
Algorithmica manuscript No.
(will be inserted by the editor)

Maximum Metric Spanning Tree made Byzantine
Tolerant

Swan Dubois · Toshimitsu Masuzawa ·
Sébastien Tixeuil

Received: date / Accepted: date

Abstract Self-stabilization is a versatile approach to fault-tolerance since it
permits a distributed system to recover from any transient fault that arbitrar-
ily corrupts the contents of all memories in the system. Byzantine tolerance
is an attractive feature of distributed systems that permits to cope with arbi-
trary malicious behaviors. This paper focuses on systems that are both self-
stabilizing and Byzantine tolerant. Combining these two properties is known
to induce many impossibility results. Hence, there exist several fault tolerance
schemes to contain Byzantine faults in self-stabilization.

S. Dubois
Sorbonne Universités, UPMC Université Paris 6, Équipe REGAL, LIP6
CNRS, UMR 7606, LIP6
Inria, Équipe-projet REGAL LIP6, Case 26-00/207, 5 place Jussieu, 75252 Paris Cedex 05,
France
E-mail: swan.dubois@lip6.fr

T. Masuzawa
Osaka University
Yamadaoka 1-5, Suita, Osaka 565-0871, Japan
E-mail: masuzawa@ist.osaka-u.ac.jp

S. Tixeuil
Sorbonne Universités, UPMC Université Paris 6, Équipe NPA, LIP6
CNRS, UMR 7606, LIP6
Institut Universitaire de France
LIP6, Case 26-00/113, 5 place Jussieu, 75252 Paris Cedex 05, France
E-mail: sebastien.tixeuil@lip6.fr

A preliminary version of this work appears in the proceedings of the 25th and of the
24th International Symposium on Distributed Computing (DISC’10 and DISC’11), see
[17, 19].

This work is supported in part by ANR projects SHAMAN, ALADDIN and SPADES and
by Global COE (Centers of Excellence) Program of MEXT and Grant-in-Aid for Scientific
Research (B)22300009 of JSPS.

2 S. Dubois, T. Masuzawa, and S. Tixeuil

In this paper, we consider the well known problem of constructing a max-
imum metric tree in this context. We provide a new distributed protocol that
ensures the best possible containment with respect to topology-aware strict
and strong stabilization.

1 Introduction

The advent of ubiquitous large-scale distributed systems advocates that tol-
erance to various kinds of faults and hazards must be included from the very
early design of such systems. Self-stabilization [12, 13, 35] is a versatile tech-
nique that permits forward recovery from any number and any kind of tran-
sient faults, while Byzantine Fault-tolerance [31] is traditionally used to mask
the effect of a limited number of malicious faults. Making distributed sys-
tems tolerant to both transient and malicious faults is appealing yet proved
difficult [14, 9, 33] as impossibility results are expected in many cases.

A promising path towards multitolerance to both transient and Byzan-
tine faults is Byzantine containment. For local tasks (i.e. tasks whose correct-
ness can be checked locally, such as vertex coloring, link coloring, or dining
philosophers), the notion of strict stabilization was proposed [33, 32]. Strict
stabilization guarantees that there exists a containment radius outside which
the effect of permanent Byzantine faults is masked, provided that the problem
specification makes it possible to break the causality chain that is caused by
the faults. As many problems are not local, it turns out that it is impossible
to provide strict stabilization for those.

This paper proposes to study a new Byzantine fault containment scheme in
self-stabilization in order to circumvent those impossibility results. The weaker
notion of strong stabilization was proposed [20]: here, correct vertices outside
the containment radius may be perturbated by the actions of Byzantine ver-
tices, but only a finite number of times. Recently, the idea of generalizing strict
and strong stabilization to an area that depends on the graph topology and the
problem to be solved rather than an arbitrary fixed containment radius was
proposed [18] and denoted by topology aware strict (and strong) stabilization.

Contributions In this paper, we illustrate the effectiveness of these Byzan-
tine containment schemes by studying a global problem: the maximum metric
spanning tree construction. The goal is to construct a particular spanning tree
that maximizes the metric of all vertices in the system with respect to a given
metric. Indeed, even if any spanning tree minimizes by definition the number
of communication links, all are not equivalent. We can consider some crite-
ria to distinguish spanning trees. For example, a breadth-first search (BFS)
spanning tree [28, 16, 1] allows us to minimize the delay of communication
between any vertex and a distinguished one (called the root of the tree) and
a minimum weight spanning tree [23] minimizes the global weight of the tree
(in the case of weighted communication graph).

Maximum Metric Spanning Tree made Byzantine Tolerant 3

In this paper, we focus on a large class of spanning tree constructions: the
maximum metric spanning tree construction with respect to any maximizable
metric [27]. Intuitively, a metric is a scheme to compute a distance between
two vertices along any path of the communication graph. A metric is maxi-
mizable if there always exists a spanning tree that maximizes the metric of
each vertex of any communication graph with respect to a distinguished ver-
tex called the root. For example, the shortest path [36] or the flow metric [25]
are maximizable. In contrast, there exists no maximizable metric to model the
minimum weight [23] or the minimum degree [2, 4] spanning tree construction.
The large span of this class of metrics motivates some previous works [26, 27].

Contributions of this paper are twofold. First, motivated by impossibility
results of strict stabilization for global tasks [33] (as the spanning tree construc-
tion), we define three concepts for Byzantine containment in self-stabilization.
These new concepts, respectively called strong stabilization, topology-aware
strict stabilization, and topology-aware strong stabilization, weaken the con-
straints on the containment radius of strict stabilization in order to by-pass
such impossibility results. In strong stabilization, the containment radius is
weakened in time since we allow correct vertices outside the containment ra-
dius to be disturbed a finite number of times by Byzantine ones after the
convergence to a legitimate configuration. In topology-aware stabilization, the
weakening is in space since we generalize the containment radius to a contain-
ment area. This containment area is simply the set of correct vertices (that
is a function of the communication graph) that may be infinitely often dis-
turbed by Byzantine vertices. Note that this weakening in the containment
radius into containment area may be applied both to strict and strong sta-
bilization. Then, we prove the effectiveness of our new concepts of Byzantine
containment in self-stabilization using maximum metric spanning tree con-
struction as a benchmark. We design a distributed protocol that achieves the
optimal containment areas for topology-aware strict and strong stabilization
for maximum metric spanning construction for any maximizable metric.

Related Works Spanning tree construction was extensively studied in the con-
text of distributed systems either in a fault-free setting or in presence of faults.
In fault-free distributed systems, there exist a number of adaptations of cen-
tralized protocols to construct spanning trees with respect to numerous prop-
erties (e.g. minimum weight spanning trees [23], minimum degree spanning
trees [2], or Steiner trees [7]).

Gärtner presents in [24] a good survey on self-stabilizing distributed proto-
cols for spanning tree construction for the three simplest properties: depth-first
search spanning trees, breadth-first spanning trees and shortest path spanning
trees. The first self-stabilizing distributed protocol to construct a depth-first
search spanning tree was by Collin and Dolev [8]. Note that any self-stabilizing
token circulation (see e.g. [29, 10]) may be used to construct such a spanning
tree. Regarding breadth-first search spanning tree construction, the first self-
stabilizing solution was by Dolev, Israeli and Moran [15, 16] but a simpler one
was provided by [28]. Finally, self-stabilizing solutions to shortest path span-

4 S. Dubois, T. Masuzawa, and S. Tixeuil

ning tree construction may be found in [30, 5] for example. Note that there
also exist self-stabilizing distributed protocols for more complex properties of
spanning trees as the minimum diameter spanning trees [6], minimum degree
spanning trees [4], or Steiner spanning trees [3].

Gouda and Schneider [27] defined a large class of spanning tree construc-
tions using the concept of maximizable metric. In this work, the metric of a
path of the communication graph is the result of the application of the metric
operator to the value of each edge of the path. For example, the shortest path
metric associates a weight (a natural number) to each edge of the communi-
cation graph and the metric of a path is computed by the sum of the weight
of each edge of the path. A metric is maximizable if there always exists a
spanning tree that maximizes the metric of each vertex of any communication
graph with respect to a distinguished vertex called the root. This concept of
maximizable metric enclosed a lot of classical metrics such as breadth-first
search, shortest path or flow metrics (defined in [34]), that justifies the inter-
est in maximum metric spanning tree construction. The main result of [27]
is a full characterization of maximizable metrics. A self-stabilizing distributed
protocol for maximum metric spanning tree construction with respect to any
maximizable metric is provided by [26].

The idea to provide a generic distributed protocol able to compute a span-
ning tree according to a large class of metric motivates other works. For in-
stance, another formalism that encompasses a different set of metrics is pre-
sented in [21, 22, 11].

To our knowledge, there exists no distributed protocol for spanning tree
construction in presence of both transient and Byzantine faults except our
previous work on simple properties as depth-first search spanning tree [20]
or breadth-first search spanning tree [18]. This paper proposes to generalize
these results by studying the maximum metric spanning tree construction in
distributed systems simultaneously subject to transient and Byzantine faults.

Organization of the paper Section 2 presents formally the model of compu-
tation used in this paper. Then, we state formal definitions of our Byzantine
containment schemes in Section 3 while Section 4 is devoted to the specifi-
cation of the maximum metric spanning tree construction. We present and
prove our topology-aware stabilizing distributed protocol in Section 5. Finally,
Section 6 proves the optimality of containment areas presented in the previous
section. Section 7 concludes the paper.

2 State Model

A distributed system g = (V,L) consists of a set V = {v1, v2, . . . , vn} of vertices
(a.k.a. processes) and a set L of bidirectional communication links (simply
called links). A link is an unordered pair of distinct vertices. Vertices u and v
are called neighbors if (u, v) ∈ L. The set of neighbors of a vertex v is denoted
by Nv. We do not assume existence of a unique identifier for each vertex.

Maximum Metric Spanning Tree made Byzantine Tolerant 5

Instead we assume each vertex can distinguish its neighbors from each other
by locally labeling them.

A distributed system g can be regarded as a (communication) graph whose
vertex set is V and whose link set is L, so we use graph terminology to describe
a distributed system g. We use the following notations: n = |V |, m = |L|,
dist(g, u, v) denotes the distance between two vertices u and v in g (i.e. the
length of the shortest path of g between u and v), and deg(g) denotes the
maximal degree of g (i.e. the maximal number of neighbors of a vertex in g)
while diam(g) denotes the diameter of g (i.e. the largest distance between two
vertices of g).

In this paper, we consider distributed systems of arbitrary topology. We
assume that a single vertex is distinguished as a root (denoted by r), and
all the other vertices are identical. We adopt the shared state model as a
communication model in this paper, where each vertex can directly read the
states of its neighbors.

The variables that are maintained by a vertex denote a vertex state. A
vertex may take actions during the execution of the system. An action is simply
a function that is executed in an atomic manner by the vertex. The actions
executed by each vertex are described by a finite set of guarded actions of the
form 〈guard〉 −→ 〈statement〉. Each guard of vertex u is a boolean expression
involving the variables of u and its neighbors.

A global state of a distributed system is called a configuration and is spec-
ified by a product of states of all vertices. We define Γ to be the set of all
possible configurations of a distributed system g. For a vertex set R ⊆ V and

two configurations γ and γ′, we denote γ
R7→ γ′ when γ changes to γ′ by exe-

cuting an action of each vertex in R simultaneously. Notice that γ and γ′ can
be different only in the states of vertices in R. For completeness of execution
semantics, we should clarify the configuration resulting from simultaneous ac-
tions of neighboring vertices. The action of a vertex depends only on its state
at γ and the states of its neighbors at γ, and the result of the action reflects
on the state of the vertex at γ′.

We say that a vertex is enabled in a configuration γ if the guard of at least
one of its actions is evaluated as true in γ.

A schedule of a distributed system is an infinite sequence of vertex sets. An
infinite sequence of pairs of configurations σ = (γ0, γ1), (γ1, γ2) . . . (γi, γi+1) . . .
is called an execution from an initial configuration γ0 by a schedule Q =
R1, R2, . . . (where Ri is a non-empty subset of enabled vertices in γi−1 for each

i (i ≥ 1)) if σ satisfies γi−1
Ri

7→ γi for each i (i ≥ 1). Vertex actions are executed
atomically, and we distinguish some properties on the scheduler (or daemon).
A distributed daemon schedules the actions of vertices such that any subset
of vertices can simultaneously execute their actions. We say that the daemon
is central if it schedules an action of only one vertex at any step. The set of
all possible executions from γ0 ∈ Γ is denoted by Σγ0 . The set of all possible
executions is denoted by Σ, that is, Σ =

⋃
γ∈Γ Σγ . We consider asynchronous

distributed systems but we may add some of the following assumptions on

6 S. Dubois, T. Masuzawa, and S. Tixeuil

schedules: any schedule is weakly fair (that is, it is impossible for any vertex
to be infinitely and continuously enabled without executing its action in an
execution), any schedule is strongly fair (that is, it is impossible for any vertex
to be infinitely often enabled without executing its action in an execution),
or/and k-bounded (that is, it is impossible for any vertex to execute more than
k actions between two consecutive action executions of any other vertex).

