
ar
X

iv
:1

60
9.

06
16

1v
2

 [
cs

.D
C

]
 2

3
Se

p
20

16

Self-Stabilizing Robots in

Highly Dynamic Environments∗

Marjorie Bournat† Ajoy K. Datta‡ Swan Dubois†

Abstract

This paper deals with the classical problem of exploring a ring by a cohort of synchronous
robots. We focus on the perpetual version of this problem in which it is required that each node
of the ring is visited by a robot infinitely often.

The challenge in this paper is twofold. First, we assume that the robots evolve in a highly
dynamic ring, i.e., edges may appear and disappear unpredictably without any recurrence nor
periodicity assumption. The only assumption we made is that each node is infinitely often
reachable from any other node. Second, we aim at providing a self-stabilizing algorithm to the
robots, i.e., the algorithm must guarantee an eventual correct behavior regardless of the initial
state and positions of the robots.

Our main contribution is to show that this problem is deterministically solvable in this harsh
environment by providing a self-stabilizing algorithm for three robots.

†UPMC Sorbonne Universités, CNRS, Inria, LIP6 UMR 7606, France
‡University of Nevada, Las Vegas, United States
∗This work has been partially supported by the ANR project ESTATE and was initiated while the second author

was visiting professor at UPMC Sorbonne Universités.

1

http://arxiv.org/abs/1609.06161v2

1 Introduction

We consider a cohort of autonomous and synchronous robots that are equipped with motion actu-
ators and sensors, but that are otherwise unable to communicate [23]. They evolve in a discrete
environment, where the space is partitioned into a finite number of locations, represented by a
graph, where the nodes represent the possible locations of robots and the edges the possibility for
a robot to move from one location to another. Refer to [21] for a survey of results in this model.
One fundamental problem is the exploration of graphs by robots. Basically, each node of the graph
has to be visited by at least one robot. There exist several variants of this problem depending on
whether the robots are required to stop once they completed the exploration of the graph or not.

Typically, the environment of the robots is modeled by a static undirected connected graph
where vertices are possible locations of robots and edges represent the moving abilities of the
robots. Clearly, such modeling is not suitable for dynamic environments that we use in this paper.
Numerous models dealing with topological changes over time have been proposed in the past few
decades. There have been some attempts to unifying them as well. The evolving graphs were
introduced in [25]. They proposed modeling the time as a sequence of discrete time instants and
the dynamicity of the system by a sequence of static graphs, one for each instant of time. More
recently, another graph model, called Time-Varying Graphs (TVG), has been introduced in [4]. In
contrast with evolving graphs, TVGs allow systems evolving in continuous time. Also in [4], TVGs
are ordered into classes based on mainly two features: the quality of connectivity of the graph and
the possibility/impossibility to perform tasks.

As in other distributed systems, fault-tolerance is a central issue in robot networks. Indeed, it
is desirable that the misbehavior of some robots does not prevent the whole system to reach its
objective. Self-stabilization [8, 10, 24] is a versatile technique to tolerate transient (i.e., of finite
duration) faults. After the occurrence of a catastrophic failure that may take the system to some
arbitrary global state, self-stabilization guarantees recovery to a correct behavior in finite time
without external (i.e., human) intervention. In the context of robot networks, that implies that the
algorithm must guarantee an eventual correct behavior regardless of the initial state and positions
of the robots.

Our objective in this paper is to study the feasibility of the exploration of a highly dynamic
graph by a cohort of self-stabilizing deterministic robots.

Related Work. Since the seminal work of Shannon [22], exploration of graphs by a cohort
of robots has been extensively studied. There exist mainly three variants of the problem: (i)
exploration with stop, where robots are required to detect the end of the exploration, then stop
moving (e.g., [12]); (ii) exploration with return, where robots must come back to their initial location
once the exploration completed (e.g., [9]); and (iii) perpetual exploration, where each node has to
be infinitely often visited by some robots (e.g., [1]). Even if we restrict ourselves to deterministic
approaches, there exist numerous solutions to these problems depending on the topology of the
graphs to explore (e.g., ring-shaped [12], line-shaped [14], tree-shaped [13], or arbitrary network
[5]), and the assumptions made on robots (e.g., limited range of visibility [6], common sense of
orientation [2], etc.). But, most of the above work considered only static graphs.

Recently, some work dealt with the exploration of dynamic graphs. The first two papers [15, 17]
focused on the exploration (with stop) of so-called periodically varying graphs (i.e., the presence
of each edge of the graph is totally periodic). The papers [18, 16, 7] considered another restriction

2

on dynamicity by considering T -interval-connected graphs (i.e., the graph is always connected and
there exists a stability of this connectivity in any interval of time of length T [20]). However, there
exist no exploration algorithms for highly dynamic graphs, i.e., graphs where edges may appear
and disappear unpredictably without any recurrence, periodicity, or stability assumption and where
the only assumption made is that each node is infinitely often reachable from any other node.

To the best of our knowledge, there exist no self-stabilizing algorithm for exploration either in a
static or a dynamic environment. Note that there exist solutions in static graphs to other problems
(e.g., naming and leader election [3]).

Our Contribution. The main contribution of this paper is to give a positive answer to the open
question whether self-stabilizing deterministic exploration of highly dynamic graphs is possible or
not. We answer that question by providing a self-stabilizing algorithm to perpetually explore any
highly dynamic ring with three deterministic synchronous robots. This is the first exploration
algorithm that deals with highly dynamic graphs. This is also the first self-stabilizing algorithm
for exploration.

Organization of the paper. This paper is organized as follows. In Section 2, we present the
formal model and state the assumptions made. In Section 3, we describe our algorithm. Section 4
contains the proof sketch of our algorithm.

2 Model

In this section, we propose an extension of the classical model of robot networks in static graphs
introduced by [19] to the context of dynamic graphs.

Dynamic graphs. In this paper, we consider the model of evolving graphs introduced in [25].
We hence consider the time as discretized and mapped to N. An evolving graph G is an ordered
sequence {G1, G2, . . .} of subgraphs of a given static graph G = (V,E). In the following, we restrict
ourselves to bidirectional graphs. For any i ≥ 0, we have Gi = (V,Ei) and we say that the edges of
Ei are present in G at time i. The underlying graph of G, denoted UG , is the static graph gathering
all edges that are present at least once in G (i.e., UG = (V,EG) with EG =

⋃∞
i=0 Ei). An eventual

missing edge is an edge of EG such that there exists a time after which this edge is never present
in G. A recurrent edge is an edge of EG that is not eventually missing. The eventual underlying
graph of G, denoted Uω

G , is the static graph gathering all recurrent edges of G (i.e., Uω
G = (V,Eω

G)
where Eω

G is the set of recurrent edges of G). In this paper, we chose to make minimal assumptions
on the dynamicity of our graph since we restrict ourselves on connected-over-time evolving graphs.
The only constraint we impose on evolving graphs of this class is that their eventual underlying
graph is connected [11] (intuitively, that means that any node is infinitely often reachable from any
other one). For the sake of the proof, we also consider the weaker class of edge-recurrent evolving
graphs where the eventual underlying graph is connected and matches to the underlying graph.
In the following, we consider only connected-over-time evolving graphs whose underlying graph is
an anonymous and unoriented ring of arbitrary size. Although the ring is unoriented, to simplify
the presentation and discussion, in this paper, we, as external observers, distinguish between the
clockwise and the counter-clockwise (global) direction in the ring.

3

Robots. We consider systems of autonomous mobile entities called robots moving in a discrete
and dynamic environment modeled by an evolving graph G = {(V,E1), (V,E2) . . .}, V being a set
of nodes representing the set of locations where robots may be, Ei being the set of bidirectional
edges representing connections through which robots may move from a location to another one
at time i. Robots are uniform (they execute the same algorithm), identified (each of them has
a distinct identifier), have a persistent memory but are unable to directly communicate with one
another by any means. Robots are endowed with local strong multiplicity detection (i.e., they are
able to detect the exact number of robots located on their current node). They have no a priori
knowledge about the ring they explore (size, diameter, dynamicity. . .). Finally, each robot has its
own stable chirality (i.e., each robot is able to locally label the two ports of its current node with
left and right consistently over the ring and time but two different robots may not agree on this
labeling). We assume that each robot has a variable dir that stores a direction (either left or right).
At any time, we say that a robot points to left (resp. right) if its dir variable is equal to this (local)
direction. We say that a robot considers the clockwise (resp., counter-clockwise) direction if the
(local) direction pointed to by this robot corresponds to the (global) direction seen by an external
observer.

Execution. A configuration γ of the system captures the position (i.e., the node where the robot
is currently located) and the state (i.e., the value of every variable of the robot) of each robot at a
given time. Given an evolving graph G = {G1, G2, . . .}, an algorithm A, and an initial configuration
γ0, the execution E of A on G starting from γ0 is the infinite sequence (G0, γ0), (G1, γ1), (G2, γ2), . . .
where, for any i ≥ 0, the configuration γi+1 is the result of the execution of a synchronous round
by all robots from (Gi, γi) as explained below.

The round that transitions the system from (Gi, γi) to (Gi+1, γi+1) is composed of three atomic
and synchronous phases: Look, Compute, Move. During the Look phase, each robot gathers infor-
mation about its environment in Gi. More precisely, each robot updates the value of the following
local predicates: (i) NumberOfRobotsOnNode() returns the exact number of robots present at the
node of the robot; (ii) ExistsEdgeOnCurrentDirection() returns true if an edge is present at the
direction currently pointed by the robot, false otherwise; (iii) ExistsEdgeOnOppositeDirection()
returns true if an edge is present in the direction opposite to the one currently pointed by the
robot, false otherwise; (iv) ExistsAdjacentEdge() returns true if an edge adjacent to the current
node of the robot is present, false otherwise. During the Compute phase, each robot executes the
algorithm A that may modify some of its variables (in particular dir) depending on of its current
state and the values of the predicates updated during the Look phase. Finally, the Move phase
consists of moving each robot trough one edge in the direction it points to if there exists an edge in
that direction, otherwise, i.e., if the edge is missing at that time, the robot remains at its current
node. Note that the ith round is entirely executed on Gi and that the transition from Gi to Gi+1

occurs only at the end of this round. We say that a robot is edge-activated during a round if there
exists at least one edge adjacent to its location during that round.

Self-Stabilization. Intuitively, a self-stabilizing algorithm is able to recover in a finite time a
correct behavior from any arbitrary initial configuration (that captures the effect of an arbitrary
transient fault in the system). More formally, an algorithm A is self-stabilizing for a problem on a
class of evolving graphs C if and only if it ensures that, for any configuration γ0, the execution of A
on any G ∈ C starting from γ0 contains a configuration γi such that the execution of A on G starting

4

from γi satisfies the specification of the problem. Note that, in the context of robot networks, this
definition implies that robots must tolerate both arbitrary initialization of their variables and
arbitrary initial positions (in particular, robots may be stacked in the initial configuration).

Perpetual Exploration. Given an evolving graph G, a perpetual exploration algorithm guaran-
tees that every node of G is infinitely often visited by at least one robot (i.e., a robot is infinitely
often located at every node of G). Note that this specification does not require that every robot
visits infinitely often every node of G.

3 Exploring a Highly Dynamic Ring with Three Robots

In this section, we present our self-stabilizing deterministic algorithm for the perpetual exploration
of any connected-over-time ring with three robots. In this context, the difficulty to complete the
exploration is twofold. First, in connected-over-time graphs, robots must deal with the possible
existence of some eventual missing edge (without the guarantee that such edge always exists). Note
that, in the case of a ring, there is at most one eventual missing edge in any execution (otherwise,
we have a contradiction with the connected-over-time property). Second, robots have to handle
the arbitrary initialization of the system (corruption of variables and arbitrary position of robots).

Principle of the algorithm. The main idea behind our algorithm is that a robot does not
change its direction (arbitrarily initialized) while it is isolated. This allows robots to perpetually
explore connected-over-time rings with no eventual missing edge regardless of the initial direction
of the robots.

Obviously, this idea is no longer sufficient when there exists an eventual missing edge since,
in this case, at least two robots will eventually be stuck (i.e., they point to an eventual missing
edge that they are never able to cross) forever at one end of the eventual missing edge. When
two (or more) robots are located at the same node, we say that they form a tower. In this case,
our algorithm succeed (as we explain below) to ensure that at least one robot leaves the tower in
a finite time. In this way, we obtain that, in a finite time, a robot is stuck at each end of the
eventual missing edge. These two robots located at two ends of the eventual missing edge play the
role of “sentinels” while the third one (we call it a “visitor”) visits other nodes of the ring in the
following way. The “visitor” keeps its direction until it meets one of these “sentinels”, they then
switch their roles: After the meeting, the “visitor” still maintains the same direction (becoming
thus a “sentinel”) while the “sentinel” robot changes its direction (becoming thus a “visitor” until
reaching the other “sentinel”).

In fact, robots are never aware if they are actually stuck at an eventual missing edge or are just
temporarily stuck on an edge that will reappear in a finite time. That is why it is important that
the robots keep consider their directions and try to move forward while there is no meeting in order
to track a possible eventual missing edge. Our algorithm only guarantees a convergence in a finite
time towards a configuration where a robot plays the role of “sentinel” at each end of the eventual
missing edge if such an edge exists. Note that, in the case where there is no eventual missing edge,
this mechanism does not prevent the correct exploration of the ring since it is impossible for a robot
to be stuck forever.

Our algorithm easily deals with the initial corruption of its variables. Indeed, we use variables
only to save some information about the environment of the robots in the previous rounds and

5

we update them at each round. Thus, their arbitrary initial value is erased in a finite time. The
main difficulty to achieve self-stabilization is to deal with the arbitrary initial position of robots.
In particular, the robots may initially form towers. In the worst case, all robots of a tower may
be stuck at an eventual missing edge and be in the same state. They are then unable to start
the “sentinels”/“visitor” scheme explained above. Our algorithm needs to “break” such a tower
in a finite time (i.e., one robot must leave the node where the tower is located). In other words,
we tackle a classical problem of symmetry breaking. We succeed by providing each robot with a
function that returns, in a finite number of invocations, different global directions to two robots of
the tower based on the private identifier of the robot and without any communication among the
robots. More precisely, this is done thanks to a transformation of the robot identifier: each bit of
the binary representation of the identifier is duplicated and we add the bits “01” at the end of the
sequence of these duplicated bits. Then, at each invocation of the function, a robot reads the next
bit of this transformed identifier. If the robot reads zero, it try to move to its left. Otherwise, it
try to move to its right. Doing so, in a finite number of invocation of this function, at least one
robot leaves the tower. If necessary, we repeat this “tower breaking” scheme until we are able to
start the “sentinels”/“visitor” scheme.

The main difficulty in designing this algorithm is to ensure that these two mechanisms (“sen-
tinels”/“visitor” and “tower breaking”) do not interfere with each other and prevent the correct
exploration. We solve this problem by adding some waiting at good time, especially before starting
the procedure of tower breaking by identifier to ensure that robots do not prematurely turn back
and “forget” to explore some parts of the ring.

Formal presentation of the algorithm. Before presenting formally our algorithm, we need to
introduce the set of constants (i.e., variables assumed to be not corruptible) and the set of variables
of each robot. We also introduce three auxiliary functions.

As stated in the model, each robot has an unique identifier. We denote it by id and repre-
sent it in binary as b0b1 . . . b|id|−1. We define, for the purpose of the “breaking tower” scheme,
the constant TransformedIdentifier by its binary representation b0b0b1b1 . . . b|id|−1b|id|−101 (each
bit of id is duplicated and we add the two bits 01 at the end). We store the length of the bi-
nary representation of TransformedIdentifier in the constant ℓ and we denote its ith bit by
TransformedIdentifier[i] for any 0 ≤ i ≤ ℓ− 1.

In addition to the variable dir defined in the model, each robot has the following three variables:
(i) the variable i ∈ N corresponds to an index to store the position of the last bit read from
TransformedIdentifier; (ii) the variable NumberRobotsPreviousEdgeActivation ∈ N stores the
number of robots that were present at the node of the robot during the look step of the last
round where it was edge-activated; and (iii) the variable HasMovedPrevious- EdgeActivation ∈
{true, false} indicates if the robot has crossed an edge during its last edge-activation.

Our algorithm makes use of a function Update that updates the value of the two last variables
according to the current environment of the robot each time it is edge-activated. We provide the
pseudo-code of this function in Algorithm 1. Note that this function also allows us to deal with the
initial corruption of the two last variables since it resets them in the first round where the robot is
edge-activated.

We already stated that, whenever robots are stuck forming a tower, they make use of a function
to “break” the tower in a finite time. The pseudo-code of this function GiveDirection appears
in Algorithm 2. It assigns the value left or right to the variable dir of the robot depending on

6

Algorithm 1 Function Update
1: function Update

2: if ExistsAdjacentEdge() then
3: NumberRobotsPreviousEdgeActivation← NumberOfRobotsOnNode()
4: HasMovedPreviousEdgeActivation← ExistsEdgeOnCurrentDirection()
5: end if

6: end function

the the ith bit of the value of TransformedIdentifier. The variable i is incremented modulo ℓ

(that implicitly resets this variable when it is corrupted) to ensure that successive calls to GiveDi-

rection will consider each bit of TransformedIdentifier in a round-robin way. As shown in the
next section, this function guarantees that, if two robots are stuck together in a tower and invoke
repeatedly their own function GiveDirection, then two distinct global directions are given in
finite time to the two robots regardless of their chirality. This property allows the algorithm to
“break” the tower since at least one robot is then able to leave the node where the tower is located.

Finally, we define the function OppositeDirection that simply affects the value left (resp.
right) to the variable dir when dir = right (resp. dir = left).

There are two types of configurations in which the robots may change the direction they consider.
So, our algorithm needs to identify them. We do so by defining a predicate that characterizes each
of these configurations.

The first one, called WeAreStuckInTheSameDirection(), is dedicated to the detection of
configurations in which the robot must invoke the “tower breaking” mechanism. Namely, the robot
is stuck since at least one edge-activation with at least another robot and the edge in the direction
opposite to the one considered by the robot is present. More formally, this predicate is defined as
follows:

WeAreStuckInTheSameDirection() ≡
(NumberOfRobotsOnNode() > 1)

∧ (NumberOfRobotsOnNode() = NumberRobotsPreviousEdgeActivation)
∧ ¬ExistsEdgeOnCurrentDirection()
∧ ExistsEdgeOnOppositeDirection()
∧ ¬HasMovedPreviousEdgeActivation

The second predicate, called IWasStuckOnMyNodeAndNowWeAreMoreRobots(), is designed
to detect configurations in which the robot must transition from the “sentinel” to the “visitor” role
in the “sentinel”/“visitor” scheme. More precisely, such configuration is characterized by the fact
that the robot is edge-activated, stuck during its previous edge-activation, and there are strictly
more robots located at its node than at its previous edge-activation. More formally, this predicate
is defined as follows:

IWasStuckOnMyNodeAndNowWeAreMoreRobots() ≡
(NumberOfRobotsOnNode() > NumberRobotsPreviousEdgeActivation)

∧ ¬HasMovedPreviousEdgeActivation

∧ ExistsAdjacentEdge()

Now, we are ready to present the pseudo-code of the core of our algorithm (see Algorithm 3).
The basic idea of the algorithm is the following. The function GiveDirection is invoked when
WeAreStuckInTheSameDirection() is true (to try to “break” the tower after the appropriate wait-
ing), while the function OppositeDirection is called when IWasStuckOnMyNodeAndNowWe-

7

Algorithm 2 Function GiveDirection
1: function GiveDirection

2: i ← i+ 1 (mod ℓ)
3: if TransformedIdentifier[i] = 0 then

4: dir ← left

5: else

6: dir ← right

7: end if

8: end function

Algorithm 3 Self-stabilizing perpetual exploration
1: if WeAreStuckInTheSameDirection() then
2: GiveDirection

3: end if

4: if IWasStuckOnMyNodeAndNowWeAreMoreRobots() then
5: OppositeDirection

6: end if

7: Update

AreMoreRobots() is true (to implement the “sentinel”/“visitor” scheme). Afterwards, the function
Update is called (to update the state of the robot according to its environment).

4 Proof Sketch

Preliminaries. First, we introduce some definitions and preliminary results that are extensively
used in the proof.

We saw previously that the notion of tower is central in our algorithm. Intuitively, a tower
captures the simultaneous presence of all robots of a given set on a node at each time of a given
interval. We require either the set of robots or the time interval of each tower to be maximal. Note
that the tower is not required to be on the same node at each time of the interval (robots of the
tower may move together without leaving the tower).

