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a b s t r a c t

In this paper, we consider the message forwarding problem that consists in managing the
network resources that are used to forward messages. Previous works on this problem
provide solutions that either use a significant number of buffers (that is n buffers per
process, where n is the number of processes in the network) making the solution not
scalable or reserve all the buffers from the sender to the receiver to forward only one
message. The only solution that uses a constant number of buffers per link was introduced
in Cournier et al. (2010) [1]. However the solution works only on a chain network. In this
paper, we propose a snap-stabilizing algorithm for the message forwarding problem that
uses a constant number of buffers per link as in Cournier et al. (2010) [1] but works on tree
topologies.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The ability of a distributed system to tolerate faults is a crucial issue in most distributed systems. Self-stabilization [2] is
a lightweight type of fault-tolerance that ensures starting from any arbitrary state, a legitimate state is eventually reached.
Snap-stabilization [3] offers a stronger property than self-stabilization since it guarantees that any computation started
after faults cease immediately satisfies the expected specification. In other words, a snap-stabilizing algorithm is also a
self-stabilizing algorithm that stabilizes in 0 steps and is optimal in terms of the worst-case stabilization time.

The end-to-end communication problem consists in delivery in finite time across the network of a sequence of data items
generated at a node called the sender, to another node called the receiver. This problem includes the following two sub-
problems: (i) the routing problem, i.e., the determination of the path followed by the messages to reach their destinations;
(ii) the message forwarding problem that consists in the management of network resources in order to forward messages.
In this paper, we focus on the second problem whose aim is to design a protocol that manages the mechanism allowing the
message to move from a node to another one on the path from a sender to a receiver. Each node on this path has a reserved
memory space called buffer. We assume that each buffer is large enough to contain any message. With a finite number of
buffers, the message forwarding problem consists in avoiding deadlock and livelock situations.

The message forwarding problem has been well investigated in a non faulty setting [4–8]. In [9,10,8] self-stabilizing
solutions were proposed. Both solutions deal with network dynamic, i.e., systems in which links can be added or removed.
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However,message deliveries are not ensuredwhile the routing tables are not stabilized. Thus, the proposed solutions cannot
guaranty the absence of message loss during the stabilization time.

In this paper, we address the problem of providing a snap-stabilizing protocol for this problem. Snap-stabilization
provides the desirable property of delivering to its recipient every message generated after the faults, once and only
once, even if the routing tables are not (yet) stabilized. Some snap-stabilizing solutions have been proposed to solve the
problem [11,12,1]. In [11], the problem was solved using n buffers per node (where n denotes the number of processes
in the network). The number of buffers was reduced in [12] to D buffers per node (where D refers to the diameter of the
network). However, the solution works by reserving the entire sequence of buffers leading from the sender to the receiver.
Note that the first solution is not suitable for large-scale systemswhereas the second one has to reserve all the path from the
source to the destination for the transmission of only one message. In [1], a snap-stabilizing solution was proposed using a
constant number of buffers per link. However the solution works only on chain topologies. We will explain in Section 3.1,
why the solution proposed in [1] cannot be used on tree topologies.

We provide a snap-stabilizing solution that solves the message forwarding problem in tree topologies using the same
complexity on the number of buffers as in [1] i.e., two buffers per link for each process plus one internal buffer, thus, 2δ + 1
buffers by process, where δ is the degree of the process in the system.

Road Map. The rest of the paper is organized as follows: our model is presented in Section 2. In Section 3, we provide our
snap-stabilizing solution for the message forwarding problem, followed by its correctness proofs. Finally we conclude the
paper in Section 4.

2. Model and definitions

Network. We consider in this paper a network as an undirected connected graph G = (V , E) where V is the set of nodes
(processes) and E is the set of bidirectional communication links. Each process has a unique id. Two processes p and q are
said to be neighbors if and only if there is a communication link (p, q) between the two processes. Note that, every process
is able to distinguish all its links. To simplify the presentation we refer to the link (p, q) by the label q in the code of p. In our
case we consider that the network is a tree of n processes.

Computational model. In this paper we consider the classical local shared memory model introduced by Dijkstra [13]
known as the state model. In this model, communications between neighbors are modeled by direct reading of variables
instead of exchange of messages. The program of every process consists in a set of shared variables (henceforth referred to
as variable) and a finite number of actions. Each process can write in its own variables and read its own variables and those
of its neighbors. Each action is constituted as follows:

< Label >::< Guard > → < Statement >

The guard of an action is a Boolean expression involving the variables of p and its neighbors. The statement is an action
which updates one or more variables of p. Note that an action can be executed only if its guard is true. Each execution is
decomposed into steps.

The state of a process is defined by the value of its variables. The state of a system is the product of the states of all
processes. The local state refers to the state of a process and the global state (configuration) to the state of the system.

Let us refer by C to the set of all the configurations of the system. Let y ∈ C and A an action of p (p ∈ V ). A is enabled for p
in y if and only if the guard of A is satisfied by p in y. Process p is enabled in y if and only if at least one action is enabled at
p in y. Let P be a distributed protocol which is a collection of binary transition relations denoted by →, on C . An execution
of a protocol P is a maximal sequence of configurations e = y0y1...yiyi+1 . . . such that, ∀ i ≥ 0, yi → yi+1 (called a step)
if yi+1 exists, else yi is a terminal configuration. Maximality means that the sequence is either finite (and no action of P is
enabled in the terminal configuration) or infinite. All executions considered here are assumed to be maximal. ξ is the set of
all executions of P . Each step consists on two sequential phases atomically executed: (i) Every process evaluates its guard;
(ii) One or more enabled processes execute their enabled actions. When the two phases are done, the next step begins.
This execution model is known as the distributed daemon [14]. We assume that the daemon is weakly fair, meaning that if a
process p is continuously enabled, then p will be eventually chosen by the daemon to execute an action.

In this paper, we use a composition of protocols. We assume that the above statement (ii) is applicable to every protocol.
In other words, each time an enabled process p is selected by the daemon, p executes the enabled actions of every protocol.

Snap-Stabilization. Let Γ be a task, and SΓ a specification of Γ . A protocol P is snap-stabilizing for SΓ if and only if ∀ E ∈ ξ ,
E satisfies SΓ .

Message forwarding problem. In the following, amessage is said to be valid if it has been emitted after the faults. Otherwise
it is said to be invalid.

The message forwarding problem is specified as follows:

Specification 1 (SP). A protocol P satisfies SP if and only if the following two requirements are satisfied in every execution of
P: (i) Any message can be generated in a finite time. (ii) Any valid message is delivered to its destination once and only once in a
finite time.
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Buffer graph. A Buffer Graph [15] is defined as a directed graph on the buffers of the graph i.e., the nodes are a subset of
the buffers of the network and links are arcs connecting some pairs of buffers, indicating permitted message flow from one
buffer to another one. Arcs are only permitted between buffers in the same node, or between buffers in distinct nodes which
are connected by a communication link.

3. Message forwarding

In this section, we first give an overview of our snap-stabilizing solution for the message forwarding problem, then we
present the formal description followed by the proofs of correctness.

3.1. Overview of the solution

In this section, we provide an informal description of our snap-stabilizing solution that solves the message forwarding
problem and tolerates the corruption of the routing tables in the initial configuration. We assume that there is a self-
stabilizing algorithm that calculates the routing tables and runs simultaneously to our algorithm. We assume that our
algorithm has access to the routing tables to identify the neighbor to which p must forward a given message m in order
form to reach its destination d. In the following we assume that there is no message in the system whose destination is not
in the system.

Note that the problem of having messages with unreachable destinations can be treated separately with two different
approaches depending on assumptions made on the system. Assume first that every process knows the identity of all the
other processes. This is the case for instance when each process knows n, the actual number of processes in the system and
its ID belongs the range 0 < id <= n − 1. Then, every message with a destination which is not in [0, n − 1] can be deleted.
This approach works on static systems only. Assume now that no process knows the set of identities in the system. In this
case, when the destination of a given message m does not appear in the routing table, then a snap-stabilizing Propagation
of Information with Feedback (PIF) wave [3] can be initialized to check whether the destination ofm exists or not. Although
several PIF waves can be initialized, we can add only one buffer per process by providing the priority to the PIF wave with
the smallest identity. If the destination does not exist, then the message m is deleted. This second approach works in both
static and dynamic systems. However, in the latter case, additional assumptions on the speed of the topology changes must
be taken in account carefully.

Observe that the solution in [1] cannot be applied directly on systems that have a tree topology. Indeed, in [1], since
the network topology is a chain, the authors proposed a buffer graph such that in the case where there is a cycle, the leaf
processes are sure to be involved in such a cycle. Thus, only the leaf processes were endowed with an extra buffer and were
able to initialize a cycle resolution. When the topology of the system is a tree, this solution cannot be applied. Indeed, some
messages will be forced to be forwarded in the wrong direction during a cycle resolution. Thus, we can no more guarantee
that all the messages will be in the right direction and delivered to their destination.

Before detailing our solution, let us define the buffer graph used in our solution:
Let δ(p) be the degree of process p in the tree structure and let Np be the set of processes that are neighbor of p. Each

process p has (i) one internal buffer that we call Extra buffer denoted EXTp. (ii) δ(p) input buffers allowing p to receive
messages from its neighbors. Let q ∈ Np, the input buffer of p connected to the link (p, q) is denoted by INp(q). (iii) δ(p)
output buffers allowing it to send messages to its neighbors. Let q ∈ Np, the output buffer of p connected to the link (p, q)
is denoted by OUTp(q). In other words, each process p has 2δ(p) + 1 buffers. The generation of a message is always done in
the output buffer of the link (p, q) so that, according to the routing tables, q is the next process for the message in order to
reach its destination.

The overall idea of the algorithm is the following: when a process wants to generate a message, it consults the routing
tables to determine the next neighbor by which the message will transit in order to reach its destination. Once the message
is in the system, it is routed according to the routing tables: let us refer to nb(m, b) as the next buffer b′ of the message m
stored in b, b ∈ {INp(q) ∨ OUTp(q)}, q ∈ Np. We have the following properties:

1. nb(m, INp(q)) = OUTp(q′) such as q′ is the next process by whichm has to transit to reach its destination.
2. nb(m,OUTp(q)) = INq(p)

Thus, if the messagem is in the output buffer OUTp(q) such as p is not the destination then it will be automatically copied
to the Input buffer of q. If the message m is in the Input buffer of p (INp(q)) then if p is not the destination it consults the
routing tables to determine which is the next process by which the message has to pass in order to meet its destination.

Note that when the routing tables are stabilized and when all the messages are in the right direction, the first property
nb(m, INp(q)) = OUTp(q′) is never verified for q = q′. However, this is not truewhen the routing tables are not yet stabilized
and when some messages are in the wrong direction.

