu 6=∞)
∧(Best(v) = ⊥) ∧ (DBFSv 6= Dis(v))

−→ DBFSv := Dis(v)

the computation of BFS(v), the variables dedicated to the BFS computation take

values corresponding to the root. Remember that RBFSv stores the identity of the

root in the current BFS, dBFSv is the distance from the root to v in the current

BFS and DBFSv is used to compute the eccentricity of the root of the current

BFS. To achieve that, the process v checks if the root of the BFS is itself, if it

has not a parent, and if its distance is equal to zero with the following predicate.

RootBFS(v) ≡ (RBFSv,PBFSv, dBFSv) = (id(v),⊥, 0) (11)

If not, the rule RStartBFS assigns the variables RBFSv,PBFSv, dBFSv in this way.

RStartBFS : ¬RootBFS(v) −→ (RBFSv, dBFSv,DBFSv) := (idv, 0,⊥) (12)

As previously said, the rule RTree allows the flooding of the identity of the

root r of the current BFS spanning tree along the Backbone and the detection

of some local errors. To achieve the computation of the current BFS, the first

step is to clean all the variables relative to the previous BFS.

RTree : ¬GoodBFS(v) −→ (RBFSv,PBFSv, dBFSv,DBFSv) := (RBFSp next(v),⊥,∞,⊥)

(13)

The predicate GoodBFS(v) checks if the root BFS is the same as its neighbors

in the Backbone that leads to the token. In others words, RBFSv must be equals
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to the identity of the process holding the token.

GoodBFS(v) ≡ (RBFSv = RBFSp nextv ) (14)

To compute the current BFS and the eccentricity, all processes must consider

as root of the BFS the process that keep the token. Hence, all other rules are

enabled only when GoodBFS(v) is satisifed. The rule RBFS performs the BFS

construction in itself.

RBFS : GoodBFS(v) ∧ SameBFS(v) ∧ (Best(v) 6= ⊥)

−→ (PBFSv, dBFSv,DBFSv) := (Best(v), dBFSBest(v) + 1,DBFS(v));

(15)

DBFS(v) =

 ↑ if DBFSv ∈ N

↓ otherwise
(16)

The predicate SameBFS(v) is satisfied when all the neighbors of v are in the

same BFS tree (i.e. when all its neighbors have the same root than v).

SameBFS(v) ≡ (∀u ∈ Nv, (RBFSu = RBFSv)) (17)

The rule RBFS makes use of the function Best(v) that returns a neighbor of

v with a better distance than it if such a neighbor exists, ⊥ otherwise.

Best(v) =


p = min{id(u) | dBFSu = min{dBFSw | w ∈ Nv}}

if
(
(p 6= PBFSv) ∨ (dBFSv 6= dBFSp + 1)

)
⊥ otherwise

(18)

If the process v has a better parent p in the current BFS, v changes its variables

relative to the BFS according to p by executing the rule RBFS.

The rule REcc deals with the tricky phase of eccentricity leaves-to-root gath-
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ering.

REcc : GoodBFS(v) ∧ SameBFS(v) ∧ (∀u ∈ Nv : dBFSu 6=∞)

∧(Best(v) = ⊥) ∧ (DBFSv 6= Dis(v))

−→ DBFSv := Dis(v)

(19)

Due to the asynchrony of the system, the process v can store a fake eccen-

tricity. Let us first describe how our algorithm manage this from a global point

of view. We add three values to DBFSv: the values ⊥, ↑, and ↓. The value ⊥

is dedicated to resetting the variable DBFSv in a root-to-leave wave either when

the root of the BFS changes or when a fake eccentricity is detected. In our algo-

rithm, a process can compute its eccentricity only when its eccentricity variable

and the ones of its ancestors have the value ↓ and all its descendants have al-

ready computed their eccentricities (inducing a leave-to-root computation of the

eccentricities). Hence, the reset wave is followed by a root-to-leave wave that

transitions the DBFSv variable forms the value ⊥ to ↓. When a process v detects

an inconsistency in eccentricity computation, it puts its variable DBFSv to ↑.

This value is then propagated to the whole system from neighbors to neighbors,

suspending the eccentricity computation. When all the neighbors of the root

reach the value ↑, the root restarts the reset root-to-leave wave (i.e propagate

the value ⊥).

We are now in measure to present in more details predicates and functions

used to implement this mechanism. The eccentricity of a process v is the farther

distance from it to its descendants. Then, we compute these distances the leaves

of the BFS tree to its root. When a process v is a leaf or all its children in the

current BFS have computed their farther distances, the process v can compute

its farther distance DBFSv. The function Ch bfs(v) returns the set of children of

v in the current BFS (i.e. the neighbors u with the same BFS root such that

the variable parent of u points to v and the distance of u is the distance of v

plus one).
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Ch bfs(v) = {u | u ∈ Nv ∧ (RBFSu,PBFSu, dBFSu) = (RBFSv, v, dBFSv + 1)} (20)

The farther distance of process v is computed thanks to the function MaxD(v)

that returns the largest value between its own current distance and the farther

distance provided by its children in the current BFS.

