
1

Bounding the Impact of Unbounded Attacks
in Stabilization: Supplementary File

Swan Dubois, Toshimitsu Masuzawa, and Sébastien Tixeuil

�

1 DISCUSSION BETWEEN STRONG STA-
BILIZATION AND PSEUDO STABILIZATION

There exists an analogy between the respective
powers of (c, f)-strict stabilization and (t, c, f)-
strong stabilization for the one hand, and self-
stabilization and pseudo-stabilization for the other
hand.
A pseudo-stabilizing protocol (defined in [1]) guar-

antees that every execution has a suffix that
matches the specification, but it could never reach
a legitimate configuration from which any possible
execution matches the specification. In other words,
a pseudo-stabilizing protocol can continue to be-
have satisfying the specification, but with having
possibility of invalidating the specification in fu-
ture. A particular schedule can prevent a pseudo-
stabilizing protocol from reaching a legitimate con-
figuration for arbitrarily long time, but cannot pre-
vent it from executing its desired behavior (that is, a
behavior satisfying the specification) for arbitrarily
long time. Thus, a pseudo-stabilizing protocol is
useful since desired behavior is eventually reached.

• S. Dubois is with the LIP6, UPMC Sorbonne Universités & INRIA,
France (E-mail: swan.dubois@lip6.fr).

• T. Masuzawa is with the Osaka University, Japan (E-mail:
masuzawa@ist.osaka-u.ac.jp).

• S. Tixeuil is with the LIP6, UPMC Sorbonne Universités & Institut
Universitaire de France, France (E-mail: sebastien.tixeuil@lip6.fr).

A preliminary version of this work appears in the proceedings of the
8th International Symposium on Stabilization, Safety, and Security of
Distributed Systems (SSS’06), see [2]. This work is supported in part
by ANR projects SHAMAN, ALADDIN and SPADES and by Global
COE (Centers of Excellence) Program of MEXT and Grant-in-Aid for
Scientific Research (B)22300009 of JSPS.

Similarly, every execution of a (t, c, f)-strongly
stabilizing protocol has a suffix such that every c-
correct process executes its desired behavior. But,
for a (t, c, f)-strongly stabilizing protocol, there
may exist executions such that the system never
reach a configuration after which Byzantine pro-
cesses never have the ability to disturb the c-correct
processes: all the c-correct processes can continue
to execute their desired behavior, but with hav-
ing possibility that the system (resp. each process)
could be disturbed at most t (resp. k) times by
Byzantine processes in future. A notable but subtle
difference is that the invalidation of the specifi-
cation is caused only by the effect of Byzantine
processes in a (t, c, f)-strongly stabilizing protocol,
while the invalidation can be caused by a scheduler
in a pseudo-stabilizing protocol.

2 STRONGLY-STABILIZING SPANNING
TREE CONSTRUCTION

2.1 Complete Proofs of Strong Stabilization of
ss-ST

Lemma 1
Proof: Let ρ be a configuration of LC. By defi-

nition of spec, it is obvious that ρ is 0-legitimate.
Note that no correct process is enabled by ss-

ST in ρ. Consequently, no actions of ss-ST can be
executed and we can deduce that ρ is 0-stable.
Lemma 2

Proof: First, note that if all the correct processes
are disabled in a configuration ρ, then ρ belongs to
LC. Thus, it is sufficient to show that ss-ST even-
tually reaches a configuration ρi in any execution

(starting from any configuration) such that all the
correct processes are disabled in ρi.

By contradiction, assume that there exists a cor-
rect process that is enabled infinitely often. No-
tice that once the root process r is activated, r
becomes and remains disabled forever. From the
assumption that all the correct processes form a
connected subsystem, there exists two neighboring
correct processes u and v such that u becomes and
remains disabled and v is enabled infinitely often.
Consider execution after u becomes and remains
disabled. Since the daemon is weakly fair, v exe-
cutes its action infinitely often. Then, eventually v
designates u as its parent. It follows that v never
becomes enabled again unless u changes levelu.
Since u never becomes enabled, this leads to the
contradiction.
Lemma 3

Proof: Let ρ0 be a configuration of LC and
e = ρ0, ρ1, . . . be an execution starting from ρ0.
First, we show that any 0-correct process takes at
most Δd actions in e, where d is the diameter of the
subsystem consisting of all the correct processes.
Let F be the set of Byzantine processes in e.

Consider a subsystem S′ consisting of all the correct
processes: S′ = (P − F,L′) where L′ = {l ∈ L | l ∈
(P − F)× (P − F)}. We prove by induction on the
distance δ from the root in S′ that a correct process
v δ hops away from r in S′ executes its action at
most Δδ times in e.

• Induction basis (δ = 1):
Let v be any correct process neighboring to the
root r. Since ρ0 is a legitimate configuration,
prntr = 0 and levelr = 0 hold at ρ0 and
remain unchanged in e. Thus, if prntv = r and
levelv = 1 hold in a configuration σ, then v
never changes prntv or levelv in any execution
starting from σ. Since prntv = r and levelv = 1
hold within the first Δv − 1 ≤ Δ actions of v,
v can execute its action at most Δ times.

