
UNIVERSITÉ PIERRE ET MARIE CURIE
LABORATOIRE D’INFORMATIQUE DE PARIS 6

From Symbolic Verification
To Domain Specific Languages

YANN THIERRY-MIEG

HABILITATION À DIRIGER DES RECHERCHES

Présentée le 7 Décembre 2016 devant le jury composé de:
Professeur Claude JARD Univ. Nantes, rapporteur
Professeur Richard PAIGE Univ. York, UK rapporteur
Professeur Jaco VAN DE POL Univ. Twente, NL, rapporteur

Professeur Ahmed BOUAJJANI Univ. Paris Diderot examinateur
Professeur Jean-Michel COUVREUR Univ. Orléans examinateur
Professeur Serge HADDAD ENS Cachan examinateur
Professeur Fabrice KORDON Univ. Paris 6 examinateur
Professeur François VERNADAT INSA Toulouse examinateur

Contents

Introduction 4

A Symbolic Kernel 7

I Hierarchical Set Decision Diagrams 8
I.1 Decision Diagrams for Symbolic Model-Checking 8

I.1.1 Introduction . 8
I.1.2 Binary Decision Diagram 9
I.1.3 Data Decision Diagrams 9

I.2 Hierarchical Set Decision Diagrams 10
I.2.1 Intuition . 10
I.2.2 SDD Definition . 11

I.3 Evaluation . 13
I.3.1 Hierarchy Helps . 13
I.3.2 Exponential Examples 16

I.4 Conclusion . 18

II Homomorphisms as Symbolic Transitions 19
II.1 Symbolic Transition Relation . 19

II.1.1 Introduction . 19
II.1.2 Homomorphisms as Transition Relations 20
II.1.3 Available Homomorphisms 21

II.2 Automatic Saturation . 23
II.2.1 Computing a least fixpoint 23
II.2.2 Intuition . 24
II.2.3 Rewriting Least Fixpoint to Saturation 24

II.3 Symbolic Evaluation of Expressions 27
II.3.1 Arrays and Arithmetic in a Symbolic Setting 27
II.3.2 Intuition . 28
II.3.3 Expressions : Definition 29
II.3.4 Expressions : Equivalence Relation 31
II.3.5 Evaluating expressions on DDD 31

1

CONTENTS 2

II.4 Evaluation . 32
II.5 Conclusion . 34

B Symbolic Model-Checking Algorithms 36

III Self-Loop Aggregation Product : SLAP 37
III.1 LTL model-checking . 37
III.2 Context and Definitions . 39

III.2.1 Boolean Formulas . 39
III.2.2 Kripke Structure . 39
III.2.3 TGBA . 40

III.3 Self-Loop Aggregation Product (SLAP) 41
III.3.1 Intuition . 41
III.3.2 Definition . 42

III.4 Evaluation . 43
III.5 Conclusion . 46

IV Symbolic Symbolic Model-Checking 47
IV.1 Quotient Graph . 47
IV.2 Context and Definitions . 48

IV.2.1 Symmetry Groups of a Transition System 48
IV.2.2 Quotient Graph . 48
IV.2.3 Explicit Quotient Graph Algorithm 49

IV.3 Symbolic Symbolic State Space 50
IV.3.1 Intuition . 50
IV.3.2 Assumptions . 51
IV.3.3 Symbolic Symbolic algorithm 52
IV.3.4 Illustrative example. 54

IV.4 Evaluation . 55
IV.5 Conclusion . 56

C A Domain Specific Language for Concurrent Semantics 57

V Instantiable Transition Systems and Guarded Action Language 58
V.1 A Language Based Front-end . 58
V.2 Instantiable Transition Systems 60

V.2.1 Context . 60
V.2.2 Intuition . 61
V.2.3 ITS Type and Instance 62
V.2.4 Composite ITS . 63
V.2.5 Scalar ITS . 65

V.3 Guarded Action Language . 67

CONTENTS 3

V.3.1 Context . 67
V.3.2 Intuition . 67
V.3.3 GAL definition . 68
V.3.4 Parametric GAL . 70

V.4 Evaluation . 72
V.5 Conclusion . 72

VI Applications and Case Studies 74
VI.1 A Multi-Formalism Model-Checker 74

VI.1.1 Symbolic Kernel . 74
VI.1.2 Model-checking . 76
VI.1.3 Model transformations 76

VI.2 Modeling Discrete Time . 78
VI.2.1 Time Petri nets . 78
VI.2.2 Encoding TPN into GAL 79
VI.2.3 Examples . 80

VI.3 Case studies . 82
VI.4 Evaluation . 83
VI.5 Conclusion . 84

D General Conclusion 85

VIIConclusion and Perspectives 86
VII.1 Conclusion . 86
VII.2 Perspectives . 87

Introduction

Verification and Validation of Concurrent Systems
The complexity of large software grows faster than engineer’s abilities to deal

with it. In parallel software grows more common in playing critical roles in busi-
ness, security, and life critical embedded systems such as cars. It is thus necessary
to develop sound development methodologies that can guarantee compliance of an
implementation with respect to a specification.

Current hardware evolution means concurrent systems are now standard, but
their correct design and implementation are particularly difficult. The problem
stems from the multitude of possible interleaved executions a designer must con-
sider, leading to the dreaded state space explosion problem.

Verification and validation of concurrent software is thus an active and growing
field, where users expect ultimately to have automatic quality assurance tools that
could guarantee the good behavior of a given system.

Testing
The most common industrially applied approach to verification is testing, which

consists in a set of runs of the system that seek to reveal a failure. The actual system
under test is then executed and its outputs are analyzed by an oracle function that
determines whether the test passes or fails. While tests increase the confidence in
a running system, and are definitely a necessary component of any software devel-
opment cycle, by nature they cannot guarantee correctness : failing tests do reveal
errors, but even if all tests pass the system could be incorrect. Tests are also only
applicable relatively late in the development cycle, since you need an implementa-
tion. For concurrent systems, testing typically has a very low coverage of possible
interleavings, added to test reproducibility issues if the default system scheduler is
used.

Theorem Proving
To prove a system correct, theorem proving proposes to start from a set of basic

axioms to prove the properties of the system seen as a particular theorem stating
correctness. In practice the user expresses what typically amounts to pre and post
conditions on behavior and uses an automated theorem prover to help establish a
formal proof of correctness. While the approach is very powerful and can prove
properties even for large systems [Beh+99; Ler09] it requires expert users, able
to formulate intermediate lemmas helpful to the proof and to understand what is

4

CONTENTS 5

blocking the automated engine from completing the reasoning in complex cases.
Such tools thus cannot be completely automated.

Exhaustive Exploration
The last broad category of approaches starts from a model of a system, in some

compact form that allows to generate and explore all its possible runs (such as a
program, or a behavioral model like a Petri net), then proposes to exhaustively
explore this search space to prove that all possible runs of the system satisfy the
provided properties.

The positive side is that this approach can be fully automated, and offers a very
wide scope in terms of possible logics used to define sought or forbidden behav-
iors. Since the problems are dual of one another, the approach usually searches for
behaviors of the system that exhibit a forbidden behavior. For the end-user, such
counter examples can be represented as familiar execution traces or failing tests. If
no counter examples are found the system is proved correct. The drawback is that
due to large data domains and concurrent or asynchronous behaviors, the search
space can be huge, even for relatively simple systems.

Abstraction and Static Analysis
Abstraction is usually needed to reduce the search space to a finite representa-

tion. An abstraction overapproximates the system behavior, with the guarantee that
all runs of the system can be executed by the abstraction. We can then try to prove
that the abstraction does not contain any target bad behavior. If the abstraction
does contain bad behavior, either it is a true counter-example of the system and we
can exhibit it, or it is only a possible run of the abstraction but not of the system.
This means the abstraction is too coarse, but it possibly can be refined iteratively
[Cla+03].

Static analysis and abstract interpretation try to avoid actually exploring all
behaviors by reasoning on the structure of the input model [STC98; CC79]. With
recent improvements in the use of shapes as a convex envelope of all possible
behaviors [Min06], many important properties such as absence of memory errors
can be proved even for large scale code used industrially.

Model-checking
In model-checking the reachability graph is actually explored. The assumption

is that the set of potential states of the system can be reduced to a finite abstraction
thereof. States then constitute nodes in the graph, and edges represent discrete
event occurrences. Given such a finite representation of all behaviors, many model-
checking problems are decidable.

Our contributions focus on improving the model-checking of concurrent sys-
tems. This manuscript is composed of three parts.

Outline
In the first part we develop a symbolic kernel composed of efficient data struc-

tures to represent state spaces. We present in chapter I hierarchical set decision
diagrams an original compact data structure to represent sets of states. We then
develop the theory of homomorphisms to symbolically represent edges of the state
graph in chapter II.

CONTENTS 6

Part B presents innovative symbolic model-checking algorithms built on top
of this kernel and designed to take advantage of it. We first present the SLAP algo-
rithm for more efficient hybrid LTL model-checking in chapter III. We then present
a symbolic-symbolic approach to stack quotient graph reductions with decision di-
agrams in chapter IV.

In the third part we focus on leveraging model-driven engineering techniques
to help bridge the gap between industrial software development process and formal
methods. To this end we designed a language based front-end to formal verification
tools presented in chapter V. The Guarded Action Language (GAL) is defined as
a domain specific language catering to the expression of concurrent semantics.
Using GAL as a target in model to model transformations, we were able to offer
an efficient symbolic model-checker for a wide variety of input formalisms, as
described in chapter VI.

We present some mid and long term perspectives to conclude this manuscript.
Each chapter is relatively self-contained, first introducing the specific problem

and existing solutions, then giving useful definitions and notations, before present-
ing the meat of the contribution, and an experimental evaluation. We conclude each
chapter with a discussion of the impact or significance of the contribution.

My approach to verification is a pragmatic one, hence these contributions have
all been implemented, and are freely distributed as part of the ITS-tools.

Part A

Symbolic Kernel

Symbolic approaches reason with sets of objects instead of individual elements.
In model-checking, the challenge is to compute and represent large state graphs,
where nodes are configurations or states of the system and edges are events or tran-
sitions. Symbolic model-checking thus consists in using efficient representations
of large sets of states and transitions, such as shared decision diagrams.

We develop in this part our contributions to two essential elements that form
the kernel of any symbolic model-checker : efficient representation of states and
transitions.

Chapter I presents Hierarchical Set Decision Diagrams (SDD) as an efficient
data structure for symbolic representation of large sets of states.

Chapter II presents how homomorphisms can encode a high level expression
of a transition relation, and how to efficiently apply homomorphisms to large sets
of states.

7

Chapter I

Hierarchical Set Decision Diagrams

I.1 Decision Diagrams for Symbolic Model-Checking

I.1.1 Introduction

Reduced Ordered Binary Decision Diagrams (ROBDD or just BDD) are a data
structure introduced in Bryant’s thesis [Bry86], and first applied to model-checking
in the seminal paper "1020 states and beyond" [Bur+92] challenging the whole
community with astonishing performances on real examples of hardware design :
DD can offer an extremely compact representation for very large sets of data, pro-
vided that appropriate symbolic operations are used.

Shared Decision Diagrams (DD) are a data structure to compactly represent and
manipulate sets rather than individual elements, hence the term symbolic. There are
many variants of decision diagrams used for symbolic model-checking, but they
all rely on the same underlying principles: nodes of the decision tree are unique
in memory thanks to a canonical representation; the number of paths through the
diagram (states) can be exponential in the representation size (nodes in the DD);
equality of two sets can be tested in constant time; using caches most operations
manipulating a DD are polynomial in the representation size; the effectiveness of
the encoding strongly depends on the chosen variable ordering [CGP99].

BDD extensions ROBDD are designed to handle binary functions of binary
variables, but variants on the principle (shared decision tree, dynamic program-
ming) lead to numerous extensions. For stochastic and quantitative model-checking,
multi-terminal DD allow to represent functions mapping to a discrete domain [Her+03].
To handle variables which are integers each node can be allowed more than two
children, leading to Algebraic DD [Bah+93] (ADD), Multi-way DD [MC99] (MDD),
Data DD [Cou+02] (DDD), or List DD [BP08] (LDD). While the definitions and
implementations of these DD differ slightly, they all introduce support for variables
with a discrete domain. A multitude of over twenty DD variants have been defined
in the literature (see chapter 3 of [Lin09] for an overview).

In this chapter, we will first present classical BDD and one of their extensions to

8

Chapter I. Hierarchical Set Decision Diagrams 9

the integer domain : Data Decision Diagrams (DDD). Then we present our contri-
bution, Hierarchical Set Decision Diagrams (SDD), an original data structure that
combines decision diagrams within a hierarchical structure leading more efficient
solutions.

I.1.2 Binary Decision Diagram

A reduced ordered binary decision diagram or ROBDD defined in [Bry86] offers a
compact representation for boolean functions, based on a particular canonical de-
composition of the function through a process called "currying". Basically, given a
function f Bk 7→B over k boolean variables v1 . . .vk, and an order over these vari-
ables vi < v j ⇐⇒ i < j, we let a node nk represent f . This node has two outgoing
(decision) edges, labeled true and false leading respectively to nodes encoding the
functions fvk = f ∧vk and fv̄k = f ∧ v̄k. Now nodes that would correspond to v0 are
either true or false, encoded by two terminal nodes. This structure is a decision dia-
gram used in many kinds of engineering and risk management related tasks. Such a
decomposition of a boolean function is canonical given the variable ordering : any
boolean function with the same truth table will produce the same decision diagram.

The reduced aspect of ROBDD is introduced by the observation that there only
needs to be two terminal nodes 0 and 1, if nodes of level v1 share their representa-
tion. Hence, there need be no more than at most four nodes at level v1, respectively
encoding functions the possible functions of a single boolean variable true,v1, v̄1,
and f alse. Now suppose that nodes up to level i are unique and indexed (hashed),
representing functions over i variables, we have a simple way to build unique nodes
representing functions of i+1 variables, by indexing the children of a node into a
unique table.

This canonical representation gives us complexity bounds based on the rep-
resentation size, if we use dynamic programming (caches). In particular, union
(Boolean or) and intersection (Boolean and) are quadratic in the representation
size, and testing equality of two nodes (or functions) is constant time if we have
built their BDD representation.

To use BDD for model-checking, we consider a system of k boolean variables,
and we encode the characteristic function of sets of states i.e. a function that returns
true for states in the set. We then typically try to compute the reachable states using
a fixpoint.

I.1.3 Data Decision Diagrams

Data Decision Diagrams (DDD, defined in [Cou+02]) extend classical BDD in two
respects:
1) variables are considered to have a domain D rather than being restricted to B.
This provides a natural representation for systems whose states can be described
by a set of integers.
2) operations over DDD are encoded using homomorphisms instead of the usual

Chapter I. Hierarchical Set Decision Diagrams 10

x
1

1

x
2

x
3

x
2

x
3

1
2

3

2
3

1
1

Figure I.1: A DDD with domain D = N that represents the set of sequences of
assignments: {(x1← 2;x2← 3;x3← 1;),(x1← 1;x2← 1;x3← 1;),(x1← 1;x2←
2;x3← 3;)}.

fashion where another decision diagram with two variables per variable of the state
signature is used. Homomorphisms will be discussed in chapter II.

More precisely a DDD is a data structure for representing a set of sequences of
assignments of the form x1← v1;x2← v2; . . . ;xn← vn, where xi are variables and
vi are values in D. We assume a total order on variables such that all variables are
always encountered in the same order in an assignment sequence. The usual DDD
definition makes weaker assumptions on variable ordering, but these are out of the
scope of this presentation (see [Cou+02]).

We define the terminal 1 to represent the empty assignment sequence, that
terminates any valid sequence, and 0 to represent the empty set of assignment
sequences.

DDD Let X be a set of variables ranging over domain D. δ ∈D, the set of DDD,
is inductively defined by: δ ∈D if
δ ∈ {0,1} or
δ = 〈x,α〉 with x ∈ X , and α : D→D is a mapping where only a finite subset of D
maps to other DDD than 0.

By convention, edges that map to the DDD 0 are not represented.

For instance, consider the DDD shown in figure I.1. Each path in the DDD
corresponds to a sequence of assignments. Note that contrary to BDD, DDD are
not defined as representing a given function, but inductively as a tree like object;
the definition of SDD will be constructed similarly. We have consistently used
DDD in our work to represent valuations of the memory. We now assume that each
assignment sequence in a DDD represents a state of a system.

Consider for instance the dining philosophers problem as modeled by the Petri
net Fig.I.2. On Fig. I.3 (left) the set of reachable states of the system for 4 philoso-
phers is represented as a DDD; each path gives the values of the marking for each
place of the net in a specific state. Because paths can share both prefix and suffix
the representation of the 322 reachable states is very compact.

I.2 Hierarchical Set Decision Diagrams

I.2.1 Intuition

While DDD are defined at a relatively high level of abstraction with respect to
other DD, they still lack structure. When attempting to encode states that do have a

Chapter I. Hierarchical Set Decision Diagrams 11

Idle

WaitL

HasL

WaitR

HasR

Ri+1modN

Li+1modNRi

Li

Fork

Figure I.2: Labeled P/T net model of the philosophers

complex structure with DDD (arrays or matrices to represent part of the state, data
structures such as records, subcomponents...) we have to flatten this structure away
to obtain a plain sequence of integers.

Looking closely at the actual DDD for concrete examples such as Fig. I.3(left)
repeated substructures in the decision tree can be seen (humans are very good at
pattern recognition). The repeated parts of the graph cannot however share their
representation : the canonical form is computed from the terminals up to the root
of the DD, so having different children nodes means the nodes are different despite
having similar structure.

The solution we proposed was to add hierarchy to the data structure, yielding
representations such as Fig. I.3(right). The overall structure of the DDD solution is
still present, but the repeated substructure corresponding to the state of a philoso-
pher component can be shared. The DDD that are referenced by the SDD encoding
can share their representation, because the SDD part contains the information on
the target children node. This phenomenon has also been referred to as implicit
terminal. The resulting symbolic encoding is much smaller than pure DDD, and
also scales much better when increasing the number of components.

I.2.2 SDD Definition

Hierarchical Set Decision Diagrams (SDD) were first defined in [CTM05], we
present a compact definition of them in this section.

SDD are shared decision diagrams in which arcs are labeled by a set of values,
instead of a single value. This set may itself be represented by an SDD, thus when
labels are SDD, we think of them as hierarchical decision diagrams.

SDD are data structures for representing sets of sequences of assignments of
the form ω1 ∈ s1;ω2 ∈ s2; · · · ;ωn ∈ sn where ωi are variables and si are sets of
values.