We distinguish two kinds of towers according to the agreement of their robots on the global
direction to consider at each time there exists an adjacent edge to their current location (excluded
the last one). If they agreed, the robots form a long-lived tower while they form a short-lived tower
in the contrary case. This implies that a short-lived tower is broken as soon as the robots forming
the tower are edge-activated, while the robots of a long-lived tower move together at each edge
activation of the tower (excluded the last one).

Definition 4.1 (Tower). A tower T is a couple (S, θ), where S is a set of robots (|S| > 1) and
θ = [ts, te] is an interval of N, such that all the robots of S are located at a same node at each
instant of time t in θ and S or θ are maximal for this property. Moreover, if the robots of S move
during a round t ∈ [ts, te[, they are required to traverse the same edge.

Definition 4.2 (Long-lived tower). A long-lived tower T = (S, [ts, te]) is a tower such that there
is at least one edge-activation of all robots of S in the time interval [ts, te[.

Definition 4.3 (Short-lived tower). A short-lived tower T is a tower that is not a long-lived tower.

For k > 1, a long-lived (resp., a short-lived) tower T = (S, θ) with |S| = k is called a k-long-lived
(resp., a k-short-lived) tower.

8

As their are only three robots on our system, and that in each round they consider a global
direction, we can make the following observation.

Observation 4.1. There are at least two robots having the same global direction at each instant
time.

In the remainder of this section, we consider an execution E of Algorithm 3 executed by three
robots r1, r2, and r3 on a connected-over-time ring G of size n ∈ N

∗ starting from an arbitrary
configuration.

For the sake of clarity, the value of a variable or a predicate name of a given robot r at the end
of the Look phase of a given round t is denoted by the notation name(r, t).

We say that a robot r has a coherent state at time t, if during the Look phase of round t, the
value of its variable NumberRobotsPreviousEdgeActivation(r, t) corresponds to the value of its
predicate NumberOfRobotsOnNode() at its previous edge-activation and the value of its variable
HasMovedPreviousEdgeActivation(r, t) corresponds to the value of its predicate ExistsEdgeOn-
CurrentDirection() at its previous edge-activation. The following lemma states that, for each
robot, there exists a suffix of the execution in which the robot is coherent.

Lemma 4.1. For any robot, there exists a time from which its state is always coherent.

Proof. Consider a robot r performing algorithm 3.
As G belongs to the class of connected-over-time rings, at least one adjacent edge to each node

of G is infinitely often present in the system. As the robots of the system are synchronous, from
the previous observation we can conclude that they are infinitely often edge-activated.

Variables can be updated only during Compute phases of rounds. If r is edge-activated at time
t, then during the Compute phase of time t, the function Update updates respectively its variables
NumberRobotsPreviousEdgeActivation and HasMovedPreviousEdgeActivation with the cur-
rent values of its predicates NumberOfRobotsOnNode() and ExistsEdgeOnCurrentDirection().

Moreover, each time r is not edge-activated, the values of its variables NumberRobotsPrevious-
EdgeActivation and HasMovedPreviousEdgeActivation are not updated.

Consider a time t′ when r is edge-activated. Assume that t′ is not the first time when r is edge-
activated. Then as the variables are only updated during the Compute phases of rounds, during
the Look phase of time t′ the values of the variables NumberRobotsPreviousEdgeActivation and
HasMovedPreviousEdgeActivation of r correspond respectively to the values of the predicates
NumberOfRobotsOnNode() and HasMovedPreviousEdgeActivation() of r at the previous edge-
activation.

Call t1 the first time when r is edge-activated. By the three above arguments we can conclude
that from time t1 + 1, r is in a coherent state.

Let t1, t2, and t3 be respectively the time at which the robot r1, r2, and r3, respectively are in
a coherent state. Let tmax = max{t1, t2, t3}. From Lemma 4.1, the three robots are in a coherent
state from tmax. In the remaining of the proof, we focus on the suffix of the execution after tmax.

The two following lemmas show that, regardless of the chirality of the robots and the initial
values of their variables i, a finite number of synchronous invocations of the function GiveDirec-

tion by two robots of a tower returns them a distinct global direction. To prove that, we need to
take a close look at properties granted by the transformed identifiers of the robots.

9

Lemma 4.2. Let tl1 and tl2 be two transformed identifiers, such that tl1 6= tl2. Let i and j be two
integers such that i ∈ [0, |tl1| − 1] and j ∈ [0, |tl2| − 1]. If tl1[i] = tl2[j], then there exists an integer
k such that tl1[(i+ k) (mod |tl1|)] 6= tl2[(j + k) (mod |tl2|)].

Proof. Consider two non-transformed identifiers ntl1 and ntl2. Consider tl1 and tl2 their respective
transformed identifiers. ntl1 and ntl2 are distinct, so tl1 and tl2 are distinct by definition of the
transformed identifier. Take two integers i and j such that i is in [0, |tl1|−1] and j is in [0, |tl2|−1].

We want to prove that if tl1[i] equals tl2[j] then it exists an integer k such that tl1[(i + k)
(mod |tl1|)] is not equal to tl2[(j + k) (mod |tl2|)].

By contradiction we assume that such a k does not exist. This means that for all k in N,
tl1[(i + k) (mod |tl1|)] equals tl2[(j + k) (mod |tl2|)].

The construction of the transformed identifier is made by duplicating each bit of the non-
transformed identifier concatenated with the pair of bits “01”. Thus we have |tl1| = 2× |ntl1|+ 2,
and |tl2| = 2× |ntl2|+ 2.

Note {b1b1 . . . b|ntl1|b|ntl1|01} the binary representation of tl1. Similarly note {b′1b
′
1 . . . b

′
|ntl2|

b′|ntl2|01}
the binary representation of tl2. Call final pair, the pair of bits “01” during each transformed iden-
tifier.

Consider the integer h such that tl1[(i+ h) (mod |tl1|)] corresponds to the 0 of the final pair of
tl1.

Either the labels tl1 and tl2 have the same size or one is greater than the other one.

Case 1: |tl1| = |tl2|.

By assumption we have tl2[(j+h) (mod |tl1|)] equals to 0. Moreover tl1[(i+h+1) (mod |tl1|)]
corresponds to the 1 of the final pair of tl1, thus by assumption tl2[(j + h+ 1) (mod |tl1|)] is
equal to 1. We can conclude that tl2[(j + h) (mod |tl1|)] corresponds either to the second bit
b′p of a pair of bits b′pb

′
p where each bit is equal to 0, with p is an integer in [1, |ntl1 − 1|], and

such that b′p+1 equals to 1, or to the 0 of the final pair of tl2.

Case 1.1: tl2[(j+ h) (mod |tl1|)] corresponds to the second bit b′
p of a pair of bits

b′
pb

′
p where each bit is equal to 0.

In this case we know that tl2[(j + h+ 1) (mod |tl1|)] corresponds to the first bit b′p+1 of
a pair of bits b′p+1b

′
p+1 where each bit is equal to 1 (with p an integer in [1, |ntl1 − 1|]).

As to construct the transformed identifier each bit of the non-transformed identifier
is duplicated and at the end the final pair is added, the only odd sequence of bits
containing only bits of value equals to 1 must include the bit 1 of the final pair. All the
other sequences of bits containing only bits of value equals to 1 but not containing the
1 of the final pair are even. Thus here the sequence of bits {b′p+1b

′
p+1 . . . b

′
p+1+qb

′
p+1+q}

with q an integer in [0, |ntl1|−p−1] and such that all the bits of this sequence are equal
to 1, is an even sequence. However the sequence {b0 . . . bzbz} with b0 corresponding to
the 1 of the final pair of tl1, and with z an integer in [0, |ntl1|] and such that all the
bits of this sequence are equal to 1, is an odd sequence. Thus there exists an integer
y = 1+min{p+ 1+ q, z} such that b′y is not equal to by, which is in contradiction with
the fact that for all integers k in N, tl1[(i+k) (mod |tl1|)] equals tl2[(j+k) (mod |tl2|)].

Case 1.2: tl2[(j+ h) (mod |tl1|)] corresponds to the 0 of the final pair of tl2.

In this case, as by assumption we have |tl1| equals to |tl2|, then we have i equals to j.
Moreover we have for all k in N, tl1[(i + k) (mod |tl1|)] equals tl2[(j + k) (mod |tl1|)].

10

Thus here we now have for all k in N, tl1[(i+k) (mod |tl1|)] equals tl2[(i+k) (mod |tl2|)],
with |tl1| equals to |tl2|. This implies that tl1 is equal to tl2 which is in contradiction
with the fact that the two transformed identifiers are distinct.

Case 2: |tl1| 6= |tl2|.

Without lost of generality, assume that |tl1| is strictly less than |tl2|.

Similarly as previously in order to have tl1[(i+h) (mod |tl1|)] equals to tl2[(j+h) (mod |tl2|)],
tl2[(j+h) (mod |tl2|)] must either corresponds to the second bit b′p of a pair of bits b′pb

′
p where

each bit is equal to 0, with p is an integer in [1, |ntl2 − 1|], and such that b′p+1 equals to 1, or
to the 0 of the final pair of tl2.

Case 2.1: tl2[(j+ h) (mod |tl2|)] corresponds to the second bit b′
p of a pair of bits

b′
pb

′
p where each bit is equal to 0.

We can use the same argument than the one used for the case 1.1 with the odd and even
sequences of bits to lead to a contradiction with the fact that for all integers k in N,
tl1[(i+ k) (mod |tl1|)] equals tl2[(j + k) (mod |tl2|)].

Case 2.2: tl2[(j+ h) (mod |tl2|)] corresponds to the 0 of the final pair of tl2.

In this case, as tl2 and tl1 have different size, the next time we read the 0 of the final
pair of tl1 the bit considered in tl2 will correspond a bit b′p with p in [1, |ntl2| − 1]. We
are then in a case identical to the case 2.1 which leads to a contradiction.

These arguments prove the lemma.

Lemma 4.3. Let tl1 and tl2 be two transformed identifiers, such that tl1 6= tl2. Let i and j be two
integers such that i ∈ [0, |tl1| − 1] and j ∈ [0, |tl2| − 1]. If tl1[i] 6= tl2[j], then there exists an integer
k such that tl1[(i+ k) (mod |tl1|)] = tl2[(j + k) (mod |tl2|)].

Proof. Here we assume that for all k in N, tl1[(i + k) (mod |tl1|)] is not equal to tl2[(j + k)
(mod |tl2|)]. With similar arguments than the one used for the proof of lemma 4.2 we obtain
contradictions leading to the correctness of this lemma.

Technical lemmas on towers. We are now able to state a set of lemmas that show some
interesting technical properties of towers under specific assumptions during the execution of our
algorithm. These properties are extensively used in the main proof of our algorithm.

Lemma 4.4. The robots of a long-lived tower T = (S, [ts, te]) consider a same global direction at
each time between the Look phase of round ts and the Look phase of round te included.

Proof. Consider a long-lived tower T = (S, [ts, te]).
By definition of a long-lived tower we know that there exists at least a time in [ts, te[at which

the robots of S are edge-activated.
Call tact the first time in [ts, te] at which the robots of S are edge-activated.

From the Look phase of time ts to the Look phase of time tact the robots of S consider
a same global direction.

11

By contradiction assume that there exists a time t between the Look phase of time ts and
the Look phase of time tact at which the robots of S consider opposite global directions.

Call S1 (|S1| ≥ 1) the set of robots of S considering the clockwise direction at time t, and S2

(|S2| ≥ 1) the set of robots of S considering the counter clockwise direction at time t.

During [ts, tact[the robots of S are not edge-activated. When a robot r is not edge acti-
vated, its respective values of the predicates ExistsEdgeOnOppositeDirection() and Exists-
AdjacentEdge() are false. Thus the predicates WeAreStuckInTheSameDirection() and
IWasStuckOnMyNodeAndNowWeAreMoreRobots() of r are false, implying that it does
not change the direction it considers (as no instructions permitting to change the direction
are executed).

At time ts − 1 the robots of S are necessarily edge-activated. Indeed, by definition of a long-
lived tower during the Look phase of time ts−1 either the robots of S are not at a same node,
or they are at a same node but have to cross different edges during the Move phase of time
ts − 1, otherwise the tower T does not start at time ts. During the Look phase of time ts the
robots of S are on a same node. So some of the robots of S had moved during round ts − 1.
If some robots of S had not moved during the round ts − 1, they had been edge-activated
for the other robots of S to join them. And for the robots of S that had moved during time
ts − 1 they had crossed an adjacent edge to their location, so they were edge-activated.

From the two previous paragraphs and as the robots can change their global directions only
during the Compute phase of each round, we can conclude that if the robots of S are consid-
ering opposed global directions at a time t this implies that the robots of S1 and of S2 were
considering opposed global directions during the Move phase of the round ts − 1.

S1 and S2 were thus both moving during time ts − 1. Indeed, if both of the sets were not
moving during the Move phase of round ts − 1 then the two sets would not meet at time ts.
Moreover if only one set of robots was not moving during the Move phase of round ts − 1
this implies that the adjacent edge e to the location of this set of robots in the direction
considered by the robots of this set was missing during round ts − 1. Assume without lost of
generality that it is the set S1 that was not moving during the Move phase of round ts − 1.
The two sets of robots are considering global opposite directions, thus if e is missing this
implies that S2 cannot join S1 as to join S1 at time ts the robots of S2 have to cross e during
the Move phase of round ts − 1. Thus the robots of S1 and S2 were moving during time
ts− 1. This implies that during the call to the function Update of round ts− 1 the variables
HasMovedPreviousEdgeActivation of the robots of S1 and S2 are set to true.

Moreover as seen previously the robots can change their global directions only during the Com-
pute phase of each round when they are edge-activated. Thus when the robots wake up at time
tact their respective values of variables HasMovedPreviousEdgeActivation are true, so their
predicates WeAreStuckInTheSameDirection() and IWasStuckOnMyNodeAndNowWe-
AreMoreRobots() are false. Thus the robots do not change the directions they were con-
sidering. The robots of S1 still consider the clockwise direction while the robots of S2 still
consider the counter clockwise direction. As at time tact the robots of S are edge-activated,
the set S1 and S2 separate them during the Move phase of time tact, which leads to a contra-
diction with the fact that the robots of S form a long-lived tower.

Thus the robots of S are considering a same global direction between the Look phase of time
ts and the Look phase of time tact.

12

From time tact to the Look phase of time te the robots of S consider a same global
direction.

Call tact bis the first time in]tact, te] when the robots of S are edge-activated. At time te the
robots of S are at a same node, however at time te + 1 they are either at different nodes, or
they are at a same node but have crossed different edges during the Move phase of time te,
thus at time te the robots of S are necessarily edge-activated. So tact bis exists.

First as at time tact the robots of S are edge-activated, they have to consider a same global
direction during the Move phase of time tact, otherwise they separate them. As the directions
considered by the robots can be changed only during the Compute phase of each round when
they are edge-activated during times between]tact, tact bis[the robots still consider a same
global direction.

As seen previously the robots can change their global directions only during the Compute
phase of each round when they are edge-activated thus during the Look phase of time tact bis,
the robots still consider a same global direction. Thus in the case where tact bis is equal to te
the property is proved. Moreover if tact bis is not equal to te, after the Compute phase of time
tact bis the robots cannot consider opposed global directions, otherwise T is broken, which is
a contradiction with the fact that T last from time ts to time te. Then by recurrence we can
prove that the robots possess a same global direction in [ts, te].

This prove the lemma.

The following lemma is used to prove, in combination with Lemmas 4.2 and 4.3, the “tower
breaking” mechanism since it proves that robots of a long-lived tower synchronously invoke their
GiveDirection function after their first edge-activation.

Lemma 4.5. For any long-lived tower T = (S, [ts, te]), any (ri, rj) in S2, and any t less or equal to
te, we have WeAreStuckInTheSameDirection()(ri, t) = WeAreStuckInTheSameDirection()(rj , t)
if all robots of S have been edge-activated between ts (included) and t (not included).

Proof. Consider a long-lived tower T = (S, [ts, te]).
Consider two of the robots ri and rj of S.
Call tact the first time in [ts, te[where the robots of S are edge-activated. By definition of a

long-lived tower, this time exists.
By contradiction, assume that there exists a time t > tact such that WeAreStuckInTheSame-

Direction()(ri, t) 6= WeAreStuckInTheSameDirection()(rj , t).
The predicate WeAreStuckInTheSameDirection() is a boolean, thus it has only two values:

true or false. As by assumption WeAreStuckInTheSameDirection()(ri, t) 6= WeAreStuckInThe-
SameDirection()(rj , t), this implies that this predicate is true for one of the robots among ri, rj ,
while it is false for the other one.

Without lost of generality assume that WeAreStuckInTheSameDirection()(ri, t) is true while
WeAreStuckInTheSameDirection()(rj , t) is false.

By definition of a long-lived tower and according to lemma 4.4, we know that from time ts
to the end of the Look phase of time te all the robots of S are on a same node and consider a
same global direction. This implies that the values of the predicates NumberOfRobotsOnNode(),
ExistsEdgeOnCurrentDirection(), ExistsEdgeOnOppositeDirection() andExistsAdjacentEdge()
of all the robots of S are identical from time ts to the end of the Look phase of time te.

13

Consider a time t′ ∈ [ts, t[at which the robots of S are edge-activated. t′ exists as t is strictly
greater than tact. As at time t′ the robots of S are edge-activated, during the call to the functionUp-

date of the round t′, the robots of S update their variablesNumberRobotsPreviousEdgeActivation

and HasMovedPreviousEdgeActivation, respectively with the values of their predicates Number-
OfRobotsOnNode() and ExistsEdgeOnCurrentDirection(). Moreover as the robots of S pos-
sess the same values of predicates from time ts to the end of the Look phase of round te, af-
ter the Compute phase of the round t′, all the robots of S possess the same values of variables
NumberRobotsPreviousEdgeActivation and HasMovedPreviousEdgeActivation.

For each time t” in]t′, te[when the robots wake up, if they are not edge-activated, then no
robots change the values of their variables (as the function Update is only executed when the
robots are edge-activated). Moreover for each time t” in]t′, te[when the robots of S wake up,
if they are edge-activated, then they update their values of variables with the values of their
predicates. However, as seen previously all the robots of S possess the same values of predi-
cates from time ts to the end of the Look phase of time te. Therefore for all time in]t′, te[all
the robots of S possess the same values of variables NumberRobotsPreviousEdgeActivation and
HasMovedPreviousEdgeActivation. Moreover as the variables can change only during the Com-
pute phase of each round, the variables of the robots of S are also identical during the Look phase
of round te.

Besides, the predicate WeAreStuckInTheSameDirection() depends only on the values of the
variables NumberRobotsPreviousEdgeActivation, and HasMovedPreviousEdgeActivation, and
on the values of the predicates NumberOfRobotsOnNode(), ExistsEdgeOnCurrentDirection(),
and ExistsEdgeOnOppositeDirection(). As seen previously all these values are identical for all
the robots of S from time t′+1 until the end of the Look phase of time te, thus for all t” ∈]t′, te], we
have WeAreStuckInTheSameDirection()(ri, t”) = WeAreStuckInTheSameDirection()(rj , t”).
As t is included in]t′, te] there is a contradiction.

This proves the lemma.

Lemma 4.6. If there exists an eventual missing edge, then all long-lived towers have a finite
duration.

Proof. Assume that there exists a time tmissing ∈ τ and exists an edge e of G such that for all t
greater or equal to tmissing, e is missing.

Consider the execution after time tmissing.
Call u and v the two adjacent nodes of e, such that if e was present in G a robot on node

u would have to cross e in the clockwise direction to be located on v. As G is a ring each node
possesses two adjacent edges. Call e′ the other adjacent edge of u.

By contradiction assume that there exists a long-lived tower T = (S, θ) such that θ = [ts,+∞[.
Exactly 3 robots are executing our algorithm, thus here |S| is either equals to 2 or 3.

First we prove that in the case where te is equal to +∞ then it exists a robot of S such that its
predicate WeAreStuckInTheSameDirection() is infinitely often true.

By contradiction assume that for each robot ri of S, it exists a time ti in θ such that for
all time t greater or equal to ti its predicate WeAreStuckInTheSameDirection() is false. Set
tfalse = max{tmissing, {ti}ri∈S} (tfalse ∈ θ) the maximum of all the times greater than tmissing

after which the predicates WeAreStuckInTheSameDirection() of all the robots of S are false.
We recall that by lemma 4.4 all the robots of S are considering a same global direction from

time ts to the Look phase of time te.

14

Case 1: |S| = 3.