• Induction step (with induction assumption):
Let v be any correct process δ hops away from
the root r in S′, and u be a correct neighbor of v
that is δ−1 hops away from r in S′ (this process
exists by the assumption that the subgraph of
correct processes of S is connected). From the
induction assumption, u can execute its action
at most Δδ−1 times.

Assume that prntv = u and levelv = levelu + 1
hold in a given configuration σ. We can observ
that v is not enabled until u does not modify
its state. Then, the round-robin order used for
pointers modification allows us to deduce that
v executes at most Δv ≤ Δ actions between
two actions of u (or before the first action of
u). By the induction assumption, u executes its
action at most Δδ−1 times. Thus, v can execute
its action at most Δ + Δ× (Δδ−1) = Δδ times.

Consequently, any 0-correct process takes at most
Δd actions in e.
We say that a Byzantine process b deceive a

correct neighbor v in the step ρ �→ ρ′ if the state
of b makes the guard of an action of v true in ρ and
if v executes this action in this step.
As a 0-disruption can be caused only by an action

of a Byzantine process from a legitimate configu-
ration, we can bound the number of 0-disruptions
by counting the total number of times that correct
processes are deceived of neighboring Byzantine
processes.
If a 0-correct v is deceived by a Byzantine neigh-

bor b, it takes necessarily Δv actions before being
deceiving again by b (recall that we use a round-
robin policy for prntv). As any 0-correct process v
takes at most Δd actions in e, v can be deceived by
a given Byzantine neighbor at most Δd−1 times. A
Byzantine process can have at most Δ neighboring
correct processes and thus can deceive correct pro-
cesses at most Δ × Δd−1 = Δd times. We have at
most f Byzantine processes, so the total number
of times that correct processes are deceived by
neighboring Byzantine processes is fΔd.
Hence, the number of 0-disruption in e is

bounded by fΔD. It remains to show that any 0-
disruption have a finite length to prove the result.
By contradiction, assume that there exists an

infinite 0-disruption d = ρi, . . . in e. This implies
that for all j ≥ i, ρj is not in LC, which contradicts
Lemma 2. Then, the result is proved.

2.2 Time Complexities
Proposition 1: The (fΔd, 0, f)-process-disruption

time of ss-ST is Δd where d is the diameter of the
subsystem consisting of all the correct processes.

Proof: This result directly follows from Theo-
rem 1 and Lemma 3.

2

Proposition 2: The (fΔd, 0, f)-stabilization time of
ss-ST is O((n − f)Δd) rounds where f is the
number of Byzantine processes and d is the diam-
eter of the subsystem consisting of all the correct
processes.

Proof: By the construction of the algorithm, any
correct process v which has a correct neighbor u
takes at most Δ steps between two actions of u.
Given two processes u and v, we denote by

d′(u, v) the distance between u and v in the sub-
graph of correct processes of S. We are going to
prove the following property by induction on i > 0:

(Pi): any correct process v such that d′(v, r) = i

takes at most 2 ·
i∑

j=1

Δj steps in any execution

starting from any configuration.
• Induction basis (i = 1):

Let v be a correct neighbor of the root r. By
the algorithm, we know that the root r takes
at most one step (because r is correct). By
the previous remark, we know that v takes at
most Δ steps before and after the action of r.
Consequently, v takes at most 2Δ steps in any
execution starting from any configuration.

• Induction step (i > 1 with induction assump-
tion):
Let v be a correct process such that d′(v, r) =
i. Denote by u one neighbor of v such that
d′(u, r) = i − 1 (this process exists by the
assumption that the subgraph of correct pro-
cesses of S is connected).
By the previous remark, we know that v takes
at most Δ steps before the first action of u, be-
tween two actions of u and after the last action
of u. By induction assumption, we know that

u takes at most 2 ·
i−1∑
j=1

Δj steps. Consequently,

v takes at most A actions where:

A = Δ +

⎛
⎝2 ·

i−1∑
j=1

Δj

⎞
⎠ ·Δ + Δ = 2 ·

i∑
j=1

Δj

Since there is (n − f) correct processes and any
correct process satisfies d′(v, r) < d, we can deduce
that the system reach a legitimate configuration in
at most O((n− f)Δd) steps of correct processes.
As a round counts at least one step of a correct

process, we obtain the result.

3 STRONGLY-STABILIZING TREE ORIEN-
TATION

3.1 Problem Definition

In this section, we consider only tree systems, i.e. dis-
tributed systems containing no cycles. We assume
that all processes in a tree system are identical and
thus no process is distinguished as a root.
Informally, tree orientation consists in transform-

ing a tree system (with no root) into a rooted tree
system. Each process v has an O-variable prntv
to designate a neighbor as its parent. Since pro-
cesses have no identifiers, prntv actually stores
k (∈ {1, 2, . . . , Δv}) to designate its k-th neighbor
as its parent. But for simplicity, we use prntv = k
and prntv = u (where u is the k-th neighbor of v)
interchangeably.
The goal of tree orientation is to set prntv of

every process v to form a rooted tree. However,
it is impossible to choose a single process as the
root because of impossibility of symmetry breaking.
Thus, instead of a single root process, a single root
link is determined as the root: link (u, v) is the root
link when processes u and v designate each other
as their parents (Fig. 1(a)). From any process w, the
root link can be reached by following the neighbors
designated by the variables prnt.

