
1

Bounding the Impact of Unbounded Attacks
in Stabilization

Swan Dubois, Toshimitsu Masuzawa, and Sébastien Tixeuil

Abstract—Self-stabilization is a versatile approach to fault-tolerance since it permits a distributed system to recover from
any transient fault that arbitrarily corrupts the contents of all memories in the system. Byzantine tolerance is an attractive
feature of distributed systems that permits to cope with arbitrary malicious behaviors. Combining these two properties
proved difficult: it is impossible to contain the spatial impact of Byzantine nodes in a self-stabilizing context for global tasks
such as tree orientation and tree construction.
We present and illustrate a new concept of Byzantine containment in stabilization. Our property, called Strong Stabilization
enables to contain the impact of Byzantine nodes if they actually perform too many Byzantine actions. We derive impossi-
bility results for strong stabilization and present strongly stabilizing protocols for tree orientation and tree construction that
are optimal with respect to the number of Byzantine nodes that can be tolerated in a self-stabilizing context.

Index Terms—Byzantine fault, Distributed algorithm, Fault tolerance, Stabilization, Spanning tree construction

F

1 INTRODUCTION

The advent of ubiquitous large-scale distributed
systems advocates that tolerance to various kinds of
faults and hazards must be included from the very
early design of such systems. Self-stabilization [3],
[5], [14] is a versatile technique that permits for-
ward recovery from any kind of transient faults,
while Byzantine Fault-tolerance [9] is traditionally
used to mask the effect of a limited number of mali-
cious faults. Making distributed systems tolerant to
both transient and malicious faults is appealing yet
proved difficult [6], [2], [12] as impossibility results
are expected in many cases.

Two main paths have been followed to study the
impact of Byzantine faults in the context of self-

• S. Dubois is with the LIP6, UPMC Sorbonne Universités & INRIA,
France (E-mail: swan.dubois@lip6.fr).

• T. Masuzawa is with the Osaka University, Japan (E-mail:
masuzawa@ist.osaka-u.ac.jp)¿

• S. Tixeuil is with the LIP6, UPMC Sorbonne Universités & Institut
Universitaire de France, France (E-mail: sebastien.tixeuil@lip6.fr).

A preliminary version of this work appears in the proceedings of the
8th International Symposium on Stabilization, Safety, and Security of
Distributed Systems (SSS’06), see [10]. This work is supported in part
by ANR projects SHAMAN, ALADDIN and SPADES and by Global
COE (Centers of Excellence) Program of MEXT and Grant-in-Aid for
Scientific Research (B)22300009 of JSPS.

stabilization.The first one is Byzantine fault masking.
In completely connected synchronous systems, one
of the most studied problems in the context of
self-stabilization with Byzantine faults is that of
clock synchronization. In [1], [6], probabilistic self-
stabilizing protocols were proposed for up to one
third of Byzantine processors, while in [4], [8] de-
terministic solutions tolerate up to one fourth and
one third of Byzantine processors, respectively. The
second one is Byzantine containment. For local tasks
(i.e. tasks whose correctness can be checked locally,
such as vertex coloring, link coloring, or dining
philosophers), the notion of strict stabilization was
proposed [12], [13], [11]. Strict stabilization guar-
antees that there exists a containment radius outside
which the effect of permanent faults is masked. In
[12], the authors show that this Byzantine contain-
ment scheme is possible only for local tasks. As
many problems are not local, it turns out that it is
impossible to provide strict stabilization for those.

Our Contribution. In this paper, we investigate
the possibility of Byzantine containment in a self-
stabilizing setting for tasks that are global (i.e. for
with there exists a causality chain of size r, where
r depends on n the size of the network), and
focus on two global problems, namely tree orien-

tation and tree construction. As strict stabilization
is impossible with such global tasks, we weaken
the containment constraint by limiting the number
of times that correct processes can be disturbed
by Byzantine ones. Recall that strict stabilization
requires that processes beyond the containment ra-
dius eventually achieve their desired behavior and
are never disturbed by Byzantine processes after-
wards. We relax this requirement in the following
sense: we allow these correct processes beyond the
containment radius to be disturbed by Byzantine
processes, but only a limited number of times,
even if Byzantine nodes take an infinite number of
actions.

