
The Next 700 Impossibility Results in Time-Varying Graphs

Nicolas Braud-Santoni∗ Swan Dubois† Mohamed-Hamza Kaaouachi† Franck Petit†,‡

Abstract

We address highly dynamic distributed systems modeled by time-varying graphs (TVGs). We interest
in proof of impossibility results that often use informal arguments about convergence. First, we provide a
distance among TVGs to define correctly the convergence of TVG sequences. Next, we provide a general
framework that formally proves the convergence of the sequence of executions of any deterministic
algorithm over TVGs of any convergent sequence of TVGs. Finally, we illustrate the relevance of the
above result by proving that no deterministic algorithm exists to compute the underlying graph of any
connected-over-time TVG, i.e., any TVG of the weakest class of long-lived TVGs.

1 Introduction

The availability of wireless communications has drastically increased in recent years and established new
applications that make various communicating agents and terminals (e.g., robots, sensors, Unmanned Aerial
Vehicles, ...) interact together. A common feature of a vast majority of these networks is their high dynamic,
meaning that their topology keeps continuously changing over time. Classically, distributed systems are
modeled by a static undirected connected graph where vertices are processes and edges represent bidirec-
tional communication links. Clearly, such modeling is not suitable for high dynamic networks.

Numerous models taking in account topological changes over time have have been proposed since sev-
eral decades, to quote only a few, [1, 2, 3, 7, 8, 9, 10]. Some works aim at unifying most of the above
approaches. For instance, in [11], the authors introduced the evolving graphs. They proposed modeling
the time as a sequence of discrete time instants and the system dynamic by a sequence of static graphs,
one for each time instant. More recently, another graph formalism, called Time-Varying Graphs (TVG), has
been provided in [6]. In contrast with evolving graphs, TVGs allow systems evolving within continuous
time. Also in [6] and in companion papers [4, 5], TVGs are gathered and ordered into classes depending
mainly on two main features: the quality of connectivity among the participating nodes and the possibil-
ity/impossibility to perform tasks.

In distributed computing, impossibility results are difficult to prove formally. As an example, informal
arguments about convergence properties of sequences of objects (e.g., graphs, executions, ...) are often used
to prove such results (by building counter examples), that may weaken our confidence in their accuracy. In
this paper, we propose a general framework that would help us for proving formally impossibility results in
TVGs. We first define a metric to compute a distance between any pair of TVGs based on the length of their
longest common temporal prefix. Such distance allows to study the convergence of TVG sequences. Our
∗ IAIK, TU Graz, Graz, Austria
† Sorbonne Universités, UPMC Université Paris 6, F-75005, Paris, France

CNRS, UMR 7606, LIP6, F-75005, Paris, France
Inria, Équipe-projet REGAL, F-75005, Paris, France
‡ Contact author, e-mail: franck.petit@lip6.fr

1

ar
X

iv
:1

41
2.

60
07

v1
 [

cs
.D

C
]

 1
8

D
ec

 2
01

4

main result consists in showing that, given an algorithm A designed for any TVG and a sequence of TVGs
that converges toward a TVG g, then the sequence of executions of A on each TVG of the sequence also
converges. Furthermore, the latter converges toward the execution of A over g.

Next, we provide an example of use of this general result. We consider the weakest class of long-lived
TVGs, in the following referred to as connected-over-time TVGs, i.e., the class of TVGs where any node can
contact any other node infinitely often. It can also be described as the family of TVGs such that the eventual
underlying graph (i.e., the subgraph encompassing all edges that are infinitely often present) is connected.
More precisely, we show that no deterministic algorithm exists to compute the eventual underlying graph
of a connected-over-time TVG. This impossibility result intuitively comes from the fact that, with such an
algorithm, no node is able to determine whether any of its adjacent edges (appearing/disappearing arbitrarily
along the time) may disappear definitively or not.

Section 2 presents the model. Our main result is presented in Section 3, followed by the impossibility re-
sult about underlying graph computation over the class of connected-over-time TGVs (Section 4). Section 5
concludes this work.

2 Time-Varying Graph: Model

This section aims to present formally the framework of our study of dynamic systems: time-varying graphs
(TVGs). This model was introduced by [6]. We present only definitions needed for the comprehension of
our work. We refer the reader to [6] for more details and an interesting taxonomy of TVGs.

