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Abstract In its classical form, a consistent replicated

service requires all replicas to witness the same evolu-

tion of the service state. If we consider an asynchronous

message-passing environment in which processes might

fail by crashing, and assume that a majority of pro-

cesses are correct, then the necessary and sufficient

information about failures for implementing a general

state machine replication scheme ensuring consistency

is captured by the Ω failure detector.

This paper shows that in such a message-passing

environment, Ω is also the weakest failure detector to

implement an eventually consistent replicated service,

where replicas are expected to agree on the evolution

of the service state only after some (a priori unknown)

time.

In fact, we show that Ω is the weakest to implement

eventual consistency in any message-passing environ-

ment, i.e., under any assumption on when and where
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failures might occur. Ensuring (strong) consistency in

any environment requires, in addition to Ω, the quorum

failure detector Σ. Our paper thus captures, for the first

time, an exact computational difference between build-

ing a replicated state machine that ensures consistency

and one that only ensures eventual consistency.
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1 Introduction

State machine replication [24,29] is the most studied

technique to build a highly-available and consistent dis-

tributed service. The idea consists in replicating the

service, modeled as a state machine, over several pro-
cesses and ensuring that all replicas behave like one

correct and available state machine, despite concurrent

invocations of operations and crash failures of replicas.

This is typically captured using the abstraction of total

order broadcast [9,20], where messages represent invo-

cations of the service operations from clients to replicas.

Assuming that the state machine is deterministic, de-

livering the invocations in the same total order ensures

that the replicas behave like a single state machine. To-

tal order broadcast is, in turn, typically implemented

by having the processes agree on which message (or a

batch of messages) to execute next, using the consen-

sus abstraction [25,5]. The two abstractions, consensus

and total order broadcast, were shown to be equivalent

in [5].

Replicas behaving like a single one is a property gen-

erally called consistency. The purpose of the abstrac-

tions underlying the state machine replication scheme,

namely consensus and total order broadcast, is pre-

cisely to ensure this consistency, while providing at the
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same time availability, namely that the replicated ser-

vice does not stop responding. The inherent costs of

these abstractions are sometimes considered too high,

both in terms of the necessary computability assump-

tions about the underlying system [15,4,1], and the

number of communication steps needed to deliver an

invocation [25,26].

An appealing approach to circumvent these costs

is to trade consistency with what is sometimes called

eventual consistency [28,33]: namely to give up the re-

quirement that the replicas always look the same, and

replace it with the requirement that they only look

the same eventually, i.e., after a finite but not a priori

bounded period of time. Basically, eventual consistency

says that the replicas can diverge for some period, as

long as this period is finite.

Many systems claim to implement general state ma-

chines that ensure eventual consistency in message-

passing systems, e.g., Cassandra [23] and Dynamo [10].

But, to our knowledge, there has been no theoreti-

cal study of the exact assumptions on the information

about failures underlying those implementations. This

paper is the first to do so: using the formalism of failure

detectors [5,4], it addresses the question of the mini-

mal information about failures needed to implement an

eventually consistent replicated state machine.

It has been shown in [4] that, in a message-passing

environment with a majority of correct processes, the

weakest failure detector to implement consensus (and,

thus, total order broadcast [9,7]) is the eventual leader

failure detector, denoted Ω. In short, Ω outputs, at ev-

ery process and at all times, a leader process so that,

eventually, the same correct process is considered leader
by all. Ω can thus be viewed as the weakest failure de-

tector to implement a generic replicated state machine

ensuring consistency (and availability) in an environ-

ment with a majority of correct processes.

We show in this paper that, surprisingly, the weak-

est failure detector to implement an eventually consis-

tent replicated service in this environment (in fact, in

any environment) is still Ω. We prove our result via

an interesting generalization of the celebrated “CHT

proof” by Chandra, Hadzilacos and Toueg [4]. In the

CHT proof, every process periodically extracts the iden-

tifier of a process that is expected to be correct (the

leader) from the valencies of an ever-growing collec-

tion of locally simulated runs. We carefully adjust the

notion of valency to apply this approach to the weaker

abstraction of eventual repeated consensus, which we

show to be necessary and sufficient to implement even-

tual consistency.

Our result becomes less surprising if we realize that

a correct majority prevents the system from being par-

titioned, and we know that both consistency and avail-

ability cannot be achieved while tolerating partitions [1,

17,11]. Therefore, in a system with a correct majority

of processes, weakening consistency does not allow for

a weaker failure detector: (strong) consistency requires

the same information about failures as eventual one.

In an arbitrary environment, however, i.e., under any

assumptions on when and where failures may occur,

the weakest failure detector for consistency is known

to be Ω + Σ, where Σ [11] returns a set of processes

(called a quorum) so that every two such quorums in-

tersect at any time and there is a time after which all

returned quorums contain only correct processes. We

show in this paper that ensuring eventual consistency

does not require Σ: only Ω is needed, even if we do

not assume a majority of correct processes. Therefore,

Σ represents the exact difference between consistency

and eventual consistency. Our result thus theoretically

backs up partition-tolerance [1,17] as one of the main

motivations behind the very notion of eventual consis-

tency.

We establish our results through the following steps:

– We give precise definitions of the notions of eventual

repeated consensus and eventual total order broad-

cast. We show that the two abstractions are equiv-

alent. These underlie the intuitive notion of even-

tual consistency implemented in many replicated

services [10,8,6].

– We show how to extend the celebrated CHT

proof [4], initially establishing that Ω is necessary

for solving consensus, to the context of eventual re-

peated consensus. Through this extension, we in-

directly highlight a hidden power of the technique

proposed in [4] that somehow provides more than

was used in the original CHT proof.

– We present an algorithm that uses Ω to implement,

in any message-passing environment, an eventually

consistent replicated service. The algorithm features

three interesting properties:

(1) An invocation can be performed after the opti-

mal number of two communication steps, even if a

majority of processes is not correct and even during

periods when processes disagree on the leader, i.e.,

partition periods; 1

(2) If Ω outputs the same leader at all processes

from the very beginning, then the algorithm imple-

ments total order broadcast and hence ensures con-

sistency;

(3) Causal ordering is ensured even during periods

where Ω outputs different leaders at different pro-

cesses.

1 Note that three communication steps are, in the worst
case, necessary when strong consistency is required [26].
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The rest of the paper is organized as follows. We

present our system model and basic definitions in Sec-

tion 2. In Section 3, we introduce abstractions for im-

plementing eventual consistency: namely, eventual re-

peated consensus and eventual total order broadcast,

and we prove them to be equivalent. We show in Sec-

tion 4 that the weakest failure detector for eventual re-

peated consensus in any message-passing environment

is Ω. We present in Section 5 our algorithm that im-

plements eventual total order broadcast using Ω in any

environment. Section 6 discusses related work, and Sec-

tion 7 concludes the paper.

2 Preliminaries

We adopt the classical model of distributed systems

provided with the failure detector abstraction proposed

in [5,4]. In particular we employ the simplified version

of the model proposed in [18,21].

