
Journal of Computer and System Sciences 81 (2015) 692–701
Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Practically stabilizing SWMR atomic memory

in message-passing systems ✩

Noga Alon a, Hagit Attiya b, Shlomi Dolev c,∗, Swan Dubois d,e,f,
Maria Potop-Butucaru d,e, Sébastien Tixeuil d,e,g

a Sackler School of Mathematics and Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, 69978, Israel
b Department of Computer Science, Technion, 32000, Israel
c Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
d Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6, 75005, Paris, France
e CNRS, UMR 7606, LIP6, F-75005, Paris, France
f Inria, Equipe REGAL, F-75005, Paris, France
g Institut Universitaire de France, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 7 August 2013
Received in revised form 12 November 2014
Accepted 13 November 2014
Available online 27 November 2014

Keywords:
Self-stabilization
Shared memory
Message passing
Single writer multiple reader register

A fault-tolerant and practically stabilizing simulation of an atomic register is presented.
The simulation works in asynchronous message-passing systems, and allows a minority of
processes to crash. The simulation stabilizes in a practically stabilizing manner, by reaching
a long execution in which it runs correctly. A key element in the simulation is a new
combinatorial construction of a bounded labeling scheme accommodating arbitrary labels,
including those not generated by the scheme itself.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Distributed systems have become an integral part of virtually all computing systems, especially those of a large scale.
These systems must provide high availability and reliability in the presence of failures, which could be either permanent
or transient. A core abstraction for many distributed algorithms simulates shared memory [3]; this abstraction allows to take
algorithms designed for shared memory, and port them to asynchronous message-passing systems, even in the presence of
failures. There has been significant work on creating such simulations, under various types of permanent failures, as well as
on exploiting this abstraction in order to derive algorithms for message-passing systems. (See a recent survey [2].)

All these works, however, only consider permanent failures, neglecting to incorporate mechanisms for handling tran-
sient failures. Such failures may result from incorrect initialization of the system, or from temporary violations of the

✩ An extended abstract of this work was presented in the proceedings of the 13th International Symposium on Stabilization, Safety, and Security of Distributed
Systems (SSS) 2011. Research of the first author supported in part by an ERC advanced grant (DMMCA), by a USA–Israeli BSF (grant number 2012107), by the
Israel Science Foundation (grant number 620/13). Research of the second author supported in part by the Israel Science Foundation (grants numbers 953/06
and 1227/10). The work started while the second author was visiting EPFL, and the third author was a visiting professor at LIP6. Research of the third
author supported by the Israeli Internet Association, Israeli Ministry of Science and Technology, Infrastructure Research in the Field of Advanced Computing
and Cyber Security, Israel Science Foundation (grant number 428/11), and Rita Altura Trust Chair in Computer Sciences. The last author is supported in part
by LINCS.

* Corresponding author.
E-mail address: dolev@cs.bgu.ac.il (S. Dolev).
http://dx.doi.org/10.1016/j.jcss.2014.11.014
0022-0000/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcss.2014.11.014
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
mailto:dolev@cs.bgu.ac.il
http://dx.doi.org/10.1016/j.jcss.2014.11.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2014.11.014&domain=pdf

N. Alon et al. / Journal of Computer and System Sciences 81 (2015) 692–701 693
assumptions made by the system designer, for example the assumption that a corrupted message is always identified by
an error detection code. The ability to automatically resume normal operation following transient failures, namely to be
self-stabilizing [10], is an essential property that should be integrated into the design and implementation of systems.

Self-stabilizing simulation of a single-writer single-reader atomic shared register in a message-passing system was pre-
sented in [14]. This simulation does not tolerate processor crashes. More recent papers [13,21] focused on self-stabilizing
simulation of shared registers from weaker shared registers. Self-stabilizing timestamp implementations using SWMR atomic
registers were suggested in [1,15]. These simulations already assume the existence of a shared memory, while in contrast,
we simulate a shared SWMR atomic register in a message-passing system.

Our contribution This paper presents a practically stabilizing simulation of an atomic register in asynchronous message-
passing systems where a minority of processors may crash. The simulation is based on reads and writes to a (majority)
quorum in a system with a fully connected graph topology. A key component of the simulation is a new bounded labeling
scheme that needs no initialization, as well as a method for using it when communication links and processes are started at
an arbitrary state. To the best of our knowledge, our scheme is the first constructive labeling scheme presenting the above
properties.

2. Preliminaries

A message-passing system consists of n processors, p0, p1, p2, . . . , pn−1, connected by communication links through which
messages are sent and received. We assume that the underlying communication graph is completely connected, namely,
every pair of processors, pi and p j , have a communication link of bounded capacity c.

A processor is modeled as a state machine that executes steps. In each step, the processor changes its state, and ex-
ecutes a single communication operation, which is either a send message operation or a receive message operation. The
communication operation changes the state of an attached link, in the obvious manner.

The system configuration is a vector of n states, a state for each processors and 2(n2 − n) queues, each bounded by
a constant capacity c. A set si j (rather than a queue, reflects the non-FIFO nature) for each directed edge (i, j) from a
processor pi to a processor p j . Note that in the scope of self-stabilization, where the system copes with an arbitrary
starting configuration, there is no deterministic data-link simulation that uses bounded memory when the capacity of links
is unbounded [14]. Note further that non-FIFO communication links can be accommodated by mimicking FIFO delivery [11].

An execution is a sequence of configurations and steps, E = (C1, a1, C2, a2 . . .) such that Ci , i > 1, is obtained by applying
ai−1 to Ci−1, where ai−1 is a step of a single processor, p j , in the system. Thus, the vector of states, except the state of p j ,
in Ci−1 and Ci are identical. If the single communication operation in ai−1 is a send operation from p j to processor pk then
s jk in Ci is obtained from s jk in Ci−1 by enqueuing the message sent in ai−1. If the resulting queue s jk exceeds its size,
i.e., |s jk| = c, then an arbitrary message is deleted from s jk . The rest of the message queues are unchanged. If the single
communication operation in ai−1 is a receive operation of a (non-null) message M , then M (which is the first message to
be dequeued from skj in Ci−1) is removed from skj , all the other queues are unchanged. A receive operation by p j from pk
may result in a null message even when the skj is not empty, thus allowing unbounded delay for any particular message.
Message losses are modeled by allowing spontaneous message removals from (any place in) the queue. An edge (i, j) is
operational if a message sent infinitely often by pi is received infinitely often by p j .