We assume no variable ordering, and the same variable can occur several times
in an assignment sequence. We define the terminal 1 to represent the empty assign-

Chapter I. Hierarchical Set Decision Diagrams 12

Fork3

HasRight3

0

HasRight3

1

WaitRight3

0

WaitRight3

1

HasLeft3

0

HasLeft3

1

WaitLeft3

0

Idle3

0

Fork2

1

HasRight2

0

HasRight2

1

WaitRight2

1

HasLeft2

0

WaitLeft2

0

WaitLeft2

1

Idle2

1

Fork1

0

HasRight1

0

HasRight1

1

WaitRight1

1

HasLeft1

0

WaitLeft1

0

WaitLeft1

1

Idle1

1

Fork0

0

HasRight0

0

HasRight0

1

WaitRight0

1

HasLeft0

0

WaitLeft0

1

Idle0

0

1

0

WaitRight0

0

1

Idle1

0

Fork0

0

0

WaitRight1

0

1

HasLeft1

0

WaitLeft1

0

Idle1

0

1

Idle2

0

Fork1

0

0

WaitRight2

0

1

HasLeft2

0

WaitLeft2

0

Idle2

0

1

WaitLeft3

0

WaitLeft3

1

Idle3

1

0

Idle3

0

Fork2

0

0

HasLeft3

0

WaitLeft3

0

WaitLeft3

1

Idle3

1

Fork2

0

HasRight2

0

HasRight2

1

WaitRight2

1

HasLeft2

0

WaitLeft2

0

WaitLeft2

1

Idle2

1

Fork1

0

HasRight1

0

HasRight1

1

WaitRight1

1

HasLeft1

0

WaitLeft1

0

WaitLeft1

1

Idle1

1

Fork0

0

HasRight0

0

HasRight0

1

WaitRight0

1

HasLeft0

0

WaitLeft0

0

1

WaitRight0

0

1

HasLeft0

0

WaitLeft0

0

Idle0

0

1

Idle1

0

Fork0

0

0

WaitRight1

0

1

HasLeft1

0

WaitLeft1

0

Idle1

0

1

Idle2

0

Fork1

0

0

WaitRight2

0

1

HasLeft2

0

WaitLeft2

0

Idle2

0

1

Idle3

0

Fork2

0

0

WaitRight3

0

1

HasLeft3

0

WaitLeft3

0

Idle3

0

1

(a) Using only DDD

philo 3

philo 2

s0

philo 2

s2

philo 2

s4

philo 2

s6

1

philo 1

s0

philo 1

s4

philo 0

s0

philo 0

s4

s0 s6

s6 s2

philo 1

s2

philo 1

s6

philo 0

s2

philo 0

s6

s2 s4

s4 s0

s6 s2 s4 s0

1

Fork

HasRight

0

HasRight

1

WaitRight

1

HasLeft

0

WaitLeft

0

Idle

1

0

WaitRight

0

1

HasLeft

0

WaitLeft

0

Idle

0

1

Fork

HasRight

0

WaitRight

0

HasLeft

1

WaitLeft

1

0

Fork

1

HasRight

0

WaitRight

1

0

Fork

0

s0 s4s6 s2

(b) Using SDD (top) with labels referring to DDD
(bottom)

Figure I.3: State space for 4 philosophers, encoded using DDD (left) or SDD la-
beled with DDD (right)

Chapter I. Hierarchical Set Decision Diagrams 13

ment sequence, that terminates any valid sequence. The terminal 0 represents the
empty set of assignment sequences.

Set Decision Diagram Let Var denotes a set of variables, and for any ω in Var,
Dom(ω) represent the domain of ω which may be infinite.

δ ∈ S, the set of SDD, is inductively defined by:

• δ ∈ {0,1} or

• δ = 〈ω,π,α〉 with:

– ω ∈Var.

– π = s0 ∪ ·· · ∪ sn is a finite partition of Dom(ω), i.e. ∀i 6= j,si ∩ s j =
/0,si 6= /0,n finite.

– α : π→ S, such that ∀i 6= j,α(si) 6= α(s j).

By convention, when it exists, the element of the partition π that maps to the SDD
0 is not represented.

Despite its simplicity, this definition supports storage of rich and complex data
in a canonical form. The finite partition rule ensures that sets si,s j on outgoing
edges from a given node have empty intersection, otherwise we must build three
edges labeled si \ s j,si∩ s j, and s j \ si. The differing child node constraint α(si) 6=
α(s j) forces to fuse two edges with the same target into a single edge labeled si∪s j.

SDD support domains of infinite size (e.g. Dom(ω) = R), provided that the
partition size remains finite (e.g.]0..3],]3..+∞]). This feature could be used to
model clocks for instance (as in [Wan04]). It also places the expressive power of
SDD above most variants of DD.

The main strength of SDD is the hierarchy it allows in the data structure : any
variant of decision diagram can be used to label the edges of the SDD, represent-
ing the domain of variables. We can for instance use DDD to represent compo-
nents with their local integer variables and SDD to represent a composition of such
subsystems. SDD can label SDD, to induce more than one level of depth in the
hierarchy.

The definition of SDD also allows to handle paths of variable lengths, if care
is taken when choosing the state encoding to avoid creating so-called incompati-
ble sequences (see [CTM05]). This feature is useful when representing dynamic
structures such as queues, lists or variable size arrays.

I.3 Evaluation

I.3.1 Hierarchy Helps

Experimental evaluations of SDD are numerous, since the data structure has been
implemented several times and used in different tools since its inception.

Chapter I. Hierarchical Set Decision Diagrams 14

Implementations
In Genève, Didier Buchs was an early adopter of the technology, he directed

Steve Hosttetler’s thesis [Hos11] that defines Σ-DD as a special case of SDD, to
build a theory of terms and their manipulation, with heavy use of both hierarchy
and variable length aspects. Continuing this work, Edmundo Lopez’s thesis [LB15]
builds a framework to express systems as term rewriting systems and successfully
translates this input to Σ-DD for analysis. Their Java implementations of SDD are
used in the tools AlPina [Buc+10] and Stratagem [LBCB14].

Jean-Michel Couvreur also pursued this subject [BCN11] with a different def-
inition based on term rewriting systems and favorable performance results with
respect to Maude.

Alexandre Hamez developed an optimized C++ SDD engine libSDD, and a
model-checker for Petri nets pnmc well ranked in the model-checking contest.

Our own C++ libddd implementation is used in the ITS-tools which cover CTL
and LTL model-checking of a variety of formalisms. It was also used in PNXDD
[Cho+10b], Crocodile [Col+11] for symmetric nets with bags (SNB), Haddock
[BET10] for Promela specifications.

Efficiency
Overall, SDD can be very effective when compared to other decision diagram

variants, thanks to the hierarchy in the representation. Gains in representation size
of one order of magnitude are the norm, not the exception. Because SDD are more
compact than plain DDD, and since time complexity of operations is related to
representation size in symbolic methods, performance is notably improved both in
both time and memory.

To support this claim, tools using SDD or their variants are consistently well
ranked in the Model-checking contest at Petri nets (silver or better in state space
generation category since 2011). In recent years, Marcie that uses Interval Decision
Diagrams IDD [HST09], is the only real competitor to SDD for this category.

Defining Hierarchy
The issue of finding an appropriate variable order common to all DD is however

now compounded by the search for a good decomposition or definition of hierarchy
in the representation.

A manual definition of hierarchy can be very effective, but it requires an expert.
If the model is obtained from a high level specification language, the structure of
the model can be used to define hierarchy; this is the approach we currently use to
infer hierarchy from colored Petri nets. Other structural information not explicitly
designed for hierarchy can also give good decompositions; for instance we use the
NUPN information that comes with some models of the model-checking contest
to infer hierarchy. The various automaton of a network of timed automata such
as Uppaal uses suggests a natural decomposition that we exploit. In [Buc+10] the
algebraic structure of states is used to define their hierarchical encoding, see Fig. I.4
(top). In [BET10] for Promela models natural decompositions were obtained by
matching the structure of the SDD to the data structures of the Promela code, see
Fig. I.4 (middle). In [Col+11] the data structures representing states were matched

Chapter I. Hierarchical Set Decision Diagrams 15

to hierarchy levels, see Fig. I.4 (bottom).
In [Hon+12] performance with and without hierarchy are compared, and use

of hierarchy comes out as winning strategy even when using random hierarchical
decompositions (provided they are not too deep). The heuristics developed by
Silien Hong during this work are available to propose hierarchy levels.

(a) Encoding a set of algebraic terms with Σ−DD, from [Buc+10]

(b) Encoding states of Promela programs, from [BET10]

root

warehouse

outout

waiting

...

|P0|=1, |P1|=|People|-1, |G0|=1, |G1|=2

11

1

11

1

G0

1

G1

1

P0

1

P0

1

P1

(c) Encoding symbolic states of symmetric nets with bags, from [Col+11]

Figure I.4: SDD structure can be used to encode a variety of systems

Chapter I. Hierarchical Set Decision Diagrams 16

I.3.2 Exponential Examples

SDD allow to represent the states of a given system in a number of equivalent ways,
depending on the hierarchy that is defined. One way of seeing this is that SDD
offer to parenthesize a parallel composition of n variables, parenthesis being used
to express hierarchy levels. Flattening the representation (removing parenthesis)
is always possible, yielding a simple DDD with only integer variables. However,
hierarchy allows to factorize description of similar structures and behaviors. This
can be exploited to provide a more efficient SDD solution for model-checking.

We consider again the dining philosophers problem as modeled by the Petri
net Fig.I.2. Let P represent the state of a single philosopher, i.e. a DDD with one
variable for each place of the elementary net. We can build variables M2 = (P�P)
to represent two adjacent philosophers, then build upon that to define M4 = (M2�
M2)= ((P�P)(P�P)),M8=(M4�M4)= . . . We can thus model 2n philosophers
using log2 SDD variables only.

Figure I.6 graphically shows the SDD representing the initial and final state
space for 22 and 23 philosophers using such a recursive folding of the state struc-
ture.

Figure I.5: Performance charts taken from the model checking contest mcc2016@ICATPN.
log-log plot of time for state space generation depending on number of philosophers. For
100000 philosophers the full state space of size 1.33×1047712 is explored in roughly one second.
The curve for SDD based its-tools and pnmc is linear despite the logarithmic scale.

This recursive encoding of the state space yields exceptionally good perfor-
mance for very regular models, exponentially more compact than what can be
obtained with other decision diagram variants. The plot of Fig.I.5 is built using
data from the 2016 edition of the MCC, note the log-log scale. Certes, this kind
of regular models correspond to best case scenarios for SDD, but also highlight
the power of hierarchy and the differences of SDD with respect to other DD of the
literature.

Chapter I. Hierarchical Set Decision Diagrams 17

CloseLoop

1st half

1st half

PhiloStates

Idle

WaitL

1

WaitR

0

HasL

0

HasR

0

Fork

0

one

1

1

2nd half

1

2nd half

1

1

CloseLoop

1st half

1st half

PhiloStates

Idle

WaitL

0

WaitL

1

WaitR

0

WaitR

1

HasL

1

HasR

1

Fork

0

one

0

HasL

1

HasR

0

Fork

0

1

WaitR

0

0

1

PhiloStates

Idle

WaitL

0

WaitL

1

WaitR

1

HasL

1

0

WaitR

0

0

1

2nd half

1

2nd half

PhiloStates

Idle

WaitL

0

WaitR

0

WaitR

1

HasL

0

HasR

1

1

HasL

0

HasR

0

1

1

1

1st half

2nd half

1

2nd half

PhiloStates

Idle

WaitL

0

WaitR

1

HasL

0

0

1

1

1st half 1st half

2nd half

1

2nd half

1

2nd half

1

2nd half

1

1

CloseLoop

1st half

1st half

1st half

PhiloStates

Idle

WaitL

0

WaitL

1

WaitR

0

WaitR

1

HasL

1

HasR

1

Fork

0

one

0

HasL

1

HasR

0

Fork

0

1

WaitR

0

0

1

PhiloStates

Idle

WaitL

0

WaitL

1

WaitR

1

HasL

1

0

WaitR

0

0

1

2nd half

1

2nd half

PhiloStates

Idle

WaitL

0

WaitR

0

WaitR

1

HasL

0

HasR

1

1

HasL

0

HasR

0

1

1

1

1st half

2nd half

1

2nd half

PhiloStates

Idle

WaitL

0

WaitR

1

HasL

0

0

1

1

2nd half

1

2nd half

1st half

1

1st half

2nd half

1

2nd half

1st half

1

1st half 1st half

2nd half

1

2nd half

1

2nd half

1

2nd half

1

1

Figure I.6: Initial (left) and final states (center) of the 2n philosophers problem for
n = 2. Final state-space for 23 philosophers (right). The path that is the most to the
right corresponds to a deadlock state : all philosophers have picked up their right
fork and are waiting for the left one. Doubling the number of philosophers induces
an additional representation cost of 8 nodes and 12 edges.

Chapter I. Hierarchical Set Decision Diagrams 18

I.4 Conclusion

SDD are a fundamental part of my work on decision diagrams, the hierarchy of the
encoding mostly stacks with or even synergizes very well with the other elements
necessary for symbolic model-checking. It provides very efficient encodings in
terms of number of nodes in the representation (memory), and since time complex-
ity in DD is also tightly linked to representation size, very fast tools.

The adoption of SDD both within and outside my own team also show the rel-
evance of this contribution, our seminal paper with Jean-Michel Couvreur defining
SDD has accumulated 76 cites according to Google scholar. SDD are an important
component of at least 8 PhD thesis (myself, V. Beaudenon, A. Hamez, A. Linard,
and M. Colange in Paris 6, S. Hostettler and E. Lopez in Genève, D-T. Nguyen in
Orléans) to my knowledge.

Chapter II

Homomorphisms as Symbolic Tran-
sitions

II.1 Symbolic Transition Relation

II.1.1 Introduction

This chapter presents the second critical ingredient to enable efficient symbolic
model-checking : encoding and application of a transition relation to a set of states,
usually until some kind of fixpoint is reached. In a symbolic setting, a transition
relation takes a set of states and produces the set of states that are successors of
the input states. Transition relations thus encode symbolically the edges of the
reachability graph.

For the definition of symbolic operations the initial approach of [Bur+92] as-
sumes a finite set of k (boolean) variables, giving 2k potential states designated by
S, and that transition relations are subsets of S×S. The transition relation of a sys-
tem of k boolean variables, can thus be seen as a function Bk 7→ 2B

k
and is usually

built and stored as a second decision diagram N, with two variables “before” and
“after” for each variable of the system (or unprimed v and primed variables v′ in
the literature). A specific operation between any subset of the state space S en-
coded as a decision diagram and the transition relation N yields a decision diagram
S′ = N(S) representing immediate successors of S.

The global transition relation is then the monolithic union (logical or of be-
haviors) of all possible transitions. This monolithic approach matches the syn-
chronous semantics of hardware systems, but yields intractable representations in
many cases. Simply computing the DD representing N has been shown in some
cases to be intractable. This forced to introduce new strategies [Ran+95], where
an explicitly managed set of DD store conjuncts of the transition relation. This
process, called transition clustering, allows to overcome some of the limits of the
monolithic approach. This produces smaller DD, that represent the transition rela-
tion N = Σiti in parts or clusters.

19

Chapter II. Homomorphisms as Symbolic Transitions 20

A very different approach than using a 2k− level DD to represent N is to use
homomorphisms as introduced in [Cou+02]. They describe symbolic operations at
a high level of abstraction, using a basic set of elementary transformations and an
algebraic definition of more complex operations. Additional elementary transfor-
mations can be easily integrated as inductive homomorphisms. This approach is
not standard, but it has many strengths that stem from the high level of abstraction
at which the transition relation is described. We adopted homomorphisms with
DDD, and extended their definition to SDD and in several other directions in our
work.

II.1.2 Homomorphisms as Transition Relations

Homomorphisms were introduced in [Cou+02] to define operations over DDD.
The definitions presented here are refined versions that correspond to our current
state of the art, and cover homomorphisms for both DDD and SDD.

Both DDD and SDD support standard set theoretic operations (∪,∩,\). They
also offer a concatenation operation δ1 · δ2 which replaces 1 terminal of δ1 by δ2.
This corresponds to a cartesian product. In addition, basic and inductive homomor-
phisms are introduced as a powerful and flexible mechanism to define application
specific operations. The following definitions are formulated with domain S but
they are common to DDD and SDD. To consider these definition for homomor-
phisms over DDD, simply assume that the set labeling the edge of the SDD is a
singleton integer value.

A basic homomorphism is a mapping Φ : S 7→ S satisfying Φ(0) = 0 and
∀δ,δ′ ∈ S,Φ(δ∪ δ′) = Φ(δ)∪Φ(δ′). The sum + and the composition ◦ of two
homomorphisms are homomorphisms.

For instance, the homomorphism δ∗ Id where δ ∈ S, ∗ stands for the intersec-
tion and Id for the identity, allows to select the sequences belonging to δ : it is a
homomorphism that can be applied to any δ′ yielding δ∗ Id(δ′) = δ∩δ′.

As another example, the homomorphism δ · Id, where δ ∈ S, permits to left
concatenate sequences. We widely use the left concatenation of a single assignment
(ω ∈ s), noted ω

s−→ Id (or for x← d, we note x d−→ Id in DDD context).
Application-specific mappings can be defined by inductive homomorphisms.

An inductive homomorphism φ is defined by its evaluation on the 1 terminal φ(1)∈
S, and its evaluation Φ′ = φ(ω,s) for any ω ∈ Var and any s ⊆ Dom(ω). The
expression φ(ω,s) is itself a (possibly inductive) homomorphism, that will be ap-
plied on the successor node α(s). The result of φ(〈ω,π,α〉) is then defined as
∑s∈π φ(ω,s)(α(s)), where ∑ represents a union.

Inductive Homomorphism Example Let us consider the two following in-
ductive homomorphisms leq and inc. Both assume that their target variable x has
an integer domain Dom(x) =N, so they function as DDD homomorphisms.

Chapter II. Homomorphisms as Symbolic Transitions 21

leq(x,k)(ω,s) =

{
ω
{n |n∈s∧n≤k}−−−−−−−−→ Id if ω = x

ω
s−→ leq(x,k) else

leq(x,k)(1) = 1

inc(x)(ω,s) =

{
ω
{n+1 |n∈s}−−−−−−→ Id if ω = x

ω
s−→ inc(x) else

inc(x)(1) = 1

leq returns all assignments sequences in which all values of the variable x are
less or equal than k, while inc(x) increments all values of x. We can further combine
these effects using the algebra of + and ◦, for instance in Fig.II.1 we apply a
composition fd = leq(d,2) ◦ inc(d) that increments variable d if and only if it is
strictly lesser than 2 (the leq test is performed after the increment). The SDD
labeled S2 = fd(S1) is the result of applying fd once on the initial state S1.

II.1.3 Available Homomorphisms

Many basic homomorphisms are hard-coded, therefore available off-the-shelf to
develop model-checking applications.

The following essential morphisms (defined in [Cou+02]) give us an algebra to
work with operations, with + and ◦ as main operators. For any δ ∈ S :

• Id the identity, Id(δ) = δ. Neutral element for ◦.

• (δ′) the constant morphism, (δ′)(δ) = δ′. The (O) zero morphism is the
absorbing element for ◦ and the neutral element for +.

• Φ+Φ′, more generally ΣiΦi the sum, (ΣiΦi)(δ) =
⋃

i Φi(δ)

• Φ◦Φ′ the composition, (Φ◦Φ′)(δ) = Φ(Φ′(δ))

• Φ∗δ′ that intersects with a constant, (Φ∗δ′)(δ) = Φ(δ)∩δ′

• Φ−δ′ minus operator, Φ−δ′(δ) = Φ(δ)\δ′

• δ′ ·Φ left concatenation, (δ′ ·Φ)(δ) = δ′ ·Φ(δ)

• Φ ·δ′ right concatenation, (Φ ·δ′)(δ) = Φ(δ) ·δ′

We have added the notion of selector homomorphisms, that respect the prop-
erty ∀δ ∈ S,Φ(δ)⊆ δ. Since homomorphisms are linear this property induces that
the behavior of the operation is limited to pruning some states. This property al-
lows to define additional operators :

• Φ∗Φ′ intersection of morphisms when at least one of Φ or Φ′ is a selector,
(Φ∗Φ′)(δ) = Φ(δ)∩Φ′(δ).

Chapter II. Homomorphisms as Symbolic Transitions 22

• !Φ negation of a selector Φ,(!Φ)(δ) = δ\Φ(δ)

• ite(s, t, f) if-then-else control structure, where s is a selector and t and f are
morphisms, ite(s, t, f) = f◦!s+ t ◦ s

We also offer an invert unary operator for any morphism, that allows to com-
pute a predecessor relation. Because we consider variables which are a priori un-
bounded, and that operations can destroy information, the invert can only be com-
puted within a certain context δP representing potential states. However, the invert
of complex morphisms is induced from the invert of the parts, so this very useful
brick for model-checking is available for all transition relations.

• Φ
−1
δP

invert of a morphism with context δP, Φ
−1
δP
(δ) = {s ∈ δP |Φ({s})∩δ 6=

/0}

The transitive closure ? unary operator allows to perform a fixpoint computa-
tion. For any homomorphism h and any node δ∈ S, h?(δ) is evaluated by repeating
δ← h(δ) until a fixpoint is reached.