The main contribution of this paper is to present
new possibility results for containing the influence
of unbounded Byzantine behaviors. In more details,
we define the notion of strong stabilization as the
novel form of the containment and introduce dis-
ruption times to quantify the quality of the contain-
ment. The notion of strong stabilization is weaker
than the strict stabilization but is stronger than
the classical notion of self-stabilization (i.e. every
strongly stabilizing protocol is self-stabilizing, but
not necessarily strictly stabilizing). While strict sta-
bilization aims at tolerating an unbounded number
of Byzantine processes, we explicitly refer the num-
ber of Byzantine processes to be tolerated. A self-
stabilizing protocol is (t, c, f)-strongly stabilizing if
the subsystem consisting of processes more than c
hops away from any Byzantine process is disturbed
at most t times in a distributed system with at
most f Byzantine processes. Here c denotes the
containment radius and t denotes the disruption
time.

To demonstrate the possibility and effectiveness
of our notion of strong stabilization, we consider
tree construction and tree orientation. It is shown in
[12] that there exists no strictly stabilizing proto-
col with a constant containment radius for these
problems. The impossibility result can be extended
even when the number of Byzantine processes is
upper bounded (by one). In this paper, we provide
a (f∆d, 0, f)-strongly stabilizing protocol for rooted
tree construction, provided that correct processes
remain connected, where n (respectively f) is the
number of processes (respectively Byzantine pro-
cesses) and d is the diameter of the subsystem
consisting of all correct processes. The containment

radius of 0 is obviously optimal. We show that
the problem of tree orientation has no constant
bound for the containment radius in a tree with two
Byzantine processes even when we allow processes
beyond the containment radius to be disturbed a
finite number of times. Then we consider the case
of a single Byzantine process and present a (∆, 0, 1)-
strongly stabilizing protocol for tree orientation,
where ∆ is the maximum degree of processes. The
containment radius of 0 is also optimal. Notice that
each process does not need to know the number
f of Byzantine processes and that f can be n − 1
at the worst case. In other words, the algorithm is
adaptive in the sense that the disruption times de-
pend on the actual number of Byzantine processes.
Both algorithms are also optimal with respect to the
number of tolerated Byzantine nodes.

Due to space limitations, this paper contains
only the formal definition of strong stabilization
and a short presentation of results related to tree
construction. The interested reader could find in the
associated supplementary file (i) a discussion on re-
lationship between strong stabilization and pseudo
stabilization (Section 1), (ii) complete proofs and
time complexities of the tree construction (Section
2), and (iii) the complete study of tree orientation
(Section 3).

2 PRELIMINARIES

2.1 Distributed System

A distributed system S = (P,L) consists of a set
P = {v1, v2, . . . , vn} of processes and a set L of bidi-
rectional communication links (simply called links).
A link is an unordered pair of distinct processes. A
distributed system S can be regarded as a graph
whose vertex set is P and whose link set is L, so
we use graph terminology to describe a distributed
system S.

Processes u and v are called neighbors if (u, v) ∈ L.
The set of neighbors of a process v is denoted by
Nv , and its cardinality (the degree of v) is denoted by
∆v(= |Nv|). The degree ∆ of a distributed system
S = (P,L) is defined as ∆ = max{∆v | v ∈ P}.
We do not assume existence of a unique identifier
for each process (that is, the system is anonymous).
Instead we assume each process can distinguish
its neighbors from each other by locally arranging

2

them in some arbitrary order: the k-th neighbor of
a process v is denoted by Nv(k) (1 ≤ k ≤ ∆v).

Processes can communicate with their neighbors
through link registers. For each pair of neighboring
processes u and v, there are two link registers
ru,v and rv,u. Message transmission from u to v
is realized as follows: u writes a message to link
register ru,v and then v reads it from ru,v . The link
register ru,v is called an output register of u and is
called an input register of v. The set of all output
(respesctively input) registers of u is denoted by
Outu (respectively Inu), i.e. Outu = {ru,v | v ∈ Nu}
and Inu = {rv,u |v ∈ Nu}.

The variables that are maintained by processes
denote process states. Similarly, the values of the
variables stored in each link register denote the
state of the registers. A process may take actions
during the execution of the system. An action is
simply a function that is executed in an atomic
manner by the process. The actions executed by
each process is described by a finite set of guarded
actions of the form 〈guard〉 −→ 〈statement〉. Each
guard of process u is a boolean expression involv-
ing the variables of u and its input registers. Each
statement of process u is an update of its state and
its output/input registers.