Atomic register For the simulation of a single writer multi-reader (SWMR) atomic register, we assume p0 is the writer and
p1, p2, . . . , pn−1 are the readers. There is a procedure for executing a write operation by p0, and procedures for executing
read operations by the readers.

Each invocation of a read or write operation translates into a sequence of computation steps, following the appropriate
procedure. Concurrent invocations of read and write operations yield an execution in which the computation steps corre-
sponding to invocations by different processors are interleaved. An operation op1 precedes an operation op2 in this execution,
if op1 returns before op2 is invoked. Two operations overlap if neither of them precedes the other.

Each interleaved execution of an atomic register is required to be atomic, namely, equivalent to an execution in which
the operations are executed sequentially and the order of non-overlapping operations is preserved [4]. As advocated in [7],
the above definition is equivalent to saying that the atomic register has to satisfy the following two properties:

– Regularity. A read operation returns either the value written by the most recent write operation that completes before
the read, or a value written by a concurrent write.

– No new/old inversions. If a read operation R returns the value of a concurrent write operation W , then no read operation
that is started after R completes, returns the value of a write operation that completes before W starts.

Practically stabilizing atomic register. A message passing system that simulates an atomic register is an r-practically sta-
bilizing, if there exists an integer r′ > r, such that every execution with r′ write operations has a segment of execution
(fragment) with r write operations that satisfies the atomicity requirements. In particular, a large r implies the existence of
a long segment with the desired behavior. In the sequel, when no confusion is possible, we refer to r-practically stabilizing
simply as practically stabilizing.

694 N. Alon et al. / Journal of Computer and System Sciences 81 (2015) 692–701
Practically stabilizing is reminiscent of pseudo-stabilization [10]. In pseudo-stabilization the length of the suffix of execu-
tion where the specification is satisfied is infinite while in practically-stabilizing the system reaches an execution segment
that is “almost” (or practically) infinite (for any existing system, where the life of the system is no more than, say the time
required by the system to perform 264 computer steps) in which the specification is satisfied.

3. Overview of our simulation

Attiya, Bar-Noy and Dolev [3] showed how to simulate a single-writer multi-reader (SWMR) atomic register in a message-
passing system supporting two procedures, read and write, for accessing the register. This simple simulation is based on a
quorum approach: In a write operation, the writer makes sure that a quorum of processors (consisting of a majority of the
processors, in its simplest variant) stores its latest value. In a read operation, a reader contacts a quorum of processors, and
obtains the latest values they store for the register; in order to ensure that other readers do not miss this value, the reader
also makes sure that a quorum stores its return value.

A key ingredient of this scheme is the ability to distinguish between older and newer values of the register; this is
achieved by attaching a sequence number to each register value. In its simplest form, the sequence number is an unbounded
integer, which is increased whenever the writer generates a new value. This solution is appropriate for an initialized system,
which starts in a consistent configuration, in which all sequence numbers are zero, and are only incremented by the writer
or forwarded as is by readers. Essentially, a 64-bit sequence number will not wrap around for a number of writes that lasts
longer than the life-span of any reasonable system, and therefore regarded as practically infinite.

However, when there are transient failures in the system, as is the case in the context of self-stabilization, the simulation
starts at an uninitialized state, where sequence numbers are not necessarily all zero. It is possible that, due to a transient
failure, the sequence numbers hold maximal values when the simulation starts running, and thus will wrap around very
quickly. Traditionally, techniques like distributed reset [5,6] are used to overcome this problem. However, in asynchronous
crash-prone environments the reset may not terminate waiting for the crashed processes to participate. Hence, a reset
invocation will not ensure that the sequence numbers are set to zero.

Our solution is to partition the execution of the simulation into epochs (see Section 4.3), namely periods during which
the sequence numbers are supposed to not wrap around. Whenever a “corrupted” sequence number is discovered, a new
epoch is started, overriding all previous epochs; this repeats until no more corrupted sequence numbers are hidden in the
system, and the system stabilizes. In a steady state, after the system stabilizes, it remains in the same epoch (at least until
the sequence numbers wrap around, which is essentially unlikely to happen).

This raises naturally, the question of identifying epochs. The natural idea of using integers, is bound to run into the
same problems as per the sequence numbers. Instead, we use a bounded labeling scheme [16,20] for the epochs; this is a
function for generating labels (in a bounded domain), that guarantees that two labels can be compared to determine the
largest among them. Existing labeling schemes however, assume that labels have specific initial values, and that new labels
are introduced only by means of the label generation function. In contrast, transient failures, of the kind the self-stabilizing
simulation must withstand, can create incomparable labels, so it is impossible to tell which is the largest among them or to
pick a new label that is bigger than all of them.

To address this difficulty, we introduce a bounded labeling scheme (see Section 4.2) that allows to define a label larger
than any set of labels, provided that its size is bounded. We assume links have bounded capacity, and hence the number of
epoch labels initially hidden in the system is bounded.

The writer tracks the set of epoch labels it has seen recently; whenever the writer discovers that its current epoch label
is not the largest, or is incomparable to some existing epoch label, the writer generates a new epoch that is larger than
all the epochs it has. The number of bits required to represent an epoch label depends on m, the maximal size of the set,
and it is in O (m log m). We ensure that the size of the set is proportional to the total capacity of the communication links,
namely O (cn2), where c is the bound on the capacity of each link (expressed in number of messages) and n is the number
of processors, hence each epoch label requires O (cn2(log n + log c)) bits.