• Φ? fixpoint or transitive closure operator, such that if ∃n ∈ N, such that
Φn(δ) = Φn+1(δ), then Φ?(δ) = Φn(δ)

In other words, h?(δ) = hn(δ) where n is the smallest integer such that hn(δ) =
hn+1(δ). This operator is often applied to (Id + h) instead of just h, allowing to
accumulate newly computed assignment sequences in the result (a.k.a. least fix-
point). Besides the ease of use it offers the user, since it adds easy support for
µ-calculus, it helps the user specify that a transitive closure is desired in a high
level way. We can in such a context enable sophisticated rewriting optimizations
(presented in section II.2) that considerably improve performance.

Specific only to SDD, we have the local construction :

• L(Φ,ω) allows to “carry” a homomorphism Φ to a certain variable ω, and
apply Φ to the current state of ω. Thus, it implements an operation local to
the variable ω. Any (ω ∈ s) in any sequence of δ becomes (ω ∈Φ(s)).

Specific only to DDD, we have the following inductive homomorphisms pro-
vided off the shelf. The last two extremely general transformations use a reasoning
based on equivalence classes that will be described in section II.3.

• (x�k) comparison of variable to a constant k∈Z, with � ∈ {=, 6=,<,>,≥,≤
}, this selector inductive homomorphism selects only sequences of assign-
ments that respect the provided predicate, i.e. x← k′ in any sequence of δ

must respect constraint k′ � k

• (x+ = k) increment of variable by a constant k ∈ Z, updates any x← k′ in
any sequence of δ to be x← k+ k′

Chapter II. Homomorphisms as Symbolic Transitions 23

• Pred(b) where b is an arbitrary boolean predicate on state variables, this
general selector homomorphism keeps only sequences that satisfy b

• Assign(a,b) where a is an arbitrary expression resolving to a variable index,
and b is an arbitrary expression on variables. This operation updates the
value of a to reflect the value of b.

These modeling bricks are used to build up the semantics of systems in a com-
positional manner. With Assign and Pred offered with the library, most users do
not need to develop their own homomorphisms anymore, they can easily assemble
existing bricks to build practically any intended behavior.

II.2 Automatic Saturation

II.2.1 Computing a least fixpoint

A core element of symbolic model-checking is the computation of a least fixpoint
or transitive closure, necessary for most queries such as reachable state space.
Building upon the idea of clusters for transitions, chaining [RCP95] consists in
relaxing the strict BFS proposed in [Bur+92] to allow to reach states that are not
direct successors in a single iteration of applying the clusters. The approach applies
the clusters of transitions in sequence, so that each cluster may discover successors
of states reached by the previous clusters.

For Globally Asynchronous Locally Synchronous (GALS) systems, the satu-
ration algorithm [CMS03] is empirically an order of magnitude better than chain-
ing. The semantics of GALS is given as an asynchronous interleaving of locally
synchronous actions (e.g. Petri nets). Saturation consists in constructing clusters
based the top-most variable in transition supports, then based on the interleaving
semantics of the conjuncts, the fixpoint is first computed on lower parts of the DD.

More precisely any time a DD node of the state space representation is modified
by a transition it is (re)saturated, that is the cluster that corresponds to this variable
is applied to the node until a fixpoint is reached. When saturating a node, if lower
nodes in the data structure are modified they will themselves be (re)saturated. This
recursive algorithm can be seen as particular application order of the transition
clusters that is adapted to the DD representation of state space. Saturation is very
effective but it is difficult to implement correctly, and it is not available in standard
DD packages such as CUDD [Som05].

This section presents how using simple rewriting rules we automatically create
a saturation effect. This allows to embed the complex logic of this algorithm in the
library, offering the power of this technique at no additional cost to users. At the
heart of this optimization is the property of local invariance.

Chapter II. Homomorphisms as Symbolic Transitions 24

II.2.2 Intuition

The key idea behind exploiting local invariance is the propagation of operations.
Indeed, often operations representing transitions do not affect all variables of the
state signature. Thus the homomorphism representing the transition can be propa-
gated, skipping the variables which are not relevant for the transition. This allows
to limit the number of (useless) intermediate nodes created during an application
of a transition relation.

1

a

b

c

d

{0}

{3}

{2}

{1}

S
1

1

a

b

c

d

{1}

{3}

{2}

{1}

S
2

1

a

b

c

d

{0,1}

{3}

{2}

{1}

S
3

1

a

b

c

d

{1,2}

{3}

{2}

{1}

S
4

1

a

b

c

d

{0,1,2}

{3}

{2}

{1}

S
5

+ +

ƒ
d

ƒ
d

Figure II.1: Effects of propagation

Suppose we have the transition fd = leq(d,2)◦ inc(d) to apply on S1 of the fig-
ure II.1. We want the full state space, i.e. (fd + Id)?(S1). A basic BFS application
would produce intermediate SDD S2 to S4. However, if the evaluation mechanism
could know that variables a, b and c are not relevant for the operation, we could
propagate (fd + Id)? down to the d node of S1, work on that node until the ? fix-
point is reached, then reconstruct the top of the SDD of S5. This avoids creation of
all the intermediate nodes outlined in grey.

The next subsections formalizes this intuition, allowing to embed this logic in
the SDD library. The heart of the contribution was developed during the thesis of
Alexandre Hamez [Ham09; HTMK08; HTMK09].

II.2.3 Rewriting Least Fixpoint to Saturation

a Local Invariance Definition

A minimal structural information is needed for saturation to be possible: the vari-
ables in the support of operations must be known. To this end we define :

Chapter II. Homomorphisms as Symbolic Transitions 25

Locally invariant homomorphism An homomorphism h is locally invariant on
variable ω iff
∀δ = 〈ω,π,α〉 ∈ S, h(δ) = ∑〈s,δ′〉∈α ω

s−→ h(δ′)

Concretely, this means that the application of h doesn’t modify the structure of
nodes of variable ω, and h is not modified by traversing these nodes. The variable
ω is a “don’t care” w.r.t. operation h, it is neither written nor read by h. A standard
DD encoding [CMS03] of h applied to this variable would produce the identity.
The identity homomorphism Id is locally invariant on all variables.

b Local Invariance and Elementary Homomorphisms

For an inductive homomorphism h locally invariant on ω, it means that h(ω,s) =
ω

s−→ h. A user defining an inductive homomorphism h should provide a predicate
Skip(ω) that returns true if h is locally invariant on variable ω. This minimal in-
formation allows to dynamically deduce the support of inductive homomorphisms.
This information can then be used to dynamically reorder the application of ho-
momorphisms to produce a saturation effect. It is not difficult when writing a
homomorphism to define this Skip predicate since the useful variables are known,
it actually reduces the number of tests that need to be written.

For example, the inc and leq homomorphisms of section II.1.2 can exhibit the
locality of their effect on the state signature by defining Skip, which removes the
test ω = x w.r.t. the previous definition since x is the only variable that is not
skipped:

leq(x,k)(ω,s) = ω
{n |n∈s∧n≤k}−−−−−−−−→ Id

leq(x,k).Skip(ω) = (ω 6= x)
leq(x,k)(1) = 1

inc(x)(ω,s) = ω
{n+1 |n∈s}−−−−−−→ Id

inc(x).Skip(ω) = (ω 6= x)
inc(x)(1) = 1

c Local Invariance and Composite Homomorphisms

For composite homomorphisms the value of the Skip predicate can be computed by
querying their operands: homomorphisms constructed using union, composition
and fixpoint of other homomorphisms, are locally invariant on variable ω if their
operands are themselves invariant on ω.

It allows homomorphisms nested in a more complex operation to share traver-
sal of the nodes at the top of the structure as long as they are all locally invariant.
When they no longer Skip variables, the usual evaluation definition h+ h′(δ) =
h(δ)∪h′(δ) is used to affect the current node.

More generally, when we consider a sum of morphisms H we partition its terms
into those that skip the current level F and the others G.

Let H(δ)=∑i hi(δ) be a sum of morphisms, for any given variable ω, we define
F = {hi|hi.Skip(ω)} and G = {hi|¬hi.Skip(ω)}.

Chapter II. Homomorphisms as Symbolic Transitions 26

This decomposition H = F +G gives us a union F that is locally invariant on
ω and will continue evaluation as a block (propagated). The G part is evaluated
using the standard definition G(δ) = ∑h∈G h(δ)

Thus the minimal Skip predicate allows to automatically create clusters of op-
erations by adapting to the structure of the SDD it is applied to. We make very few
assumptions on the structure of the DD and the operations, as both the support and
the clusters are computed dynamically as the computation progresses.

d Rewriting Least Fixpoint to Saturation

With the rewriting rule of a union H = F +G we have defined, we can now exam-
ine the rewriting of an expression (H + Id)?(δ) where H is an arbitrary union of
transitions :

(H + Id)?(δ) = (F +G+ Id)?(δ)
= (G+ Id+(F + Id)?)?(δ)

The (F + Id)? block by definition is locally invariant on the current variable.
Thus it is directly propagated to the successor nodes, where it will recursively be
evaluated using the same definition as (H + Id)?.

The remaining fixpoint over G homomorphisms can be evaluated using the
chaining operation order, which is reported empirically more effective than other
approaches [CMS03], a result also confirmed in our experiments.

The chaining application order algorithm [RCP95] can be written compactly
in SDD as :

reach = (©t∈T (t + Id))?(s0)

We thus finally rewrite:

(H + Id)?(δ) = (©g∈G(g+ Id)◦ (F + Id)?)?(δ)

e Extension to Hierarchy

We have additional rewriting rules specific to SDD homomorphisms and the L
local construction (see section II.1.2):

L(h,var)(ω,s) = ω
h(s)−−→ Id

L(h,var).Skip(ω) = (ω 6= var)
L(h,var)(1) = 0

Note that h is a homomorphism, and its application is thus linear to the values
in s. Further a L operation can only affect a single level of the structure (defined
by var). We can thus define the following rewriting rules, exploiting the locality of
the operation :

Chapter II. Homomorphisms as Symbolic Transitions 27

(1) L(h,v)◦L(h′,v) = L(h◦h′,v)
(2) L(h,v)+L(h′,v) = L(h+h′,v)
(3) v 6= v′ =⇒ L(h,v)◦L(h′,v′) = L(h′,v′)◦L(h,v)
(4) (L(h,v)+ Id)? = L((h+ Id)?,v)

Expressions (1) and (2) come from the fact that a local operation is locally
invariant on all variables except v. Expression (3) asserts commutativity of com-
position of local operations, when they do not concern the same variable. Indeed,
the effect of applying L(h,v) is only to modify the state of variable v, so modify-
ing v then v′ or modifying v′ then v has the same overall effect. Thus two local
applications that do not concern the same variable are independent. We exploit this
rewriting rule when considering a composition of local to maximize applications
of the rule (1), by sorting the composition by application variable. A final rewrit-
ing rule (4) is used to allow nested propagation of the fixpoint. It derives directly
from rules (1) and (2).

With these additional rewriting rules defined, we slightly change the rewriting
of (H + Id)?(δ) for node δ = 〈ω,π,α〉: we consider H(δ) = F(δ)+L(δ)+G(δ)
where F contains the locally invariant part, L = L(l,ω) represents the operations
purely local to the current variable ω (if any), and G contains operations which
affect the value of ω (and possibly also other variables below). Thanks to rule (4)
above, we can write :

(H + Id)?(δ) = (F +L+G+ Id)?(δ)
= (G+ Id+(L+ Id)?+(F + Id)?)?(δ)
= (©g∈G(g+ Id)◦L((l + Id)?,ω)◦ (F + Id)?)?(δ)

These additional rewriting rules are an extension of the saturation algorithm to
decision diagrams featuring structure or hierarchy. Performance evaluation con-
firms the huge practical benefits of automatic saturation induced by this small set
of homomorphism rewriting rules and the predicate Skip.

II.3 Symbolic Evaluation of Expressions

II.3.1 Arrays and Arithmetic in a Symbolic Setting

We now consider the problem of symbolically encoding transition relations that
include concepts such as basic arithmetic or arrays. These features are essential to
handle analysis of concurrent programs, we will provide here a general solution.

Classical Approach
Let us define statements as (sequences of) assignments of expressions to vari-

ables. The support of a statement is the set of variables it reads or writes to. This
notion of locality is heavily exploited, to limit the representation of transitions
to the effect they have on variables of their support. For each transition with k′

Chapter II. Homomorphisms as Symbolic Transitions 28

Boolean support variables, worst case representation size is 2k′ . The symbolic
approach was successfully applied to Boolean gate logic where encoding these
Bk′ 7→ 2B

k′
transition matrices is feasible.

But because classical approaches compute potential to potential Bk′ 7→ 2B
k′

transition matrices, a larger support for transitions means exponential growth of the
worst case complexity in representation size. It also severely limits the possibilities
of saturation-based techniques as their efficiency relies in clusters based on the
support of transitions. Hence, a worst case for classical symbolic approaches is
when the support of transitions includes all variables.

Transition Support
Moreover, when the input specification includes array or pointer manipulation,

any static analysis of statements will necessarily yield pessimistic support assump-
tions. For instance, a non-constant array access such as t[i] may depend on the
variable t[0]. In classical approaches, pessimistic assumptions must include all
elements of the array t in the support. Such expressions are commonly encountered
in modeling languages such as Promela or Divine [Hol97; Bar+10].

The current state of the art to tackle such complex expressions symbolically in a
general way is the approach proposed in LTSmin [BPW10]. A system is defined as
consisting of k state variables with a discrete domain D and of transitions described
primarily by their support composed of k′ ≤ k variables. To compute the state
space, LTSmin relies on third-party existing explicit model-checkers that provide
a computation procedure called for each encountered value of the support in the
global state space. Thanks to this projection, the number of these calls is bounded
by Dk′ and in practice is limited to actually encountered states. This tool also
implements state-of-the-art symbolic techniques, such as saturation, using classical
encoding with two "before" and "after" variables per system state variable.

This approach is however severely challenged when the support grows. If some
transitions update a lot of variables, even independently (e.g. increment a set of
variables), the support of the transition may be very large. If the high-level model
features array manipulation, pessimistic assumptions on the supports end up with
supports including most (if not all) state variables. In such an extreme case, the ex-
plicit engine is invoked at least once for each state, negating any possible gain from
the use of DD. Additionally, such individual insertion of paths in a DD is liable to
produce exponential memory peak effects. Large supports also severely limit the
possibilities of saturation as clusters are based on the support of transitions.

II.3.2 Intuition

Large supports are often the result of array manipulation or composition of local
effects induced by sequences of assignments. We propose to perform a dynamic
analysis of statements as they are being resolved, allowing to discover more locality
in the remaining effects as expressions are partially evaluated.

In the dynamic case, when evaluating t[i], as soon as the value of the index
expression i has been reduced to a constant, pessimistic assumptions can be for-

Chapter II. Homomorphisms as Symbolic Transitions 29

gotten and the support is reduced to the effective cell of the array that is the target
of the assignment. We thus can exploit locality to optimize the evaluation, updating
the support of expressions as the evaluation progresses.

Compositions of effects are managed as explicit composition of homomor-
phisms, each of which has a support defined by its underlying expressions. This
avoids the problems LTSMin encounters for transitions with a large syntactic sup-
port (e.g. increment a large set of variables).

To have efficient symbolic computations of statements, we define an equiva-
lence relation over states with respect to the value of an expression; this induces
equivalence classes that can be built dynamically and manipulated symbolically.
Intuitively, if efficient manipulation of equivalence classes is possible, then the
computation complexity can be proportional to the number of such equivalence
classes rather than to the number of actual states.

But our encoding of the expressions needs to avoid any explicit step where
states are individually considered in the model-checking algorithm. During the
thesis of Maximilien Colange [Col+12; Col13] we defined a general algorithm to
compute and manipulate these equivalence classes symbolically on DD. This key
ingredient delivers the expressivity of arrays and linear integer arithmetic to the
homomorphism framework.

II.3.3 Expressions : Definition

Let Σ be a signature, that is a set of symbols of finite arity. We inductively define
the set Expr of Σ-expressions as φ ∈ Expr if and only if:

• φ ∈ Σ of arity 0,

• or φ = s(φ1, . . . ,φk) where s ∈ Σ is of arity k and φ1, . . . ,φk ∈ Expr (φi is
called a sub-expression).

Let D be a domain for expressions. We assume that D is embedded in Σ, so
that every element of the domain can be referred to syntactically.

Definition An interpretation I is a function that associates to every symbol s ∈ Σ

of arity k > 0 a (possibly partial) function I(s) : Dk 7→D, and that maps each symbol
of arity 0 to its corresponding element of D.

Intuitively, this formalism captures most programming languages, with point-
ers and pointer arithmetic. From now on, we assume that there is a finite subset X in
D, called addresses. The set of addresses X being finite, we note X = {x1, . . . ,x|X |}.
We assume Σ contains a special symbol δ of arity 1, that allows to access a memory
slot given its address. Note that a variable is just a symbolic name for an address.
Thus, I(δ) represents the content of the memory that varies as the program runs.
Since we focus on the evolution of the content of the memory, all the interpreta-
tions considered from now on are equal for the other symbols (i.e. the operational

Chapter II. Homomorphisms as Symbolic Transitions 30

semantics for the symbols of the language is known and fixed). Let µ = I(δ) des-
ignate a valuation, i.e. the state of the memory. µ is seen as a (partial, when not
all memory contents are known) function from X into D. Since all other symbols
have a fixed interpretation, an interpretation I can be described by simply providing
µ. Furthermore, all symbols interpretations must be complete functions (only the
valuation is allowed to be a partial function). Partial interpretations can be com-
pleted by adding a special element to D and mapping the undefined domain onto
this special element. This special element corresponds to an error or an undefined
behavior. Note that the interpretations of all symbols must take into account this
new special element.

Definition Given an interpretation I, an expression φ = s(φ1, . . . ,φk) (k ≥ 0) eval-
uates or reduces to another expression eval(I,φ) as follows:

eval(I,φ) =





I(s) ∈ D if s is a symbol of arity 0

I(s)(eval(I,φ1), . . . ,eval(I,φk)) ∈ D
if eval(I,φi) ∈ D for all i and
I(s) is defined at this point

s(eval(I,φ1), . . . ,eval(I,φk)) otherwise.
If eval(I,φ) ∈ D, the evaluation is complete.

Notation. We will now abusively denote the evaluation eval(I,φ) where I(δ) =
µ by eval(µ,φ). If ψ is a (possibly nested) sub-expression of φ, φ[ψ← θ] denotes
the expression obtained by substituting the expression θ to ψ in φ. Given a valua-
tion µ and a subset of addresses Y ⊆ X , µ|Y denotes the restriction of µ to Y . With
these notations, we have, for any variable x, any valuation µ where x is defined, and
any expression φ: φ[δ(x)← µ(x)] = eval(µ|{x},φ)

Example.
To help in visualizing these definitions, let us use as an example a language sup-

porting a C-like syntax. We give concrete examples here for each element defined
abstractly above. We consider a language supporting integers and their manipula-
tion operators (arithmetic +, -, * . . . as well as bitwise operations <<,>>,. . .). The
set of considered operators are part of the signature Σ. The domain D is thus inte-
gers. The Σ-expressions are built by syntactic combinations of operators, and the
literals 0 or 1 are also (terminal) expressions (as D is embedded in Σ).

Then, by definition II.3.3, we must provide an interpretation function I that
gives the semantics of all the operators which are used in expressions. The inter-
pretation function works with constants; for our example we should provide the
integer output value for each of the binary operators given two integers.

Consider now variables of the program "a,b,c". They are seen as symbolic
names and mapped to integers (memory addresses), for instance 0,1,2. The special
operator δ allows to read the value of such a variable, hence the expression a is
interpreted as δ(0). We add the notion of array of fixed size tab, and access to a
cell of an array using tab[]. Again tab is a symbolic name for a variable mapped to
an integer, for instance 3 that is the first memory slot occupied by the array. Then
tab[e] where e is an arbitrary expression is a syntactic sugar for δ(3+ e).