Call tact ≥ tfalse (tact ∈ θ), the first time where the robots of S are edge-activated. As G
belongs to the class of connected-over-time rings, at least one adjacent edge to each node
appears infinitely often, thus tact exists. From time ts to +∞ the three robots of the system
form a 3-long-lived tower. They are thus on a same node from time ts. Therefore from time
ts the predicates NumberOfRobotsOnNode() of the robots of S are equal to 3. During the
call to the function Update of round tact, as the robots of S are edge-activated they update
their variables NumberRobotsPreviousEdgeActivation with the value of their predicates
NumberOfRobotsOnNode() which is equal to 3. The variables NumberRobotsPrevious-
EdgeActivation of the robots of S are updated when the robots are edge-activated. Like for
time tact when the robots are edge-activated their variables NumberRobotsPreviousEdge-
Activation are filled with the value 3. Moreover when the robots are not edge-activated they
conserve the same value than the one they had the last time they were edge-activated. This im-
plies that from time tact+1 the values of the variablesNumberRobotsPreviousEdgeActivation

of the robots of S are equal to 3. Therefore from time tact+1 the predicates IWasStuckOn-
MyNodeAndNowWeAreMoreRobots() of the robots of S are false, as the conditionNumber-
OfRobotsOnNode() > NumberRobotsPreviousEdgeActivation is false. Moreover by as-
sumption we know that the predicates WeAreStuckInTheSameDirection() of all the robots
of S are false from time tfalse to time te. This implies that the predicates WeAreStuckInThe-
SameDirection() and IWasStuckOnMyNodeAndNowWeAreMoreRobots() of the robots
of S are false from time tact +1. So from time tact +1 the robots of S are always considering
the same global direction.

Without lost of generality assume that from time tact +1 the robots of S are considering the
clockwise direction. By definition of a connected-over-time ring, all the edges of G except
e are infinitely often present in the system. So there exists infinitely often an edge in the
clockwise direction to the current location of the 3-long-lived tower. Therefore as the robots
of S consider the clockwise direction from time tact + 1 they reach the node u in finite time.
However e is missing forever, thus the robots of T are not able to traverse e. Call tfirst the
first time the robots of S are edge-activated on node u. As said previously e′ is infinitely
often present in the system, so tfirst exists. During the call to the function Update of round
tfirst, the values of the variables HasMovedPreviousEdgeActivation of the three robots
are set to false. The next time the robots of T are edge-activated, e′ is present while e is
missing and their variables HasMovedPreviousEdgeActivation are false, so the predicates
WeAreStuckInTheSameDirection() of the robots of S are true. This leads to a contradiction
with the fact that the predicates WeAreStuckInTheSameDirection() of all the robots of S
are false from time tfalse.

Case 2: |S| = 2.

Assume without lost of generality that the 2-long-lived tower is formed of the robots r1 and
r2.

While forming T the robots of S can meet r3 or not.

Case 2.1: The 2-long-lived tower does not meet r3.

By similar arguments than the one used for the case 1 we prove that there is a contra-
diction.

15

Case 2.2: The 2-long-lived tower meets r3.

At each instant time, each robot considers a direction. There is no state in our algorithm
where a robot can consider no direction. During the Move phase of time i if a robot r
is located on a node where an adjacent edge is present in the same direction than the
one considered by r, then r moves during the Move phase of time i. Moreover there are
only two possible directions (the clockwise and the counter clockwise direction). Thus
if at a time t′ strictly greater than tfalse the robots of S meet r3 it is either because the
two entities (the tower and r3) were moving during the Move phase of time t′ − 1 while
considering two opposed global directions or because the two entities were considering
the same global direction and that one of the entity could not move (an edge was missing
in its direction) during the Move phase of the round t′ − 1.

Call t′act the first round after t′ where the robots are edge-activated.

At time t′ − 1 the robots of S are necessarily edge-activated to be able to meet at time
t′.

Case 2.2.1: The meeting occurs because the two entities were moving in two
opposite global directions.
In this case during the call to the function Update of time t′ − 1 the variables
HasMovedPreviousEdgeActivation of the three robots are set to true. The vari-
ables are only updated during the Compute phase of rounds where the robots are
edge-activated. Thus from time t′ − 1 to the Look phase of time t′act the variables
HasMovedPreviousEdgeActivation are still true. So at time t′act the predicates
WeAreStuckInTheSameDirection() and IWasStuckOnMyNodeAndNowWeAre-
MoreRobots() of the three robots are false, as their variables HasMovedPrevious-
EdgeActivation are true. Thus the two entities conserve the global direction they
were considering during the Move phase of round t′ − 1. And so during the Move of
the round t′act the two entities are considering different global directions.

Case 2.2.2: The meeting occurs because an entity was moving and the other
was stuck.
In this case, during the Compute phase of time t′ − 1 the variable HasMoved-
PreviousEdgeActivation of each robot of the entity that has moved is set to true,
while the variable HasMovedPreviousEdgeActivation of each robot of the entity
that has not moved is set to false. The variables are only updated during the Com-
pute phase of rounds where the robots are edge-activated. Thus at time t′act each
robot of the entity that has moved during the Move phase of time t′−1 has its pred-
icates WeAreStuckInTheSameDirection() and IWasStuckOnMyNodeAndNow-
WeAreMoreRobots() to false, as its variable HasMovedPreviousEdgeActivation

is true. However the predicate IWasStuckOnMyNodeAndNowWeAreMoreRobots()
of each of the robots of the other entity is true. Thus each robot of this last entity
considers a direction opposed to the one considered during the Move phase of the
round t′ − 1. So during the Move of the round t′act the two entities are considering
different global directions.

Thus in the two cases of meeting during the Move phase of time t′act the two enti-
ties are considering two different global directions. Thus they separate during the
Move phase of round t′act as an edge exits at this time. After time t′act, as long as
r3 is alone on its node it does not change the direction it considers as its predicates

16

WeAreStuckInTheSameDirection() and IWasStuckOnMyNodeAndNowWeAre-
MoreRobots() are false. As long as the robots of S do not meet r3, their predicates
IWasStuckOnMyNodeAndNowWeAreMoreRobots() are false. Moreover, as by as-
sumption, from time tfalse the predicates WeAreStuckInTheSameDirection() of the
robots of S are false, this implies that the robots of S keep consider the same global
direction as long as they do not meet again r3. Besides as e is missing after time tmissing

and as the robots of S and r3 have already meet each other, and as they separate them-
selves going in different global directions, and as they keep consider their respective
directions as long as they do not meet again, there is no way for a meeting between this
two entities to happen again.

Thus here we are in a case similar to the one described case 2.1. Therefore by using
similar arguments we can conclude that this case leads to a contradiction.

These arguments permit to state that in the case where there exists an eventual missing edge and
that te is equal to +∞ then it exists a robot of S such that its predicate WeAreStuckInTheSame-
Direction() is infinitely often true.

As te is equal to +∞ and that all the edges except e are infinitely often present in E , the robots of
S are infinitely often edge-activated. According to lemma 4.5 after the first time where the robots of
S are edge-activated, they all consider the same value for their predicatesWeAreStuckInTheSame-
Direction(). Call ttrue the first time the robots of S are edge-activated. After ttrue all the robots of
S have their predicates WeAreStuckInTheSameDirection() infinitely often true. Thus after time
ttrue all the robots of S call the function GiveDirection infinitely often and at the same instant
time.

Thus for the robots to keep forming T , if the robots have the same chirality, they need to
consider the same value of bit each time the function GiveDirection is called, and if the robots
have not the same chirality they need to consider different values of bit each time the function
GiveDirection is called. However according to lemma 4.2 and to lemma 4.3 this cannot happen
infinitely often. Thus there exists a time where the robots of T when executing the function
GiveDirection consider bits that lead them to consider different global direction. Thus the tower
T is broken. This leads to a contradiction with the fact that θ equals]ts,+∞[.

In conclusion we can say that if there exists an eventual missing edge, then all long-lived towers
have a finite duration.

Lemma 4.7. Every execution containing only configurations without any long-lived tower cannot
reach a configuration with a 3-short-lived tower.

Proof. Consider an execution E composed of configurations that do not contain long-lived towers.
We want to prove that for all t in τ it is not possible to have a configuration containing a

3-short-lived tower in E .
By contradiction assume that there exists a configuration containing a 3-short-lived tower in E .
For a 3-short-lived tower to be formed, the three robots must be on a same node at the same

time. Assume that the three robots meet on a node v at time tmeet for the first time.
Call u and w the two adjacent nodes of v in G. To go on node v from node u, a robot needs to

cross an edge in the clockwise direction. And to go on node v from node w, a robot needs to cross
an edge in the counter clockwise direction.

17

Every robot performing our algorithm consider a direction at each instant time. This implies
that if a robot is on a node x considering a direction and that there exists an adjacent edge to x in
the same direction than the one considered by the robot then the robot crosses this edge.

Moreover as G is based on a ring, only two edges are adjacent to each node.
Besides a robot can cross at most one edge per round.
These three arguments prove that for a robot to be on node v during the Look phase of time

tmeet it can:

• Be on v during the Look phase of time tmeet − 1. In this case it cannot be able to move
during the Move phase of round tmeet−1, otherwise it is not on node v during the Look phase
of time tmeet. The only way for the robot to be on node v during the Look phase of time
tmeet− 1 and to be again on this node during the Look of time tmeet is to consider during the
Move phase of time tmeet − 1 a global direction such that there is no adjacent edge to v in
this global direction at time tmeet − 1.

• Be on node u during the Look phase of time tmeet − 1 considering the clockwise direction
during the Move phase of round tmeet − 1. The edge linking u and v must be present in E at
time tmeet − 1.

• Be on node w during the Look phase of time tmeet − 1 considering the counter clockwise
direction during the Move phase of round tmeet − 1. The edge linking w and v must be
present in E at time tmeet − 1.

Case 1: A robot is on node v during the Look phase of time tmeet − 1.

Without lost of generality assume that this is the robot r1 that is on node v during the Look
phase of time tmeet − 1. As said previously, if r1 is still on node v during the Look phase
of time tmeet this implies that it considers a global direction such that there is no adjacent
edge to v in that direction at time tmeet − 1. Without lost of generality assume that r1 is
considering the counter clockwise direction after the Compute phase of round tmeet−1. Thus
the edge linking v to u is missing during round tmeet − 1. Thus if a 3-short-lived tower is
formed at time tmeet the two other robots must be either on node v or on node w during the
Look phase of time tmeet − 1 and must consider the counter clockwise direction during the
Move phase of round tmeet − 1.

It is not possible for both r2 and r3 to be on node v during the Look phase of time tmeet − 1
as by assumption the 3-short-lived tower is formed for the first time at time tmeet. So either
one of the robots among r2 and r3 is on node v or both r2 and r3 are on node w during the
Look phase of time tmeet − 1.

Case 1.1: During the Look phase of time tmeet − 1 a robot is on node v with r1,
while an other robot is on node w.

Assume without lost of generality that it is r2 that is with r1 on node v during the Look
phase of time tmeet − 1. Therefore it is r3 that is on node w during the Look phase of
round tmeet−1. For the 3-short-lived tower to be formed at time tmeet, r3 must consider
the counter clockwise direction and the edge linking w to v must be present at time
tmeet − 1. Like r1, r2 must consider the counter clockwise direction during the Move
phase of time tmeet − 1, otherwise it moves to node w. Thus r1 and r2 are on node v

18

during the Look phase of time tmeet − 1 and are still on node v during the Look phase
of time tmeet. However as the edge linking w to v is present at time tmeet − 1, r1 and r2
are edge-activated at time tmeet − 1. They are thus involved in a 2-long-lived tower (see
definition 4.2), which leads to a contradiction with the fact that there is no configuration
containing a long-lived tower in E .

Case 1.2: r2 and r3 are on node w.

For the 3-short-lived tower to be formed at time tmeet on node v, both r2 and r3 must
consider the counter clockwise direction during the Move phase of time tmeet− 1. More-
over the edge linking w to v must be present at time tmeet − 1. Thus r2 and r3 are on a
same node during the Look phase of time tmeet − 1 and they are also on the same node
during the Look phase of time tmeet. Besides they are edge-activated at time tmeet − 1.
This implies that r2 and r3 are involved in a 2-long-lived tower which leads to a con-
tradiction with the fact that there is no configuration containing a long-lived tower in
E .

Case 2: A robot is on node w during the Look phase of time tmeet − 1.

Without lost of generality assume that this is r1 that is on node w during the Look phase
of time tmeet − 1. As seen previously no robot can be on node v otherwise this leads to a
contradiction. Moreover the three robots cannot be one the same node at time tmeet − 1
otherwise we have a contradiction with the fact that tmeet corresponds to the first time in E
where a 3-short-lived tower is formed. Thus during the Look phase of time tmeet − 1 either
one of the robots among r2 and r3 is on node u while the other one is on node w or both are
on node u.

Case 2.1: During the Look phase of time tmeet − 1 a robot is on node w with r1,
while an other robot is on node u.

Assume that during the Look phase of time tmeet − 1 this is r2 that is on node w, while
r3 is on node u. As the 3-short-lived tower must be formed at time tmeet on node v the
edge linking w to v must be present at time tmeet− 1 and the two robots r1 and r2 must
consider the counter clockwise direction during the Move phase of time tmeet − 1. Thus
here r1 and r2 are forming a 2-long-lived tower, which leads to a contradiction.

Case 2.2: r2 and r3 are on node u during the Look phase of time tmeet − 1.

Similarly in the case where r3 and r2 are both on node u, during the Look phase of
time tmeet − 1 the edge linking u to v must be present and r2 and r3 must consider the
clockwise direction. Thus r2 and r3 are forming a 2-long-lived tower, which leads to a
contradiction.

Case 3: A robot is on node u during the Look phase of time tmeet − 1.

This case has been treated while treating the case 2.

All the possible scenarios lead to contradictions. Thus we can conclude that every execution
starting from a configuration without a long-lived tower cannot contain a 3-short-lived tower.

Lemma 4.8. Every execution starting from a configuration without a 3-long-lived tower cannot
reach a configuration with a 3-long-lived tower.

19

Proof. Consider an execution E starting from a configuration C which does not contain a 3-long-
lived tower. We recall that exactly 3 robots execute our algorithm. Thus if a configuration contains
a 3-long-lived tower the three robots of the system are involved in it, and only one 3-long-lived
tower exists per configuration.

We want to prove that for all t in τ it is not possible to have a configuration containing a
3-long-lived tower in E .

By contradiction assume that it is possible to have a configuration containing a 3-long-lived
tower in E . Call C′ the first configuration of E containing a 3-long-lived tower. Name this 3-long-
lived tower T . Assume that T starts at time t in τ . Call tact (tact ≥ t) the first time the 3 robots
of T are edge-activated. By definition of a long-lived tower, the time tact exists.

For the robots to form a 3-long-lived tower they must be on a same node from the Look phase of
time t until at least the Look phase of time tact+1 and they must consider a same global direction
during the Move phase of round tact (See definition 4.2). Otherwise the robots break the tower
during the Move phase of round tact and this would lead to a contradiction with the fact that T is
a 3-long-lived tower.

By lemma 4.7 we know that if there is no long-lived tower in E it is not possible to have 3 robots
on a same node at the same time. This implies that a meeting between the three robots can only
happens between a single robot and a 2-long-lived tower. Moreover the meeting between this two
entities can happen either because the two entities (the 2-long-lived tower and the single robot)
were moving during the phase t− 1 while considering two global opposite directions or because the
two entities were considering the same global direction and that one of the entity was not able to
move during the round t− 1.

Based on the arguments of the case 2.2 of the proof of lemma 4.6, we know that after the
Compute phase of round tact the two entities are considering two global opposite directions. This
leads to a contradiction with the fact that T is a 3-long-lived tower.

Thus we can conclude that every execution starting from a configuration without a 3-long-lived
tower cannot contain a 3-long-lived tower.

Lemma 4.9. Let γ be a configuration such that all but one robots consider the same global direction.
Then starting from γ, no execution without any long-lived towers can reach a configuration where
all robots consider the same global direction.

Proof. Consider that E does not contain long-lived tower.
Consider that E starts from a configuration C where two robots are considering a global direction

opposed to the one considered by the third robot of the system.
We want to prove that E cannot contain a configuration in which the three robots of the system

are considering the same global direction.
We process by contradiction. Call C′ the first configuration of E such that the three robots of

the system are considering a same global direction. Assume that C′ happens at time t. This implies
that the three robots possess the same global direction during the Look phase of time t.

During the Look phase of time t− 1 the robots are still considering different global directions,
otherwise there is a contradiction with the fact that C′ is the first configuration of E where the
three robots are considering the same global direction.

Call C” the configuration at time t− 1.
By assumption there are no long-lived towers in E , and moreover by lemma 4.7 we know that

in an execution where there are no long-lived towers when a meeting happens it does not involved

20

three robots. Thus the configurations of E contain either three isolated robots or one 2-short-lived
tower and one isolated robot.

At least one robot must change the global direction it considers during the Compute phase
of round t − 1 for the three robots of the system to consider the same global direction dur-
ing the Look phase of time t. Thus in C” some of the three robots are not isolated. Indeed,
if the three robots are isolated then their predicates WeAreStuckInTheSameDirection() and
IWasStuckOnMyNodeAndNowWeAreMoreRobots() are false and thus the robots do not change
their directions (and therefore the three robots do not consider the same global direction during
the Look phase of time t). Thus there is necessarily a 2-short-lived tower in C”. Assume without
lost of generality that this 2-short-lived tower is composed of the robots r1 and r2.

By definition of a 2-short-lived tower once the 2 robots involved in it are edge-activated, they
separate them. As the robots performing our algorithm consider at each instant time a direction. If
the two robots separate themselves when they are edge-activated this implies that they necessarily
consider two different global directions.

Thus during the Move phase of time t − 1 the robots r1 and r2 are considering two global
opposite directions. As the robots executing algorithm 3 can change their directions only during
the Compute phase of a round, this implies that during the Look phase of time t, r1 and r2 are
considering two different global directions. Therefore there is a contradiction with the fact that the
three robots of the system consider the same global direction in C′.

This proves the lemma.

Lemma 4.10. Consider an execution containing no 3-long-lived towers. If a 2-long-lived tower
T = (S, [ts, te]) is located at a node u at round te, then the robot that does not belong to S cannot
be located at node u during the Look phase of round te. Moreover during the Look phase of round
te +1, one robot of S located at u considers a global direction opposite to the one considered by the
other robot of S (which is not on u).

Proof. Consider an execution without 3-long-lived towers.
Consider a 2-long-lived tower T = (S, [ts, te]). Assume that r1 and r2 are composing T .
By definition of a long-lived tower, we know that r1 and r2 are at least one time edge-activated

between [ts, te[. Call tact the first time in [ts, te[when the robots of S are edge-activated. According
to lemma 4.5 from time tact+1 to the end of the Look phase of round te all the robots of S possess
the same value for their predicates WeAreStuckInTheSameDirection().

Note that at time te the robots of T are necessarily edge-activated. Indeed, if this is not the
case this implies that at time te there is no adjacent edge to the location where T is, and thus the
robots of S cannot move during the Move phase of round te. Thus they cannot break the tower,
which leads to a contradiction with the fact that T is broken at time te.

During the Compute phase of time te the robots r1 and r2 are executing the function
GiveDirection.

To prove this statement we process by contradiction. If the two robots are not executing the
function GiveDirection at time te this implies that their predicates WeAreStuckInThe-
SameDirection() are false. Thus at the end of the Look phase of time te either the two robots
of S have their predicatesWeAreStuckInTheSameDirection() and IWasStuckOnMyNode-
AndNowWeAreMoreRobots() false, or they have both their predicates IWasStuckOnMy-
NodeAndNowWeAreMoreRobots() to true, or one of the robot of S has its predicate IWas-

21

StuckOnMyNodeAndNowWeAreMoreRobots() to true while the other robot of S has its
predicate IWasStuckOnMyNodeAndNowWeAreMoreRobots() to false.

Case 1: The predicates WeAreStuckInTheSameDirection() and IWasStuckOnMy-
NodeAndNowWeAreMoreRobots() of the robots of S are false at the end of
the Look phase of time te.

In this case, the two robots keep consider the same global direction during the Move
phase of time te (as no instructions implying a change of direction is executed). So there
is a contradiction with the fact that at time te T is broken.

Case 2: The predicates IWasStuckOnMyNodeAndNowWeAreMoreRobots() of
the robots of S are true at the end of the Look phase of time te.

In this case, the two robots change the direction they consider. However r1 and r2 are
forming a 2-long-lived tower thus by lemma 4.4 this implies that these two robots are
considering the same global direction from time ts to the end of the Look phase of time
te. Thus during the Look phase of time te, r1 and r2 are considering the same global
direction. So if the two robots change their global directions during the Compute phase
of time te, they still consider a same global direction during the Move phase of time te.
So the robots are still involved in a 2-long-lived tower during the Look phase of time
te + 1 which is a contradiction with the fact that at time te T is broken.