Let us now recall the message progression. A buffer is said to be free if and only if it is empty (it contains no message) or
contains the same message as the input buffer before it in the buffer graph (Suppose that there is a message m in OUTp(q),
when m is sent to q, INq(p) = m. Observe that OUTp(q) = INq(p). Since the message of OUTp(q) have been sent, OUTp(q) is
considered free). In the opposite case, a buffer is said to be busy. The transmission of messages produces the filling and the
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(a) An example of a Full-Cycle. (b) Free Buffer on the path.

(c) An example of Sub-Cycle. (d) Token circulations deadlocked.

Fig. 1. Different configurations related to token circulations.

cleaning of each buffer, i.e., each buffer is alternatively free and busy. This mechanism clearly induces that free slots move
into the buffer graph, a free slot corresponding to a free buffer at a given instant.

In the following, let us consider our buffer graph taking in account only active arcs (an arc is said to be active if it starts
from a non empty buffer). Observe that in this case the subgraph introduced by the active arcs can be seen as a resource
allocation graph where the buffers correspond to the resources, for instance if there is a message m in INp(q) such as
nb(m, INp(q)) = OUTp(q′) then m is using the resource (buffer) INp(q) and it is asking for another resource which is the
output buffer OUTp(q′). In the following we will refer to this subgraph as the active buffer graph.

It is known in the literature that a deadlock situation appears only in the case there exists a cycle in the resource allocation
graph. Note that this is also the case in our active buffer graph. Since due to some initial configurations of the forwarding
algorithm and (or) the routing tables construction, this kind of cycles can appear during a finite prefix of any execution
(refer to Fig. 1(a)). Observe also that because our buffer graph is built on a tree topology, if a cycle exists then we are
sure that there are at least two messages m and m′ that verifies the following condition: nb(m, INp(q)) = OUTp(q) ∧

nb(m′, INp′(q′)) = OUTp′(q′) (Messages m and d in Fig. 1(a)). Since in this chapter, we consider a distributed system, it
is impossible for a process p to know whether there is a cycle in the system or not if no mechanism is used to detect them.
The only thing it can do, is to suspect the presence of a cycle in the case there is one message m in its input buffer (INp(q))
that has to be sent to output buffer of the same link (OUTp(q)). In order to verify that, p initiates a token circulation that
follows the active buffer graph starting from its output buffer OUTp(q). By doing so, the token circulation either finds a free
buffer (refer to Fig. 1(b)) or detects a cycle. Two kinds of cycle can be detected:

(i) a Full-Cycle that involves the output buffer of the initiator (OUTp1(p2) in Fig. 1(a))
(ii) a Lasso that does not involve the output of the initiator (OUTp1(p2) in Fig. 1(c)).

If the token circulation has found an empty buffer (let refer to this buffer by B), the idea is tomove themessages along the
token circulation path to make the free slot initially on B move. By doing so, we are sure that OUTp(q) becomes free. Thus,
p can copy the message m directly to OUTp(q) (note that this action has the priority on all the other enabled actions). If the
token circulation has detected a cycle then two sub-cases are possible according to the type of cycle that has been detected:
(i) The case of a Full-Cycle: p is the one that detects the cycle (p1 in Fig. 1(a)). The aim is to release OUTp(q). (ii). The case of
a Lasso: the process containing the last buffer B that can be reached by the token is the one that detects the cycle (process
p2 in Fig. 1, (c)). Observe that B is a non empty input buffer. Our aim, in this case, is to release the output buffer B′ by which
the message in B has to transit in order to meet its destination (OUTp2(p3) in Fig. 1(c)). Note that B′ is part of the path of the
token circulation.

In both cases (i) (full-cycle) and (ii) (lasso), the process that detects the cycle copies the message from the corresponding
input buffer (either from INp(q) or B) to its extra buffer. By doing so the process releases its input buffer. The idea is to move
messages on the token circulation path to make the free slot that was created on the input buffer move. This ensures that
the corresponding output buffer will be empty in a finite time (either OUTp(q) or B′). Thus, the message in the extra buffer
can be copied to the free slot on the output buffer. One cycle resolution is then said to be performed.



A. Cournier et al. / Theoretical Computer Science 496 (2013) 89–112 93

a b

Fig. 2. Multi-token management.

Many token circulations can be executed in parallel. To avoid deadlock situations between the different token circulations
(refer to Fig. 1(d)), each token circulation carries the identifier of its initiator. The token circulation with an identifier id can
take a buffer of another token circulation having the identifier id′ if id < id′. By doing so, one token circulation can break the
path of another one when themessages move to escort the free slot. The free slot can then be lost. For instance, in Fig. 2, one
can observe that the free slot that was produced by T1 is taken away by T2. By moving messages on the path of T2, a new
cycle is created again, involving p1 and p4. If we suppose that the same thing happens again such as the extra buffer of p4
becomes non empty and that p4 and p1 becomes involved again in the another cycle then the system is deadlocked and we
cannot do anything to solve it since we cannot erase any valid message (the messages in the extra buffers cannot be erased
so no empty slot can be created) . Thus, the solution is to avoid to reach such a configuration dynamically. To do so, when
a token circulation finds either a free buffer or detect a cycle, it does the reverse path in order to validate its path. When
the path is validated, no other token circulation can use a buffer that is already in the validated path. Note that the token is
now back to the initiator. To be sure that all the path of the token circulation is a correct path (it did not merge with another
token circulation that was in the initial configuration), the initiator sends back the token to confirm all the path.

On another hand, since the starting configuration can be an arbitrary configuration, we may have in the system a path of
a token circulation that forms a cycle. To detect and release such a situation, a value is added to the state of each buffer in
the following manner: if a buffer Bi has the token with the value x, then when the next buffer Bi+1 receives the token it sets
its value to x + 1. Thus, we are sure that in the case where there is a cycle, there will be two consecutive buffers B and B′ in
the path of the token circulation, having respectively x and x′ as a value such that x ≠ x′

+ 1. This kind of situation can be
then detected.

Instance of an execution. In this paragraph, we refer to Figs. 3 and 4 to describe a typical execution of our scheme. Assume
that the next destination of the messagem that is in INp1(p2) is p2 (refer to Fig. 3, Case (a)). Clearly, if the routing tables are
correct and stabilized, no such behavior can happen in the system. p1 in this case, can suspect the presence of a cycle, to be
sure of that, p1 initiates a token circulation that follows the destination of themessages thatmet the token. In Fig. 3, Case (b),
the next destination of the message a in OUTp1(p2) is INp2(p1), thus the token circulation will be sent to from OUTp1(p2) to
INp2(p1).

Similarly as p1, p2 knows by consulting the routing tables, that the next destination of the message b in INp2(p1) is
OUTp2(p3), thus, the token will be sent from INp2(p1) to OUTp2(p3) and so on. The token progresses in the system until it
reaches INp2(p4). When p2 consults the routing tables, it knows that the next buffer of themessage k is OUTp2(p3). However,
p2 notices also that the token has already passed by this buffer. Thus, p2 sends back the token in order to notify the other
processes that a cycle has been detected and in the same time, to validate the path of the first token circulation (Fig. 3,
Case (c)). The second circulation of the token follows exactly the path taken by the first one (Fig. 3, Case (d) and Fig. 4, Case
(e)). When the token arrives to the initiator (p1). p1 sends back once again the token to confirm that the path of the token
circulation has been validated and all the other processes on the path has been notified. The third circulation of the token
(Phase Confirm) follows the path defined by the first token (Fig. 4, Case (f)). When p2 receives the token for the second
time from p4, it knows that all the path of the token circulation has been validated and confirmed. p2 now can copy the
message k in its internal buffer to create a free slot in INp2(p4) (Fig. 4, Case (g)) and in the same time, p2 initiates another
token circulation to accompany the free slot during its move on the path of the confirmed token circulation (refer to Fig. 4,
Cases (i) and (j)). By doing so, the free slot arrives to OUTp2(p3) that becomes empty. Thus, p2 can copy the message k from
its internal buffer to OUTp2(p3) (Fig. 4, Case (k)). p2 cleans the state of INp2(p4) (Fig. 4, Case (l)). By doing so, the states of
buffers on the processes are cleaned progressively on the path of the token circulation.

To simplify the explanation and the description of our solution,wewill suppose that the actions are enabled and executed
on the buffers of the graph instead of the processes. By doing so, our graph becomes dynamic i.e., the connections between
buffers are defined according to themessages that are in the buffers and the state of the routing tables at time t. For instance
if there is a message in Buffer A such that the next destination of this message is Buffer B then there is a connection between
Buffer A and Buffer B. The connections are also defined by the token circulation in a cycle resolution. For instance when
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Fig. 3. An example showing an execution of our scheme, Part 1.

the path of the token circulation is defined, the messages can only be transmitted on the buffers that are part of this path
(regardless of the routing tables).

In the following, we assume that the correction rules have the priority over the rules of our protocol i.e., in the casewhere
there is a correction rule that is enabled on a given buffer at the same time as a rule from our protocol, then the correction
rule is the only one executed.
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Fig. 4. An example showing an execution of our scheme, Part 2.

Fig. 5. Vision at distance 2.

On the other hand, we will allow the buffers, in our solution, to see the state of the buffers that are at distance 2 i.e., the
buffers that are neighbors of the neighboring buffers. This clearly bends our model defined previously. However, since the
buffer graph is defined on the processes of the graph, and since in reality, the algorithm is executed by the processes instead
of the buffers, the vision at distance 2 on buffers corresponds to the case when the two neighboring buffers are part of the
same process. For instance, in Fig. 5, Buffer A is able to read the state of both buffers B and B′. If we consider the buffers of the
graph instead of the processes, Buffer A is able to see at distance 2. However, when considering the graph of the processes,
process p has only a vision at distance 1. Thus, the vision at distance 2 when considering the buffer graph corresponds to a
vision at distance 1 on the process graph. In the same manner, in some cases, some rules of the proposed algorithm allow
the execution of two actions on respectively two different buffers. This also bends ourmodel, however, this can only happen
when the two buffers on which an action is executed are part of the same process (Buffer A and Buffer B on the process p in
Fig. 5). If there are actions that are enabled on many buffers of a given process p, then p executes them in the same step.

3.2. Formal description

We present in the following, respectively the formal description of the message forwarding algorithm and the token
circulation algorithm.

3.2.1. Message forwarding algorithm
Let us first present the variables and predicates used in the description of our message forwarding algorithm, we then

provide the formal description of our Solution in Algorithm 1.