We consider a message-passing system with a set

of processes Π = {p1, p2, . . . , pn} (n ≥ 2). Processes

execute steps of computation asynchronously, i.e., there

is no bound on the delay between steps. However, we

assume a discrete global clock to which the processes

do not have access. The range of this clock’s ticks is N.

Each pair of processes are connected by a reliable link.

Processes may fail by crashing. A failure pattern is a

function F : N→ 2Π , where F (t) is the set of processes

that have crashed by time t. We assume that processes

never recover from crashes, i.e., F (t) ⊆ F (t + 1). Let

faulty(F ) =
⋃
t∈N F (t) be the set of faulty processes in

a failure pattern F , and correct(F ) = Π − faulty(F )

be the set of correct processes in F . An environment,

denoted E , is a set of failure patterns.

A failure detector history H with range R is a func-

tion H : Π×N→ R, where H(p, t) is interpreted as the

value output by the failure detector module of process

p at time t. A failure detector D with range R is a func-

tion that maps every failure pattern F to a nonempty

set of failure detector histories. D(F ) denotes the set of

all possible failure detector histories that may be out-

put by D in a failure pattern F .

For example, at each process, the leader failure de-

tector Ω outputs the id of a process; furthermore, if a

correct process exists, then there is a time after which

Ω outputs the id of the same correct process at every

correct process. Another example is the quorum failure

detector Σ, which outputs a set of processes at each

process. Any two sets output at any times and by any

processes intersect, and eventually every set output at

any correct process consists of only correct processes.

An algorithm A is modeled as a collection of n de-

terministic automata, where A(p) specifies the behavior

of process p. Computation proceeds in steps of these au-

tomata. In each step, identified as a tuple (p,m, d,A),

a process p atomically (1) receives a single message m

(that can be the empty message λ) or accepts an input

(from the external world), (2) queries its local failure

detector module and receives a value d, (3) changes

its state according to A(p), and (4) sends a message

specified by A(p) for the new state to every process or

produces an output (to the external world). Note that

the use of λ ensures that a step of a process is always

enabled, even if no message is sent to it.

A configuration of an algorithm A specifies the local

state of each process and the set of messages in tran-

sit. In the initial configuration of A, no message is in

transit and each process p is in the initial state of the

automaton A(p). A schedule S of A is a finite or infinite

sequence of steps of A that respects A(p) for each p.

Inputs and outputs of processes are modeled via in-

put histories HI and output histories HO that specify

the sequences of inputs each process receives from its

application and the sequences of outputs each process

returns to the application over time: At each time t and

for every process pi, HI(pi, t) (resp., HO(pi, t)) denotes

the input (resp., the output) received by pi (resp., pro-

duced by pi) at time t, which can be a distinct value ⊥
in case no input (resp., output) occurs. Typically, in-

puts and outputs represent invocations and responses

of operations exported by the implemented abstraction.

A run of algorithm A using failure detector D in en-

vironment E is a tuple R = (F,H,HI , HO, S, T ), where

F is a failure pattern in E , H is a failure detector his-

tory in D(F ), HI and HO are input and output histories

of A, S is a schedule of A, and T is a list of increas-

ing times in N, where T [i] is the time when step S[i] is

taken. H ∈ D(F ), the failure detector values received

by steps in S are consistent with H, and HI and HO

are consistent with S. An infinite run of A is admissi-

ble if (1) every correct process takes an infinite number

of steps in S; and (2) each message sent to a correct

process is eventually received.

We then define a distributed-computing problem,

such as consensus or total order broadcast, as a set of

tuples (F,HI , HO) where F is a failure pattern, HI is

an input history, and HO is an output history. An algo-

rithmA using a failure detector D solves a problem P in

an environment E if for every admissible run R of A in

E , R = (F,H,HI , HO, S, T ), we have (F,HI , HO) ∈ P .

If there is an algorithm that solves P using D, we some-

times, with a slight language abuse, say that D imple-

ments P .

Consider two problems P and P ′. A transformation

from P to P ′ in an environment E [20] is a map TP→P ′

that, given any algorithm AP solving P in E , yields an
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algorithm AP ′ solving P ′ in E . The transformation is

asynchronous in the sense that AP is used as a “black

box” where AP ′ is obtained by feeding inputs to AP
and using the returned outputs to solve P ′. Hence, if P

is solvable in E using a failure detector D, the existence

of a transformation TP→P ′ in E establishes that P ′ is

also solvable in E using D. If, additionally, there exists

a transformation from P ′ to P in E , we say that P and

P ′ are equivalent in E .

Failure detectors can be partially ordered based on

their “power”: failure detector D is weaker than failure

detector D′ in E if there is an algorithm that emulates

the output of D using D′ in E [4,21]. If D is weaker

than D′, any problem that can be solved with D can

also be solved with D′. For a problem P , D∗ is the

weakest failure detector to solve P in E if (a) there is

an algorithm that uses D∗ to solve P in E , and (b) D∗
is weaker than any failure detector D that can be used

to solve P in E .

3 Abstractions for Eventual Consistency

We define two basic abstractions that capture the no-

tion of eventual consistency: eventual total order broad-

cast and eventual repeated consensus. We show that

the two abstractions are equivalent: each of them can

be used to implement the other.

3.1 Eventual Total Order Broadcast (ETOB)

The total order broadcast (TOB) abstraction [9,20] ex-

ports one operation broadcastTOB(m) and maintains,

at every process pi, an output variable di. Let di(t) de-

note the value of di at time t. Intuitively, di(t) is the

sequence of messages pi delivered by time t. We write

m ∈ di(t) if m appears in di(t).

A process pi broadcasts a message m at time t by

a call to broadcastTOB(m). We say that a process pi
stably delivers a message m at time t if pi appends m

to di(t) and m is never removed from di after that, i.e.,

m /∈ di(t − 1) and ∀t′ ≥ t: m ∈ di(t′). Note that if a

message is delivered but not stably delivered by pi at

time t, it appears in di(t) but not in di(t
′) for some

t′ > t.

To match out formalism of input and output histo-

ries, we interprete a call of broadcastTOB(m) that took

place at time t as an event in the input history HI , and

each change in the value of di that takes place at time

t, i.e., di(t) 6= di(t−1) as an event in the output history

HO.

Assuming that broadcast messages are distinct, the

TOB abstraction satisfies:

TOB-Validity If a correct process pi broadcasts a mes-

sage m at time t, then pi eventually stably delivers

m, i.e., ∀t′′ ≥ t′ : m ∈ di(t′′) for some t′ > t.

TOB-No-creation If m ∈ di(t), then m was broadcast

by some process pj at some time t′ < t.

TOB-No-duplication No message appears more than

once in di(t).

TOB-Agreement If a message m is stably delivered by

some correct process pi at time t, then m is eventu-

ally stably delivered by every correct process pj .

TOB-Stability For any correct process pi, di(t1) is a

prefix of di(t2) for all t1, t2 ∈ N, t1 ≤ t2.

TOB-Total-order Let pi and pj be any two correct pro-

cesses such that two messages m1 and m2 appear in

di(t) and dj(t) at time t. If m1 appears before m2

in di(t), then m1 appears before m2 in dj(t).