Chapter II. Homomorphisms as Symbolic Transitions 31

All operators should have complete interpretations: a/b must also be defined
when b = 0. For this purpose, one or more special constants can be introduced.
For a given language manipulating finite types, the definition of the interpretation
of most symbols is usually straightforward. We consider that the interpretation of
all symbols except δ is fixed throughout the computations. In other words we dis-
tinguish the code (all other symbols from the signature) from the data, represented
by I(δ), that may vary as the computation progresses.

Definition II.3.3 formalizes partial evaluation of expressions given an interpre-
tation function. For instance, suppose µ only gives the content of memory slot 0,
say µ(0) = 12. Let φ = add(δ(0),δ(1)) (usually noted a+ b). Then eval(µ,φ) =
add(eval(µ,δ(0)), eval(µ,δ(1))). We have eval(µ,δ(0)) = I(δ)(0) = µ(0) = 12
. However, because µ is not defined for address 1, eval(µ,δ(1)) = δ(1). Hence,
eval(µ,φ) = add(12,δ(1)) (noted 12+b).

II.3.4 Expressions : Equivalence Relation

In practice, a system’s state is a valuation of the state variables, and the behavior of
the system is described with expressions. When treating such a system using DDD
arises the need to evaluate an expression over a set of valuations.

More precisely, given an expression φ and a set of valuations V , one needs
to compute all the evaluations of φ by the valuations in V . To achieve this goal
efficiently, we rely on an equivalence relation on valuations with respect to the
evaluation of a given expression ∼X

φ
.

This equivalence relation is a key notion, allowing efficient evaluation of ex-
pressions on sets of valuations.

Definition Given a subset Y of X and an expression φ, for all valuations µ,µ′ we
define the equivalence relation ∼Y

φ
as follows:

µ∼Y
φ µ′⇔ eval(µ|Y ,φ) = eval(µ′|Y ,φ)

A trivial case of this equivalence is valuations µ 6= µ′, that are equal on Y .
Example. As an example for Definition II.3.4, any two µ, µ′ such that eval(µ,a+

b) = eval(µ′,a+b) are equivalent. For instance, if both a and b are in Y , µ = (a←
0,b← 1),µ′ = (a← 1,b← 0) are equivalent. If only a is in Y , µ and µ′ are not
equivalent, since one yields expression 0+b while the other yields 1+b.

II.3.5 Evaluating expressions on DDD

Recall that the size of a DDD is often logarithmic in the size of the represented
set. The naive approach considers each valuation separately, ending up with a
complexity linear in the size of the input set. An efficient solution to this problem
should use functions that manipulate the nodes of the data structure representation,
so that thanks to caches, the complexity remains proportional to the encoding size.

Chapter II. Homomorphisms as Symbolic Transitions 32

We propose an algorithm, EquivSplit, that partitions a set of valuations (given
as a DDD) into equivalence classes with respect to ∼X

φ
. It visits variables in the

order given by the DDD, and progressively evaluates the expression. Hence it must
work with partial valuations and partially evaluated expressions.

The algorithm EquivSplit builds equivalence classes for∼X
φ

dynamically based
on successive substitution, refinement and merge steps on a partition of the input
set. At step i, the goal becomes to remove any dependencies on xi from the expres-
sion φ, allowing recursion over xi+1, . . . ,x|X | :

• the substitution step uses the partition according to all possible contents of
current address xi (directly provided by the DDD encoding of valuations), to
evaluate φ with each of these values;

• the look-ahead or refinement step refines the partition by recursively evalu-
ating the reduced expressions over addresses xi+1, . . . ,x|X |. This step is only
necessary if the expression still depends on xi after the substitution step : this
indicates presence of nested dereference operators δ such as an array access
index value, an assignment to xi of an unresolved expression, or some other
complex expression that may depend on xi. This step requires to (recursively)
build a partition of children nodes with respect to a target (sub)expression.

• the merge step merges cells of the partition that lead to the same reduced
expression over addresses xi, . . . ,x|X |. The merge is performed as soon the
expression is resolved, ensuring that the computed partition is not finer than
necessary.

The full algorithm is detailed in [Col+13].
Complexity of EquivSplit. The refinement step of the algorithm is builds new
decision diagrams partitioning sets of states (child nodes) into equivalence classes
that may be arbitrarily fine, and depends on the input expression and the input set
of valuations. The overall complexity of EquivSplit is thus hard to predict and
depends on the number of equivalence classes built.

A worst case for our technique would be an expression computing a hash value
based on the values in all the memory slots. A perfect hash function would yield
equivalence classes limited to singletons, hence encountering exponential worst
case complexity (linear over states contained). Conversely, expressions with a
small codomain (such as boolean expressions) give a small bound on the maxi-
mum number of equivalence classes manipulated by the algorithm.

II.4 Evaluation

Homomorphism Rewriting
We do not present a separate evaluation of automatic saturation in this manuscript.

The thesis of Alexandre Hamez [Ham09] reports one to three orders of magnitude
improvements in performance. The extension of saturation to the hierarchy of SDD

Chapter II. Homomorphisms as Symbolic Transitions 33

is very successful, even across several levels of depth in the hierarchy. All the tools
we have built on top of the symbolic kernel benefit hugely from it.

The principle of using rewriting strategies for operations to obtain more effi-
cient solutions in a symbolic setting is thoroughly explored in [LB15]. Rewrit-
ing strategies are reified, allowing a user to customize them, possibly in a model-
specific way. The tool Stratagem [LBCB14] outperformed all the other symbolic
tools in the 2014 edition of the MCC@PN for some models where appropriate
strategies could be found.

The actual rewriting which is performed is not configurable in ITS-tools, we
chose compromises with good overall performance after extensive benchmarks.
Since computing a “normal form” would be worst case exponential, application
of rewriting rules in the engine is heuristic and relies on pattern matching of at
most linear complexity. The current engine includes many more rewriting rules not
detailed in this manuscript, mostly dealing with commutativity of operations and
their implications on fixpoint computation. These additional rules target scenarios
frequently found in temporal logic model-checking such as a least fixpoint under
some constraint.

Expression Handling
To give a performance assessment of both our rewriting strategies and our new

expression framework we now present some benchmark experiments reported in
more detail in [Col+13].

These experiments compare the performance of our ITS-tools 1 to classical
state-of-the-art approaches, represented by the tools LTSmin [BPW10] for DD
based tools and super_prove [BM10] for SAT based tools. We use the models
of the BEEM database [Pel07], expressed in Divine a language for communicating
process close to Promela.

These models have been used before as benchmarks by LTSmin, and they were
also part of the hardware model checking contest (HWMCC’122) as SAT instances.
LTSmin in these experiments is configured to use the same DDD as ITS-tools, and
ITS-tools does not use hierarchy to make algorithmic evaluation of the benefits of
our expression framework as fair as possible. super_prove was the winner of the
HWMCC, and is provided to allow raw performance comparisons to what SAT
solvers can do on this type of problem.

These experiments thus exploit both automatic saturation and the expression
framework but not hierarchy, they were performed using only DDD. SDD stack
very nicely with these other features, gaining an order of magnitude over the per-
formances reported here when the hierarchy levels are appropriately defined. On
the other hand, we still currently lack a good heuristic to generate appropriate hier-
archy for Divine models, so this is what our engine can do with no manual tuning.

Detailed results of experiments are presented as scatter plots comparing two
tools over the whole benchmark. Each point represents a (model,formula) pair

1http://ddd.lip6.fr
2http://fmv.jku.at/hwmcc12

http://ddd.lip6.fr
http://fmv.jku.at/hwmcc12

Chapter II. Homomorphisms as Symbolic Transitions 34

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

lib
it
s
 t
im

e
 (

s
)

LTSmin time (s)

(a) ITS-tools vs. LTSmin

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

it
s
 t
im

e
 (

s
)

sup time (s)

(b) ITS-tools vs. super_prove

Figure II.2: Comparing runtime performance on the BEEM benchmark.

that was tested for reachability with both tools. A point below the diagonal means
that libits is more efficient than the other tool. Our plots use a logarithmic scale.
Lines parallel to the diagonal represent performance ratios of 10, 100 . . . (resp. 0.1,
0.01 . . .).

The experiments confirm that our EquivSplit algorithm performs better than the
classical symbolic approach. With the same implementation of DD and the same
variable ordering, our implementation is up to 1000 times faster and 100 times less
memory consuming than LTSmin.

The comparison to super_prove is more contrasted, since the underlying tech-
niques are so different. DD techniques fail from memory overflow whereas SAT
based techniques run into time overflow. Still we treat about 35% more models than
super_prove, and libits is quicker than super_prove for 80% of the models
treated by both tools, with a speed-up factor up to 1000. On the other models,
super_prove’s speed-up factor ranges up to 100.

More detailed analysis shows that libits runs on average 5 times faster on
satisfied properties and 10 times faster on unsatisfied properties than super_prove.
Unsatisfied instances require both tools to explore the whole reachability graph:
these are the hardest problems.

On this benchmark, we show that state-of-the-art symbolic manipulation of
decision diagrams can still outperform the best SAT-based techniques.

II.5 Conclusion

Homomorphism rewriting leads to an elegant and flexible expression of saturation
like algorithms. Our strategies for symbolic encoding of transition relations give
our tool world class performance for state space generation, even when considering
complex statements and linear arithmetic.

The theoretical basis of homomorphisms is due to Jean-Michel Couvreur et al.

Chapter II. Homomorphisms as Symbolic Transitions 35

as introduced in [Cou+02]. As an early adopter and through our later work, we
extended this solid foundation with pragmatic extensions such as selector homo-
morphisms and the invert operator. The rewriting rules for homomorphisms which
were introduced during the thesis of Alexandre Hamez [Ham09] have proven their
efficiency and been adopted by other homomorphism based implementations [Buc+10;
LB15]. The set of rewriting rules can and has been extended to cover more model-
checking use case and further improve performance.

The evaluation of complex expressions using EquivSplit developed and for-
malized during the thesis of Maximilien Colange [Col13] generalizes previous so-
lutions using homomorphisms of [Cou+02; BET10] that used swap of adjacent
variables as a building block. We also improve more classical DD encoding of
transition relations [BPW10] by dynamically exploiting knowledge of the seman-
tics of expressions. Our assumptions are stronger than [BPW10] since we need to
know more about the system, but we retain enough expressivity to cover a wide
variety of modeling formalisms.

To offer our symbolic kernel to the widest possible user base, we designed a
pivot language GAL presented in chapter V that is expressive and general enough
to express the semantics of many modeling formalisms. Expressing systems in
GAL thus gives end-users access to the efficiency of this symbolic kernel described
in Part A, without the burden of directly manipulating homomorphisms.

Part B

Symbolic Model-Checking
Algorithms

Symbolic model-checking algorithms use a DD based representation of the
state graph. Their particularity is that they must reason at each step upon sets
of states and avoid ever considering states individually. This part presents two
symbolic model-checking algorithms that we designed.

LTL is a fragment of temporal logic used to specify properties of systems,
and that allows to reason about fairness and infinite runs of a system. Chapter III
presents SLAP, a hybrid algorithm mixing symbolic and explicit representations to
perform LTL model-checking.

Chapter IV presents a symbolic-symbolic approach, or how to compute quotient
graphs where nodes represent equivalence classes of states on top of symbolic DD
representations.

Both of these contributions build upon the symbolic kernel defined in Part A.

36

Chapter III

Self-Loop Aggregation Product : SLAP

III.1 LTL model-checking

The symbolic kernel developed in part A can compute reachable states of a system
in an efficient manner. This is enough to answer safety properties, i.e. properties
that all states must verify. Safety properties cover reachability of particular states,
invariants and properties such as deadlock freedom.

To express more complex properties, that reason on how states are reachable
from one another, variants of temporal logic are used [CGP99]. The most studied
fragments of temporal logic in the literature are the Computation Tree Logic (CTL)
and the Linear-time Temporal Logic (LTL).

Model checking for Linear-time Temporal Logic (LTL) is usually based on
converting the property into a Büchi automaton, composing the automaton and the
model (given as a Kripke structure), and finally checking the language emptiness
of the composed system or product auotmaton [Var96]. This verification process
suffers from a well known state explosion problem. Among the various techniques
that have been suggested as improvement, we can distinguish two large families:
explicit and symbolic approaches.

Explicit model checking approaches explore an explicit representation of the
product graph. A common optimization builds the graph on-the-fly as required by
the emptiness check algorithm: the construction stops as soon as a counterexample
is found [Cou+91].

Another source of optimization is to take advantage of stuttering equivalence
between paths in the Kripke structure when verifying a stuttering-invariant prop-
erty [Ete99]: this has been done either by ignoring some paths in the Kripke struc-
ture [KV97], or by representing the property using a testing automaton [HPV02].
To our knowledge, all these solutions require dedicated algorithms to check the
emptiness of the product graph.

Symbolic model checking tackles the state-explosion problem by representing
the product automaton symbolically, usually by means of decision diagrams (a
concise way to represent large sets or relations). Various symbolic algorithms exist

37

Chapter III. Self-Loop Aggregation Product : SLAP 38

to verify LTL using fix-point computations (see [Fis+01; SRB02] for comparisons
and [KPR98] for the clarity of the presentation). As-is, these approaches do not
mix well with stuttering-invariant reductions or on-the-fly emptiness checks.

However explicit and symbolic approaches are not exclusive, some combina-
tions have already been studied [BCZ99; HIK04; STV05; KP08] to get the best of
both worlds. They are referred to as hybrid approaches. Most of these approaches
consist in replacing the Kripke structure by an explicit graph where each node con-
tains sets of states (called aggregates), that is an abstraction preserving properties
of the original structure. For instance in Biere et al.’s approach [BCZ99], each ag-
gregate contains states that share their atomic proposition values, and the successor
aggregates contain direct successors of the previous aggregate, thus preserving LTL
but not branching temporal properties. The Symbolic Observation Graph [HIK04]
takes this idea one step further in the context of stuttering invariant properties: each
aggregate contains sets of consecutive states that share their atomic proposition val-
ues. In both of these approaches, an explicit product with the formula automaton
is built and checked for emptiness, allowing to stop early (on-the-fly) if a witness
trace is found.

q0 q1

ab̄

b

>

(a) TGBA A for aUb

s0

s1s2

s3 s4 s5

s6s7

ab̄c

ab̄c̄ab̄c

ab̄c̄ abc̄ ab̄c

ābc̄ābc
(b) Kripke structure T

q0,s0

q0,s1q0,s2

q0,s3 q0,s4 q1,s5

q1,s6 q1,s7

q1,s4

ab̄c
ab̄c̄

ab̄c

ab̄c̄ ab̄c abc̄

ab̄c
ābc̄

ābc

abc̄

(c) TGBA of product A⊗T

q0,
{ s0 s1

s2 s3
s4

}

q1,{s5}q1,{ s4 s5
s6 s7 }

>

>

>

(d) TGBA of the SLAP A �T

Figure III.1: a) a TGBA representing an LTL formula, b) a KS modeling the
state graph of a system, c) the classical product of these automata on which the
emptiness-check is performed, d) SLAP replacement to the classical product. c)
and d) agree that accepting runs exist on this example.

Sebastiani et al.’s approach [STV05] is a bit different, as it builds one aggregate
for each state of the Büchi automata (usually few in number), and uses a partitioned
symbolic transition relation to check for emptiness of the product, thus resorting to

Chapter III. Self-Loop Aggregation Product : SLAP 39

a symbolic emptiness-check (based on a symbolic SCC hull computation).
We present in this chapter a new hybrid algorithm : the Self-Loop Aggregation

Product (SLAP). SLAP replaces the synchronized product used in the automata-
theoretic approach for LTL model checking. The proposed product is an explicit
graph of aggregates (symbolic sets of states) that can be interpreted as a Büchi au-
tomaton. The criterion used by SLAP to aggregate states from the Kripke structure
is based on the analysis of self-loops that occur in the Büchi automaton expressing
the property to verify. Our hybrid approach allows on the one hand to use classical
emptiness-check algorithms and build the graph on-the-fly, and on the other hand,
to have a compact encoding of the state space thanks to the symbolic representa-
tion of the aggregates. Our experiments show that this technique often outperforms
other existing (hybrid or fully symbolic) approaches.

III.2 Context and Definitions

III.2.1 Boolean Formulas

Let AP be a set of (atomic) propositions, and let B = {⊥,>} represent Boolean
values. We denote B(AP) the set of all Boolean formulas over AP, i.e., formulas
built inductively from the propositions AP, B, and the connectives ∧, ∨, and ¬.

An assignment is a function ρ : AP→ B that assigns a truth value to each
proposition. We denote BAP the set of all assignments of AP. Given a formula
f ∈B(AP) and an assignment ρ ∈BAP, we denote ρ(f) the evaluation of f under
ρ. This is simply defined as ρ(f ∧ g) = ρ(f)∧ ρ(g), ρ(¬ f) = ¬ρ(f), etc. In
particular, we will write ρ |= f iff ρ is a satisfying assignment for f , i.e., ρ |=
f ⇐⇒ ρ(f) =>.

We will use assignments to label the states of the model we want to verify, and
the propositional functions will be used as labels in the automaton representing the
property to check. The intuition is that a behavior of the model (a sequence of
assignments) will match the property if we can find a sequence of formulas in the
automaton that are satisfied by the sequence of assignments.

III.2.2 Kripke Structure

For the sake of generality, we use Kripke Structures (KS for short) to describe the
state graph of the model. In a KS, each node of the state graph is labeled by the
atomic propositions it satisfies (i.e. an assignment). This formalism thus describes
state-based semantics (one could also consider event-based logic, where the edges
of the state graph bear a label).

Kripke structure A Kripke structure is a 4-tuple T = 〈AP,Γ,λ,∆,s0〉 where:

• AP is a finite set of atomic propositions,

• Γ is a finite set of states,

Chapter III. Self-Loop Aggregation Product : SLAP 40

• λ : Γ→BAP is a state labeling function,

• ∆ ⊆ Γ×Γ is a transition relation. We will commonly denote s1 −→ s2 the
element (s1,s2) ∈ ∆.

• s0 ∈ Γ is the initial state.

Fig. III.1b represents a Kripke structure over AP = {a,b,c}. The state graph
of a system is typically represented by a KS, where state labels in the KS give the
atomic proposition truth values in a given state of the system.

It is sometimes convenient to interpret an assignment ρ as a formula that is
only true for this assignment. For instance the assignment {a 7→ >,b 7→ >,c 7→ ⊥}
can be interpreted as the formula a∧b∧¬c. So we may use an assignment where
a formula is expected, as if we were abusively assuming that BAP ⊂B(AP).

III.2.3 TGBA

A Transition-based Generalized Büchi Automaton (TGBA) is a Büchi automaton
in which generalized acceptance conditions are expressed in term of transitions
that must be visited infinitely often. The reason we use these automata is that they
allow a more compact representation of properties than traditional Büchi automata
(even generalized Büchi automata) [DLP04] without making the emptiness check
harder [CDLP05].

TGBA A Transition-based Generalized Büchi Automata is a tuple A= 〈AP,Q ,F ,δ,q0〉
where

• AP is a finite set of atomic propositions,

• Q is a finite set of states,

• F 6= /0 is a finite and non-empty set of acceptance conditions,

• δ⊆Q ×B(AP)×2F ×Q is a transition relation. We will commonly denote

s
f ,ac−−→ d an element (s, f ,ac,d) ∈ δ,

• q0 ∈ Q is the initial state.

An execution (or a run) of A is an infinite sequence of transitions π=(s1, f1,ac1,d1) · · ·
(si, fi,aci,di) · · · ∈ δω with s1 = q0 and ∀i,di = si+1. We shall simply denote it as

π = s1
f1,ac1−−−→ s2

f2,ac2−−−→ s3 · · · . Such an execution is accepting iff it visits each accep-
tance condition infinitely often, i.e., if ∀a ∈ F , ∀i > 0, ∃ j ≥ i, a ∈ ac j. We denote
Acc(A)⊆ δω the set of accepting executions of A.