Variables

• EXTp: The Extra buffer of the process p.
• INp(q): The input buffer of p associated to the link (p, q).
• OUTp(q): The output buffer of p associated to the link (p, q).
• Buffer(A): denotes the content of Buffer A.
• id-A: denotes the identity of Buffer A.
• Destination(m): refers to the destination of the messagem.
• Process(A): refers to the process owning the buffer A.
• State-Buffer(A)=(id-Token(A), parent(A), child(A), phase(A), level(A)): refers to the state of the buffer A. id-Token(A)

refers to the identity of the process that initiates the token circulation. The parameter parent(A) is a pointer towards the
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Fig. 6. Instance of a configuration.

buffer fromwhich A has received the token for the first time. The parameter child(A) is a pointer that refers to the buffer
to which A has sent the token for the first time. The parameter phase(A) ∈ {S, V , F , E, C,G} defines the phase of the
token circulation (Search, Validation, Confirm, Escort, Clean, Freeze). Finally, level(A) is an integer that refers to the level
of the buffer in the path of the token circulation. It is set to x + 1 if the token was received for the first time from Buffer
B which is at level x. This will be used in order to avoid cycles in the path of the token circulation.

• Token-Request(A,B): Boolean that allows the communication between the forwarding algorithm and the token
circulation algorithm. It is set to true by the message forwarding algorithm when Buffer A needs to initiate a token
circulation towards Buffer B (Buffer A is in this case an input Buffer).

• Message-to-Generate(m): Boolean, allows the communication with the higher layer, it is set to true by the application
when a message has to be sent and to false by the forwarding protocol once the message is generated.

Actions

• Consume(m,A): delivers the messagem to the higher layer.

Macros

• Next-Buffer(A,m): refers to the next buffer of the message m, after Buffer A, in order to reach its destination. In order to
explain this macro, let us first define the following Predicate:

Same-Link(A,B): process(A)=process(B)=p ∧ ∃ q, Buffer(A)=INp(q) ∧ Buffer(B)= OUTp(q). This predicate indicates
that Buffer(A) and Buffer(B) are part of the same process p on the link (p, q). Buffer(A) is an input buffer whereas Buffer(B)
is an output buffer.
Next-Buffer(A,m) is determined by both the routing tables and the buffer-graph. For instance (refer to Fig. 6), in the case
where the destination of the messagem is different from p then, if A is an output buffer (OUTp(q) in Fig. 6) then the next
buffer of m is the input buffer connected to A (INq(p) in Fig. 6). In the case where A is an input buffer (INp(q") in Fig. 6)
then two cases are possible as follows:
– Same-Link(A,B)∧ Token-State(B)∧ level(B)=0. In this case, regardless of the routing tables, Next-Buffer(A,m)=B (the

token circulation has the priority over the routing tables
– Same-Link(A,B)∧ (Token-State(B)⇒ level(B) ≠ 0). Then, the next buffer is the output buffer of the process p connected

to q (OUTp(q)) where q is the next process by which the message has to transit in order to reach its destination (q is
given by the routing table).
Predicates

– Edible(A): Buffer(A)= m∧ Destination(m)=process(A). This predicate indicates that the destination of Message m,
that is in Buffer A, is process(A).

– Free(A): Buffer(A)= ϵ∨ (Buffer(Buffer(A)= m ∧ Next-Buffer(A,m)=B ∧ Buffer(B)= m). This predicate indicates
whether buffer A is free or not. Buffer A is said to be free if the predicate is verified, otherwise it is said to be occupied.
From the description of Free(A), we can notice that Buffer A is free if it does not contain any message (Buffer(A)= ϵ),
or when the messagem in Buffer A is exactly the same message as in Next-Buffer(A,m) (the messagem has been sent
to Next-Buffer(A,m)).

– No-Duplication(m,A): Buffer(A)=m ∧ ∀B, Next-Buffer(B,m′)=A ⇒ m′
≠ m. This indicates that there is no other copy

of themessagem in Buffer B such that Next-Buffer(B,m′)=A. This predicate will be used to ensure that there is at most
two copies of a valid message in the buffer graph (refer to Fig. 7).

– Message-to-send(B,m,A): Buffer(B)=m ∧ Next-Buffer(B,m)=A. This predicate indicates that the messagem, in Buffer
B, needs to be sent to Buffer A.

– Clean-State(A): State-Buffer(A)=(−1,⊥,⊥,C,−1). This predicate indicates that Buffer A is not part of any token
circulation (its state is clean).
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Fig. 7. No-Duplication(m,A)=true.

Fig. 8. Token path.

Fig. 9. Uturn of the messagem.

– Incorrect-Clean-State(A): [id-Token=−1 ∨ level(A)=−1 ∨ phase(A)=C ∨

parent(A)=child(A)] ∧ ¬ Clean-State(A). This predicate indicates that Buffer A is not part of any token circulation.
However, Clean-State(A) is not verified.

– Token-State(A): State-Buffer(A)≠ (−1, ⊥, ⊥, C,−1) ∧ ¬ Incorrect-Clean-State(A). This predicate indicates that A is
part of a token circulation.

– No-Token(A): Clean-State(A) ∧ (∀B, Token-State(B) ⇒ child(B) ≠ A) ∧ (Same-Link(A,B′) ⇒ Level(B′) ≠ 0). This
predicate indicates that Buffer A is not part of any token circulation and there exists no other buffer B′ that has Buffer
A as a child. In addition, in the case where A is an input buffer of a given process p of the link (p, q) (INp(q)), then
OUTp(q) (Buffer B′) did not initiate any token circulation (Token-State(B′) ⇒ level(B′)≠ 0).

– Token-Path(B,A): Token-State(A) ∧ State(A)=(id,B′,B,F,x) ∧ Token-State(B′) ∧ State(B′)=(id,?,A,F,x − 1) ∧ Token-
State(B)∧ State(B)=(id,A,?,E,x+1). Regardless of the routing tables, themessage in Buffer B needs to be sent to Buffer
A (this is defined by the token circulation). This happens when a free slot is being dragged in a cycle resolution). The
transmission is done at the same time as the evolution of the Escort phase of the token circulation (refer to Fig. 8).

– Uturn(m,B,A): Buffer(B)=m ∧ Next-Buffer(m)=A ∧ Same-Link(A,B). This predicate indicates that there is a message
m in Buffer(B) that needs to be forwarded to Buffer(A) such that Buffer(B) and Buffer(A) are two buffers of the same
link (refer to Fig. 9).

– Forced-Uturn(m,B,A): Same-Link(B,A) ∧ Token-State(A) ∧ Clean-State(B) ∧ State-Buffer(A)=(id,A,child(A),F,0) ∧

State-Buffer(child(A))=(id,A,?,E,1). This predicate indicates that aU-Turn can be performed since the token circulation
has found a free buffer.
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Fig. 10. Confirmation of a Full-Cycle.

Fig. 11. Confirmation of a Lasso.

– Synchro[Action1(A), Action2(B)]. This indicates that Action1 and Action2 are executed at the same time on
respectively Buffer A and Buffer B (notice that this happens only when both buffers A and B are part of the same
process i.e., process(A)=process(B)).

– Full-Cycle(A): Token-State(A) ∧ Token-State(child(A)) ∧ level(A) ≥ 3 ∧ level(child(A))=0 ∧ id-Token(A)=id-
Token(child(A)) ∧ parent(child(A))=child(A). This predicates indicates that Buffer A is the last buffer of a token
circulation that has detected a full-cycle.

– Lasso(A): Token-State(A) ∧ Token-State(child(A)) ∧ id-Token(A)=id-Token(child(A)) ∧ parent(child(A))≠ A ∧

level(child(A))≠ level(A)+1. This predicate indicates that Buffer A is the last buffer of a token circulation that detected
a lasso.

– Confirm-Cycle(A): [Full-Cycle(A) ∨ Lasso(A)] ∧ phase(A)=F ∧ phase(child(A))=F. This predicate indicates that all the
buffers of the token circulation has updated their phase to F (Figs. 10 and 11).

– Filiation(A,B): Token-State(A) ∧ Token-State(B) ∧ child(A)=B ∧ parent(B)=A ∧ id-Token(A)=id-Token(B). This
predicate indicates that Buffer A is the parent of Buffer B and that buffer B is the child of Buffer A for the same token
circulation.

– Normal-Filiation(A,B): Filiation(A,B) ∧ (A ≠ B ⇒ level(B)=level(A)+1). This predicate indicates that Buffer A is the
parent of Buffer B, Buffer B is the child of A and the levels of both Buffer A and B are correct.

– Last-Buffer(A): Token-State(A)∧ [child(A)=A∨ Full-Cycle(A)∨ Lasso(A)]. This indicates that Buffer A is the last buffer
of a token circulation.

– First-Buffer(A): Token-State(A)∧ parent(A)=A∧ level(A)=0∧ id-Token(A)=id-A. This predicate indicates that Buffer
A is the first buffer of a token circulation (more precisely, it is the first buffer of a normal token circulation defined in
Definition 2).
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Fig. 12. End-Token in the case of a Full-Cycle.

Fig. 13. End-Token in the case of a Lasso.

– End-Token(A): [∃ B, [Full-Cycle(B) ∨ Lasso(B)] ∧ child(B)=A ∧ phase(B)=E ∧ phase(A)=F ∧ phase(child(A))=E] ∨

[First-Buffer(A) ∧ Normal-Filiation(A,child(A)) ∧ phase(A)=F ∧ phase(child(A))=E] (Figs. 12 and 13).
This indicates the end of the Escort phase of the token circulation.

We define a round robin pointer on the extra buffer of each process. The extra buffer is a memory shared by a subset of
buffers. All such buffers have the ability to read andwrite in the extra buffer. A given buffer A is allowed to write in the extra
buffer (EXTprocess(A)) if and only if the round robin pointer is on A as shown in Fig. 14. The round robin pointer points only
towards an input buffer (for instance A) that is ready to use the extra buffer (Confirm-Cycle(A) is satisfied). If there exists no
such buffers, then the round robin pointer is set to ⊥.

In the case where a given input buffer A is involved in a cycle, its messagem is copied in the extra buffer to release a free
slot. Let us refer to the next buffer of m by B (note that Buffer B is an output buffer). The free slot is dragged on the path of
the cycle (defined by the token circulation) until it reaches Buffer B. Buffer B then, copies the messagem and deletes it from
EXTprocess(A).

Remark 1. A transmission between buffers, during a normal behavior, is performed by executing Rule R(F)3. However, in a
case of a transmission from an input buffer (INp(q)) to an output buffer (OUTp(q′)) of a process p then, when the message is
copied in (OUTp(q′)), p copies at the same time the message in OUTq(p) in INp(q) (refer to Fig. 15). This is done to make sure
that there exist at most two copies of a valid message in the buffer graph.
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Fig. 14. Round-Robin pointer on the extra buffer EXT.

Fig. 15. Internal transmission.