In this paper, we consider (permanent) Byzantine faults: a Byzantine ver-
tex (i.e. a Byzantine-faulty vertex) can exhibit arbitrary behavior indepen-
dently from its actions. If v is a Byzantine vertex, v can repeatedly change
its variables arbitrarily. For a given execution, the number of faulty vertices is
arbitrary but we assume that the root vertex is never faulty. Indeed, without
this assumption, any spanning tree construction problem is clearly impossible
to solve since a Byzantine root may act as a non-root vertex leading correct
vertices to construct a spanning tree in a distributed system without any dis-
tinguished vertex.

3 Containing Byzantine Faults in Stabilization

Problems considered in this paper are so-called static problems, i.e. they re-
quire the system to find static solutions. For example, the spanning-tree con-
struction problem is a static problem, while the mutual exclusion problem is
not. Some static problems can be defined by a specification predicate (for short,
specification), spec(v), for each vertex v: a configuration is a desired one (with
a solution) if every vertex satisfies spec(v). A specification spec(v) is a boolean
expression on variables of Pv (⊆ V) where Pv is the set of vertices whose vari-
ables appear in spec(v). The variables appearing in the specification are called
output variables (for short, O-variables). In what follows, we consider a static
problem defined by specification spec(v).

A self-stabilizing protocol [12] is a protocol that eventually reaches a legit-
imate configuration, where spec(v) holds at every vertex v, regardless of the
initial configuration. Once it reaches a legitimate configuration, each vertex
never changes its O-variables and always satisfies spec(v). From this defini-
tion, a self-stabilizing protocol is expected to tolerate any number and any
type of transient faults since it can eventually recover from any configuration
affected by the transient faults. However, the recovery from any configuration
is guaranteed only when every vertex correctly executes its action from the
configuration, i.e., we do not consider existence of permanently faulty vertices.

3.1 Strict Stabilization

When (permanent) Byzantine vertices exist, Byzantine vertices may not sat-
isfy spec(v). In addition, correct vertices near the Byzantine vertices can be
influenced and may be unable to satisfy spec(v). Nesterenko and Arora [33]
define a strictly stabilizing protocol as a self-stabilizing protocol resilient to
unbounded number of Byzantine vertices.

Maximum Metric Spanning Tree made Byzantine Tolerant 7

Following definitions are with respect to a specification predicate spec.
Given an integer c, a c-correct vertex is a vertex defined as follows.

Definition 1 (c-correct vertex) A vertex is c-correct if it is correct (i.e. not
Byzantine) and located at distance more than c from any Byzantine vertex.

Definition 2 ((c, f)-containment) A configuration γ is (c, f)-contained for
specification spec if, given at most f Byzantine vertices, in any execution
starting from γ, every c-correct vertex v always satisfies spec(v) and never
changes its O-variables.

The parameter c of Definition 2 refers to the containment radius defined
in [33]. The parameter f refers explicitly to the number of Byzantine vertices,
while [33] dealt with unbounded number of Byzantine faults (that is f ∈
{0 . . . n}).

Definition 3 (Strict stabilization) A distributed protocol π is (c, f)-strictly
stabilizing for specification spec if, starting from any arbitrary configuration,
every execution involving at most f Byzantine vertices contains a configuration
that is (c, f)-contained for spec.

An important limitation of the model of [33] is the notion of r-restrictive
specifications. Intuitively, a specification is r-restrictive if it prevents combi-
nations of states that belong to two vertices u and v that are at least r hops
away. An important consequence related to Byzantine tolerance is that the
containment radius of strictly-stabilizing protocols solving those specifications
is at least r. For some (global) problems (like spanning tree construction), r
cannot be bounded by a constant. As a consequence, we can show that there
exists no (c, 1)-strictly stabilizing protocol for such a problem for any (finite)
integer c.

3.2 Strong Stabilization

To circumvent such impossibility results of strict stabilization, we previously
defined a weaker notion [20]. Here, the containment radius requirement is
relaxed, i.e. there may exist vertices outside the containment radius that in-
validate the specification predicate, due to Byzantine actions. However, the
impact of Byzantine triggered actions is limited in time: the set of Byzantine
vertices may only impact vertices outside the containment radius a bounded
number of times, even if Byzantine vertices execute an infinite number of ac-
tions.

In the following of this section, we present the formal definition of strong
stabilization for a specification predicate spec. From the states of c-correct ver-
tices (see Definition 1), c-legitimate configurations and c-stable configurations
are defined as follows.

Definition 4 (c-legitimate configuration) A configuration γ is c-legitimate
for spec if every c-correct vertex v satisfies spec(v).

8 S. Dubois, T. Masuzawa, and S. Tixeuil

Definition 5 (c-stable configuration) A configuration γ is c-stable if every
c-correct vertex never changes the values of its O-variables as long as Byzantine
vertices make no action.

Roughly speaking, the aim of self-stabilization is to guarantee that a dis-
tributed protocol eventually reaches a c-legitimate and c-stable configuration.
However, a self-stabilizing system can be disturbed by Byzantine vertices after
reaching a c-legitimate and c-stable configuration. The c-disruption represents
the period where c-correct vertices are disturbed by Byzantine vertices and is
defined as follows.

Definition 6 (c-disruption) A portion of execution δ = (γ0, γ1) . . . (γt−1, γt)
(t > 1) is a c-disruption if and only if the following holds:

1. δ is finite;
2. δ contains at least one action of a c-correct vertex that changes the value

of an O-variable;
3. γ0 is c-legitimate for spec and c-stable; and
4. γt is the first configuration after γ0 such that γt is c-legitimate for spec and
c-stable.

Now we can define a self-stabilizing distributed protocol such that Byzan-
tine vertices may only impact vertices outside the containment radius a bounded
number of times, even if Byzantine vertices execute an infinite number of ac-
tions.

Definition 7 ((t, k, c, f)-time contained configuration) A configuration
γ0 is (t, k, c, f)-time contained for spec if given at most f Byzantine vertices,
the following properties are satisfied:

1. γ0 is c-legitimate for spec and c-stable;
2. every execution starting from γ0 contains a c-legitimate configuration for

spec after which the values of all the O-variables of c-correct vertices remain
unchanged (even when Byzantine vertices make actions repeatedly and
forever),

3. every execution starting from γ0 contains at most t c-disruptions, and
4. every execution starting from γ0 contains at most k actions of changing

the values of O-variables for each c-correct vertex.

Definition 8 (Strong stabilization) A distributed protocol π is (t, c, f)-
strongly stabilizing for spec if and only if there exists k ∈ N such that every
execution starting from an arbitrary configuration and involving at most f
Byzantine vertices contains a (t, k, c, f)-time contained configuration for spec
that is reached after at most ` rounds. Parameters ` and k are respectively the
(t, c, f)-stabilization time and the (t, c, f)-vertex disruption times of π.

Note that a (t, k, c, f)-time contained configuration is a (c, f)-contained
configuration when t = k = 0, and thus, a (t, k, c, f)-time contained configura-
tion is a generalization (relaxation) of a (c, f)-contained configuration. Thus,

Maximum Metric Spanning Tree made Byzantine Tolerant 9

a strongly stabilizing distributed protocol is weaker than a strictly stabilizing
one (as vertices outside the containment radius may take incorrect actions
due to Byzantine influence). However, a strongly stabilizing distributed proto-
col is stronger than a classical self-stabilizing one (that may never meet their
specification in the presence of Byzantine vertices).

The parameters t, k and c are introduced to quantify the strength of fault
containment, we do not require each vertex to know the values of the param-
eters.

3.3 Topology-Aware Stabilization

We defined another weaker notion than the strict stabilization: the topology-
aware strict stabilization [18] (denoted by TA strict stabilization for short).
Here, the requirement to the containment radius is relaxed, i.e. the set of
vertices that may be disturbed by Byzantine ones is not reduced to the union
of c-neighborhood of Byzantine vertices (i.e. the set of vertices at distance
at most c from a Byzantine vertex) but can be defined depending on the
communication graph and Byzantine vertices location.

In the following, we give a formal definition of this new kind of Byzantine
containment. From now,B denotes the set of Byzantine vertices and CB (which
is a function of B) denotes a subset of V (intuitively, this set gathers all vertices
that may be disturbed by Byzantine vertices).

Definition 9 (CB-correct vertex) A vertex is CB-correct if it is a correct
vertex (i.e. not Byzantine) that does not belong to CB .

Definition 10 (CB-legitimate configuration) A configuration γ is CB-
legitimate for spec if every CB-correct vertex v is legitimate for spec (i.e. if
spec(v) holds).

Definition 11 ((CB , f)-topology-aware containment) A configuration γ0
is (CB , f)-topology-aware contained for specification spec if, given at most f
Byzantine vertices, in any execution σ = (γ0, γ1) . . ., every configuration is
CB-legitimate and every CB-correct vertex never changes its O-variables.

The parameter CB of Definition 11 refers to the containment area. Any
vertex that belongs to this set may be infinitely often disturbed by Byzantine
vertices. The parameter f refers explicitly to the number of Byzantine vertices.

Definition 12 (Topology-aware strict stabilization) A distributed pro-
tocol is (CB , f)-topology-aware strictly stabilizing for specification spec if,
given at most f Byzantine vertices, any execution contains a configuration
that is (CB , f)-topology-aware contained for spec.

Note that, if B denotes the set of Byzantine vertices and CB =
{
v ∈

V |min
b∈B
{dist(g, v, b)} ≤ c

}
then a (CB , f)-topology-aware strictly stabilizing

10 S. Dubois, T. Masuzawa, and S. Tixeuil

distributed protocol is a (c, f)-strictly stabilizing distributed protocol since
CB is then equals to the union of the c-neighborhood of Byzantine vertices.
Then, the concept of the topology-aware strict stabilization is a generalization
of the strict stabilization. However, note that a TA strictly stabilizing proto-
col is stronger than a classical self-stabilizing protocol (that may never meet
their specification in the presence of Byzantine vertices). The parameter CB
is introduced to quantify the strength of fault containment, we do not require
each vertex to know the actual definition of the function.

Similarly to topology-aware strict stabilization, we can weaken the notion
of strong stabilization using the notion of containment area. We present in the
following the formal definition of this concept.

Definition 13 (CB-stable configuration) A configuration γ is CB-stable
if every CB-correct vertex never changes the values of its O-variables as long
as Byzantine vertices make no action.

Definition 14 (CB-TA disruption) A portion of execution δ = (γ0, γ1) . . .
(γt−1, γt) (t > 1) is a CB-TA-disruption if and only if the followings hold:

1. δ is finite;
2. δ contains at least one action of a CB-correct vertex that changes the value

of a O-variable;
3. γ0 is CB-legitimate for spec and CB-stable; and
4. γt is the first configuration after γ0 such that γt is CB-legitimate for spec

and CB-stable.

Definition 15 ((t, k, CB , f)-TA time contained configuration) A con-
figuration γ0 is (t, k, CB , f)-TA time contained for spec if given at most f
Byzantine vertices, the following properties are satisfied:

1. γ0 is CB-legitimate for spec and CB-stable;
2. every execution starting from γ0 contains a CB-legitimate configuration

for spec after which the values of all the O-variables of CB-correct vertices
remain unchanged (even when Byzantine vertices make actions repeatedly
and forever);

3. every execution starting from γ0 contains at most t CB-TA-disruptions;
and

4. every execution starting from γ0 contains at most k actions of changing
the values of O-variables for each CB-correct vertex.

Definition 16 (Topology-aware strong stabilization) A distributed pro-
tocol π is (t, CB , f)-TA strongly stabilizing for spec if and only if there exists
k ∈ N such that every execution starting from an arbitrary configuration and
involving at most f Byzantine vertices contains a (t, k, CB , f)-TA time con-
tained configuration for spec that is reached after at most ` rounds.Parameters
` and k are respectively the (t, CB , f)-stabilization and the (t, CB , f)-vertex
disruption times of π.