Case 3: At the end of the Look phase of time te the predicate IWasStuckOnMy-
NodeAndNowWeAreMoreRobots() of one of the robots of S is true, while it
is false for the other robot of S.

This case cannot happen. Indeed, during the call to the function Update of time tact the
robots r1 and r2 have their values of variables NumberRobotsPreviousEdgeActivation

and HasMovedPreviousEdgeActivation that are respectively filled with the values of
their predicates NumberOfRobotsOnNode() and ExistsEdgeOnCurrentDirection().
r1 and r2 are forming a 2-long-lived tower therefore they are on the same node and are
considering a same global direction from time ts to the end of the Look phase of time te
thus their respective values of their respective predicates are equal. This is in particular
true for their predicates ExistsAdjacentEdge(). Moreover when the robots are not
edge-activated their variables are not updated. This implies that the next time the two
robots are edge-activated, call this time tact bis, they wake up with the same values of
variables. Moreover during the call of the function Update of tact bis the values of the
variables of r1 and r2 are filled with the same values (for the same arguments than the
one used at time tact). By recurrence we can conclude that from the call to the function
Update at time tact to the Look phase of time te the robots of S possess the same values
of variables.

Thus here we know that from time ts to the end of the Look phase of time te the values
of the predicates ExistsAdjacentEdge() of the robots of S are identical, and from time
tact + 1 to the end of the Look phase of time te the respective values of the variables
HasMovedPreviousEdgeActivation andNumberRobotsPreviousEdgeActivation of the
robots of S are also identical.

As during the Look phase of time te the robots r1 and r2 are on a same node, the
values of their predicate NumberOfRobotsOnNode() are equal. Thus during the Look

22

phase of time te it is not possible that one of the robots of S considers the condi-
tion “NumberOfRobotsOnNode() > NumberRobotsPreviousEdgeActivation” equals
to true while the other one consider it equals to false.

From the two previous paragraph we can conclude that the two robots of S have necessar-
ily the same value of predicate IWasStuckOnMyNodeAndNowWeAreMoreRobots().

In conclusion we know that at time te r1 and r2 are executing the function GiveDriection. As
during the Look phase of time te +1 r1 and r2 are not forming a 2-long-lived tower anymore,
this implies that after executing the functionGiveDirection the two robots consider two dif-
ferent global directions. Moreover the robots are on a node u during the Look phase of time te.
To execute the functionGiveDirection the condition ¬ExistsEdgeOnCurrentDirection()∧
ExistsEdgeOnOppositeDirection() must be true. Thus during time te one of the adjacent
edge of u is missing while the other one is present. As after the execution of the function
GiveDirection the two robots are considering two global opposite directions, one robot is
able to move during the Move phase of round te while the other one cannot. Thus one of
the robot of S is still on node u during the Look phase of time te+1 and it considers a global
direction opposite to the one considered by the other robot of S.

r3 cannot be on node u during the Look phase of time te.

To prove this statement we also process by contradiction. Assume that r3 is on node u during
the Look phase of time te. This implies that the three robots meet at a certain time between
[ts, te[. Moreover note that the three robots must be edge-activated to be able to meet. Call
te act the last time of [ts, te[at which the robots r1 and r2 are edge-activated. By definition
of a long-lived tower, te act exists.

There are no 3-long-lived towers in E . Therefore either the three robots meet at time te act+1
and were not on a same node during the Look phase of time te act, or they meet at time te act+1
and were on a same node at time te act but were considering different global directions during
the Move phase of time te act, otherwise there is a contradiction with the fact that there is no
3-long-lived towers in E .

Case 2.1: The three robots meet at time te act + 1 and were not on a same node
during the Look phase of time te act.

During the Look phase of time te act the robot r3 is not on the same node as the robots
r1 and r2. This implies that the values of the predicates NumberOfRobotsOnNode()
of r1 and r2 are equal to 2. At time te act the robots of S are edge-activated thus
during the call to the function Update at round te act the values of their respective
variables NumberRobotsPreviousEdgeActivation are updated with the values of their
predicates NumberOfRobotsOnNode(), thus are updated to 2. Moreover the values of
the variables are only updated during the Compute phase of rounds where the robots
are edge-activated. By definition of te act the next time after te act when the robots
are edge-activated is time te. Thus at the end of the Look phase of time te the vari-
ables NumberRobotsPreviousEdgeActivation of the robots of S are still equal to 2.
Besides from time te act + 1 to the Look phase of time te the three robots are not edge-
activated thus they stay on the same node. Thus during the Look phase of time te
the robots r1 and r2 wake up with the r3 on the same node as them, thus their pred-
icates NumberOfRobotsOnNode() have thus a value of 3. As proved previously T is

23

broken at time te because r1 and r2 execute the function GiveDirection. However
they can execute this function only if the condition “NumberOfRobotsOnNode() =
NumberRobotsPreviousEdgeActivation” is true. During the Look phase of time te
this condition is not true, thus here r1 and r2 cannot execute the function GiveDirec-

tion during the Compute phase of time te and thus they cannot separate them during
the Move phase of time te, which is a contradiction with the fact that the tower T breaks
at time te.

Case 2.2: The three robots meet at time te act + 1 and were on a same node
during the Look phase of time te act but considering opposite global directions
during the Move phase of time te act.

At time te act the three robots are on a same node, however during the Move phase of
time te act the robots consider different global directions. As they are again on a same
node at time te act+1 and that they are edge-activated at time te act, this implies that the
two adjacent edges to the location where the three robots are during the Look phase of
time te act are present. Therefore during the Move phase of time te act the robots are able
to move, and thus during the call to the function Update of round te act the variables
HasMovedPreviousEdgeActivation of the three robots are set to true. Moreover the
values of the variables are only updated during the Compute phase of rounds where the
robots are edge-activated. By definition of te act the next time after te act when the robots
are edge-activated is time te. Thus during the Look phase of time te the robots of S have
their variables HasMovedPreviousEdgeActivation to true. As proved previously T is
broken because r1 and r2 execute the function GiveDirection. However they can exe-
cute this function only if their variables HasMovedPreviousEdgeActivation are false.
During the Look phase of time te the variables HasMovedPreviousEdgeActivation of
r1 and r2 are not false, thus they cannot execute the function GiveDirection during
the Compute phase of time te and thus they cannot separate them during the Move
phase of time te, which is a contradiction with the fact that the tower T breaks at time
te.

Therefore r3 cannot be on node u during the Look phase of time te.

This prove the lemma.

The next two lemmas show that the whole ring is visited between two consecutive 2-long-
lived towers if these two towers satisfy some properties. They are used in the proof of the “sen-
tinels”/“visitor” scheme.

Lemma 4.11. Consider an execution E without any 3-long-lived tower but containing a 2-long-lived
tower T = (S, [ts, te]). If there exists another 2-long-lived tower T ′ = (S′, [t′s, t

′
e]) after T in E and

if T ′ is the first 2-long-lived tower in E such that t′s > te + 1, then all the edges of G have been
crossed by at least one robot between time te and time t′s.

Proof. Consider an execution E starting from a configuration without a 3-long-lived tower. By
lemma 4.8 we know that it is not possible to have a 3-long-lived tower during the whole execution.

Consider two 2-long-lived towers T and T ′ (T 6= T ′), such that T ′ is the next 2-long-lived tower
after T in E . Assume that T starts at time ts and ends at time te, and T ′ starts at time t′s and
ends at time t′e, with t′s > te + 1.

24

We want to prove that during [te, t
′
s] each edge of G is crossed by at least one robot.

By contradiction assume that there exists an edge e that is not crossed by no robot during time
[te, t

′
s].
Assume that T is composed of the robots r1 and r2. Assume that during the Look phase of time

te the tower T was located on a node u0, thus by lemma 4.10, during the Look phase of time te+1
one robot among r1 and r2 is on u0 considering a global direction opposed to the one considered
by the other robot of S.

Without lost of generality, assume that it is r1 that is on node u0 at during the Look phase of
time te + 1 and that it considers the counter clockwise direction while r2 considers the clockwise
direction.

Call u1 the adjacent node of u0 in the clockwise direction.
As during the Look phase of time te+1 r2 considers the clockwise direction, and as the variables

are only updated during the Compute phase of rounds, this implies that during the Move phase of
round te, r2 was considering the clockwise direction. Moreover as during the Look phase of time
te +1 only one robot among the robots of S is present on u0, this implies that r2 succeeds to move
during the Move phase of round te. Thus during the Look phase of time te + 1 r2 is on node u1.
Note that the edge linking u0 to u1 has been crossed by r2 during the Move phase of round te.

Note {u0, u1, . . . , uk, . . . , un−1} the nodes of G in the clockwise direction from the node u0, with
k an integer such that 2 ≤ k ≤ n− 2.

From the two previous paragraphs we can conclude that the edge e permits to go from a
node ui to a node u(i+1) (mod n) considering the clockwise direction, with i an integer such that
1 ≤ i ≤ (n− 1).

By lemma 4.10 we know that r3 is not on node u0 during the Look phase of time te.
During the Look phase of time te +1 the robot r3 considers either the clockwise or the counter

clockwise direction.

Case 1: During the Look phase of time te + 1 r3 considers the clockwise direction.

As the variables are only updated during the Compute phase of rounds, during the Move
phase of round te r3 considers the clockwise direction.

For the same reason during the Move phase of time te r1 considers the counter clockwise
direction. Moreover during the Look phase of time te, r1 is on node u0. However during the
Look phase of round te + 1 r1 is still on node u0, this implies that the edge linking un−1 to
u0 is missing at time te.

As during the Look phase of time te r3 is not on node u0, and as r3 considers the clockwise
direction during the Move phase of time te, and as the edge linking un−1 to u0 is missing at
time te, then r3 cannot be on uO during the Look phase of time te + 1.

During the Look phase of time te+1, r3 is thus on a node among {u1, . . . , uk, . . . , un−1} and
r1 is alone on u0.

As e is not crossed by no robot, and that during the Look phase of time te+1 r3 is considering
the clockwise direction we consider two cases. First we consider the case where r3 is on a
node among {u1, . . . , ui, and secondly we consider the case where r3 is on a node among
{u(i+1) (mod n), . . . , un−1}.

By the definition of a long-lived tower and according to lemma 4.4, for two robots to be
involved in a 2-long-lived tower they need to wake up on a same node at a certain round i

25

and consider the same global direction from time i until the time when the tower breaks.

To have two robots on the same node, a meeting must happen.

Case 1.1: During the Look phase of time te + 1 r3 is on a node among {u1, . . . ,ui}.

As long as the robots are alone on their respective nodes, their predicatesWeAreStuckIn-
TheSameDirection() and IWasStuckOnMyNodeAndNowWeAreMoreRobots() are false
(as the condition “NumberOfRobotsOnNode() > 1” and the condition “NumberOf -
RobotsOnNode() > NumberRobotsPreviousEdgeActivation” cannot be true), thus
they cannot change their direction. Thus as long as there is no meeting the robots
r2 and r3 consider the clockwise direction while r1 considers the counter clockwise di-
rection.

As during the Look phase of time te, r2 is on the node u0, r3 is on a node among
{u1, . . . , ui}, as r2 and r3 are both considering the clockwise direction during the Move
phase of time te, as r1 is on node u0 during the Look phase of time te and during
the Look phase of time te + 1 considering the counter clockwise direction during the
Move phase of time te, as the robots do not change their directions as long as they
are alone on their respective nodes, and as no robot can cross e, the first meeting
happens between r2 and r3 because r3 was stuck on a node and r2 was moving. Call
te + 1 ≤ tmeet ≤ t′s, the time at which occurs the first meeting after the tower T

breaks. For a meeting to happen at time tmeet between r2 and r3, the two robots are
necessarily edge-activated. And as seen previously r2 was thus moving during the Move
phase of round tmeet − 1, while r3 was not moving during the Move phase of round
tmeet − 1. As r2 and r3 are edge-activated during the round tmeet − 1, their variables
HasMovedPreviousEdgeActivation and NumberRobotsPreviousEdgeActivation are
updated. For r2 its variableHasMovedPreviousEdgeActivation is updated to true. For
r3 its variable HasMovedPreviousEdgeActivation is updated to false, and its variable
NumberRobotsPreviousEdgeActivation is updated to 1.

Call tact (tact ≥ tmeet) the first time after tmeet when the robots r2 and r3 are edge-
activated. The variables are only updated during the Compute phase of rounds where the
robots are edge-activated. Therefore at the end of the Look phase of time tact the pred-
icates WeAreStuckInTheSameDirection() and IWasStuckOnMyNodeAndNowWe-
AreMoreRobots() of r2 are false, as its variable HasMovedPreviousEdgeActivation is
true, so after the Compute phase of round tact r2 still considers the clockwise direction.
However at the end of the Look phase of round tact the predicate IWasStuckOnMyNode-
AndNowWeAreMoreRobots() of r3 is true, thus it considers the counter clockwise di-
rection after the Compute phase of time tact. Thus r2 and r3 are considering opposite
global directions during the Move of round tact, they are thus not able to form a 2-long-
lived tower. Moreover r1 cannot help in forming a tower (and thus neither a 2-long-lived
tower) as it is considering the counter clockwise direction and it is on a node among
{u(i+1) (mod n) . . . u0} during the Look phase of time tact.

Moreover at time tact we are in a symmetrical situation compared to the situation that
happened at time te. Indeed during the Move phase of round tact a robot is considering
the clockwise direction (r2) while the two other robots are considering the counter clock-
wise direction. Two robots (r2 and r3) are on a same node during the Look phase of time
tact but are not on a same node during the Look phase of time tact +1. The third robot

26

of the system (r1) is not on the same node as r2 and r3 during the Look phase of time
tact. Moreover if we call u′0 the node where r2 is located during the Look phase of time
tact + 1. Then we can denote by {u′0, u

′
1, . . . , u

′
p, . . . u

′
n−1} the nodes of G in the counter

clockwise direction from u′0, with p an integer such that 2 ≤ p′ ≤ n − 2. The edge(s)
between u′0 and the position where r3 is located during the Look phase of time tact + 1
have been visited during the Move phase of time te. During the Move phase of time tact
r2 and r3 are considering two opposite global directions, and separate them as they are
edge-activated. Thus during the Look phase of time te + 1, r3 is either on node u′1 (if
only one of the robots among r2 and r3 has moved during the Move phase of round tact)
or on node u′2 (if both r2 and r3 have moved during the Move phase of round tact). Thus
the edge e is an edge permitting to go from u′j to u′(j+1) (mod n) considering the counter

clockwise direction, with either 1 ≤ j ≤ (n − 1) or 2 ≤ j ≤ (n − 1). Besides r1 is on
a node among {u′1, . . . , u

′
j} considering the counter clockwise direction during the Look

phase of time tact (as it was on a node among {u(i+1) (mod n), . . . , u0} between the Look
phase of time te and the Look phase of time tact always considering the counter clockwise
direction, where u(i+1) (mod n) equals uj

′, and u0 is a node among {u′1, . . . , u
′
j}).

Thus using symmetric arguments and then recurrence we can say that when r3 is on
a node among {u1, . . . , ui, all the meetings involving two robots do not lead to the
formation of a 2-long-lived tower. Thus there is a contradiction with the fact that T ′

can be formed without crossing e.

Case 1.2: During the Look phase of time te + 1 r3 is on a node among {ui+1, . . . ,un−1}.

When r3 is on a node among ui+1, . . . un−1}, as no robots can cross e and that r3 and
r2 are considering the clockwise direction while r1 is considering the counter clockwise
direction, and that during the Look phase of round te + 1 r2 is on node u1 and r1 is on
node u0, then the first meeting that happens after T breaks is either between r3 and r1
or between r3 and r2.

Case 1.2.1: The first meeting after time te happens between r3 and r1.
First note that r1 and r3 cannot meet on where r2 is located.
The two robots r1 and r3 are considering two opposite global directions during
the Move phase of round te. Moreover they keep consider these directions as long
as they are isolated. Thus, as the variables dir are updated during the Compute
phase of rounds, when r1 and r3 meet during the Look phase of time t′meet they are
considering two opposite global directions, implying that both were moving during
the Move phase of time t′meet − 1. As the robots meet during the Look phase
of time t′meet − 1, the robots r1 and r3 were edge-activated during time t′meet −
1. Thus during the call to the function Update of time t′meet − 1 the variables
HasMovedPreviousEdgeActivation of r1 and r3 are set to true. Moreover the
values of the variables are only updates during the Compute phase of rounds where
the robots are edge-activated. Thus during the Look phase of time t′act, where
t′act ≥ t′meet is the first time after t′meet when the robots r1 and r3 are edge-activated,
their variables HasMovedPreviousEdgeActivation are still true. Thus at the end
of the Look phase of time t′act the predicates WeAreStuckInTheSameDirection()
and IWasStuckOnMyNodeAndNowWeAreMoreRobots() of these two robots are
false, thus they still consider the same direction. So they are not able to form a 2-
long-live tower. As the robots r1 and r3 are edge-activated at time t′act they separate

27

themselves during the move phase of time t′act. Moreover r2 cannot meet r1 or r3 at
a time between time t′meet and t′act as it is considering the clockwise direction and
that it is on a node among {u1} . . . , {ui}.
Besides at time t′act we are in a situation similar to the one that we described at
time te.
Thus using identical arguments that the one used when r3 is on a node among
{u1, . . . , uk and meet for the first time after T breaks r2, we can conclude that all
the meetings involving two robots do not lead to the formation of a 2-long-lived
tower. Thus there is a contradiction with the fact that T ′ can be formed without
crossing e.

Case 1.2.2: The first meeting after time te happens between r3 and r2.
r3 is on a node among ui+1, . . . , un−1}, considering the clockwise direction. We
know that the three robots of the system keep consider their respective direction
as long as there is no meeting. As during the Look phase of time te + 1, r2 is
on node u1 considering the clockwise direction, and that r2 does not change its
direction until the meeting, and that e cannot be crossed, some adjacent edges to
the positions where r3 is located must be present in the clockwise direction for r3
to meet r2. However r1 is considering the counter clockwise direction and it is on
node u0 during the Look phase of time te + 1 thus as r3 and r1 do not meet first,
there exists an edge which is crossed by r1 and r3 at the same time tcross but in
reverse direction. Thus the robot r1 and r3 switch their position during the Move
phase of time tcross. At time tcross we are in a situation similar to the one that we
described at time te. Using similar arguments we can thus conclude that that T ′

can be formed without crossing e.

Thus when r3 is considering the clockwise direction whatever its location during the Look
phase of time te + 1, we cannot form the 2-long-lived tower T ′ if e is not crossed.

Case 2: During the Look phase of time te + 1 r3 considers the counter clockwise
direction.

We know that during the Look phase of time te, r3 is not on node u0. Moreover as the variable
dir is only updated during the Compute phases of rounds, r3 consider the counter clockwise
during the Move phase of time te. We consider 2 different cases described below.

Case 2.1: During the Look phase of time te r3 is on a node among {ui+1, . . . ,un−1}.

Here we are in a situation symmetrical to the one described Case 1.1. So using symmet-
rical arguments we can conclude that T ′ cannot be formed if e is not crossed.

Case 2.2: During the Look phase of time te r3 is on a node among {u1, . . . ,ui}.

As during the Move phase of time te r3 considers the counter clockwise direction if there
exists an adjacent edge to its current direction in the counter clockwise direction, then
r3 moves.

As proved previously at time te the edge linking node u0 to u1 is present.

Thus here we consider two cases, the case where r3 is on node u1 during the Look phase
of time te and thus on node u0 during the Look phase of time te+1, and the case where
r3 is on a node among {u1, . . . , ui during the Look phase of time te + 1.

28

Case 2.2.1: r3 is on node u0 during the Look phase of time te + 1.
If during the Look phase of time te + 1 r3 is on node u0 then the first time tact”
(tact” ≥ te + 1) after time te + 1 the robots r1 and r3 are edge-activated they must
separate themselves, otherwise r1 and r3 are involved in a 2-long-lived tower which
is a contradiction with the fact that t′s > te+1. Moreover as during the Look phase
of time te r3 is not on node u0, if during the Look phase of time te +1 it is on node
u0 this implies that it has moved during the Move phase of round te. So its variable
HasMovedPreviousEdgeActivation is set to true during the call to the function
Update of time te. As the values of the variables are updated only during the
Compute phases of rounds where the robots are edge-activated, during the Look of
phase of time te + 1, the variable HasMovedPreviousEdgeActivation of r3 is still
true. Therefore it does not change its moving direction after the Compute phase
of round tact”. Therefore if r3 is on node u0 during the Look of phase te + 1, the
next time the robots are edge-activated, r1 has to change its moving direction. As
at time tact” r1 and r3 are edge-activated, and as during the Move phase of this
round they consider two opposite global directions, they separate them. So during
the Look phase of time tact” + 1 r1 and r3 are not on the same node. At time tact”
we are thus in a situation identical to the one described in case 1.1. So we can use
similar arguments to show that T ′ cannot be formed if e is not crossed.