Algorithm 1Message Forwarding Protocol
During normal behavior

• Message generation (output buffer)
- R(F)1: Message-to-Generate(m) ∧ Buffer(m)=A ∧ Free(A) ∧ NO-Token(A) → Buffer(A):=m, Message-to-Generate(m):=false.

• Message consumption (input buffer)
- R(F)2: Edible(A) ∧ No-Duplication(m,A) → Consume(m,A), Buffer(A):=ϵ.

• Transmission of the messagem (input/output buffer)
- R(F)3: Message-to-send(B,m,A) ∧ Free(A) ∧ No-Duplication(m,B) ∧ ¬ Uturn(m) ∧ No-Token(A) ∧ No-Token(B) → Buffer(A):=m.

• Erasing the message m after its transmission (input/output buffer)
- R(F)4: Buffer(A)= m ∧ Next-Buffer(A,m)=B ∧ Buffer(B)=Buffer(A) ∧ No-Duplication(m,A) → Buffer(A):=Choice-Buffer(A).

During abnormal behavior

• Transmission of the messagem (input/output buffer)
- R(F)5: Buffer(parent(A))=m ∧ Token-Path(B,A) ∧ Free(A) → Buffer(A):=m.

• U-turn (input to output buffer)
- R(F)6: Uturn(m,B,A) ∧ Clean-State(A) ∧ Clean-State(B) ∧ Free(A) ∧ No-Duplication(B,m) → Synchro[Buffer(A):=m; Buffer(B):=ϵ].

- R(F)7: Forced-Uturn(m,B,A) ∧ Free(A) → Synchro[Buffer(A):=m; Buffer(B):=ϵ].

• Token-Circulation-Request (input buffer)
- R(F)8: Uturn(m,B,A) ∧ ¬ Free(A) ∧ No-Duplication(B,m) ∧ Free(EXTprocess(A)) ∧ No-Token(B) → Token(A,Next-Buffer(A,m)):=true.

• Free-Slot-Creation (input buffer)
- R(F)9: Confirm-Cycle(A) ∧ process(A)=p ∧ Free(EXTp) ∧ Round-Robin(EXTp)=A → EXTp := m, Buffer(A):=Buffer(parent(A)).

• Delayed-U-turn (output buffer)
- R(F)10: End-Token(A) ∧ Free(A) ∧ process(A)=p ∧ ¬ Free(EXTp) ∧ child(Round-Robin(EXTp))=A → Buffer(A):=EXTp , EXTp := ϵ.

• Invalid message suppression without cycles (output buffer)
- R(F)11: ∀ A, process(A)=p, ¬ Free(EXTp) ∧ [Token(Round-Robin(EXTp))=⊥ ∨

phase(Round-Robin(EXTp))≠ E)] → EXTP := ϵ.

• Invalid message suppression in the case of a cycle (output buffer)
- R(F)12: ¬ Free(EXTp) ∧ End-Token(A) ∧ ¬ Free(A) → EXTp := ϵ.

• Cancellation of unnecessary token circulation requests (input buffer)
- R(F)13: Token-Request(A,B) ∧ [Free(A) ∨ ¬ Uturn(m)] → Token-Request(A,B):=false.

Remark 2. In the description of our algorithm, Rules R(F)3, R(F)6 and R(F)8 allow Buffer A to read the state of Buffer B′ that
is at distance 2 i.e., Buffer B′ is a neighbor of Buffer B that is neighbor of A (refer to Fig. 16). As said previously, in reality
this can happen when both Buffers A and B are part of the same process p. This is assumed when the output buffer of p is
considered to avoid the duplications of messages. For instance in Fig. 16, Buffer A is allowed to receive the message m that
is in Buffer B if and only if the message in Buffer B′ is different fromm.

Observe that in the case where an input buffer is considered (Buffer A is an input buffer, refer to Fig. 17), then A copies
the message in B regardless of the message being in Buffer B′. Since m is valid then, when m was copied in Buffer B, it has
been removed from Buffer B′ according to Remark 1. Thus, in the case where there is a copy of the message m in the three
buffers A, B and B′, that means thatm in an invalid message (it was in the system in the initial configuration).



A. Cournier et al. / Theoretical Computer Science 496 (2013) 89–112 101

Fig. 16. Vision 2.

Fig. 17. Vision 1.

Fig. 18. Instance of a configuration.

3.2.2. Token circulation algorithm
Recall that the proposed token circulation comprises two round trips for the token in addition of the cleaning phase. The

first round trip corresponds to respectively Search and Validation phases, while the second one corresponds to Confirm and
Escort phases. In the following the 5 phases of the token circulation:

• Search Phase. The aim of this phase is to determine a cycle or to find a free buffer. The path of this token circulation is
maintained in each buffer i.e., each buffer that has received the token updates its state to save the identity of the token it
has received and keep pointers to the buffer from which its has received the token and to which it has sent it.

• Validation Phase. It aims to validate all the path determined by the first phase (Search) of the token circulation. The token
is sent back by the last buffer that has received the token and follows the reverse path of the Search phase. Upon receiving
the token, each buffer updates its phase to the validation phase.

• Confirm Phase. The aim of this phase is to confirm all the path of the token circulation. When the token of the validation
phase is received by the buffer that initiated the token circulation, this latter sends the token one again to confirm the
path determined by the first phase. This is done to be sure that in the case where a cycle is detected then the cycle is
valid.

• Escort Phase. This phase aims to escort the free slot that has been found or that has been created (in a cycle resolution)
to make sure that no message generation is performed on the free slot (recall that this free slot will be used to allow a
buffer to perform a u-turn).

• Cleaning Phase. The aim of this phase is to clean the path of the token circulation. This phase is initiated by the last buffer
of the token circulation. By receiving the token, each buffer cleans its state.

The round-robin pointer on each extra buffer of the system aims, as explained earlier, to determine the next buffer to
use the extra buffer if needed. For instance, in Fig. 18, Both Buffer A and Buffer B need to use the extra buffer to re-root their
respective message and initialize the Escort phase. Buffer A will be the one to do so if Round-Robin(EXTp)=A. Thus, Buffer A
copies its message k in EXTp and initializes the Escort phase. On another hand, the next buffer of m can also be determined
thanks to the round-robin pointer (Child(Round-Robin(EXTp))). Thus, when such a buffer becomes free k is copied there. The
value of the round-robin pointer is updated only when the extra buffer is released.
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Fig. 19. Successor(Phase(A)).

Fig. 20. parent(A) election.

Algorithm 2 Token Circulation Algorithm
• Token circulation initialization (output buffer)

– R(T)1: Token-Request(B,A) ∧ Initialization-Allowed(B,A) → Token-Initialization(B,A).

• Search Phase (input/output buffer)
– R(T)2: S-Forward(id,B,A) → Set-Token(id,B,A).

• Propagation (input/output buffer)
– R(T)3: Forward(A) ∨ Backtrack(A) ∨ Change-Direction(A) → Update-Phase(A).

• Cleaning-Phase (input/output buffer)
– R(T)4: Clean-child(A,E) ∨ Another-Token(A,E) ∨ Cycle-Escort(A,E) → Set-clean-Buffer(A).

In the following, in addition of the data that will be defined in the sequel, some variables and predicates defined in
Section 3.2 will be used to describe our Token Circulation algorithm.

To define the macros used in the token circulation algorithm let us first define the following predicate:

• Pseudo-Free(A): Free(A) ∨ Edible(A). This predicate indicates that Buffer A either is free or it contains a message whose
destination is process(A). A is said to be pseudo free.

Macro:

−Search(A) =

A if Pseudo-Free(A)
B if Message-to-Send(A,m,B)
Child(A) Otherwise

− Successor(Phase(A)): Recall that there are 5 possible phases for the token circulation as follows: C (Clean), S (Search),
V (Validation), F (Confirm) and E (Escort). The succession of the phases is given by Fig. 19.

- Smallest-Token-to(A)=B if: Token-State(B) ∧ State-Buffer(B)=(id,?,A,S,x) ∧ (∀ B′, Token-State(B′) ∧ State-Buffer(B′)=
(id’,?,A,S,x’) ⇒ id < id′). This macro determines the parent of Buffer A. This buffer is chosen by considering the identity of
the token that has been sent to Buffer A. The parent is the buffer that has sent a token to Buffer A with the smallest identity
(in Fig. 20, Buffer A will have to choose between Token1 and Token2, this is done by using the identity of both tokens).

Predicates (Part1)

• Initialization-Allowed(B,A): [Clean-State(A)∧ Clean-State(B)]∨ (Token-State(A)⇒ (id-Token(A)>id-A∧ phase(A)=S)).
It indicates that Buffer Awants to initialize a token circulation by sending a token to Buffer B (Token-Request(A,B)= true).
Both buffers A and B are not part of any token circulation (Clean-State(A) ∧ State-Buffer(B)=State-Buffer(A)).
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Fig. 21. The token moving Forward.

Fig. 22. The token moving Backward.

• Propagation-Allowed(A,id): (Clean-State(A)∨ (Token-State(A)∧ id-Token(A)>id∧phase(A)=S))∧ (parent(Search(A))=
A ⇒ id-Token(Search(A))≠ id). It indicates when the token is allowed to be propagated to Buffer A. This can be done in
one of the three following cases: (i) Buffer A is not part of any token circulation (Clean-State(A)). (ii) Buffer A is part of
another token circulation such that the identity of this token is greater than the new one and its phase is different from
the elements in the set {V,F,E}. (iii) In the case where parent(Search(A))=A, id-Token(Search(A)) must be different from
id to avoid the merging with abnormal token circulation.

• S-Forward(id,B,A): Token-State(B) ∧ child(B)=A ∧ Smallest-Token-to(A)=B ∧ Propagation-Allowed(A,id). This
predicates is used during the first phase of the token circulation (search). It indicates that Buffer A needs to update it
state to be part of the token circulation of the token sent by Buffer B.

• Forward(A): Normal-Filiation(parent(A),A) ∧ phase(parent(A))= successor(phase(A)) ∧ [Last-Buffer(A) ∨ (Normal-
Filiation(A,child(A))∧ phase(child(A))=phase(A))]. Recall that the path of the token circulation is already defined. All the
buffers part of this token circulation have set their parent and child pointer. This predicates indicates that the token is
moving forwards. If Buffer A is not the last buffer of the token circulation, then the token is sent to Child(A) by Buffer(A).
Buffer A sends the token after checking the phases of both its parent (phase(parent(A))=successor(phase(A))) and its
child (phase(child(A))=phase(A)) (refer to Fig. 21). If Buffer A is the last buffer (Last-Buffer(A)), then, the token cannot
be sent forward anymore. Buffer A updates its state and eventually sends the token back to initialize the next phase.