MaxD(v) = max{dBFSv,max{DBFSu | u ∈ Ch bfs(v)}} (21)

We present now predicates designed to check inconsistencies in eccentricity

computation. To be considered coherent, a process v must satisfies the follow-

ing set of properties: (i) all its children in the current BFS tree have already

computed their farther distance, (ii) its variable DBFSv must be equal to the

farther distance of the current root (computed by the predicate MaxD(v)), (iii)

either its parent has not yet computed its farther distance (DBFSPBFSv
=↓) or its

father has already computed its own farther distance (DBFSPBFSv
∈ N), and (iv)

its variable DBFSv is coherent with DBFSPBFSv
, (the one of its parent in the current

BFS). The three first properties are gathered in the CohDE(v) predicate while

the fourth one is captured by the predicate CohDN̄ (v).

CohDE(v) ≡ (DBFSv ∈ N) ∧ (dBFSv = min{dBFSu : ∀u ∈ Nv}+ 1)

∧(∀u ∈ Ch bfs(v),DBFSu ∈ N) ∧ (DBFSv = MaxD(v)) ∧ (DBFSPBFSv
∈ {↓,N})

(22)

CohDN̄ (v) ≡ (DBFSPBFSv
,DBFSv) ∈ {(⊥,⊥), (⊥, ↑), (↓,⊥), (↑, ↑), (↓, ↓)} (23)

As a consequence, a process v is considered coherent (notion described by

the predicate CohD(v)) if it satisfies both CohDN̄ (v) and CohDE(v).

CohD(v) ≡ (CohDN̄ (v) ∧ CohDE(v)) (24)

A process is allowed to compute its eccentricity only when all its neigh-

bors have computed their distance from the root in BFS. The predicate Gd(v)
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formalizes this configuration.

Gd(v) ≡ (∀u ∈ N(v), dBFSu ∈ {dBFSv − 1, dBFSv, dBFSv + 1}) (25)

All these predicates and functions allow us to write the Dis(v) function that

is the heart of all waves used by the eccentricity computation. This function

returns to the process v the new value of its DBFSv variable depending on the

current wave.

Dis(v) =



↑ if ¬CohD(v) ∨
(
(DBFSv 6= ⊥) ∧ CohD(v)

∧(∃u ∈ Nv | DBFSu =↑)
)

⊥ if CohD(v) ∧ (DBFSPBFSv
,DBFSv) = (⊥, ↑)

∧(∀u ∈ Ch bfs(v),DBFSu =↑)

↓ if CohD(v) ∧ (DBFSv = ⊥) ∧ (∀u ∈ Ch bfs(v),DBFSu = ⊥)∧

(DBFSPBFSv
=↓)

MaxD(v) if CohD(v) ∧ (DBFSv =↓) ∧ (∀u ∈ Ch bfs(v),DBFSu ∈ N)

∧Gd(v)

(26)

The rule REcc is responsible for the propagation of the different waves but

does not handle their initialization at the root r of the BFS. This is the aim

of the rule RCleanEcc. There are two types of waves to initialize: the ⊥ wave

and the ↓ wave. They are respectively started when all neighbors v of r satisfy

DBFSv =↑ (see predicate Down) and when all neighbors v of r satisfy DBFSv = ⊥

(see predicate Bot).

Down(v) ≡ (DBFSv =↓) ∧ (∀u ∈ Nv,DBFSu =↑) (27)

Bot(v) ≡ (DBFSv = ⊥) ∧ (∀u ∈ Nv,DBFSu = ⊥) (28)

The execution of the rule RCleanEcc initiates a wave in both cases and the

type of this wave is determined by the function DCE(v) above.

DCE(v) =

 ⊥ if Down(v) = true

↓ if Bot(v) = true
(29)
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RCleanEcc : RootBFS(v) ∧ SameBFS(v) ∧ (Down(v) ∨ Bot(v))

−→ DBFSv := DCE(v)
(30)

Finally, the rule REndBFS is executed by the root of the BFS when the leaves-

to-root propagation of the eccentricity is over. This termination is checked by

the predicate ChN(v). This predicate is satisfied once all the children of the

root have computed their farther distance.

ChN(v) ≡ (∀u ∈ Nv,DBFSu ∈ N) (31)

The execution of this rule computes the eccentricity of r (with the help of the

function Dis(v)), releases the token by updating the variable nextr of the token

circulation layer (see Section 3.3), and updates one variable for communicating

the new eccentricity to the centers determination layer (see Section 3.5 for more

details on the use of the variable MinEcc(v)).

REndBFS : RootBFS(v) ∧ SameBFS(v) ∧ ChN(v)

−→ Eccv := Dis(v); nextv := Next(v);

MinEUPv := MinEcc(v);

(32)

3.5. Centers Computation

The fourth and last layer of our algorithm aims to identify the centers of the

system. As each process computes its own eccentricity with the three first layers

of our algorithm, it remains only to compute the minimal one. In this goal, we

use the Backbone (oriented towards the leader elected by the first layer). First,

the root gathers the minimal eccentricity in the system in a leaves-to-root wave.

Then, the root floods the Backbone with it in a root-to-leaves wave containing

this minimum eccentricity. This algorithm works under the distributed unfair

daemon, uses O(log n) bits of memory per process, and stabilizes within O(n)

rounds.

This layer makes use of the following variables. The variable Eccv (main-

tained by the third layer, refer to Section 3.4) stores the eccentricity of the
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process v. The variable MinEUPv is used to collect the minimal eccentricity in

the leave-to-root wave while the variable MinEv is used to store the minimal

eccentricity of the system and to broadcast it in the root-to-leaves wave. More-

over, we add a variable Centerv that represents the center of the graph, Centerv

is true if and only if MinEv = (Eccv, idv), otherwise Centerv is false. We define

the following function:

MinEcc(v) = min{(Eccv, idv),min{MinEUPu | u ∈ child(v)}}

note that MinEcc(v) returns the minimum eccentricity and among the nodes

with the minimum eccentricity the one with minimum identity.