Model. Let us first borrow the formalism introduced in [6] in order to describe the distributed systems
prone to high dynamic. We consider distributed systems made of n computing entities, henceforth indif-
ferently referred to as nodes, vertices, or processes. A process has a local memory, a local sequential and
deterministic algorithm, and input/output capabilities. All these entities are gathered in a set V . Let E be a
set of edges (or relations) between pairwise entities, that describes interactions between processes, namely
communication exchanges. The presence of an edge between two vertices p and q at a given time t means
that each vertex among {p, q} is able to send a message to the other at t.

The interactions between processes are assumed to take place over a time span T ⊆ T called the lifetime
of the system. The temporal domain T is generally assumed to be either N (discrete-time systems) or R+

(continuous-time systems).

Definition 1 (Time-varying graph [6]). A time-varying graph (TVG for short) g is a tuple (V,E, T , ρ, ζ, φ)
where V is a (static) set of vertices {v1, . . . , vn},E a (static) set of edges between these verticesE ⊆ V ×V ,
ρ : E×T → {0, 1} (called presence function) that indicates whether a given edge is available (i.e. present)
at a given time, ζ : E × T → T (called edge latency function) indicates the time it takes to cross a given
edge if starting at a given date, and φ : V × T → T (called process latency function) indicates the time an
internal action of a process takes at a given date.

Given a TVG g, let Tg be the subset of T for which a topological event (appearance/disappearance of
an edge) occurs in g. The evolution of g during its lifetime T can be described as the sequence of graphs
Sg = g1, g2, . . ., where gi = (V,Ei) corresponds to the static snapshot of g at time ti ∈ Tg, i.e., e ∈ Ei if
and only if ∀t ∈ [ti, ti+1[, ρ(e, t) = 1. Note that, by definition, gi 6= gi+1 for any i.

We consider asynchronous distributed systems, i.e., no pair of processes has access to any kind of shared
device that could allow to synchronize their execution rate. Furthermore, at any time, no process has access
to the output of ζ, i.e., none of them can (a priori) predict a bound on the message delay. Note that the ability

2

to send a message to another process at a given time does not mean that this message will be delivered.
Indeed, the dynamicity of the communication graph implies that the edge between the two processes may
disappear before the delivery of this message leading to the lost of messages in transit.

The presences and absences of an edge are instantly detected by its two adjacent nodes. We assume
that our system provides to each process a non-blocking communication primitive named Send retry that
ensures the following property. When a process p invokes Send retry(m, q) (where m is an arbitrary
message and q another process of V) at time t, this primitive delivers m to q in a finite time provided
that there exists a time t′ ≥ t such that the edge {p, q} is present at time t′ during at least ζ({p, q}, t′)
units of time. In other words, the delivery of the message is ensured if there is, after the invocation of the
primitive, an availability of the edge that is sufficient to overcome the communication delay of the edge at
this time. Note that this primitive may never deliver a message (e.g. if the considered edge never appears
after invocation). Details of the implementation of this primitive are not considered here but it typically
consists in resending m at each apparition of the edge {p, q} until its reception by q. This primitive allows
us to abstract from topology changes and asynchronous communication and to write high-level algorithms.

Configurations and executions. The state of a process is defined by the values of its variables. Given a
TVG g, a configuration of g is a vector of n+ 2 components (gi,Mi, p1, p2, . . . , pn) such that gi is a static
snapshot of g (i.e., gi ∈ Sg), Mi is the set of multi-sets of messages carried over Ei, and p1 to pn represent
the state of the n processes in V .

An execution of the distributed system modeled by g is a sequence of configurations e = γ0, . . . , γk,
γk+1, . . ., such that for each k ≥ 0, during an execution step (γk, γk+1), one of the following event occurs:
(i) gk 6= gk+1, or (ii) at least one process receives a message, sends a message, or executes some internal
actions changing its state. The algorithm executed by g describes the set of all allowed internal actions of
processes (in function of their current state or external events as message receptions or time-out expirations)
during an execution of g. We assume that during any configuration step (γk, γk+1) of an execution, if
gk 6= gk+1, then for each edge e such that e ∈ Ek and e /∈ Ek+1 (i.e., e disappears during the step
(γk, γk+1), none of the messages carried by e belongs to Mk+1. Also, for each edge e such that e ∈ Ek+1

and e /∈ Ek (i.e., e appears during the step (γk, γk+1)), e contains no message in configuration γk+1.