Case 2.2.2: r3 is on node among {u1, . . . ,ui} during Look phase of time te + 1.
This case is symmetrical to the case 1.2, thus using symmetrical arguments we show
that there is a contradiction with the fact that T ′ can be formed without crossing e.

All the cases have been treated, and prove the lemma.

Lemma 4.12. Consider that there are no 3-long-lived towers in E, and let Ti = (Si, [ts i, te i])
be the ith 2-long-lived tower of E (with i ≥ 2). If Ti+1 = (Si+1, [ts i+1, te i+1]) exists such that
ts i+1 = te i +1, then all the edges of G have been crossed by at least one robot between time ts i− 1
and time ts i+1.

Proof. Assume that E does not contain 3-long-lived towers.
Consider Tfirst = (Sfirst, [tsfirst, tefirst]) the first 2-long-lived tower of E . Consider a 2-long-

lived tower Ti = (Si, [ts i, te i]) of E , with i ≥ 2 and such that Ti corresponds to the ith 2-long-lived
tower of E .

First note that once a 2-long-lived tower T = (S, [ts, te]) is broken, the next 2-long-lived tower
in E can only appear at time t ≥ te+1. Indeed, there are only three robots in the system. Moreover
by lemma 4.10 we know that during the Look phase of time te the robot that is not involved in the
tower T cannot be on the same node as the robots of S. Besides if r3 is on a same node as the robots
of S during [t3s, t3e] ⊆ [ts, te] and if during [t3s, t3e[the robots are at least one time edge-activated
then the three robots are forming a 3-long-lived tower, which leads to a contradiction with the fact
that there is no 3-long-lived towers in E . This implies that a 2-long-lived tower other than T cannot
be present in E during [ts, te]. Therefore, the next 2-long-lived tower of E can only appear from
time te + 1 included.

During the Look phase of time ts i the robot not involved in Ti is considering a global
direction opposed to the one considered by the robots of Si, and it is on a node
different from the one where the robots of Si are located.

29

To prove this statement, we analyze how Ti is constructed.

Case 1: Construction of the 2-long-lived tower Ti = (Si, [ts i, te i]) such that ts i = te i−1 + 1.

Assume that Ti−1 is composed of the robots r1 and r2 and that they are on a node u of
G during the Look phase of time te i−1.

According to lemma 4.10 r3 is not on u during the Look phase of time te i−1, and
moreover during the Look phase of time te i−1 + 1 one robot of Si−1 is located at u

considering a global direction opposed to the one considered by the other robot of Si−1.
Assume that at time te i−1+1 this is r1 that is still on node u, and that it is considering
the counter clockwise direction while r2 is considering the clockwise direction.

Call u1 the node of G adjacent to u and such that a robot on node u must cross an edge
in the clockwise direction to go on node u1. Call u2 the node of G adjacent to u1 and
such that a robot on node u1 must cross an edge in the clockwise direction to go on node
u2.

Do the robots r1 and r2 can be involved in Ti?
If r1 and r2 form Ti, this implies that they are together on the same node during
the Look phase of time te i−1 + 1. By assumption r1 is on node u during the Look
phase of time te i−1 + 1. However according to lemma 4.10, only one robot of Si−1

is on node u during the Look phase of time te i−1 + 1. Thus r2 cannot be on node
u during the Look phase of time te i−1. Therefore r1 and r2 cannot form Ti.

Do the robots r2 and r3 can be involved in Ti?
As seen previously, r2 cannot be on node u during the Look phase of time te i−1+1.
As r2 is on node u during the Look phase of time te i−1, this implies that r2 has
moved during the Move phase of time te i−1. The variables dir are modified only
during the Compute phases of rounds. During the Look phase of time te i−1+1, r2 is
considering the clockwise direction, thus it considers the clockwise direction during
the Move phase of time te i−1. Therefore at time te i−1 it exists an edge linking node
u and node u1, and r2 is on node u1 during the Look phase of time te i−1 + 1. If r3
and r2 form a 2-long-lived tower at time te i−1 + 1 it implies that these two robots
are on the same node during the Look of time te i−1 + 1. Thus r3 has to be on
node u1 during the Look phase of time te i−1 + 1. As every robot can only cross at
most an edge per round, for the robot r3 to be on node u1 during the Look phase
of te i−1 + 1 it has to be either on node u1 or on an adjacent node of u1 during the
Look phase of time te i−1. As by lemma 4.10 r3 is not on node u at time te i−1, the
only way for r3 to be on node u1 during the Look phase of round te i−1 + 1 is to be
during the Look phase of time te i−1 either on node u1 or on node u2. If r3 is on
node u1 during the Look phase of time te i− 1 as the edge linking u to u1 is present
at time te i−1, r3 has to consider the clockwise direction and the edge linking node
u1 to node u2 must be missing (otherwise r3 moves and thus it is not on node u1
during the Look phase of time te i−1 + 1). Similarly if r3 is on node u2 during the
Look phase of time te i−1 it has to consider the counter clockwise direction and the
edge linking node u2 to node u1 must be present at time te i−1, otherwise r3 cannot
be on node u1 during the Look phase of time te i−1 + 1.
Assume first that during the Look phase of time te i−1 r3 is on node u1 and the
edge linking node u1 to node u2 is missing. As during the Look phase of time

30

te i−1 r2 and r3 are not on a same node but that they are on a same node dur-
ing the Look phase of time te i−1 + 1, this implies that they are edge-activated
at time te i−1. Thus during the call to the function Update of time te i−1 the
variable HasMovedPreviousEdgeActivation of r2 is set to true while the variable
HasMovedPreviousEdgeActivation of r3 is set to false. Moreover during the call
to the function Update of time te i−1 the variable NumberRobotsPreviousEdge-
Activation of r3 is set to 1 as the two other robots of the system are not on the
same node as it during the Look phase of time te i−1. Call tact (tact ≥ te i−1 + 1)
the first time after te i−1 + 1 at which r2 and r3 are edge-activated. The variables
of a robot are only updated during Compute phases of rounds where this robot is
edge-activated. Thus at the end of the Look phase of time te i−1 + 1 the predicates
WeAreStuckInTheSameDirection() and IWasStuckOnMyNodeAndNowWeAre-
MoreRobots() of r2 are false as the value of its variable HasMovedPreviousEdge-
Activation is true, thus it still considers the clockwise direction while the predicate
IWasStuckOnMyNodeAndNowWeAreMoreRobots() of r3 is true, thus it changes
its direction to consider the counter clockwise direction. Thus the robots r2 and r3
separate themselves during the Move phase of time tact. Therefore they are not
involved in a 2-long-lived tower.
Assume secondly that r3 is on u2 during the Look phase of time te i−1 considering
the counter clockwise direction during the move phase of time te i−1 and that the
edge linking u1 and u2 is present at time te i−1. As seen previously during time te i−1

the two robots are edge-activated. The two robots move during the Move phase of
time te i−1. Thus during the call to the function Update of time te i−1 the variables
HasMovedPreviousEdgeActivation of r2 and r3 are set to true. Moreover, also as
seen previously the first time greater or equal to te i−1 when the robots r2 and r3
are edge-activated, their variables have the same values as after the Compute phase
of time te i−1. Thus the first time greater or equal to te i−1 when the robots r2
and r3 are edge-activated their predicates WeAreStuckInTheSameDirection() and
IWasStuckOnMyNodeAndNowWeAreMoreRobots() are false. Thus they keep
consider their respective global directions, which are two opposite global directions.
Thus the robots r2 and r3 separate themselves during the Move phase of the first
time greater or equal to te i−1 where they are edge-activated. Therefore they are
not involved in a 2-long-lived tower.
Thus whatever the position of r3 during the Look phase of time te i−1, the robots
r2 and r3 cannot be involved in Ti.

Do the robots r1 and r3 can be involved in Ti?
r1 stays on node u from time te i−1 to the Look phase of time te i−1 + 1 while
considering the counter clockwise direction and while being edge-activated (as the
edge linking node u to node u1 is present in the system at time te i−1), proving that
the adjacent edge to u in the counter clockwise direction is missing at time te i−1.
By lemma 4.10 r3 is not on node u during the Look phase of time te i−1, and as
the adjacent edge in the counter clockwise direction of u is missing at time te i−1,
if r3 is on node u during the Look phase of time te i−1 + 1 it has to be located on
node u1 during the Look phase of time te i−1 and it has to consider the counter
clockwise direction during the Move phase of this time. During the Look phase of

31

time te i−1 + 1 both r1 and r3 are thus considering the counter clockwise direction.
During the call to the function Update of time te i−1 the variable HasMoved-
PreviousEdgeActivation of r1 is set to false, while the variableHasMovedPrevious-
EdgeActivation of r3 is set to true. Moreover during the call to the functionUpdate

of time te i−1 the variable NumberRobotsPreviousEdgeActivation of r1 is set to 2,
as it is on node u with the robot r2 during the Look phase of time te i−1, and as by
lemma 4.10 r3 cannot be on node u during the Look phase of this time.
Call tact (tact ≥ te i−1 + 1) the first time after te i−1 + 1 at which r1 and r3 are
edge-activated. The variables of a robot are only updated during Compute phases
of rounds where this robot is edge-activated. Thus during the Look phase of time
tact the variables of r1 and r3 have the same values as after the Compute phase of
time te i−1.
When the robots are edge-activated, either both adjacent edges of u are present or
only one. Thus during tact either the adjacent edge in the counter clockwise direction
of u is present or not.
Assume that the adjacent edge in the counter clockwise direction of u is present dur-
ing tact. The predicates WeAreStuckInTheSameDirection() and IWasStuckOn-
MyNodeAndNowWeAreMoreRobots() of r3 are false as its variable HasMoved-
PreviousEdgeActivation is true. Thus r3 still consider the counter clockwise di-
rection during the Move phase of time tact. For the robot r1 as during the Look
phase of time tact its variable dir indicates the counter clockwise direction and as
the edge on the counter clockwise direction of its current location is present at
time tact, its predicate ExistsEdgeOnCurrentDirection() is true, thus its pred-
icate WeAreStuckInTheSameDirection() is false at time tact. Moreover as by
lemma 4.10 r2 is not on node u during the Look phase of time te i−1 + 1, and
as for robots to meet at a time t they need to be edge-activated at time t − 1,
then during the Look phase of time tact r2 cannot be on node u, thus the predi-
cate NumberOfRobotsOnNode() of r1 is equal to 2 at time tact. Thus the con-
dition “NumberOfRobotsOnNode() > NumberRobotsPreviousEdgeActivation”
is not true for r1 at the end of the Look phase of time tact, thus its predicate
IWasStuckOnMyNodeAndNowWeAreMoreRobots() is false. Thus the predicates
WeAreStuckInTheSameDirection() and IWasStuckOnMyNodeAndNowWeAre-
MoreRobots() of r1 are false at the end of the Look phase of time tact. Thus r1
considers the counter clockwise direction during the Move phase of time tact. Thus
the two robots consider the same global direction during the Move phase of time
te i−1 + 1. Therefore they are involved in a 2-long-lived tower.
Assume that the adjacent edge in the counter clockwise direction of u is not present
during tact. The predicates WeAreStuckInTheSameDirection() and IWasStuck-
OnMyNodeAndNowWeAreMoreRobots() of r3 are false as its variableHasMoved-
PreviousEdgeActivation is true. Thus r3 considers the counter clockwise direction
during the Move phase of time tact. As by assumption at time tact r1 and r3 are
edge-activated, if the adjacent edge in the counter clockwise direction of u is missing
at time tact then this implies that the edge linking node u to node u1 is present a this
time. For the same reasons as previously the predicate NumberOfRobotsOnNode()
of r1 is equal to 2. Thus all the conditions of the the predicate WeAreStuckInThe-

32

SameDirection() of r1 are true. Therefore during the Compute phase of round tact
r1 execute the function GiveDirection. If the function modifies the variable dir of
r1 such that it considers the clockwise direction during the Move phase of time tact
then r1 and r3 separate them during the Move phase of this time, so they are not
involved in a 2-long-lived tower. However if the function modifies the variable dir

of r1 such that it considers the counter clockwise direction during the Move phase
of time tact then r1 and r3 are involved in Ti.
In the two cases where the 2-long-lived tower in formed at time te i−1 +1, note that
by lemma 4.10 r2 cannot be on node u during the Look phase of time te i−1 +1. As
r2 is on node u during the Look phase of time te i−1, this implies that r2 has moved
during the Move phase of time te i−1. During the Look phase of time te i−1+1, r2 is
considering the clockwise direction. As the variable dir is modified only during the
Compute phases of rounds, then during the Move phase of time te i−1 r2 considers
the clockwise direction. Therefore at time te i−1 it exists an edge linking node u and
node u1, and r2 is on node u1 during the Look phase of time te i−1 + 1.

Thus Ti is necessarily formed of r1 and r3. Note moreover that during the Look phase of
time te i−1 + 1 the robot r2 is on node u1 considering a global direction opposed to the
one considered by the robots of Ti. Besides the edge linking u to u1 has been crossed by
r3 and by r2 during the Move phase of time te i−1 which is equal to time ts i + 1.

Case 2: Construction of the 2-long-lived tower Ti = (Si, [ts i, te i]) such that ts i > te i−1 + 1.

As the next 2-long-lived tower of Ti−1 in E starts at time ts i, and as by assumption
ts i > te i−1 + 1, then from time te i−1 + 1 to time ts i − 1 the robots cannot form
2-long-lived towers. In this case by lemma 4.7 the robots cannot form 3-short-lived
towers. Moreover, by assumption the execution does not contain 3-long-lived towers.
This implies that from time te i−1 +1 to time ts i − 1 the robots are only either isolated
or forming 2-short-lived towers.

At time ts i two robots are forming a 2-long-lived tower. This implies that during the
Look phase of round ts i − 1 the two robots were not on a same node. However during
the Look phase of time ts i they are on a same node. This implies that at time ts i − 1
the robots involved in Ti are edge-activated.

Call tact bis (tact bis ≥ ts i) the first time after ts i where the two robots involved in the
tower formed at time ts i are edge-activated.

Call tl act the last time in [te i−1 +1, ts i − 1[such that at least two robots of the system
are edge-activated.

Property 1: To obtain a 2-long-lived tower at time ts i there must exist a
2-short-lived tower formed at time tl act + 1.
We prove this statement by contradiction. Assume that at time tl act + 1 there is
no 2-short-lived tower in E . This implies that the three robots are isolated during
the Look phase of time tl act + 1. For two robots to form a 2-short-lived tower at
time t they have to meet at a time t, and to meet at time t the two robots have
to be edge-activated. As at time tl act + 1 the robots are isolated, and by definition
of tl act, then from time tl act + 1 to the Look phase of time ts i − 1 the robots are
isolated.
To have a 2-long-lived tower at time ts i a meeting must happen between robots at
time ts i. As proved previously using lemma 4.7 we know that at most two robots

33

can meet at each instant time in [te i−1 + 1, ts i − 1]. The meeting can then occurs
at time ts i between two robots considering either two opposite global directions or
the same global direction.
If the meeting at time ts i happens between two robots considering reverse global
directions during the Move phase of round ts i − 1 then the two robots have moved
during this Move phase. Indeed, if one robot is stuck (there is no adjacent edge to
the current location of the robot in the direction it considers) as the other robot
considers the opposite global direction it cannot join it. So here the two robots are
moving during the Move phase of round ts i − 1. From time ts i included to time
tact bis excluded the robots of the tower are not edge-activated, thus their predicates
WeAreStuckInTheSameDirection() and IWasStuckOnMyNodeAndNowWeAre-
MoreRobots() are false and thus they still consider their own global direction. More-
over when the robots are not edge-activated, their values of variables do not change.
Thus when they wake-up at time tact bis, the predicates WeAreStuckInTheSame-
Direction() and IWasStuckOnMyNodeAndNowWeAreMoreRobots() of the two
robots are false (as their values of variables HasMovedPreviousEdgeActivation

was set to true during the call to the function Update of round ts i − 1 and as
these values have not changed since this time). So they still conserve their reverse
global directions. So they separate during the move phase of time tact bis, and thus
no 2-long-lived tower has been created at time ts i.
If the meeting happens at time ts i between two robots r1 and r2 considering the
same global direction, then this implies that one of the robot is stuck on a node.
Assume that it is r1 that does not move during the Move phase of time ts i − 1.
As the variables of a robot are only updated during the Compute phases of rounds
where this robot is edge-activated, the values of the variables of r1 and r2 during
the Look phase of time tact bis are identical to the one during the Compute phase
of round ts i − 1. As proved previously during the Look phase of time ts i − 1 the
robots are isolated. Therefore during the call to the function Update of round
ts i−1 the variables NumberRobotsPreviousEdgeActivation of r1 and r2 are set to
1. Thus for the two robots r1 and r2 the condition “NumberOfRobotsOnNode() >
NumberRobotsPreviousEdgeActivation” is true at the end of the Look phase of
time tact bis. Moreover as during the Move phase of time ts i−1 the robot r1 has not
moved the value of its variable HasMovedPreviousEdgeActivation is set to false
during the call to the function Update of time ts i − 1, while the one of the robot
r2 is set to true. Thus at the end of the Look phase of time tact bis, the predicates
WeAreStuckInTheSameDirection() and IWasStuckOnMyNodeAndNowWeAre-
MoreRobots() are false for the robot r2 which thus conserves its direction after the
Compute phase of time tact bis while the predicate IWasStuckOnMyNodeAndNow-
WeAreMoreRobots() of robot r1 is true, thus it considers a reverse direction. So
after the Compute phase of time tact bis the robots r1 and r2 are considering two
opposite global directions and thus they separate themselves. So there is no 2-long-
lived tower formed at time ts i.
So we prove that to have a 2-long-lived tower from a situation where the robots are
either isolated or forming 2-short-lived tower, if we want to obtain a 2-long-lived
tower at a time ts i, then a 2-short-lived tower must be formed at time tl act + 1,

34

where tl act is the last time in [te i−1+1, ts i− 1[such that at least two robots of the
system are edge-activated.