When a tree system S has a Byzantine process
(say w), w can prevent communication between
subtrees of S − {w}1. Thus, we have to allow each
of the subtrees to form a rooted tree independently.
We define the specification predicate spec(v) of the
tree orientation as follows.

spec(v) : ∀u (∈ Nv)[(prntv = u) ∨ (prntu = v) ∨ (u
is Byzantine faulty)].

Note that the tree topology, the specification and
the uniquiness of prntv (for any process v) imply
that, for any 0-legitimate configuration, there is at
most one root link in any connected component
of correct processes. Hence, in a fault-free system,
there exists exactly one root link in any 0-legitimate
configuration.
Figure 1 shows examples of 0-legitimate configu-

rations (a) with no Byzantine process and (b) with

1. For a process subset P ′ (⊆ P), S−P ′ denotes a distributed
system obtained by removing processes in P ′ and their incident
links.

3

a single Byzantine process w. The arrow attached
to each process points the neighbor designated
as its parent. Notice that, from Fig. 1(b), subtrees
consisting of correct processes are classified into
two categories: one is the case of forming a rooted
tree with a root link in the subtree (T1 in Fig. 1(b)),
and the other is the case of forming a rooted tree
with a root process, where the root process is a
neighbor of a Byzantine process and designates the
Byzantine process as its parent (T2 in Fig. 1(b)).

3.2 Impossibility for Two Byzantine Processes

Tree orientation seems to be a very simple task. Ac-
tually, for tree orientation in fault-free systems, we
can design a self-stabilizing protocol that chooses
a link incident to a center process2 as the root
link: in case that the system has a single center,
the center can choose a link incident to it, and in
case that the system has two neighboring centers,
the link between the centers become the root link.
However, tree orientation becomes impossible if
we have Byzantine processes. By the impossibility
results of [3], we can show that tree orientation
has no (o(n), 1)-strictly stabilizing protocol; i.e. the
Byzantine influence cannot be contained in the
sense of “strict stabilization”, even if only a single
Byzantine process is allowed.
An interesting question is whether the Byzantine

influence can be contained in a weaker sense of
“strong stabilization”. The following theorem gives
a negative answer to the question: if we have
two Byzantine processes, bounding the number of
disruptions is impossible. We prove the impossibil-
ity for more restricted schedules, called the central
daemon, which disallows two or more processes to
make actions at the same time. Notice that impossi-
bility results under the central daemon are stronger
than those under the distributed daemon in the
sense that impossibility results under the central
daemon also hold for the distributed daemon.

Theorem 1: Even under the central daemon, there
exists no deterministic (t, o(n), 2)-strongly stabiliz-
ing protocol for tree orientation where t is any
(finite) integer and n is the number of processes.

2. A process v is a center when v has the minimum eccentricity
where eccentricity is the largest distance to a leaf. It is known
that a tree has a single center or two neighboring centers.

Proof: Let S = (P,L) be a chain (which is a
special case of a tree system) of n processes: P =
{v1, v2, . . . , vn} and L = {(vi, vi+1) | 1 ≤ i ≤ n−1}.

For purpose of contradiction, assume that there
exists a (t, o(n), 2)-strongly stabilizing protocol A
for some integer t. In the following, we show, for S
with Byzantine processes v1 and vn, that A has an
execution e containing an infinite number of o(n)-
disruptions. This contradicts the assumption that A
is a (t, o(n), 2)-strongly stabilizing protocol.

In S with Byzantine processes v1 and vn, A
eventually reaches a configuration ρ1 that is o(n)-
legitimate for spec and o(n)-stable by definition
of a (t, o(n), 2)-strongly stabilizing protocol. This
execution to ρ1 constitutes the prefix of e.
To construct e after ρ1, consider another chain

S′ = (P ′, L′) of 3n processes and an execution of
A on S′, where let P ′ = {u1, u2, . . . , u3n} and
L′ = {(ui, ui+1) | 1 ≤ i ≤ 3n − 1}. We consider
the initial configuration ρ′1 of S′ that is obtained by
concatenating three copies (say S′

1, S
′
2 and S′

3) of S
in ρ1 where only the central copy S′

2 is reversed
right-and-left (Fig. 2). More formally, the state of
wi and of w2n+i in ρ′1 is the same as the one of
vi in ρ1 for any i ∈ {1, . . . , n}. Moreover, for any
i ∈ {1, . . . , n}, the state of wn+i in ρ′1 is the same as
the one of vi in ρ1 with the following modification:
if prntvi = vi−1 (respectively prntvi = vi+1) in ρ1,
then prntwn+i

= wn+i+1 (respectively prntwn+i
=

wn+i−1) in ρ′1. For example, if w denotes a center
process of S (i.e. w = v�n/2�), then w is copied to
w′
1 = u�n/2�, w′

2 = u2n+1−�n/2� and w′
3 = u2n+�n/2�,

but only prntw′
2

designates the neighbor in the
different direction from prntw′

1
and prntw′

3
. From

the configuration ρ′1, protocol A eventually reaches
a legitimate configuration ρ′′1 of S′ when S′ has
no Byzantine process (since a strongly stabilizimg
protocol is self-stabilizig in a fault-free system).
In the execution from ρ′1 to ρ′′1 , at least one prnt
variable of w′

1, w
′
2 and w′

3 has to change (otherwise,
it is impossible to guarantee the uniquiness of the
root link in ρ′′1). Assume w′

i changes prntw′
i
.