Maximum Metric Spanning Tree made Byzantine Tolerant 11

4 Maximum Metric Tree Construction

In this section, we formally define maximum (routing) metric trees using for-
malism introduced by [27]. Informally, the goal of a distributed routing dis-
tributed protocol is to construct a tree that simultaneously maximizes the
metric values of all of the vertices with respect to some total ordering ≺.
Then, we can specify the problem considered in this paper.

Maximum metric tree First, we recall definitions and notations of [27] and
state the main result about characterization of maximizable metrics (that is,
metrics such that there always exists a tree maximizing the metric of each
vertex).

Definition 17 (Routing metric) A routing metric (or just metric) M is a
five-tuple M = (M,W,met,mr, ≺) where:

1. M is a set of metric values,
2. W is a set of edge weights,
3. met is a metric function whose domain is M ×W and whose range is M ,
4. mr is the maximum metric value in M with respect to ≺ and is assigned

to the root of the system,
5. ≺ is a less-than total order relation over M that satisfies the following three

conditions for arbitrary metric values m, m′, and m′′ in M :
(a) irreflexivity: m 6≺ m,
(b) transitivity :

if m ≺ m′ and m′ ≺ m′′ then m ≺ m′′

(c) totality: m ≺ m′ or m′ ≺ m or m = m′.

Moreover, any metric value m ∈M \ {mr} satisfies the utility condition (that
is, there exist w0, . . . , wk−1 in W and m0 = mr,m1, . . . ,mk−1,mk = m in M
such that ∀i ∈ {1, . . . , k},mi = met(mi−1, wi−1)).

For instance, we provide below the definition of three classical metrics with
this model:

– the shortest path metric (SP), where the distance from any vertex to
the root is minimized. Edge weights are natural numbers and the metric
operator is the sum.

– the flow metric (F), where each vertex chooses the path of maximal flow
(i.e. the weight of the edge of minimum weight of the path) to the root.
Edge weights are natural numbers and the metric operator is the minimum
function.

– the reliability metric (R), where each vertex chooses the path of maximal
reliability (i.e. the product of edge weights of the path) to the root. Edge
weights are real numbers (between 0 and 1) and the metric operator is the
product.

12 S. Dubois, T. Masuzawa, and S. Tixeuil

Note also that we can model the construction of a spanning tree with no
particular constraints in this model using the metric NC described below and
the construction of a BFS spanning tree using the shortest path metric (SP)
with W1 = {1} (we denote this metric by BFS in the following).

SP = (M1,W1,met1,mr1,≺1) F = (M2,W2,met2,mr2,≺2)
where M1 = N where M2 = {0, . . . ,mr2}

W1 = N W2 = {0, . . . ,mr2}
met1(m,w) = m+ w met2(m,w) = min{m,w}
mr1 = 0 mr2 ∈ N
≺1 is the classical > relation ≺2 is the classical < relation

R = (M3,W3,met3,mr3,≺3) NC = (M4,W4,met4,mr4,≺4)
where M3 = [0, 1] where M4 = {0}

W3 = [0, 1] W4 = {0}
met3(m,w) = m ∗ w met4(m,w) = 0
mr3 = 1 mr4 = 0
≺3 is the classical < relation ≺4 is the classical < relation

Definition 18 (Assigned metric) An assigned metric over a communica-
tion graph g is a six-tuple (M,W, met,mr,≺,wf) where (M,W,met,mr,≺) is
a metric and wf is a function that assigns to each edge of g a weight in W .

Let a rooted path (from v) be an elementary path from a vertex v to
the root r. The next set of definitions are with respect to an assigned metric
(M,W,met,mr, ≺,wf) over a given communication graph g.

Definition 19 (Metric of a rooted path) The metric of a rooted path in
g is the prefix sum of met over the edge weights in the path and mr.

For example, if a rooted path p in g is vk, . . . , v0 with v0 = r, then the
metric of p is mk = met(mk−1,wf({vk, vk−1})) with ∀i ∈ {1, . . . , k},mi =
met(mi−1,wf({vi, vi−1})) and m0 = mr.

Definition 20 (Maximum metric path) A rooted path p from v in g is
called a maximum metric path with respect to an assigned metric if and only
if for every other rooted path q from v in g, the metric of p is greater than or
equal to the metric of q with respect to the total order ≺.

Definition 21 (Maximum metric of a vertex) The maximum metric of
a vertex v 6= r (or simply metric value of v) in g is defined by the metric of a
maximum metric path from v. The maximum metric of r is mr.

Definition 22 (Maximum metric spanning tree) A spanning tree t of g
is a maximum metric spanning tree with respect to an assigned metric over
g if and only if every rooted path in t is a maximum metric path in g with
respect to the assigned metric.

Maximum Metric Spanning Tree made Byzantine Tolerant 13

���
��� ���
��� ���

���

���
��� ���
��� ���

���

r r

bb S∗B

SB

SB = S∗B

mr=0 mr=0

levelb = 0 levelb = 0

7 6

5

410

8

6

3216

0 0

0

00

00

0

0

Fig. 1 Examples of containment areas for SP.

The goal of the work of [27] is the study of metrics that always allow the
construction of a maximum metric spanning tree. The definition follows.

Definition 23 (Maximizable metric) A metric is maximizable if and only
if for any assignment of this metric over any communication graph g, there is
a maximum metric spanning tree for g with respect to the assigned metric.

An interesting result about maximizable metrics due to [27] provides a
full characterization of maximizable metrics as follows. First, they define two
classes of metrics. A metric is bounded if and only if the application of the
metric function to any metric value does not increase it (for any edge weight)
whereas a metric is monotonic if and only if the metric function preserves the
order ≺ on metric values. Formal definitions follow.

Definition 24 (Boundedness) A metric (M,W,met, mr,≺) is bounded if
and only if: ∀m ∈M, ∀w ∈W,met(m,w) ≺ m or met(m,w) = m

Definition 25 (Monotonicity) A metric (M,W,met, mr,≺) is monotonic
if and only if:

∀(m,m′) ∈M2,∀w ∈W,m ≺ m′ ⇒
(met(m,w) ≺ met(m′, w) or met(m,w) = met(m′, w))

Then, [27] proves that a metric is maximizable if and only if it belongs to
the intersection of these two classes of metrics.

Theorem 1 (Characterization of maximizable metrics [27]) A metric
is maximizable if and only if this metric is bounded and monotonic.

14 S. Dubois, T. Masuzawa, and S. Tixeuil

Specification Given a maximizable metricM = (M,W, mr,met,≺), the aim of
this paper is to study the construction of a maximum metric spanning tree with
respect toM rooted to a pre-defined vertex r (called the root) in simultaneous
presence of transient and Byzantine faults. Note that we must assume that
the root vertex is never a Byzantine one. It is obvious that these Byzantine
vertices may disturb some correct vertices. Therefore, we relax the problem in
the following way: we want to construct a maximum metric spanning forest
with respect toM. The root of any tree of this spanning forest must be either
the real root or a Byzantine vertex.

Each vertex v has three O-variables: a pointer to its parent in its tree
(prntv ∈ Nv ∪ {⊥}), a variable that stores its current metric value (levelv ∈
M) and an integer that stores a distance (distv ∈ N). We use the following
specification of the problem.

We introduce new notations as follows. Given an assigned metric (M,W,
met,mr, ≺,wf) over the communication graph g and two vertices u and v, we
denote by max met(g, u, v) the maximum metric of vertex u when v plays the
role of the root of the communication graph (that is, when levelv = mr). If u
and v are neighbors, we denote by wu,v the weight of the edge {u, v} (that is,
the value of wf({u, v})).

We define the legal distance of a vertex v with respect to one of its neighbors
u (denoted legal dist(v, u)) in the following way:

legal dist(v, u) =

{
distu + 1 if levelv = levelu

0 otherwise

Definition 26 (M-path) Given an assigned metric M = (M,W,mr,met,≺
,wf) over a communication graph g, a path (v0, . . . , vk) (k ≥ 1) of g is a
M-path if and only if:

1. prntv0 = ⊥, levelv0 = mr, distv0 = 0, and v0 ∈ B ∪ {r};
2. ∀i ∈ {1, . . . , k}, prntvi = vi−1, levelvi = met(levelvi−1

, wvi,vi−1
), and

distvi = legal dist(vi, vi−1);
3. ∀i ∈ {1, . . . , k},

met(levelvi−1
, wvi,vi−1

) = max≺
u∈Nv

{met(levelu, wvi,u)}

4. levelvk = max met(g, vk, v0).

We can now specify the problem of the maximum metric spanning tree
construction.

Specification 1 (specMMT) The specification predicate specMMT(v) of the
maximum metric tree construction with respect to a maximizable metric M
for vertex v follows:

specMMT(v) :

{
prntv = ⊥, levelv = mr, and distv = 0 if v is the root r

there exists a M-path (v0, . . . , vk) with vk = v otherwise

Maximum Metric Spanning Tree made Byzantine Tolerant 15

In other words, this specification states that every correct vertex belongs
to a maximum metric spanning tree rooted either on the real root of the
distributed system or to a Byzantine vertex that exhibits exactly the same
state as the correct root.

At first glance, it may be surprising to define our problem in this way since
correct vertices cannot know if they belong to a legitimate tree (that is, rooted
at the real root of the distributed system) or a “fake” one (that is, rooted at
a Byzantine vertex). The motivation behind this specification is the following.
Recall that it is impossible for a correct vertex to detect whether one of its
neighbors is Byzantine or not. Then, by symmetry, it is impossible to guarantee
that correct neighbors of a Byzantine vertex (that acts as the correct root)
does not begin to construct a spanning tree rooted at this Byzantine vertex if
we want that correct neighbors of the correct root eventually join a spanning
tree rooted at it. By repeating this argument, we can conclude that we have
to accept the relaxation of the specification to a spanning forest construction
since it is impossible to provide stronger guarantees for vertices that belong
to a “fake” spanning tree.

Set of used metric values We introduce here a new definition that is used in
the following of this paper. Given an assigned metric over a communication
graph, a used metric value is a metric value that is the metric of a rooted
path of the communication graph (either rooted at the root or at a Byzantine
vertex). More formally,

Definition 27 (Set of used metric values) Given an assigned metricAM =
(M,W,met,mr,≺,wf) over a communication graph g, the set of used metric
values of AM is defined as:

M(g) = {m ∈M |∃v ∈ V, (max met(g, v, r) = m)∨
(∃b ∈ B,max met(g, v, b) = m)}

Note that for any communication graph g and any assigned metric AM =
(M,W,met,mr,≺,wf) over g, we have: M(g) ⊆M .

5 Topology-Aware Stabilizing Solution

This section aims to present a distributed protocol for the maximum metric
spanning tree construction with respect to any maximizable metric in systems
simultaneously subject to transient and Byzantine faults. Section 5.1 presents
the distributed protocol while Sections 5.2 and 5.3 prove respectively its TA
strict stabilization and its TA strong stabilization. Note that we prove the
optimality of containment areas of our protocol in Section 6.

16 S. Dubois, T. Masuzawa, and S. Tixeuil

���
��� ���
��� ���

���

���
��� ���
��� ���

���

r r

bb

mr=10 mr=10

7 6

5

4
106

8

3216

levelb = 10levelb = 10

11 12

107

13

6

53

1
S∗B

SB
SB = S∗B

Fig. 2 Examples of containment areas for F .

Containment areas We define now the containment areas performed by our
protocol. First, the containment area for topology-aware strict stabilization is
the following (see Theorem 2):

SB =
{
v ∈ V \B

∣∣max met(g, v, r) � max≺
b∈B
{max met(g, v, b)}

}
\ {r}

Intuitively, SB gathers the set of correct vertices that are closer or at
equals distance (according to M) to a Byzantine vertex than the root. Then,
we can define the containment area for topology-aware strong stabilization
(see Theorem 3):

S∗B =
{
v ∈ V \B

∣∣max met(g, v, r) ≺ max≺
b∈B
{max met(g, v, b)}

}
Intuitively, S∗B gathers the set of correct vertices that are strictly closer

(according toM) to a Byzantine vertex than the root. Note that we assume for
the sake of clarity that V \ S∗B induces a connected communication subgraph.
If it is not the case, then S∗B is extended to include all vertices belonging to
connected communication subgraphs of V \S∗B that not include r. Figures from
1 to 3 provide some examples of containment areas SB and S∗B with respect
to maximizable metrics previously presented.