We then introduce the eventual total order broadcast

(ETOB) abstraction, which maintains the same inputs

and outputs as TOB (messages are broadcast by a call

to broadcastETOB(m)) and satisfies, in every admissi-

ble run, the TOB-Validity, TOB-No-creation, TOB-No-

duplication, and TOB-Agreement properties, plus the

following relaxed properties for some τ ∈ N:

ETOB-Stability For any correct process pi, di(t1) is a

prefix of di(t2) for all t1, t2 ∈ N, τ ≤ t1 ≤ t2.

ETOB-Total-order Let pi and pj be correct processes

such that messages m1 and m2 appear in di(t) and

dj(t) for some t ≥ τ . If m1 appears before m2 in

di(t), then m1 appears before m2 in dj(t).

As we show in this paper, satisfying the following op-

tional (but useful) property in ETOB does not require

more information about failures.

TOB-Causal-Order Let pi be a correct process such

that two messages m1 and m2 appear in di(t) at

time t ∈ N. If m2 depends causally on m1, then m1

appears before m2 in di(t).

Here we say that a message m2 causally depends on

a message m1 in a run R, and write m1 →R m2, if one

of the following conditions holds in R: (1) a process pi
broadcasts m1 and then broadcasts m2, (2) a process pi
receives m1 and then broadcasts m2, or (3) there exists

m3 such that m1 →R m3 and m3 →R m2.

3.2 Eventual Repeated Consensus (ERC)

The consensus abstraction (C) [15] exports, to every

process pi, a single operation proposeC that takes a bi-

nary argument and returns a binary response (we also

say decides) so that the following properties are satis-

fied:
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C-Termination Every correct process eventually re-

turns a response to proposeC.

C-Integrity Every process returns a response at most

once.

C-Agreement No two processes return different values.

C-Validity Every value returned was previously pro-

posed.

The eventual repeated consensus (ERC) abstraction

exports, to every process pi, operations proposeERC1,

proposeERC2, . . . that take binary arguments and re-

turn binary responses. Assuming that, for all ` =

1, 2, . . ., every process, as soon as it returns a response

to proposeERC`, invokes proposeERC`+1 or crashes, the

abstraction guarantees that, for every admissible run,

there exists k ∈ N, such that the following properties

are satisfied:

ERC-Termination Every correct process eventually re-

turns a response to proposeERC`, for all ` ∈ N.

ERC-Integrity No process responds twice to

proposeERC`, for all ` ∈ N.

ERC-Validity Every value returned to proposeERC`
was previously proposed to proposeERC`, for all

` ∈ N.

ERC-Agreement No two processes return different val-

ues to proposeERC`, for all ` ≥ k.

It is straightforward to transform the binary version

of ERC into a multivalued one with unbounded set of

inputs [27]. In the following, except for the necessity

proof in Section 4, when we discuss an ERC algorithm,

we mean a multivalued version of it.

3.3 Equivalence between ERC and ETOB

It is well known that, in their classical forms, the con-

sensus and the total order broadcast abstractions are

equivalent [5]. In this section, we show that a similar

result holds for our eventual versions of these abstrac-

tions.

The intuition behind the transformation from ERC
to ETOB is the following. Each time a process pi wants

to ETOB-broadcast a message m, p sends m to each

process. Periodically, every process pi proposes its cur-

rent sequence of messages received so far to ERC. This

sequence is built by concatenating the last output of

ERC(stored in a local variable di) to the batch of all

messages received by the process and not yet present in

di. The output of ERC is stored in di, i.e., at any time,

each process delivers the last sequence of messages re-

turned by ERC.

The correctness of this transformation follows from

the fact that ERC eventually returns consistent re-

sponses to the processes. Thus, eventually, all processes

agree on the same linearly growing sequence of stably

delivered messages. Furthermore, every message broad-

cast by a correct process eventually appears either in

the delivered message sequence or in the batches of not

yet delivered messages at all correct processes. Thus, by

ERC-Validity of ERC, every message ETOB-broadcast

by a correct process is eventually stored in di of every

correct process pi forever. By construction, no message

appears in di twice or if it was not previously ETOB-

broadcast. Therefore, the transformation satisfies the

properties of ETOB.

The transformation from ETOB to ERC is as fol-

lows. At each invocation of the ERC primitive, the pro-

cess broadcasts a message using the ETOB abstraction.

This message contains the proposed value and the in-

dex of the consensus instance. As soon as a message

corresponding to a given eventual repeated consensus

instance is delivered by process pi (appears in di), pi
returns the value contained in the message.

Since the ETOB abstraction guarantees that every

process eventually stably delivers the same sequence of

messages, there exists a consensus instance after which

the responses of the transformation to all alive processes

are identical. Moreover, by ETOB-Validity, every mes-

sage ETOB-broadcast by a correct process pi is eventu-

ally stably delivered. Thus, every correct process even-

tually returns from any ERC-instance it invokes. Thus,

the transformation satisfies the ERC specification.

Theorem 1 In any environment E, ERC and

ETOB are equivalent.

Proof We prove this result by providing two algorithms,

one implementing ERC from ETOB and the other im-

plementing ETOB from ERC.

From ERC to ETOB. To prove this result, it is suffi-

cient to provide a protocol that implements ETOB in

an environment E knowing that there exists a protocol

that implements ERC in this environment. This trans-

formation protocol TERC→ETOB is stated in Algorithm 1.

Now, we are going to prove that TERC→ETOB implements

ETOB.

Assume that there exists a message m broadcast by

a correct process pi at time t. As pi is correct, every

correct process receives the message push(m) in a fi-

nite time. Then, m appears in the set toDeliver of all

correct processes in a finite time. Hence, by the ter-

mination property of ERC and the construction of the

function NewBatch, there exists ` such that m is in-

cluded in any sequence submitted to proposeERC`. By

the ERC-Validity and the ERC-Termination properties,

we deduce that pi stably delivers m in a finite time,

which proves that TERC→ETOB satisfies the TOB-Validity

property.
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If a process pi delivers a message m at time t, then

m appears in the sequence responded by its last in-

vocation of proposeERC`. By construction and by the

ERC-Validity property, this sequence contains only mes-

sages that appear in the set toDeliver of a process pj
at the time pj invokes proposeERC`. But the toDeliver

set contains only previously messages broadcast. There-

fore, TERC→ETOB satisfies the TOB-No-creation.

As the sequence output at any time by any process

is the response to its last invocation of proposeERC

and as the sequence submitted to any invocation of

this primitive contains no duplicated message (by defi-

nition of the function NewBatch), we can deduce from

the ERC-Validity property that TERC→ETOB satisfies the

TOB-No-duplication.

Assume that a correct process pi stably delivers a

message m, i.e., there exists a time after which m al-

ways appears in di. By the algorithm, m always ap-

pears in the response of proposeERC to pi after this

time. As the ERC-Agreement property is eventually sat-

isfied, we can deduce that m always appears in the

response of proposeERC for any correct process after

some time. Thus, any correct process stably delivers m,

and TERC→ETOB satisfies the TOB-Agreement.

Let τ be the time after which the ERC primitive

satisfies ERC-Agreement and ERC-Validity.