A global state of a distributed system is called a
configuration and is specified by a product of states
of all processes and all link registers. We define
C to be the set of all possible configurations of
a distributed system S. For a process set R ⊆ P

and two configurations ρ and ρ′, we denote ρ R7→ ρ′

when ρ changes to ρ′ by executing an action of
each process in R simultaneously. Notice that ρ and
ρ′ can be different only in the states of processes
in R and the states of their output registers. For
completeness of execution semantics, we should
clarify the configuration resulting from simultane-
ous actions of neighboring processes. The action of
a process depends only on its state at ρ and the
states of its input registers at ρ, and the result of
the action reflects on the states of the process and
its output registers at ρ′.

A schedule of a distributed system is an infinite
sequence of process sets. Let Q = R1, R2, . . . be a
schedule, where Ri ⊆ P holds for each i (i ≥ 1).
An infinite sequence of configurations e = ρ0, ρ1, . . .
is called an execution from an initial configuration

ρ0 by a schedule Q, if e satisfies ρi−1
Ri

7→ ρi for
each i (i ≥ 1). Process actions are executed atomi-
cally, and we also assume that a distributed daemon
schedules the actions of processes, i.e. any subset of
processes can simultaneously execute their actions.

The set of all possible executions from ρ0 ∈ C
is denoted by Eρ0 . The set of all possible execu-
tions is denoted by E, that is, E =

⋃
ρ∈C Eρ. We

consider asynchronous distributed systems where
we can make no assumption on schedules except
that any schedule is weakly fair: every process is
contained in infinite number of subsets appearing
in any schedule.

In this paper, we consider (permanent) Byzan-
tine faults: a Byzantine process (i.e. a Byzantine-
faulty process) can make arbitrary behavior in-
dependently from its actions. If v is a Byzantine
process, v can repeatedly change its variables and
its out put registers arbitrarily.

In asynchronous distributed systems, time is
usually measured by asynchronous rounds (simply
called rounds). Let e = ρ0, ρ1, . . . be an execution
by a schedule Q = R1, R2, The first round
of e is defined to be the minimum prefix of e,
e′ = ρ0, ρ1, . . . , ρk, such that

⋃k
i=1R

i = P ′ where
P ′ is the set of correct processes of P . Round t (t ≥
2) is defined recursively, by applying the above
definition of the first round to e′′ = ρk, ρk+1,
Intuitively, every correct process has a chance to
update its state in every round.

2.2 Self-Stabilizing Protocol Resilient to Byzan-
tine Faults

Problems considered in this paper are so-called
static problems, i.e. they require the system to find
static solutions. For example, the spanning-tree con-
struction problem is a static problem, while the mu-
tual exclusion problem is not. Some static problems
can be defined by a specification predicate (shortly,
specification), spec(v), for each process v: a config-
uration is a desired one (with a solution) if every
process satisfies spec(v). A specification spec(v) is a
boolean expression on variables of Pv (⊆ P) where
Pv is the set of processes whose variables appear in
spec(v). The variables appearing in the specification
are called output variables (shortly, O-variables). In
what follows, we consider a static problem defined
by specification spec(v).

3

A self-stabilizing protocol is a protocol that eventu-
ally reaches a legitimate configuration, where spec(v)
holds at every process v, regardless of the initial
configuration. Once it reaches a legitimate con-
figuration, every process v never changes its O-
variables and always satisfies spec(v). From this
definition, a self-stabilizing protocol is expected to
tolerate any number and any type of transient faults
since it can eventually recover from any configura-
tion affected by the transient faults. However, the
recovery from any configuration is guaranteed only
when every process correctly executes its action
from the configuration, i.e., we do not consider
existence of permanently faulty processes.

When (permanent) Byzantine processes exist,
Byzantine processes may not satisfy spec(v). In
addition, correct processes near the Byzantine pro-
cesses can be influenced and may be unable to
satisfy spec(v). Nesterenko and Arora [12] define
a strictly stabilizing protocol as a self-stabilizing pro-
tocol resilient to unbounded number of Byzantine
processes.

Given an integer c, a c-correct process is a process
defined as follows.