A behavior of the model is an infinite sequence of assignments: ρ1ρ2ρ3 · · · ∈
(BAP)ω, while an execution of the automaton A is an infinite sequence of transi-
tions labeled by Boolean formulas. The language of A, denoted L(A), is the set

Chapter III. Self-Loop Aggregation Product : SLAP 41

of behaviors compatible with an accepting execution of A: L(A) = {ρ1ρ2 · · · ∈
(BAP)ω | ∃s1

f1,ac1−−−→ s2
f2,ac2−−−→ ·· · ∈ Acc(A) and ∀i≥ 1,ρi |= fi}

Fig. III.1a represents a TGBA for the LTL formula aUb (a is true, Until b

becomes true). The black dot on the self-loop q1
>,{ }−−−→ q1 denotes an acceptance

conditions from F = { }. The labels on edges (ab̄,b and >) represent the Boolean
expressions over AP = {a,b}. There are two other TGBA in Fig. 1, that represent
respectively the classical product construction and the SLAP of this TGBA and the
Kripke Structure of Fig. III.1b.

We now define a synchronized product for a TGBA and a KS, such that the
language of the resulting TGBA is the intersection of the languages of the two
automata.

Synchronized product of a TGBA and a Kripke structure Let A = 〈AP′,Q ,F ,δ,q0〉
be a TGBA and T = 〈AP,Γ,λ,∆,s0〉 be a Kripke structure over AP⊇ AP′.

The synchronized product of A and T is the TGBA denoted by A ⊗ T =
〈AP,Q×,F ,δ×,q

0
×〉 defined as:

• Q× = Q ×Γ,

• δ× ⊆ Q××B?(AP)×2F ×Q× where

δ×=

{
(q1,s1)

f ,ac−−→ (q2,s2)

∣∣∣∣∣
s1 −→ s2 ∈ ∆, λ(s1) = f and

∃g ∈B?(AP) s.t. q1
g,ac−−→ q2 ∈ δ and λ(s1) |= g

}

• q0
× = (q0,s0).

Fig. III.1c represents such a product of the TGBA aUb of Fig.III.1a and the
Kripke structure of Fig. III.1b. State (s0,q0) is the initial state of the product.
Since λ(s0) = ab̄c we have λ(s0) |= ab̄, successors {s1,s4} of s0 in the KS will be

synchronized through the edge q0
ab̄, /0−−→ q0 of the TGBA with q0. In state (q0,s4)

the product can progress through the q0
b, /0−→ q1 edge of the TGBA, since λ(s4) =

abc̄ |= b. Successor s5 of s4 in the KS is thus synchronized with q1. The TGBA
state q1 now only requires states to verify> to validate the acceptance condition ,
so any cycle in the KS from s5 will be accepted by the product. The resulting edge
of the product bears the acceptance conditions contributed by the TGBA edge, and
the atomic proposition Boolean formula label that comes from the KS. The size of
the product in both nodes and edges is bounded by the product of the sizes of the
TGBA and the KS.

III.3 Self-Loop Aggregation Product (SLAP)

III.3.1 Intuition

The definition of SLAP combines elements found in other strategies in a novel
manner.

Chapter III. Self-Loop Aggregation Product : SLAP 42

From the work on SOG [HIK04; KP08] we took the idea of building an explic-
itly managed set of aggregates, where the states belonging to each aggregate are
stored (and computed) using DD. Building on the results of part A, we also wanted
to have aggregates defined using a least fixpoint, so that (automatic) saturation can
be used to build aggregates efficiently.

This places us in the hybrid category of algorithms, so an explicit emptiness
check will be performed, allowing to interrupt the computation as soon as an ac-
cepting run is found.

From the work on the Symbolic Synchronized Product [BHI04] we took the
idea that defining a new product rather than an abstraction of the KS allows to
adapt the abstractions used during the emptiness check, in a property specific way.
The SOG for instance is defined as a KS, that abstracts the original KS of the model
with respect to a fixed alphabet (all atomic propositions in the formula automaton).
If the formula to verify is something like aUbUc . . ., once the product has reached
a state of the KS that validates b, proposition a basically becomes irrelevant.

Working at the product level also means that instead of defining an equivalence
between the KS of the system and the abstraction, we can be content with a much
weaker property, namely that our product construction has an empty language iff.
the standard synchronized product is empty.

So our general idea was to use the structure of the TGBA to guide the aggrega-
tion procedure on the fly. Our goal was to aggregate as much as possible, yielding
a small explicit graph where each aggregate holds many states, trusting the DD
engine to scale to large aggregates efficiently.

The following section presents SLAP, a specialized synchronized product that
aggregates states of the KS as long as the TGBA state does not change, and no
new acceptance conditions are visited. More precisely, we study the self-loops of
the current state of the formula automaton, and aggregate consecutive states of the
system as long a s they are compatible with the labels of self-loops. The Self-Loop
Aggregation Product (SLAP) preserves full Büchi expressible properties.

III.3.2 Definition

The notion of self-loop aggregation is captured by SF(q,ac), the Self-loop Formulas
(labeling edges q −→ q) that are weaker in terms of visited acceptance conditions
than ac.

When synchronizing with an edge of the property TGBA bearing ac leading
to q, successive states of the Kripke will be aggregated as long as they model
SF(q,ac). More formally, for a TGBA state q and a set of accepting condition
ac⊆ F , let us define

SF(q,ac) =
∨

q
f ,ac′−−→q∈δ s.t. ac′⊆ac

f

Moreover, for a⊆ Γ and f ∈B(AP), we define FSucc(a, f) = {s′ ∈ Γ | ∃s∈ a, s→
s′ ∈ ∆∧λ(s) |= f}. That is, first Filter a to only keep states satisfying f , then pro-

Chapter III. Self-Loop Aggregation Product : SLAP 43

duce their Successors. We denote by FReach(a, f) the least subset of Γ satisfying
both a⊆ FReach(a, f) and FSucc(FReach(a, f), f)⊆ FReach(a, f).

SLAP of a TGBA and a KS Given a TGBA A = 〈AP′,Q ,F ,δ,q0〉 and a Kripke
structure T = 〈AP,Γ,λ,∆,s0〉 over AP⊇AP′ , the Self-Loop Aggregation Product
of A and T is the TGBA denoted A �T = 〈 /0,Q�,F ,δ�,q

0
�〉 where:

• Q� = Q × (2Γ \{ /0})

• δ�=




(q1,a1)

>,ac−−→ (q2,a2)

∣∣∣∣∣∣∣

∃ f ∈B(AP′) s.t. q1
f ,ac−−→ q2 ∈ δ,

q1 = q2⇒ ac 6= /0, and

a2 = FReach(FSucc(a1, f),SF(q2,ac))





• q0
� = (q0,FReach({s0},SF(q0, /0)))

Note that because of the way the product is built, it is not obvious what Boolean
formula should label the edges of the SLAP product. Since in fact this label is
irrelevant when checking language emptiness, we label all arcs of the SLAP with

> and simply denote (q1,a1)
ac−→ (q2,a2) any transition (q1,a1)

>,ac−−→ (q2,a2).
Q ×2Γ might seem very large but in practice the reachable states of the SLAP

is a much smaller set than that of the product Q ×Γ. Furthermore the FReach oper-
ation can be efficiently implemented as a symbolic least fix point using saturation.

Fig. III.1d represents the SLAP built from our example KS, and the TGBA
of aUb. The initial state of the SLAP iteratively aggregates successors of states

verifying SF(q0, /0) = ab̄. Then following the edge q0 b, /0−→ q1, states are aggregated
with condition SF(q1, /0) = ⊥. Hence q1 is synchronized with successors of states
in {s0,s1,s2,s3,s4} satisfying b (i.e., successors of {s4}). Because SF(q1, /0) = ⊥
the successors of {s5} are not gathered when building (q1,{s5}). Finally, when

synchronizing with edge q1
>,−−→ q1, we have SF(q1,{ }) = >, hence all states of

the cycle {s4,s5,s6,s7} are added.

III.4 Evaluation

We implemented within ITS-tools several hybrid or fully symbolic algorithm. We
built upon Spot [DLP04; DL14; DL+16] for the translation of formulas to TGBA
and the explicit emptiness check. Spot is a library that provides bricks to build
your own model checker based on the automata-theoretic approach using TGBAs.

We used as benchmark models classic scalable Petri net examples [CMS03].
The model occurrences we used had from a few million to 1066 reachable states.
The idea is that we want methods that scale to very large KS, while maintaining a
manageable size for the explicit graph. More details on the experimental setup are
available in [DL+11] and the companion technical report.

We implemented two fully symbolic algorithms from the literature, OWCTY
(One-Way Catch Them Young) and EL (Emerson-Lei) algorithms [Fis+01; SRB02]

Chapter III. Self-Loop Aggregation Product : SLAP 44

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 20 40 60 80 100 120

SLAP

SLAP-FST

SOG

BCZ

EL

OWCTY

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 20 40 60 80 100 120

SLAP

SLAP-FST

SOG

BCZ

EL

OWCTY

Figure III.2: Cumulative plots comparing the time of all methods. Non-empty
products are shown on the left, and empty products on the right.

using the forward transition relation. We also compared to hybrid algorithms
SOG [HIK04] (Symbolic Observation Graph) and BCZ [BCZ99] (Biere-Clarke-
Zhu).

We also built two versions of SLAP, the one formally described above, and
SLAP-FST (Fully Symbolic for Terminal components), a variant that does a sym-
bolic SCC detection on aggregates iff. such an SCC might be accepting. SLAP-
FST produces smaller explicit graphs, but performs more symbolic operations. In
practice the FST variant is better when the product is empty, and worse when there
are accepting runs. In such cases interrupting the computation on-the-fly thanks to
the explicit emptiness check yields better overall results.

Fig. III.2 allows to compare the various methods. For each experiment (mod-
el/formula pair) we first collect the maximum time reached by a technique that did
not fail, then compute for the other approaches what percentage of this maximum
was used. The vertical segments visible at 100% thus show the number of runs
for which this technique was the worst of those that did not fail. Any failures are
plotted arbitrarily at 120%. This gives us a set of values between 0% and 120%
for which we plot the cumulative distribution function. For instance, if a curve
goes through the (20%,2000) point, it means that for this technique, 2000 exper-
iments took at most 20% of the time taken by the worst technique for the same
experiments.

The left plot for the non-empty cases shows that the on-the-fly mechanism
allows all hybrid algorithms (SLAP, SLAP-FST, SOG, BCZ) to outperform the
symbolic ones (OWCTY, EL). The SLAP and SLAP-FST method take less than
10% of the time of the slowest method in 80% of the cases.

The right plot for the empty cases shows that fully symbolic algorithm behave
relatively far better (all methods have to explore the full product anyway).

SLAP-FST and SLAP have similar performance, with a slight edge for SLAP-
FST when the product is empty, hence the harder problems. For this reason we
compare SLAP-FST to the other methods from the literature in the scatter plots of

Chapter III. Self-Loop Aggregation Product : SLAP 45

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

E
L

SLAP-FST

empty
non-empty

unknown

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

O
W

C
T

Y

SLAP-FST

empty
non-empty

unknown

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

B
C

Z

SLAP-FST

empty
non-empty

unknown

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

S
O

G

SLAP-FST

empty
non-empty

unknown

Figure III.3: Comparison of SLAP-FST against four other methods : fully sym-
bolic approaches EL and OWCTY (top) and hybrid algorithms BCZ and SOG
(bottom). Green means a counter example trace exists; hybrid methods thus might
exit early. Red means the whole product is explored which is typically a harder
problem.

Chapter III. Self-Loop Aggregation Product : SLAP 46

Fig. III.3. The performances are presented using a logarithmic scale. Each point
represents an experiment, i.e., a model and formula pair. We plot experiments
that failed (due to timeout) as if they had taken 360 seconds, so they are clearly
separated from experiments that didn’t fail (by the wide white band).

Because SLAP can interrupt on the fly, it dominates fully symbolic methods EL
and OWCTY when a trace exists (green points). The general trend is still largely
in favor of SLAP even when the full product must be explored (red points). Hybrid
BCZ can sometimes turn lucky and find a counter example before SLAP (thus
some green below the diagonal), but is otherwise dominated by SLAP. The hybrid
SOG is the closest competitor to SLAP on this benchmark, but to our advantage,
SOG is not able to handle non stuttering-invariant properties.

III.5 Conclusion

The main originality of SLAP is that we only use a very weak property instead of
a strong equivalence relation constraint on states belonging to a given aggregate as
is the case in other hybrid approaches. We proved in [DL+11] that the SLAP of
a given KS and a TGBA accepts a run if and only if the synchronized product of
these two structures accepts a run. This nice theorem is all we need to ensure that
using the SLAP abstraction to perform LTL model-checking is sound : we will not
miss nor create bogus witness runs during the emptiness check procedure.

We have thus developed an original hybrid algorithm, the Self-Loop Aggre-
gation Product (SLAP), that produces very small explicit graphs (good for very
large transition systems) and maximizes use of the least fixpoint (thus is efficiently
implemented using automatic saturation). SLAP proved to be overall the most ef-
fective of the algorithms we had implemented on a large benchmark of Petri net
examples. I’m particularly proud of SLAP as it’s very effective and it is not a just a
variant of existing algorithms, despite the fact that symbolic LTL model-checking
has been heavily studied since the 90’s.

This work on LTL was complemented by [BS+14] during the thesis of Ala-
Eddine Ben Salem, with a fully symbolic algorithm that uses testing automata to
represent the formula (rather than Büchi automata) and again seeks to maximize
the use of saturation. While it is limited to the stuttering invariant fragment of the
logic, for many formulas the approach is very effective.

Chapter IV

Symbolic Symbolic Model-Checking

IV.1 Quotient Graph

Quotient graph approaches use an equivalence relation to build a small abstrac-
tion of the state graph that still preserves many properties of interest. Quotient
graphs are often called symbolic in the literature e.g. the Symbolic Reachability
Graph of [Chi+93], because they work with sets of states. Hence we coined the
term symbolic-symbolic to refer to construction of quotient graph using DD based
techniques.

The first model-checking algorithms that build quotient graphs in were devel-
oped in the 90’s, in [Chi+93] for Well-Formed Petri Nets (now in the ISO standard
called Symmetric Nets SN) and in [NID96] for the formalism Murphy.

These formalisms allow to express symmetries on the data domains (symmet-
ric color domains, scalar set. . .), that induce symmetries on the way events can
be executed. Hence we consider as input a symmetry group G over states and
the transition relation, and we can build a quotient graph of equivalence classes
(also called orbits) of states, that may be exponentially smaller than the full state
graph [Cla+98]. This quotient graph preserves many properties of interest such
as reachability and linear temporal logic provided the property is itself symmetric
with respect to G.

To build a quotient graph, the approach most commonly used [NID96; Jun03]
consists in using a canonical representative of each orbit. However, an orbit may
be of exponential size with respect to the number of elements in the state vector.
Thus, the computation of a canonical representative of an orbit has exponential
worst case complexity in time and/or memory (if the orbit is actually built).

Junttila [Jun03] proposes a general definition of this approach for systems
whose states are integer vectors and symmetry groups are arbitrary permutation
groups. Using the Schreier-Sims representation [Sim71] of permutation groups,
he proposes an algorithm effective in practice to compute a representative of an
equivalence class.

However, the proposed algorithm only deals with explicit encoding of the state

47

Chapter IV. Symbolic Symbolic Model-Checking 48

space. Thus, the symbolic-symbolic problem remains hard since the algorithm
must be applied on each individual state. Unfortunately, algorithms that manipulate
classical explicit data structures must be redesigned to take advantage of DD. This
is not always possible, particularly if the algorithm involves separate treatments for
every state.

Our goal in this work was to try to combine the quotient graph approach with
DD technology, yielding a general approach to building a symbolic-symbolic en-
gine.

IV.2 Context and Definitions

We recall here the theory of symmetry reduction for state space analysis. These
definitions are adapted from [Jun03].

IV.2.1 Symmetry Groups of a Transition System

Definition Transition system
A transition system is a tuple (S,∆,S0) such that:

• S is a finite set of states,

• ∆⊆ S×S is the transition relation,

• S0 ⊆ S is the set of initial states.

Transitions for (s1,s2)∈ ∆ are noted s1 −→ s2. Symmetries of transition systems
are defined using a bisimilarity relation between states.

Definition Symmetry
Let K = (S,∆,S0) be a transition system. A symmetry of K is a permutation g
over S such that:

• g.S0 = S0

• g is congruent with respect to the transition relation:
∀s1,s2 ∈ S,s1 −→ s2⇔ g.s1 −→ g.s2

G, the set of all symmetries of K , is a group because the composition is asso-
ciative, and the composition of two symmetries and the inverse of a symmetry are
still symmetries.

IV.2.2 Quotient Graph

Definition Equivalence relation ≡G

Two states s1,s2 ∈ S are said to be symmetric, denoted s1 ≡G s2, if there is a g ∈
G such that g.s1 = s2. ≡G is an equivalence relation over S. [x]G denotes the
equivalence class (also called orbit) of x under ≡G.

Chapter IV. Symbolic Symbolic Model-Checking 49

We may now define the abstraction of a transition system using ≡G.

Definition Reduced transition system
K̃ = (S̃, ∆̃, S̃0) is a reduction of K w.r.t. G if and only if:

• S̃⊆ S, ∀s ∈ S,∃ s̃ ∈ S̃ : s ≡G s̃,

• S̃0 ⊆ S̃ and ∀g ∈ G,g.S̃0 ⊆ S0,

• ∆̃⊆ S̃× S̃,

• if s̃1 ∈ S̃ and (s̃1,s2) ∈ ∆, then there exists s̃2 ∈ S̃ such that s̃2 ≡G s2 and
(s̃1, s̃2) ∈ ∆̃,

• if (s̃1, s̃2) ∈ ∆̃ then there exists s2 ∈ S such that s2 ≡G s̃2 and (s̃1,s2) ∈ ∆.

A reduction, K̃ of K w.r.t. G preserves the reachability property and, under
appropriate conditions, linear temporal formulae [AHI98; Cla+98]. Hence, the
verification can be done on K̃ . Note that this definition allows to use several rep-
resentatives per orbit, generalizing the notion of quotient graph. This approach
using several representatives yields a larger reduced structure but may be faster to
build [Jun03].

IV.2.3 Explicit Quotient Graph Algorithm

S̃← repr(S0)
∆̃← /0

repeat
for s ∈ S̃ do

S̃′← repr(succ(s))
∆̃← ∆̃∪{(s, s̃′)|s̃′ ∈ S̃′}
S̃← S̃∪ S̃′

end for
until a fixpoint is reached

Figure IV.1: The algorithm to generate K̃

An abstract algorithm using explicit data structures to compute K̃ is presented
on figure IV.1. It uses a function succ that maps any state s to its successors:
succ(s) = {s′|(s,s′) ∈ ∆}.

The critical ingredient is the function repr that maps an element s ∈ S onto its
representative s̃∈ [s]G. The size of S̃ depends on the function repr, as S̃= repr(S),
with two extreme cases:

• if repr is the identity, then S̃ = S and K̃ = K , there is no reduction.

Chapter IV. Symbolic Symbolic Model-Checking 50

• if repr maps all elements of an orbit onto a unique representative element,
then S̃ is in bijection with S/G, and the size of S̃ is minimal.

Building a perfect repr that computes such a unique representative is unfortu-
nately as hard as graph isomorphism, a class of complexity is not known to have
a polynomial solution [Cla+96; Jun03]. Still, for many groups of symmetry com-
monly encountered in practice when modeling system the quotient graph approach
can be very successful [NID96; Chi+90; Hen+04; BDH02].

IV.3 Symbolic Symbolic State Space

IV.3.1 Intuition

Our goal in this work was to combine use of symmetries with decision diagrams.
Of course, use of SDD rather than plain decision diagrams is one very effec-

tive way of exploiting symmetry in a symbolic setting. Hierarchy in SDD can and
will exploit some symmetries due to repeated subsystems, provided an appropriate
structure and variable ordering can be determined. The recursive folding approach
as presented in chapter I can even scale to an exponential number of repeated in-
stances in favorable cases. However, using SDD hierarchy does not build a quotient
state space, it just deals with huge state graphs very well in very symmetric cases.