It is possible to reduce this complexity making c constant, using a self-stabilizing data-link protocol for communication
among the processors for bounded capacity links over FIFO and non-FIFO communication links [11,17].1

We show that after a bounded number of write operations, the results of reads and writes can be totally ordered in a
manner that respects the real-time order of non-overlapping operations, so that the sequence of operations satisfies the
semantics of an SWMR register. This holds until the sequence numbers wrap around, as can happen when the unbounded
simulation of [3] is deployed in realistic systems, where all values are bounded.

Note that the original design of [3] copes with non-FIFO and unreliable links. We assume that our atomic register
simulation runs on top of an optimal stabilizing data-link layer that emulates a reliable FIFO communication channel over
unreliable capacity bounded non-FIFO channels [11].

1 Note that these protocols are also snap-stabilizing—starting in an arbitrary configuration, the first invoked send operation succeeds to deliver the
message.

N. Alon et al. / Journal of Computer and System Sciences 81 (2015) 692–701 695
4. Tool box

4.1. The basic quorum-based simulation

We describe below the basic simulation, which follows the quorum-based approach of [3], and ensures that our algorithm
tolerates (crash) failures of a minority of the processors.

The simulation relies on a set of read and write quorums, each being a majority of processors.2 The simulation specifies
the write and read procedures, in terms of QuorumRead and QuorumWrite operations. The QuorumRead procedure sends a
request to every processor, for reading a certain local variable of the processor; the procedure terminates with the obtained
values, after receiving answers from processors that form a quorum. Similarly, the QuorumWrite procedure sends a value
to every processor to be written to a certain local variable of the processor; it terminates when acknowledgments from
a quorum are received. If a processor that is inside QuorumRead or QuorumWrite keeps taking steps, then the procedure
terminates (possibly with arbitrary values). Furthermore, if a processor starts QuorumRead procedure execution, then the
stabilizing data link [17,18] ensures that a read of a value returns a value held by the read variable some time during its
period; similarly, a QuorumWrite(v) procedure execution, causes v to be written to the variable during its period.

Each processor pi maintains a variable, MaxSeqi , supposed to be the “largest” sequence number the processor has read,
and a value vi , associated with MaxSeqi , which is supposed to be the value of the implemented register.

The write procedure of a value v starts with a QuorumRead of the MaxSeqi variables; upon receiving answers l1, l2, . . .
from a quorum, the writer picks a sequence number lm that is larger than MaxSeq0 and l1, l2, . . . by one; the writer assigns
lm to MaxSeq0 and calls QuorumWrite with the value 〈lm, v〉. Whenever a quorum member pi receives a QuorumWrite request
〈l, v〉 for which l is larger than MaxSeqi , pi assigns l to MaxSeqi and v to vi .

The read procedure by pi starts with a QuorumRead of both the MaxSeq j and the (associated) v j variables. When pi
receives answers 〈l1, v1〉, 〈l2, v2〉 . . . from a quorum, pi finds the largest epoch label lm among MaxSeqi , and l1, l2, . . . and
then calls QuorumWrite with the value 〈lm, vm〉. This ensures that later read operations will return this, or a later value of
the register. When QuorumWrite terminates, after a write quorum acknowledges, pi assigns lm to MaxSeqi and vm to vi and
returns vm as the value read from the register.

Note that the QuorumRead operation, beginning the write procedure of p0, helps to ensure that MaxSeq0 holds the
maximal value, as the writer reads the biggest accessible value (directly read by the writer, or propagated to a quorum that
will be later read by the writer) in the system during any write.

Let g(C) be the number of distinct values greater than MaxSeq0 that are accessible in some configuration C , and let
C1, C2, . . . be the configurations in the execution. Since all the processors, except the writer, only copy values and since p0
can only increment the value of MaxSeq0 it holds for every i ≥ 1 that

g(Ci) ≥ g(Ci+1).

Furthermore,

g(Ci) > g(Ci+1),

whenever the writer discovers (when executing step ai) a value greater than MaxSeq0. Roughly speaking, the faster the
writer discovers these values, the earlier the system stabilizes. If the writer does not discover such a value, then the (acces-
sible) portion of the system in which its values are repeatedly written, performs reads and writes correctly.

4.2. A bounded labeling scheme with uninitialized values

Let k > 1 be an integer, and let K = k2 + 1. We consider the set X = {1, 2, .., K } and let L (the set of labels) be the set
of all ordered pairs (s, A) where s ∈ X is called in the sequel the Sting of the label, and A ⊆ X has size k and is called in
the sequel the Antistings of the label. It follows that |L| = (K

k

)
K = k(1+o(1))k .

The comparison operator ≺b among the bounded labels is defined to be:

(s j, A j) ≺b (si, Ai) ≡ (s j ∈ Ai) ∧ (si /∈ A j).

Note that this operator is antisymmetric by definition, yet may not be defined for every pair (si, Ai) and (s j, A j) in L
(e.g., s j ∈ Ai and si ∈ A j).

We define now a function to compute, given a subset S of at most k labels of L, a new label which is greater (with
respect to ≺b) than every label of S . This function, called Nextb (see the left side of Fig. 1) is as follows. Given a subset of
k labels (s1, A1), (s2, A2), . . . , (sk, Ak), we take a label (si, Ai) that satisfies:

– si is an element of X that is not in the union A1 ∪ A2 ∪ . . . ∪ Ak (as the size of each As is k, the size of the union is at
most k2, and since X is of size k2 + 1 such an si always exists).

2 Standard end-to-end schemes [19] can be used to implement the quorum operation in the case of general communication graph.

696 N. Alon et al. / Journal of Computer and System Sciences 81 (2015) 692–701
Nextb

input: S = (s1, A1), (s2, A2), . . . , (sk, Ak): labels set
output: (s, A): label
function: For any ∅ �= S ⊆ X , pick(S) returns arbitrary
(later defined for particular cases) element of S
1: A := {s1} ∪ {s2} ∪ . . . ∪ {sk}
2: while |A| �= k
3: A := A ∪ {pick(X \ A)}
4: s := pick(X \ (A ∪ A1 ∪ A2 ∪ . . . ∪ Ak))

5: return (s, A)

Nexte

input: S: set of k timestamps
output: (l, i): timestamp
1: if ∃(l0, j0) ∈ S such that

∀(l, j) ∈ S, (l, j) �= (l0, j0),
(l, j) ≺e (l0, j0) ∧ j0 < r

2: then return (l0, j0 + 1)

3: else return (Nextb(S̃),0)

Fig. 1. Nextb and Nexte . S̃ is the set of labels appearing in S .