Now, we construct the execution e on S after
ρ1. The main idea of this proof is to construct an
execution on S indistinguishable (for correct pro-
cesses) from one of S′ because Byzantine processes
of S behave as correct processes of S′. Since v1
and vn are Byzantine processes in S, v1 and vn

4

u v

(a) Case with no fault (b) Case with Byzantine process w

u v

w

T1
T2

u vu v

(a) Case with no fault (b) Case with Byzantine process w

u v

w

u v

w

T1
T2

Fig. 1. Tree orientation

can simulate behavior of the end processes of S′
i

(i.e. u(i−1)n+1 and uin). Thus, S can behave in the
same way as S′

i does from ρ′1 to ρ′′1 . Recall that
process w′

1 modifies its pointer in the execution
of S′

i does from ρ′1 to ρ′′1 . Consequently, we can
construct the execution that constitutes the second
part of e, where prntw changes at least once. Letting
the resulting configuration be ρ2 (that coincides
with the configuration ρ′′i of S′

i), ρ2 is clearly o(n)-
legitimate for spec and o(n)-stable. Thus, the second
part of e contains at least one o(n)-disruption.
By repeating the argument, we can construct the

execution e of A on S that contains an infinite
number of o(n)-disruptions.

3.3 A Strongly Stabilizing Protocol for a Single
Byzantine Process
3.3.1 Protocol ss-TO

In the previous subsection, we proved that there is
no strongly stabilizing protocol for tree orientation
if two Byzantine processes exist. In this subsec-
tion, we consider the case with at most a single
Byzantine process, and present a (Δ, 0, 1)-strongly
stabilizing tree orientation protocol ss-TO. Note
that we consider the distributed daemon for this
possibility result.
In a fault-free tree system, tree orientation can

be easily achieved by finding a center process. A
simple strategy for finding the center process is
that each process v informs each neighbor u of
the maximum distance to a leaf from u through
v. The distances are found and become fixed from

smaller ones. When a tree system contains a single
Byzantine process, however, this strategy cannot
prevent perturbation caused by wrong distances
the Byzantine process provides: by reporting longer
and shorter distances than the correct one alterna-
tively, the Byzantine process can repeatedly pull the
chosen center closer and push it farther.
The key idea of protocol ss-TO to circumvent the

perturbation is to restrict the Byzantine influence
to one-sided effect: the Byzantine process can pull
the chosen root link closer but cannot push it far-
ther. This can be achieved using a non-decreasing
variable levelv as follows: when a process v finds
a neighbor u with a higher level, u chooses v as
its parent and copies the level value from u. This
allows the Byzantine process (say z) to make its
neighbors choose z as their parents by increasing
its own level. However, z can not make neighbor
change their parents to other processes by decreas-
ing its own level. Thus, the effect the Byzantine
process can make is one-sided.
Protocol ss-TO is presented in Fig. 3. For sim-

plicity, we regard constant Nv as denoting the
neighbors of v and regard variable prntv as storing
a parent of v. Notice that they should be actually
implemented using the ordinal numbers of neigh-
bors that v locally assigns.

The protocol is composed of three rules. The
first one (GA1) is enabled when a process has a
neighbor which provides a strictly greater level.
When the rule is executed, the process chooses this
neighbor as its parent and computes its new state in

5

u1 u2 unw’1 u2nw’2 u3nw’3

S’

S’1 S’2 S’3

v1 v2 vnw

S

v1 v2 vnw

S
ρ1

ρ’1

u1 u2 unw’1 u2nw’2 u3nw’3

S’
ρ’’1

Convergence to a legitimate configuration. w’3 changes prnt.

(a) Construction of S’ from three copies of S and convergence of S’.

v1 v2 vnw

S

v1 v2 vnw

S
ρ1

w

w changes prnt.

ρ2

(b) Execution of S where w changes its parent.

Fig. 2. Construction of execution where w of S changes its parent infinitely often.

function of this neighbor. The rule GA2 is enabled
when a process v has a neighbor u (different from
its current parent) with the same level such that
v is not the parent of u in the current oriented
tree. Then, v chooses u as parent, increments its
level by one and refresh its shared registers. The
last rule (GA3) is enabled for a process when there
exists an inconsistence between its variables and its
shared registers. The execution of this rule leads the
process to compute the consistent values for all its
shared registers.

3.3.2 Closure of Legitimate Configurations of ss-
TO

We refine legitimate configurations of protocol ss-
TO into several sets of configurations and show

their properties. We cannot make any assump-
tion on the initial values of register variables. But
once a correct process v executes its action, vari-
ables of its output registers have values consistent
with the process variables: r-prntv,prntv = true,
r-prntv,w = false (w ∈ Nv − {prntv}), and r-
levelv,w = levelv (w ∈ Nv) hold. In the following,
we assume that all the variables of output registers
of every correct process have consistent values.

First we consider the fault-free case.

Definition 1 (LC0): In a fault-free tree, we define
the set of configurations LC0 as the set of configura-
tions such that: (a) spec(v) holds for every process
v and (b) levelu = levelv holds for any processes u
and v.