• Backtrack(A): Normal-Filiation(A,child(A)) ∧ phase(child(A))= successor(phase(A)) ∧ [First-Buffer(A) ∨ (Normal-
Filiation(parent(A),A) ∧ phase(A)=phase(parent(A)))]. As for Forward(A), the path of the token circulation is already
defined. This predicates indicates that the token is moving backward. If Buffer A is not the first buffer of the token
circulation then, Buffer A sends the token to parent(A). Before doing so, Buffer A checks the phases of both its parent
and its child (refer to Fig. 22). In the case where Buffer A is the first buffer, then the token cannot be sent backward
anymore, Buffer A updates its phase after checking the phase of its child so that it can initialize, in the next step, the next
phase.

• Change-Last-Buffer(A): Last-Buffer(A) ∧ phase(A)=phase(parent(A)) ∧ phase(A)=phase(child(A)). This indicates that
Buffer A is the last buffer of the token circulation id. It allows a buffer to detect the end of either the Validation phase or
the Confirm phase and to send the token phase to initialize the next phase.

• V-Initialization(A): Change-Last-Buffer(A) ∧ phase(A)=S. This predicate indicates that Buffer A is ready to initialize the
Validation phase in the backward direction.

• F-Initialization(A): First-Buffer(A) ∧ phase(A)=V ∧ phase(child(A)) =phase(A). This predicate indicates that all the path
of the token circulation has been validated i.e., the validation phase reached the buffer that has initiated the token
circulation. Thus, the token has to be sent back to initialize the Confirm phase.

• E-Initialization(A): Round-Robin(EXTprocess(A))= A ∧ phase(A)=F ∧ Change-Last-Buffer(A). This predicate indicates that
Buffer A is ready to initialize the Escort phase in the backward direction.

• Change-Direction(A): Token-State(A) ∧ [V-Initialization(A) ∨ F-Initialization(A) ∨ E-Initialization(A)]. It indicates that
the token must be sent back in the opposite direction. This happens when Buffer A is either the first buffer of the token
circulation (the one at level 0) or the last one.

• Clean-child(A, phase): Token-State(A) ∧ phase(A)=phase ∧ (child(A)=A ∨ Clean-State(child(A))). Buffer A is the last
buffer of the token circulation. The phase of this buffer is equal to the parameter phase. Thus, it has to clean its state.
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Fig. 23. Transitions between phases.

• Another-Token(A, phase): Token-State(A) ∧ phase(A)=phase ∧ Token-State(child(A)) ∧ id-Token(A)≠ id-Token
(child(A)). The last buffer of the token circulation has a child buffer involved in another token circulation.

• Cycle-Cleaning(A, phase): Token-State(A) ∧ phase(A)=phase ∧ Token-State(child(A)) ∧ phase(child(A))=phase ∧

parent(child(A))≠ A ∧ id-Token(A)=id-Token(child(A). The last buffer of the token circulation (Buffer A) has a child
buffer that is already in the same phase as A (phase). Note that, in this case, parent(child(A))≠ A. This is used to detect
when to initialize the cleaning phase. This happens when phase is respectively equal to E or G.

Actions:

• Token-Initialization(B,A): Synchro[Token-Request(B,A):=false, State-Buffer(A):=(id-A,A,Search(A), S,0)]. Buffer A initial-
izes the requested token circulation by sending the token for the first time. Buffer B sets Token-request(A,B) to false.

• Set-Token(id,B,A): State-Buffer(A):=(id,B,Search(A),S,level(B)+1). Buffer A sends the token that it has received from
Buffer B to the buffer determined by Search(A).

• Set-clean-Buffer(A): State-Buffer(A):=(−1,⊥, ⊥, C, −1). The state of Buffer A is cleaned.
• Update-Phase(A): Phase(A):=Successor(Phase(A)). Buffer A updates its phase to successor phase(A).

Correction Rules
Previously, we introduced five possible values for the phase of the token circulation. In the following, we introduce a

new value (G for Freeze) that will be used to clean a sequence of buffers that are part of an incorrect token circulation (the
state of at least one buffer part of this path is not correct i.e., cannot be reached dynamically by executing our protocol). The
transitions between the phases is given in Fig. 23. The correction Rules are given in Algorithm 3.

Algorithm 3 Correction Rules of the Token circulation

• Freeze Initialization (input/output buffer)
– R(T)5: Initiator-Incoherence(A) ∨ Abnormal-Parent(A)] ∧ phase(A)≠ G → Freeze-Buffer(A).

• Freeze Propagation (input/output buffer)
– R(T)6: G-Forward(A) → Freeze-Buffer(A).

• Cleaning Freeze (input/output buffer)
– R(T)7: Clean-child(A,G) ∨ Another-Token(A,G) ∨ Cycle-Freeze(A,G) → Set-clean-Buffer(A).

• Additional correction rules (input/output buffer)
– R(T)8: Abnormal-Cycle(A) ∨ Error-Free-Buffer(A) ∨ Abnormal-Token-End(A) ∨ Abnormal-child(A) → Set-clean-Buffer(A).

– R(T)9: Same-Link(A,B) ∧ Token-Request(A,B) ∧ Token-State(A) → Token-Request(A,B):=false.

– R(T)10: Incorrect-Clean-State(A) → Set-Clean-Buffer(A).

Predicates (Part2)

• IN-Phase(A,B): (phase(A)= S⇒ phase(B)∈{S,V})∧ (phase(A)=V⇒ phase(B)=V)∧ (phase(A)=F⇒ phase(B)∈{V,F,E})∧
(phase(A)=E ⇒ phase(B)=E) ∧ (phase(A) ≠ G ⇒ phase(B) ≠ G). This indicates that the phase of Buffer A is correct with
respect to the phase of Buffer B. Observe that phase(A)=C is not considered in this predicate. This is due to the fact that
IN-Phase(A,B) is only used when Buffer A is part of a token circulation (Token-State(A) is true).

• Abnormal-Phase(A,B): Normal-Filiation(A,B) ∧ ¬ IN-Phase(A,B). This indicates that the phases between A and its child
are incoherent.

• Abnormal-Level(A): Filiation(A,B) ∧ ¬ Normal-Filiation(A,B). This predicate indicates that the levels of Buffer A and its
child is incoherent.
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• Initiator-Incoherence(A): Token-State(A) ∧ parent(A)=A ∧ (level(A)=0 ⇒ id-Token(A)≠ id-A). This predicate indicates
that the level of the first buffer (initiator) of a given circulation is incorrect.

• Abnormal-child(A): Abnormal-Phase(A,child(A)) ∨ Abnormal-Level(A,child(A)). This predicate indicates that there is an
incoherence between Buffer A and Buffer child(A).

• Abnormal-Parent-identity(A): Token-State(A) ∧ [¬ Smaller-id(parent(A),A) ∨ Bigger-id(parent(A),A) ∨ Clean-State
(parent(A))]. This indicates that Buffer A is not the child of its parent, where:
– Bigger-id(B,A): id-Token(B) > id-Token(A). This indicates that the identity of the token of Buffer B is bigger than the

one of Buffer A.
– Smaller-id(B,A): id-Token(B)< id-token(A) ⇒ (phase(A)=S ∧ phase(B)=S). This indicates that in the case where id-

Token(B)< id-token(A), both Buffer A and Buffer B are in the Search phase.
• Abnormal-parent(A): Abnormal-Parent-identity(A) ∨ Abnormal-Level(parent(A),A) ∨ Abnormal-Phase(parent(A),A). It

indicates that the state of parent(A) is not coherent with the state of Buffer A.
• G-Forward(A): Token-State(A)∧ phase(A)≠G∧ Token-State(parent(A))∧ Filiation(parent(A),A)∧ phase(parent(A))=G.

This indicates that the parent of Buffer A is in the Freeze phase.
• Abnormal-Cycle(A): Token-State(A) ∧ [lasso(A) ∨ Full-Cycle(A)] ∧ phase(A)=phase1 ∧ phase(child(A))=phase2 ∧

phase(parent(A))≠ G ∧ [(phase1=S ∧ phase2 ∈ {V,F,E}) ∨ (phase1=V ∧ phase2=E) ∨ (phase1=F ∧ phase2 ∈ {S,V,F,E})
∧ (phase1=E ∧ phase2∈{S,V})]. This indicates that the state of child(A) is incorrect (there is an inconstancy while
considering the phases). Before cleaning its state, Buffer(A) checks whether its parent is in the freeze phase (G).

• Error-Free-Buffer(A): ¬ Free-Buffer(A) ∧ child(A)=A ∧ phase(A)∈ {S,V,F} ∧ phase(parent(A))≠ G. The state of Buffer(A)
indicates that the token circulation has found a free buffer however Buffer(A) ≠ ϵ.

• Abnormal-Token-End(A): State-Token(A) ∧ phase(A) ∈ {V,F,E} ∧ phase(parent(A))≠ G ∧ [(id-Token(A)≠ id-
Token(child(A)) ∨ Clean-State(child(A))]. This predicate indicates that child(A) is not part of the same token circulation
as A.

Actions

• Freeze-Buffer(A): phase(A):=G. The phase of buffer A is updated to G.

Observe that some correction rules (R(T)8 to R(T)10) do not need the Freeze mechanism. When an incoherency is locally
detected, the state of the concerned buffer is cleared (set to (−1, ⊥, ⊥, C, −1) (refer to Rule R(T)8).

3.3. Proof of correctness

We prove in this section the correctness of our solution. The idea of the proofs is the following: we first show that no
valid message is deleted from the system unless it is delivered to its destination. We then show that each buffer is infinitely
often free, thus neither deadlocks nor starvation appear in the system.We finally show that every validmessage is delivered
to its destination once and only once in a finite time.

In the following, amessagem that has to perform a u-turn and has generated a token circulation T is said to be associated
to T (T is also said to be associated to m). More formally: Message m is said to be associated to T = A1 → A2 →

· · · → Ak if ∃ Buffer A such that Buffer(A)=m and Same-Link(A,A1). Buffer A is said to be cleared if State-Buffer(A) is set
to (−1, ⊥, ⊥, C, −1). In the same manner, a token circulation T is said to be cleared, if all the buffers of T clears their state
in a finite time. A token circulation is said to be valid, if it is has been initialized after the faults. We distinguish two kinds
of valid token circulations: (i) A complete token circulation i.e., all the buffers of T has been visited by T . (ii) An incomplete
token circulation i.e., T finds a buffer A that is already in the same token circulation as T but was not visited by T (A was part
of a token circulation in the initial configuration). A message m is said to be in a suitable buffer if m is in the right buffer to
reach its destination (the right path towards the destination). Buffer A is said to hook Buffer B, if during the search phase,
Buffer B becomes the child of Buffer A. In other words, Buffer A hooks Buffer B when A executes S-Forward(A) such that
Search(A)=B.

Before detailing the proofs, let us now define some notions that will be used later.