Connected over time TVGs. A key concept of time-varying graphs has been identified in [6]. The authors
shows that the classical notion of path in static graphs in meaningless in TVGs. Indeed, some processes may
communicate even if there is no (static) path between them at each time. To perform communication between
two processes, the existence of a temporal path between them is sufficient. They define such a temporal
path as follows: a sequence of ordered pairs J = {(e1, t1), (e2, t2), ..., (ek, tk)} such that {e1, e2, ..., ek}
is a path1 if for every i ∈ [1, k], ρ(ei, ti) = 1 and ti+1 ≥ ti + ζ(ei, ti). In other words, a temporal path
from process p to process q is a sequence of adjacent edges from p to q such that availability and latency
of edges allow the sending of a message from p to q using the Send retry primitive at each intermediate
process (refer to [6] for a formal definition). Note that a temporal path is a non symmetric relation between
two processes.

Based on various assumptions made about temporal paths (e.g., recurrence, periodicity, symmetry, and
so on), the authors propose in [6] proposes a relevant hierarchy of TVG classes. In this paper, we choose to
make minimal assumptions on the dynamicity of our system since we restrict ourselves on connected-over-
time TVGs defined as follows:

1 A sequence of edges {v1, v′1}, {v2, v′2}, . . . , {vk, v′k} is a path if ∀i ∈ {1, k − 1}, vi+1 = v′i.

3

Definition 2 (Connected-over-time TVG [6]). A TVG (V,E, T , ρ, ζ, φ) is connected-over-time if, for any
time t ∈ T and for any pair of processes p and q of V , there exists a temporal path from p to q after time t.
The class of connected-over-time TVGs is denoted by COT 2.

Note that the lifetime of a connected-over-time TVG is necessarily infinite by definition. The class COT
allows us to capture highly dynamic systems since we only require that any process will be always able to
communicate with any other one without any supplementary assumption on this communication (such as
delay, periodicity, or used route). In particular, note that a connected-over-time TVG may be disconnected
at each time and that the presence of an edge at a given time does not preclude that this edge will appear
again after this time. Define an eventual missing edge as en edge that appears only a finite number of time
during the lifetime of the TVG. The main difficulty encountered in the design of distributed algorithms in
COT is to deal with such eventual missing edges because no process is able to predict if a given adjacent
edge is an eventual missing edge or not. Note that the time of the last presence of such an eventual missing
edge cannot be even bounded.

Definition 3 ((Eventual) Underlying Graph). Given a TVG g = (V,E, T , ρ, ζ, φ), the underlying graph
of a g is the (static) graph Ug = (V,E). The eventual underlying graph of g is the (static) subgraph
Uωg = (V,Eωg) with Eωg = E \Mg, where Mg is the set of eventual missing edges of g.

Intuitively, the underlying graph (sometimes referred to as footprint) of a TVG g gathers all edges that
appear at least once during the lifetime of g, whereas the eventual underlying graph of g gathers all edges
that are infinitely often present during the lifetime of g. Note that, for any TVG of COT , both underlying
graph and eventual underlying graph are connected by definition. Let us define the neighborhood Np of a
process p is the set of processes with which p shares an edge in the underlying graph.

Induced subclasses. In the following, we focus on specific subclasses of the class COT to establish
our impossibility result. Informally, we focus on subclasses that gather all TVGs whose underlying graph
belongs to a given set. The intuition behind this restriction is the following. In practice, some technical
reasons may restrict or prevent the communication between some processes, that induces a given underlying
graph for the TVG that models our system. In contrast, we cannot predict in general the availabilities and
latencies of communication edges, that leads us to consider all TVGs sharing this underlying graph.

Definition 4 (Induced subclass). Given a set of (static) graphs F and a class of TVGs C, the subclass of C
induced by F (denoted by C|F) is the set of all TVGs of C whose underlying graph belongs to F .

The two following results follow directly from Definitions 2 and 4:

Lemma 1. In any induced subclass C|F , if a TVG g ∈ G admits f ∈ F as underlying graph, then any other
TVG of C that admits f as underlying graph belongs to C|F .

Lemma 2. No TVG of COT |F admits an eventual missing edge if and only if F contains only trees.

3 Main Theorem

In this section, we state our main result that provides a general framework for proving impossibility results
in TVGs. First, we introduce in Section 3.1 some tools needed for the proof of our theorem. Namely, we
prove that TVGs and executions sets may be seen as metric spaces with useful topological properties. Then,
we prove our main result in Section 3.2.