Algorithm 4 Computation of the minimum eccentricity for process v

RMinEUp : MinEUPv 6= MinEcc(v) −→ MinEUPv := MinEcc(v);

RMinERoot : BRoot(v) ∧ (MinEv 6= MinEUPv) −→ MinEv := MinEUPv;
Centerv := IsCenter(v);

RMinEDown : ¬BRoot(v) ∧ (MinEv 6= MinEpv
)) −→ MinEv := MinEpv

;
Centerv := IsCenter(v);

The function IsCenter(v) returns true if the node v is the center of the

graph, false otherwise. Remember that, among the centers node we choose the

one with the minimum identity.

IsCenter(v) =

 true if MinEv = (Eccv, idv)

false otherwise
(33)

Formal presentation of this algorithm is done in Algorithm 4. The rule

RMinEUp manages the leaves-to-root gathering of minimal eccentricity while rules

RMinERoot and RMinEDown ensures its root-to-leaves propagation (respectively for

the root of Backbone and for other processes).

Once this algorithm stabilizes, each process knows its eccentricity (thanks to

the third layer) and the minimal eccentricity in the system (thanks to the fourth
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layer). Then, it is trivial for a process to decide if it is a center or not. As we

assume that processes have unique identifiers, it is easy to elect the center with

the minimal identity in the case where the system admits more than one center

in order to construct a single minimum diameter spanning tree (note that this

phase requires O(log n) bits of memory per process and stabilizes within O(n)

rounds).

In conclusion, the composition of these four layers provides us a self-stabilizing

algorithm for centers computation or minimum diameter spanning tree construc-

tion under the distributed unfair daemon that needs O(log n) bits of memory

per process and stabilizes within O(n) rounds.

4. Proof of the Algorithm

As our algorithm is composed of several layers, one would be tempted to

use some existing generic tool to ease its proof. Unfortunately, none of the

existing methods of self-stabilizing algorithms composition is suitable in our

case. Indeed, we cannot use methods that restrict the power of the adversary

since we consider a fully asynchronous environment (e.g. the fair composition of

[21, 22] that assumes a central and/or fair daemon or the parallel composition

of [25] that works only with a fair daemon). Some other methods are relevant

only to specific composition that are not used by our algorithm (e.g. the cross-

over composition of [4] —composition of a daemon transformer with another

algorithm—, the dependency graph composition of [3] —every composed algo-

rithm must converge to a fixed point—, or the adaptive composition of [28] —a

variable is used to select only one of the composed algorithms—). Finally, the

more relevant methods (e.g. the module composition of [44] or the convergence

stairs composition of [29]) are not suitable because they require each layer of

the algorithm to converge to a closed predicate, that is not the case of some

layers of our algorithm (e.g. the token circulation layer modifies the root of the

BFS tree each time this latter is computed by the above layer, hence violating

the predicate to which the BFS tree layer converges).

In consequence, we have to come back to a custom proof for our algorithm
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using classical approaches. In particular, we use the property that, for a self-

stabilizing algorithm, the set of legitimate configurations (i.e. configurations

satisfying the specification of the problem) is an attractor of Γ for this algorithm.

Given two sets of configurations Γ2 ⊆ Γ1 ⊆ Γ, we say that Γ2 is an attractor

of Γ1 for algorithm A (denoted by Γ1 B Γ2) if any execution of A starting from

any configuration of Γ1 reaches in a finite time a configuration of Γ2 and if Γ2

is closed under A.

Some of our proofs are performed by exhibiting potential functions. A po-

tential function is a bounded function that associates to each configuration of

the system value that strictly decreases at each application of a rule by the

algorithm. Hence, if the minimal value of the function is associated with a le-

gitimate configuration of the system, the existence of such a function is sufficient

to prove the convergence of the algorithm. The difficulty is obviously to exhibit

the potential function that captures precisely the behavior of the self-stabilizing

algorithm. Regarding the BFS spanning tree construction algorithm we use

here, [34] proposed a potential function but this one is not suitable in our case

(because of a too weak characterization of algorithm’s effects on configurations

and of the use of a a priori knowledge of processes). It is why we propose a

more involved potential function for our algorithm to prove the lemma 7.

Theorem 1 The algorithm SSCC is a self-stabilizing algorithm that computes

one of the center of the system under the distributed unfair daemon. It uses

O(log n) bits of memory per process and stabilizes within O(n2) rounds.

Definition 2 Blocking path: Let v be the process with one token. Define a

blocking path of v as a maximal length path in BFS(v) from the root v of the

BFS(v) to another process element of BFS(v) such that every process u on this

path satisfies DBFSu 6∈ N.