Let pi be a correct process and τ ≤ t1 ≤
t2. Let `1 (respectively `2) be the integer such

that di(t1) (respectively di(t2)) is the response of

proposeERC`1 (respectively proposeERC`2). By con-

struction of the protocol and the ERC-Agreement

and ERC-Validity properties, we know that, af-

ter time τ , the response of proposeERC` to cor-

rect processes is a prefix of the response of

proposeERC`+1. As we have `1 ≤ `2, we can deduce

that TERC→ETOB satisfies the ETOB-Stability property.

Let pi and pj be two correct processes such that

two messages m1 and m2 appear in di(t) and dj(t) at

time t ≥ τ . Let ` be the smallest integer such that m1

and m2 appear in the response of proposeERC`. By the

ERC-Agreement property, we know that the response of

proposeERC` is identical for all correct processes. Then,

by the ETOB-Stability property proved above, that im-

plies that, if m1 appears before m2 in di(t), then m1

appears before m2 in dj(t). In other words, TERC→ETOB

satisfies the ETOB-Total-order property.

In conclusion, TERC→ETOB satisfies the ETOB speci-

fication in an environment E provided that there exists

a protocol that implements ERC in this environment.

From ETOB to ERC. To prove this result, it is suf-

ficient to provide a protocol that implements ERC in

an environment E given a protocol that implements

ETOB in this environment. This transformation pro-

Algorithm 1 TERC→ETOB: transformation from ERC to

ETOB for process pi
Output variable:

di: sequence of messages (initially empty) output at any
time by pi

Internal variables:
toDeliveri: set of messages (initially empty) containing
all messages received by pi
counti: integer (initially 0) that stores the number of the
last instance of consensus invoked by pi

Messages:
push(m) with m a message

Functions:
Send(message) sends message to all processes (including
pi)
NewBatch(di, toDeliveri) returns a sequence containing
all messages from the set toDeliveri \ {m|m ∈ di}

On reception of broadcastETOB(m) from the application
Send(push(m))

On reception of push(m) from pj
toDeliveri := toDeliveri ∪ {m}

On reception of d as response of proposeERCcounti
di := d
counti := counti + 1
proposeERCcounti

(di.NewBatch(di, toDeliveri))
On local timeout

If counti = 0 and NewBatch(di, toDeliveri)) 6= ∅ then⌊
counti := 1
proposeERC1(NewBatch(di, toDeliveri))

tocol TETOB→ERC is stated in Algorithm 2. Now, we are

going to prove that TETOB→ERC implements ERC.

Let pi be a correct process that invokes

proposeERC`(v) with ` ∈ N. Then, by fairness

and the TOB-Validity property, the construction of

the protocol implies that the ETOB primitive delivers

the message (`, v) to pi in a finite time. By the use

of the local timeout, we know that pi returns from

proposeERC`(v) in a finite time, which proves that

TETOB→ERC satisfies the ERC-Termination property.

The update of the variable counti to ` for any pro-

cess pi that invokes proposeERC` and the assumptions

on operations proposeERC ensure us that pi executes

at most once the function DecideEC(counti, F irst(

counti)). Hence, TETOB→ERC satisfies the ERC-Integrity

property.

Let τ be the time after which the ETOB-Stability

and the ETOB-Total-order properties are satisfied. Let

k be the smallest integer such that any process that

invokes proposeERCk in run r invokes it after τ .

If we assume that there exist two correct processes

pi and pj that return different values to proposeERC`
with ` ≥ k, we obtain a contradiction with the ETOB-

Stability, ETOB-Total-order, or TOB-Agreement prop-

erty. Indeed, if pi returns a value after time τ , that

implies that this value appears in di and then, by the

TOB-Agreement property, this value eventually appears
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Algorithm 2 TETOB→ERC: transformation from

ETOB to ERC for process pi
Internal variables:

counti: integer (initially 0) that stores the number of the
last instance of consensus invoked by pi
di: sequence of messages (initially empty) output to pi by
the ETOB primitive

Functions:
First(`): returns the value v such that (`, v) is the first
message of the form (`, ∗) in di if such messages exist, ⊥
otherwise
DecideEC(`, v): returns the value v as response to
proposeERC`

On invocation of proposeERC`(v)
counti := `
broadcastETOB((`, v))

On local time out
If First(counti) 6= ⊥ then⌊
DecideEC(counti, F irst(counti))

in dj . If pj returns a different value from pi, that implies

that this value is the first occurrence of a message as-

sociated to proposeERC` in dj at the time of the return

of proposeERC`. After that, dj cannot satisfy simulta-

neously the ETOB-Stability and the ETOB-Total-order

properties. This contradiction shows that TETOB→ERC

satisfies the ERC-Agreement property.

Every value returned by proposeERC` at a process

pi comes from di, and di may only contain ETOB out-

puts, which, by the TOB-No-creation property, have

been previously proposed. Thus, TETOB→ERC satisfies

the ERC-Validity property.

In conclusion, TETOB→ERC satisfies the ERC specifi-

cation in an environment E provided that there exists

a protocol that implements ETOB in this environment.

4 The Weakest Failure Detector for ERC

In this section, we show that Ω is necessary and suffi-

cient for implementing the eventual repeated consensus

abstraction ERC:

Theorem 2 In any environment E, Ω is the weakest

failure detector for ERC.

4.1 Ω is necessary for ERC

Let E be any environment. We show below that Ω is

weaker than any failure detector D that can be used

to solve ERC in E . Recall that implementing Ω means

outputting, at every process, the identifier of a leader

process so that eventually, the same correct leader is

output permanently at all correct processes.

A very brief CHT primer. First, we briefly recall the

arguments used by Chandra et al. [4] in the original

proof (known as the CHT proof ) that Ω can be derived

from any algorithm solving consensus. To get a more

detailed survey of the proof please refer to [16, Chapter

3].

The basic observation there is that a run of any al-

gorithm A using a failure detector induces a directed

acyclic graph (DAG). The DAG contains a sample of

failure detector values output by D in the current run

and captures causal relations between them. Each pro-

cess pi maintains a local copy of the DAG, denoted by

Gi: pi periodically queries its failure detector module,

updates Gi by connecting every vertex of the DAG with

the vertex containing the returned failure detector value

with an edge, and broadcasts the DAG. An edge from

vertex [pi, d, k] to vertex [pj , d
′, k′] is thus interpreted

as “pi queried D for the kth time and obtained value

d and after that pj queried D for the k′th time and

obtained value d′”. Whenever pi receives a DAG Gj
calculated earlier by pj , pi merges Gi with Gj by com-

puting the union of the vertices and edges of the two

graphs and making sure that the paths in the merged

graph are transitively closed. As a result, DAGs main-

tained by the correct processes converge to the same

infinite DAG G.

The DAG Gi is then used by pi to simulate a num-

ber of runs of the given consensus algorithm A for all

possible inputs to the processes. For each input history

HI , each path in DAG Gi represents a stimulus for the

schedule in the simulated run: processes take steps and

observe failure-detector values in the order they appear

in the path. All these runs are organized in the form of

a simulation tree Υi.