– Ai is a subset of size k of X containing all values (s1, s2, . . . , sk) (if they are not pairwise distinct, add arbitrary elements
of X to get a set of size exactly k).

It is simple to compute Ai and si given a set S with k labels, and can be done in time linear in the total length of the
labels given, i.e., in O (k2) time.

Lemma 1. Given a subset S of k labels from L, (si, Ai) = Nextb(S) satisfies:

∀(s j, A j) ∈ S, (s j, A j) ≺b (si, Ai).

Proof. Let (s j, A j) be an element of S . By construction, s j ∈ Ai and si /∈ A j , and the result follows from the definition
of ≺b . �

For example, consider the case in which k = 4, K = 17, and the following five arbitrary labels (2, 〈1, 5, 17, 4〉) (where 2
is the sting and 〈1, 5, 17, 4〉 is the set of antistings of this first label), (12, 〈16, 7, 11, 3〉), (5, 〈8, 10, 2, 5〉), (10, 〈12, 13, 9, 2〉).
Then there must exist a value in the 17 possible values (as K = 17) that is not equal to any antisting, in our example,
6, 14, 15 are not equal to any antistings in the list 1, 5, 17, 4, 16, 7, 11, 3, 8, 10, 2, 5, 12, 13, 9, 2 (note that the list includes
5 and 2 twice). Thus, when constructing a label greater than the given five labels, it is possible to choose any one of the
numbers 6, 14, 15 to be a sting, while the antistings list of the constructed larger label must be a superset (of size four)
of the stings of the given arbitrary labels, in our case, we must have 〈2, 12, 5, 10〉. The result is the label (6, 〈2, 12, 5, 10〉)
which is greater than any label of the given arbitrary set.

4.3. Timestamps and epochs

Each value (written or read on the emulated register) is tagged with a timestamp—a pair (l, i) where l is an epoch
(a bounded label generated via the bounded scheme described in Section 4.2), and i is a sequence number, an integer
between 0 and a fixed bound r ≥ 1.

As described in the overview section, it is possible that the sequence numbers wrap around faster than planned, due to
“corrupted” initial values. When the writer discovers that this has happened, it opens a new epoch.

Epochs are denoted with labels from a bounded domain, using a bounded labeling scheme (see Section 4.2). Such a scheme
provides a function to compute a new label, which is “larger” than any given set of labels.

Definition 1. A labeling scheme over a bounded domain L, provides an antisymmetric comparison predicate ≺b on L and
a function Nextb(S) that returns a label in L, given some subset S ⊆ L of size at most m. It is guaranteed that for every
L ∈ S , L ≺b Nextb(S).

Note that the labeling scheme of [20], used in the original atomic memory simulation [3], cannot cope with transient
failures. Section 4.2 describes a bounded labeling scheme that accommodates badly initialized labels, namely, those not
generated by using Next.

This scheme ensures that if the writer eventually learns about all the epoch labels in the system, it will generate an
epoch label greater than all of them. After this point, any read that starts after a write of v is completed (written to a
quorum) returns v (or a later value), since the writer will use increasing sequence numbers. The eventual convergence of
the labeling scheme depends on invoking Nextb with a parameter S that is a superset of the epoch labels in the system.

The Nexte operator compares between two timestamps, and is described in the right part of Fig. 1. Note that in Line 3
of the code we use S̃ for the set of labels (with sequence numbers removed) that appear in S . The comparison operator ≺e

for timestamps is:

N. Alon et al. / Journal of Computer and System Sciences 81 (2015) 692–701 697
(x, i) ≺e (y, j) ≡ x ≺b y ∨ (x = y ∧ i < j).

In the sequel, we use ≺b to compare timestamps only by their labels (ignoring their sequence numbers).

4.4. Guessing game

The difficulty in emulating an atomic register in stabilizing settings comes mainly from the difficulty of the writer process
to timestamp the new introduced value with a timestamp that is guaranteed to be greater than any timestamp used for
the previous values. We explain the intuition of this part of the simulation through the following two-player guessing game,
between a finder, representing the writer, and a hider, representing an adversary controlling the system. Note that the part
of the timestamp that creates problems is the epoch which is a bounded label. Therefore, we project the guessing game on
the label part of the timestamp. The distributed implementation of writer strategy in this guessing game is presented in
details in the next section.

– The hider maintains a set of labels H, whose size is at most m (a parameter fixed later).
– The finder does not know H, but it needs to generate a label greater than all labels in H.
– The finder generates a label L and if H contains a label L′ , such that it does not hold that L′ ≺b L then the hider

exposes L′ to the finder.
– In this case, the hider may choose to add L to H, however, it must ensure that the size of H remains at most m, by

removing another label. (The finder is unaware of the hider’s decision.)
– If the hider does not expose a new label L′ from H, the finder wins this iteration and continues to use L.

The strategy of the finder is based on maintaining an FIFO queue of 2m labels, meant to track the most recent labels.
The queue starts with arbitrary values, and during the course of the game, it holds up to m recent labels produced by the
finder, which turned out to be overruled by existing labels (provided by the hider). The queue also holds up to m labels
that were revealed to overrule these labels.

Before the finder chooses a new label, it enqueues its previously chosen label and the label received from the hider in
response. Enqueuing a label that is already in the queue pushes the label to the front of the queue; if the bound on the size
of the queue is reached, then the oldest label in the queue is dequeued. This semantics of enqueue is used throughout the paper.

The finder chooses the next label by applying Next, using as parameter the 2m labels in the queue. Intuitively, the queue
eventually contains a superset of H, and the finder generates a label greater than all the current labels of the hider.