6

constants of process v
Δv = the degree of v;
Nv = the set of neighbors of v;

variables of process v
prntv : a neighbor of v; // prntv = u if u is a parent of v.
levelv : integer;

variables in shared register rv,u
r-prntv,u: boolean; // r-prntv,u =true iff u is a parent of v.
r-levelv,u: integer; // the value of levelv

predicates
pred1 : ∃u ∈ Nv[r-levelu,v > levelv]
pred2 : ∃u ∈ Nv − {prntv}[(r-levelu,v = levelv) ∧ (r-prntu,v =false)]
pred3 : ((r-prntv,prntv , r-levelv,prntv) �= (true, levelv))∨

(∃u ∈ Nv − {prntv}, (r-prntv,u, r-levelv,u) �= (false, levelv))
atomic actions // represented in form of guarded actions

GA1:pred1 −→
Let u be a neighbor of v s.t. r-levelu,v = maxw∈Nv

r-levelw,v ;
prntv := u; levelv := r-levelu,v;
(r-prntv,u, r-levelv,u) := (true, levelv);
for each w ∈ Nv − {u} do (r-prntv,w, r-levelv,w) := (false, levelv);

GA2:¬pred1 ∧ pred2 −→
Let u be a neighbor of v s.t. (r-levelu,v = levelv) ∧ (r-prntu,v =false);
prntv := u; levelv := levelv + 1;
(r-prntv,u, r-levelv,u) := (true, levelv);
for each w ∈ Nv − {u} do (r-prntv,w, r-levelv,w) := (false, levelv);

GA3:¬pred1 ∧ ¬pred2 ∧ pred3 −→
(r-prntv,prntv , r-levelv,prntv) := (true, levelv);
for each w ∈ Nv − {prntv} do (r-prntv,w, r-levelv,w) := (false, levelv);

Fig. 3. Protocol ss-TO (actions of process v)

In any configuration of LC0, variables prntv of
all processes form a rooted tree with a root link
as Fig. 1(a), and all variables levelv have the same
value.

Lemma 1: In a fault-free tree, once protocol ss-TO
reaches a configuration ρ in LC0, it remains at ρ.

Proof: Consider any configuration ρ in LC0.
Since all variables levelv have the same value, the
guard of GA1 cannot be true in ρ. Since spec(v)
holds at every process in ρ, there exist no neigh-
boring processes u and v such that prntu �= v and
prntv �= u holds. It follows that the guard of GA2
cannot be true in ρ. Once each process executes
an action, all the variables of its output registers
are consistent with its local variables, and thus, the
guard of GA3 cannot be true.

For the case with a single Byzantine process, we
define the following sets of configurations.

Definition 2 (LC1): Let z be the single Byzantine
process in a tree system. A configuration is in the
set LC1 if every subtree (or a connected component)
of S-{z} satisfies either the following (C1) or (C2).
(C1) (a) spec(u) holds for every correct process

u, (b) prntv = z holds for the neighbor v
of z, and (c) levelw ≥ levelx holds for any
neighboring correct processes w and x where
w is nearer than x to z.

(C2) (d) spec(u) holds for every correct process u,
and (e) levelv = levelw holds for any correct
processes v and w.

Definition 3 (LC2): Let z be the single Byzantine
process in a tree system. A configuration is in the

7

set LC2 if every subtree (or a connected component)
of S-{z} satisfies the condition (C1) of Definition 2.
In any configuration of LC2, every subtree forms

the rooted tree with the root process neighboring
the Byzantine process z. For configurations of LC2,
the following lemma holds.

Lemma 2: Once protocol ss-TO reaches a con-
figuration ρ of LC2, it remains in configurations
of LC2 and, thus, no correct process u changes
prntu afterward. That is, any configuration of LC2
is (0, 1)-contained.

Proof: Consider any execution e starting from
a configuration ρ of LC2. In ρ, every subtree of
S−{z} forms the rooted tree with the root process
neighboring the Byzantine process z. Note that,
as long as no correct process u changes prntu in
e, action GA2 cannot be executed at any correct
process. On the other hand, if a process u executes
action GA1 in e, levelprntu ≥ levelu necessarily
holds immediately this action. Consequently, if we
assume that no correct process u changes prntu in e
(by execution of GA1) then every configuration of e
is in LC2. To prove the lemma, it remains to show
that e contains no activation of GA1 by a correct
process. In the following, we show that any correct
process u never changes prntu in e.

For contradiction, assume that a correct process
u changes prntu first among all correct processes.
Notice that every correct process v can execute GA1
or GA3 but cannot change prntv before u changes
prntu. Also notice that u changes prntu to its neigh-
bor (say w) by execution of GA1 and w is a correct
process. From the guard of GA1, levelw > levelu
holds immediately before u changes prntu. On the
other hand, since w is a correct process, w never
changes prntw before u. This implies that prntw = u
holds immediately before u changes prntu, and
thus levelu ≥ levelw holds. This is a contradiction.

Notice that a correct process u may change levelu
by execution of GA1 even after a configuration of
LC2. For example, when the Byzantine process z
increments levelz infinitely often, every process u
may also increment levelu infinitely often.

Lemma 3: Any configuration ρ in LC1 is
(Δz, 1, 0, 1)-time contained where z is the Byzantine
process.