5.1 Distributed Protocol

A self-stabilizing distributed protocol for the maximum metric spanning tree
construction with respect to any maximizable metric has been proposed by
[26]. In this distributed protocol, any vertex try to maximize its level variable
in the tree by choosing as its parent (prnt variable) the neighbor that provides
the best metric value. Using this strategy, the arbitrary initial configuration

Maximum Metric Spanning Tree made Byzantine Tolerant 17

���
��� ���
��� ���

���

���
��� ���
��� ���

���

r r

bb

S∗B

SB

SB = S∗B

mr=1

levelb = 1

mr=1

levelb = 1

0,750,75

0,750,75

1

1

0,8
0,4 0,3

0,25

0,25

0,75

10,5

1

0,25

0,750,5

Fig. 3 Examples of containment areas for R.

may lead to the formation of cycles. The key idea of this distributed protocol
is to use the dist variable (upper bounded by a given constant D) to detect
and break cycles of vertices that has the same (incorrect) maximum metric.
The choice of the constant D is obviously capital for the self-stabilization of
the distributed protocol. Gouda and Schneider proved that their distributed
protocol is self-stabilizing if D is an upper bound on the length of the longest
path of the desired tree.

A natural way to provide a topology-aware stabilizing solution to the maxi-
mum metric spanning tree construction is then to adapt the idea of round robin
choice over neighbors presented in [20] to the distributed protocol of [26]. It is
possible to prove that this strategy is sufficient to perform the (SB , n− 1)-TA
strict stabilization. Unfortunately, this strategy is not suitable for topology-
aware strong stabilization.

Indeed, an execution of the distributed protocol of [26] may be subject to
an infinite number of S∗B-disruptions due to the following fact: a Byzantine
vertex can independently lie about its level and its dist variable. For example,
a Byzantine vertex can provide a level equals to mr and a dist arbitrarily large.
In this way, it may lead a correct vertex of SB \ S∗B to have a dist variable
equals to D − 1 such that no other correct vertex can choose it as its parent
(this rule is necessary to break cycle) but it cannot modify its state (this rule is
only enabled when dist is equals to D). Then, this vertex may always prevent
some of its neighbors to join aM-path connected to the root and hence allow
another Byzantine vertex to perform an infinite number of disruptions.

In contrast, we want to provide a distributed protocol that is simultane-
ously (SB , n−1)-TA strictly stabilizing and (t, S∗B , n−1)-TA strongly stabiliz-
ing for maximum metric spanning tree construction. To perform this goal, our
distributed protocol needs a supplementary assumption on the assignement of
the considered maximizable metric over the communication graph.

18 S. Dubois, T. Masuzawa, and S. Tixeuil

We assume that we always have |M(g)| ≥ 2 (the necessity of this assump-
tion is explained below). Nevertheless, note that the contrary case (|M(g)| = 1)
is possible if and only if the assigned maximizable metric is equivalent to NC.
As the distributed protocol presented in [20] performs (t, 0, n− 1)-strong sta-
bilization with a finite t for this metric, we can achieve the (t, S∗B , n − 1)-TA
strong stabilization when |M(g)| = 1 (since this implies that S∗B = ∅). In this
way, this assumption does not weaken the possibility result.

We already said that the distributed protocol of [26] is not suitable for our
purposes but our distributed protocol borrows fundamental strategy from it.
Indeed, we use almost the same ideas with the following two exceptions: (i)
we ensure a fair selection along the set of neighbors with a round-robin order
for the prnt variable and (ii) we modify the management of the dist variable
to avoid executions exhibiting an infinite number of S∗B-disruptions.

In order to contain the effect of Byzantine vertices on dist variables, each
vertex that has a level different from the one of its parent in the tree sets its
dist variable to 0. In this way, a Byzantine vertex modifying its dist variable
can only affect correct vertices that have the same level. Consequently, in the
case where |M(g)| ≥ 2, we are ensured that correct vertices of SB \S∗B cannot
keep a dist variable equals or greater than D − 1 infinitely. Hence, a correct
vertex of SB\S∗B cannot be disturbed infinitely often without joining aM-path
connected to the root.

We can see that the assumption |M(g)| ≥ 2 is essential to perform the
topology-aware strong stabilization. Indeed, in the case where |M(g)| = 1,
Byzantine vertices can play exactly the scenario described above (in this case,
our distributed protocol is equivalent to the one of [26]).

The second modification we bring to the management of the dist variable
follows. When a vertex has an inconsistent dist variable with its parent, we
allow it only to increase its dist variable. If the vertex needs to decrease its
dist variable (when it has a strictly greater distance than its parent), then
the vertex must change its parent. This rule allows us to bound the maximal
number of actions of any vertex between two modifications of its parent (a
Byzantine vertex cannot lead a correct one to infinitely often increase and
decrease its distance without modifying its pointer).

Our protocol, SSMMT (for Strictly/strongly StabilizingMaximumMetric
T ree), is formally described in Protocol 1.

5.2 Proof of Topology-Aware Strict Stabilization

This section is devoted to the proof of the (SB , n− 1)-TA strict stabilization
of SSMMT under the distributed weakly fair daemon (see Theorem 2). This
proof is an induction proof with respect to the maximal metric of each correct
vertex but the main difficulty comes from the fact that several vertices along
a path could have the same maximal metric with respect to the root (or to a
Byzantine vertex).

Maximum Metric Spanning Tree made Byzantine Tolerant 19

Protocol 1 SSMMT : (SB , n− 1)-TA strictly and (t, S∗B , n− 1)-TA strongly
stabilizing distributed protocol for specMMT for vertex v.
Constants:

Nv : set of neighbors of v (ordered in a round robin fashion)
D: upper bound of the number of vertices in an elementary path

Variables:

prntv ∈
{
{⊥} if v = r

Nv if v 6= r
: parent of v in the current tree

levelv ∈M : metric of v in the current tree
distv ∈ {0, . . . , D}: distance of v in the current tree

Functions:
nextv : for any subset A ⊆ Nv , nextv(A) returns the first element of A that is bigger
than prntv in a round-robin fashion and an arbitrary element of A if prntv = ⊥

current distv() =

{
0 if levelprntv 6= levelv
min{distprntv + 1, D} if levelprntv = levelv

Rules:

(Rr) :: (v = r) ∧ ((levelv 6= mr) ∨ (distv 6= 0))
−→ levelv := mr; distv := 0

(R1) :: (v 6= r) ∧
[
(distv < current distv()) ∨ (levelv 6= met(levelprntv , wv,prntv))

]
−→ levelv := met(levelprntv , wv,prntv); distv := current distv()

(R2) :: (v 6= r) ∧
[
(distv = D) ∨ (distv > current distv())

]
∧ (∃u ∈ Nv , distu < D − 1)

−→ prntv := nextv
(
{u ∈ Nv |distu < D − 1}

)
;

levelv := met(levelprntv , wv,prntv); distv := current distv()
(R3) :: (v 6= r) ∧ (∃u ∈ Nv , (distu < D − 1) ∧ (levelv ≺ met(levelu, wu,v)))

−→ prntv := nextv
({
u ∈ Nv |(distu < D − 1)∧

(met(levelu, wu,v) = max≺
q∈Nv∧distq<D−1

{met(levelq , wq,v)})
})

;

levelv := met(levelprntv , wprntv,v); distv := current distv()

We must first prove some lemmas. From now, we consider that M =
(M,W,mr, met,≺) is a maximizable metric assigned over our communica-
tion graph g = (V,E) by the weight function wf. First, we provide a useful
property about M.

Lemma 1 For any vertex v ∈ V , we have:

∀u ∈ Nv,met
(

max≺
p∈B∪{r}

{max met(g, u, p)}, wu,v
)
� max≺
p∈B∪{r}

{max met(g, v, p)}

Proof By contradiction, assume that there exists a neighbor u of a vertex v
such that:

max≺
p∈B∪{r}

{max met(g, v, p)} ≺ met
(

max≺
p∈B∪{r}

{max met(g, u, p)}, wu,v
)

Let q ∈ B∪{r} be one of the vertices such that max≺
p∈B∪{r}

{max met(g, u, p)} =

max met(g, u, q). Then, the construction of q allows us to deduce that:

max≺
p∈B∪{r}

{max met(g, v, p)} ≺ met(max met(g, u, q), wu,v)

20 S. Dubois, T. Masuzawa, and S. Tixeuil

Since we have met(max met(g, u, q), wu,v) � max met(g, v, q), we conclude
that:

max≺
p∈B∪{r}

{max met(g, v, p)} ≺ max met(g, v, q)

This contradicts the fact that q ∈ B ∪ {r} and shows us the result. �
Given a configuration γ ∈ Γ and a metric value m ∈ M , let us define the

following predicate:

IMm(γ) ≡ ∀v ∈ V, levelv � max≺

{
m, max≺

u∈B∪{r}
{max met(g, v, u)}

}
Lemma 2 For any metric value m ∈ M , the predicate IMm is closed by ac-
tions of SSMMT .

Proof Let m be a metric value (m ∈ M). Let γ ∈ Γ be a configuration such
that IMm(γ) = true and γ′ ∈ Γ be a configuration such that (γ, γ′) is an
action of SSMMT .

If the root vertex r is activated during action (γ, γ′) (respectively a Byzan-
tine vertex b is activated during action (γ, γ′)), then we have levelr = mr
(respectively levelb � mr) in γ′ by construction of (Rr) (respectively by defi-
nition of levelb). Hence, we have:

levelr � max≺

{
m, max≺

u∈B∪{r}
{max met(g, r, u)}

}
= mr

levelb � max≺

{
m, max≺

u∈B∪{r}
{max met(g, b, u)}

}
= mr

If a correct vertex v is activated during action (γ, γ′) with v 6= r, then there

exists a neighbor p of v such that levelp � max≺

{
m, max≺

u∈B∪{r}
{max met(g, p, u)}

}
in γ (since IMm(γ) = true) and prntv = p and levelv = met(levelp, wv,p) in γ′

(since v is activated during this action).
If we apply Lemma 1 to met and to neighbor p, we obtain the following

property:

met
(

max≺
u∈B∪{r}

{max met(g, p, u)}, wv,p
)
� max≺
u∈B∪{r}

{max met(g, v, u)}

Consequently, we obtain that levelv = met(levelp, wv,p) in γ′. The mono-
tonicity of M allows us to deduce

levelv � met
(

max≺
{
m, max≺

u∈B∪{r}
{max met(g, p, u)}

}
, wv,p

)
Then,

levelv � max≺

{
met(m,wv,p),met

(
max≺
u∈B∪{r}

{max met(g, p, u)}, wv,p
)}

Maximum Metric Spanning Tree made Byzantine Tolerant 21

As met(m,wv,p) � m, we can conclude that:

levelv � max≺

{
m, max≺

u∈B∪{r}
{max met(g, v, u)}

}
We can deduce that IMm(γ′) = true, that concludes the proof. �
Given an assigned metric over a communication

graph g, we can observe that the set of used metrics value M(g) is finite
and that we can label elements of M(g) by m0 = mr,m1, . . . ,mk in a way
such that ∀i ∈ {0, . . . , k − 1},mi+1 ≺ mi.

For any mi ∈M(g), we introduce the following set of notations:

Pmi=
{
v ∈ V \ SB

∣∣max met(g, v, r) = mi

}
Vmi=

i⋃
j=0

Pmj

Imi
=
{
v ∈ V

∣∣ max≺
u∈B∪{r}

{max met(g, v, u)} ≺ mi

}
LCmi

=
{
γ ∈ Γ

∣∣(∀v ∈ Vmi
, specMMT(v)) ∧ (IMmi

(γ))
}

Then, we define the following set of configurations : LCMMT = LCmk

Lemma 3 For any mi ∈M(g), the set LCmi
is closed by actions of SSMMT .

Proof Let mi be a metric value from M(g) and γ be a configuration of LCmi
.

By construction, any vertex v ∈ Vmi satisfies specMMT(v) in γ.

In particular, the root vertex satisfies: prntr = ⊥, levelr = mr, and distr =
0. By construction of SSMMT , r is not enabled and then never modifies its
O-variables (since the guard of the rule of r does not involve the state of its
neighbors).

In the same way, any vertex v ∈ Vmi satisfies: prntv ∈ Nv, levelv = met(
levelprntv , wprntv,v), distv = legal dist(v, prntv), and levelv = max≺

u∈Nv

{met(levelu,

wu,v)}. Note that, as v ∈ Vmi and specMMT(v) holds in γ, we have: levelv =
max met(g, v, r) = max≺

p∈B∪{r}
{max met(g, v, p)} and distv ≤ D − 1 by construc-

tion of D. Hence, vertex v is not enabled by SSMMT in γ.