Clearly, when the finder chooses the ith label, i > 0, the 2i items in the front of the queue consist of the first i labels
generated by the finder, and the first i labels revealed by the hider. This is used to show the following property of the game.

Lemma 2. After at most m + 1 labels, the finder generates a label that is larger than all the labels held by the hider.

Proof. Note that a response cannot expose a label that has been introduced or previously exposed in the game since the
finder always chooses a label greater than all labels in the queue. Thus, if the finder does not win when introducing the mth
label, all the m labels that the hider had when the game started were exposed and therefore, stored in the queue of the
finder together with all the recent m labels introduced by the finder, before the m + 1st label is chosen. Thus, the m + 1st
label is larger than every label held by the hider, and the finder wins. �

Note that a step of the hider that exposes more than one label unknown to the finder, accelerates the convergence to a
winning stage.

5. Putting the pieces together

Each processor pi , holds, in MaxTSi , two fields 〈mli, cli〉, where mli is the timestamp associated with the last write of
a value to the variable vi and cli is a canceling timestamp possibly empty (⊥), which is not smaller than mli in the ≺b
order. The canceling field is used to let the writer (finder in the game) know an evidence on the existence of the unknown
(non-smaller) epoch label. A timestamp (l, i) is evidence for timestamp (l′, j) if and only if l ⊀b l′ . When the writer faces an
evidence it changes the current epoch label.

The pseudo code for the read and write procedures appears in Fig. 2. Note that in Lines 2 and 10 of the write procedure,
an epoch label is enqueued if and only if it is not equal to MaxTS0. Note further, that Nexte in Line 5 of the write procedure,
first tries to increment the sequence number of the epoch label in MaxTS0 and if the sequence number already equals to the
upper bound r then p0 enqueues the value of MaxTS0 and uses the updated epochs queue to choose a new value for MaxTS0,
which is a new epoch label Nextb(epochs) and sequence number 0.

The write of a value v starts with a QuorumRead of the MaxTSi variables, and upon receiving answers l1, l2, . . . from
a quorum, the writer p0 enqueues the epoch labels of the received ml and non-⊥ cl which are not equal to MaxTS0, to
the epochs queue (Lines 1–3). The writer then computes MaxTS0 to be the Nexte timestamp, namely if the epoch label
of MaxTS0 is the largest in the epochs queue and the sequence number of MaxTS0 less than r, then p0 increments the

698 N. Alon et al. / Journal of Computer and System Sciences 81 (2015) 692–701
write0(v)

1: 〈〈ml1, cl1〉, v1〉, 〈〈ml2, cl2〉, v2〉, · · · := QuorumRead
2: ∀i, if mli �= MaxTS0.ml then enqueue(epochs,mli)
3: ∀i, if cli �= MaxTS0.ml then enqueue(epochs, cli)
4: if ∀l ∈ epochs l �e MaxTS0.ml then
5: MaxTS0 := 〈Nexte(MaxTS0.ml ∪ epochs),⊥〉
6: else
7: enqueue(epochs,MaxTS0.ml)
8: MaxTS0 := 〈(Nextb(epochs),0),⊥〉
9: QuorumWrite(〈MaxTS0, v〉)

Upon a request of QuorumWrite 〈l, v〉
10: if l �= MaxTS0.ml then enqueue(epochs, l)

read

1: 〈〈ml1, cl1〉, v1〉, 〈〈ml2, cl2〉, v2〉, · · · := QuorumRead
2: if ∃m such that clm = ⊥ and
3: (∀i �= m mli ≺e mlm and cli ≺e mlm) then
4: QuorumWrite〈mlm, vm〉
5: return(vm)
6: else return(⊥)

Upon a request of QuorumWrite 〈l, v〉
7: if MaxTSi .ml ≺e l and MaxTSi .cl ≺e l then
8: MaxTSi := 〈l,⊥〉
9: vi := v
10: else if l ⊀b MaxTSi .ml and MaxTSi .ml �= l

then MaxTSi .cl := l

Fig. 2. write(v) and read.

sequence number of MaxTS0 by one, leaving the epoch label of MaxTS0 unchanged (Lines 4–5). Otherwise, it is necessary to
change the epoch label: p0 enqueues MaxTS0 to the epochs queue and applies Nextb to obtain an epoch label greater than
all the ones in the epochs queue; it assigns to MaxTS0 the timestamp made of this epoch label and a zero sequence number
(Lines 7–8). Finally, p0 executes the QuorumWrite procedure with 〈MaxTS0, v〉 (Line 9).

Whenever the writer p0 receives (as a quorum member) a QuorumWrite request containing an epoch label that is not
equal to MaxTS0, p0 enqueues the received epoch label in the epochs queue (Line 10). (Recall the rules for enqueuing the
queue from Section 4.3.)

The read of a reader pi starts with a QuorumRead of the MaxTS j and the (associated) v j variables (Line 1). When pi
receives answers 〈〈ml1, cl1〉, v1〉, 〈〈ml2, cl2〉, v2〉 . . . from a quorum, pi tries to find a maximal timestamp mlm according to
the ≺e operator from among mli, cli, ml1, cl1, ml2, cl2 If pi finds such maximal timestamp mlm , then pi executes the
QuorumWrite procedure with 〈mlm, vm〉. Once the QuorumWrite terminates (the members of a quorum acknowledged) pi
assigns MaxTSi := 〈mlm, ⊥〉, and vi := vm and returns vm as the value read from the register (Lines 2–5). Otherwise, in case
no such maximal value mlm exists, the read is aborted (Line 6).

When a quorum member pi receives a QuorumWrite request 〈l, v〉, it checks whether both MaxTSi .ml ≺b l and
MaxTSi .cl ≺b l. If this is the case, then pi assigns MaxTSi := 〈l, ⊥〉 and vi := v (Lines 7–9). Otherwise, pi checks whether
l ⊀b MaxTSi .ml and if so assigns MaxTSi .cl := l (Line 10). Note that ⊥ ≺b l, for any l.