Proof: Let ρ be a configuration of LC1. Consider

any execution e starting from ρ. By the same dis-
cussion as the IEEEproof of Lemma 2, we can show
that any subtree satisfying (C1) at ρ always keeps
satisfying the condition and no correct process u in
the subtree changes prntu afterward.
Consider a subtree satisfying (C2) at ρ and let y

be the neighbor of the Byzantine process z in the
subtree. From the fact that variables prntu form a
rooted tree with a root link and all variables levelu
have the same value in the subtree at ρ, no process
u in the subtree changes prntu or levelu unless
y executes prnty := z in e. When prnty := z is
executed, levely becomes larger than levelu of any
other process u in the subtree. Since the value of
variable levelu of each correct process u is non-
decreasing, every correct neighbor (say v) of y
eventually executes prntv := y and levelv := levely
(by GA1). By repeating the argument, we can show
that the subtree eventually reaches a configuration
satisfying (C1) in O(d′) rounds where d′ is the diam-
eter of the subtree. It is clear that any configuration
before reaching the first configuration satisfying
(C1) is not in LC1, and that each process u changes
prntu at most once during the execution.

Therefore, any execution e starting from ρ con-
tains at most Δz 0-disruptions where each correct
process u changes prntu at most once.

3.3.3 Convergence of ss-TO

We first show convergence of protocol ss-TO to
configurations of LC0 in a fault-free case.

Lemma 4: In a fault-free tree system, protocol ss-
TO eventually reaches a configuration of LC0 from
any initial configuration.

Proof: We prove the convergence to a config-
uration of LC0 by induction on the number of
processes n. It is clear that protocol ss-TO reaches a
configuration of LC0 from any initial configuration
in case of n = 2.
Now assume that protocol ss-TO reaches a con-

figuration of LC0 from any initial configuration in
case that the number of processes is n−1 (inductive
hypothesis), and consider the case that the number
of processes is n.
Let u be any leaf process and v be its only

neighbor and ρ be an arbitrary configuration. In a
first time, we show that any execution e starting
from ρ reaches in a finite time a configuration such

8

that levelv ≥ levelu holds. If this condition holds in
ρ, we have the result. Otherwise (levelv < levelu), u
is continuously enabled by GA1 (until the condition
is true). Hence, the condition becomes true (by
an activation of v) or this action is executed by
u in a finite time. In both cases, we obtain that
levelv ≥ levelu holds in at most one round.

After that, process u can execute only guarded
action GA1 or GA3 since prntu = v always holds.
Thus, after the first round completes, prntu = v
and levelv ≥ levelu always hold (indeed, v can only
increase its level variable and level variable of u can
only take greater values than v’s). It follows that v
never executes prntv := u in the second round and
later. This implies that e reaches in a finite time
a configuration ρ′ such that (a) prntv �= u always
holds after ρ′ , or (b) prntv = u always holds after ρ′

(since v cannot execute prntv := u after ρ′ if prntv �=
u).
In case (a), the behavior of v after ρ′ is never influ-

enced by u: v behaves exactly the same even when
u does not exist. From the inductive hypothesis,
protocol ss-TO eventually reaches a configuration
ρ′′ such that S − {u} satisfies the condition of LC0
and remains in ρ′′ afterward (from Lemma 1). After
u executes its action at ρ′′, levelu = levelv holds and
thus the configuration of S is in LC0.

Now consider case (b), where we do not use
the inductive hypothesis. The fact that prntv = u
(and prntu = v) always holds after ρ′ implies that
levelv (and also levelu) remains unchanged after ρ′.
Assume now that a neighbor w (�= u) of v satisfies
continuously levelw �= levelv or prntw �= v from a
configuration ρ′′ of e after ρ′. If w satisfies continu-
ously levelw > levelv from ρ′′, then v executes GA1
in a finite time, this is a contradiction. If w satisfies
continuously levelw < levelv from ρ′′, then w exe-
cutes GA1 in a finite time and takes a level value
such that levelw ≥ levelv , that contradicts the fact
that w satisfies continuously levelw < levelv from
ρ′′. This implies that levelw = levelv and prntw = v
in a finite time in any execution starting from ρ′.
As v does not modify its state after ρ′, w is never
enabled after ρ′. This implies that the fragment of
S consisting of processes within distance two from
u reaches a configuration satisfying the condition
of LC0 and remains unchanged. We can now apply
the same reasoning by induction on the distance of

any process to u and show that ss-TO eventually
reaches a configuration in LC0 where link (u, v) is
the root link.
Consequently, protocol ss-TO reaches a configu-

ration of LC0 from any initial configuration.
Now, we consider the case with a single Byzan-

tine process.
Lemma 5: In a tree system with a single Byzan-

tine process, protocol ss-TO eventually reaches a
configuration of LC1 from any initial configuration.

Proof: Let z be the Byzantine process, S′ be any
subtree (or a connected component) of S−{z} and
y be the process in S′ neighboring z (in S).