Recall that pi periodically updates Gi by adding

a vertex corresponding to a new query of D or merg-

ing with a DAG received from another process. Each

time pi updates Gi, it recomputes Υi. Therefore, the

simulation trees Υi maintained by the correct processes

converge to the same infinite simulation tree Υ . Every

path in the simulation tree Υi represents a run of A. 2

In the example depicted in Figure 1, a DAG

(a) induces a simulation tree a portion of which is

shown in (b). There are three non-trivial paths in

the DAG: [p1, d1, k1] → [p2, d2, k2] → [p1, d3, k3],

[p2, d2, k2] → [p1, d3, k3], and [p1, d1, k1] → [p1, d3, k3].

2 In [4], the simulated schedules form a simulation forest,
where a distinct simulation tree corresponds to each initial
configuration encoding consensus inputs. Recall that here we
follow the more flexible model of Jayanti and Toueg [21]: there
is a single initial configuration and inputs are encoded in the
form of input histories. As a result, we get a single simulation
tree where branches depend on the parameters of propose
calls.
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(p1, v1, d1)

(a)

[p1, d1, k1]

[p1, d3, k3]

[p2, d2, k2]

S⊥

(b)

(p1, v1, d1)

(p1,m3, d3)

(p2,m2, d2) (p1, λ, d3)

(p1, v1, d3)

(p2, λ, d2)

Fig. 1 A DAG and a tree

Every path through the DAG and an input history

induce at least one schedule in the simulation tree.

Hence, assuming an input history initially providing p1
with input v1, the simulation tree has at least three

leaves: (p1, v1, d1) (p2,m2, d2) (p1,m3, d3), (p2, λ, d2)

(p1, v1, d3), and (p1, v1, d1) (p1λ, d3). Here S⊥ denotes

the empty schedule, and λ denotes the empty message:

no non-empty message can be received in the first step

of any schedule. Note that the simulation tree may con-

tain other paths corresponding to other input histories,

that is why Figure 1 (b) depicts only a portion of the

possible tree.

The outputs produced in the simulated runs of Υi
are then used by pi to compute the current estimate of

Ω. Every vertex σ of Υi is assigned a valency tag deter-

mined as a set of decisions taken in all σ’s extensions

(descendants of σ in Υi): the valency tag of σ contains

a value v ∈ {0, 1} if σ has an extension in which some

process decides v. A vertex is bivalent if its valency tag

contains both 0 and 1. Note that no process can decide

in a bivalent vertex.

It can be shown that every bivalent vertex in Υ has a

decision gadget, i.e., finite subtree which is either a fork

or a hook (Figure 2). Intuitively, in a decision gadget, a

step of a fixed deciding process determines the univalent

valency (and, thus, the decided values) in descendants

S0 and S1. This process (e.g., q in Figure 2) must be

correct. Otherwise, without its intervention, no correct

process will be able to decide in any run extending S0

or S1.

Therefore, by locating the same bivalent vertex in

the limit tree Υ , the correct process can eventually ex-

tract the identifier of the same correct process. The

vertices in each simulation tree Υi are ordered by pi
in a specific deterministic way, which guarantees that

each vertex in Υ is eventually assigned the same po-

sition in the order in all local trees Υi computed by

correct processes. The identifier of the deciding pro-

cess of the the “first” (according to this order) decision

gadget in Υi is then returned as the current output of

(q,m, d)

(0-valent) (1-valent)

(a)

(0-valent)

(1-valent)

(b)

S⊥ S⊥

S (bivalent)

S0
S1 (q′,m′, d′)S0

S1

S (bivalent)

S ′

(q,m, d)(q′,m′, d′)(q,m, d′)

Fig. 2 A fork (a) and a hook (b)

Ω. This way, the correct processes eventually agree on

the “first” decision gadget and, thus, on the deciding

process in this gadget. Note that the time when such

agreement is reached is unknown to the processes. But

this is good enough for extracting Ω.

The reduction algorithm. We show that the CHT proof,

originally designed for consensus, can be extended to

eventual repeated consensus (i.e., to the weaker ERC
abstraction). The extension is not trivial and requires

carefully adjusting the notion of valency of a vertex in

the simulation tree.

Lemma 1 In any environment E, if a failure detector

D implements ERC in E, then Ω is weaker than D in

E.

Proof Let A be any algorithm that implements ERC us-

ing a failure detector D in an environment E . As in [4],

every process pi maintains a failure detector sample

stored in DAG Gi and periodically uses Gi to simu-

late a set of runs of A for all possible sequences of in-

puts of ERC. The simulated runs are organized by pi
in the ever-growing simulation tree Υi. A vertex of Υi
is the schedule of a finite run of A “triggered” by a

path in Gi in which every process starts with invoking

proposeERC1(v), for some v ∈ {0, 1}, takes steps us-

ing the failure detector values stipulated by the path in

Gi and, once proposeERC`(v), for some ` ≥ 1, is com-

plete, eventually invokes proposeERC`+1(v′), for some

v′ ∈ {0, 1}. (For the record, we equip each vertex of Υi
with the path in Gi used to produce it.) A vertex is

connected by an edge to each one-step extension of it.

Note that in every (infinite) admissible simulated

run, ERC-Termination, ERC-Integrity, ERC-Validity,

and ERC-Agreement are satisfied.

Since processes periodically broadcast their DAGs,

the simulation tree Υi constructed locally by a correct

process pi converges to an infinite simulation tree Υ ,



The Weakest Failure Detector for Eventual Consistency 9

in the sense that every finite subtree of Υ is eventually

part of Υi. The infinite simulation tree Υ , starting from

the initial configuration of A and, in the limit, contains

all possible schedules that can triggered by the paths

DAGs Gi.

Consider a vertex σ in Υ , identifying a unique finite

schedule of a run of A using D in the current failure

pattern F . For k > 0, we say that σ is k-enabled if

k = 1 or σ contains a response from proposeERCk−1 at

some process. Now we associate each vertex σ in Υ with

a set of valency tags associated with each “consensus

instance” k, called the k-tag of σ, as follows:

– If σ is k-enabled and has a descendant (in Υ ) in

which proposeERCk returns x ∈ {0, 1}, then x is

added to the k-tag of σ.

– If σ is k-enabled and has a descendant in which two

different values are returned by proposeERCk, then

⊥ is added to the k-tag of σ.

If σ is not k-enabled, then its k-tag is empty. If the

k-tag of σ is {x}, x ∈ {0, 1}, we say that σ is (k, x)-

valent (k-univalent). If the k-tag is {0, 1}, then we say

that σ is k-bivalent. If the k-tag of σ contains ⊥, we say

that σ is k-invalid

Recall that A ensures ERC-Termination in all ad-

missible simulated runs that extend σ. Thus, if σ is k-

enabled, then the k-tag of σ is non-empty: proposeERCk
must return some values in all admissible extensions

of σ. Moreover, ERC-Termination and ERC-Validity

imply that a vertex in which no process has in-

voked proposeERCk yet has a descendant in which

proposeERCk returns 0 and a descendant in which

proposeERCk returns 1. Indeed, a run in which only

v, v ∈ {0, 1} is proposed in instance k and every cor-

rect process takes enough steps must contain v as an

output. Thus:

(*) For each vertex σ, there exists k ∈ N and σ′, a

descendant of σ, such that the k-tag of σ′ contains

{0, 1}.