Diffusing labels over the data-link Note that we assume an underlying stabilizing data-link protocol [10,17]. The data-link
protocol is used for repeatedly diffusing the value of MaxTS from one processor to another. If the MaxTSi .cl of a processor pi
is ⊥ and pi receives from processor p j a MaxTS j such that MaxTS j .ml ⊀b MaxTSi .ml then pi assigns MaxTSi .cl := MaxTS j .ml,
otherwise, when MaxTS j .cl ⊀b MaxTSi .ml then pi assigns MaxTSi .cl := MaxTS j .cl Note also that the writer will enqueue every
diffused value that is different from MaxTS0.ml (similarly to lines 10 of the reader and the writer, where each of MaxTS j .ml
and MaxTS j .cl are considered l).

6. Correctness proof

Overview of the correctness proof The correctness of the simulation is implied by the game and our previous observations,
which we can now summarize, recapping the arguments explained in the description of the individual components. Note
that the writer may enqueue several unknown epochs in a single write operation and only then introduce a greater epoch,
such a scenario will result in a shorter winning strategy in the game as the writer gains more knowledge concerning the
existing (hidden) labels before introducing a new epoch.

In the simulation, the finder/writer may introduce new epoch labels even when the hider does not introduce an evidence.
We consider a timestamp (l, i) to be an evidence for timestamp (l′, j) if and only if l ⊀b l′ . Using a large enough bound r
on the sequence number, we ensure that either there is an execution with r writes in which the finder/writer introduces
new timestamps with no epoch label change, and therefore with growing sequence numbers, and well-defined timestamp
ordering, or a new epoch label is frequently introduced due to the exposure of hidden unknown epoch labels. The last case
follows the winning strategy described for the game.

The sequence numbers allow the writer to introduce many timestamps, exponential in the number of bits used to
represent r, without storing all of them, as their epoch label is identical. The sequence numbers are a simple extension
of the bounded epoch labels just as a least significant digit of a counter; this allows the queues to be proportional to the
bounded number of the epoch labels in the system. Thus, either the writer introduces an epoch label greater than anyone
in the system, and hence will use this epoch label to essentially implement a register for an execution of r writes, or
the readers never introduce some existing bigger epoch label letting the writer increment the sequence number practically

N. Alon et al. / Journal of Computer and System Sciences 81 (2015) 692–701 699
infinitely often. Note that if the game continues, while the finder is aware of (a superset including) all existing epoch labels
and introduces a greater epoch label, there exists an execution of r writes before a new epoch label is introduced.

In the simulation of an SWMR atomic register, following the first write of a timestamp greater than any other timestamp
in the system, with a sequence number 0, to a majority quorum, any read in an execution with r writes, will return the last
timestamp that has been written to a quorum. In particular, if a reader finds a timestamp introduced by the writer that is
larger than all other timestamps but not yet completely written to a majority quorum, the reader assists in completing the
write to a majority quorum before returning the read value.

The simulation fails when the set of timestamps does not include a timestamp greater than the rest. That is, read oper-
ations may be repeatedly aborted until the writer writes new timestamps. Moreover, a slow reader may store a timestamp
unknown to the rest (in particular to the writer), and eventually introduce the timestamp. In the first case, the convergence
of the system is postponed till the writer is aware of a superset of the existing timestamps. In the second case, the system
operates correctly, implementing read and write operations, until the timestamp unknown to the rest is introduced.

Each read or write operation requires O (n) messages. The size of the messages is linear in the size of a timestamp,
namely the sum of the size of the epoch label and log r. The size of an epoch label is O (m log m) where m is the size of the
epochs queue, namely, O (cn2), where c is the capacity of a communication link.

Note that the size of the epochs queue, and with it, the size of an epoch label is proportional to the number of epoch
labels that can be stored in a system configuration. Reducing the link capacity also reduces the number of epoch labels that
can be “hidden” in the communication links. This can be achieved by using a stabilizing data-link protocol, [9,11,17,18], in
a manner similar to the ping-pong mechanism used in [3].

Detailed proof The correctness proof considers an execution with r′ = (m + 2)r writes and proves that there exists an
execution with r writes in which the practically stabilization requirement holds. Note that choosing r = 264 suffices for any
conceivable system.

We say that an epoch label is accessible if it is stored by a reader that during an execution with r writes executes at least
one (or a small constant of) read operation(s) during this execution.

Lemma 3. Every execution with r(m +2) writes has an execution with r writes in which no hidden timestamp with epoch label greater
than the epoch label used by the writer is revealed to the writer or to some reader.

Proof. The proof is a direct consequence of Lemma 2, the diffusion operated by the data-link protocol (see the end of
Section 5) and the quorum based approach. Consider an execution where a timestamp is not revealed directly to the writer
but to some reader with canceling set to ⊥.

Let l be the timestamp and i be the reader. Following the description of the diffusion operation piggy-backed by the
data-link, i compares MaxTSi .ml with l. If l ⊀e MaxTSi then MaxTSi .cl is set to l. Then, either the writer contacts the reader
via a QuorumRead and gets the canceling field or the reader is contacted by another reader that assists in propagating the
canceling field. Eventually, the writer will get the canceled timestamp and enqueues it. �
Lemma 4. Every execution with r(m + 2) writes has an execution with r writes in which reads do not abort.

Proof. We show that every execution with r(m + 2) writes has an execution with r writes in which every read invoked by
a reader returns a non-canceled timestamp. This implies the lemma.

Once the writer stops changing epoch labels for an execution with r writes, as proved in Lemma 3, and continues to
execute writes, (the majority of the) readers that participate in the simulation of the writes do not report on canceled
timestamps, otherwise the writer changes the timestamp again. Thus, readers that participate in the writes and readers that
complete a read operation, find the last written timestamp to be the greatest in the system. �
Lemma 5. Every execution with r(m + 2) writes has an execution with r writes in which the regularity property is satisfied.