Assume that there exists a vertex v ∈ Vmi that is activated during an action
(γ′, γ′′) in an execution starting from γ (without loss of generality, assume that
v is the first vertex of v ∈ Vmi

that is activated in this execution). Then, we
know that v 6= r. This activation implies that a neighbor u /∈ Vmi

(since v
is the first vertex of Vmi

to be activated) of v modified its level variable to
a metric value m ∈ M such that levelv ≺ met(m,wu,v) in γ′ (note that O-
variables of v and of prntv remain consistent since v is the first vertex to be
activated in this execution).

Hence, we have levelv = max≺
p∈B∪{r}

{max met(g, v, p)} = max met(g, v, r)

(since specMMT(v) holds), levelv ≺ met(m,wu,v) (since u causes an action of

22 S. Dubois, T. Masuzawa, and S. Tixeuil

v), and mi � levelv (since v ∈ Vmi and levelv = max met(g, v, r)). Moreover,
the closure of IMmi (established in Lemma 2) ensures us that:

m = levelu � max≺

{
mi, max≺

p∈B∪{r}
{max met(g, u, p)}

}
Let us study the two following cases:

Case 1: We have :

max≺

{
mi, max≺

p∈B∪{r}
{max met(g, u, p)}

}
= mi

We have then m � mi. As the boundedness of M ensures that
met(m,wu,v) � m, we can conclude that levelv ≺ met(m,wu,v) � m �
mi � levelv, that is absurd.

Case 2: We have :

max≺

{
mi, max≺

p∈B∪{r}
{max met(g, u, p)}

}
= max≺
p∈B∪{r}

{max met(g, u, p)}

We have then m � max≺
p∈B∪{r}

{max met(g, u, p)}. By monotonicity of M,

we can deduce that met(m,wu,v) � met(max≺
p∈B∪{r}

{max met(g, u, p)}, wu,v).

Consequently, we obtain that:

max≺
p∈B∪{r}

{max met(g, v, p)} ≺ met(max≺
p∈B∪{r}

{max met(g, u, p)}, wu,v)

This is contradictory with the result of Lemma 1.

In conclusion, no vertex v ∈ Vmi is activated in any execution starting from
γ and then always satisfies specMMT(v). Then, the closure of IMmi (established
in Lemma 2) concludes the proof. �

Lemma 4 Any configuration of LCMMT is (SB , n − 1)-TA contained for
specMMT.

Proof This is a direct application of the Lemma 3 to LCMMT = LCmk
. �

Lemma 5 Starting from any configuration of Γ , any execution of SSMMT
under the distributed weakly fair daemon reaches in a finite time a configura-
tion of LCmr.

Proof Let γ be an arbitrary configuration. Then, it is obvious that IMmr(γ)
is satisfied. By closure of IMmr (proved in Lemma 2), we know that IMmr

remains satisfied in any execution σ starting from γ.
If r does not satisfy specMMT(r) in γ, then r is continuously enabled. Since

the daemon is weakly fair, r is activated in a finite time and then r satis-
fies specMMT(r) in a finite time. Denote by γ′ the first configuration where
specMMT(r) holds. Note that r is never activated in any execution starting
from γ′.

Maximum Metric Spanning Tree made Byzantine Tolerant 23

The boundedness of M implies that Pmr induces a connected subsystem.
If Pmr = {r}, then we proved that γ′ ∈ LCmr and we have the result.

Otherwise (Pmr 6= {r}), observe that, for any configuration of an execution
starting from γ′, if all vertices of Pmr are not enabled, then any vertex v
of Pmr satisfies specMMT(v). Assume now that there exists an execution σ
starting from γ′ where some vertices of Pmr are infinitely often activated. By
construction, at least one of these vertices (note it v) has a neighbor u that is
activated only a finite number of time in σ (recall that Pmr induces a connected
subsystem and that r is not activated in σ). After u takes its last action of σ,
we can observe that levelu = mr and distu < D − 1 (otherwise, u is activated
in a finite time that contradicts its construction).

As v can execute consecutively (R1) only a finite number of time (since the
incrementation of distv is bounded by D), we can deduce that v executes (R2)
or (R3) infinitely often in σ. In both cases, u belongs to the set that is the
parameter of function nextv. By the fairness of this function, we can deduce
that prntv = u in a finite time in σ. Then, the construction of u implies that v
is never enabled in the sequel of σ. This is contradictory with the construction
of σ.

Consequently, any execution starting from γ′ reaches in a finite time a
configuration such that all vertices of Pmr are not enabled. We can deduce
that this configuration belongs to LCmr, that ends the proof. �

Lemma 6 For any mi ∈M(g) and for any configuration γ ∈ LCmi , any exe-
cution of SSMMT starting from γ under the distributed weakly fair daemon
reaches in a finite time a configuration such that:

∀v ∈ Imi
, levelv = mi ⇒ distv = D

Proof Let mi be an arbitrary metric value of M(g) and γ0 be an arbitrary
configuration of LCmi

. Let σ = (γ0, γ1) . . . be an execution starting from γ0.
Note that γ0 satisfies IMmi

by construction. Hence, we have ∀v ∈ Imi
,

levelv � mi. The closure of IMmi (proved in Lemma 2) ensures us that this
property is satisfied in any configuration of σ.

If any vertex v ∈ Imi
satisfies levelv ≺ mi in γ0, then the result is obvious.

Otherwise, we define the following variant function. For any configuration γj
of σ, we denote by Aj the set of vertices v of Imi

such that levelv = mi in
γj . Then, we define f(γj) = min

v∈Aj

{distv}. We then prove the result by showing

that there exists an integer k such that f(γk) = D.
First, if a vertex v joins Aj (that is, v /∈ Aj−1 but v ∈ Aj), then it takes

a dist value greater or equals to f(γj−1) + 1 by construction of SSMMT .
We can deduce that any vertex that joins Aj does not decrease f . Moreover,
the construction of SSMMT implies that a vertex v such that v ∈ Aj and
v ∈ Aj+1 cannot decrease its dist value in the action (γj , γj+1).

Then, consider for a given configuration γj a vertex v ∈ Aj such that
distv = f(γj) < D. We claim that v is enabled by SSMMT in γj and that
the execution of the enabled rule either increases strictly distv or removes v
from Aj+1. To prove this claim, we distinguish the following cases:

24 S. Dubois, T. Masuzawa, and S. Tixeuil

Case 1: levelv = met(levelprntv , wv,prntv) at γj
The fact that v ∈ Imi , the boundedness ofM and the closure of IMmi (es-
tablished in Lemma 2) imply that prntv ∈ Aj (and, hence that levelprntv =
mi). Then, by construction of f(γj), we know that distprntv ≥ f(γj) =
distv. Hence, we have distv < distprntv + 1 in γj . Then, v is enabled by
(R1) in γj and distv increases by at least 1 during the action (γj , γj+1) if
this rule is executed.

Case 2: levelv 6= met(levelprntv , wv,prntv) at γj
Assume that v is activated by (R2) or (R3) during the action (γj , γj+1). If
v does not belong to Aj+1 (if levelv 6= mi in γj+1), the claim is satisfied. In
the contrary case (v belongs to Aj+1), we know that levelv = mi in γj+1.
The boundedness ofM and the closure of IMmi (established in Lemma 2)
imply that levelprntv = mi in γj+1. We can conclude that distv increases
by at least 1 during the action (γj , γj+1) since the new parent of v has a
distance greater than f(γj) by construction of Aj+1.
Otherwise, we know that the rule (R1) is enabled for v in γj . If this rule
is executed during the action (γj , γj+1), one of the two following sub cases
appears.
Case 2.1: met(levelprntv , wv,prntv) ≺ mi in γj .

Then, v does not belong to Aj+1 by definition.
Case 2.2: met(levelprntv , wv,prntv) = mi in γj .

Remind that the closure of IMmi (established in Lemma 2) implies then
that levelprntv = mi. By construction of f(γj), we have distprntv ≥ f(γj)
in γj . Then, we can see that distv increases by at least 1 during the
action (γj , γj+1).

In all cases, v is enabled (at least by (R1)) in γj and the execution of the
enabled rule either increases strictly distv or removes v from Aj+1.

As Imi
is finite and the daemon is weakly fair, we can deduce that f

increases in a finite time in any execution starting from γj . By repeating the
argument at most D time, we can deduce that σ contains a configuration γk
such that f(γk) = D, that shows the result. �

Lemma 7 For any mi ∈ M(g) and for any configuration γ ∈ LCmi such
that ∀v ∈ Imi

, levelv = mi ⇒ distv = D, any execution of SSMMT starting
from γ under the distributed weakly fair daemon reaches in a finite time a
configuration such that: ∀v ∈ Imi

, levelv ≺ mi

Proof Let mi ∈ M(g) be an arbitrary metric value and γ0 be a configuration
of LCmi

such that ∀v ∈ Imi
, levelv = mi ⇒ distv = D. Let σ = (γ0, γ1) . . . be

an arbitrary execution starting from γ0.
For any configuration γj of σ, let us denote Aj = {v ∈ Imi |levelv = mi}.

By the closure of IMmi
(that holds by definition in γ0) established in Lemma

2, we obtain the result if there exists a configuration γj of σ such that Aj = ∅.
If there exist some vertices v ∈ Imi

\A0 (and hence levelv ≺ mi) such that
prntv ∈ A0 and met(levelprntv , wv,prntv) = mi in γ0, then we can observe that
these vertices are continuously enabled by (R1). As the daemon is weakly fair,

Maximum Metric Spanning Tree made Byzantine Tolerant 25

v executes this rule in a finite time and then, levelv = mi and distv = D. In
other words, v joins A` for a given integer `. We can conclude that there exists
an integer k such that the following property (P) holds: for any v ∈ Imi

\A0,
either prntv /∈ Ak or met(levelprntv , wv,prntv) ≺ mi.

Then, we prove that, for any integer j ≥ k, we have Aj+1 ⊆ Aj . For the
sake of contradiction, assume that there exists an integer j ≥ k and a vertex
v ∈ Imi

such that v ∈ Aj+1 and v /∈ Aj . Without loss of generality, assume
that j is the smallest integer that satisfies these properties. Let us study the
following cases:

Case 1: v executes (R1) during the action (γj , γj+1).
Note that the property (P) still holds in γj by the construction of j. Hence,
we know that prntv /∈ Aj in γj . But in this case, we have: levelprntv ≺ mi.
The boundedness ofM implies that levelv = met(levelprntv , wv,prntv) ≺ mi

in γj+1 that contradicts the fact that v ∈ Aj+1.
Case 2: v executes either (R2) or (R3) during the action (γj , γj+1).

That implies that v chooses a new parent that has a distance smaller
than D − 1 in γj . This implies that this new parent does not belongs to
Aj . Then, we have levelprntv ≺ mi. The boundedness of M implies that
levelv = met(levelprntv , wv,prntv) ≺ mi in γj+1 that contradicts the fact
that v ∈ Aj+1.

In the two cases, our claim is satisfied. In other words, there exists a point
of the execution (namely γk) afterwards the set A cannot grow (this implies
that, if a vertex leaves the set A, it is a definitive leaving).

Assume now that there exists an action (γj , γj+1) (with j ≥ k) such that
a vertex v ∈ Aj is activated. Observe that the closure of IMmi (established in
Lemma 2) implies that v can not be activated by the rule (R3). If v activates
(R1) during this action, then v modifies its level during this action (otherwise,
we have a contradiction with the fact that levelprntv = mi ⇒ distv = D).
The closure of IMmi

implies that v leaves the set A during this action. If v
activates (R2) during this action, then v chooses a new parent that has a
distance smaller than D− 1 in γj . This implies that this new parent does not
belongs to Aj . Then, we have levelprntv ≺ mi. The boundedness ofM implies
that levelv ≺ mi in γj+1. In other words, if a vertex of Aj is activated during
the action (γj , γj+1), then it satisfies v /∈ Aj+1.

Finally, observe that the construction of SSMMT and the construction
of the bound D ensure us that any vertex v ∈ Imi

such that distv = D is
activated in a finite time. In conclusion, we obtain that there exists an integer
j such that Aj = ∅, that implies the result. �

Lemma 8 For any mi ∈ M(g) and for any configuration of LCmi
, any exe-

cution of SSMMT starting from γ under the distributed weakly fair daemon
reaches in a finite time a configuration such that IMmi+1 holds.