Definition 1 (B-Successor). Let A1 and A2 be two buffers of the system. A2 is called the B-successor of A1, denoted A1 → A2,
if the following predicate is satisfied:

Normal-Filiation(A1,A2) ∧ IN-Phase(A1,A2).

Definition 2 (Normal Token Circulation). A maximal sequence of k buffers A1 → A2 → · · · → Ak starting from A1 is
called a normal Token circulation if First-Buffer(A1) is satisfied.

Definition 3 (Abnormal Token Circulation). A maximal sequence of k buffers A1 → A2 → · · · → Ak starting from A1 is
called an abnormal Token circulation if the following predicate is satisfied:

Initiator-Incoherence(A1) ∨ Abnormal-Parent(A1).
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Remark 3. Observe that, for a normal token circulation there exist at most two segments, respectively S1 = A1 → A2 →

· · · → Ai and S2 = Ai+1 → Ai+2 → · · · → Ak of different phases (∀ 1 ≤ j < i phase(Aj)=phase(Aj+1) and ∀ (i + 1) ≤ j′ < k
phase(Aj′ )=phase(Aj′+1)). When the token circulation is abnormal, there exist at most three segments respectively S1, S2,
and S3 of different phases such that ∀ Aj part of S1, phase(Aj)=G (all the buffers part of S1 have their phase set to G).

Definition 4 (G-Validated Token Circulation). A maximal sequence of k buffers T = A1 → A2 → · · · → Ak, starting from
A1 is said to be G-Validated, if there exist a prefix possibly empty P = A1 → A2 → · · · → Ai and a suffix possibly empty
X = Ai+1 → Ai+2 → · · · → Ak such that phase(Aj)=G for 1 ≤ j ≤ i, and phase(Aj′ )∈{V,F,E} for (i + 1) ≤ j′ ≤ k. Let us refer
to the number of Buffers of P by |P|.

Lemma 1. If an abnormal token circulation T is G-Validated, then T will be cleared in a finite time.

Proof. Let us refer to such a token circulation by T = A1 → A2 → · · · → Ak. Since T has been G-Validated, no other token
circulation can use a buffer of T (refer to Rule R(T)2 (Algorithm 2), Predicates S-Forward, and Propagation-allowed(A,id).
Let P and X be respectively the prefix and the suffix of T as defined Definition 4. Observe that since T is G-Validated,
phase(Ak)∈ {E, F ,G}. Thus, |T | cannot increase. However, |T | can decreases since on the last buffer of T , R(T)4 or R(T)8
can be enabled. Two cases are possible:

1. |P| ≥ 1. Let i = |P|. In this case, Rule R(T)6 becomes enabled on Ai+1. Once Ai+1 updates its phase to G, |P| increases
whereas |X | decreases. If |X | > 0 then by induction, eventually |X | = 0. Let Aj′ (j′ ≤ k) be the last buffer of T . When
|X | = 0, R(T)7 becomes enabled on Aj′ . Once the rule is executed, Aj′ clears its state. By induction, all the buffers of T
eventually executes R(T)7 to clear their state. Thus, T is eventually cleared.

2. |P| = 0. Since T is an abnormal token circulation, Rule R(T)5 is enabled on Buffer A1. If during one round, the token
circulation T is reduced to A1 before A1 executes R(T)5, then A1 clears its state by executing Rule R(T)8. Otherwise, since
that Rule R(T)5 keeps being enabled and the daemon is weakly fair, A1 executes R(T)5 in a finite time and we retrieve
Case 1.

Since in both cases, T is eventually cleared, the lemma holds. �

In the following,we first show that a valid token circulation nevermergewith an abnormal token circulation they become
part of the same token circulation).

Lemma 2. If there is an abnormal token circulation T = A1 → A2 → · · · → Ak that contains a segment Y = Ai → Ai+1 →

· · · → Aj (i ≥ 1 and j ≤ k) in the Search phase then the Buffers of T can never sets their phase to F.

Proof. If Y is not a prefix, then by definition of an abnormal token circulation, Y can only be preceded by a segment whose
buffers have their phase equal to G. Since the Confirm phase can only be initiated by the first buffer of a normal token
circulation, Rule R(T)3will never be enabled on A1. So, T will never contain a buffer in the F phase. Thus, the lemmaholds. �

Lemma 3. If a normal token circulation T is G-validated, then T is eventually cleared.

Proof. Observe that since T is a normal token circulation, no buffer in P has its phase in G (|P| = 0). Let us refer to such a
token circulation by T = A1 → A2 → · · · → Ak. Since the token circulation is G-validated, then at least all the buffers of T
have set their phase to V. The cases below are possible:

1. The escort phase is being executed. In this case there exist a prefix, possibly empty, P = A1 → A2 → · · · → Ai and
a possibly empty suffix X = Ai+1 → Ai+2 → · · · → Ak such that phase(Aj)=F for 1 ≤ j ≤ i, and phase(Aj′ )= E for
(i + 1) ≤ j′ ≤ k. Two sub-cases are possible:
(a) |P| ≠ 0. Three sub-cases are possible as follows: (i) |X | = 0 and T is an incomplete token circulation. In this case,

Ak has hooked a buffer B of an abnormal token circulation T ′ when both Ak and B were in the Search phase. Note
that B=child(A). By hypothesis, phase(Ak)=F. From Lemma 2, phase(B) will never be equal to F as long as B is part
of T ′. R(T)8 is the only rule that can be executed on Ak (Abnormal-Child(Ak)) is satisfied). Once the rule is executed,
Ak clears its state. By induction, all the buffers of T eventually clear their state. (ii) |X | = 0 and T is a complete
token circulation. In this case R(T)8 is enabled on Ak only in the case where Round-Robin(EXTprocess(Ak))=Ak. Recall
that Round-Robin(EXTprocess(Ak)) points only towards buffers that are ready to initialize the Escort phase. If Round-
Robin(EXTprocess(Ak)) points on Buffer B such that B ≠ Ak, then according to Lemmas 1, 3 and 4, B is cleared in a finite
time. Thus, Round-Robin(EXTprocess(Ak)) eventually updates its value and points towards Ak. R(T)3 is then enabled on
Ak. When the rule is executed, Ak updates its phase to E. We retrieve Case (iii). (iii) |X | > 0. Rule R(T)3 is enabled
on Ai. Since the rule keeps being enabled and since we consider a weakly fair daemon, Buffer Ai eventually executes
R(T)3. Its phase is updated to E. Thus, |P| decreases. Rule R(T)3 becomes enabled on Ai−1. By induction, eventually
|P| = 0 (all the buffers of T update their phase to E). We retrieve Case 1b. Remark that in the case where T is not a
cycle, the successive last buffers of T which have their phase in E can execute R(T)4. So |T | can decrease.

(b) |P| = 0. Let |T | = k′ (k′
≤ k), in this case Rule R(T)4 is enabled on Ak′ . Once the rule is executed, Ak′ clears its state.

Thus, |T | decreases. By induction, eventually |T | = 0 (all the buffers of T cleared their state).
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2. The Confirm phase is being executed. In this case there exist a prefix, possibly empty, P = A1 → A2 → · · · → Ai
and a non empty suffix X = Ai+1 → Ai+2 → · · · → Ak such that phase(Aj)=F for 1 ≤ j ≤ i, and phase(Aj′ )=V for
(i + 1) ≤ j′ ≤ k. In this case, Rule R(T)3 becomes enabled on Ai+1 (A1 if P is empty i.e., i = 0)). Once the rule is executed,
Ai+1 updates its phase to F. Hence, |X | decreases whereas |P| increases. By induction, eventually |X | = 0 (all the buffers
of T updated their phase to F). Two sub-cases are then possible:
(a) T is a complete valid token circulation. In this case, T has either found a free buffer or detected a cycle. In both cases,

R(T)3 becomes enabled on Buffer Ak. We retrieve Case 1.
(b) T is an incomplete token circulation. R(T)8 is then enabled on Ak. Once the rule is executed, Ak clears its state. Thus,

|T | decreases. By induction, eventually |T | = 0 (all the buffers of T are eventually cleared).

From the cases above we can deduce that T is eventually cleared and the lemma holds. �

Lemma 4. Let X be a suffix of buffers of a given token circulation T. If X is G-validated, then X is cleared in a finite time.

Proof. If T is G-validated, the result is given by Lemmas 1 and 3. Thus, in the following we assume that T is not G-validated
i.e., T has a non empty prefix of buffers that are in the Search phase (S). If there exists in the path of a given token circulation
T , a suffix of buffers X = Ai+1 → Ai+2 → · · · → Ak that is G-validated, and a prefix of buffers P = A1 → A2 → · · · → Ai
that are still in the search phase then in this case, ∀ j, (i + 1) ≤ j ≤ k ⇒ phase(Aj)=V (recall that Predicate IN-Phase(Ai,
Aj) is true for any couple of successive buffers). Note that Rule R(T )3 is enabled on Ai. If in one round, there is no other
token circulation that uses Buffer Ai, Buffer Ai executes R(T)3 and thus updates its state to V. Note that |P| has decreased. By
induction, if there is no other token circulation that uses the last buffer of P , then |P| is eventually reduced to 1 (P contains
only Buffer A1). Observe that in the case where there exists another token with a smaller identity that hooks a buffer of the
prefix P (|P| ≥ 1), then the suffix of T (that we will still call T ) that still contains X becomes an abnormal token circulation.
Note that T is either G-validated if its new prefix (we keep the same notation P) satisfies |P| = 0. Otherwise, |P| has been
reduced. By induction |P| is either equal to 0 or to 1. If |P| = 0, then T is G-validated. When |P| = 1, two cases are possible:

• T is an abnormal token circulation. R(T)5 is enabled on A1. A1 eventually executes R(T)5 and updates its phase to G. T
becomes then G-validated.

• T is a valid token circulation. R(T)3 is in this case, enabled on A1. A1 executes R(T)3 and updates its phase to V. T becomes
then G-validated.

From the cases above, we can deduce that the suffix X eventually becomes part of a token circulation that is G-validated.
According to Lemmas 1 and 3, X is eventually cleared and the lemma holds. �

Lemma 5. If there exist several token circulations that are executed in the system, then the token circulation T, that has the
smallest identity, is cleared in a finite time.

Proof. Let us refer to the token circulation that has the smallest identity by T = A1, A2, . . . , Ak. Note that if T is G-validated
then according to Lemmas 1 and 3, T is cleared in a finite time. In the case where T contains a suffix that is G-validated, then
From Lemma 4, we know that each suffix X that is G-validated is cleared in a finite time. In fact, all the part of the token
circulation that keeps being attached to X is cleared in a finite time. Since we consider in this proof the token circulation T
that has the smallest identity, no other token circulation can hook a buffer of T . Thus, Lemma 4 allow us to affirm that T is
cleared in a finite time. Hence, it remains to prove that T is cleared when T does not have a suffix that is G-validated.