We focus here instead on an approach that tries to directly build the quotient
state space using decision diagrams and dedicated operations to perform the can-
onization procedure.

a Combining Symmetries and Decision Diagrams.

Initial attempts to combine a symbolic representation of sets of states with a com-
putation of a quotient graph met mitigated success. The problem, identified in [Cla+96],
is that the orbit relation –allowing to map states to their representative– has ex-
ponential size when represented as a BDD, whichever the variable order chosen.
Variations such as using several representatives of an orbit, can be more effective
but do not fully exploit the symmetry group.

A slightly different approach to build a quotient graph [Chi+93], is to use an ab-
stract representation of orbits rather than explicit states as representatives. This also
allows to better exploit symmetries of the transition relation (symmetric events).
However this approach can only deal with specific groups of symmetries, and thus
cannot easily be generalized to arbitrary state encodings or permutation groups.

Our first successful attempt [TMIP04a] was a tool able to build the symbolic
reachability graph [Chi+90] of a well-formed net using a symbolic representation
of states with DDD. While the approach proved effective, able to outperform both
pure DD based methods and the explicit quotient graph construction on some ex-
amples, it was very specialized and heavily dedicated to both SRG and DDD since

Chapter IV. Symbolic Symbolic Model-Checking 51

we had to build dedicated homomorphisms for the canonization step. The tool we
built thus remained mostly a proof of concept.

A few years later [Col+11], we revisited the approach at the very beginning
of the thesis of Maximilien Colange. We built a tool Crocodile supporting con-
struction of a quotient graph for Symmetric Nets with Bags (SNB, an extension of
symmetric nets) using SDD. We used the structure of the color domains to infer
structure and again had to develop dedicated homomorphisms for the canonization
step. The tool again outperforms both techniques in isolation, but requires careful
specification using SNB of the input models to fully unlock its potential, lowering
its overall applicability.

Both of those tools [TMIP04a; Col+11] did function quite well, somehow con-
tradicting the negative result of Clarke et al. [Cla+96]. We identified as key differ-
ence between our approach and [Cla+96] that in both cases we had used a fixpoint
algorithm to compute representatives, rather than a single step of an “orbit relation”
as was attempted in previous works.

To generalize our solution, in [Col+12] we formalized the hypothesis that made
computation of a representative using a fixpoint possible. We obtained a very small
set of assumptions on the nature of the system and the symmetries, and simpler
decision diagram operations than homomorphisms, that are available for all DD.

We now present these assumptions, then the symbolic-symbolic algorithm al-
lowing to work with arbitrary symmetry groups, and that can be efficiently imple-
mented on top of symbolic data structures.

IV.3.2 Assumptions

a States

We make the assumption that the system’s states S are vectors of integers, of fixed
size n: S⊆Nn.

States being elements ofNn are naturally represented as a DDD of n variables.
Labels of states, if we consider a Kripke structure instead of a transition system,
can be encoded as additional state variables.

b Symmetries

Group of Permutations.
We consider symmetries that permute the indexes: ∀g∈G,∀v=(v1,v2, . . . ,vn)∈

S,g.v = (vg.1,vg.2, . . . ,vg.n). The group of all permutations over a set of size n is
denoted by Sn.

We then manipulate symmetry groups as sets of permutations. Conversely,
given a set of permutations H, let 〈H〉 denote the group generated by H.

To encode the action of a permutation on a set of states, we define for any
permutation g ∈ Sn a homomorphism apply(g) i.e. apply(g)(S) = {g.s|s ∈ S}.

Chapter IV. Symbolic Symbolic Model-Checking 52

apply is built as a composition of transpositions of adjacent elements noted
τi,i+1. We compute a path with the minimal number of these transpositions neces-
sary to achieve the desired effect and compose them to build apply. For instance,
with g = (2,3,1,4) of S4, we could use g = τ1,2 ◦ τ2,3.

Lexicographic Ordering
States are totally ordered. We use lexicographic ordering, noted <. The canon-

ical representative ŝ of an orbit [s]G is defined as its smallest element (with respect
to <). Thus, ∀s ∈ S, ŝ = min[s]G.

We assume we can define reduces(g), a selector homomorphism to retain
states that are reduced by g, i.e. reduces(g)(S) = {s|s ∈ S,g.s < s}.

It can be expressed as a composition of variable comparisons. For instance,
consider the permutation g = (2,3,1,4) of S4. We have g−1 = (3,1,2,4). Hence g
reduces s = (s1,s2,s3,s4) iff
sg−1.1 < s1∨ (sg−1.1 = s1∧ (sg−1.2 < s2∨ (sg−1.2 = s2∧ (. . .))))

This general formula is instantiated for this specific g in the following way:
s3 < s1∨ (s3 = s1∧ (s1 < s2∨ (s1 = s2∧ s2 < s3)))

Let us note that since position 4 is invariant by g, there are only three nested
variable comparisons. Subsequent conditions are trivially simplified away. This
condition is expressed using a selector homomorphism allowing comparison (by <
and =) of the value of two variables of a state. The full condition homomorphism
is expressed using composition ◦ for ∧ and the sum + for ∨.

The assumptions on the DD framework are thus that it supports integer vari-
ables and variable comparison (and their Boolean combinations) which is pretty
standard, but also transposition of variables (swap of values) which is less com-
mon in public API of DD packages, but not very hard to implement.

IV.3.3 Symbolic Symbolic algorithm

Given these premises, we use the algorithm of figure IV.2 to canonize a set of states.

set_canonize(H ⊆ Sn,S⊆Nn):
repeat

for g ∈ H do
S′←{s|s ∈ S,g.s < s}
S← S∪g.S′

S← S\S′

end for
until S no longer evolves
return S

Figure IV.2: Symbolic algorithm to canonize a set of states.

This algorithm is more compactly expressed using homomorphisms as

set_canonize(H) = (©g∈H IfThenElse(reduces(g),apply(g), Id))?

Chapter IV. Symbolic Symbolic Model-Checking 53

This algorithm iterates over the permutations of H, applying each one only to
the states that it reduces. If the permutations in H are permutations of the symmetry
group G of the system, we are ensured that at each step of the algorithm, each
state is either left as is, or mapped to a strictly smaller state belonging to its orbit.
Since each orbit has a minimum (its canonical representative) this algorithm is
guaranteed to converge.

Admittedly, the algorithm might visit each state of an orbit (in decreasing order,
one by one), yielding worst case exponential complexity. Since the problem is
equivalent to graph isomorphism, this is not surprising. In practice however, with
an appropriate choice of a small set of permutations in H, this algorithm can be
quite effective.

Let us note that the order in which the permutations of H are considered in the
"for" loop (or equivalently, in the composition©g∈H) does not impact correctness,
but may impede performance.

Actually, the choice of H is critical to overall performance of this algorithm.
If H = G, then this algorithm converges after a single iteration of the outer loop
("repeat"). In other words, for each state, H contains the permutation that maps it
to its representative. However, this means that, on the worst case, the size of H is
exponential in n. This is congruent with the observations of [Cla+96] in which the
orbit relation is shown to be exponential in representation size.

A contrario, when H is small, many iterations may be necessary for the algo-
rithm to converge, but each element of H is likely to reduce larger subsets S′. Since
the complexity of applying a permutation to a set of states is related to the represen-
tation size (in DDD nodes) and not to the number of states in the set, manipulating
larger sets lowers the overall complexity.

a Monotonic< Property.

To obtain minimality, we would like to choose H such that set_canonize(H,S) =
{min[s]G|s ∈ S}. In essence this means we require that any state s that is not the
minimum of its orbit [s]G can be reduced (according to <) by applying a permuta-
tion of H.

monotonic< Let G be a subgroup of Sn.
H ⊆ G is monotonic< w.r.t. G if and only if:

• ∀s ∈ S,(∃g ∈ G,g.s < s =⇒ ∃h ∈ H,h.s < s).

In algorithm IV.2, when states can no longer be reduced by any permutation
of H, by definition of the monotonic< property, the states in S are the canonical
representatives of the input states. When H is monotonic< w.r.t. G, the algorithm
returns the set of canonical representatives of the input states.The homomorphism
set_canonize(H) can thus be applied to any set of states, yielding their canonical
representatives when H is monotonic<.

Chapter IV. Symbolic Symbolic Model-Checking 54

If H is not monotonic< w.r.t. G, the algorithm behaves like the one of fig-
ure IV.1 when several representatives are used.

Ideally H should be monotonic< w.r.t. G to obtain maximal reduction, and
heuristically for decision diagram based implementations, H should be as small as
possible.

Tools such as Bliss [JK07] can efficiently compute symmetries automatically
and build a compact representation of arbitrary groups of permutations using the
Schreier-Sims representation [Sim71] that consists of a small (guaranteed polyno-
mial) generating set of permutations. However, the generating set they provide is
not monotonic< in general, so it provides poor candidates as H set. Even when it is
monotonic<, its size can be much larger than necessary. For instance, the Schreier-
Sims representation of the full group of permutations Sn is quadratic in n, whereas
a monotonic< set of size n exists.

Unfortunately in the general case, the computation of a set H monotonic< w.r.t.
G that is of minimal size, is in O(nn) with a brute force algorithm. But fortunately,
we can exhibit pragmatic O(n) choices of H for the most frequently encountered
groups of symmetries in the literature : subsets of Sn for symmetric objects such as
scalar sets, and rotations typical of ring topologies.

Indeed the set of transpositions of adjacent elements τi,i+1 is monotonic< for
Sn, since computing the smallest lexicographical representative amounts to sorting.
So by permuting two adjacent variables if they are in the wrong order we eventually
reach a minimum.

For rotations, if r is the rotation (2,3, . . . ,n,1), we have H = 〈r〉= {id,r,r2 . . .rn−1}
which is the only monotonic< set, but fortunately remains of size n. This gives us
monotonic< sets of size n for these two groups.

When the symmetries of the system arise from several symmetry groups (e.g.
symmetries of subsystems), we can choose to use the union of their respective
monotonic< sets. This set is not in general guaranteed to be monotonic< itself
(unless the two symmetry groups act on disjoint sets of variables) but can still be
used as a good candidate set for the algorithm.

IV.3.4 Illustrative example.

Let us detail the run of the algorithm on a small illustrative example. Figure IV.3
shows the intermediate DDD produced by the application of set_canonize(H)
to a system of three variables. With G = S3 as symmetry group, we choose H =
{τ1,2,τ2,3} the set of transpositions of adjacent variables, which is monotonic<
w.r.t. G. We focus on the inner loop in algorithm IV.2. Each step corresponds to
the application of an element g of H to the states reduced by g in the current DD. At
the end of the algorithm, another iteration is necessary to check for convergence.

As we can see through this toy example, each step of the algorithm simulta-
neously reduces several states. In a single step, each permutation reduces all the
states it can, even if they belong to different orbits.

Chapter IV. Symbolic Symbolic Model-Checking 55

1

v1

v2

 1

v2

 2

v2

 3

v3

2

v3

3 1

v3

3 1 3 2

 3 2 1

1

v1

v2

 1

v2

 2

v2

 3

v3

 2 1

v3

 1

3 3 2

1

v1

v2

 1

v3

 2

v3

 3

3 2 3

1

v1

v2

 1

v3

2 3

 3

a) initial states b) after τ2,3 in inner loop. c) after τ1,2 d) after τ2,3

Figure IV.3: Using G = S3, we obtain H = {τ1,2,τ2,3}. set_canonize(H) is ap-
plied to (a) containing the orbit of (1,2,3) and the state (3,3,1). This successively
gives (b), (c), (d). (d) is the set of canonical representatives {(1,2,3),(1,3,3)}.

States that belong to the same orbit are progressively collapsed onto their rep-
resentative. Because of sharing of sub-structures, notice that states (2,1,3) and
(2,3,1) in a) are collapsed onto (2,1,3) in b). (2,1,3) is not a canonical repre-
sentative, but it is smaller than (2,3,1). At this step, the two states are merged,
allowing to share any subsequent canonization step. In general, each step –with
complexity polynomial in the DD size– might merge exponentially many states.
This contrasts with explicit approaches that canonize all these states individually.

IV.4 Evaluation

Experimental evaluation reported in [Col+12; Col13] confirms that the symbolic-
symbolic approach can outperform both explicit tools that build a quotient graph
such as Lola, and symbolic tools such as ITS-tools without the symmetry reduc-
tion. The approach does have a hefty cost in both time and memory since it makes
the transition relation more complex, so that the quotient reduction has to be signif-
icant before the cost is amortized. For complex groups involving cross products of
symmetries, the quotient reduction can build very small DD representation whereas
the normal DD representation does not scale well.

While the experimental results are promising, our set of benchmark models
was relatively limited, since we lack a tool chain that provides good monotonic<
generators in general. More work is needed at the language level to provide this
information, possibly through a static analysis of statements [TMDM03] run on
GAL models (see Chapter V).

Chapter IV. Symbolic Symbolic Model-Checking 56

IV.5 Conclusion

We have presented an algorithm to combine symmetry reduction with decision
diagrams. Instead of directly representing the orbit relation which is worst case
exponential [Cla+96], we introduced a "monotonic" function that converges to the
same result. Because this function operates over sets of states, it avoids individual
representative computations for each state, thus leading to a general and efficient
algorithm to combine the use of symmetries with symbolic data structures.

While we only considered permutations, other types of symmetries on data val-
ues, such as v=(ob j1,ob j2 . . .re f1,re f2), and g.v=(ob jg.1,ob jg.2 . . .g.re f1,g.re f2)
can be integrated into our algorithm seamlessly. This symmetry is of interest as it
corresponds to the case where ob j1 and ob j2 contain similar objects and re f1,re f2
are references to these objects, that need to be reindexed if we exchange the po-
sitions of the two objects. This case is encountered when canonizing the memory
(heap in particular) of a concurrent system.

Part C

A Domain Specific Language for
Concurrent Semantics

Domain specific languages (DSL) are small dialects dedicated to a particular
domain. They help users to model domain artifacts at a high level of abstraction,
then are used to generate more technical artifacts, such as tests, executable pro-
grams, or to perform various validations of the models. This part presents GAL a
DSL to describe concurrent semantics, and the transformations to GAL we have
developed for popular formalisms.

Chapter V presents ITS and GAL that together constitute a language based
front-end for model-checking. ITS are focused on hierarchy, and GAL on descrip-
tion of arrays and integer arithmetic.

Chapter VI presents our multi-formalism symbolic model-checker ITS-Tools,
and details the transformation process from existing formalisms or DSL to GAL.

Both of these contributions are designed to provide end users with a high-level
way of accessing the technology and algorithms developed in parts A and B.

57

Chapter V

Instantiable Transition Systems and
Guarded Action Language

V.1 A Language Based Front-end

Many languages have been proposed in the literature to express the behavior of
concurrent systems. If we restrict ourselves to formalisms that support a model-
checking approach, we can still identify four major families of interest.

1. Synchronous Languages describe a semantics where at each step, all vari-
ables are synchronously updated using a function of the previous values. The main
concepts are input and output signals, transfer functions and latches to represent
memory.

SMV and its evolutions NuSMV [Cim+02] and NuXMV [Cav+14] use such a
language. VIS [Bra+96] uses a similar formalism, but has notions of components
that can be assembled to build complex specifications.

Modeling concurrent systems with a synchronous language is difficult, it re-
quires adding artificial idle behaviors, making the models more complex than needed.
The notion of locality of an event is not present.

2. Petri nets (PN) are one of the most studied formal models for expressing
concurrent semantics. Each transition takes tokens and puts tokens into places,
emphasizing the notions of resource, locality and concurrency.

Many model-checkers for PN exist such as Lola [Sch03], Tina [BV06] or Mar-
cie [HST09] (10 participants in MCC2016@PN).

Unfortunately, modeling of data and arithmetic is not supported in PN. Exten-
sions that introduce data include Colored Petri Nets annotated with ML code [Rat+03],
Renew nets annotated with Java [CHM16], or Tina’s TTS extension to handle Fi-
acre [Ber+09] that uses compiled code, among many others.

In all of these examples, the data manipulation code added to transitions of
the model is opaque, hiding arbitrary code fragments. This essentially restricts
analysis to explicit model-checking, as the only way to know the behavior of the
annotation is to execute it.

58

Chapter V. Instantiable Transition Systems and Guarded Action Language 59

3. Communicating process models are both expressive and very relevant in
the context of concurrent systems modeling. Each task executes a behavior de-
scribed by a control flow graph or an automaton. Tasks can communicate using
shared variables and channels that convey messages. Data manipulations are ex-
plicit, with data stored in discrete machine types (byte, int. . .) and fixed size arrays,
and support for arithmetic and bitwise operators.

Promela, the language provided by SPIN [Hol97] is the best known example in
this category. Divine [Bar+10] differs in syntax, but conceptually offers the same
bricks as Promela. Uppaal [Beh+01] is designed for modeling networks of Timed
automata, but also supports data manipulation.

These languages are well matched in expressivity by what our symbolic kernel
offers, and are thus our primary target. They adequately capture locality of actions,
data manipulation, and concurrency.

4. Code is the ultimate implementation of a design. Code analysis is very
useful, since many programming errors are the source of critical failures. Tools
that work on code search for typical implementation issues such as buffer overflow,
heap related memory errors such as double free. . . Support for expressing more
complex properties specific to a problem is mostly limited to safety assertions.

The software verification competition SVCOMP [Bey15] has a fast growing
number of participants (from 10 in 2010 to 35 in 2016, though many submissions
are small variants of each other). But it has only a single category for concurrency
with programs that use the pthread API. Most tools don’t support this category yet,
with only 15 participants of which only 2 seem to apply sound methods (no neg-
ative score) in 2016. There is no benchmark for distributed memory concurrency
since there is no standard model of communications in C.

Code includes many implementation and platform specific preoccupations, such
as reliance on libraries, call stack, and heap allocations which are not necessarily
relevant when designing a concurrent system but make verification much more
complex.

Code can also only built in the later stages of development, which delays the
validation and increases the cost of correcting potential design errors. Code level
descriptions of designs are relevant for the software engineer and the compiler, but
bear tenuous links to the business domain that the software actually addresses. In
the software engineering process that drives the development, code of the software
is only one artifact among many. This is particularly true of process used in the
development of critical applications such as avionics. This type of distributed real-
time embedded software is our main target, since the requirements on correctness
are so high, the use of formal verification tools is appropriate.

Domain Specific Languages
Model-driven engineering (MDE) proposes to define domain specific languages

(DSL), which contain a limited set of domain concepts [Voe+13]. This input is
then transformed using model transformation technology to produce executable
artifacts, tests, documentation or to perform specific validations. In this setting,
languages such SMV, Promela or Petri nets have served as target of such model

Chapter V. Instantiable Transition Systems and Guarded Action Language 60

transformations, since they are the input formalisms of model checkers. Transfor-
mations involving complex mechanisms (such as data manipulation or time man-
agement) that cannot be easily mapped to the underlying formal model typically
create gadget (i.e. complex templates to translate a concept), thus increasing both
the complexity of the model checking algorithms and the interpretation of results.

In this MDE context, an ideal target language for model checking should be
expressive enough to support time, concurrency, compositions and data structures.
It should also be simple and flexible enough to describe arbitrary transition rela-
tions. Finally, it should support efficient verification techniques such as decision
diagrams, symmetries, etc.

GAL is designed as a convenient target formally expressing model semantics.
Its syntax respects standards in programming languages (close to C or Java syn-
tax), but has features expressing concurrency, synchronizations and fine control
over atomicity of operations. With its symbolic back-end, it helps to bridge the
gap between industrial specifications expressed using a DSL and symbolic model-
checking tools.

V.2 Instantiable Transition Systems

V.2.1 Context

This section defines Instantiable Transition Systems (ITS), a framework designed
to exploit the hierarchical characteristics of SDD for the description of component
based systems.

This definition sets a contract that describes a labeled Kripke structure (LKS),
i.e. a graph where states satisfy some atomic propositions, and edges bear a label
(see chapters III and IV for formal definitions).