Note that, the rules REndBFS, RCleanEcc, RBFS and REcc need the predicate SameBFS

to true. The predicate SameBFS(v) is true for v if v and all these neighbors in

G share the same root for the BFS (variable RBFS), only the rule RTree modify

this variable. Moreover, when a process v executes the rule RTree, it puts its
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variable DBFSv at ⊥. As a consequence if v was in a blocking path it maintains

the blocking path and if v was not in a blocking path but its parent is in a

blocking path then v reaches the blocking path. Let γ be a configuration, we

introduce a potential function denoted by λ as follow Γ × V × V → N be the

function defined by:

λ(γ, r, v) =


1 if v belongs to a blocking path of r in γ

1 if v /∈ SameBFS(r) and v ∈ Nr in γ

0 otherwise

Now, we define our potential function Λ: Γ→ N as follows:

Λ(γ, r) =
∑
v∈V

λ(γ, r, v)

Claim 1 Λ(γ, r) > 0 implies the token is blocked in r.

Proof of the claim. The token is released when the process r executes the

rule REndBFS(32), but this rule is activatable only if all the neighbors of r are in

BFS(r) (see predicate SameBFS(v)(17)) and all the children of r in the BFS(r)

have already compute the distance maximum in their subtree (see predicate

ChN(v) (31) in rule REndBFS). If it is not the case then the token is blocked and

by definition of Λ we have λ(γ, r, v) = 1 so Λ(γ, r) > 0. �

Let denoted by T a spanning tree shaped by the variable pv (namely a sub-

spanning tree or the Backbone). Let B a set of enabled process that the sched-

uler does not want to execute. The process r is the root of T, either a process

with a blocked token or a process in B. Let us define ΓTree as the set of config-

urations such that for all γ ∈ ΓTree we have Λ(γ, r) > 0 or r ∈ B and the rule

RTree(13) is enabled by no process.

Claim 2 If Λ(γ, r) > 0 then the activation of RTree by any process v ∈ V in

configuration γ gives a configuration γ′ such that Λ(γ′, r) = Λ(γ, r).

Proof of the claim. Let us consider a configuration γ with Λ(γ, r) > 0 and

A the set of process activated by the rule RTree(13). More precisely, the rule
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RTree(13) is enabled when the predicate GoodBFS(v) (14) is not true, that

means RBFSv 6= RBFSp nextv . We distinguish two cases:

1. Let us consider, v be a neighbor of r, if RTree is activatable by v that

means v /∈ SameBFS(r) so λ(γ, r, v) = 1, the execution of rule RTree by v

in γ gives DBFSv = ⊥ in γ′, so that maintain λ(γ′, r, v) = 1.

2. Let us consider now, v be not a neighbor of r, if RTree is activatable

by v that means RBFSv 6= RBFSp nextv so either RBFSp nextv 6= r as a conse-

quence λ(γ, r, v) = λ(γ′, r, v) = 0, or RBFSp nextv = r so λ(γ, r, v) = 0 and

λ(γ′, r, v) = 0 as the execution of rule RTree by v in γ gives PBFSv = ⊥ (v

is not in BFS(v) in γ′ since v has not parent) .

�

We denote by p(r, v) the path in spanning tree T from the root r of T to v

and by d(v) the distance between r and v in T. Let ξ be the following potential

function Γ× V × V → N be the function defined by:

ξ(γ, r, v) =
∑

u∈p(r,v)∧RBFSu 6=RBFSp next(u)

(n− d(u))

And Ξ the potential function: Γ→ N as follows:

Ξ(γ, r) =
∑
v∈V

ξ(γ, r, v)

Note that, Ξ(γ, r) = 0 means RTree is enabled by no process and ∀v ∈ V we

have RBFSv = r.

Claim 3 Starting from a configuration γ ∈ Γ with Λ(γ, r) > 0 or r ∈ B the

number of activation of RTree is bounded.

Proof of the claim. The rule RTree is based on the predicate GoodBFS (14),

if its predicate it false (RBFSv 6= RBFSp nextv ) then the rule RTree is enabled for

the process v. The variable p nextv is modified by the circulation of the Token.

So in a spanning tree without token or with blocked the token this variable
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never changes. Let us consider a process v such that ξ(γ, r, v) > 0, and the

processes u such that u ∈ p(r, v) and u is enabled by rule RTree and activated

by the scheduler in γ, Moreover u have not ancestor in p(r, v) activates by the

scheduler. The process u is involved in ξ(γ, r, v) with a value (n − d(u)). Let

γ′ be the configuration given by the execution of rule RTree by u, we obtain in

γ′ RBFSu = RBFSp nextu . Moreover in γ′, if the child w of u in the path p(r, v)

is not enabled by rule RTree then ξ(γ, r, v) is decreased by at (n − d(u)). If w

is enabled by rule RTree, either it was enabled by rule RTree in γ and ξ(γ, r, v)

is decreased by at (n − d(u)) or it was not enabled by rule RTree like d(u) =

d(w) + 1 then ξ(γ, r, v) is decreased by at one. As direct consequence we obtain

ξ(γ, r, v) > ξ(γ′, r, v) and until Λ(γ, r) > 0 we have Ξ(γ, r) > Ξ(γ′, r). �

Let us define ΓBackbone ⊆ Γ as the set of configurations of Γ such that no

rule of the first layer of SSCC (leader election and Backbone construction) is

enabled.

Lemma 1 ΓB ΓBackbone in O(n) rounds and ΓBackbone is closed.

Proof. Let be γ0 6∈ ΓBackbone the initial configuration of the system. Let us

denote by B the enabled processes by rules of the construction of the Backbone.