So, let us consider now, the token circulations that contains (i) a prefix P such that all the buffers in P are in the G phase
and a suffix X such that all the buffers of X are in the S phase (Note that |P| ≥ 0). Recall that no other token circulation can
hook a buffer of T. Note also that while T has not been completely cleared, T keeps its first buffer A1. Two cases are possible
as follow:

1. T is abnormal. Note that T cannot progress and include new buffers forever since the number of buffers in the system is
finite. Two cases are possible:
(a) |P| = 0. R(T)5 keeps being enabled on A1. If during one round, the token circulation T is not reduced to only A1, then

A1 eventually executes R(T)5. Once the rule is executed, A1 updates its phase to G. Note that T consists now of a prefix
P that contains Buffer A1 such that phase(A1)=G and a suffix X such that ∀ 1 < i ≤ k, phase(Ai)≠ G. We retrieve
Case (1b).

(b) |P| > 0. Let P = A1 → A2 → · · · → Ai be the prefix of T such that ∀ 1 ≤ j ≤ i, phase(Aj)=G and let
X = Ai+1, Ai+2, . . . , Ak be the suffix of T such that ∀ (i + 1) ≤ j ≤ k, phase(Aj)=S. Rule R(T)6 becomes enabled
on Ai+1. When Ai+1 executes the rule, it sets its phase to G. Thus |P| increases whereas |X | decreases. By induction,
eventually |X | = 0. T becomes then G-validated. Thus, according to Lemma 1, T is eventually cleared.

(b) T is normal. Note that |P| = 0. During the progression of T , if T wants to hook a buffer B that has a phase ∈{V,F,E} (B is
already part of a token circulation that has G-validated a sub-part of its phase), then according to Lemmas 1, 3 and 4, B
is cleared in a finite time. Thus, T will eventually continue its progression. Hence, T stops its progression when it finds
a free buffer, or detects a cycle (note that T can be incomplete i.e., there is on the path of T another token circulation T2
with the same identity as T — T2 was in the system in the initial state —). Now, R(T)3 is enabled on the last buffer of
T. When the rule is executed, the last buffer of T updates its phase to V. T consists now of a prefix P such that ∀ A ∈ P
phase(A)=S, and a suffix X such that ∀ A ∈ X phase(A)=V. On the last buffer B of P , R(T)3 is always enabled (recall that
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no other token circulation can break T ). Since, we assume a weakly fair daemon, R(T)3 is eventually executed. Thus, B
updates its phase to V. Note that |P| decreases while |X | increases. By induction, eventually |P| = 0. Thus, T becomes
G-validated. According to Lemma 3, T is eventually cleared.

From the cases above, we can deduce that T is eventually cleared and the lemma holds. �

In the following, we show that although a token circulation may abort (see the proof of Lemma 5, Case 2), at least one
message that has to undergo a route change will eventually initialize a token circulation that will become completed (refer
to Lemma 10).

Lemma 6. In the case where Token-Request(A,B)=true. Then, Token-Request(A,B) is set to false in a finite time.

Proof. In the case Token-Request(A,B)=true such that Rule R(T)1 is enabled, then, Token-Request(A,B) is set to false by the
token circulation algorithm when this Rule R(T)1 is executed. Otherwise, the two cases below are possible:

• The predicate Token-State(A) is true. In this case Token-Request(A,B) is set to false by the token circulation algorithm by
executing Rule R(T)9.

• The predicate Free(A) ∨ ¬ Uturn(m) is true. In this case, Rule R(F)12 is enabled on Buffer A. Once executed, Token-
Request(A,B) is set to false.

From the cases above, we can deduce that in the case Token-Request(A,B)=true, it will be set to false in a finite time. �

Lemma 7. The extra buffer of any process p (EXTp) is infinitely often free.

Proof. Recall that the extra buffer is used to solve the problem of deadlocks (cycles). Suppose that the extra buffer contains
a messagem. The cases below are possible:

1. Round-Robin(EXTp)=⊥ or phase(Round-Robin(EXTp))≠ E. In this case the messagem is deleted by executing R(F)11.
2. ∃A such that Round-Robin(EXTp)=A and both Token-State(A) and Token-State(child(A)) are true. Let us refer to the token

circulation that includes Buffer A by T . The three following sub-cases are possible:
(a) T is abnormal. In this case, all its buffers of T are eventually cleared (refer to Lemma 1). We retrieve Case 1.
(b) T is a normal token circulation. In this case, either

- (i) End-Token(child(A)) is satisfied. The message in EXTp is either deleted (if child(A) is not free, refer to Rule
R(F)12) or copied in child(A) and deleted from EXTp (if child(A) is free, refer to Rule R(F)10).

- Or (ii) End-Token(child(A)) is not satisfied. In this case, phase(A)=E ∧ phase(child(A))=F and phase(child
(child(A)))=F. Hence there is a suffix X , such that the buffer of X are in Phase E. According to the proof of Lemma 3,
eventually phase(child(child(A)))=E. End-Token(child(A)) becomes satisfied, we retrieve Case (i).

From the cases above, we can deduce that the extra buffer of any process p (EXTp) is infinitely often free and the lemma
holds. �

Lemma 8. Any token circulation that has the smallest identity among the ones that can be concurrently executed in the system
can be eventually initialized.

Proof. From Lemma 6, we know that Token-Request(A,B) is set to false in a finite time. From Lemma 7, we know that EXTp
is infinitely often free. From Lemmas 1, 3 and 4, we know that if there is a token circulation T (or a suffix of T : X) such that
T is G-validated (X is G-validated), then T (X) is cleared in a finite time. On another hand, Lemma 5 proves that the token
circulation with the smallest identity is eventually cleared. Thus, any token circulation that has the smallest identity among
the ones that are executed in the system can be initialized in a finite time. �

Lemma 9. Let m be a message and let T be a valid token circulation associated to m. If T is eventually completed and G-validated,
then at least one message eventually undergoes a route change.

Proof. Let us refer to the normal complete token circulation associated to m and that is G-Validated by T = A1 → A2 →

· · · → Ak. Since T is a normal complete token circulation that is G-Validated and associated to a message, T has either
found a pseudo free buffer or detected a cycle (a lasso or a full-cycle). According to the proof of Lemma 3, all the buffers of
T eventually have their phase set to F. Note that, at that time, the token is held by Ak. Let us first focus on the cases where
T has found a pseudo free buffer (Pseudo-Free(Ak) is satisfied). Note that in the case where Edible(Ak) is satisfied, when Ak
executes R(T)2, it also executes R(F)2 since both rules are enabled at the same time, so Ak becomes free. Thus, R(T)3 becomes
enabled on Ak (Change-Direction(Ak) is satisfied) and R(F)5 too (since Ak is free). When Ak executes R(T)3, it also executes
R(F)5 during the same step. Rules R(T)3 and R(F)5 become enabled on Ak−1, Buffer Ak−1 updates its phase to E and at the
same time the message of Ak−2 is copied in Ak−1. By induction, R(T)3 and R(F)7 eventually become enabled on A1 such that
A1 is free. Thus, Messagem is copied in A1. Note that Messagem has performed a route-change in this case.

Let us now consider the case where a cycle is detected (full-cycle or lasso). Observe that since the buffer graph is defined
on a tree topology, in the case where there is a cycle, there is at least one message that has to perform a u-turn (refer
to Fig. 24). R(T)3 is then enabled on Ak only if Round-Robin(EXTprocess(Ak))=Ak. As shown in the proof of Lemma 3, Round-
Robin(EXTprocess(Ak)) eventually updates its value and points towards Ak. Ak is then enabled to initialize the escort phase. As
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(a) The case of a Full-Cycle. (b) The case of a Lasso.

Fig. 24. The case of a cycle.

shown in the previous case (the case where T has found a pseudo free buffer), the escort phase will eventually reach all the
buffers of the cycle part of T , along with the free slot. So any message on the cycle part of T will progress to its next buffer.
Thus, at least the messages at the entry of a u-turn perform a u-turn (see messages d and h in Fig. 24). Note that in the case
of a full-cycle, Messagem associated to T also undergoes a route change.

We can deduce from the cases above that at least one message has undergone a route change and the lemma holds. �

Lemma 10. When the routing tables are stabilized, if there are some messages that have to perform a route change, then at least
one of them will eventually do.

Proof. The proof is by contradiction. Suppose that the routing tables are stabilized and that all the messages that are in a
non suitable buffer cannot be forwarded anymore. Let R be the set of such messages. First, suppose that there is no message
m1 ∈ R that is in an input buffer i.e., all the messages that are in a non suitable buffer, are in an output buffer. In this case,
the buffer graph is a DAG. In addition, eventually no token circulation can be initialized (according to Lemma 6, Token-
Request(A,B) is set to false in a finite time. Since there is no message of R that is in an input buffer, R(F)8 is never enabled).
On the other hand, we know that if there is no more token circulations that are initialized, then all the token circulations
are cleared in a finite time (Corollary to Lemmas 1 and 3–5).

Let us now, consider one message m1 ∈ R. Since m1 is in an output buffer (let A1 be this buffer), the next destination of
m1 is the input buffer on the same link (let A2 be this buffer). Observe that Same-Link(A1,A2) is not verified. Sincem1 cannot
be forwarded, A2 is never free. Thus, there is a messagem2 is A2 that can never be forwarded. Let A3 be the next buffer ofm2.
Observe that A3 is in this case an output buffer. Sincem2 cannot be forwarded anymore, A3 is never free (recall that there is
no token circulation that is executed in the system, thus, the fair pointer mechanism defined on the output buffers cannot
be disturbed anymore. The fairness of such pointer mechanism guarantees that if A3 is free, thenm2 will be able to be copied
in A3). Thus, A3 contains a messagem3 that cannot be forwarded as well anymore. By induction, there is a sequence of buffer
A1, A2, . . . , Ak such that: ∀ 1 ≤ i ≤ k, Buffer(Ai)=mi, Next-Buffer(Ai, mi)=Ai+1, and mi cannot be forwarded anymore. Since
the buffer graph is a DAG (recall that all messages of R are in an output buffer) then Ak is an input buffer of a leave process.
Note that mk /∈ R. Thus, Ak is the destination of mk. R(F)2 is enabled on Ak. Since the rule keeps being enabled on Ak and the
daemon is weakly fair.mk is eventually consumed. Hence, Ak is free. Contradiction.