Definition 1 (c-correct process): A process is c-
correct if it is correct (i.e. not Byzantine) and located
at distance more than c from any Byzantine process.

Definition 2 ((c, f)-containment): A configuration
ρ is (c, f)-contained for specification spec if, given
at most f Byzantine processes, in any execution
starting from ρ, every c-correct process v always
satisfies spec(v) and never changes its O-variables.

The parameter c of Definition 2 refers to the
containment radius defined in [12]. The parameter
f refers explicitly to the number of Byzantine pro-
cesses, while [12] dealt with unbounded number of
Byzantine faults (that is f ∈ {0 . . . n}).

Definition 3 ((c, f)-strict stabilization): A protocol
is (c, f)-strictly stabilizing for specification spec if,
given at most f Byzantine processes, any execution
e = ρ0, ρ1, . . . contains a configuration ρi that is
(c, f)-contained for spec.

An important limitation of the model of [12] is
the notion of r-restrictive specifications. Intuitively,
a specification is r-restrictive if it prevents com-
binations of states that belong to two processes u
and v that are at least r hops away. An important
consequence related to Byzantine tolerance is that
the containment radius of protocols solving those

specifications is at least r. For some problems, such
as the spanning tree construction we consider in
this paper, r can not be bounded to a constant. We
can show that there exists no (o(n), 1)-strictly stabi-
lizing protocol for the spanning tree construction.

To circumvent the impossibility result, we de-
fine a weaker notion than the strict stabilization.
Here, the requirement to the containment radius is
relaxed, i.e. there may exist processes outside the
containment radius that invalidate the specification
predicate, due to Byzantine actions. However, the
impact of Byzantine triggered action is limited in
times: the set of Byzantine processes may only
impact the subsystem consisting of processes out-
side the containment radius a bounded number
of times, even if Byzantine processes execute an
infinite number of actions.

From the states of c-correct processes, c-legitimate
configurations and c-stable configurations are defined
as follows.

Definition 4 (c-legitimate configuration): A config-
uration ρ is c-legitimate for spec if every c-correct
process v satisfies spec(v).

Definition 5 (c-stable configuration): A configura-
tion ρ is c-stable if every c-correct process never
changes the values of its O-variables as long as
Byzantine processes make no action.

Roughly speaking, the aim of self-stabilization is
to guarantee that a distributed system eventually
reaches a c-legitimate and c-stable configuration.
However, a self-stabilizing system can be disturbed
by Byzantine processes after reaching a c-legitimate
and c-stable configuration. The c-disruption repre-
sents the period where c-correct processes are dis-
turbed by Byzantine processes and is defined as
follows

Definition 6 (c-disruption): A portion of execution
e = ρ0, ρ1, . . . , ρt (t > 1) is a c-disruption if and
only if the following holds: (i) e is finite, (ii) e
contains at least one action of a c-correct process
for changing the value of an O-variable, (iii) ρ0

is c-legitimate for spec and c-stable, and (iv) ρt is
the first configuration after ρ0 such that ρt is c-
legitimate for spec and c-stable.

Now we can define a self-stabilizing protocol
such that Byzantine processes may only impact the
subsystem consisting of processes outside the con-
tainment radius a bounded number of times, even
if Byzantine processes execute an infinite number

4

of actions.
Definition 7 ((t, k, c, f)-time contained configuration):

A configuration ρ0 is (t, k, c, f)-time contained for
spec if given at most f Byzantine processes,
the following properties are satisfied: (i) ρ0

is c-legitimate for spec and c-stable, (ii) every
execution starting from ρ0 contains a c-legitimate
configuration for spec after which the values of
all the O-variables of c-correct processes remain
unchanged (even when Byzantine processes
make actions repeatedly and forever), (iii) every
execution starting from ρ0 contains at most t
c-disruptions, and (iv) every execution starting
from ρ0 contains at most k actions of changing the
values of O-variables for each c-correct process.

Definition 8 ((t, c, f)-strongly stabilizing protocol):
A protocol A is (t, c, f)-strongly stabilizing if and
only if starting from any arbitrary configuration,
every execution involving at most f Byzantine
processes contains a (t, k, c, f)-time contained
configuration that is reached after at most l
rounds. Parameters l and k are respectively the
(t, c, f)-stabilization time and the (t, c, f)-process-
disruption time of A.