To model communications, these behaviors can be composed using label syn-
chronization : two events must occur simultaneously or not at all. Our semantic
definitions are aligned with standard labeled synchronized product definitions (e.g
[Arn02; LL95]), with some extensions to deal with sequences of simple behaviors
executed in a single semantic step. We consider a finite and fixed set of labels.

The down side is that pure event-based synchronization prevents direct commu-
nication using shared variables, which is another commonly used communication
model. More precisely, the semantics of shared variables can only be expressed if
they have a finite a priori known domain. For instance, to write into a shared buffer
or channel, a different label can be used to represent each possible message. Since
we expect models to be generated this is not a big issue, unless the shared variables
have very large (or a priori unbounded) domains.

The benefits of event based synchronization is that we can make much weaker
assumptions on how the LKS of components are produced. Event based synchro-
nization allows for instance to use different formalisms to describe each compo-
nent [Vit+04]. This also closely matches the possibilities of SDD, where edge

Chapter V. Instantiable Transition Systems and Guarded Action Language 61

values can have arbitrary domains and composition of homomorphisms naturally
expresses synchronization of actions.

It enables a very compact expression of cross-products of behaviors : if label
a corresponds to n possible actions and b to m actions, the synchronization a.b
represents n×m possible behaviors. When generalizing to long sequences of k
synchronization with n choices for each label, the representation using synchro-
nizations is exponentially smaller (n×k) than explicit modeling of each alternative
(nk).

Concerning the definition of actual components, we introduce a notion of type
and instance, similar to the notion of class and object in object oriented program-
ming. We separate specification of a) the definition of the behavior (component
type), b) the definition of connectors, in our case a finite set of labels, and c) a par-
ticular assembly of component instances in a given configuration. This meets the
essential requirements for an architecture description language (ADL) [MT00]. In
this regard, we were particularly inspired by the Fractal component model [BCS09],
though many other languages include the idea of instanciation.

V.2.2 Intuition

We wish to benefit from the abilities of our symbolic kernel, and leverage its pow-
erful hierarchical representation with SDD, as well as the definition of complex
behaviors built using an algebra (◦,+) of simpler behaviors.

The structure of a model will closely match the symbolic encoding using SDD.
So some subcomponents could themselves be hierarchically decomposed, and their
states are described using SDD. Some others components are elementary types
such as automata, Petri nets, or GAL models whose state space is encoded using
DDD.

Structurally, this tree of compositions can be addressed using a kind of Com-
posite design pattern [Gam+95] : we have a) an abstract type contract that mini-
mally defines an LKS, b) elementary types that do not have subcomponents, and
whose semantics is described by LKS, c) composite types that aggregate instances
of any type and define synchronizations amongst them.

One specific design goal of ITS was to be able to specify systems that are
compact in the SDD solution with a compact model. The extreme example of 2n

philosophers can be solved in O(n) with SDD, so the input describing the model
should be of size at most O(n). Instanciation coupled with composite type defini-
tions are the key to solving this issue.

The definition of ITS has evolved quite a bit over time. The first version was
called IPN, and considered only hierarchical compositions of Petri nets. We de-
velopped this version to serve as transformation target from UML behavioral mod-
els [TH08], and used it as an example in [HTMK09]. The first definition using the
name ITS in [TM+09] allows arbitrary types for elementary components. How-
ever, probably because we came from Petri nets, we defined synchronizations over
bags of labels (multiset) which induce needlessly complex notations.

Chapter V. Instantiable Transition Systems and Guarded Action Language 62

Instead of bags, the definition in [TM+11] uses words over the alphabet of la-
bels, which are both more expressive (sort the letters to obtain a bag) and more
closely match standard definitions of labeled synchronized product [Arn02]. How-
ever, this definition sometimes forced to artificially add levels in the structure to
describe some compositions of unions of behavior.

The current definition is aligned with the more recent definition of GAL and
uses statements. This version supports arbitrary combinations using ◦ and + of
behaviors within a single composite. The definition of abstract ITS type has been
simplified with now a single successor relation (rather than distinguished local ac-
tions) that computes successors by a single label (rather than a word in the alphabet
of labels). The complexity of the previous definitions is now isolated in the con-
crete composite type definition.

V.2.3 ITS Type and Instance

ITS describe a minimal Labeled Transition System (LTS) style formalism using
notions of type and instance to emphasize locality of actions and to exploit the
similarity of copies of a given type. The composition mechanism is based solely
on transition synchronizations (no explicit shared memory or channel).

Abstract Syntax
Notation: For a tuple z = 〈X ,Y, · · ·〉, we denote by z.X ,z.Y . . . the elements

X ,Y,
The following definition sets an abstract contract or interface that must be im-

plemented by concrete ITS types.

Definition An ITS type is a tuple τ = 〈S,A,Succ〉 where:

• S is a set of states; A is a finite set of action labels that contains a local label
noted τ;

• Succ : S×A 7→ 2S is a transition function.

An ITS type can be instantiated, possibly several times. With an instance i is
associated its ITS type type(i).

Semantics
Reachability Definition: Let i be an ITS instance and s,s′ be two states in

type(i).S. State s′ is reachable from s if there exist states s0, . . .sn ∈ type(i).S such
that s = s0, s′ = sn and for all j, 1≤ j ≤ n,s j ∈ type(i).Succ(s j−1,>).

The function Succ produces successors of a given state reachable by an edge
bearing a particular label from the alphabet. Note that Succ is the only way to
control the behavior of a (sub)system from outside. We support non determinism,
a state can have several successors by a given label.

The transition relation of a full system can only be defined in terms of subsys-
tem synchronizations using Succ and of independent local behaviors. Hence, a full
system is defined by a single instance of a particular type in a specific initial state:

Chapter V. Instantiable Transition Systems and Guarded Action Language 63

the system is self-contained and thus reachability only depends on the definition of
Succ using the distinguished local label >.

Remarks. This definition is enriched in practice by specifying an initial state,
as well as state-based predicates giving a Kripke state labeling for model-checking
purposes.

Symbolic Encoding
To fit in the framework of SDD, we require that the set of states S be repre-

sented by an SDD, and that the transition relation Succ be represented by a set of
homomorphisms, one per label Succ(λ).

V.2.4 Composite ITS

We now define a composite ITS type, designed to offer support for the hierar-
chical composition of ITS instances. This new version is enhanced with respect
to [TM+11].

An example of composition is given in Fig. VI.4 using our concrete syntax.
Abstract Syntax
Notations: For a tuple I = (i1, . . . , in) of ITS instances, |I| denotes the size n of

I, SI is the set type(i1).S× . . .× type(in).S. For s ∈ SI and i an instance, we denote
s[i] the component of s that corresponds to i.

Given a tuple I of ITS instances and a set Lab of labels, we inductively define
the set StatC of composite statements from :

• 〈call(i,λ)〉 a call statement to a label λ of type(i), that invokes a transition
of instance i labelled by λ,

• 〈σ0; . . . ;σk〉 a sequence of statements in StatC executed in order. The empty
sequence has no effect.

• 〈callself (λ)〉 a call statement to a label λ of Lab, that invokes a synchroniza-
tion of the current composite type, labelled by λ. This allows to structure
the transition relation and chain behaviors. We syntactically forbid cycles of
self-calls.

Definition A composite over alphabet Lab is a tuple C = 〈I,Sync〉 where:

• I is a tuple of ITS instances, said to be contained by C. We further require
that the type of each ITS instance already exists when defining I, in order to
prevent circular or recursive type definitions.

• Sync⊆Lab×StatC is the finite set of synchronizations, where for t = 〈λ,σ〉 ∈
Sync, λ is the label of t and σ its body.

Semantics

Chapter V. Instantiable Transition Systems and Guarded Action Language 64

Definition Let C = 〈I,Sync〉 be a composite over alphabet Lab.
Let the next state function by a statement NextI : SI×StatC 7→ 2SI , be defined

for s,s′ ∈ SI and σ ∈ StatC by : s′ ∈ NextI(s,σ) iff



∃s0 . . .sk+1,s0 = s,sk+1 = s′, ∀i ∈ [1 . . .k],si+1 ∈ NextI(si,σi) if σ = 〈σ0; . . . ;σk〉
s′[i] ∈ type(i).Succ(s[i],λ)∧∀ j ∈ I, j 6= i,s′[j] = s[j] if σ = 〈call(i,λ)〉
∃t = 〈λ,σ′〉 ∈ Sync, such that s′ ∈ NextI(s,σ′) if σ = 〈callself (λ)〉

The ITS type τC = 〈S,Lab,Succ〉 corresponding to C, is defined by:

• S = SI

• Succ : S×A 7→ 2S is defined for s,s′ ∈ S,λ ∈ A by s′ ∈ Succ(s,λ) iff.
λ => and ∃i ∈ I,s′[i] ∈ type(i).Succ(s[i],>)∧∀ j ∈ I, j 6= i,s′[j] = s[j]
or ∃t = 〈λ,σ〉 ∈ Sync, such that s′ ∈ NextI(s,σ)

This definition thus describes an implementation of the generic ITS type con-
tract. It contains either elementary instances (such as LTS, Petri nets or GAL mod-
els), or inductively other instances of composite nature.

The set of successors Succ(s,λ) is obtained as the union of the successors ob-
tained by executing the body statement of any synchronization with label λ. This
models non determinism. For the local label >, the definition adds to the effect of
synchronizations labelled > the states resulting from the action of > on an arbi-
trary nested instance, without modifying the other instances. This corresponds to
the standard interleaving semantics governing local evolutions of subcomponents.

When the statement is a sequence, the whole sequence is executed in a single
atomic step. So the granularity of concurrency, i.e. what constitutes a semantic
step, is defined by synchronizations.

When the statement is a nested instance call, only the state of the specific target
instance evolves. A classical vector of synchronization [LL95] can be seen as a
sequence of calls to labels of nested instances, where each instance is called exactly
once.

When the statement is a self call, we (inductively) produce a union of the be-
haviors of synchronizations bearing the target label. Loops of self-calls are syntac-
tically forbidden, so the behavior must be finite.

Symbolic Encoding
Each instance i ∈ I of the composite is modeled as an SDD variable vi. The

domain of the variable is given by Dom(vi) = type(i).S.
The local evolution of an instance uses the local homomorphism (see II.1.3)

to carry the homomorphism Succ(λ) to the appropriate variable, i.e. 〈call(i,λ)〉
becomes L(type(i).Succ(λ),vi).

The sequence of statements finds an immediate analogy in homomorphism
composition with ◦.

The union of behaviors that comes from using the same label for several syn-
chronizations is translated to the sum + of homomorphisms. The self call com-
bined with the sequence allows to compose such sums, so that the composite type

Chapter V. Instantiable Transition Systems and Guarded Action Language 65

can specify arbitrary combinations using ◦ and + of behaviors, with elementary
behaviors being evolutions of subsystems.

The heavy use of the local homomorphism helps trigger the automatic satura-
tion for SDD (see II.2.3 e)).

V.2.5 Scalar ITS

While the definition of an ITS composite permits hierarchical modeling, the no-
tion of Scalar Set ITS type, where the synchronizations are defined in a parametric
way, deals with “regular” or symmetrically composed systems. This definition
is not more expressive than the one for a composite but it allows us to build sev-
eral equivalent composite representations of a system (see philosophers example in
chapter I), with a possible impact on performances. We thus offer a way of describ-
ing symmetric models, so that the manually built recursive encodings presented in
[TM+09] can be easily applied to symmetric problems. The scalar set captures a
frequent symmetric synchronization pattern when using a set of identical instances
and its definition is tvery close to those proposed in symmetric Uppaal [Hen+04],
Murphi [NID96] or in symmetric nets [Chi+90].

Abstract Syntax
A scalar is a kind of composite ITS that contains a set of n instances all of

the same type τ. Given an ITS type τ for instances and a set Lab of labels, we
inductively define the set StatS of scalar statements from :

• 〈σ0; . . . ;σk〉 a sequence of statements in StatS.

• 〈callany(λ)〉 a call statement to a label λ of any instance, such that a single
instance (chosen arbitrarily) progresses by λ.

• 〈callall(λ)〉 a call statement to a label λ of all instances, such that all n in-
stances simultaneously progress by λ.

• 〈callnext(λ,λ
′)〉 a circular synchronization where instance i (chosen arbitrar-

ily) progresses by λ and its successor i+1 (computed modulo n) progresses
by λ′.

• 〈callself (λ)〉 a self call identical in nature and purpose to the composite

Definition A scalar over alphabet Lab is a tuple C = 〈τ,n,Sync〉 where:

• τ is the type of the contained instances (no circular definitions allowed)

• n ∈N is the size of the set

• Sync⊆ Lab×StatS is the finite set of synchronizations, where for t = 〈λ,σ〉 ∈
Sync, λ is the label of t and σ its body.

Chapter V. Instantiable Transition Systems and Guarded Action Language 66

Semantics
The ITS semantics of a scalar can be deduced from its transformation to a

normal composite type.
A scalar C = 〈τ,n,Sync〉 can be interpreted as a composite tuple C = 〈I,Sync′〉

where |I|= n and ∀i ∈ I, type(i) = τ. Each synchronizations in Sync has an image
in Sync′ with the same label and transformed statements. Statements common to
composite and scalar are left unchanged. The statements specific to the scalar are
transformed to composite statements :

• The statement 〈callany(λ)〉 introduces a new label l, and n synchronizations
in Sync′ such that ∀i ∈ I,∃〈l,〈call(i,λ)〉〉 ∈ Sync′. The statement is then
replaced by a self call 〈callself (l)〉.

• The statement 〈callall(λ)〉 is replaced by a sequence of n statements 〈call(i,λ)〉
for all instances i ∈ I.

• The 〈callnext(λ,λ
′)〉 circular synchronization is handled similarly to the any

case except that the body of the newly introduced synchronizations is a se-
quence of two statements 〈〈call(i,λ)〉;〈call(i+1[n],λ)〉〉. We use i+1[n] to
designate the next instance modulo n.

A scalar that uses at least one circular synchronization statement implicitly
declares an successor relationship between the instances, following a ring topology.
These particular types of symmetric synchronization patterns are well studied in the
litterature. We were particularly influenced by Well-formed nets [Chi+90] when
defining the scalar type.

A scalar set represents a regular model pattern and produces a homogeneous
representation of parametric models. Furthermore, because this pattern is very
constrained, different semantically equivalent encodings can be considered at the
SDD level.

Symbolic Encoding
In [TM+09], several strategies were manually experimented to encode such

regular models, the most basic one building a composite containing n instances
of the embedded type as described above. This can be generalized by building a
composite of n/k instances of a composite containing k instances (or k+1 to cap-
ture the remainder of the division n/k) of the basic type. More subtle are recursive
encoding strategies, where the type of a (sub-)composite containing k instances is
itself defined as a group of groups of instances. This recursive strategy leads in
some cases (like for the dining philosophers) to logarithmic overall complexity in
time and memory.

With these additional definitions of scalar set, the encoding strategy can be
configured by the user at run time, by simply setting an option. Two parameters
guide the encoding: The width gives the number of variables at any given level
of composite, and the depth gives the number of levels of hierarchy or nesting
introduced. The user can choose to bound one or the other and select the more

Chapter V. Instantiable Transition Systems and Guarded Action Language 67

efficient. For instance the flat encoding of Fig. I.3 b) has width 4 and depth 1,
while the encoding of Fig. I.6 (center) has width 2 and depth 2 (not counting the
“CloseLoop” artifact).

We thus offer a language based way to possibly benefit from the very favorable
recursive foldings of SDD, which thanks to hierarchy can be exponentially more
efficient than what is available with other decision diagram variants.

V.3 Guarded Action Language

V.3.1 Context

To use a homomorphism based symbolic engine, the approach initially proposed
in [Cou+02] is direct encoding of the semantic bricks with user-defined inductive
homomorphisms, then combining them to produce the desired effect.

This approach was applied successfully, during the thesis of V. Beaudenon for
a subset of Promela [BET10], by F. Breant for a DSL called LfP [Gil+04], by
ourself for Petri net variants [HTMK09], then for time Petri nets with discrete time
assumptions [TM+11]. We also built a lot of other custom homomorphisms, e.g.
for set canonization [TMIP04b] or to build a behavioral model of an automatic
highway [Bér+08]. . .

However, with the breakthrough of homomorphism rewriting [HTMK08], cus-
tom homomorphisms became much less useful. Before this, writing a single homo-
morphism that both tests and updates a variable (as originally proposed in [Cou+02])
was more efficient than writing a composition of test and update. With rewriting,
the reverse is usually true, as the dynamic grouping of operations allows to share
traversals of the DD, and the composition of smaller bricks potentially leads to
reuse of cache entries. We instead started building up a library of general purpose
homomorphisms, described in section II.1.3. The essential brick providing effi-
cient and general evaluation of expressions and array [Col+12] enabled definition
of a new elementary type for ITS : the Guarded Action Language GAL.

V.3.2 Intuition

GAL is intended to be the target of model to model transformations. We thus de-
velop an efficient symbolic encoding of GAL semantics only once, and let users
define transformations to GAL, rather than defining and implementing homomor-
phisms themselves.

The language must serve as intermediate or pivot for various formalisms and
domain-specific languages. It should therefore make very few hypothesis on the
nature of the model, and keep high level semantic concepts to a bare minimum.
For instance, we shouldn’t introduce concepts such as channels or process, be-
cause these inevitably come with semantic variations such as bounds, urgency or
priority. One should be able to describe such semantics however, so we want high
expressivity with a low number of concepts.

Chapter V. Instantiable Transition Systems and Guarded Action Language 68

This approach is similar to the evolution seen in compilers, where the defini-
tion of a machine independent assembly code such as LLVM [LA04] allows to
define the semantics of several programming languages separately by compiling to
LLVM. Then LLVM facilities such as optimization and the support for execution
on diverse hardware are shared amongst languages.

Transforming (compiling) a formalism or DSL to GAL provides the same ben-
efits : besides enabling model-checking with our symbolic engine (or hardware in
the analogy), transformations to GAL will allow to profit from static analysis and
rewriting defined at GAL level, as well as support for analysis of GAL with other
technologies such as partial order reductions, SAT/SMT. . . We thus designed GAL
as an assembly language to describe concurrent semantics.

V.3.3 GAL definition

We define GAL as a pivot language that essentially describes a generator for a
labelled finite Kripke structure using a C like syntax. This simple yet expressive
language makes no assumptions on the existence of high-level concepts such as
processes or channels. While direct modeling in GAL is possible (and a rich eclipse
based editor is provided), the language is mainly intended to be the target of a
model transformation from a (high-level) language closer to the end-users.

A GAL model contains a set of integer variables and fixed size integer arrays
defining its state, and a set of guarded transitions bearing a label chosen from a
finite set. We use C 32 bit signed integer semantics, with overflow effects; this en-
sures all variables have a finite (if large 232) domain. GAL offers a rich signature
consisting of all C operators for manipulation of the int and boolean data type
and of arrays (including nested array expressions). There is no explicit support for
pointers, though they can be simulated with an array heap and indexes into it. In
any state (i.e. an assignment of values to the variables and array cells of the GAL)
a transition whose boolean guard predicate is true can fire executing the statements
of its body in a single atomic step. The body of the transition is a sequence of state-
ments, assigning new values to variables using an arithmetic expression on current
variable values. A special call(λ) statement allows to execute the body of any tran-
sition bearing label λ, modeling non-determinism as a label based synchronization
of behaviors. A special fixpoint instruction is provided allowing to express modal
µ-calculus least and greatest fixpoints thus giving the language a potent expressive
power.

Abstract Syntax
An example of a GAL system that uses its concrete textual syntax is given in

Fig. VI.3.
We omit the semantic definition details related to arithmetic and Boolean ex-

pressions, since they have the same syntax and semantics as in the C language.
We use C 32 bit signed integer semantics, with overflow effects; this ensures all
variables have a finite (if large 232) domain. We assume Z= [−231, . . . ,231−1] in
the following.

Chapter V. Instantiable Transition Systems and Guarded Action Language 69

Given a set of variables and of arrays, the set Inte of integer expressions is the
smallest set containing integers (constants), variables, array access expressions (an
array name and an expression for the target index), the combinations of expressions
with binary operators + (add), ∗ (multiply), / (divide), % (modulo), − (minus),�
(left-shift), � (right-shift), ∧ (bitwise xor), | (bitwise or), & (bitwise and), unary
minus − and bitwise complement ˜ of an integer expression.