Proof. Let E be an execution with r(m + 2) writes. Following Lemmas 3 and 4, E contains an execution E ′ with r writes,
where any read returns a non-abort value and any write includes in its decision the set of all the accessible epoch labels
in the system. Assume there is a process p such that the read invocations of p always return an obsolete value. That is,
the value returned by the read is either a hidden value or a value corresponding to a previous write but not the most
recent. Let R be such a read. In E ′ , R returns the output value with the maximum timestamp over the set of epoch labels
returned by QuorumRead. Let W1 and W2 be two write operations such that W1 completes before W2 and R . Since W1
completes before R then the epoch label computed by W1 is written in at least a majority of processes via a QuorumRead
and is greater than any epoch label in the system. When R starts invoking QuorumRead two cases may appear: (1) W2
did not modify the value written by W1 and did not start its promotion via QuorumWrite or (2) W2 executes QuorumWrite
but did not finish its execution. In the first case, W1’s MaxTS is the largest in the accessible system. When R invokes the
QuorumRead it gets W1’s MaxTS value (otherwise W1 is not terminated) and returns it. Hence, R cannot return a value
older than the one written by W1. In the second case, some processes contacted in the QuorumRead may send the W1’s

700 N. Alon et al. / Journal of Computer and System Sciences 81 (2015) 692–701
MaxTS, other processes may send W2’s MaxTS. Since the MaxTS computation at the writer is sequential then W2’s MaxTS is
greater than W1’s MaxTS. In such a case, by Lines 2 and 3 in the reader code, R should return W2’s MaxTS. Hence, R will
return the last written value. �
Lemma 6. Every execution with r(m +2) writes has an execution with r writes in which the no new/old inversion property is respected.

Proof. Let E be an execution with r(m + 2) writes. Following Lemmas 3 and 4, E contains an execution with r writes, E ′ ,
where any read does not return abort. In the following we prove that E ′ does not violate the new/old inversion property.
Consider two write operations W1 and W2 in E ′ such that W1 completes before W2. Consider also two read operations
R1 and R2 such that R1 completes before r2 and W1 completes before R1.3 Assume R1 and R2 overlap W2. Assume a
new/old inversion happens and R1 returns the value written by W2. Denote the MaxTS of W2 by l2. Assume also R2 returns
the value written by W1 which MaxTS is l1. Since R1 completes before R2 then before the start of R2, R1 executes the
following actions: it modifies its MaxTS to l2, it also executes QuorumWrite in order to inform the system of its new value.
Since QuorumWrite returns before R1 finishes then l2 is already adopted by at least a majority of processes. That is, since
l2 �e l1 (W1 completes before W2), then l2 replaces l1 in at least a majority of processes.

We assumed R2 returns l1. Since R1 completes before R2 then R2 starts its QuorumRead after R1 returned so after R1
completed its QuorumWrite operation. This implies that l2 is the epoch label adopted by at least a majority of processes
and at least one process in this majority will respond while R2 invokes its QuorumRead. That is, R2 collects at least one
epoch label l2 and since l2 �e l1, R2 should return this value. This contradicts the assumption R2 returns l1. It follows that
E ′ respects the no new/old inversion property. �

The main theorem follows directly from Lemmas 5 and 6.

Theorem 1. The algorithm satisfies the practically stabilizing SWMR atomic memory specification.

7. Discussion

We have presented a self-stabilizing simulation of a single-writer multi-reader atomic register, in an asynchronous
message-passing system in which at most half the processors may crash.

Given our simulation, it is possible to realize a self-stabilizing replicated state machine [22]. The self-stabilizing consensus
algorithm presented in [15] uses SWMR registers, and our simulation allows to port them to message-passing systems. More
generally, our simulation allows the application of any self-stabilizing algorithm that is designed using SWMR registers to
work in a message-passing system, where less than the majority of the processors may crash.

One restriction of such implementation is that the writer does not stop writing prematurely (before the SWMR register
stabilizes and starts to return a consistent value). Following our work the authors of [12] suggest a pseudo stabilizing imple-
mentation in which the writer has a major responsibility, namely, the writer has to complete updating the last value, unlike
our solution here where readers assist each other to spread the most up-to-date value using the epoch based technique.

Furthermore, a much more complicated and expensive technique in terms of communication and memory is used as
part of the directly implemented self-stabilizing Paxos [8] in which writers may stop writing.

Acknowledgments

We thank Ronen Kat and Eli Gafni for helpful discussions.

References

[1] Uri Abraham, Self-stabilizing timestamps, Theor. Comput. Sci. 308 (1–3) (2003) 449–515.
[2] Hagit Attiya, Robust simulation of shared memory: 20 years after, Bull. Eur. Assoc. Theor. Comput. Sci. (2010) 99–113, Distributed Computing Column.
[3] Hagit Attiya, Amotz Bar-Noy, Danny Dolev, Sharing memory robustly in message-passing systems, J. ACM 42 (1) (1995) 124–142.
[4] Hagit Attiya, Jennifer Welch, Distributed Computing: Fundamentals, Simulations, and Advanced Topics, 2nd edition, Wiley Press, 2004.
[5] Baruch Awerbuch, Boaz Patt-Shamir, George Varghese, Shlomi Dolev, Self-stabilization by local checking and global reset, in: WDAG, 1994, pp. 326–339.
[6] Baruch Awerbuch, Boaz Patt-Shamir, George Varghese, Bounding the unbounded, in: INFOCOM, 1994, pp. 776–783.
[7] Roberto Baldoni, Silvia Bonomi, Anne-Marie Kermarrec, Michel Raynal, Implementing a register in a dynamic distributed system, in: ICDCS, 2009.
[8] Peva Blanchard, Shlomi Dolev, Joffroy Beauquier, Sylvie Delaet, Self-stabilizing Paxos, CoRR arXiv:1305.4263, 2013.
[9] Shlomi Dolev, Ariel Hanemann, Elad M. Schiller, Shantanu Sharma, Self-stabilizing end-to-end communication in dynamic networks, (bounded capacity,

omitting, duplicating and non-FIFO), in: Proceedings of the 14th International Symposium on Stabilization, Safety, and Security of Distributed Systems,
2012, pp. 133–147.