Note that a (t, k, c, f)-time contained configura-
tion is a (c, f)-contained configuration when t =
k = 0, and thus, (t, k, c, f)-time contained config-
uration is a generalization (relaxation) of a (c, f)-
contained configuration. Thus, a strongly stabiliz-
ing protocol is weaker than a strictly stabilizing one
(as processes outside the containment radius may
take incorrect actions due to Byzantine influence).
However, a strongly stabilizing protocol is stronger
than a classical self-stabilizing one (that may never
meet their specification in the presence of Byzantine
processes).

The parameters t, k and c are introduced to
quantify the strength of fault containment, we do
not require each process to know the values of the
parameters. Actually, the protocols proposed in this
paper assume no knowledge on the parameters.

3 STRONGLY-STABILIZING SPANNING
TREE CONSTRUCTION

3.1 Problem Definition
In this section, we consider only distributed sys-
tems in which a given process r is distinguished as
the root of the tree.

For spanning tree construction, each process v has
an O-variable prntv to designate a neighbor as its
parent. Since processes have no identifiers, prntv
actually stores k (∈ {1, 2, . . . , ∆v}) to designate
its k-th neighbor as its parent. No neighbor is
designated as the parent of v when prntv = 0 holds.
For simplicity, we use prntv = k (∈ {1, 2, . . . , ∆v})
and prntv = u (where u is the k-th neighbor of
v ∈ Nv(k)) interchangeably, and prntv = 0 and
prntv = ⊥ interchangeably.

The goal of spanning tree construction is to set
prntv of every process v to form a rooted spanning
tree, where prntr = 0 should hold for the root
process r.

We consider Byzantine processes that can behave
arbitrarily. The faulty processes can behave as if
they were any internal processes of the spanning
tree, or even as if they were the root processes. The
first restriction we make on Byzantine processes is
that we assume the root process r can start from
an arbitrary state, but behaves correctly according
to a protocol. Another restriction on Byzantine
processes is that we assume that all the correct
processes form a connected subsystem; Byzantine
processes never partition the system.

It is impossible, for example, to distinguish the
(real) root r from the faulty processes behaving as
the root, we have to allow that a spanning forest
(consisting of multiple trees) is constructed, where
each tree is rooted with a root, correct or faulty one.

We define the specification predicate spec(v) of
the tree construction as follows. spec(v) is the pred-
icate (prntv = 0)∧ (levelv = 0) if v is the root r and
(prntv ∈ {1, . . . , ∆v}) ∧ ((levelv = levelprntv + 1) ∨
(prntv is Byzantine)) otherwise.

Notice that spec(v) requires that a spanning tree
is constructed at any 0-legitimate configuration,
when no Byzantine process exists.

Figure 1 shows an example of 0-legitimate con-
figuration with Byzantine processes. The arrow at-
tached to each process points the neighbor desig-
nated as its parent.

3.2 Protocol ss-ST

In many self-stabilizing tree construction protocols
(see the survey of [7]), each process checks locally
the consistence of its level variable with respect
to the one of its neighbors. When it detects an

5

m m m

mm
m

mmm

>
��

I ?

r

b

1

1:

2
1

0

1

2

4

3 -

Fig. 1. A legitimate configuration for spanning
tree construction (numbers denote the level of pro-
cesses). r is the (real) root and b is a Byzantine
process which acts as a (fake) root.

inconsistency, it changes its prnt variable in order to
choose a “better” neighbor. The notion of “better”
neighbor is based on the global desired property on
the tree (e.g. shortest path tree, minimun spanning
tree...).

When the system may contain Byzantine pro-
cesses, they may disturb their neighbors by provid-
ing alternatively “better” and “worse” states. The
key idea of protocol ss-ST to circumvent this kind
of perturbation is the following: when a correct
process detects a local inconsistency, it does not
choose a “better” neighbor but it chooses another
neighbor according to a round robin order (along
the set of its neighbor).

Figure 2 presents our strongly-stabilizing span-
ning tree construction protocol ss-ST that can tol-
erate any number of Byzantine processes other
than the root process (providing that the subset
of correct processes remains connected). These as-
sumptions are necessary since a Byzantine root or
a set of Byzantine processes that disconnects the
set of correct processes may disturb all the tree
infinitely often. Then, it is impossible to provide
a (t, k, f)-strongly stabilizing protocol for any finite
integer t.