Proof This result is a direct consequence of Lemmas 6 and 7. �

26 S. Dubois, T. Masuzawa, and S. Tixeuil

Lemma 9 For any mi ∈M(g) and for any configuration γ ∈ LCmi , any exe-
cution of SSMMT starting from γ under the distributed weakly fair daemon
reaches in a finite time a configuration of LCmi+1

.

Proof Let mi be a metric value of M(g) and γ be an arbitrary configuration
of LCmi

. We know by Lemma 8 that any execution starting from γ reaches in
a finite time a configuration γ′ such that IMmi+1

holds. By closure of IMmi+1

and of LCmi
(established respectively in Lemma 2 and 3), we know that any

configuration of any execution starting from γ′ belongs to LCmi
and satisfies

IMmi+1 .
We know that Vmi 6= ∅ since r ∈ Vmi for any i ≥ 0. Remind that Vmi+1 is

connected by the boundedness ofM. Then, we know that there exists at least
one vertex p of Pmi+1

that has a neighbor q in Vmi
such that max met(g, p, r) =

met(max met(g, q, r), wp,q). Moreover, Lemma 3 ensures us that any vertex of
Vmi

is not activated in any execution starting from γ′.
Observe that, for any configuration of any execution starting from γ′, if any

vertex of Pmi+1 is not enabled, then all vertices v of Pmi+1 satisfy specMMT(v).
Assume now that there exists an execution σ starting from γ′ where some
vertices of Pmi+1

are infinitely often activated. By construction, at least one
of these vertices (note it v) has a neighbor u such that max met(g, v, r) =
met(max met(g, u, r), wv,u) that takes only a finite number of actions in σ
(recall the construction of p). After u takes its last action of σ, we can observe
that levelu = max met(g, u, r) and distu < D − 1 (otherwise, u is activated in
a finite time that contradicts its construction).

As v can execute consecutively (R1) only a finite number of time (since
the incrementation of distv is bounded by D), we can deduce that v executes
(R2) or (R3) infinitely often. In both cases, u belongs to the set that is
the parameter of function nextv (remind that IMmi+1 is satisfied and that u
has the better possible metric among v’s neighbors). By the construction of
this function, we can deduce that prntv = u in a finite time in σ. Then, the
construction of u implies that v is never enabled in the sequel of σ. This is
contradictory with the construction of σ.

Consequently, any execution starting from γ′ reaches in a finite time a
configuration such that all vertices of Pmi+1 are not enabled. We can deduce
that this configuration belongs to LCmi+1 , that ends the proof. �

Lemma 10 Starting from any configuration, any execution of SSMMT un-
der the distributed weakly fair daemon reaches a configuration of LCMMT in a
finite time.

Proof Let γ be an arbitrary configuration. We know by Lemma 5 that any
execution starting from γ reaches in a finite time a configuration of LCmr =
LCm0

. Then, we can apply at most k time the result of Lemma 9 to obtain
that any execution starting from γ reaches in a finite time a configuration of
LCmk

= LCMMT, that proves the result. �

Theorem 2 SSMMT is a (SB , n−1)-TA strictly stabilizing distributed pro-
tocol for specMMT under the distributed weakly fair daemon.

Maximum Metric Spanning Tree made Byzantine Tolerant 27

Proof This result is a direct consequence of Lemmas 4 and 10. �

5.3 Proof of Topology-Aware Strong Stabilization

In this section, we prove the (t, S∗B , n−1)-TA strong stabilization of SSMMT
under the distributed k-bounded strongly fair daemon. Note that k may be
any arbitrary natural number. Nevertheless, the actual value of k influences
the maximal number of disruptions t of SSMMT .

The key idea is to focus on vertices of SB \ S∗B after the convergence of
SSMMT on SB and to prove the two following properties: any such ver-
tex executes a bounded number of steps in any execution and cannot remain
unactivated if it does not satisfy specMMT.

Let us denote EB = SB \ S∗B (i.e. EB is the set of vertices v such that
max met(g, v, r) = max

b∈B
{max met(g, v, b)}). Intuitively, EB gathers vertices

that are at equal distance (with respect to M) from the root and from the
nearest Byzantine vertex. Note that the communication subgraph g(EB) in-
duced by EB may have several connected components. In the following, we use
the following notations: EB = {E0

B , . . . , E
`
B} where each EiB (i ∈ {0, . . . , `}) is

a subset of EB inducing a maximal (in the number of vertices) connected com-
ponent of g, g(EiB) (i ∈ {0, . . . , `}) is the communication subgraph induced by
EiB , and then diam(g(EB)) = max

i∈{0,...,`}
{diam(g(EiB))}. When a and b are two

integers, we define the following function: Π(a, b) = ab+1−1
a−1 .

Lemma 11 If γ is a configuration of LCMMT, then any vertex v ∈ EB is ac-
tivated at most Π(k, diam(g(EB)))×deg(g)×D time in any execution starting
from γ.

Proof Let γ be a configuration of LCMMT and σ be an execution starting
from γ. Let p be a vertex of EiB (i ∈ {0, . . . , `}) such that there exists a
neighbor q that satisfies q ∈ V \ SB and max met(g, p, r) = met(max met(
g, q, r), wp,q) (such a vertex exists by construction of EiB). We are going to
prove by induction on d the following property:
(Pd): if v is a vertex of EiB such that dist(g(EiB), p, v) = d, then v executes at
most Π(k, d)× deg(g)×D actions in σ.

Initialization: d = 0.
This implies that v = p. Then, by construction, there exists a neighbor q
that satisfies q ∈ V \SB and max met(g, p, r) = met(max met(g, q, r), wp,q).
As γ ∈ LCMMT, Lemma 4 ensures us that levelq = max met(g, q, r) and
distq < D − 1 in any configuration of σ. Then, the boundedness of M
implies that q belongs to the set that is parameter to the function nextv
at any execution of rules (R2) or (R3) by p. Consequently, p executes at
most deg(g) time rules (R2) and (R3) in σ before choosing q as its parent.
Moreover, note that p can execute rule (R1) at most D time between
two consecutive executions of rules (R2) and (R3) (because (R1) only

28 S. Dubois, T. Masuzawa, and S. Tixeuil

increases distp that is bounded by D). Consequently, p executes at most
deg(g)×D actions before choosing q as its parent.
By Lemma 4, we know that q takes no action in σ. Once p chooses q as
its parent, its state is consistent with the one of q (by construction of rules
(R2) and (R3)). Hence, p is never enabled after choosing q as its parent.
Consequently, we obtain that p takes at most deg(g)×D actions in σ, that
proves (P0).

Induction: d > 0 and (Pd−1) is true.
Let v be a vertex of EiB such that dist(g(EiB), p, v) = d. By construction,
there exists a neighbor u of v that belongs to EiB such that dist(g(EiB),
p, u) = d−1. By (Pd−1), we know that u takes at mostΠ(k, d−1)×deg(g)×
D actions in σ. The k-bounded- ness of the daemon allows us to conclude
that v takes at most k×Π(k, d−1)×deg(g)×D actions before the last action
of u. Then, a similar reasoning to the one of the initialization part allows us
to say that v takes at most deg(g)×D actions after the last action of u (note
that the fact that |M(g)| ≥ 2, the construction of D and the management
of dist variables imply that distu < D − 1 after the last action of u). In
conclusion, v takes at most k ×Π(k, d − 1) × deg(g) ×D + deg(g) ×D =
Π(k, d)× deg(g)×D actions in σ, that proves (Pd).

As diam(g(EB)) is the maximal diameter of connected components of the
communication subgraph induced by EB , then we know that dist(g(EiB), p, v) ≤
diam(g(EB)) for any vertex v in EiB . For any vertex v of EB , there exists
i ∈ {0, . . . , `} such that v ∈ EiB . We can deduce that any vertex of EB takes
at most Π(k, diam(g(EB)))× deg(g)×D actions in σ, that implies the result.
�

Lemma 12 If γ is a configuration of LCMMT and v is a vertex such that
v ∈ EB, then for any execution σ starting from γ either

1. there exists a configuration γ′ of σ such that specMMT(v) is always satisfied
after γ′; or

2. v is activated in σ.

Proof Let γ be a configuration of LCMMT and v be a vertex such that v ∈ EB .
By contradiction, assume that there exists an execution σ starting from γ such
that (i) specMMT(v) is infinitely often false in σ and (ii) v is never activated
in σ.

For any configuration γ∗, let us denote by Pv(γ∗) = (v0 = v, v1 = prntv, v2 =
prntv1 , . . . , vk = prntvk−1

, pv = prntvk) the maximal sequence of vertices fol-
lowing pointers prnt (maximal means here that either prntpv = ⊥ or pv is the
first vertex such that there pv = vi for some i ∈ {0, . . . , k}).

Let us study the following cases:

Case 1: prntv ∈ V \ SB in γ.
Since γ ∈ LCMMT, prntv satisfies specMMT(prntv) in γ and in any execution
starting from γ (by Lemma 4). Hence, prntv is never activated in σ. If v does
not satisfy specMMT(v) in γ, then we have levelv 6= met(levelprntv , wv,prntv)

Maximum Metric Spanning Tree made Byzantine Tolerant 29

or distv 6= 0 in γ. Then, v is continuously enabled in σ and we have a
contradiction between assumption (ii) and the strong fairness of the dae-
mon. This implies that v satisfies specMMT(v) in γ. The fact that prntv
is never activated in γ and that the state of v is consistent with the one
of prntv ensures us that v is never enabled in any execution starting from
γ. Hence, specMMT(v) remains true in any execution starting from γ. This
contradicts the assumption (i) on σ.

Case 2: prntv /∈ V \ SB in γ.
By the assumption (i) on σ, we can deduce that there exists infinitely many
configurations γ′ such that a vertex of Pv(γ

′) is enabled (since specMMT(v)
is false only when the state of a vertex of Pv(γ

′) is not consistent with
the one of its parent that made it enabled). By construction, the length
of Pv(γ

′) is finite for any configuration γ′ and there exists only a finite
number of vertices in the communication graph. Consequently, there exists
at least one vertex that is infinitely often enabled in σ. Since the daemon
is strongly fair, we can conclude that there exists at least one vertex that
is infinitely often activated in σ.
Let Aσ be the set of vertices that are infinitely often activated in σ. Note
that v /∈ Aσ by assumption (ii) on σ. Let σ′ be the suffix of σ starting
from γ′ that contains only activations of vertices of Aσ. Let p be the first
vertex of Pv(γ

′) that belongs to Aσ (p exists since at least one vertex of Pv
is enabled when specMMT(v) is false). By construction, the prefix of Pv(γ

′′)
from v to p in any configuration γ′′ of σ remains the same as the one of
Pv(γ

′). Let p′ be the vertex such that prntp′ = p in σ′ (p′ exists since v 6= p
implies that the prefix of Pv(γ

′) from v to p counts at least two vertices).
As p is infinitely often activated and as any activation of p modifies the
value of levelp or of distp (at least one of these two variables takes at least
two different values in σ′), we can deduce that p′ is infinitely often enabled
in σ′ (since the value of levelp′ is constant by construction of σ′ and p).
Since the daemon is strongly fair, p′ is activated in a finite time in σ′, that
contradicts the construction of p.

In the two cases, we obtain a contradiction with the construction of σ, that
proves the result. �

Let LC∗MMT be the following set of configurations:

LC∗MMT =
{
γ ∈ Γ

∣∣(γ is S∗B-legitimate for specMMT) ∧ (IMmk
(γ) = true)

}
Note that, as S∗B ⊆ SB , we can deduce that LC∗MMT ⊆ LCMMT. Hence,

properties of Lemmas 11 and 12 also apply to configurations of LC∗MMT.

Lemma 13 Any configuration of LC∗MMT is (n×Π(k, diam(g(EB))×deg(g)×
D,Π(k, diam(g(EB))×deg(g)×D,S∗B , n−1)-TA time contained for specMMT.

Proof Let γ be a configuration of LC∗MMT. As S∗B ⊆ SB , we know by Lemma
4 that any vertex v of V \ SB satisfies specMMT(v) and takes no action in any
execution starting from γ.

30 S. Dubois, T. Masuzawa, and S. Tixeuil

Let v be a vertex of EB . By Lemmas 11 and 12, we know that v takes at
most Π(k, diam(g(EB))×deg(g)×D actions in any execution starting from γ.
Moreover, we know that v satisfies specMMT(v) after its last action (otherwise,
we obtain a contradiction between the two lemmas). Hence, any vertex of EB
takes at most Π(k, diam(g(EB)) × deg(g) ×D actions and then, there are at
most n×Π(k, diam(g(EB))× deg(g)×D S∗B-TA disruptions in any execution
starting from γ (since |EB | ≤ n).