2 Authors of [6] refer to this class as C5 in their hiearchy of TVG classes.

4

3.1 TVG and Output Spaces

TVG Space. For a given time domain T, a given static graph (V,E) and a given latency function ζ, let
us consider the set G(V,E),T,ζ of all TVGs over T that admit (V,E) as underlying graph and ζ as latency
function. For the sake of clarity, we will omit the subscript (V,E),T, ζ and simply denote this set by G.
Remark that two distinct TVGs of G can be distinguished only by their presence function. For any TVG g
in G, let us denote its presence function by ρg. We define now the following application dG over G:

dG : G × G −→ [0, 1]

(g, g′) 7→
{

0 if g = g′

2−λ else, with λ = Sup {t ∈ T|∀t′ ≤ t,∀e ∈ E, ρg(e, t′) = ρg′(e, t
′)}

Lemma 3. The application dG is an ultrametric over G, i.e.

1. ∀(g, g′) ∈ G2, dG(g, g′) = 0⇔ g = g′

2. ∀(g, g′) ∈ G2, dG(g, g′) = dG(g
′, g)

3. ∀(g, g′, g′′) ∈ G3, dG(g, g′′) ≤ max(dG(g, g′), dG(g′, g′′))

Proof. The two first properties follow directly from the definition of dG .
To prove the third one, let g, g′, and g′′ be three TVGs of G. Assume that dG(g, g′) = 2−λ

′
and

dG(g
′, g′′) = 2−λ

′′
and let be λ = min(λ′, λ′′). Then, by definition of dG , we have: ∀t < λ′, ∀e ∈

E, ρg(e, t) = ρg′(e, t) and ∀t < λ′′, ∀e ∈ E, ρg′(e, t) = ρg′′(e, t). We can deduce that ∀t < λ,∀e ∈
E, ρg(e, t) = ρg′′(e, t), that means that dG(g, g′′) ≤ 2−λ.

On the other hand, we have: max(dG(g, g′), dG(g′, g′′)) = max(2−λ
′
, 2−λ

′′
) = 2−λ. In conclusion,

dG(g, g
′′) ≤ max(dG(g, g′), dG(g′, g′′)), that ends the proof.

In other words, we can consider (G, dG) as a metric space (an ultrametric is a particular case of metric)
and associate to (G, dG) the canonical topology, i.e. the set of all open balls induced by dG over G. This
topological space have the following property that is useful in the following.

Lemma 4. The metric space (G, dG) is complete, i.e. a sequence converges in G if and only if this sequence
is Cauchy3.

Proof. Recall that, by definition of convergence, any convergent sequence is Cauchy. Hence, let (gn)n∈N
be a Cauchy sequence in G. We are going to prove that (gn)n∈N converges in G. By definition of a Cauchy
sequence, we have: ∀ε ∈ R∗+, ∃k ∈ N,∀i ∈ N, dG(gk, gk+i) < ε. In particular, we have: ∀λ ∈ T,∃k ∈
N,∀i ∈ N, dG(gk, gk+i) < 2−λ.

In the other hand, by definition of dG , we know that the existence of λ(k,i) ∈ T such that dG(gk, gk+i) <
2−λ(k,i) for k ∈ N and i ∈ N means that ∀t < λ(k,i), ∀e ∈ E, ρgk(e, t) = ρgk+i(e, t). Hence, we have:
∀λ ∈ T, ∃k ∈ N, ∀i ∈ N,∀t < λ,∀e ∈ E, ρgk(e, t) = ρgk+i(e, t). Let gω ∈ G be the TVG defined by
∀λ ∈ T, ∀e ∈ E, ρgω(e, λ) = ρgk(e, λ).

Let ε ∈ R∗+ and λ be the smallest integer such that 2−λ < ε. Then, we know that ∃k ∈ N,∀i ∈ N, ∀t <
λ,∀e ∈ E, ρgk+i(e, t) = ρgk(e, t) = ρgω(e, t). We can deduce that: ∀i ∈ N, dG(gk, gω) ≤ 2−λ < ε. In
other words, (gn)n∈N converges to gω ∈ G, that proves the completeness of (G, dG).