[10] Shlomi Dolev, Self-Stabilization, MIT Press, 2000.
[11] Shlomi Dolev, Swan Dubois, Maria Potop-Butucaru, Sebastien Tixeuil, Stabilizing data-link over non-FIFO channels with optimal fault-resilience, Inf.

Process. Lett. 111 (2011) 912–920.

3 Since the completes before relation is transitive, W1 also completes before R2.

http://refhub.elsevier.com/S0022-0000(14)00161-5/bib413033s1
http://refhub.elsevier.com/S0022-0000(14)00161-5/bib413130s1
http://refhub.elsevier.com/S0022-0000(14)00161-5/bib4142443935s1
http://refhub.elsevier.com/S0022-0000(14)00161-5/bib41573034s1
http://refhub.elsevier.com/S0022-0000(14)00161-5/bib415056443934s1
http://refhub.elsevier.com/S0022-0000(14)00161-5/bib4150563934s1
http://refhub.elsevier.com/S0022-0000(14)00161-5/bib42424B523039s1
http://refhub.elsevier.com/S0022-0000(14)00161-5/bib424442443133s1
http://refhub.elsevier.com/S0022-0000(14)00161-5/bib444853533132s1
http://refhub.elsevier.com/S0022-0000(14)00161-5/bib444853533132s1
http://refhub.elsevier.com/S0022-0000(14)00161-5/bib444853533132s1
http://refhub.elsevier.com/S0022-0000(14)00161-5/bib44324Bs1
http://refhub.elsevier.com/S0022-0000(14)00161-5/bib444450543131s1
http://refhub.elsevier.com/S0022-0000(14)00161-5/bib444450543131s1

N. Alon et al. / Journal of Computer and System Sciences 81 (2015) 692–701 701
[12] Shlomi Dolev, Swan Dubois, Maria Potop-Butucaru, Sebastien Tixeuil, Crash resilient and pseudo-stabilizing atomic registers, in: International Confer-
ence on Principles of Distributed Systems, 2012, pp. 135–150.

[13] Shlomi Dolev, Ted Herman, Dijkstra’s self-stabilizing algorithm in unsupportive environments, in: 5th International Workshop on Self-Stabilizing Sys-
tems, in: LNCS, vol. 2194, Springer, 2001, pp. 67–81.

[14] Shlomi Dolev, Amos Israeli, Shlomo Moran, Resource bounds for self-stabilizing message-driven protocols, SIAM J. Comput. 26 (1) (1997) 273–290.
[15] Shlomi Dolev, Ronen I. Kat, Elad M. Schiller, When consensus meets self-stabilization, self-stabilizing failure-detector, and replicated state-machine, in:

Proc. of the 10th International Conference on Principles of Distributed Computing, OPODIS, 2006, Journal version: J. Comput. Syst. Sci. 76 (8) (2010)
884–900.

[16] Danny Dolev, Nir Shavit, Bounded concurrent timestamping, SIAM J. Comput. 26 (2) (1997) 418–455.
[17] Shlomi Dolev, Nir Tzachar, Empire of colonies: self-stabilizing and self-organizing distributed algorithm, Theor. Comput. Sci. 410 (6–7) (2009) 514–532.
[18] Shlomi Dolev, Nir Tzachar, Spanders: distributed spanning expanders, in: SAC, 2010, pp. 544–555, Journal version: Special Section on Self-Organizing

Coordination, Sci. Comput. Program. (2013) 544–555.
[19] Shlomi Dolev, Jennifer L. Welch, Crash resilient communication in dynamic networks, IEEE Trans. Comput. 46 (1) (1997) 14–26.
[20] Amos Israeli, Ming Li, Bounded timestamps, Distrib. Comput. 6 (4) (1993) 205–209.
[21] Colette Johnen, Lisa Higham, Fault-tolerant implementations of regular registers by safe registers with applications to networks, in: Proc. of the 10th

International Conference on Distributed Computing and Networking, ICDCN 2009, in: LNCS, vol. 5408, 2009, pp. 337–448.
[22] Leslie Lamport, The part-time parliament, ACM Trans. Comput. Syst. 16 (2) (1998) 133–169.

http://refhub.elsevier.com/S0022-0000(14)00161-5/bib444450543132s1
http://refhub.elsevier.com/S0022-0000(14)00161-5/bib444450543132s1
http://refhub.elsevier.com/S0022-0000(14)00161-5/bib44483031s1
http://refhub.elsevier.com/S0022-0000(14)00161-5/bib44483031s1
http://refhub.elsevier.com/S0022-0000(14)00161-5/bib44494D3937s1
http://refhub.elsevier.com/S0022-0000(14)00161-5/bib444B533036s1
http://refhub.elsevier.com/S0022-0000(14)00161-5/bib444B533036s1
http://refhub.elsevier.com/S0022-0000(14)00161-5/bib444B533036s1
http://refhub.elsevier.com/S0022-0000(14)00161-5/bib44533937s1
http://refhub.elsevier.com/S0022-0000(14)00161-5/bib44543039s1
http://refhub.elsevier.com/S0022-0000(14)00161-5/bib44543130s1
http://refhub.elsevier.com/S0022-0000(14)00161-5/bib44543130s1
http://refhub.elsevier.com/S0022-0000(14)00161-5/bib44573937s1
http://refhub.elsevier.com/S0022-0000(14)00161-5/bib494C3933s1
http://refhub.elsevier.com/S0022-0000(14)00161-5/bib4A483039s1
http://refhub.elsevier.com/S0022-0000(14)00161-5/bib4A483039s1
http://refhub.elsevier.com/S0022-0000(14)00161-5/bib4C3938s1

	Practically stabilizing SWMR atomic memory in message-passing systems
	1 Introduction
	2 Preliminaries
	3 Overview of our simulation
	4 Tool box
	4.1 The basic quorum-based simulation
	4.2 A bounded labeling scheme with uninitialized values
	4.3 Timestamps and epochs
	4.4 Guessing game

	5 Putting the pieces together
	6 Correctness proof
	7 Discussion
	Acknowledgments
	References