By definition of a TA time contained configuration, we obtain the result.
�

Lemma 14 Starting from any configuration, any execution of SSMMT un-
der the distributed k-bounded strongly fair daemon reaches a configuration of
LC∗MMT in a finite time.

Proof Let γ be an arbitrary configuration. We know by Lemma 10 that any
execution starting from γ reaches in a finite time a configuration γ′ of LCMMT.

Let v be a vertex of EB . By Lemmas 11 and 12, we know that v takes at
most Π(k, diam(g(EB))×deg(g)×D actions in any execution starting from γ′.
Moreover, we know that v satisfies specMMT(v) after its last action (otherwise,
we obtain a contradiction between the two lemmas). This implies that any
execution starting from γ′ reaches a configuration γ′′ such that any vertex v
of EB satisfies specMMT(v). It is easy to see that γ′′ ∈ LC∗MMT, that ends the
proof. �

Theorem 3 SSMMT is a (n×Π(k, diam(g(EB))×deg(g)×D), S∗B , n−1)-
TA strongly stabilizing distributed protocol for specMMT under the distributed
k-bounded strongly fair daemon.

Proof This result is a direct consequence of Lemmas 13 and 14. �

6 Optimality of Containment Areas

This section presents two impossibility results that prove the optimality of
containment areas provided by the distributed protocol of the previous sec-
tion. Indeed, Theorem 4 states that there exists no topology-aware strictly
stabilizing distributed protocol for maximum metric spanning tree construc-
tion for any containment area strictly included in SB while Theorem 5 proves
that there exists no topology-aware strongly stabilizing distributed protocol for
maximum metric spanning tree construction for any containment area strictly
included in S∗B .

These proofs are based on the construction of a communication graph
(depending of the characteristic of the considered maximizable metric) and
of a Byzantine behavior that allows us to invalidate the topology-aware strict
(respectively strong) stabilization of any distributed protocol exhibiting better
containment areas than SSMMT .

Maximum Metric Spanning Tree made Byzantine Tolerant 31

������������ ������������
γ00

γ10 ������������ ��� ���������
γ01

γ11

r u v b

r u v b

r u v b

r u v b

- -

- - ���

���

w w’ w w w’ w

m / 0 m / 2 m / 1 m / 0

mr / 0 m / 1 m / 0 mr / 0

m / 0 m / 1 m / 2 m / 3

mr / 0 m / 0 m / 1 m / 2

���������
������ ���������

������
γ20 γ21r ru ub b

v v

v’ v’

R
�

� � 	
I

I

mr / 0

w w’ w

w

m / 0

m / 0

m / 0

mr / 0 mr / 0 m / 0

m’ / 0

m’ / 0

m” / 0

w w’

w’

w

ww’

Fig. 4 Configurations used in proof of Theorem 4.

6.1 Topology-Aware Strict Stabilization

Theorem 4 Given a maximizable metric M = (M,W,mr,met,≺), even un-
der the central daemon, there exists no (AB , 1)-TA strictly stabilizing dis-
tributed protocol for specMMT with respect to M where AB SB.

Proof Let M = (M,W,mr,met,≺) be a maximizable metric and π be a
(AB , 1)-TA strictly stabilizing distributed protocol for specMMT with respect
to M where AB SB . We must distinguish the following cases:

Case 1: |M | = 1.
Denote by m the metric value such that M = {m}. For any communication
graph and for any vertex v 6= r, we have:

max met(g, v, r) = min≺
b∈B
{max met(g, v, b)} = m

Consequently, SB = V \ (B ∪ {r}) for any communication graph.
Consider the following communication graph: V = {r, u, v, b} and E =
{{r, u}, {u, v}, {v, b}} (b is a Byzantine vertex). As SB = {u, v} and AB
SB , we have: u /∈ AB or v /∈ AB . Consider now the following configuration
γ00 : prntr = prntb = ⊥, prntv = b, prntu = v, levelr = levelu = levelv =
levelb = m, distr = distb = 0, distv = 1 and distu = 2 (see Figure 4, other
variables may have arbitrary values). Note that γ00 is AB-legitimate for
specMMT (whatever AB is).
Assume now that b behaves as a correct vertex with respect to π. Then,
by convergence of π in a fault-free system starting from γ00 that is not ∅-
legitimate (remember that a topology-aware strictly stabilizing distributed
protocol is a special case of self-stabilizing distributed protocol), we can
deduce that π reaches in a finite time a configuration γ01 (see Figure 4),
where: prntr = ⊥, prntu = r, prntv = u, prntb = v, levelr = levelu =

32 S. Dubois, T. Masuzawa, and S. Tixeuil

levelv = levelb = m, distr = 0, distu = 1, distv = 2 and distb = 3. Note that
vertices u and v modify their O-variables in this execution. This contradicts
the (AB , 1)-TA strict stabilization of π (whatever AB is).

Case 2: |M | ≥ 2.
By definition of a bounded metric and from the utility condition, we can
deduce that there exist m ∈ M and w ∈ W such that m = met(mr, w) ≺
mr. Then, we must distinguish the following cases:
Case 2.1: m is a fixed point of M.

Consider the following communication graph: V = {r, u, v, b}, E =
{{r, u}, {u, v}, {v, b}}, wr,u = wv,b = w, and wu,v = w′ (b is a Byzantine
vertex). As for any w′ ∈ W , met(m,w′) = m (by definition of a fixed
point), we have: SB = {u, v}. Since AB SB , we have: u /∈ AB or
v /∈ AB . Consider now the following configuration γ10 : prntr = prntb =
⊥, prntv = b, prntu = v, levelr = levelb = mr, levelu = levelv = m,
distr = distb = 0, distv = 0 and distu = 1 (see Figure 4, other variables
may have arbitrary values). Note that γ10 is AB-legitimate for specMMT

(whatever AB is).
Assume now that b behaves as a correct vertex with respect to π. Then,
by convergence of π in a fault-free system starting from γ10 that is not
∅-legitimate (remember that a topology-aware strictly stabilizing dis-
tributed protocol is a special case of self-stabilizing distributed proto-
col), we can deduce that π reaches in a finite time a configuration γ11
(see Figure 4), where: prntr = ⊥, prntu = r, prntv = u, prntb = v,
levelr = mr, levelu = levelv = levelb = m (since m is a fixed point),
distr = 0, distu = 0, distv = 1 and distb = 2. Note that vertices u
and v modify their O-variables in this execution. This contradicts the
(AB , 1)-TA strict stabilization of π (whatever AB is).

Case 2.2: m is not a fixed point of M.
This implies that there exists w′ ∈ W such that: met(m,w′) ≺ m (re-
member that M is bounded). Consider the following communication
graph:
V = {r, u, v, v′, b}, E = {{r, u}, {u, v}, {u, v′}, {v, b}, {v′, b}}, wr,u =
wv,b = wv′,b = w, and wu,v = wu,v′ = w′ (b is a Byzantine vertex).
We can see that SB = {v, v′}. Since AB SB , we have: v /∈ AB
or v′ /∈ AB . Consider now the following configuration γ20 : prntr =
prntb = ⊥, prntv = prntv′ = b, prntu = r, levelr = levelb = mr,
levelu = levelv = levelv′ = m, distr = distb = 0, distv = distv′ = 0
and distu = 0 (see Figure 4, other variables may have arbitrary values).
Note that γ20 is AB-legitimate for specMMT (whatever AB is).
Assume now that b behaves as a correct vertex with respect to π. Then,
by convergence of π in a fault-free system starting from γ20 that is not
∅-legitimate (remember that a topology-aware strictly stabilizing dis-
tributed protocol is a special case of self-stabilizing distributed proto-
col), we can deduce that π reaches in a finite time a configuration γ21 (see
Figure 4), where: prntr = ⊥, prntu = r, prntv = prntv′ = u, prntb = v
(or prntb = v′), levelr = mr, levelu = m levelv = levelv′ = met(m,w′) =

Maximum Metric Spanning Tree made Byzantine Tolerant 33

���������
���

������ ���������
���������

���������
���

���������������
���

������

r r

rr

u u

uu

v

vv

v

b b

bb

u’ u’

u’u’

v’ v’

v’v’

γ0 γ1

γ2 γ3

	
I

R
�

	
I

�

�

I
	
I

�

�

w

w

w

w

w w

w w

w w

w w

w

w

w

w

w’

w’

w’

w’

w’

w’

w’

w’

mr / 0

mr / 0

? / ?

? / ?? / ?

? / ?

mr / 0

mr / 0

m / 0

m / 0m / 0

m / 0

mr / 0

m / 0

m / 0

m’ / 0

m’ / 0

m” / 0

mr / 0

m / 0

m / 0

m’ / 0

m’ / 0

mr / 0

Fig. 5 Configurations used in proof of Theorem 5.

m′, levelb = met(m′, w) = m′′, distr = 0, distu = 0, distv = distv′ = 0
and distb = 0. Note that vertices v and v′ modify their O-variables in
this execution. This contradicts the (AB , 1)-TA strict stabilization of π
(whatever AB is).

�

6.2 Topology-Aware Strong Stabilization

Theorem 5 Given a maximizable metric M = (M,W,mr,met,≺), even un-
der the central daemon, there exists no (t, A∗B , 1)-TA strongly stabilizing dis-
tributed protocol for specMMT with respect to M where A∗B S∗B and t is any
finite integer.

Proof Let M = (M,W,mr,met,≺) be a maximizable metric and π be a
(t, A∗B , 1)-TA strongly stabilizing protocol for specMMT with respect to M
where A∗B S∗B and t is a finite integer. We must distinguish the following
cases:

Case 1: |M | = 1.
Denote by m the metric value such that M = {m}. For any communication
graph and for any vertex v, we have:

max met(g, v, r) = min≺
b∈B
{max met(g, v, b)} = m

Consequently, S∗B = ∅ for any communication graph. Then, it is absurd to
have A∗B S∗B .

34 S. Dubois, T. Masuzawa, and S. Tixeuil

Case 2: |M | ≥ 2.
By definition of a bounded metric and from the utility condition, we can
deduce that there exist m ∈ M and w ∈ W such that m = met(mr, w) ≺
mr. Then, we must distinguish the following cases:
Case 2.1: m is a fixed point of M.

Let g be a communication graph such that any edge incident to the root
or a Byzantine vertex has a weight equals to w. Then, we can deduce
that we have:

m = max≺
b∈B
{max met(g, r, b)} ≺ max met(g, r, r) = mr

and

∀v ∈ V \ (B ∪ {r}),max met(g, v, r) = max≺
b∈B
{max met(g, v, b)} = m

Hence, S∗B = ∅ for any such communication graph. Then, it is absurd
to have A∗B S∗B .

Case 2.2: m is not a fixed point of M.
This implies that there exists w′ ∈ W such that: met(m,w′) ≺ m
(remember thatM is bounded). Consider the following communication
graph: V = {r, u, u′, v, v′, b}, E = {{r, u}, {r, u′}, {u, v}, {u′, v′}, {v, b},
{v′, b}}, wr,u = wr,u′ = wv,b = wv′,b = w, and wu,v = wu′,v′ = w′ (b
is a Byzantine vertex). We can see that S∗B = {v, v′}. Since A∗B SB ,
we have: v /∈ A∗B or v′ /∈ A∗B . Consider now the following configuration
γ0: prntr = prntb = ⊥, levelr = levelb = mr, distr = distb = 0 and prnt,
level, and dist variables of other vertices are arbitrary (see Figure 5,
other variables may have arbitrary values but other variables of b are
identical to those of r).
Assume now that b executes exactly the same actions as r (if any)
immediately after r (note that r /∈ A∗B and hence prntr = ⊥, levelr =
mr, and distr = 0 still hold by closure and then prntb = ⊥, levelb = mr,
and distr = 0 still hold too). Then, by symmetry of the execution and
by convergence of π to specMMT, we can deduce that π reaches in a
finite time a configuration γ1 (see Figure 5), where: prntr = prntb = ⊥,
prntu = prntu′ = r, prntv = prntv′ = b, levelr = levelb = mr, levelu =
levelu′ = levelv = levelv′ = m, and ∀v ∈ V, distv = legal dist(v, prntv)
(because this configuration is the only one where every correct vertex v
satisfies specMMT(v) when prntr = prntb = ⊥ and levelr = levelb = mr
since met(m,w′) ≺ m). Note that γ1 is A∗B-legitimate for specMMT and
A∗B-stable (whatever A∗B is).
Assume now that b behaves as a correct vertex with respect to π.
Then, by convergence of π in a fault-free system starting from γ1
that is not ∅-legitimate (remember that a TA strongly stabilizing dis-
tributed protocol is a special case of self-stabilizing distributed pro-
tocol), we can deduce that π reaches in a finite time a configuration
γ2 (see Figure 5), where: prntr = ⊥, prntu = prntu′ = r, prntv = u,

Maximum Metric Spanning Tree made Byzantine Tolerant 35

prntv′ = u′, prntb = v (or prntb = v′), levelr = mr, levelu = levelu′ = m
levelv = levelv′ = met(m,w′) = m′, levelb = met(m′, w) = m′′, and
∀v ∈ V, distv = legal dist(v, prntv). Note that vertices v and v′ modify
their O-variables in the portion of execution between γ1 and γ2 and
that γ2 is A∗B-legitimate for specMMT and A∗B-stable (whatever A∗B is).
Consequently, this portion of execution contains at least one A∗B-TA
disruption (whatever A∗B is).
Assume now that the Byzantine vertex b takes the following state:
prntb = ⊥, levelb = mr, and distb = 0. This action brings the sys-
tem into configuration γ3 (see Figure 5). From this configuration, we
can repeat the execution we constructed from γ0. By the same token,
we obtain an execution of π that contains A∗B-legitimate and A∗B-stable
configurations (see γ1) and an infinite number of A∗B-TA disruptions
(whatever A∗B is), which contradicts the (t, A∗B , 1)-TA strong stabiliza-
tion property of π.