We prove, by induction on the number of pro-
cesses n′ of S′, that S′ eventually reaches a con-
figuration satisfying the condition (C1) or (C2) of
Definition 2.
It is clear that S′ reaches a configuration satis-

fying (C1) from any initial configuration in case of
n′ = 1.
Now assume that S′ reaches a configuration sat-

isfying (C1) or (C2) from any initial configuration
in case of n′ = k − 1 (inductive hypothesis), and
consider the case of n′ = k (≥ 2).
From n′ ≥ 2, there exists a leaf process u in S′

that is not neighboring the Byzantine process z. Let
v be the neighbor of u. Since processes u and v are
correct processes, we can show the following by
the same argument as the fault-free case (Lemma
4): after some configuration ρ, (a) prntv �= u always
holds, or (b) prntv = u always holds. In case (a),
we can show from the inductive hypothesis that S′

eventually reaches a configuration satisfying (C1)
or (C2). In case (b), we can show that S′ eventually
reaches a configuration satisfying (C2) where link
(u, v) is the root link.

Consequently, protocol ss-TO reaches a configu-
ration of LC1 from any initial configuration.
The following main theorem is obtained from

Lemmas 1, 2, 3, 4 and 5.
Theorem 2: Protocol ss-TO is a (Δ, 0, 1)-strongly

stabilizing tree-orientation protocol.

3.3.4 Round Complexity of ss-TO

In this subsection, we focus on the round complex-
ity of ss-TO. First, we show the following lemma.

Lemma 6: Let v and u be any neighbors of S. Let
S′ be the subtree of S−{v} containing u and h(v, u)

9

be the largest distance from v to a leaf process of S′.
If S′∪{v} contains no Byzantine process, prntv := u
of GA1 or GA2 can be executed only in the first
2h(v, u) rounds. Moreover, in round 2h(v, u)+1 or
later, levelv remains unchanged as long as prntv =
u holds.

Proof: We prove the lemma by induction on
h(v, u).

First consider the case of h(v, u) = 1, where u
is a leaf process. When the first round completes,
all the output registers of every process becomes
consistent with the process variables. Since u is a
leaf process, prntu = v always holds. It follows
that process v can execute prntv := u only in GA1.
Once v executes its action in the second round,
levelv ≥ levelu holds and prntv := u of GA1 cannot
be executed afterward (see proof of Lemma 4).
Thus, prntv := u of GA1 can be executed only
in the first and second rounds. It is clear that in
round 3 or later, levelv remains unchanged as long
as prntv = u holds.

We assume that the lemma holds when h(v, u) ≤
k − 1 (inductive hypothesis) and consider the case
of h(v, u) = k. We assume that prntv := u of GA1
or GA2 is executed in round r, and show that r ≤
2k holds in the following. Variable levelv is also
incremented in the action, and let � be the resultant
value of levelv . In the following, we consider two
cases.

• Case that prntv := u of GA1 is executed in
round r: when prntv := u is executed, levelu =
� holds. But levelu < � holds when v executes
its action in round r−1; otherwise, v reaches a
state with levelv ≥ � in round r− 1 and cannot
execute prntv := u (with levelv := �) in round
r. This implies that u incremented levelu to �
in round r − 1 or r.
In the case that u makes the increment of levelu
by GA1, u executes prntu := w for w (�= v) in
the same action. Since h(u,w) < h(v, u) holds,
the action is executed in the first 2h(u,w)
rounds from the inductive hypothesis. Conse-
quently, prntv := u of GA1 is executed in round
2h(u,w) + 1 (< 2h(v, u)) at latest.
In the case that u makes the increment of levelu
by GA2, u executes prntu := w for some w (∈
Nu) in the same action, where w = v may hold.
For the case of w �= v, we can show, by the

similar argument to the above, that prntv := u
is executed in round 2h(u,w) + 1 (< 2h(v, u))
at latest. Now consider the case of w = v.
Then levelv = levelu = � − 1, prntv �= u and
prntu �= v hold immediately before u executes
prntu := v and levelu := �. Between the actions
of levelu := �−1 (with prntu := w (w �= v)) and
levelu := � (with prntu := v), v can execute its
action at most once; otherwise, levelv ≥ � − 1
holds after the first action, and levelv ≥ � or
prntv = u holds after the second action. This
implies that levelu := � − 1 with prntu :=
w (w �= v) is executed in the previous or the
same round as the action of levelu := �, and
thus, in round r − 2 or later. Since h(u,w) <
h(v, u) holds, the action is executed in the first
2h(u,w) rounds from the inductive hypothesis.
Consequently, prntv := u of GA1 is executed in
round 2h(u,w) + 2 (≤ 2h(v, u)) at latest.

• Case that prntv := u is executed in GA2: then
levelv = levelu = �−1, prntv �= u and prntu �= v
hold immediately before v executes prntv :=
u and levelv := �. Between the executions of
levelv := �−1 and levelv := �, u can execute its
action at most once, and u executes prntu := w
for some w (�= v) in the action.Since h(u,w) <
h(v, u) holds, this action is executed in the first
2h(u,w) rounds from the inductive hypothesis.
Consequently, prntv := u is executed in round
2h(u,w) + 1 (< 2h(v, u)).

It remains to show that levelv remains unchanged
in round 2h(v, u)+1 or later, as long as prntv = u
holds. Now assume that prntv = u holds at the end
of round 2h(v, u).