As the scheduler want to block the construction of the Backbone, it does not

activate processes in B, as a consequence until the scheduler executes an en-

abled process of Backbone no round is completed. In γ0 two types of spanning

structures can occur, namely, sub spanning trees and cycles. In a cycle, at least

one process is an element of B. So if we consider the graph G0 the subgraph

induced by the processes V \ B then only one type of structure occurs, sub

spanning trees. Let us denote by ΓGToken ⊆ Γ the set of configurations in which

no process is enabled by rule RErToken. Then, we have:

Claim 4 ΓB ΓGToken in O(1) rounds and ΓGToken is closed.

Proof of the claim. The algorithm of [41] assures the convergence and the

closure for ΓGToken for each sub-trees. �
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The authors of [41] assure the uniqueness of the token in a tree. Remark

that in the absence of token, it is the root of the tree that assures the creation

of a token. In our case, if the root of the subtree is a process in B then no token

is created, so in γ ∈ ΓGToken and G0 there exist sub spanning trees with only one

token or no token. Let us consider a γ a configuration in ΓGToken and the graph

G0. We do not modify the backward token circulation (rule RBackward). Let T

be a sub spanning tree of G0, if T has a token then the number of activation

of RBackward is limited by the depth of T. Note that, if the root r of T is an

element of B the circulation of the token is blocked by r. So w.l.g consider a

spanning tree T with a root r 6∈ B, the tree T has only one token thanks to the

algorithm [41]. We proof that starting from γ the circulation of the token in T

reaches a configuration γ′ where the circulation of the token is blocked.

The forward circulation is closely linked to the rules RStartBFS and REndBFS.

When a process receives the token in forwarding circulation, it executes the rule

RStartBFS, it releases the token thanks to the rule REndBFS.

Claim 5 ΓGToken B ΓTree in O(1) rounds and ΓTree is closed.

Proof of the claim. By claim 3 we obtain that the number of activation of rule

RTree is bounded in a spanning tree T if the token is blocked in the root r or

r ∈ B. Let now consider a sub spanning tree T where the token is not blocked,

like γ 6⊂ ΓBackbone, T has at least one process v with a neighbor u such that

u 6∈ T, let denote by T′ the spanning tree such that u ∈ T′. Remark that, like

γ 6⊂ ΓBackbone either T or T′ have one process in B, w.l.g suppose it is T′ so the

circulation of the token in T′ if it exists is blocked. Let denoted by r′ the root

of T′, by claim 3 we obtain that the system reaches a configuration γ′ where

RBFSu = RBFSr′ and this value never change. If the token was in a process w in T,

w can release the token in process w′. All the processes in path between w′ and

v in T execute the rule RTree, and all put their variable dBFS to ⊥, that result to

blocking path between w′ and v. The process u cannot have RBFSu equal to w′

because u is not T, so v will never have SameBFS(v) true as a consequence the

rule RTree(15), REcc(19) and RCleanEcc (30) are note enabled for any node in T,

moreover the token is blocked. To conclude, the system reaches a configuration
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γ′ such that Λ(γ′, w) > 0 and only the processes in B are enabled, that is the

rule involved in the construction of the Backbone. The convergence is given in

[18]. �

The closure is given by [18]. �

Let us denote by Γ1−Token ⊆ Γ the set of configurations in which there exists

exactly one token (i.e. no process is enabled by rule RErToken).

Lemma 2 ΓBackbone B Γ1−Token in O(n) rounds and Γ1−Token is closed.

Proof. Let us consider γ ∈ ΓBackbone and B denote the enabled processes by

rule RErToken. As the scheduler want to block the convergence toward one token,

it does not activate processes in B. The proof mimics the proof of claim 5, the

broadcast of the variable RBFS is blocked by the process in B so the circulation

of the token if exists, will be blocked. As a consequence, the system reaches a

configuration γ′ such that Λ(γ′, w) > 0 and only the processes in B are enabled.

We do not modify the algorithm of [41], the authors proof the closure of the

algorithm in their article. �

Let us define Γe as the set of configuration γ ∈ ΓBFS where the every process

v ∈ V \ {r} has DBFSv = max{dBFSv,max{DBFSu | u ∈ Ch bfs(v)}}.

Lemma 3 If Λ(γ, r) > 0 and γ ∈ Γ1−Token then we obtain Γ1−TokenBΓe in O(n)

rounds.

Proof.

Corollary 1 By claims 3 and 2 we have, starting from a configuration γ ∈

Γ1−Token with Λ(γ, r) > 0 the system reaches a configuration ΓTree with Λ(γ′, r) >

0 and ∀v ∈ V we have RBFSv = r.

Claim 6 If Λ(γ, r) > 0 then the activation of RBFS by any process v ∈ V in

configuration γ gives a configuration γ′ such that Λ(γ′, r) ≥ Λ(γ, r).

Proof of the claim. The activation of rule RBFS(15) by process v assigns DBFSv ∈

{↓, ↑}, if v was in a blocking path that keeps v in a blocking path, otherwise if v
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was a neighbor of a process u element of a blocking path the process v reaches

the blocking path and Λ(γ′, r) increases by at least one compare to Λ(γ, r).

�

Let us define ΓBFS a configuration γ where ∀v ∈ V , dBFSv = dG(r, v) and

Λ(γ) > 0. In other words, the rule RBFS is enabled by no process (∀v ∈ V \ {r}

we have dBFSv = min{dBFSu : u ∈ N(v)}+ 1).

Claim 7 Starting from a configuration γ ∈ ΓTree with Λ(γ, r) > 0 the number of

activation of RBFS is bounded.