3 Recall that a Cauchy sequence in a metric space (S, dS) is a sequence (un)n∈N of S whose oscillation converges to 0. More
formally, ∀ε ∈ R∗+, ∃k ∈ N, ∀i ∈ N, dS(uk, uk+i) < ε

5

Output Space. For a given algorithmA and a given TVG g, let us define the (A, g)-output as the function
that associates to any time t ∈ T the state of g at time t when it executes A. We say that g is the supporting
TVG of this output. Let us consider the setOA,G of all (A, g)-outputs over all TVGs g of G. For the sake of
clarity, we will omit the subscript A,G and simply denote this set by O. Remark that two distinct outputs
of O can be distinguished only by their supporting TVG. For any output o in O, let us denote its supporting
TVG by go. We define now the following application dO over O:

dO : O ×O −→ [0, 1]

(o, o′) 7→
{

0 if o = o′

2−λ else, with λ = Sup {t ∈ T|∀t′ ≤ t, o(t′) = o′(t′)}
Due to the similarity between the definition of dG and dO, we can easily prove the following result:

Lemma 5. The application dO is an ultrametric over O.

As previously, we can consider (O, dO) as a metric space, associate to (O, dO) the canonical topology
and prove the following result:

Lemma 6. The metric space (O, dO) is complete.

3.2 Convergence of Sequences of TVGs

We are now ready to state our main result. Intuitively, this theorem ensures us that, if we take a sequence
of TVGs with ever-growing common prefixes, then the sequence of corresponding outputs also converges.
Moreover, we are able to describe the output to which it converges as the output that corresponds to the
TVG that shares all commons prefixes of our TVGs sequence. This result is useful since it allows us to
construct counter-example in the context of impossibility results. Indeed, it is sufficient to construct a TVG
sequence (with ever-growing common prefixes) and to prove that their corresponding outputs violates the
specification of the problem for ever-growing time to exhibit an execution that violates infinitely often the
specification of the problem. More formally, we have:

Theorem 1. For any deterministic algorithm A, if a sequence (gn)n∈N of G converges to a given gω ∈ G,
then the sequence (on)n∈N of the (A, gn)-outputs converges to oω ∈ O. Moreover, oω is the (A, gω)-output.

Proof. LetA be a deterministic algorithm and (gn)n∈N be a sequence of G that converges to a given gω ∈ G.
Then, let (on)n∈N be the sequence of the (A, gn)-outputs.

First, we are going to prove that (on)n∈N converges in O. As O is complete (see Lemma 6), it is
sufficient to prove that (on)n∈N is a Cauchy sequence to obtain this result. Let ε ∈ R∗+. As G is also
complete (see Lemma 4), we know that (gn)n∈N is a Cauchy sequence and hence, we have by definition:
∃kε ∈ N, ∀i ∈ N, dG(gkε , gkε+i) < ε.

In the other hand, by definition of dG , we know that the existence of λ(k,i) ∈ T such that dG(gk, gk+i) =
2−λ(k,i) for k ∈ N and i ∈ N means that ∀t < λ(k,i), ∀e ∈ E, ρgk(e, t) = ρgk+i(e, t). As A is deterministic,
we can deduce that ∀t < λ(k,i), ok(t) = ok+i(t) (since gon = gn for any n ∈ N by construction of (on)n∈N).
Then, the definition of dO implies that dO(ok, ok+i) ≤ 2−λ(k,i) . In other words, we can deduce that we have
∀k ∈ N, ∀i ∈ N, dO(ok, ok+i) ≤ dG(gk, gk+i).

We can conclude that ∃kε ∈ N,∀i ∈ N, dO(okε , okε+i) < ε. In conclusion, (on)n∈N is a Cauchy
sequence and then converges to o ∈ O.

Let oω be the (A, gω)-output. Then, we are going to prove that o = oω. As dO is an ultrametric
(see Lemma 5), we know that 0 ≤ dO(o, oω) ≤ max(dO(o, on), dO(on, oω)) for any n ∈ N. By that

6

precedes, the sequence (dO(o, on))n∈N converges to 0. Due to the determinism of A and the completeness
of G and O, we can prove by a similar reasoning as above that dO(on, oω) ≤ dG(gn, gω) for any n ∈ N.
The convergence of (gn)n∈N to gω implies that the sequence (dG(gn, gω))n∈N converges to 0. Then, the
sequence (dO(on, oω))n∈N also converges to 0 (since dO(on, oω) ≥ 0 for any n ∈ N). Then, the sequence
(max(dO(o, on), dO(on, oω)))n∈N converges to 0 that implies that dO(o, oω) = 0. As dO is a metric, we
can conclude that o = oω, that ends the proof.