The protocol is composed of three rules. Only the
root can execute the first one (GA0). This rule sets
the root in a legitimate state if it is not the case.
Non-root processes may execute the two other rules
(GA1 and GA2). The rule GA1 is executed when the
state of a process is not legitimate. Its execution
leads the process to choose a new parent and to
compute its local state in function of this new par-

ent. The last rule (GA2) is enabled when a process is
in a legitimate state but there exists an inconsistence
between its variables and its shared registers. The
execution of this rule leads the process to compute
the consistent values for all its shared registers.

3.3 Proof of Strong Stabilization of ss-ST
In this section, we provide a sketch of the proof of
the strong stabilization of ss-ST .

We cannot make any assumption on the initial
values of register variables. But, we can observe
that if an output register of a correct process has
inconsistent values with the process variables then
this process is enabled by a rule of ss-ST . By
fairness assumption, any such process takes a step
in a finite time.

Once a correct process v executes one of its
action, variables of its output registers have
values consistent with the process variables: r-
prntv,prntv = true, r-prntv,w = false (w ∈ Nv −
{prntv}), and r-levelv,w = levelv (w ∈ Nv) hold.

Consequently, we can assume in the following
that all the variables of output registers of every
correct process have consistent values with the
process variables.

We denote by LC the following set of configura-
tions: LC =

{
ρ ∈ C

∣∣∣(prntr = 0)∧(levelr = 0)∧
(
∀v ∈

V − (B ∪ {r}), (prntv ∈ {1, . . . , ∆v}) ∧ (levelv =
levelprntv + 1)

)}
.

We interest now on properties of configurations
of LC. We can observe that any configuration of LC
is 0-legitimate and that any correct process is not
enabled in such a configuration. We can deduce:

Lemma 1: Any configuration of LC is 0-legitimate
and 0-stable.

We can observe that there exists some 0-
legitimate configurations which not belong to LC
(for example the one of Figure 2).

To prove the convergence of ss-ST to LC start-
ing from any configuration, we prove that any
execution reaches a configuration in which every
correct process is disabled. We show that the root
r executes its rule at most once. Then, any of its
correct neighbor v executes its rule at most ∆v

before pointing to r. After that, v is never enabled.
By repeating the reasoning, we obtain:

Lemma 2: Given at most n − 1 Byzantine pro-
cesses, for any initial configuration ρ0 and any

6

constants of process v

∆v = the degree of v;
Nv = the set of neighbors of v;

variables of process v

prntv ∈ {0, 1, 2, . . . ,∆v}: integer; // prntv = 0 if v has no parent,
// prntv = k ∈ {1, 2, . . . ,∆v} if Nv[k] is the parent of v.

levelv : integer; // distance from the root.
variables in shared register rv,u

r-prntv,u: boolean; // r-prntv,u =true iff u is a parent of v.
r-levelv,u: integer; // the value of levelv

predicates

pred0 : prntv 6= 0 or levelv 6= 0 or ∃w ∈ Nv, [(r-prntv,w, r-levelv,w) 6= (false, 0)]
pred1 : prntv /∈ {1, 2, . . . , ∆v} or levelv 6= r-levelprntv,v + 1
pred2 : (r-prntv,prntv , r-levelv,prntv) 6= (true, levelv)

or ∃w ∈ Nv − {prntv}, [(r-prntv,w, r-levelv,w) 6= (false, levelv)]
atomic action of the root v = r // represented in form of guarded action

GA0:pred0 −→ prntv := 0; levelv := 0; for each w ∈ Nv do (r-prntv,w, r-levelv,w) := (false, 0);
atomic actions of v 6= r // represented in form of guarded actions

GA1:pred1 −→ prntv := nextv(prntv) where nextv(k) = (k mod ∆v) + 1;
levelv := r-levelprntv,v + 1; (r-prntv,prntv , r-levelv,prntv) := (true, levelv);
for each w ∈ Nv − {prntv} do (r-prntv,w, r-levelv,w) := (false, levelv);

GA2:¬pred1 and pred2 −→ (r-prntv,prntv , r-levelv,prntv) := (true, levelv);
for each w ∈ Nv − {prntv} do (r-prntv,w, r-levelv,w) := (false, levelv);

Fig. 2. Protocol ss-ST (actions of process v)

execution e = ρ0, ρ1, . . . starting from ρ0, there
exists a configuration ρi such that ρi ∈ LC.