• Case that prntu = v holds at the end of round
2h(v, u): since h(u,w) < h(v, u) for any w ∈
Nu − {v}, prntu := w cannot be executed in
round 2h(v, u) + 1 or later from the inductive
hypothesis, and so prntu = v holds afterward.
Thus, it is clear that levelv remains unchanged
as long as prntv = u (and prntu = v) holds.

• Case that prntu �= v holds at the end of
round 2h(v, u): let prntu = w hold for some
w ∈ Nu − {v} at the end of round 2h(v, u).
Since h(u,w) < h(v, u), levelu remains un-
changed as long as prntu = w holds from
the inductive hypothesis. It follows that levelv
remains unchanged as long as prntv = u and

10

prntu = w hold. Since h(u, x) < h(v, u) for any
x ∈ Nu − {v}, prntu := x cannot be executed
in round 2h(v, u) + 1 or later, but prntu := v
can be executed. Immediately after execution
of prntu := v, levelv = levelu holds if prntv
remains unchanged. Thus, it is clear that levelv
remains unchanged as long as prntv = u (and
prntu = v) holds.

The following lemma holds for the fault-free case.
Lemma 7: In a fault-free tree system, protocol ss-

TO reaches a configuration of LC0 from any initial
configuration in O(d) rounds where d is the diam-
eter of the tree system S.

Proof: Lemma 6 implies that, after round 2d+1
or later, no process v changes prntv or levelv and
thus the configuration remains unchanged. Lemma
4 guarantees that the final configuration is a con-
figuration in LC0.
For the single-Byzantine case, the following

lemma holds.
Lemma 8: In a tree system with a single Byzan-

tine process, protocol ss-TO reaches a configura-
tion of LC1 from any initial configuration in O(n)
rounds.

Proof: Let z be the Byzantine process and S′ be
any subtree of S−{z}. Let v be the neighbor of z in
S′. From Lemma 6, v cannot execute prntv := w for
any w ∈ Nv − {z} in round 2d′ + 1 or later, where
d′ is the diameter of S′. We consider the following
two cases depending on prntv .

• Case 1: there exists w ∈ Nv − {z} such that
prntv = w at the end of round 2d′ and prntv
remains unchanged during the following d′

rounds (from round 2d′ + 1 to round 3d′).
From Lemma 6, levelv also remains unchanged
during the d′ rounds. By the similar discussion
to that in proof of Lemma 6, we can show
that S′ reaches a configuration satisfying the
condition (C2) of Definition 2 by the end of
round 3d′.

• Case 2: prntv = z at the end of round 2d′ or
there exists at least one configuration during
the following d′ rounds (from round 2d′ +1 to
round 3d′) such that prntv = z holds.
Let c be the configuration where prntv = z
holds. From Lemma 6, prntv = z always holds
after c. We can show, by induction of k that,

a fraction of S′ consisting of processes with
distance up to k from v satisfies the condition
(C1) at the end of k rounds after c. Thus, S′

reaches a configuration satisfying the condition
(C1) of Definition 2 by the end of round 4d′.

After a subtree reaches a configuration satisfying
the condition (C2), its configuration may change
into one satisfying the condition (C1) and the
configuration may not satisfy (C1) or (C2) during
the transition. However, Lemma 3 guarantees that
the length of the period during the subtree does
not satisfy (C1) or (C2) is O(d′) rounds, where d′

is the diameter of the subtree. Since the total of
diameters of all the subtrees in S − {z} is O(n),
the convergence to a configuration of LC1 satisfying
(C1) or (C2) can be delayed at most O(n) rounds.

Finally, we can show the following theorem.
Theorem 3: Protocol ss-TO is a (Δ, 0, 1)-strongly

stabilizing tree-orientation protocol. The protocol
reaches a configuration of LC0 ∪ LC1 from any
initial configuration. The protocol may move from
a legitimate configuration to an illegitimate one
because of the influence of the Byzantine process,
but it can stay in illegitimate configurations during
the total of O(n) rounds (that are not necessarily
consecutive) in the whole execution.

Proof: Theorem 2 shows that ss-TO is a
(Δ, 0, 1)-strongly stabilizing tree-orientation proto-
col. Lemma 7 and 8 guarantee that ss-TO reaches
a configuration of LC0 ∪ LC1 from any initial con-
figuration within O(n) rounds. For the case with
a single Byzantine process (say z), each subtree of
S − {z} may experience an illegitimate period (not
satisfying the condition (C1) or (C2)) after such a
configuration. However, Lemma 3 guarantees that
the length of the illegitimate period is O(d′) where
d′ is the diameter of the subtree. Since the total of
diameters of all the subtrees in S−{z} is O(n), the
total length of the periods that does not satisfy (C1)
or (C2) is O(n) rounds.

REFERENCES
[1] James E. Burns, Mohamed G. Gouda, and Raymond E.

Miller. Stabilization and pseudo-stabilization. Distributed
Computing, 7(1):35–42, 1993.

[2] Toshimitsu Masuzawa and Sébastien Tixeuil. Bounding
the impact of unbounded attacks in stabilization. In Self-
Stabilizing Systems (SSS 2006), pages 440–453, 2006.

11

[3] Mikhail Nesterenko and Anish Arora. Tolerance to un-
bounded byzantine faults. In Symposium on Reliable Dis-
tributed Systems (SRDS 2002), page 22, 2002.

12