4 Impossibility of Eventual Underlying Graph Computation

In this section, we present an application of our main theorem by proving a natural impossibility result.
Namely, we prove that it is impossible to compute the underlying graph of a connected-over-time TVG
with a deterministic algorithm. Intuitively, this impossibility result comes from the fact that, with such an
algorithm, no process is able to determine if, along its adjacent edges, there exists some eventual missing
edges or not. The formal proof of this intuitive result is not as simple as one may think at first glance.

Before presenting the impossibility result, we have to specify our problem. We say that a process p
outputs a value v in a configuration γ if one of its variable (called an output variable) has the value v in γ.

Specification 1. An algorithmA satisfies the eventual underlying graph specification for a class of TVGs C
if every execution e = γ0, γ1, ... on any TVG g of C has a suffix ei = γi, γi+1, ... for a given i ∈ N such that
each process outputs the eventual underlying graph of g in any configuration of ei.

We are now ready to prove the impossibility of eventual underlying graph in connected-over-time TVGs.

Theorem 2. For any set of (static) graphs F that does not contain only trees, there exists no deterministic
algorithm that satisfies the eventual underlying graph specification for COT |F .

Proof. We define, for any TVG g = (V,E, T , ρ, ζ, φ), the TVG g ⊕ {(e1, Te1), . . . , (ek, Tek)} (with, for
any i ∈ {0, . . . , k}, ei ∈ E and Tei ⊆ T) as the TVG (V,E, T , ρ′, ζ, φ) with:

ρ′(e, t) =

{
1 if ∃i ∈ {0, . . . , k}, e = ei and t ∈ Tei
ρ(e, t) otherwise

By contradiction, assume that there exists a set of (static) graphs F that does not contain only trees such
that there exists a deterministic algorithm A that satisfies the eventual underlying graph specification for
COT |F . In consequence, any process that executes A outputs a (static) graph at any time.

By Lemma 2, we know that there exists g ∈ COT |F such that g = (V,E, T , ρ, ζ, φ) admits at least one
eventual missing edge e. We construct then a sequence (gn)n∈N of TVGs as follows. We set g0 = g and we
define inductively gi for any i ∈ N as follows—refer to Figure 1:

1. Consider the execution of A over gi and let ηi ∈ T ∪ {+∞} be the largest time where e belongs to
the graph outputted by some process of V (remark that ηi = +∞ if and only if e belongs infinitely
often to the outputted graph of at least one process);

2. Let g′i = gi ⊕ (e, T ∩]ηi,+∞[);

3. Consider the execution ofA over g′i and let αi ∈ T ∪ {+∞} be the smallest time strictly greater than
ηi where e belongs to the graph outputted by all process of V (remark that αi = +∞ if and only if e
never belongs simultaneously to the outputted graph of all processes ηi = +∞);

7

gi

g4

g3

g2

g1

g0
⌘0

↵0

⌘1
↵1

⌘2
↵2 ↵3

⌘3 ⌘4
↵4 ↵i

⌘i

gi+1

⌘i+1
↵i+1

g!

Figure 1: Construction of (gn)n∈N in the proof of Theorem 2. Grey bold lines represent instants where e
belongs to the graph outputted by all process of V .

4. Let gi+1 = gi ⊕ (e, T ∩]ηi, αi[).

We can prove that, for any i ∈ N, if gi belongs to COT |F and if e is an eventual missing edge in gi, then
ηi 6= +∞ and αi 6= +∞. Indeed, assume that e is an eventual missing edge in gi ∈ COT |F for a given
i ∈ N. By definition, e does not belong to Uωgi . AsA satisfies the eventual underlying graph specification for
COT |F , we know that e cannot belongs infinitely often to the outputted graph of a process in the execution
of A over gi, i.e., ηi 6= +∞. Then, as e is not an eventual missing edge in g′i by construction, e belongs to
Uωg′i

. By Lemma 1, g′i belongs to COT |F since gi and g′i share the same underlying graph Ug. As A satisfies
the eventual underlying graph specification for COT |F , we know that e belongs eventually to the outputted
graph of all processes of V , i.e., αi 6= +∞.