Property 2: To obtain a 2-long-lived tower at time ts i the 2-short-lived tower
formed at time tl act + 1 must be on a node such that one of its adjacent
edge is missing at time tl act + 1.
We prove this statement by contradiction. Consider a 2-short-lived tower Tshort

formed at time tl act + 1 on a node v. As tl act corresponds to the last time in
[te i−1 + 1, ts i − 1[such that at least two robots of the system are edge-activated,
and as robots of a 2-short-lived tower can separate them only during the Move
phases of rounds where they are edge activated, then the robots of Tshort are still
on node v during the Look phase of time ts i − 1. Assume by contradiction that at
time ts i− 1 the two adjacent edges of v are present in the system. Assume that the
tower Tshort is composed of the robots r1 and r2.
By definition of a 2-short-lived tower we know that during the Move phase of time
ts i − 1 r1 and r2 separate them. As the robots executing our algorithm consider at
each instant time a direction, for the robot to separate them, they have to consider
two opposite global directions. Thus during the Move phase of time ts i − 1 r1 and
r2 consider two opposite global directions. If the two adjacent edges to v are present
at time ts i − 1 then r1 and r2 move during the Move phase of time ts i − 1.
At time ts i two robots must be again together on a same node (to form the 2-long-
lived tower Ti). Without lost of generality assume that it is r1 that is on a same
node with an other robot at time ts i. Call rmeet the robot on the same node than
r1 during the Look phase of round ts i. And assume that they meet on a node w.
As r1 has moved, during the Look phase of round ts i−1, then its variableHasMoved-
PreviousEdgeActivation has been set to true during the call to the function Up-

date of time ts i− 1. As the variables of a robot are only updated during the Com-
pute phases of rounds where this robot is edge-activated, during the Look phase of
time tact bis the variableHasMovedPreviousEdgeActivation of r1 is still true. Thus
at the end of the Look phase of time tact bis the predicatesWeAreStuckInTheSame-
Direction() and IWasStuckOnMyNodeAndNowWeAreMoreRobots() of r1 are
false, and so it keeps consider the same direction as the one it considers during the
Move phase of time ts i − 1. Without lost of generality assume that this direction is
the clockwise direction.
w corresponds thus to the adjacent edge of v in the clockwise direction.
As r1 arrives on node w considering the clockwise direction, as there is no 2-long-
lived tower at time ts i− 1, and as each robot can cross at most one edge per round,
then during the Move phase of time ts i − 1 r1 is the only robot which crosses the
edge linking node v to node w. Thus for rmeet to be on node w during the Look
phase of time ts i, during the Move phase of round ts i − 1 either rmeet has moved
in the counter clockwise direction, or it was stuck on v.
In the first case, during the call to the function Update of round ts i − 1 the vari-
able HasMovedPreviousEdgeActivation of rmeet is set to true. As during the Look
phase of round tact bis its variable HasMovedPreviousEdgeActivation is still true,
then at the end of the Look phase of this time its predicates WeAreStuckInThe-
SameDirection() and IWasStuckOnMyNodeAndNowWeAreMoreRobots() are

35

false, and so it keeps consider the counter clockwise direction.
In the second case, as r1 crosses the edge linking node v to node w during the Move
phase of time ts i−1, this implies that if rmeet is stuck on node v, then it is considering
the clockwise direction during the Move phase of round ts i−1, and the adjacent edge
of w in the clockwise direction is missing at time ts i− 1. As during the Look phase
of time ts i − 1, r1 and r2 are on node v, this implies that rmeet is alone on node w.
Thus during the call to the functionUpdate of round ts i−1 the value of the variable
NumberRobotsPreviousEdgeActivation of rmeet is set to 1. Moreover as rmeet has
not moved during the round ts i−1 during the call to the function Update the value
of its variable HasMovedPreviousEdgeActivation is set to false. As during the
Look phase of round tact bis the values of the variables of rmeet have not change since
the Compute phase of time ts i− 1 this implies that at the end of the Look phase of
round tact bis the predicate IWasStuckOnMyNodeAndNowWeAreMoreRobots()
of the robot rmeet is true, and so it changes its direction. Thus it considers the
counter clockwise direction during the Move phase of round tact bis.
Thus whatever the sens of direction considered by rmeet during the Look phase of
time ts i− 1, during the Move phase of time tact bis the robots r1 and rmeet separate
them. The tower formed at time ts i is thus a 2-short-lived tower and not a 2-long-
lived tower.
We conclude that at time tl act + 1 an adjacent edge of v must be missing.
Remark:
Note that as r1 and r2 are considering two opposite global directions during the
Move phase of time ts i−1, and as one adjacent edge on v is missing at time ts i−1,
this is necessarily r3 that meets one of the robots r1 or r2 to form the 2-long-lived
tower at time ts i. Moreover using similar pitch as the one used in case 1, we can
say that Ti is necessarily composed of the robot r3 and of the robot of Tshort that
stays on node v during the Move phase of time ts i − 1.

From the two properties enunciated we can say that there is only two ways to have a
2-long-lived tower from a configuration where the robots are either isolated or forming
2-short-lived tower.

Indeed, the 2-short-lived tower (named Tshort) that starts at time tl act + 1 on node v

can be formed either by two robots r1 and r2 considering during the Move phase of time
tl act reverse global directions, or by two robots r1 and r2 considering the same global
direction during the Move phase of time tl act.

Recall that from time te i−1+1 to time ts i−1 the robots are either isolated or forming 2-
short-lived towers. Moreover during the move phase of time te i−1 the tower Ti−1 breaks.
This implies that during the Move phase of time te i−1 two robots are considering two
opposite global directions. As the variable dir is modified only during the Compute
phases of rounds, during the Look phase of time te i−1+1 two robots are considering the
same global direction while the other robot of the system considers the opposite global
direction. Thus by lemma 4.9 we know that between time te i−1 + 1 to time ts i − 1, it
is not possible to have the three robots considering the same global direction.

Case 2.1: The 2-short-lived tower is formed at time tl act + 1 on node v by
two robots considering during the Move phase of time tl act two reverse
global directions.

36

As the variables dir are updated during the Compute phases of rounds, during the
Look phase of time tl act + 1, r1 and r2 still consider two opposite global directions.
Assume without lost of generality that during the Look phase of time tl act + 1 r1
is considering the clockwise direction while r2 is considering the counter clockwise
direction. We know by definition of a 2-short-lived tower that the robots r1 and
r2 separate them during the Move phase of time ts i − 1. As the variable dir of
a robot is modified only during the Compute phases of rounds where this robot
is edge-activated, during the Move phase of round ts i − 1 r1 is still considering
the clockwise direction while r2 is still considering the counter clockwise direction.
Moreover as seen previously (in property 2) it must miss an adjacent edge of node v
during time ts i − 1 if a 2-long-lived tower starts at time ti. Assume without lost of
generality that it is the adjacent edge to v in the clockwise direction that is missing.
Thus r1 is still on node v during the Look phase of time ts i. Moreover by the remark
of property 2, we know that Ti is necessarily composed of r1 and r3. As there is no
3-long-lived towers from time te i−1 + 1 to time ts i − 1, then r3 is not on v during
the Look phase of time ts i − 1. To form Ti r3 must be on node v during the Look
phase of time ts i. As the adjacent edge of v in the clockwise direction is missing
at time ts i − 1, for r3 to be on node v during the Look phase of time ts i it must
necessarily be on the adjacent node of v in the counter clockwise during the Look
phase of time ts i − 1 and considers the clockwise direction during the Move phase
of time ts i−1. Then during the Look phase of time ts i r1 and r3 consider the same
global direction while r2 considers the opposite global direction. Moreover during
the Look phase of time ts i r2 is on a node different from v, and more precisely it is
on the node adjacent to v in the counter clockwise direction. Besides note that the
edge linking v to the adjacent node of v in the counter clockwise direction has been
crossed by r3 and by r2 during the Move phase of time ts i − 1.

Case 2.2: The 2-short-lived tower is formed at time tl act + 1 on node v by
two robots considering during the Move phase of time tl act the same
global direction.
As the variables dir are updated during the Compute phases of rounds, during
the Look phase of time tl act + 1, r1 and r2 still consider a same global direction.
Assume without lost of generality that r1 and r2 are considering the clockwise di-
rection during the Look phase of time tl act + 1. We know by definition of a 2-
short-lived tower that the robots r1 and r2 separate them during the Move phase
of time ts i − 1. Assume without lost of generality that during the Move phase
of round ts i − 1 r1 still considers the clockwise direction while r2 considers the
counter clockwise direction. We know by lemma 4.9 that during the Move phase
of time tact + 1 r3 was considering the counter clockwise direction. As there is no
3-long-lived towers from time te i−1 + 1 to time ts i − 1, then r3 is not on v during
the Look phase of time ts i − 1. Moreover as r1, and r2 are on node v during the
Look phase of time ts i− 1, this implies that r3 is alone on its node during the Look
phase of time ts i−1. Thus the predicates WeAreStuckInTheSameDirection() and
IWasStuckOnMyNodeAndNowWeAreMoreRobots() of r3 are false at the end of
the Look phase of time ts i thus it still considers the counter clockwise direction
during the Move phase of round ts i − 1. Moreover if we want to have a 2-long-lived

37

tower at time ts i there must exist a missing adjacent edge to node v at time ts i−1.
If the adjacent edge to v in the clockwise direction is missing at time ts i − 1 then
the robot r3 cannot be on node v at time ts i. Thus it is necessarily the edge in the
counter clockwise direction of v that is missing at time ts i − 1. Thus during the
Move phase of time ts i − 1 r2 cannot move from v, while r1 moves on the adjacent
node of v in the clockwise direction. This implies that during the Look phase of
time ts i r2 and r3 are on node v considering the counter clockwise direction while
r1 is on a node different from v, more precisely it is on the adjacent node of v in
the clockwise direction and it is considering the clockwise direction. Moreover note,
that the edge linking node v to the adjacent node to v in the clockwise direction has
been crossed by r3 and by r1 during the Move phase of time ts i − 1.

Thus whatever the time at which the tower Ti is build after the tower Ti−1 (it is possible
to have Ti−1 = Tfirst) the robots of Ti consider during the Look phase of time ts i a global
direction opposed to the one considered by the robot not involved in Ti, and moreover this
last robot is not on the same node as the robots of Ti during the Look phase of time ts i.
Moreover the edge linking the node where the tower is located during the Look phase of time
ts i to the node where the robot not involved in Ti is located during the Look phase of time
ts i has been crossed during the Move phase of time ts i − 1.

To build a 2-long-lived tower Ti+1 = (Si+1, [ts i+1, te i+1]) (corresponding to the next
2-long-lived tower after Ti in E) such that ts i+1 = te i + 1, all the edges of G have
been crossed between time ts i − 1 and time ts i+1.

By contradiction assume that Ti+1 is formed at time ts i+1 but that there exists an edge e

such that it is not visited from time ts i− 1 to time ts i+1.

Assume without lost of generality that Ti is composed of the robots r1 and r2 and that during
the Look phase of time ts i these two robots are on a node x0 and are considering the counter
clockwise direction. Thus, by the observations on the the different ways to construct the
2-long-lived tower Ti we know that during the Look phase of time ts i the robot r3 is on
node x1 where x1 is the adjacent node of x0 in the clockwise direction, and it considers the
clockwise direction. Note moreover that during the Move phase of time ts i − 1, the robot r3
has crossed the edge linking node x0 to node x1.

Note {x0, x1, . . . , xk, . . . , xn−1} the nodes of G in the clockwise direction from node x0, with
k an integer such that 2 ≤ k ≤ n− 2. We know that during the Move phase of time ts i − 1
the edge linking node x0 to x1 has been crossed thus e is necessarily an edge permitting to go
from a node xi to a node x(i+1) (mod n) considering the clockwise direction, with i an integer
such that 1 ≤ i ≤ (n − 1).

As seen in case 1 to build a tower Ti+1 = (Si+1, [ts i+1, te i+1]) corresponding to the next
2-long-lived tower after Ti in E , such that ts i+1 = te i +1, during the Look phase of time te i

all the robots of the system must consider the same global direction, the robots of Ti must
be stuck on a node u′ while the robot r3 must be on the adjacent node of u′ that possesses
an adjacent edge leading to node u′.

As long as the robot r3 and the robots of Ti do not change their respective directions, as e

cannot be crossed, then they cannot meet again.

38

As long as the robot r3 is alone on a node, its predicates WeAreStuckInTheSameDirection()
and IWasStuckOnMyNodeAndNowWeAreMoreRobots() are false, thus it keeps consider
the clockwise direction.

As long as the robots of Ti are not stuck they continue to consider the same global direction
(the counter clockwise direction). As the edge e cannot be crossed, at a time the two robots of
Si are necessarily stuck making their predicates WeAreStuckInTheSameDirection() to true.
Here the robots r1 and r2 execute the function GiveDirection. We know by assumption
that the robots r1 and r2 are forming the tower Ti until the formation of the tower Ti+1.
Moreover we know that to form Ti+1 during the Look phase of time ts i+1 − 1 the three
robots must consider the same global direction. However at the time where the robot of Si

are stuck, the robots of Si consider the counter clockwise direction while r3 considers the
clockwise direction (as it has not change its direction since time ts i). Thus the tower Ti+1

cannot be formed. Thus after the execution of the function GiveDirection the robots of
Si are still forming Ti and thus by definition of a 2-long-lived tower, they have to consider a
same global direction. If after the execution of the function GiveDirection they consider
the counter clockwise direction then the same scenario starts again (execution of the function
GiveDirection). If after the execution of the function GiveDirection the two robots of
Si consider the clockwise direction then they are able to move (as to execute the function
GiveDirection an edge in the opposite direction than the one considered before the call to
this function must be present).

Here, when the robots of Si consider the clockwise direction, similarly as previously the robots
of Ti continue to consider a same global direction as long as they are not stuck. During times
where the robots r1 and r2 are considering the clockwise direction they can either be stuck
or meet the robot r3.

When they are stuck then we can use similar arguments as the one used when the robots of
Si are considering the counter clockwise direction and are stuck, to say that the robots r1
and r2 execute the function GiveDirection and that after the execution of this function
they can either both change their directions or both still consider the same direction. If after
the execution of the function GiveDirection the robots of Si both change their directions
then as they do not have meet r3 since Ti starts, we are again in a case identical to the
one that happens at time ts i. If after the execution of the function GiveDirection the
robots of Si do not change the direction they consider, then they can again be in a situation
where they are stuck (in this case they repeat the same scheme, execution of the function
GiveDirection, then change of directions or not) or they can meet the robot r3.

Call tmeet the first time after ts i such that the robots of Si meet r3. As the edge e cannot be
crossed, as r3 considers the clockwise direction as long as it is alone on its node, and as during
the Look phase of time ts i the robots of Si are on node x0 while r3 is on node x1 then the
meeting occurs because the two entities (the tower Ti and the robot r3) are considering the
clockwise direction during the Move phase of time tmeet − 1, and because r3 is stuck during
the Move phase of time tmeet − 1. Thus the conditions to form Ti+1 are not verified (as it is
the tower Ti that must be stuck, and the robot r3 that has meet one of the robot of Ti in order
to form Ti+1). During phase tmeet − 1 the three robots of the system are edge-activated. If it
was not the case, they cannot meet at time tmeet. As during the Move phase of time tmeet−1
the robots of Ti have moved, during the call to the function Update of round tmeet − 1 their

39

variables HasMovedPreviousEdgeActivation are set to true. As during the Move phase of
time tmeet−1 r3 has not moved, during the call to the function Update of round tmeet−1, its
variable HasMovedPreviousEdgeActivation is set to false. Moreover during the Look phase
of time tmeet − 1 r3 is alone on its node, otherwise there is a contradiction with the fact that
tmeet is the first time after ts i where the robots meet. Thus during the call to the function
Update of round tmeet − 1 the variable NumberRobotsPreviousEdgeActivation of r3 is set
to 1. Call tact (tact ≥ tmeet) the first time after tmeet at which the robots are edge-activated.
As the variables of a robot are only updated during Compute phases of rounds where this
robot is edge-activated, during the Look phase of time tact the values of the variables of the
robots are identical to the one set during the Compute phase of time tmeet − 1. Thus at the
end of the Look phase of time tact the predicates WeAreStuckInTheSameDirection() and
IWasStuckOnMyNodeAndNowWeAreMoreRobots() of the robots of Si are false as their
variables HasMovedPreviousEdgeActivation are true. However the predicate IWasStuck-
OnMyNodeAndNowWeAreMoreRobots() of robot r3 is true. Thus r3 considers during the
Move phase of time tact a direction opposed to the one it was considering during the Move
phase of the round tmeet − 1. So during the Move phase of the round tact the two entities
are considering two different global directions and separate themselves (as they are edge-
activated).

During the Look phase of time tact + 1 we are in a situation symmetrical to the one that
happens at time ts i. Indeed, during the Look phase of time tact + 1 the robots of Ti are
considering the clockwise direction while r3 is considering the counter clockwise direction.
Moreover r3 is on a node on the clockwise of the node where the robots of Ti are located. Thus
by using symmetrical arguments we can prove that in this symmetrical situation whatever the
direction consider by the robots of Ti and whatever their states (stuck on a node or meeting
r3) it is not possible to form Ti+1.

Then using an argument of recurrence on these situations (situation where the robot r3 is on
a node at the counter clockwise of the node where the robots of Ti are located or r3 is on a
node at the clockwise of the node where the robots of Ti are located) we succeed to prove
that if e is not crossed then we cannot form the tower Ti+1.

This proves the lemma.

Main lemmas. Upon establishing all the above properties of towers, we are now ready to state
the main lemmas of our proof. Each of these three lemmas below shows that after time tmax our
algorithm performs the perpetual exploration in a self-stabilizing way for a specific subclass of
connected-over-time rings.

Lemma 4.13. Algorithm 3 is a perpetual exploration algorithm for the class of static rings of
arbitrary size using three robots.

Proof. Assume that G is a static ring. This implies that for all t in τ all the edges of the ring
are always present. Thus at each round t the robots are edge-activated. A robot executing our
algorithm considers at each round a specific direction. It is not possible for a robot to not consider
a direction. This implies that during the Move phase of a round t, if a robot r on a node u considers
a global direction such that the adjacent edge of u in this direction is present at time t, then r

moves. During the Look phase of round t+ 1 r is not on node u anymore.

40

Here as all the edges are always present at each instant time in E , there is necessarily an adjacent
edge to the node where a robot is located in the same global direction as the one considered by
this robot. Thus at each instant time the predicates ExistsEdgeOnCurrentDirection() of all the
robots are true. This implies that during the call of the function Update of each round t (such
that t > tmax), the variables HasMovedPreviousEdgeActivation of all the robots of the system
are set to true.

For a robot to change its local direction, at least one of its predicate must be true. The predicate
WeAreStuckInTheSameDirection() of a robot can be true only if its variableHasMovedPrevious-
EdgeActivation is false. Similarly the predicate IWasStuckOnMyNodeAndNowWeAreMoreRobots()
of a robot can be true only if its variable HasMovedPreviousEdgeActivation is false. How-
ever as proved previously after time tmax all the robots of the system always have their variables
HasMovedPreviousEdgeActivation set to true. Thus from time tmax+1 a robot of G keep consider
the same global direction.

As the three robots have a stable direction and consider respectively always the same global
direction after tmax, as there always exists an adjacent edge to their current location in the global
direction they consider, and as G has a finite size, then from time tmax all the robots succeed to
visit infinitely often all the nodes of the static ring.

In conclusion we can say that whatever the size of G (which belongs to the class of connected-
over-time rings) such that G is static, three fully-synchronous robots executing algorithm 3 permit
to solve the perpetual exploration problem in G.

Lemma 4.14. Algorithm 3 is a perpetual exploration algorithm for the class of edge-recurrent but
non static rings of arbitrary size using three robots.

Proof. Assume that G belongs to the class of edge-recurrent rings. This implies that all the edges
of G are infinitely often present in the system.

We want to prove that the three robots executing our algorithm solve the perpetual exploration
problem in G.

By contradiction assume that this is not the case. This means that there exists at least one
node w of G and a time t¬visited in τ such that for all t greater or equal to t¬visited, w is not visited
by any robot.

Consider the execution after time t¬visited.

Case 1: After time t¬visited there exists a 3-long-lived tower T = (S, [ts, te]) in E.

Call tact the first time in [ts, te[when the robots of S are edge-activated. By definition of a
long-lived tower tfirst act exists.

At time tact the three robots are on the same node thus their predicates NumberOfRobotsOn-
Node() is equal to 3. As at time tact the three robots are edge-activated, during the
call to the function Update their variables NumberRobotsPreviousEdgeActivation are up-
dated with the values of their predicates NumberOfRobotsOnNode(), thus their variables
HasMovedPreviousEdgeActivation are set to 3. As long as the robots of S are form-
ing T , each time they are edge-activated, using the same arguments that the one used at
time tact we can say that the variables HasMovedPreviousEdgeActivation of the three
robots are true. Moreover the variables of a robot are updated only during the Com-
pute phases of times where this robot is edge-activated. Then from time tact + 1 to the
Look phase of time te the variables NumberRobotsPreviousEdgeActivation of the robots

41

of S are equal to 3. So from time tact + 1 to the Look phase of time te the condition
“NumberOfRobotsOnNode() > NumberRobotsPreviousEdgeActivation” cannot be true
for the robots of S, as there are exactly 3 robots in the system. Thus the predicates
IWasStuckOnMyNodeAndNowWeAreMoreRobots() cannot be true for the robots of T .

Assume that r and r′ are two robots of T . Thus r and r′ are robots among {r1, r2, r3}. Call tlr
(respectively tlr′) the transformed identifier of r (respectively of r′), and call ir (respectively
ir′) the position in tlr (respectively in tl′r) considered by r (respectively by r′) during the Look
phase of time tact + 1. Call k the smaller integer either such that if r and r′ have the same
chirality then the bit at the position ((ir + k) (mod |tlr|)) of tlr and the bit at the position
((ir′ + k) (mod |tlr′ |)) of tlr′ are different or if r and r′ have a different chirality then the bit
at the position ((ir + k) (mod |tlr|)) of tlr and the bit at the position ((ir′ + k) (mod |tlr′ |))
of tlr′ are equal. By lemma 4.2 and lemma 4.3 we know that such a k exists.

By lemma 4.5 we know that from time tact+1 the predicateWeAreStuckInTheSameDirection()
of all the robots of S are identical.