We show now that the “limit tree” Υ contains a k-

bivalent vertex for some k. Consider the abstract pro-

cedure described in Algorithm 3 that intends to locate

such a vertex in Υ , starting with the root of the tree.

Inductively, let σ be the currently considered k-

enabled vertex such that its k-tag contains {0, 1}. Note

that, initially, σ is the root of Υ , which is 1-enabled

and either contains {0, 1} or is 1-invalid. Moreover, each

complete iteration of the loop in Algorithm 3, starting

with some k-enabled vertex σ, computes a k-enabled

descendant of σ whose k′-tag for some k′ > k contains

{0, 1}.

Algorithm 3 Locating a bivalent vertex in Υ .
k := 1

σ := root of Υ

while true do

if σ is k-bivalent then break
σ1 := a descendant of σ in which

ERC-Agreement does not hold for proposeERCk

σ2 := a descendant of σ1 in which every correct process
completes proposeERCk and receives
all messages sent to it in σ

choose k′ > k and σ3, a descendant of σ2, such that
k′-tag of σ3 contains {0, 1}

k := k′

σ := σ3

Let the currently considered k-enabled vertex σ be

not k-bivalent (if it is k-bivalent, we are done). Induc-

tively, σ must be k-invalid, and hence it must have a de-

scendant σ1 in which ERC-Agreement does not hold for

proposeERCk. We then locate σ2, a descendant of σ1,

in which every correct process completes proposeERCk
and receives every message addressed to it in the mes-

sage buffer of σ. By the very way Υ is constructed, ev-

ery vertex in Υ has infinitely many descendants corre-

sponding to every correct process, so such a descendant

exists.

Now we use (*) to locate σ3, a descendant of σ2, such

that (1) in σ3, two processes return different values in

proposeERCk in σ3, (2) in σ3, every correct process has

completed proposeERCk and has received every mes-

sage sent to it in σ, and (3) the k′-tag of σ3 contains

{0, 1}.
Thus, the procedure in Algorithm 3 either termi-

nates by locating a k-bivalent tag and then we are done,

or it never terminates. Suppose, by contradiction, that

the procedure never terminates. Hence, we have an infi-

nite admissible run of A in which no agreement is pro-

vided in infinitely many instances of consensus. Indeed,

in the constructed path along the tree, every correct

process appears infinitely many times and receives ev-

ery message sent to it. This admissible run violated the

ERC-Agreement property of ERC—a contradiction.

Thus, for some k, there is a k-bivalent vertex in Υ .

We now can apply the arguments of [4] to extract Ω. In-

deed, we can simply let every process locate the “first”

such k-bivalent vertex in its local tree Υi. To establish

an order on the vertices, we can associate each vertex σ

of Υ with the value m such that vertex [pi, d,m] of G is

used to simulate the last step of σ (recall that we equip

each vertex of Υ with the corresponding path). Then

we order vertices of Υ in the order consistent with the

growth of m. Since every vertex in G has only finitely

many incoming edges, the sets of vertices having the

same value of m are finite. Thus, we can break the ties
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in the m-based order using any deterministic procedure

on these finite sets.

Eventually, by choosing the first k-bivalent vertex

in their local trees Υi, the correct processes will even-

tually stabilize on the same k-bivalent vertex σ̃ in the

limit tree Υ and apply the CHT extraction procedure

to derive the same correct process based on k-tags as-

signed to σ̃’s descendants.

Thus, the correct processes will eventually locate

the same k-bivalent vertex and then, as in [4], stabi-

lize extracting the same correct process identifier. This

gives a reduction algorithm emulating Ω.

4.2 Ω is sufficient for ERC

Chandra and Toueg proved that Ω is sufficient to imple-

ment the classical version of the consensus abstraction

in an environment where a majority of processes are

correct [5]. In this section, we extend this result to the

eventual repeated consensus abstraction for any envi-

ronment.

The proposed implementation of ERC is very simple.

Each process has access to an Ω failure detector mod-

ule. Upon each invocation of the ERC primitive, a pro-

cess broadcasts the proposed value (and the associated

consensus index). Every process stores every received

value. Each process pi periodically checks whether it

has received a value for the current consensus instance

from the process that it currently believes to be the

leader. If so, pi returns this value. The correctness of

this ERC implementation relies on the fact that, even-

tually, all correct processes trust the same leader (by

the definition of Ω) and then decide (return responses)
consistently on the values proposed by this process.

Lemma 2 In any environment E, ERC can be imple-

mented using Ω.

Proof We propose such an implementation in Algo-

rithm 4. Then, we prove that any admissible run r of

the algorithm in any environment E satisfies the ERC-

Termination, ERC-Integrity, ERC-Agreement, and ERC-

Validity properties.

Assume that a correct process never returns from

an invocation of proposeERC in r. Without loss of gen-

erality, denote by ` the smallest integer such that a

correct process pi never returns from the invocation

of proposeERC`. This implies that pi always evaluates

receivedi[Ωi, counti] to ⊥. We know by definition of

Ω that, eventually, Ωi always returns the same cor-

rect process pj . Hence, by construction of `, pj returns

from proposeERC0,..., proposeERC`−1 and then sends

the message promote(v, `) to all processes in a finite

Algorithm 4 ERC using Ω: algorithm for process pi
Local variables:

counti: integer (initially 0) that stores the number of the
last instances of consensus invoked by pi
receivedi: two dimensional tabular that stores a value for
each pair of processes/integer (initially ⊥)

Functions:
DecideEC(`, v) returns the value v as a response to
proposeERC`

Messages:
promote(v, `) with v ∈ {0, 1} and ` ∈ N

On invocation of proposeERC`(v)
counti := `
Send promote(v, `) to all

On reception of promote(v, `) from pj
receivedi[j, `] := v

On local time out
If receivedi[Ωi, counti] 6= ⊥ then⌊
DecideEC(counti, receivedi[Ωi, counti])

time. As pi and pj are correct, pi receives this message

and updates receivedi[Ωi, counti] to v in a finite time.

Therefore, the algorithm satisfies the ERC-Termination

property.

The update of the variable counti to ` for any pro-

cess pi that invokes proposeERC` and the assumptions

on operations proposeERC ensure us that pi executes at

most once the function DecideEC(`, receivedi[Ωi, `]).

Hence, the ERC-Integrity property is satisfied.

Let τΩ be the time from which the local outputs of

Ω are identical and constant for all correct processes in

r. Let k be the smallest integer such that any process

that invokes proposeERCk in r invokes it after τΩ .

Let ` be an integer such that ` ≥ k. Assume that pi
and pj are two processes that respond to proposeERC`.

Then, they respectively execute the function

DecideEC(`, receivedi[Ωi, `]) and DecideEC(`,

receivedj [Ωj , `]). By construction of k, we can deduce

that Ωi = Ωj = pl. That implies that pi and pj both

received a message promote(v, `) from pl. As pl sends

such a message at most once, we can deduce that

receivedi[pl, `] = receivedj [pl, `], which ensures the

ERC-Agreement property.