The computation of BFS tree with only one rule is well known, unfortunately

to our knowledge all the proofs do not use a potential function, to be consistent

we propose a new proof based on potential function. The authors in [34] pro-

posed a potential function but this one is not suitable in our case (because of

a too weak characterization of algorithm’s effects on configurations and of the

use of a a priori knowledge of processes). Moreover, the algorithm in [34] use

3 rules and the proof is based on the parent of each process, we generalize this

proof for our algorithm that uses only one rule for the BFS tree.

Proof of the claim. Let γ a configuration in ΓTree and A(γ) be the set of all

activated processes by rule RBFS in γ. After the activations of processes of A(γ)

the system reaches the configuration γ′. Notice that, only the rule RBFS can

change the distance on the BFS tree (e.i variable dBFS), to clarify our purpose we

denote by dBFSv(γ) the distance on the BFS tree of process v in configuration γ.

To compute a BFS, a process v waits that all its neighbors are in a same tree

of it (see SameBFS 17). Moreover, the rule RBFS is activatable only when the

distance of process v can be improved (see Best 18), for convenance we introduce

min+1(v, γ) = min{dBFSu(γ) | u ∈ Nv}+ 1 that is the result of predicate Best(v).

Let P (γ) be the following potential function:

P (γ) = (F (γ), S(γ))
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where

S(γ) =
∑
v∈V

dBFSv(γ)

and

F (γ) = (f1(γ), f2(γ), . . . , f
2n+max{dBFSv(γ0)|v∈V }(γ))

where fk(γ) = {v|dBFSv(γ) = k ∧ dBFSv(γ) ≤ min+1(v, γ)} and fk(γ) = |fk(γ)|.

Let us denote by K the set {1, . . . , 2n+ max{dBFSv(γ0)|v ∈ V }}. Note that, by

definition all the processes v in fk(γ) for all k ∈ K are enabled by rule RBFS.

Let denote by m the distance such that m = min{k | k ∈ K ∧∃v ∈ A(γ) s.t v ∈

fk(γ)}. The comparaison between F (γ) and F (γ′) is by lexical order. We denote

by γ′ the configuration after activation of the processes in A(γ). We can now

prove the following result P (γ′) < P (γ) for all configuration γ and A(γ) not

empty.

1. ∃v ∈ V such that v 6∈ fk(γ),∀k ∈ K, the only way for a process v to

become element of fs(γ
′) is to have a neighbor u = min+1(v, γ′) such

that u ∈ ft(γ) and u ∈ A(γ). Let denote by w the neighbor of u such

that w = min+1(u, γ), w.l.g let us consider that t = m, by definition of

processes u, v, w we have dBFSv(γ) > m ≤ dBFSw(γ). After activation of

u we obtain, dBFSv(γ
′) ≤ dBFSu(γ′) = dfsw(γ) + 1. If v 6∈ A(γ) we have

dBFSv(γ
′) = dBFSv(γ), otherwise if v ∈ A(γ) after activation of v we achieve

that dBFSv(γ
′) = m+1 so dBFSv(γ

′) ≥ m+1 as a consequence fm is decreased

by at least one in γ′ and the system reaches F (γ′) < F (γ).

2. ∃v ∈ A(γ) such that v ∈ fk(γ), so dBFSv(γ) ≤ dBFSu(γ) with u = min+1(v, γ)

and after activation of v we have dBFSv(γ
′) = dBFSu(γ′)+1. W.l.g let suppose

k = m and let w be the process such that w = min+1(v, γ′).

(a) Let us prove that if u = w we obtain F (γ′) < F (γ′):

i. If u 6∈ A(γ), we obtain dBFSv(γ
′) > dBFSu(γ′), so v 6∈ fs(γ′)∀s ∈ K,

as a consequence fm is decreased by at least one.

ii. u ∈ A(γ) s.t. u ∈ fs(γ): m ≤ s ≤ dBFSz(γ) with z = min+1(u, γ),

after activation of v and u we obtain dBFSv(γ
′) = s+1 ≤ dBFSu(γ′) =
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dBFSz(γ) + 1 so v ∈ fs+1(γ
′) and fm is decreased by at least one.

iii. u ∈ A(γ) and u 6∈ fs(γ)∀s ∈ K so dBFSu(γ) > dBFSz(γ) with

z = min+1(u, γ). After activation of v and u we reach dBFSv(γ
′) =

dBFSu(γ) + 1 > dBFSu(γ′) = dBFSz(γ) + 1 as a consequence v 6∈

fs(γ
′)∀s ∈ K and fm is decreased by at least one.

(b) Let us prove now that if u 6= w we obtain F (γ′) < F (γ′):

i. u 6∈ A(γ) and w 6∈ A(γ) it is impossible because u 6= w.

ii. u ∈ A(γ) and w 6∈ A(γ) or u ∈ A(γ) and w ∈ A(γ): by definition

of u and w we have dBFSu(γ) = m ≤ dBFSw(γ) and we obtain

in after activation of the processes that dBFSv(γ
′) = m + 1 ≤

dBFSu(γ′) = dBFSw(γ′) + 1 so fm is decreased by at least one.

To conclude this part if ∃v ∈ A(γ) such that v ∈ fk(γ) the function F

decreases and as a consequence P (γ′) < P (γ).