Between time tact + 1 and the Look phase of time te, the robots of S can have their predi-
cates WeAreStuckInTheSameDirection() either to true or to false. When their predicates
WeAreStuckInTheSameDirection() is false, as their predicates IWasStuckOnMyNodeAnd-
NowWeAreMoreRobots() cannot be true, then their predicates WeAreStuckInTheSame-
Direction() and IWasStuckOnMyNodeAndNowWeAreMoreRobots() are false. When the
predicates WeAreStuckInTheSameDirection() and IWasStuckOnMyNodeAndNowWe-
AreMoreRobots() the robots of S are false, the three robots keep consider a same global
direction, implying that they cannot break T . They can only break T when their predicates
WeAreStuckInTheSameDirection() is true. Moreover when the robots of S have their
predicates WeAreStuckInTheSameDirection() to true they execute the function GiveDi-

rection. The function GiveDirection gives a direction to the robot executing it, according
to the value of the current bit of its transformed label, and increments the position of the
bit the robot considered. If between time tact + 1 and time te the number of times where the
predicates WeAreStuckInTheSameDirection() of the robots of T are true is less than k,
then this implies that the tower T is infinite (te = +∞). Indeed, the robots of T breaks the
tower only when the number of times their predicates WeAreStuckInTheSameDirection()
is true is equal to k times, by definition of k.

Case 1.1: Between time tact + 1 and time te the number of times the predicate
WeAreStuckInTheSameDirection() of the robots of S is true is less than k.

Call tno predicates ≥ tact+1 the first time such that for all t greater or equal to tno predicates,
for all robots ri of T the predicate WeAreStuckInTheSameDirection()(ri, t) is false.
This time exists as k is finite. As seen previously the predicate IWasStuckOnMyNode-
AndNowWeAreMoreRobots() is always false after time tact and thus after time tno predicates.
Moreover by definition of tno predicates after this time the predicate WeAreStuckInThe-
SameDirection() of the robots of T is false. Thus after time tno predicates the pred-
icates WeAreStuckInTheSameDirection() and IWasStuckOnMyNodeAndNowWe-
AreMoreRobots() of the robots of T are false, thus they always consider the same
global direction. As G belongs to the class of edge-recurrent rings, then each edge of G is
infinitely often present in E and thus this implies that the robots of T sees infinitely often
an adjacent edge to their current location in the global direction they consider. Thus

42

the robots of T are infinitely often able to move in the global direction they consider.
As from time tno predicates this global direction does not change and as G has a finite size
this implies that w is visited after time t¬visited, which leads to a contradiction.

Case 1.2: Between time tact + 1 and time te the number of times the predicate
WeAreStuckInTheSameDirection() of the robots of S is true is equal to k.

In this case, the robots break the tower T . By lemma 4.8, we know that from time te it is
not possible to have a 3-long-lived tower anymore in E . We can only have configurations
containing a 2-long-lived tower and a single robot, or containing 2-short-lived tower and
a single robot, or containing 3 isolated robots. These three cases are treated in case 2
and 3.

Case 2: After time t¬visited there exists a 2-long-lived tower T′ = (S′, [t′s, t
′
e]) in E.

Assume without lost of generality that T ′ is composed of the robot r1 and r2. Call t′act the
first time in [t′s, t

′
e[when the robots of T ′ are edge-activated. By definition of a long-lived

tower t′act exists.

Call ℓ1 (respectively ℓ2) the transformed identifier of r1 (respectively of r2), and call i1 (re-
spectively i2) the position in ℓ1 (respectively in ℓ2) considered by r1 (respectively by r2)
during the Look phase of time t′act + 1. Like, previously we introduce an integer k′ corre-
sponding to the smaller integer such that if r1 and r2 have the same chirality then the bit at
the position ((i1 + k′) (mod |ℓ1|)) of ℓ1 and the bit at the position ((i2 + k′) (mod |ℓ2|)) of
ℓ2 are different and if the two robots r1 and r2 have a different chirality then the bit at the
position ((i1 + k′) (mod |ℓ1|)) of ℓ1 and the bit at the position ((i2 + k′) (mod |ℓ2|)) of ℓ2 are
equal. By lemma 4.2 and lemma 4.3 we know that k′ exists.

By lemma 4.5 we know that from time t′act+1 the predicateWeAreStuckInTheSameDirection()
of all the robots of S′ are identical.

Case 2.1: Between time t′act + 1 and time te the number of times the predicate
WeAreStuckInTheSameDirection() of the robots of S is true is less than k.

In this case the tower T ′ is infinite (t′e = +∞). Call tnot stuck ≥ t′act + 1 the first time
such that for all t greater or equal to tnot stuck, for all robots ri of T ′ the predicate
WeAreStuckInTheSameDirection()(ri, t) is false. This time exists as k′ is finite.

After time t′act the robots r1 and r2 have the same value of predicates IWasStuckOnMy-
NodeAndNowWeAreMoreRobots(). Indeed each time in [t′s, t

′
e] these two robots are

edge-activated during the call to the functionUpdate the robots r1 and r2 have their val-
ues of variablesNumberRobotsPreviousEdgeActivation andHasMovedPreviousEdge-
Activation that are respectively filled with the values of their predicates NumberOf -
RobotsOnNode() and ExistsEdgeOnCurrentDirection(). r1 and r2 are forming a 2-
long-lived tower, therefore by definition of a long-lived tower and according to lemma 4.4,
they are on a same node and are considering a same global direction from time t′s to
the Look phase of time t′e, thus their respective values of predicates are equal from time
t′s to time t′e. Moreover when the robots are not edge-activated their variables are not
updated. Thus from time t′act + 1 to the Look phase of time t′e the robots of S have the
same values of predicates and variables thus they have the same values of predicates.

This implies that after time tnot stuck either the predicates WeAreStuckInTheSame-
Direction() and IWasStuckOnMyNodeAndNowWeAreMoreRobots() of the robots

43

of T ′ are false or their predicates IWasStuckOnMyNodeAndNowWeAreMoreRobots()
are true.

Case 2.1.1: After time tnot stuck the robots of T′ have their predicates WeAre-
StuckInTheSameDirection() and IWasStuckOnMyNodeAndNowWeAre-
MoreRobots() false.
In this case we can use the same arguments than the one used in case 1.1 to prove
that w is visited after time t¬visited.

Case 2.1.2: There exists a time greater or equal to tnot stuck at which the
predicates IWasStuckOnMyNodeAndNowWeAreMoreRobots() of the robots
of T′ are true.
Call tmeet the first time greater or equal to tnot stuck such that the predicates
IWasStuckOnMyNodeAndNowWeAreMoreRobots() of the robots of T ′ are true.
For the predicates IWasStuckOnMyNodeAndNowWeAreMoreRobots() of the robots
of S to be true, a meeting must happen. The meeting can happen because either
the two entities (the tower T ′ and the robot r3) were considering opposite global
directions during the Move phase of time tmeet − 1, and were able to move during
this Move phase, or because the two entities are considering a same global direction
during the Move phase of time tmeet − 1 and one of the entity was stuck during this
Move phase.
Call tm act (tm act ≥ tmeet) the first time at which the three robots are edge-activated.
As during the Look phase of time tmeet the three robots are on a same node for the
first time after time tnot stuck, this implies that at time tmeet − 1 the robots were
edge-activated. Thus during the call to the function Update of time tmeet − 1 the
variables of the robots are filled with the values at time tmeet−1 of their predicates.
As the variables of a robot are only updated during the Compute phases of rounds
where this robot is edge-activated, during the Look phase of time tm act the robots
have the same values of variables as after the Compute phase of time tmeet − 1.
In the case where the meeting happens because the two entities where
moving considering global opposite directions then during the Compute phase
of time tmeet − 1 the variables HasMovedPreviousEdgeActivation of the robots
are set to true. Thus at the end of the Look phase of time tm act the predicates
WeAreStuckInTheSameDirection() and IWasStuckOnMyNodeAndNowWeAre-
MoreRobots() of the robots are false, as their variables HasMovedPreviousEdge-
Activation are true. Thus the two entities conserve the global direction they were
considering during the Move phase of round tmeet − 1 (as when the robot are not
edge-activated they also conserve their direction). And so during the Move phase of
the round tm act the two entities are considering opposite global directions and are
able to separate them, as they are edge-activated at this time.
In the case where the meeting happens because the two entities were
considering the same global direction and that one of the entity was
not able to move then during the Compute phase of time tmeet − 1 the variable
HasMovedPreviousEdgeActivation of each robot of the entity that has moved is
set to true, while it is set to false for each robot of the entity that has not moved.
Thus at the end of the Look phase of round tm act each robot of the entity that has
moved at time tmeet − 1 has their predicates WeAreStuckInTheSameDirection()

44

and IWasStuckOnMyNodeAndNowWeAreMoreRobots() false, as its variableHas-
MovedPreviousEdgeActivation is true. However the predicate IWasStuckOnMy-
NodeAndNowWeAreMoreRobots() of each robot of the other entity is true. Thus
this last entity considers a direction opposite to the one it was considering during
the Move phase of the round tmeet − 1. So during the Move of the round tm act the
two entities are considering different global directions.
If after time tm act the robots of T

′ have their predicates WeAreStuckInTheSame-
Direction() and IWasStuckOnMyNodeAndNowWeAreMoreRobots() false, then
we can use the same arguments than the on used in case 2.1.1 to prove that w is
visited after time t¬visited.
If there exists a time greater to tm act at which the predicates IWasStuckOnMy-
NodeAndNowWeAreMoreRobots() of the robots of T ′ are again true, then this im-
plies that they meet again the robot r3. Call tmeet bis the first time greater or equal to
tm act+1 at which the robots of T ′ have their predicates IWasStuckOnMyNodeAnd-
NowWeAreMoreRobots() to true. During the Look phase of time tm act+1 the two
entities (tower T ′ and the robot r3) are considering two opposite global directions.
For all times in]tm act + 1, tmeet bis[, r3 is alone on the node where it is located (as
tmeet bis corresponds to the first time after time tm act + 1 where the three robots
are on a same node), therefore its predicates WeAreStuckInTheSameDirection()
and IWasStuckOnMyNodeAndNowWeAreMoreRobots() are false. Thus between
time tm act+1 and time tmeet bis r3 has conserved the same global direction. Similarly,
for all times in]tm act+1, tmeet bis[, as r1 and r2 are not on the same node as r3, the
condition “NumberOfRobotsOnNode() > NumberRobotsPreviousEdgeActivation”
is not true for them, and thus their predicates IWasStuckOnMyNodeAndNowWe-
AreMoreRobots() are false. Moreover tm act is greater than tnot stuck, by assumption
between time tm act +1 and time tmeet bis the predicates WeAreStuckInTheSame-
Direction() of the robots of T ′ are false. Thus between time tm act + 1 and time
tmeet bis r1 and r2 have conserved the same global direction as the one they consid-
ered during the Move phase of time tm act. Moreover we know that during the Look
phase of time tact the robots of T ′ and r3 are together on a same node, and during
the Move phase of time tact they consider different global directions and are able to
separate them as they are edge-activated. From the Move phase of time tact until the
Move phase of time tmeet bis− 1 the tower and the robot r3 are considering opposite
global directions, then during the Look phase of time tmeet bis they are again on a
same node. This implies that all the nodes of G have been visited between time
tm act and time tmeet bis, which leads to a contradiction with the fact that w is not
visited after time t¬visited.

Case 2.2: Between time t′act + 1 and time te the number of times the predicate
WeAreStuckInTheSameDirection() of the robots of S is true is equal to k.

In this case, the tower T ′ breaks at time t′e.

Case 2.2.1: After time t′e there is no more 2-long-lived tower in E.
In this case, as there is no more long-lived towers, by lemma 4.7 we know that all the
configurations after time t′e contain either one 2-short-lived tower and one isolated
robot, or 3 isolated robots. These two cases are treated in case 3.

Case 2.2.2: After time t′e there exists in E an other 2-long-lived tower T” = (S”, [ts”, te”]).

45

If T” is such that ts” > t′e + 1 then by lemma 4.11 we know that between time t′e
and time ts”, all the node of G have been visited (as all the edges of G have been
crossed). Thus there is a contradiction with the fact that w is not visited after time
t¬visited.
Consider the case where T” is such that ts” = t′e+1. Call Tfirst = (Sfirst, [tsfirst, tefirst])
the first 2-long-lived tower of E .
If T ′ is such that ts > tsfirst then according to lemma 4.12 all the nodes of G have
been visited between time t′s − 1 and time ts”. This leads to a contradiction with
the fact that w is not visited after time t¬visited.
If T ′ is not such that ts > tsfirst then we can apply on T” the same arguments than
the one used on T ′ (case 2) to prove that either there is a contradiction with the fact
that w is not visited after time t¬visited or to prove that we obtain a configuration
from which there is no more 2-long-lived tower in E (case 2.2.1).

Case 3: After time t¬visited all the configurations of E contain either 3 isolated robots
or one 2-short-lived tower and one isolated robot.

Case 3.1: After time t¬visited all the configurations of E contain 3 isolated robots.

Consider the robot r1 and assume without lost of generality that it considers the clock-
wise direction during the Look phase of time t¬visited + 1. By assumption after time
t¬visited there is no towers, thus r1 is alone one the node where it is located at each round
t > t¬visited. Thus for all times t > t¬visited its predicatesWeAreStuckInTheSameDirection()
and IWasStuckOnMyNodeAndNowWeAreMoreRobots() are false. This implies that
after time t¬visited, r1 always considers the clockwise direction. Moreover as G is a dy-
namic graph that belongs to the class of edge-recurrent rings, then all the edges of G are
infinitely often present. Therefore, r1 is infinitely often able to move in the direction it
considers. So as G has a finite size, this implies that r1 succeed to visit node w, which
leads to a contradiction.

Case 3.2: After time t¬visited it exists at some times 2-short-lived tower.

Case 3.2.1: After time t¬visited the three robots consider the same global
direction.
By assumption there exists a time greater than t¬visited at which a 2-short-lived
tower is formed. By definition of a 2-short-lived tower once the robots that form
this tower are edge-activated, they separate them. Call tend tower the time at which
the robots of the 2-short-lived tower are edge-activated. As the robots executing
our algorithm consider a direction at each round, the only way for the robots to
separate them is to consider two opposite global directions during the Move phase
of time tend tower. As the variables dir are updated only during the Compute phases
of rounds, during the Look phase of time tend tower there are in the system two
robots considering the same global direction while the third robot of the system is
considering the opposite global direction. The case where the three robots of the
system do not consider the same global direction is treated in case 3.2.2.

Case 3.2.2: After time t¬visited the three robots consider different global
directions.

46

By assumption we know that there is no long-lived towers in E thus by lemma 4.9
we know that it is not possible to have again the three robots considering the same
global direction.
Thus after time t¬visited, at each instant time a robot is considering the clockwise
direction. Call r the robot which is located on node x 6= w and which considers the
clockwise direction during the Look phase of a time t > t¬visited.
We describe the situations in which r can be when it is edge-activated. Call tr act

(tr act ≥ t) the first time after t when r is edge-activated. If during the Look phase of
time tr act r is alone on its node, then at the end of the Look phase of time tr act its
predicates WeAreStuckInTheSameDirection() and IWasStuckOnMyNodeAnd-
NowWeAreMoreRobots() are false thus it considers the clockwise direction during
the Move phase of round tr act. If at time tr act the adjacent edge to x in the
clockwise direction is present then r moves in the clockwise direction. If at time
tr act the adjacent edge to x in the clockwise direction is missing and the adjacent
edge to x in the counter clockwise direction is present, then the robot r stays on
node x.
If when r is edge-activated at time tr act it is with an other robot on node x, then
we know that this two robots are forming a 2-short-lived tower. By definition of a
2-short-lived tower these two robots separate themselves during the Move phase of
time tr act. As the robots executing our algorithm consider a direction at each round,
for the two robots to separate them, they must consider opposite global directions
during the Move phase of time tr act. If at time tr act the adjacent edge to x in the
clockwise direction is present then one of the robot moves in the clockwise direction.
If the adjacent edge to x in the clockwise direction is missing and that the adjacent
edge in the counter clockwise direction is present, then one of the robots stays on
node x.
Thus whatever the situation (during the Look phase of time tr act r is alone or form-
ing a 2-short-lived tower) if an adjacent edge to x exists in the clockwise direction
a robot is able to cross it, and if such an edge does not exists then a robot stays
on node x. Moreover as all the edges are infinitely often present in E , at a time
tappear ≥ tr act an adjacent edge to x in the clockwise direction appears. Assume
that tappears is the first time after tr act such that an adjacent edge to x in the
clockwise direction exists. Using a recurrence on all the times where the robot(s)
on x are edge-activated, we know that during the Move phase of time tappears there
is a robot on x considering the clockwise direction. This robot is during the Look
phase of time tappears + 1 on node x1 (where x1 is the adjacent node of x in the
clockwise direction) considering the clockwise direction. We can then iterate the
same pitch for this robot on node x1, and so on until reaching node xk (k ∈ N

∗ and
k ≤ (n − 1)) such that when the robot succeed to leave node xk considering the
clockwise direction it reaches node w. Thus there is a contradiction with the fact
that w is not visited after time t¬visited.

All the cases has been treated, and all lead to contradictions with the fact that w is not visited
after time t¬visited. This proves the lemma.

47

Lemma 4.15. Algorithm 3 is a perpetual exploration algorithm for the class of connected-over-time
but not edge-recurrent rings of arbitrary size using three robots.

Proof. Assume that there exists a time tmissing ∈ τ and exists an edge e of G such that for all t
greater or equal to tmissing, e is not present in E .

Call u and v the two adjacent nodes of e, such that if e was present in G a robot on node u

would have to cross e in the clockwise direction to be located on v.
We want to prove that the three robots executing our algorithm solves the perpetual exploration

problem in G.
By contradiction assume that this is not the case. This means that there exists at least one

node w of G and a time t¬visited in τ such that for all t greater or equal to t¬visited, w is not visited
anymore by any robot.

Consider the execution after time texec transition = max{tmissing, t¬visited}.

Case 1: After time texec transition there exists a 3-long-lived tower in E.

According to lemma 4.6 this 3-long-liver tower is broken in finite time. Moreover once this
tower is broken, according to lemma 4.8 it is not possible to have in E a configuration con-
taining a 3-long-lived tower anymore. Thus after the time when the 3-long-lived tower is
broken, there exists only configurations where there are either three isolated robots or tower
of 2 robots and an isolated robot.

Case 2: After time texec transition there exists a 2-long-lived tower in E.

According to lemma 4.6 this 2-long-lived tower is broken in finite time. Once this tower is
broken, either there exists in the remainder of E a configuration containing a 2-long-lived
tower Tsecond or not.

In the first case, by lemma 4.6 Tsecond is broken in finite time. This 2-long-lived tower
corresponds at least to the second 2-long-lived tower of the execution, thus by lemma 4.11 and
lemma 4.12 once Tsecond is broken it is not possible to have in E a configuration containing
a 2-long-lived tower, as e is missing forever. Thus there is no long-lived towers after the
breaking of Tsecond, so using lemma 4.7 we can say that in this case the execution is then
composed of configurations containing either three isolated robots or one 2-short-lived tower
and one isolated robot.

Similarly, in the second case by applying lemma 4.7 we can say that the robots are either
isolated or forming 2-short-lived tower.

Case 3: After time texec transition all the configurations of E contain either 3 isolated
robots or one 2-short-lived tower an one isolated robot.

From the cases 1 and 2 we can conclude that whatever the initial configuration that occurs
at time texec transition it leads to a configuration Cstationary from which the execution is only
composed of configurations where the robots are either isolated or able to form 2-short-lived
towers. Set tstationary the time at which Cstationary occurs in the E .

Consider the execution after time texec stationary .

Either the three robots are considering the same global direction or not.

48

Case 3.1: After time texec stationary the three robots are considering the same
global direction.

Assume without lost of generality that the three robots consider the clockwise direc-
tion. A meeting necessarily happens between two of these robots. By contradiction,
assume that this is not the case. G belongs to the class of connected-over-time rings,
and e is an eventual missing edge, thus by definition of a connected-over-time ring,
all the other edges are infinitely often present in E . If there is no meeting, this im-
plies that no robot is sufficiently enough time stuck on a node for an other robot
to join it. However as e is missing forever, one of the robot succeed in finite time
(by definition of connected-over-time rings) to reach node u. As long as this robot
is alone on node u, its predicate NumberOfRobotsOnNode() is equal to 1, and thus
the conditions “NumberOfRobotsOnNode() > 1” or “NumberOfRobotsOnNode() >
NumberRobotsPreviousEdgeActivation” cannot be true. Thus as long as this robot is
alone on node u its predicates are false, and thus it does not change its direction, so it
still considers the clockwise direction and therefore stays on node u as e is missing. As
the two other robots of the system are also considering the clockwise direction and as
there is no meeting by assumption, and as G belongs to the class of connected-over-time
rings, they are able to reach in finite time node u. Thus there is necessarily a meeting
between two robots on node u. Which leads to a contradiction with the fact that there
is no meetings.