Assume that pi is a process that responds to

proposeERC`, for some ` = 1, 2, . . .. The value returned

by pi was previously received from Ωi in a message

of type promote. By construction of the protocol, Ωi
sends only one message of this type and this latter con-

tains the value proposed to Ωi, hence, the ERC-Validity

property is satisfied.

Thus, Algorithm 4 indeed implements ERC in any

environment using Ω.
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5 An Eventual Total Order Broadcast

Algorithm

We have shown in the previous section that Ω is the

weakest failure detector for the ERC abstraction (and,

by Theorem 1, the ETOB abstraction) in any environ-

ment. In this section, we describe an algorithm that di-

rectly implements ETOB using Ω and which we believe

is interesting in its own right.

The algorithm has three interesting properties.

First, it needs only two communication steps to deliver

any message when the leader does not change, whereas

algorithms implementing classical TOB need at least

three communication steps in this case [26]. Second,

the algorithm actually implements total order broad-

cast if Ω outputs the same leader at all processes from

the very beginning. Third, the algorithm additionally

ensures the property of TOB-Causal-Order, which does

not require more information about faults.

The intuition behind this algorithm is as follows.

Every process that intends to ETOB-broadcast a mes-

sage sends it to all other processes. Each process pi
has access to an Ω failure detector module and main-

tains a DAG that stores the set of messages delivered so

far together with their causal dependencies. As long as

pi considers itself the leader (its module of Ω outputs

pi), it periodically sends to all processes a sequence of

messages computed from its DAG so that the sequence

respects the causal order and admits the last delivered

sequence as a prefix. A process that receives a sequence

of messages delivers it only if it has been sent by the cur-

rent leader output by Ω. The correctness of this algo-

rithm directly follows from the properties of Ω. Indeed,

once all correct processes trust the same leader, this

leader promotes its own sequence of messages, which

ensures the ETOB specification.

The pseudocode of the algorithm is given in Algo-

rithm 5. Below we present the proof of its correctness,

including the proof that the algorithm additionally en-

sures TOB-Causal-Order.

Theorem 3 In any environment E, Algorithm AET OB
implements ETOB using Ω.

Proof First, we prove that any run r of AET OB
in any environment E satisfies the TOB-Validity,

TOB-No-creation, TOB-No-duplication, and TOB-

Agreement properties.

Assume that a correct process pi broadcasts a mes-

sage m at time t for a given t ∈ N. We know that Ω

outputs the same correct process pj to all correct pro-

cesses in a finite time. As pj is correct, it receives the

message update(CGi) from pi (that contains m) in a

finite time. Then, pj includes m in its causality graph

Algorithm 5 AET OB: protocol for process pi
Output variable:

di: sequence of messages m (initially empty) output by
pi

Internal variables:
promotei: sequence of messages (initially empty) pro-
moted by pi when Ωi = pi
CGi: directed graph on messages (initially empty) that
contains causality dependencies known by pi

Messages:
update(CGi) with CGi a directed graph on messages
promote(promotei) with promotei a sequence of mes-
sages

Functions:
UpdateCG(m,C(m)) adds the node m and the set of
edges {(m′,m)|m′ ∈ C(m)} to CGi

UnionCG(CGj) replaces CGi by the union of CGi and
CGj

UpdatePromote() replaces promotei by one of the se-
quences of messages s such that promotei is a prefix of s,
s contains once all messages of CGi, and for every edge
(m1,m2) of CGi, m1 appears before m2 in s

On broadcastETOB(m,C(m)) from the application
UpdateCG(m,C(m))
Send update(CGi) to all

On reception of update(CGj) from pj
UnionCG(CGj)
UpdatePromote()

On reception of promote(promotej) from pj
If Ωi = pj then⌊
di := promotej

On local time out
If Ωi = pi then⌊
Send promote(promotei) to all

(by a call to UnionCG) and in its promotion sequence

(by a call to UpdatePromote). As pj never removes a

message from its promotion sequence and is output by

Ω, pi adopts the promotion sequence of pj in a finite

time and this sequence contains m, which proves that

AET OB satisfies the TOB-Validity property.

Any sequence output by any process is built by a

call to UpdatePromote by a process pi. This function

ensures that any message appearing in the computed

sequence appears in the graph CGp. This graph is built

by successive calls to UnionCG that ensure that the

graph contains only messages received in a message of

type update. The construction of the protocol ensures

us that such messages have been broadcast by a process.

Then, we can deduce that AET OB satisfies the TOB-No-

creation property.

Any sequence output by any process is built by a

call to UpdatePromote that ensures that any message

appears only once. Then, we can deduce that AET OB
satisfies the TOB-No-duplication property.

Assume that a correct process pi stably delivers a

message m at time t for a given t ∈ N. We know that

Ω outputs the same correct process pj to all correct
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processes after some finite time. Since m appears in ev-

ery di(t
′) such that t′ ≥ t, we derive that m appears

infinitely in promotej from a given point of the run.

Hence, the construction of the protocol and the cor-

rectness of pj imply that any correct process eventu-

ally stably delivers m, and AET OB satisfies the TOB-

Agreement property.

We now prove that, for any environment E , for any

run r of AET OB in E , there exists a τ ∈ N satisfying

ETOB-Stability, ETOB-Total-order, and TOB-Causal-

Order properties in r. Hence, let r be a run of AET OB
in an environment E . Let us define:

– τΩ the time from which the local outputs of Ω are

identical and constant for all correct processes in r;

– ∆c the longest communication delay between two

correct processes in r;

– ∆t the longest local timeout for correct processes in

r;

– τ = τΩ +∆t +∆c

Let pi be a correct process and pj be the correct

process elected by Ω after τΩ . Let t1 and t2 be two

integers such that τ ≤ t1 ≤ t2. As the output of Ω

is stable after τΩ and the choice of τ ensures us that

pi receives at least one message of type promote from

pj , we can deduce from the construction of the pro-

tocol that there exists t3 ≤ t1 and t4 ≤ t2 such that

di(t1) = promotej(t3) and di(t2) = promotej(t4). But

the function UpdatePromote used to build promotej
ensures that promotej(t3) is a prefix of promotej(t4).

Then, AET OB satisfies the ETOB-Stability property af-

ter time τ .

Let pi and pj be two correct processes such that

two messages m1 and m2 appear in di(t) and dj(t) at
time t ≥ τ . Assume that m1 appears before m2 in di(t).

Let pk be the correct process elected by Ω after τΩ . As

the output of Ω is stable after τΩ and the choice of τ

ensures us that pi and pj receive at least one message of

type promote from pj , the construction of the protocol

ensures us that we can consider t1 and t2 such that

di(t) = promotek(t1) and dj(t) = promotek(t2). The

definition of the function UpdatePromote executed by

pk allows us to deduce that either di(t) is a prefix of

dj(t) or dj(t) is a prefix of di(t). In both cases, we obtain

that m1 appears before m2 in dj(t), which proves that

AET OB satisfies the ETOB-Total-order property after

time τ .