3. ∀v ∈ A(γ): v 6∈ fk(γ),∀k ∈ K. A direct consequence of the first item

of this proof is the activation of the processes maintains F (γ′) = F (γ),

moreover this activation decreases the distance of v so S(γ′) < S(γ) and

P (γ′) < P (γ).

�

Let E(γ) be the set of enabled processes in γ and notCoh(γ) ⊆ E(γ) a set of

processes such that if v in notCoh(γ) implies CohD(v) = false (see 24, 22 and

23) and DBFS(v) 6= ⊥ (otherwise v is not enabled).

Claim 8 Starting from a configuration γ ∈ ΓBFS with Λ(γ, r) > 0 and if the

scheduler never actives the elements of notCoh and never decreases Λ then the

system converges to a configuration γ′ such that notCoh(γ′) = E(γ′) .

Proof of the claim. Note that, this part of algorithm runs by up and down waves,

if the scheduler decide does not activate a process v (CohD(v) = false) the

waves are blocked. More precisely, in a down waves (⊥ and ↓), the descendants

u of v in the BFS with CohD(u) = true are not enabled until v are executed
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(see reference to PBFS in lines 2 and 3 of predicate 26). In an up wave of the

computation of the eccentricity, for a ancestors u of v with CohD(u) = true then

the ancestor of v are not enabled until v is executed (see reference to Ch bfs in

line 4 of predicate 26). The up wave of ↑ a little bit different because this wave

does not use all the bfs children but the existence of one neighbor of the process

(see line 1 of predicate 26), but line 2 of predicate 26 chess if all the children

u of v in the BFS have DBFSu =↓ so the down wave of ⊥ is blocked until the up

wave of ↑ is complete. �

Let us define ΓGoodE the set of configurations γ ∈ ΓBFS where ∀v ∈ V ,

CohD(v) = true.

Claim 9 Starting from a configuration γ ∈ ΓBFS with Λ(γ, r) > 0 and

notCoh(γ) = E(γ) then the system reaches a configuration γ′ ∈ ΓGoodE .

Proof of the claim. Our algorithm use down and up waves, if the scheduler want

slow down the convergence, it actives the processes v with CohD(v) = false one

by one and this from the leaves of BFS(r) to the root of BFS(r). We already

saw in proof of claim 8, that v and all the descendants of v in BFS(r) have their

variable DBFS different of ⊥. So when the scheduler actives v, v puts DBFSv = ⊥

therefore all the children w of v in BFS(r) have now, CohD(v) = false. A direct

consequence of this is now all w is elements of notCoh(γ) and enabled, so the

system reaches a configuration γ′ with notCoh(γ′) = E(γ′), remark that v is

not enabled until its children takes the value ↑. Moreover, CohD(v) is becomes

true. So with the same argument, this process is repeated until the leaves of the

subtree of v in the BFS(r). When all the descendants u of v have DBFSu = ⊥, a

down wave of value ↑ is started until this wave reaches a process w in notCoh.

We repeat the same proof until the extension of notCoh. Notice that, during all

the process, the scheduler can maintain Λ positive. �

To establish the claim, let φ : ΓGoodE → N be the potential function defined
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as:

φ(γ, v, r) :


n2 if DBFSv =↑

n if DBFSv = ⊥

1 if DBFSv =↓

0 if DBFSv ∈ N

and we define the potential function Φ: ΓGoodE → N as follows:

Φ(γ, r) =
∑

v∈V \{r}

µ(γ, v, r)

Claim 10 Let γ ∈ ΓGoodE be a configuration where Λ(γ, r) > 0 then the activation

of REcc by any process v ∈ V in configuration γ gives a configuration γ′ such

that Φ(γ, r) > Φ(γ′, r).

The proof is direct by definition of rule REcc and definition of Φ.

Claim 11 Let γ ∈ ΓGoodE be a configuration where Λ(γ, r) > 0 Φ(γ, r) < n

then the activation of REcc by any process v ∈ V in configuration γ gives a

configuration γ′ such that Λ(γ, r) > Λ(γ′, r).

Proof of the claim. In a configuration γ ∈ ΓGoodE if Φ(γ, r) < n then all process

v have either DBFSv =↓ or DBFSv ∈ N, moreover, if Λ(γ, r) > 0 that means there

exist a blocking path only composed by value ↓, and only the leaves of this

blocking path are enabled, so at each activation of process v with DBFSv =↓ the

function Λ decreases by one. �

Corollary 2 ΓBFS B Γe in O(n) rounds.

�

Let us denote by e∗(v) the eccentricity of process v and by E∗ the minimal

eccentricity of the network G. We define ΓCenter the set of configurations such

that, for all v in V we have Eccv = e∗(v) and MinEv = E∗. The centers of the

network are the processes with Eccv = MinEv.
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Lemma 4 Γ1−Token B ΓCenter in O(n2) rounds, and ΓCenter is closed.

Proof.

Claim 12 In configurations Γe the token is not blocked infinitely.