As the three robots are considering the clockwise direction a meeting between two
robots happens necessarily because one of the robot was stuck on its node. Assume
that the first meeting after texec stationary happens between robots r1 and r2 at time
tmeet. Assume that it is r1 that was stuck during the Move phase of time tmeet − 1.
Call time tact (tact ≥ tmeet) the first time after tmeet when robots r1 and r2 are edge-
activated. During the Look phase of time tmeet − 1 r1 and r2 were alone on their
respective nodes otherwise their is a contradiction with the fact that tmeet is the first
time after time texec stationary where a meeting occurs. At time tmeet the robots r1 and
r2 meet, thus this implies that at time tmeet − 1 they are edge-activated. Thus during
the call to the function Update the variables HasMovedPreviousEdgeActivation and
NumberRobotsPreviousEdgeActivation of r1 and r2 are updated with the respective
values of their predicates ExistsEdgeOnCurrentDirection() andNumberOfRobotsOn-
Node(). So during the call to the function Update of round tmeet − 1, the variables
NumberRobotsPreviousEdgeActivation of r1 and r2 are both set to 1. As by as-
sumption r1 does not move during the Move phase of time tmeet − 1, and that r1
and r2 meet at time tmeet this implies that r2 moves during the Move phase of time
tmeet − 1. Therefore during the call to the function Update of round tmeet − 1 the vari-
able HasMovedPreviousEdgeActivation of r2 is set true while the variable HasMoved-
PreviousEdgeActivation of r1 is set to false. Besides, the variables of a robot are up-
dated only during the Compute phases of rounds where this robot is edge-activated. Thus
at the end of the Look phase of time tact the predicate IWasStuckOnMyNodeAndNow-
WeAreMoreRobots() of r1 is true thus it changes its moving direction, while r2 has its
predicates WeAreStuckInTheSameDirection() and IWasStuckOnMyNodeAndNow-
WeAreMoreRobots() to false, thus it does not change its moving direction. Thus during
the Look phase of time tact+1, r1 and r2 are considering two opposite global directions.

49

Therefore during the Look phase of time tact+1 two robots of the system are considering
the same global direction while the other robot of the system is considering the oppo-
site global direction. Moreover as we consider the execution after time texec stationary ,
all the configurations contain either isolated robots or 2-short-lived tower, thus using
lemma 4.9 we can conclude that from time tact+1 there are always two robots consider-
ing the same global direction while the other robot of the system considers the opposite
global direction.

Case 3.2: After time texec stationary the three robots do not consider the same
global direction.

Whatever the initial configuration that occurs at time texec transition it leads to a config-
uration from which the execution is only composed of configurations where the robots
are either isolated or able to form 2-short-lived towers and such that two robots are
considering a global direction opposed to the one considered by the other robot of the
system. Thus if we succeed to prove that the perpetual exploration is solved in this case,
we can conclude that the perpetual exploration is solved if there is an eventual missing
edge.

Case 3.2.1: w corresponds to node u.
We know by lemma 4.9 that at each instant time at least one robot is consid-
ering the clockwise direction in the system. We describe the situations in which
this robot considering the clockwise direction can be when it is edge-activated.
Call this robot r. Consider that the robot r is on a node x 6= w at time t >

texec stationary . Call tr act (tr act ≥ texec stationary) the first time after texec stationary

when r is edge-activated. As the variable dir is updated during the Compute
phases of rounds where r is edge activated, then during the Look phase of tr act

r still considers the clockwise direction. At time tr act if r is alone on its node,
then its predicate NumberOfRobotsOnNode() is equal to 1. Thus at the end
of the Look phase of time tr act the condition “NumberOfRobotsOnNode() >

1” is false and similarly as the variable NumberRobotsPreviousEdgeActivation

is always greater or equal to 1, the condition “NumberOfRobotsOnNode() >

NumberRobotsPreviousEdgeActivation” cannot be true. Thus at the end of the
Look phase of time tr act the predicates WeAreStuckInTheSameDirection() and
IWasStuckOnMyNodeAndNowWeAreMoreRobots() of r are false, thus it does
not change the direction it considers, therefore it considers the clockwise direction
during the move phase of round tr act. If at time tr act the adjacent edge to x in
the clockwise direction is present then r moves in the clockwise direction. If the
adjacent edge to x in the clockwise direction is missing and that the adjacent edge
in the counter clockwise direction is present, then the robot r stays on node x.
If when r is edge-activated at time tr act it is with an other robot on node x, then
we know that this two robots are forming a 2-short-lived tower, thus they separate
themselves during the Move phase of time tr act. Thus during the Move phase of
time tr act one robot is considering the clockwise direction while the other one is
considering the counter clockwise direction. If at time tr act the adjacent edge to x

in the clockwise direction is present then one of the robot moves in the clockwise
direction. If the adjacent edge to x in the clockwise direction is missing and that the
adjacent edge in the counter clockwise direction is present, then one of the robots

50

stays on node x.
Thus whatever the situation (r is alone on x at time tr act, or it is forming a 2-
short-lived tower) if an adjacent edge to x exists in the clockwise direction a robot
is able to move, and if such an edge does not exists then a robot considering the
clockwise direction stays on node x. Moreover as all the edges except e are infinitely
often present in the system, at a time tappear ≥ tr act an adjacent edge to x in the
clockwise direction appears. Assume that tappear is the first time after tr act such
that there exists an adjacent edge to x in the clockwise direction. Using a recurrence
on all the times the robots on x are edge-activated, we know that during the Move
phase of time tappears there is a robot r′ on x considering the clockwise direction.
Call x1 the adjacent node of x in the clockwise direction. Thus during the Look
phase of time tappear + 1, r′ is on node x1 considering the clockwise direction. We
can then iterate this pitch to r′ on node x1. Using similar arguments we know that
a robot considering the clockwise direction succeeds to reach the adjacent node x2
of x1 in the clockwise direction, and so on until reaching node xi (i an integer such
that 1 ≤ i ≤ (n−1)) such that when the robot succeeds to leave node xi considering
the clockwise direction it reaches node w. Thus there is a contradiction with the
fact that u is not visited after time t¬visited.

Case 3.2.2: w corresponds to node v.
This situation is symmetrical to the case 3.2.1. Thus using symmetrical arguments
to the one used when w corresponds to node u we obtain a contradiction showing
that v is visited at a time after t¬visited.

Case 3.2.3: w corresponds to a node different from u and v.
Note {v, . . . , wk−1, w,wk+1, . . . , u} the nodes of G in the clockwise direction from
node v, with k an integer such that 2 ≤ k ≤ (n− 3).
Call Rvw the set of all the robots situated on a node among {v, . . . , wk−1} and call
Rwu the set of all the robots situated on a node among {wk+1, . . . , u}. We have
|Svw|+ |Swu| = 3.
If w is not visited after time t¬visited, this means that there is no robot of Rvw

considering the clockwise direction on node wk−1 while the edge linking wk−1 to w

is present, and there is no robot of Rwu considering the counter clockwise direction
and located on node wk+1 while the edge linking wk+1 to w is present.
Without lost of generality we assume that |Rvw| is equal to three or two. When Rvw

contains one or zero robot then Rwu contains two or three robots. The case where
Rwu contains two or three robots is symmetric to the case where Rvw contains two
or three robots. Thus if we prove that in the case where Rvw contain two or three
robots, w is visited, using symmetrical arguments we can prove that w is also visited
when Rwu contains two or three robots.

Case 3.2.3.1: There are 3 robots among nodes {v, . . . ,wk−1}.
We can use similar arguments than the one used for the case 3.2.2 (case where
w corresponds to node u) to show that there is a contradiction, as w is reached
by a robot after time t¬visited.

Case 3.2.3.2: There are 2 robots among nodes {v, . . . ,wk−1}.
This implies that there is one robot among nodes {wk+1, . . . , u}. Assume without
lost of generality that the robots r1 and r2 belong to Rvw while r3 belongs to

51

Rwv.
As r3 is on a node among wk+1, . . . , u} and as e is missing forever after time
tmissing, if there exists a time after time texec stationary at which r3 is on a node
among {v, . . . , wk−1, w this implies that w has been visited by r3. Thus assume
that after time texec stationary r3 stays on a node among {wk+1, . . . , u}. Similarly,
if r1 or r2 is on a node among {w,wk+1, . . . , u} this implies that w has been
visited by at least one of these two robots. Thus we assume that after time
texec stationary r1 and r2 stay on nodes among {v, . . . , wk−1}.
We know by lemma 4.9 that at each instant time two robots are considering
the same global direction, and that the third robot of the system consider an
opposite global direction.

Case 3.2.3.2.1: r1 and r2 consider opposite global directions.
Assume that r1 considers the clockwise direction while r2 considers the counter
clockwise direction.
As long as r1 is alone on a node x (x ∈ {v, . . . , wk−1}) considering the
clockwise direction, when it is edge activated at time tr1 act its predicates
WeAreStuckInTheSameDirection() and IWasStuckOnMyNodeAndNow-
WeAreMoreRobots() are false thus it keeps consider the clockwise direction
during the Move phase of round tr1 act. Thus if at time tr1 act the adjacent
edge to x in the clockwise direction is present then r1 moves in the clockwise
direction. Similarly if at time tr1 act the adjacent edge to x in the clockwise di-
rection is missing and the adjacent edge to x in the counter clockwise direction
is present, then r1 stays on node x.
If at time tr1 act r1 is for the first time since texec stationary edge-activated with
an other robot on node x, we know that the tower they form corresponds to
a 2-short-lived tower. As by assumption after time exec stationary r3 is always
on a node among {wk+1, . . . , u}, while r1 and r2 are always on nodes among
{v, . . . , wk−1}, the meeting happens necessarily between robots r1 and r2.
Moreover by assumption before the meeting the two robots consider opposite
global directions. This implies that both of these two robots have moved
during the Move phase of time tmeet − 1 (where tmeet ≤ tr1 act corresponds
to the last time before tr1 act where the robots r1 and r2 are on a same node
without being necessarily edge-activated). As at time tmeet r1 and r2 are on
a same node for the first time, this implies that during time tmeet − 1 they
are edge-activated. Besides, as r1 and r2 are moving during the Move phase
of time tmeet − 1, during the call to the function Update of round tmeet − 1
the variables HasMovedPreviousEdgeActivation of the two robots are set to
true. Moreover the variables of a robot are only updated during the Compute
phases of rounds where it is edge-activated. Thus at the end of the Look
phase of round tr1 act the predicatesWeAreStuckInTheSameDirection() and
IWasStuckOnMyNodeAndNowWeAreMoreRobots() of the robots are false
as their variables HasMovedPreviousEdgeActivation are true. Thus they
keep consider their respective directions. If at time tr1 act the adjacent edge to
x in the clockwise direction is present then r1 moves in the clockwise direction.
If the adjacent edge to x in the clockwise direction is missing and the adjacent

52

edge to x in the counter clockwise direction is present, then r1 stays on node
x.
Thus whatever the situation if an adjacent edge to x exists in the clockwise
direction r1 is able to move, and if such an edge does not exists then r1 stays
on node x. Moreover as all the edges except e are infinitely often present in
the system, at a time greater or equal to tr1 act an adjacent edge to x in the
clockwise direction appears. The first time after tr1 act such an edge appears
r1 is on node x and it is considering the clockwise direction thus it succeeds
to move. We can iterate this pitch when r1 is on node x1 (the adjacent node
of x in the clockwise direction), and then when it is on node x2 (the adjacent
node of x1 in the clockwise direction), and so on until reaching node wk−1.
On node wk−1 we repeat the same arguments and show that r1 stays on
node wk−1 considering the clockwise direction until an adjacent edge in the
clockwise direction to this node exists. Thus r1 reaches node w. Therefore
there is a contradiction with the fact that we cannot reach node w.

Case 3.2.3.2.2: r1 and r2 consider the same global direction.
Now assume that the robots r1 and r2 consider the same global direction.
As e is missing forever, it exists a time t′meet at which the two robots r1
and r2 meet because one of them is stuck on a node. As seen previously (in
case 3.1) the robot that is stuck changes its direction during the Compute
phase of time tm act (where tm act is the first time greater or equal to t′meet

when the two robots r1 and r2 are edge-activated) while the other robot still
consider its direction. During the Move phase of time tm act the two robots
separate them (as they consider two opposite global directions and as they
are edge-activated at this time). As the variable dir is only updated during
the Compute phases of rounds, during the Look phase of time tm act + 1 the
two robots still consider two opposite global directions and are among nodes
{v, . . . wk−1, w. If one of the robots is on w at time tm act+1 then w is visited
after time t¬visited, otherwise we can apply the same reasoning than the one
described in case 3.2.3.2.1 to show that w is visited after time t¬visited.

Thus whatever the number of robots present in Rvw and in Rwu the node w is
visited.

We can thus conclude that if there exists an eventual missing edge, then the robots explore
perpetually G.

The end of the road. To conclude the proof, it is sufficient to observe that a connected-over-
time ring is by definition either static, edge-recurrent but non static, or connected-over-time but
not edge-recurrent. As we prove the self-stabilization of our algorithm in these three cases in
Lemmas 4.13, 4.14, and 4.15, we can claim the following final result.

Theorem 4.1. Algorithm 3 is a self-stabilizing perpetual exploration algorithm for the class of
connected-over-time rings of arbitrary size using three robots.

Proof. Consider G a dynamic graph of any size that belongs to the class of connected-over-time
rings.

53

First of all, note that even if our robots can start in a non coherent state, it exists a time tmax

from which all the robots of the system are in a coherent state (See lemma 4.1).
From the time where the three robots have coherent state, they succeed to solve the perpetual

exploration problem in G.
Indeed, by definition of connected-over-time rings, G can be either a dynamic ring where even-

tually one edge is missing while all the other edges are infinitely often present, or it can be a static
ring or it can belong to the class of edge-recurrent rings (all the edges are infinitely often present,
there is no eventual missing edge).

In the first case, lemma 4.13 shows that the three robots executing algorithm 3 succeed to solve
the perpetual exploration problem.

In the second case, the lemma 4.15 states that the three robots performing our algorithm solve
the perpetual exploration problem.

In the latter case, it is the lemma 4.14 that states that the three robots executing our algorithm
solve the perpetual exploration problem.

Thus whatever the case considered the three robots executing our algorithm succeed to solve
the perpetual exploration problem. We conclude that algorithm 3 solves the perpetual exploration
problem for dynamic graphs of any size that belong to the class of connected-over-time rings using
three fully-synchronous robots.

5 Conclusion

In this paper, we addressed the open question: “Is it possible to achieve self-stabilization for swarm
of robots evolving in highly dynamic graphs?”. We answered positively to this question by providing
a self-stabilizing algorithm for three synchronous robots that perpetually explore any connected-
over-time ring, i.e., any dynamic ring with very weak assumption on connectivity: every node is
infinitely often reachable from any another one without any recurrence, periodicity, nor stability
assumption.

In addition to the above contributions, our algorithm overcomes the robot networks state-of-
the-art in a couple of ways. First, it is the first algorithm dealing with highly dynamic graphs. All
previous solutions made some assumptions on periodicity or on all-time connectivity of the graph.
Second, it is the first self-stabilizing algorithm for the problem of exploration, either for static or
for dynamic graphs.

This work opens an interesting field of research with numerous open questions. First, we should
investigate the necessity of every assumption made in this paper. For example, we assumed that
robots are synchronous. Is this problem solvable with asynchronous robots? Second, we can
investigate the issue of the number of robots. What are the minimal/maximal number of robots
to solve the problem? It would be worthwhile to explore other problems in this rather complicated
environment, e.g., gathering, leader election, etc.. It may also be interesting to consider other
classes of dynamic graphs and other classes of faults, e.g., crashes of robots, Byzantine failures,
etc..

References

[1] R Baldoni, F. Bonnet, A. Milani, and M. Raynal. On the solvability of anonymous partial
grids exploration by mobile robots. In International Conference on Principles of Distributed

54

Systems (OPODIS), pages 428–445, 2008.

[2] L. Blin, A. Milani, M. Potop-Butucaru, and S. Tixeuil. Exclusive perpetual ring exploration
without chirality. In International Symposium on Distributed Computing (DISC), pages 312–
327, 2010.

[3] L. Blin, M. Potop-Butucaru, and S. Tixeuil. On the self-stabilization of mobile robots in
graphs. In International Conference on Principles of Distributed Systems (OPODIS), pages
301–314, 2007.

[4] A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro. Time-varying graphs and
dynamic networks. International Journal of Parallel, Emergent and Distributed Systems,
27(5):387–408, 2012.

[5] J. Chalopin, P. Flocchini, B. Mans, and N. Santoro. Network exploration by silent and oblivious
robots. InWorkshop on Graph-Theoretic Concepts in Computer Science (WG), pages 208–219,
2010.

[6] A. Datta, A. Lamani, L. Larmore, and F. Petit. Ring exploration by oblivious agents with
local vision. In IEEE International Conference on Distributed Computing Systems (ICDCS),
pages 347–356, 2013.

[7] G. Di Luna, S. Dobrev, P. Flocchini, and N. Santoro. Live exploration of dynamic rings. In
IEEE International Conference on Distributed Computing Systems (ICDCS), pages 570–579,
2016.

[8] E. Dijkstra. Self-stabilizing systems in spite of distributed control. Communication of the
ACM, 17(11):643–644, 1974.

[9] K. Diks, P. Fraigniaud, E. Kranakis, and A. Pelc. Tree exploration with little memory. Journal
of Algorithms, 51(1):38–63, 2004.

[10] S. Dolev. Self-stabilization. MIT Press, March 2000.

[11] S. Dubois, M.-H. Kaaouachi, and F. Petit. Enabling minimal dominating set in highly dynamic
distributed systems. In International Symposium on Stabilization, Safety, and Security of
Distributed Systems (SSS), pages 51–66, 2015.

[12] P. Flocchini, D. Ilcinkas, A. Pelc, and N. Santoro. Computing without communicating: Ring
exploration by asynchronous oblivious robots. In International Conference on Principles of
Distributed Systems (OPODIS), pages 105–118, 2007.

[13] P. Flocchini, D. Ilcinkas, A. Pelc, and N. Santoro. Remembering without memory: Tree
exploration by asynchronous oblivious robots. Theoretical Computer Science, 411(14-15):1583–
1598, 2010.

[14] P. Flocchini, D. Ilcinkas, A. Pelc, and N. Santoro. How many oblivious robots can explore a
line. Information Processing Letters, 111(20):1027–1031, 2011.

[15] P. Flocchini, B. Mans, and N. Santoro. Exploration of periodically varying graphs. In Inter-
national Symposium on Algorithms and Computation (ISAAC), pages 534–543, 2009.

55

[16] D. Ilcinkas, R. Klasing, and A. Mouhamadou Wade. Exploration of constantly connected
dynamic graphs based on cactuses. In Colloquium on Structural Information & Communication
Complexity (SIROCCO), pages 250–262, 2014.

[17] D. Ilcinkas and A. Mouhamadou Wade. On the power of waiting when exploring public
transportation systems. In International Conference on Principles of Distributed Systems
(OPODIS), pages 451–464, 2011.

[18] D. Ilcinkas and A. Mouhamadou Wade. Exploration of the t-interval-connected dynamic
graphs: The case of the ring. In Colloquium on Structural Information & Communication
Complexity (SIROCCO), pages 13–23, 2013.

[19] R. Klasing, E. Markou, and A. Pelc. Gathering asynchronous oblivious mobile robots in a
ring. In International Symposium on Algorithms and Computation (ISAAC), pages 744–753,
2006.

[20] F Kuhn, N. Lynch, and R. Oshman. Distributed computation in dynamic networks. In
Symposium on the Theory of Computing (STOC), pages 513–522, 2010.

[21] M. Potop-Butucaru, M. Raynal, and S. Tixeuil. Distributed computing with mobile robots:
An introductory survey. In International Conference on Network-Based Information Systems
(NBiS), pages 318–324, 2011.

[22] C. Shannon. Presentation of a maze-solving machine. 8th Conference of the Josiah Macy, Jr.
Foundation, pages 173–180, 1951.

[23] I. Suzuki and M. Yamashita. Distributed anonymous mobile robots: Formation of geometric
patterns. SIAM Journal on Computers, 28(4):1347–1363, 1999.

[24] S. Tixeuil. Algorithms and Theory of Computation Handbook, chapter Self-stabilizing Algo-
rithms, pages 26.1–26.45. Chapman & Hall. CRC Press, Taylor & Francis Group, November
2009.

[25] B. Xuan, A. Ferreira, and A. Jarry. Computing shortest, fastest, and foremost journeys in
dynamic networks. International Journal of Foundations of Computer Science, 14(02):267–285,
2003.

56

	1 Introduction
	2 Model
	3 Exploring a Highly Dynamic Ring with Three Robots
	4 Proof Sketch
	5 Conclusion