We obtain that, for any i ∈ N, if gi belongs to COT |F and if e is an eventual missing edge in gi,
then gi+1 belongs to COT |F and e is an eventual missing edge in gi+1. Indeed, gi+1 belongs to COT |F
by Lemma 1 (since gi and gi+1 share the same underlying graph Ug). As we proved that ηi 6= +∞ and
αi 6= +∞ when e is an eventual missing edge in gi, gi+1 is obtained by adding e during a finite amount of
time to gi, that implies that e is an eventual missing edge in gi+1.

Now, it is sufficient to note that g belongs to COT |F by assumption and that e is an eventual missing
edge in g0 = g by construction to obtain that (gn)n∈N is a sequence of COT |F such that ηi 6= +∞ and
αi 6= +∞ for any i ∈ N. Moreover, note that, for any i ∈ N, ηi < αi (by construction) and αi < ηi+1

(since e belongs to the graph outputted by any process at time αi in gi+1 whereas e does not belong to the
graph outputted by any process at time ηi+1 in gi+1).

That allows us to define the following TVG: gω = g⊕{(e, T ∩]ηi, αi[)|i ∈ N}. Note that Ugω = Ug and
then, by Lemma 1, that gω belongs to COT |F . Observe that, for any k ∈ N∗, we have dG(gk, gω) = 2−ηk

by construction of (gn)n∈N and gω. Thus, (gn)n∈N converges in COT |F to gω.
We are now in measure to apply our main theorem (see Theorem 1) that states that the (A, gω)-output is

the limit of the sequence of the (A, gn)-outputs. In other words, the (A, gω)-output shares a prefix of length
ηi with the (A, gi)-output for any i ∈ N (recall that the sequence of the (A, gn)-outputs is Cauchy since it
converges). That means that there exists infinitely many configurations in the execution of A on gω where e

8

belongs to the outputted graph of all process and infinitely many configurations in the execution of A on gω
where e does not belong to the outputted graph of any process, that contradicts the fact that A satisfies the
eventual underlying graph specification for COT |F and ends the proof.

5 Conclusion

We gave a general framework for providing impossibility results in time-varying graphs. This framework
is useful to legitimate informal arguments about convergence of sequences of objects in this context. We
used the above result to prove that no deterministic algorithm exists to compute the underlying graph of any
connected-over-time TVG. Our general framework is devoted to be used with a large number of problems
in TVGs, e.g., overlay construction.

References
[1] A. Anagnostopoulos, R. Kumar, M. Mahdian, E. Upfal, and F. Vandin. Algorithms on evolving graphs. In ITCS,

pages 149–160, 2012.

[2] B. Awerbuch and S. Even. Efficient and reliable broadcast is achievable in an eventually connected network. In
PODC, pages 278–281, 1984.

[3] A. Casteigts, S. Chaumette, and A. Ferreira. Characterizing topological assumptions of distributed algorithms in
dynamic networks. In SIROCCO, pages 126–140, 2009.

[4] A. Casteigts, P. Flocchini, B. Mans, and N. Santoro. Deterministic computations in time-varying graphs: Broad-
casting under unstructured mobility. Theoretical Computer Science, pages 111–124, 2010.

[5] A. Casteigts, P. Flocchini, B. Mans, and N. Santoro. Shortest, fastest, and foremost broadcast in dynamic
networks. Technical report, arXiv:1210.3277, 2012.

[6] A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro. Time-varying graphs and dynamic networks.
International Journal of Parallel, Emergent and Distributed Systems, 27(5):387–408, 2012.

[7] K. Fall. A delay-tolerant network architecture for challenged internets. In SIGCOMM – CATAPCC, pages 27–34,
2003.

[8] A. Ferreira. Building a reference combinatorial model for manets. Network, 18(5):24–29, 2004.

[9] A. Ferreira, A. Goldman, and J. Monteiro. On the evaluation of shortest journeys in dynamic networks. In NCA,
pages 3–10, 2007.

[10] J. Schneider and R. Wattenhofer. Coloring unstructured wireless multi-hop networks. In PODC, pages 210–219,
2009.

[11] B. Xuan, A. Ferreira, and A. Jarry. Computing shortest, fastest, and foremost journeys in dynamic networks.
International Journal of Foundations of Computer Science, 14(02):267–285, 2003.

9

	1 Introduction
	2 Time-Varying Graph: Model
	3 Main Theorem
	3.1 TVG and Output Spaces
	3.2 Convergence of Sequences of TVGs

	4 Impossibility of Eventual Underlying Graph Computation
	5 Conclusion