It remains to prove that any execution starting
from an arbitrary configuration of LC contains only
a finite number of 0-disruptions. First, we prove
by induction on the distance δ between the root
and a correct process v in the subgraph of correct
processes that v executes its action at most ∆δ

times. We say that a Byzantine process b deceive
a correct neighbor v in the step ρ 7→ ρ′ if the state
of b makes the guard of an action of v true in ρ
and if v executes this action in this step. As a 0-
disruption can be caused only by an action of a
Byzantine process from a legitimate configuration,
we can bound the number of 0-disruptions by
counting the total number of times that correct
processes are deceived of neighboring Byzantine
processes. If a 0-correct v is deceived by a Byzantine
neighbor b, it takes necessarily ∆v actions before
being deceiving again by b (recall that we use
a round-robin policy for prntv). As any 0-correct

process v takes at most ∆d actions in any execution,
v can be deceived by a given Byzantine neighbor at
most ∆d−1 times. A Byzantine process can have at
most ∆ neighboring correct processes and thus can
deceive correct processes at most ∆ × ∆d−1 = ∆d

times. We have at most f Byzantine processes, so
the total number of times that correct processes
are deceived by neighboring Byzantine processes
is f∆d. Hence, the number of 0-disruption in e is
bounded by f∆D. Now, assume by contradiction
that there exists an infinite 0-disruption d = ρi, . . .
in e. This implies that for all j ≥ i, ρj is not in LC,
which contradicts Lemma 2. Then, we can state:

Lemma 3: Any configuration in LC is a
(f∆d,∆d, 0, f)-time contained configuration of
the spanning tree construction, where f is the
number of Byzantine processes and d is the
diameter of the subsystem consisting of all the
correct processes.

Hence the following theorem.
Theorem 1 (Strong-stabilization): Protocol ss-ST is

7

a (f∆d, 0, f)-strong stabilizing protocol for the
spanning tree construction, where f is the number
of Byzantine processes and d is the diameter of the
subsystem consisting of all the correct processes.

4 CONCLUDING REMARKS
We introduced the notion of strong stabilization, a
property that permits self-stabilizing protocols to
contain Byzantine behaviors for tasks where strict
stabilization is impossible. In strong stabilization,
only the first Byzantine actions that are performed
by a Byzantine process may disturb the system.
If the Byzantine node does not execute Byzantine
actions, but only correct actions, its existence re-
mains unnoticed by the correct processes. So, by
behaving properly, the Byzantine node may have
the system disturbed arbitrarily far in the execution.
By contrast, if the Byzantine node executes many
Byzantine actions at the beginning of the execution,
there exists a time after which those Byzantine
actions have no impact on the system. As a result,
the faster an attacker spends its Byzantine actions,
the faster the system become resilient to subsequent
Byzantine actions. An interesting trade-off appears:
the more actually Byzantine actions are performed,
the faster the stabilization of our protocols is (since
the number of steps performed by correct processes
in response to Byzantine disruption is independent
from the number of Byzantine actions). Our work
raises several important open questions.

First, is there a trade-off between the number
of perturbations Byzantine nodes can cause and
the containment radius ? In this paper, we strove
to obtain optimal containment radius in strong
stabilization, but it is likely that some problems
do not allow strong stabilization with containment
radius 0. It is then important to characterize the
difference in containment radius when the task to
be solved is “harder” than e.g. tree construction.

Second, is there a trade-off between the total
number of perturbations Byzantine nodes can cause
and the number of Byzantine nodes, that is, is a
single Byzantine node more effective to harm the
system than a team of Byzantine nodes, considering
the same total number of Byzantine actions ? A first
step in this direction was recently taken by [15],
where Byzantine actions are assumed to be upper
bounded, for the (global) problem of leader elec-
tion. Their result hints that only Byzantine actions

are relevant, independently of the number of pro-
cesses that perform them. It is thus interesting to
see if the result still holds in the case of potentially
infinite number of Byzantine actions.