Proof of the claim. Let us suppose that, the scheduler can block the to-

ken infinitely in process r, in other words starting for a configuration γ0 with

Λ(γ0, v) > 0 the scheduler maintains for all configurations γ > γ0 that Λ(γ, v) >

0. We saw in the claim 2 the use of rule RTree cannot decrease Λ, but the sched-

uler cannot boost indefinitely the rule RTree (see claim 3). Similarly, we saw

in the claim 6 the use of rule RBFS cannot decrease Λ but the scheduler cannot

boost indefinitely the rule RTree (see claim 7). The last rule available if the

token is block, it is the rule REcc. The proof of claim 8 proof that the sched-

uler cannot maintain infinitely processes with an error in the DBFS variable (see

predicate CohD). As a consequence, the system reaches configurations without

error of variable DBFS. To conclude, the claims 9, 10 and claim 11 proof that the

application of rule REcc decrease the function Λ as a consequence the process r

becomes the only process enabled, and the activation of rule REndBFS(32) by r

releases the token. Note that, in configuration γ ∈ Γe we have for all v ∈ V \{r}

has DBFSv = max{dBFSv,max{DBFSu | u ∈ Ch bfs(v)}}, so when r executes REndBFS,

it puts in RBFSr the value e∗(r) .

�

Let us define ΓTokDown ⊆ Γ1−Token the set of configurations where the token

circulate downward and ΓTokUp ⊆ Γ1−Token the set of configurations where the

token circulate upward. A direct consequence of claim 12 is the following:

Claim 13 Γe B ΓTokDown ∪ ΓTokUp in one round.

Proof of the claim. In a configuration γ ∈ Γe only the process r is enabled

by rule REndBFS. After activation of process r, Eccr = e∗(r) where e∗(r) is the

eccentricity of process r, and the token is released. �

By lemma 3 we obtain the following corollary:
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Corollary 3 Γ1−Token BΓTokDown ∪ΓTokUp in O(n) rounds, and ΓTokDown ∪ΓTokUp is

closed under SSCC.

Claim 14 ΓTokDown ∪ ΓTokUp B ΓEcc in O(n2) rounds, and ΓEcc is closed under

SSCC.

Proof of the claim. Starting from a configuration γ ∈ ΓTokDown∪ΓTokUp the system

reaches a configuration γ ∈ Γe in O(n) rounds, in this configuration r is the only

process enabled by rule REndBFS, this rule puts Eccr = e∗(r). Moreover, r update

the minimum eccentricity of the network (see variable NewMinEv), and releases

the token. Thanks to claim 12, ΓTokDown ∪ ΓTokUp is closed all process v receiving

the token in down circulation reaches Eccv = e∗(v). The token circulation takes

O(n) rounds, the computation e∗(v) takes O(n) for each process, therefore in

O(n2) rondes the system reaches ΓEcc and is ΓEcc closed under SSCC. �

Let us denote by E∗ the minimal eccentricity of the network and. Let us

define ΓCenter ⊆ ΓEcc as the set of configurations γ ∈ ΓEcc such that, for all v

in V and MinEv = E∗. The center of the network is the process with MinEv =

(Eccv, idv).

Claim 15 ΓEcc B ΓCenter in O(n2) rounds, and ΓCenter is closed under SSCC.

Proof of the claim. The fourth layer of SSCC is dedicated to the gathering of

the minimum of eccentricity of the network. This gathering is made in the same

time of the token circulation and the eccentricity computation. When a process

v change its eccentricity (variable Ecc(v)) a down wave is triggered, from v to

the root of the Backbone, for this the algorithm use the variable MinEUP. When

the root of the Backbone receives a new minimum eccentricity, it broadcast the

new minimum (see variable MinEv). When a process v receives a new minimum

eccentricity if MinEv = (Eccv, idv) then v knows that it is the center; otherwise

v is not a center. � �

Lemma 5 The algorithm SSCC uses O(log n) bits of memory per process.
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Proof. The construction of Backbone and the token circulations use O(log)

bits of memory per process (see articles [18] and [41]). The computation of the

eccentricity uses pointeur variables that use O(log n) bits of memory by process

(see variables RBFS and PBFS) and distance variables that use also O(log n) bits of

memory by process (see variables Ecc, dBFS and DBFS). So the algorithm SSCC

uses O(log n) bits of memory per process.

�

This complete the proof of theorem 1

5. Conclusion

In this paper, we present the first self-stabilizing algorithm for the mini-

mum diameter spanning tree construction that tolerates any asynchronous en-

vironment (captured by a distributed unfair daemon) and uses O(log n) bits

of memory per process. Our algorithm achieves a stabilization time in O(n2)

rounds. This contribution improves the existing results by a factor n regarding

the memory requirement.

This work opens some challenging questions that follow. These questions

are focused on the optimality of memory requirement. The answer depends

whether we want to obtain a silent self-stabilizing algorithm or not. A silent

self-stabilizing algorithm is a self-stabilizing algorithm such that processes are

enabled only on a finite prefix of any execution. As our algorithm is based on

a token circulation, it is not a silent self-stabilizing algorithm. The first open

question is to decide if our non silent self-stabilizing algorithm is optimal with

respect to memory requirement. A recent work [10], which presents a non silent

BFS-based leader election self-stabilizing algorithm requiring O(log log n) bits

of memory per process, leads us to think that we can improve the memory

requirement of our algorithm. This naturally opens another question about the

optimality of a silent self-stabilizing algorithm for minimum diameter spanning

tree construction. An appealing way to answer this question is suggested in

[7]. Using their solution, the question is reduced to provide a proof-labeling
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scheme for this problem requiring O(log n) bits of memory per process. If such

a labeling scheme exists, a straightforward adaptation of our self-stabilizing

algorithm would be an optimal silent self-stabilizing algorithm for the minimum

diameter spanning tree construction.
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