Consequently, there are somemessages of R that are in input buffers. Thesemessageswill allow the initialization of token
circulations. Let us consider the normal token circulation that is associate to a given message m (Note that m ∈ R) that has
the smallest identity (let us refer to such a token by T ). From Lemma 5, we can deduce that eventually, there will be in the
system no other token circulation with a smaller (or equal) identity than (as) T (all the abnormal token circulations that
have a smaller or equal identity as T , are cleared in a finite time). Message m keeps requesting a token circulation unless it
performs a route change. From Lemma 8, the buffer of m is always able to generate a token circulation. Thus, such a buffer
will be able eventually, to generate a token circulation when all the token circulations that have a smaller (equal) identity
than (as) T are cleared. In this case, T cannot regress before being completed, however, it can be stopped by another token
circulation that is G-validated. According to Lemmas 1, 3 and 4 such token circulations are cleared in a finite time. Thus, T
continues its progression and eventually completes its path. Let T = A1 → A2 → · · · → Ak be the path of T once completed.
R(T)3 becomes enabled on Ak. Once the rule is executed, Ak update its phase to V. Rule R(T)3 becomes enabled on Ak−1. By
induction, T becomes eventually G-Validated (recall that no other token circulation can hook a buffer of T ). According to
Lemma 9,m undergoes a route change. Contradiction.

We can deduce that when the routing tables are stabilized, if there are some messages that have to perform a route
change, then at least one of them will eventually do. Thus, the lemma holds. �

Lemma 11. When the routing tables are stabilized all the messages will be in suitable buffers in a finite time.

Proof. When the routing tables are stabilized, some messages may be on the wrong direction, however, the number of
such messages never increases since both the generation and the progression of the new messages are always performed
in a suitable buffer. On another hand, according to Lemma 10, there is at least one message in a non suitable buffer that
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undergoes a route change. Hence, the number of such messages decreases. By induction, eventually all the messages will be
in a suitable buffer and the lemma holds. �

Lemma 12. Let m be a valid message in the extra buffer of a given process p (EXTp=m) then, m cannot be deleted before being
copied in the free slot created by the appropriate token circulation.

Proof. Note that when a given token circulation finds a free buffer, the extra-buffer is not used. Thus, in the following, this
case is not considered.

Since m is normal, when it is copied from Buffer A into the extra buffer, Buffer A is part of a complete token circulation
T. Let us refer to the path of the token circulation by T = A1 → A2 → · · · → Ak. Observe that Buffer Ak is the one that
contains Message m. In the following we consider only the case of a full-cycle (the same reasoning holds when a lasso is
detected). In order to prove our lemma, we first show that there is a synchrony between the forwarding algorithm and the
token circulation algorithm. In the case of a full-cycle, T is a valid token circulation that has been initialized because of m.
Sincemwas copied in EXTp and since T is valid, T is a complete token circulation that has G-validated all its path (∀ 1 ≤ i ≤ k,
phase(Ai)=F). R(F)9 and R(T)3 become enabled on Buffer Ak. Recall that both rules are executed, in this case, at the same time.
Thus,m is copied in the extra buffer of process(Ak) and phase(Ak) is set to E (Buffer A copies also themessage that is in Buffer
parent(A) at the same time, refer to Rule R(F)9). Ak−1 becomes a free buffer. R(T)3 and R(F)5 become enabled on Ak−1. When
both rules are executed phase(Ak−1)=E and Ak−2 is free (refer to Fig. 8). Similarly, both R(T)3 and R(F)5 become enabled
on Ak−2. When both rules are executed, Ak−2 updates its phase to E and Ak−3 becomes free. We can show by induction that
eventually R(T)3 becomes enabled on A1 such that A1 is free. In this case, Both Rules R(F)10 and R(T)3 becomes enabled on
A1. Once the rules are executed. The messagem is copied in A1 and deleted from EXTp. Thus, the lemma holds. �

We can now detect in some cases if the message that is the extra buffer is not valid (either the token circulation does
not bring a free slot in the right buffer (the next buffer of the message in the extra buffer) or, there is a message m in the
extra buffer of a given process such that there is no token circulation that is executed). Observe that the algorithm deletes a
message only when we are sure that the message in the extra buffer is invalid, refer to Rules (MF)R11 and (MF)R12. Thus,
we have the following theorem:

Theorem 1. No valid message is deleted from the system unless it is delivered to its destination.

Proof. Letm be a message, then:

• Rule R(F)2 allow the message m to be consumed an thus sent to the higher level. Note that this rule is executed only
whenm has reached its destination.

• By construction of Rules R(F)1, R(F)3, and R(F)5, m is not deleted since the message is only copied in a new buffer A. In
addition, these rules are not enabled unless Buffer A is free.

• By construction of Rules R(F)8, and R(F)13,m is deleted since the rules only update some variables.
• By construction of Rules R(F)6, R(F)7, R(F)9, and R(F)10,m is not deleted sincem is just copied in the next buffer to reach

its destination (this buffer is either defined by the routing table and the buffer graph or, defined by the path of the token
circulation. Note that these rules are enabled only if Free(A) is true. On another hand, on a given buffer, there is at most
one message that can be copied simultaneously (the round-robin pointer defined on the output buffers guarantees that
at a given time, only one message can be copied. The input buffers can only copy the messages that are on the output
buffer connected to them). Hence,m is not deleted.

• By construction of Rule R(F)11 and R(F)12. The messagem is deleted however,m is not valid (refer to Lemma 12).
• By construction of Rule R(F)4, the message m is deleted from Buffer A. However, before erasing the message m, we are

sure that there is a copy of the message in Next-Buffer(A,m). Thus, once the messagem deleted, there is still a copy in the
system.

We can deduce from all the cases above that no valid message is deleted unless it is delivered to its destination, hence the
lemma holds. �

Lemma 13. When the routing tables are stabilized and all the messages are in suitable buffer, no Token circulation is initiated.

Proof. According to Lemma 6, for any buffers A and B, Token-Request(A,B) is set to false in a finite time. The only rule that
sets Token-Request(A,B) to true is Rule R(F)8. However, Rule R(F)8 is never enabled since according to Lemma11, nomessage
is in a non suitable buffer. Thus, the lemma holds. �

The fair pointer mechanism cannot be disturbed anymore by the token circulations. Note that our buffer graph is a DAG
when the routing tables are stabilized and when all the messages are in a suitable buffer, thus:

Lemma 14. All the buffers of the system are infinitely often free.
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Proof. The proof is by contradiction. Assume that there is a Buffer A1 that is never free. This means that there is a message
m1 that cannot be consumed or forwarded to any other buffer. Let Buffer A2 be the next buffer by whichm1 has to transit in
order to reach its destination. Sincem1 cannot be forwarded to A2, A2 contains also a message (let this message bem2). Note
that the fair pointer mechanism cannot be disturbed anymore by some token circulation, therefore, if A2 becomes free, m1
will be eventually copied in A2. Hence, m2 cannot be forwarded nor consumed as well. The same holds for the next buffer
of m2 (A3) and so on. Thus, there exists a sequence of buffer A1, A2, . . . , Ak, that are never free such that, the destination
of Message mi that is in Buffer Ai is Buffer Ai+1. Since our buffer graph is a DAG, Ak is the input buffer of a leaf process. On
another hand, since the routing tables are stabilized and since all themessages are in a suitable buffer, nomessage performs
a u-turn. The destination of Messagemk is process(Ak). Hence, R(F)2 becomes enabled and keeps being enabled on Ak. Since
we consider a weakly fair daemon, R(F)2 is eventually executed.mk is consumed and deleted from Ak. Contradiction.

We can conclude that all the buffers of the system are infinitely often free and the lemmas holds. �

Lemma 15. Any message can be generated in a finite time under a weakly fair daemon.

Proof. Suppose that a process p wants to generate a message on Buffer A. Two cases are possible:

1. Free(A). In this case, the process executes either Rule R(F)2 or R(F)3 in a finite time. The result of this execution depends
on the value of the pointer. Two cases are possible:
• the pointer refers to Rule R(F)2. Once the rule is executed,m is generated in Buffer A and the lemma holds.
• the pointer refers to Rule R(F)3. Once the rule is executed, Buffer A becomes occupied (¬ Free(A)) and we retrieve

case 2. Note that the fairness of the pointer guarantees that this case cannot appear infinitely.
2. ¬ Free(A). Since according to Lemma 14, all the buffers are infinitely often free we are sure that Buffer(A) becomes free

in a finite time and we retrieve 1.

We can deduce that every process can generate a message in a finite time. �

We can now state the following theorem:

Theorem 2. Neither deadlock nor starvation situations appear in the system.

Proof. According to Lemma 14, there exists no message that stays locked in one buffer. On another hand, according to
Lemma 15, every process is able to generate a message in a finite time. Hence, the Theorem holds. �

Lemma 16. The forwarding protocol never duplicates a valid message even if the routing algorithm runs simultaneously.

Proof. Let consider the message m. The cases below are possible:

• m is in the extra buffer. m is then either deleted (refer to Rules R(F)11 and R(F)12) or copied in a buffer (refer to Rules
R(F)9 and R(F)10). Considering the two latter actions (Rules R(F)9 and R(F)10))m is copied in the new buffer and deleted
from the extra buffer in the same step.

• m in Buffer A (Buffer A is not an extra buffer). The following cases are then possible:
– m is consumed (Rule R(F)2 is executed). Message m is deleted since a new value overwrites it. Note that the

consumption of Message m is enabled on Buffer A only if the copy of this message in the previous buffer (No-
duplication(m,A)) has been deleted.

– m is copied in the extra buffer (Rule R(F)9 is executed). The messagem is copied in the extra buffer of process(A) and
deleted from buffer A.

– m is transmitted to its next buffer B (Assume that m is in Buffer A). In this case m is copied in B, however this is done
onlywhen No-duplication(m,A) is satisfied. Thus, we can have simultaneously atmost two copies of themessage (in A
and B). Observe that (as mentioned in Remark 2), if m is in an input buffer then m is copied in the output buffer an
deleted from the input buffer. In the case where m is in an output buffer thenm is neither consumed nor transmitted
unless the copy in the output buffer is deleted.

From the cases above we can deduce that no message is duplicated in the system. �

Theorem 3. Every valid message is delivered once and only once to its destination.

Proof. From Theorem 2 and Lemma 11, we can deduce that each valid message is delivered to its destination at least once.
Lemma 16 ensures that the message is delivered at most once. Thus, the lemma holds. �

Theorem 4. The proposed algorithm is a snap-stabilizing message forwarding algorithm under a weakly fair daemon.

Proof. From Theorem 2, neither deadlocks nor starvation appear in the system. From Theorem 3, every valid message is
delivered once and only once to its destination. Hence, the theorem holds. �

4. Conclusion

In this paper, we presented the first snap-stabilizing message forwarding protocol on trees that uses a number of buffers
per node being independent of any global parameter. Our protocol uses only 4 buffers per link and an extra one per node.
This is a preliminary version to get a solution that tolerates topology changes provided that the topology remains a tree.
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