REFERENCES

[1] Michael Ben-Or, Danny Dolev, and Ezra N. Hoch. Fast self-
stabilizing byzantine tolerant digital clock synchronization.
In ACM Symposium on Principles of Distributed Computing
(PODC 2008), pages 385–394, 2008.

[2] Ariel Daliot and Danny Dolev. Self-stabilization of byzan-
tine protocols. In Self-Stabilizing Systems (SSS 2005), pages
48–67, 2005.

[3] Edsger W. Dijkstra. Self-stabilizing systems in spite of
distributed control. Communication of ACM, 17(11):643–644,
1974.

[4] Danny Dolev and Ezra N. Hoch. On self-stabilizing syn-
chronous actions despite byzantine attacks. In International
Symposium on Distributed Computing (DISC 2007), pages
193–207, 2007.

[5] Shlomi Dolev. Self-Stabilization. MIT Press, 2000.
[6] Shlomi Dolev and Jennifer L. Welch. Self-stabilizing clock

synchronization in the presence of byzantine faults. Journal
of ACM, 51(5):780–799, 2004.

[7] Felix C. Gärtner. A survey of self-stabilizing spanning-
tree construction algorithms. Technical report ic/2003/38,
EPFL, 2003.

[8] Ezra N. Hoch, Danny Dolev, and Ariel Daliot. Self-
stabilizing byzantine digital clock synchronization. In Self-
Stabilizing Systems (SSS 2006), pages 350–362, 2006.

[9] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease.
The byzantine generals problem. ACM Transactions on
Programming Languages and Systems, 4(3):382–401, 1982.

[10] Toshimitsu Masuzawa and Sébastien Tixeuil. Bounding
the impact of unbounded attacks in stabilization. In Self-
Stabilizing Systems (SSS 2006), pages 440–453, 2006.

[11] Toshimitsu Masuzawa and Sébastien Tixeuil. Stabiliz-
ing link-coloration of arbitrary networks with unbounded
byzantine faults. International Journal of Principles and
Applications of Information Science and Technology (PAIST),
1(1):1–13, 2007.

[12] Mikhail Nesterenko and Anish Arora. Tolerance to un-
bounded byzantine faults. In Symposium on Reliable Dis-
tributed Systems (SRDS 2002), page 22, 2002.

[13] Yusuke Sakurai, Fukuhito Ooshita, and Toshimitsu Ma-
suzawa. A self-stabilizing link-coloring protocol resilient to
byzantine faults in tree networks. In International Conference
on Principles of Distributed Systems (OPODIS 2004), pages
283–298, 2005.

[14] Sébastien Tixeuil. Algorithms and Theory of Computation
Handbook, Second Edition, chapter Self-stabilizing Algo-
rithms, pages 26.1–26.45. Chapman & Hall/CRC Applied
Algorithms and Data Structures. CRC Press, Taylor &
Francis Group, 2009.

[15] Yukiko Yamauchi, Toshimitsu Masuzawa, and Doina Bein.
Adaptive containment of time-bounded byzantine faults.
In Self-Stabilizing Systems (SSS 2010), pages 126–140, 2010.

8

AUTHOR’S BIOGRAPHIES

Swan Dubois is currently a Ph.D student in
computer science at the University Pierre and Marie
Curie - Paris 6 and at the INRIA (France). Its
research interests are fault-tolerance in distributed
systems (especially self-stabilization) and graph
theory.

Toshimitsu Masuzawa received the B.E., M.E.
and D.E. degrees in computer science from Osaka
University in 1982, 1984 and 1987. He had worked
at Osaka University during 1987–1994, and was
an associate professor of Graduate School of In-
formation Science, Nara Institute of Science and
Technology (NAIST) during 1994–2000. He is now
a professor of Graduate School of Information Sci-
ence and Technology, Osaka University. He was
also a visiting associate professor of Department
of Computer Science, Cornell University between
1993-1994. His research interests include distributed
algorithms, parallel algorithms and graph theory.
He is a member of ACM, IEEE, IEICE and IPSJ.

Sébastien Tixeuil is a full professor at the Uni-
versity Pierre & Marie Curie - Paris 6 (France) and
Institut Universitaire de France, where he leads the
NPA research group. He received his Ph.D. from
University of Paris Sud-XI in 2000. His research
interests include fault and attack tolerance in dy-
namic networks and systems.

9