Let pi be a correct process such that two messages

m1 and m2 appear in di(t) at time t ≥ 0. Assume

that m1 ∈ C(m2) when m2 is broadcast. Let pj be

the process trusted by Ωi at the time pi adopts the se-

quence di(t). If m2 appears in di(t), that implies that

the edge (m1,m2) appears in CGj at the time pj ex-

ecutes UpdatePromote (since pj previously executed

UnionCG that includes at least m and the set of edges

{(m′,m)|m′ ∈ C(m)} in CGj). The construction of

UpdatePromote ensures us that m1 appears before m2

in di(t), which proves that AET OB satisfies the TOB-

Causal-Order property.

In conclusion, AET OB is an implementation of

ETOB assuming that processes have access to the Ω

failure detector in any environment.

6 Related Work

Modern data service providers are intended to offer

highly available services by replicating the services over

several server processes. In order to tolerate process fail-

ures as well as partitions, forms of eventual consistency

are typically considered [28,33,31].

Assuming read and write operations, we can distin-

guish two main kinds of guarantees [2]: basic eventual

consistency ensures that the effect of every write oper-

ation will eventually become visible to all replicas and

ordering guarantees impose conditions on the order in

which operations may be performed.

Data stores such as Amazon’s Dynamo [10] or Cas-

sandra [23] rely on basic eventual consistency alone to

support a large number of read/write operations per

second on a set of replicas. In their eventual consis-

tency model, read and write operations may be per-

formed on non-overlapping subsets of nodes. Once a

write is acknowledged from a subset, the new value is

asynchronously propagated to the remaining replicas.

This update propagation property [3] ensures that all

replicas are eventually updated. However, stale values

may be observed if readers fetch data from replicas that

have not yet received the ongoing updates.

Basic eventual consistency is often too weak for the

users and many systems provide additional stronger

guarantees on the ordering of operations. We can then

distinguish session and prefix guarantees.

Session guarantees [32] preserve order of operations

issued from a user in the same session, i.e., informally,

a sequence of read and write operations performed dur-

ing an execution of an application. Read-your-writes is

a session consistency model [33] commonly used where a

user after having written an object, always accesses the

updated value and never sees an older value. In mono-

tonic read consistency when a user has seen a value

for an object, any subsequent accesses to the same ob-

ject by that user will never return any previous val-

ues whereas monotonic write consistency serializes the

writes by the same process.

Prefix guarantees define orders on the set of update

operations applied to each replica. For instance, in [28],
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Saito and Shapiro define eventual consistency in data

stores. Assuming that the replicas start from the same

initial state, they agree on the a committed prefix of op-

erations, and this prefix should grow monotonically over

time. Moreover, every submitted operation must even-

tually be included in the committed prefix. However,

for the purpose of conflict resolution, some operation

may be included in the prefix but not executed.

The committed prefix ensures that starting from the

same initial state, all replicas produce the same final

state. Note that the prefixes of different replicas are

equivalent but not necessarily identical. For instance,

two consecutive commuting operations may appear in

different orders in the prefixes of two replicas, since this

difference does not affect the final state.

ETOB properties ensure both the update propaga-

tion and order (session and prefix) guarantees where

messages represent operations from clients to replicas.

With TOB-Validity and TOB-Agreement all messages

will be delivered to every correct replica thus ensur-

ing update propagation. Session consistency models are

examples of causal consistency satisfying by the TOB-

Causality property of ETOB. On the other hand, our al-

gorithm implementing ETOB ensures that after a time τ

when all processes stabilize on trusting the same leader

all replicas apply the same sequence of messages while

the ETOB-Stability ensures the growth of this prefix

after τ .

In [14], the intuition behind eventual consistency

was captured through the concept of eventual seri-

alizability. Two types of operations were defined: (1)

“strict” operations need to be a stable part of a total

order at the time of acknowledgement and (2) “weak”

operations can be later re-ordered preserving the causal

order of operations invoked by the same client. Our

ETOB abstraction captures consistency with respect to

the “weak” operations. (Our lower bound on the neces-

sity of Ω naturally extends to the stronger definitions.)

Our perspective on eventual consistency is closely

related to the notion of eventual linearizability dis-

cussed recently in [30] and [19]. It is shown in [30] that

the weakest failure detector to boost eventually lineariz-

able objects to linearizable ones is ♦P . We are focus-

ing primarily on the weakest failure detector to imple-

ment eventual consistency, so their result is orthogo-

nal to ours. In [19], eventual linearizability is compared

against linearizability in the context of implementing

specific objects in a shared-memory context. It turns

out that an eventually linearizable implementation of

a fetch-and-increment object is as hard to achieve as a

linearizable one. Our ETOB construction can be seen

as an eventually linearizable universal construction:

given any sequential object type, ETOB provides an

eventually linearizable concurrent implementation of it.

Brought to the message-passing environment with a

correct majority, our results complement [19]: we show

that in this setting, an eventually consistent replicated

service (eventually linearizable object with a sequen-

tial specification) requires exactly the same information

about failures as a consistent (linearizable) one.

The notion of eventual consensus was introduced

in [22]. It refers to one instance of consensus which sta-

bilizes at the end; not multiple instances as we consider

in this paper. In [12], a self-stabilizing form of consensus

was proposed: assuming a self-stabilizing implementa-

tion of �S (also described in the paper) and executing a

sequence of consensus instances, validity and agreement

are eventually ensured. This abstraction is close to our

ERC, but the authors of [22] focused on the shared-

memory model and did not address the question of the

weakest failure detector.

7 Concluding Remarks

This paper defined the abstraction of eventual total or-

der broadcast and proved its equivalence to eventual re-

peated consensus: two fundamental building blocks to

implement a general replicated state machine that en-

sures eventual consistency. We proved that the weakest

failure detector to implement these abstractions is Ω, in

any message-passing environment. We could hence de-

termine the gap between building a general replicated

state machine that ensures consistency in a message-

passing system and one that ensures only eventual con-

sistency. In terms of information about failures, this gap

is precisely captured by failure detector Σ [11]. In terms

of time complexity, the gap is exactly one message de-

lay: An operation on the strongly consistent replicated

state machine must, in the worst case, incur three com-

munication steps [26], while one built using our even-

tually total order broadcast protocol completes an op-

eration in the optimal number of two communication

steps.

Our ETOB abstraction captures a form of even-

tual consistency implemented in multiple replicated ser-

vices [10,8,6]. In addition to eventual consistency guar-

antees, such systems sometimes produce indications

when a prefix of operations on the replicated service is

committed, i.e., is not subject to further changes. A pre-

fix of operations can be committed, e.g., in sufficiently

long periods of synchrony, when a majority of correct

processes elect the same leader and all incoming and

outgoing messages of the leader to the correct majority

are delivered within some fixed bound. Such indications

could easily be implemented, during the stable periods,
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on top of ETOB. Naturally, our results imply that Ω is

necessary for such systems too.

The folklore “CAP theorem” [1,17] states that

no asynchronous system can combine (C)onsistency,

(A)vailability, and (P)artition-tolerance. Our result

complements this claim. Indeed, it shows that replacing

consistency with eventual consistency, while still pro-

viding availability and partition-tolerance, still requires

the information about failures encapsulated in Ω.
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inférieure répartie. Technical Report LIX/RR/94/06,

Laboratoire d’Informatique LIX, École Polytechnique,
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