�

7 Conclusion

Summary This paper focused on maximum metric spanning tree construc-
tion in distributed systems simultaneously subject to transient and Byzantine
faults. Spanning tree construction is a fundamental task in distributed systems
since it permits to construct a virtual communication structure that allows ev-
ery vertex to communicate using a minimal number of edges of the original
communication graph. According to desired characteristics of the spanning
tree (minimum weight, shortest path to the root, minimal degree,...), there
exist numerous self-stabilizing distributed protocols.

To our knowledge, our work is the first to consider spanning tree con-
struction in presence of both transient and Byzantine faults. As this problem
is global (whatever the considered spanning tree properties are), there ex-
ists no strictly-stabilizing solution for any (finite) containment radius by the
generic impossibility result of Nesterenko and Arora [33]. Therefore, our main
contribution is to propose three new schemes of Byzantine containment in
self-stabilization in order to by-pass this impossibility result.

First, we proposed strong stabilization, where the constraint about the
containment radius is relaxed, i.e. there may exist vertices outside the con-
tainment radius that invalidate the specification predicate, due to Byzantine
actions. However, the impact of Byzantine triggered-actions is limited in times:
the set of Byzantine vertices may only impact vertices outside the contain-
ment radius a bounded number of times, even if Byzantine vertices execute an
infinite number of actions. This new scheme of Byzantine containment in self-
stabilization generalizes strict stabilization as a strictly stabilizing distributed
protocol is a strongly stabilizing one with a maximal number of disruptions
equal to 0.

36 S. Dubois, T. Masuzawa, and S. Tixeuil

Containment Result Proved by...

(CB , f)-TA strict stabilization
CB (SB , f = 1 Impossible Theorem 4

CB = SB , f = n− 1 Possible Theorem 2

(t, CB , f)-TA strong stabilization
CB (S∗B , f = 1 Impossible Theorem 5

CB = S∗B , f = n− 1 Possible Theorem 3

Table 1 Summary of results related to specMMT.

Although this new scheme is sufficient to by-pass some impossibility results
[20], it is still too strong for some problems as there remain impossibility results
in the context of strong stabilization. We proposed a new notion for Byzantine
containment in self-stabilization: the topology-aware stabilization. Here, the
requirement about the containment radius is relaxed to a containment area, i.e.
the set of vertices that may be disturbed by Byzantine ones is not reduced to
the union of c-neighborhood of Byzantine vertices but is defined as a function
of the communication graph and Byzantine vertices locations. Note that this
relaxation may be applied either to strict or to strong stabilization.

To demonstrate the effectiveness of our notions of topology-aware stabiliza-
tion, we focused on a large class of spanning tree constructions: the maximum
metric spanning tree construction with respect to any maximizable metric.
Intuitively, a metric is a scheme to compute a distance along any path of
the communication graph. A metric is maximizable if there always exists a
spanning tree that maximizes the metric of each vertex of any communication
graph with respect to a distinguished vertex called the root. For example, the
shortest path or the flow metric are maximizable. In contrast, there exists
no maximizable metric to model the minimum weight or the minimum degree
spanning tree construction. In this paper, we characterize the possibility range
of each of these fault tolerance schemes. All results are summarized in Table
1. Note that these results subsume those presented in related previous works
[20, 18].

Open questions The results presented in this paper show that our new notions
of topology-aware stabilization are convenient to circumvent impossibility re-
sults related to strict stabilization. Nevertheless, interesting open questions
remain.

Daemon requirements for the correctness of our distributed protocols were
not discussed here. It would be interesting to prove their necessity or to pro-
vide distributed protocols operating with weaker daemon, if possible. In this
case, is it possible to keep the optimality of containment areas? Another way
to complement results of this paper is to study the relationship between the
containment areas and the maximal number of disruptions. Intuitively, if con-
straints on containment area are weakened, the maximal number of disruptions
may decrease. While maximizable metrics are a large class of metrics, there
exist numerous other metrics to construct spanning tree. We think that the
study of Byzantine containment properties of these metrics is worth studying.

Maximum Metric Spanning Tree made Byzantine Tolerant 37

Note that the distributed protocols provided in this paper that achieve
topology-aware strong stabilization require a strongly fair daemon. We con-
jecture that the strong fairness property is necessary to perform (topology-
aware) strong stabilization. Formally proving this conjecture is an interesting
open question.

Finally, we presented definitions for strong stabilization and topology-
aware stabilization for static problems, i.e. problems that require the system to
find static solutions, such as the maximum metric spanning tree construction.
An interesting path for future research may be to provide strong or topology-
aware stabilizing distributed protocols for other static problems or to extend
our definitions to dynamic problems such as token circulation.

References

1. Afek Y, Kutten S, Yung M (1990) Memory-efficient self stabilizing proto-
cols for general networks. In: 4th International Workshop on Distributed
Algorithms (WDAG 1990), pp 15–28

2. Blin L, Butelle F (2004) The first approximated distributed algorithm for
the minimum degree spanning tree problem on general graphs. Interna-
tional Journal of Foundations of Computer Science 15(3):507–516

3. Blin L, Potop-Butucaru M, Rovedakis S (2009) A superstabilizing log()-
approximation algorithm for dynamic steiner trees. In: 11th International
Symposium on Stabilization, Safety, and Security of Distributed Systems
(SSS 2009), pp 133–148

4. Blin L, Potop-Butucaru M, Rovedakis S (2011) Self-stabilizing minimum
degree spanning tree within one from the optimal degree. Journal of Par-
allel and Distributed Computing 71(3):438–449

5. Burman J, Kutten S (2007) Time optimal asynchronous self-stabilizing
spanning tree. In: 21st International Symposium on Distributed Comput-
ing (DISC 2007), pp 92–107

6. Butelle F, Lavault C, Bui M (1995) A uniform self-stabilizing minimum
diameter tree algorithm (extended abstract). In: 9th International Work-
shop on Distributed Algorithms (WDAG 1995), pp 257–272

7. Chen GH, Houle ME, Kuo MT (1993) The steiner problem in distributed
computing systems. Information Sciences 74(1-2):73 – 96

8. Collin Z, Dolev S (1994) Self-stabilizing depth-first search. Information
Processing Letters 49(6):297–301

9. Daliot A, Dolev D (2005) Self-stabilization of byzantine protocols. In: 7th
International Symposium on Self-Stabilizing Systems (SSS 2005), pp 48–
67

10. Datta AK, Johnen C, Petit F, Villain V (2000) Self-stabilizing depth-first
token circulation in arbitrary rooted networks. Distributed Computing
13:207–218

38 S. Dubois, T. Masuzawa, and S. Tixeuil

11. Delaët S, Ducourthial B, Tixeuil S (2006) Self-stabilization with r-
operators revisited. Journal of Aerospace Computing, Information, and
Communication 3(10):498–514

12. Dijkstra EW (1974) Self-stabilizing systems in spite of distributed control.
Communication of ACM 17(11):643–644

13. Dolev S (2000) Self-stabilization. MIT Press
14. Dolev S, Welch JL (2004) Self-stabilizing clock synchronization in the

presence of byzantine faults. Journal of the ACM 51(5):780–799
15. Dolev S, Israeli A, Moran S (1990) Self-stabilization of dynamic systems

assuming only read/write atomicity. In: 9th Annual ACM Symposium on
Principles of Distributed Computing (PODC 1990), pp 103–117

16. Dolev S, Israeli A, Moran S (1993) Self-stabilization of dynamic systems
assuming only read/write atomicity. Distributed Computing 7(1):3–16

17. Dubois S, Masuzawa T, Tixeuil S (2010) The impact of topology on byzan-
tine containment in stabilization. In: 24th International Symposium on
Distributed Computing (DISC 2010)

18. Dubois S, Masuzawa T, Tixeuil S (2010) On byzantine containment prop-
erties of the min+1 protocol. In: 12th International Symposium on Stabi-
lization, Safety, and Security of Distributed Systems (SSS 2010)

19. Dubois S, Masuzawa T, Tixeuil S (2011) Maximum metric spanning tree
made byzantine tolerant. In: 25th International Symposium on Distributed
Computing (DISC 2011)

20. Dubois S, Masuzawa T, Tixeuil S (2012) Bounding the impact of un-
bounded attacks in stabilization. IEEE Transactions on Parallel and Dis-
tributed Systems 23(3):460–466

21. Ducourthial B, Tixeuil S (2001) Self-stabilization with r-operators. Dis-
tributed Computing 14(3):147–162

22. Ducourthial B, Tixeuil S (2003) Self-stabilization with path algebra. The-
oretical Computer Science 293(1):219–236

23. Gallager RG, Humblet PA, Spira PM (1983) A distributed algorithm
for minimum-weight spanning trees. ACM Transactions on Programming
Languages and Systems 5(1):66–77

24. Gärtner FC (2003) A survey of self-stabilizing spanning-tree construction
algorithms. Technical report ic/2003/38, EPFL

25. Gouda MG, Schneider M (1994) Maximum flow routing. In: Joint Confer-
ence on Information Sciences (JCIS 1994)

26. Gouda MG, Schneider M (1999) Stabilization of maximal metric trees. In:
ICDCS Workshop on Self-stabilizing Systems (WSS 1999), pp 10–17

27. Gouda MG, Schneider M (2003) Maximizable routing metrics. IEEE/ACM
Transactions on Networks 11(4):663–675

28. Huang ST, Chen NS (1992) A self-stabilizing algorithm for constructing
breadth-first trees. Information Processing Letters 41(2):109–117

29. Huang ST, Wuu LC (1997) Self-stabilizing token circulation in uniform
networks. Distributed Computing 10(4):181–187

30. Huang TC, Lin JC (2002) A self-stabilizing algorithm for the shortest
path problem in a distributed system. Computers and Mathematics with

Maximum Metric Spanning Tree made Byzantine Tolerant 39

Applications 43(1-2):103 – 109
31. Lamport L, Shostak RE, Pease MC (1982) The byzantine generals prob-

lem. ACM Transactions on Programming Langage System 4(3):382–401
32. Masuzawa T, Tixeuil S (2007) Stabilizing link-coloration of arbitrary net-

works with unbounded byzantine faults. International Journal of Princi-
ples and Applications of Information Science and Technology 1(1):1–13

33. Nesterenko M, Arora A (2002) Tolerance to unbounded byzantine faults.
In: 21st Symposium on Reliable Distributed Systems (SRDS 2002), IEEE
Computer Society, pp 22–29

34. Schneider M (1997) Flow routing in computer networks. PhD thesis, Uni-
versity of Texas at Austin

35. Tixeuil S (2009) Algorithms and Theory of Computation Handbook, Sec-
ond Edition, CRC Press, Taylor & Francis Group, chap Self-stabilizing
Algorithms, pp 26.1–26.45. Chapman & Hall/CRC Applied Algorithms
and Data Structures

36. Tsai MS, Huang ST (1994) A self-stabilizing algorith for the shortest paths
problem with a fully distributed demon. Parallel Processing Letters 4:65–
72