Boolean expressions Boole are inductively defined using constants true, false,
comparisons using < (strictly less than), <= (less than), == equals, ! = (differs),
>= (greater than), > (strictly greater) between two integer expressions, as well as
Boolean combinations using && (and), || (or), => (implies) of two Boolean ex-
pressions, or the ! (negation) of a Boolean expression. They can also be embedded
into integer expressions, true being interpreted as 1 and false as 0.

GAL transition effects are described by statements in Stat, a set inductively
built from:

• 〈lhs = rhs〉 an assignment of an integer expression rhs to a variable or to the
cell of an array designated by lhs,

• 〈σ1; . . . ;σk〉 a sequence of k semi-colon separated statements. We note nop
(no-operation) the empty sequence of statements,

• 〈call(λ)〉 a call statement to a label λ, that non-deterministically invokes one
of the transitions labelled λ.

Note that circular call expressions are forbidden, disallowing recursion.

Assignments compute the value of the right hand side and update the value of
the left hand side. We thus have sequential update semantics, similar to most pro-
gramming languages, but different from the synchronous assumptions of SMV [Cim+02].
The sequence allows to chain the effect of several statement. The call(λ) statement
models non-determinism; the transition chosen is any transition bearing label λ,
allowing a state to have several successors. It functions like the self-call of the
composite type of section V.2.4.

More formally:

Definition A GAL system over a set Lab of labels containing > is a tuple G =
〈Vars,Arrays,Trans〉 where:

• Vars is a set of integer variables,

• Arrays is a set of integer arrays; for a ∈ Arrays, we let |a| designate its fixed
size,

• Trans⊆ Lab×Boole×Stat is a set of transitions; for t = 〈λ,g,σ〉 ∈ Trans,
λ ∈ Lab is the label of t, g ∈ Boole is the guard of t, and σ ∈ Stat is the body
of t.

Chapter V. Instantiable Transition Systems and Guarded Action Language 70

Semantics
Let G = 〈Vars,Arrays,Trans〉 be a GAL over alphabet Lab.
The semantics of G is defined as a transition system whose set of states is S =

Z|Vars|×Πa∈ArraysZ
|a|, giving a value to each variable and array cell. Because Z is

assumed to be finite, S is finite (resolving most decidability issues). Interpretation
e(s) of an expression e in a state s yields a constant value belonging to the range
of e (integer or boolean). When lhs designates the left-hand side of an assignment,
it must be either a variable (x) or an array access expression (tab[i]). In either case
we let lhs(s) denote the fully resolved variable, when interpreting the array index
expression in state s. Conversely for any variable or array cell v, we note s[v] the
value of v in state s.

Let the next state function by a statement NextI : S×Stat 7→ 2S, be defined for
s,s′ ∈ SI and σ ∈ Stat by : s′ ∈ NextI(s,σ) iff



s′[lhs(s)] = rhs(s)∧∀v 6= lhs(s),s′[v] = s[v] if σ = 〈lhs = rhs〉
∃s0 . . .sk+1,s0 = s,sk+1 = s′, ∀i ∈ [1 . . .k],si+1 ∈ NextI(si,σi) if σ = 〈σ0; . . . ;σk〉
∃t = 〈λ,g,σ′〉 ∈ Trans,g(s)∧ s′ ∈ NextI(s,σ′) if σ = 〈call(λ)〉

The ITS type τG = 〈S,Lab,Succ〉 corresponding to G , is defined by:

• S =Z|Vars|×Πa∈ArraysZ
|a|

• Succ : S×A 7→ 2S is defined for s,s′ ∈ S,λ ∈ A by s′ ∈ Succ(s,λ) iff.
∃t = 〈λ,g,σ〉 ∈ Sync, such that g(s) holds and s′ ∈ NextI(s,σ)

The non-deterministic call construct combined with the sequence is particu-
larly important to allow expression of transition relations that are a composition
of sum of effects (e.g action a or a′ followed by action b or b′). Making all the
alternatives explicit (ab,ab′,a′b,a′b′) could lead to an exponential blowup of the
model size.

Symbolic Encoding
States are sequences of integers, which can be represented by DDD. Assign-

ment is implemented using the algorithms described in section II.3. Guards are
implemented as selector homomorphisms. The sequence is described using com-
position ◦ and the call introduces a sum + of behaviors.

V.3.4 Parametric GAL

GAL also features parametric constructs to comfortably express common patterns.
They can be degeneralized, and amount to syntactic sugar.
If-Then-Else. This classic control structure can be rewritten to a pair of transitions
and a call, but is more familiar to users than the latter. The abort statement re-
turns the empty set of successors, and can be used to discard some branches of the
alternative.
Range. We let a GAL definition contain the definition of named subsets of Z
called ranges. A transition t can bear an arbitrary number of formal parameters,
each having a name and range. The parameters can be used like ordinary variables

Chapter V. Instantiable Transition Systems and Guarded Action Language 71

within the definitions of the guard and body of t, though they cannot be assigned
new values. They can also be used within the definition of the label of t, and in the
definition of labels used in any call statements of the body of t.
Parametric transition. Defining such a transition t is equivalent to defining a set
of transitions, containing one transition for each element in the cartesian product
of the parameter ranges (i.e. each possible assignment of values to parameters).
In each of these transitions which have no parameters, the guard, body and label
of t are replaced by a version where each parameter reference is replaced by a
constant (its assigned value). Occurrence of a parameter in a label (that of t itself
or occurring in a call of the body of t) builds a new label where the parameter is
substituted by a string representing its numeric value.

This mechanism is similar in many ways to the way colored Petri net tran-
sitions are defined with respect to their unfolded P/T net version. This construct
makes specifications much more compact and readable in many cases. It also eases
traceability when the GAL model is obtained by a model transformation. It also
helps exhibit nice symmetry properties of the transition relation, depending on how
the parameters are actually used in the guard and body of t. Lastly, reasoning on
parameters before discarding them through instantiation can allow to significantly
reduce the transition relation representation size.
Sequential iteration. Given these ranges, we also introduced a limited iteration
〈 f or(p : r){b}〉 statement (for each p in r, do b), where p is a parameter with
range r and b is a body statement. It is equivalent to a sequence of |r| statements
〈b1; . . . ;b|r|〉, where each bi is the statement b where the parameter p is replaced by
its value in r. This construct mostly eases modeling when manipulating arrays. It
can be seen as a dual for the use of parameters in transitions (that builds a sum or
union of |r| effects), since it builds a composition of |r| effects.
Instantiation. GAL models are structurally analyzed before model-checking, al-
lowing to simplify away the parametric features. This analysis simplifies expres-
sions that can be statically evaluated, removes structurally unreachable behaviors
(e.g. transitions with false guards), and instantiates parameters with on the fly sim-
plifications. Other simplifications and rewritings (described on the webpage) are
also available, some of which are more involved such as attempting to rewrite tran-
sitions with several parameters as a sequence of calls to transitions with a single
parameter each. When parameters are in fact independent (no statement uses them
both), having a sequence of choices (rather than the explosion due to choosing all
parameter values at once) leads to a transition relation in desirable composition of
sums of effects form, with possibly an exponentially more compact GAL specifi-
cation than plain instantiation of parameters.
One-hot. Any variable or array can be tagged with the "hotbit(r)" keyword, in-
dicating the user wants a one-hot state encoding, where a variable with domain
0..n− 1 is encoded as n Boolean variables with only one "hot" bit set to 1. Apart
from this keyword at declaration, the variable is manipulated normally in the GAL
syntax. We then use a GAL to GAL transformation to instantiate such variables,
translating accesses and assignments to the variable to reflect the one-hot encoding.

Chapter V. Instantiable Transition Systems and Guarded Action Language 72

The translation involves adding a parameter to represent the current value and test-
ing that its corresponding bit is hot in transition guards. We further automatically
identify and tag variables that could benefit from one-hot encoding: any variable
that is only assigned constants (this allows to statically compute the range) and
whose domain size is greater than a threshold (we use 8) is set by default to one-
hot encoding. By increasing locality, one-hot encodings can be favorable to DD
techniques, for instance this feature is often used to encode locations of automata
in symbolic model-checkers.

At model-checking time, every statement is encoded as a symbolic operation.
ITS-tools then fully exploits commutativity and on-the-fly simplifications at every
level of the evaluation to adaptively exploit the structure of the decision diagram
encoding the states (see [HTMK08; Col+13]).

Textual GAL files can of course be built directly, but we also offer an EMF
[Ste+09] compliant meta-model of GAL that can be used in conjunction with MDE
tools and manipulated programmatically in Java. Several rewriting rules then per-
form simplification and optimization of GAL models, that benefit all input for-
malisms. The reduced GAL model can then be used for model-checking using
ITS-tools.

V.4 Evaluation

The ITS and GAL language provide a high level framework to express the seman-
tics of concurrent systems and their composition. Composition of behaviors is
based on classical products of labelled transition systems. We use GAL to model
the elementary components, with a rich syntax and expressivity.

The most similar approach is LTSMin [BPW10], that also offers support for
multi-formalism symbolic model-checking. The essential difference is that we re-
quire that all the semantics be described (using a GAL model), while LTSMin
has opaque functions of k variables, which must be provided as code implemen-
tations. Opaque functions are better to integrate existing code (explicit checker)
or data structures using a unique index for complex objects (such as DBM in
Opaal adapter [Dal+12]). However, not having full knowledge of the semantics
induces some inefficiency in symbolic representation of transition relations (espe-
cially when support of transition grows, see discussion in section II.3), and pre-
cludes analysis by methods such as SAT/SMT.

We think providing a language based front-end rather than a "contribute code"
front-end is easier for end-users and better aligned with MDE trends.

V.5 Conclusion

This chapter presented the Instantiable Transition Systems (ITS) framework and
the Guarded Action Language (GAL). ITS has been designed for the description
of component based systems, while GAL is a C-like description of the components.

Chapter V. Instantiable Transition Systems and Guarded Action Language 73

Both are connected with our verification library where the states of the resulting
systems are encoded with various kinds of decision diagrams. More precisely,
the hierarchical characteristics of systems use Hierarchical Set Decision Diagrams
SDD, while the data content is encoded with Data Decision Diagrams DDD, using
the recent efficient algorithms of [Col+13] to encode GAL semantics.

We claim that the association GAL/ITS, with the underlying symbolic engine
based on Decision Diagrams, provides a flexible and efficient solution to model
checking-based analysis.

Chapter VI

Applications and Case Studies

VI.1 A Multi-Formalism Model-Checker

We have invested a significant effort in the implementation of tools for model-
checking. Tools are by themselves a significant scientific contribution to our eyes.
Particularly if they are distributed as FOSS (Free Open Source Software), provid-
ing a platform for sharing development between tools at source code level, and for
the development of new algorithms.

We present in this chapter the verification toolset ITS-tools, featuring a sym-
bolic model-checking back-end engine based on hierarchical set decision diagrams
(SDD) that supports reachability, CTL and LTL model-checking and a user-friendly
eclipse based front-end. We support as primary input the general purpose formal-
ism GAL.

ITS-tools offers symbolic model-checking of large concurrent specifications
expressed in a variety of formalisms: communicating process (Promela, DVE),
timed specifications (Uppaal timed automata, time Petri nets) and high-level Petri
nets. We are focused on verification of (large) globally asynchronous locally syn-
chronous specifications, an area where DD naturally excel due to independent vari-
ations of (small) parts of the state signature.

We leverage model transformation technology to support model-checking of
formalisms or domain specific languages (DSL). Models are transformed to GAL,
a simple yet expressive language with finite Kripke structure semantics.

Most of these elements are visible in Fig. VI.1.

VI.1.1 Symbolic Kernel

ITS-tools use symbolic representations of sets of states using decision diagrams
to face the combinatorial state space explosion of finite concurrent systems. Its
kernel is libDDD, a C++ decision diagram library supporting Data Decision Di-
agrams DDD and hierarchical Set Decision Diagrams SDD and was described in
part A. Operations on these decision diagrams are encoded using homomorphisms

74

Chapter VI. Applications and Case Studies 75

libITS
Instantiable Transition System [TACAS 09]

Parametric GAL

Guarded Action LanguageExtended Table
Format

 . etf

its-ltl
Fully Symbolic [EL 01,OWCTY 02]

Hybrid [ATVA11]
Stuttering [ACSD 08, TACAS14]

Discrete time
unit step or

essential state

instantiate

Linear Time Logic
Property Specification Language

Time Petri Nets

Romeo TinaLTSmin

Verdict,
Shortest trace(s),
Explanation (CTL),

Statistics,
GraphViz dot

libDDD
Split -Equiv [CAV13] Auto Saturation [ATPN08],
Hierarchy [FORTE05] Homomorphisms [ATPN 02]

its-reach

Reachability or
Invariant Predicate

 .prop

its-ctl
Forward CTL [ICCAD 96]

Computation Tree
Logic

Spot
 [IJCCBS 14]

M
odel-to-M

odel
transform

ations

Third-party
tools and
form

ats
Sym

bolic kernel
M

odel checking
Spin

Promela

. pml

Divine

DiVinE

.dve

High-Level Petri
nets

iso-iec
15909

. pnml

Timed automata

Uppaal

. xta . tpn

.gal

. gal

. ltl . psl

. ctl

. txt

simplify

Figure VI.1: Architecture of ITS-tools. Square boxes are files, rounded boxes are
tools.

(see chapter II), giving a user great flexibility and expressive power. The library
can automatically and dynamically rewrite these operations to produce saturation
effects in least fixpoint computations (see section II.2). The Split-equiv algorithm
(see section II.3) enables efficient evaluation of complex expressions including ar-
ray subscripts and arithmetic, a feature heavily used to symbolically encode the
semantics of GAL.

libITS is a C++ library built on top of libDDD, offering a simple and uniform
API to write symbolic model checking algorithms for any system that can be de-
scribed as an Instantiable Transition System (ITS). An ITS is essentially a labeled
transition system with successor and predecessor functions described as operating
on sets of states, and a boolean predicate function enabling state based logic rea-
soning. The tool supports compositions of labeled transition systems by directly
using hierarchy in the state representation reflecting the composition (see chap-
ter V) libITS has native adapters for several formalisms (not represented on the
figure), we focus in this chapter on GAL.

ETF support A native ETF to ITS adapter is provided with libITS, supporting
this output format of LTSmin. ETF files [BPW10] represent the semantics of a
finite Kripke structure in a format adapted to symbolic manipulation. This allows
to analyze (CTL, LTL) models expressed in the many formalisms that LTSmin
supports, provided generation of ETF succeeds (essentially if LTSmin can compute

Chapter VI. Applications and Case Studies 76

all reachable states).

VI.1.2 Model-checking

Using the ITS API we have built several model-checking tools. The tool its-reach
can compute reachable states, and shortest witness paths (one or more if so desired)
to target states designated by a boolean predicate. In a discrete time setting, this
can be used to compute best or worst case time bounds on runs. It can also perform
bounded depth exploration of a state space (a.k.a. bounded model-checking). It
implements several heuristics to compute a static variable order for the input model,
the default is based on FORCE [AMS03].

The tool its-ctl performs verification of CTL properties (though fairness con-
straints are currently not supported). It reuses a component of VIS [Bra+96], a
model-checking tool for verification and synthesis of gate level specifications, to
transform input formulae into forward CTL form [INH96]. Forward CTL often
allows (but not always) to use the forward transition relation alone, which is easier
to compute than the backward (predecessor) transition relation. When a statement
destroys information (i.e. is not reversible), backward exploration requires to com-
pute potential domains for variables, based on the set of reachable states. This
leads to an over-approximation, whose refinement may be costly if it requires to
intersect decision diagrams (see [Col13] for more details). Hence forward CTL
verification is more efficient in general, and furthermore many subproblems can
be solved using least fixpoints (e.g. Forward Until) that benefit from automatic
saturation at DD level.

The tool its-ltl performs hybrid (i.e. that build an explicit graph in which each
node stores a set of states as a decision diagram) or fully symbolic verification
of LTL and PSL properties. The transformation of the formula into a (variant of)
Büchi automaton and the emptiness checks of the product for hybrid approaches
rely on Spot [DL+16; DL14], a library for LTL and PSL model-checking. Fully
symbolic model-checking uses forward variants of Emerson-Lei [EL87] or One-
Way Catch Them Young [SRB02]. The hybrid approaches efficiently exploit sat-
uration and often outperform fully symbolic ones [DL+11]. When the property is
stuttering invariant (e.g. LT L\X) we also offer optimized hybrid [KP08] and fully
symbolic [BS+14] algorithms that exploit saturation.

Other prototypes for solving games [Zha+10] and to exploit symmetries [Col+12]
on top of decision diagrams have been built, showing the versatility of the ITS API,
but these tools are not part of the current release.

VI.1.3 Model transformations

Model-driven engineering (MDE) proposes to define domain specific languages
(DSL), which contain a limited set of domain concepts [Voe+13]. This input is
then transformed using model transformation technology to produce executable
artifacts, tests, documentation or to perform specific validations. In this context

Chapter VI. Applications and Case Studies 77

GAL is designed as a convenient target formally expressing model semantics. We
thus provide an EMF [Ste+09] compliant meta-model of GAL that can be used to
leverage standard meta-modeling tools to write model to model transformations.
This reduces the adoption cost of using formal validation as a step of the software
engineering process.

We have implemented translations to GAL for several popular formalisms used
by third party tools. We rely on XText [EB10] for several of these: with this tool
we define the grammar and meta-model of an existing formalisms, and it generates
a rich code editor (context sensitive code completion, on the fly error detection,...)
for the target language. The editor obtained after some customization is then often
superior to that of the original tool. We applied this approach for the DVE lan-
guage of DiVinE [Bar+13], the Promela language of Spin [Hol97] and the Timed
Automata of Uppaal [Beh+01] (in Uppaal’s native XTA syntax).

The translation for DVE (succinctly presented in [Col+13]) is quite direct, since
the language has few syntactic constructs, and they are almost all covered by GAL.
Channels are modeled as arrays, process give rise to a variable that reflects the state
they are in. Similarly, the translation for Promela presents no real technical diffi-
culty, although a first analysis of Promela code is necessary to build the underlying
control flow graph (giving an automaton for each process). We currently do not
support functions and the C fragment of Promela.
Discrete time. The support for TA and TPN uses discrete time assumptions. Note
that analysis in the discrete setting has been shown to be equivalent to analysis in
a dense time setting provided all constraints in the automata are of the form x ≤ k
but not x < k [HMP92; Bey01]. This is due to the fact that if bounds are open,
timings in zones with non integer values may equivalently be represented (in terms
of future behavior) by an integer timing touching one of its border. For both of
these formalisms, we build a transition that represents a one time unit delay and
updates clocks appropriately. This transition is in fact a sequence of tests for each
clock, checking if an urgent time constraint is reached (time cannot elapse), if the
clock is active (increment its counter) or if it is inactive either because it will be
reset before being read again, or because it has reached a value greater than any
it could be tested against before a reset (do nothing). A transition is thus either a
discrete change of automaton state or a delay of one time unit.

A translation from high-level Petri nets (HLPN) conforming with the recent iso
standard (thus produced by a variety of tools) is also available. HLPN are roughly
to Place/Transition nets what parametric GAL are to GAL: they are not more ex-
pressive (if all data types are finite) but they are much more compact and readable.
Interestingly, the instantiation of GAL parameters is often much less explosive than
the translation from HLPN to P/T nets: synchronizations of independent behaviors
(e.g. interaction between a server S and a client C) can be represented using a se-
quence of call(λ) in GAL, where the P/T net must explicitly have a transition for
each possible synchronization choice.

A high-level transition with n formal parameters with domain D produces |D|n
basic transitions when instantiated. If the parameters are independent (e.g. put

Chapter VI. Applications and Case Studies 78

x from place p1 to p2, and y from p3 to p4) the behavior can be expressed as a
sequence of two calls to GAL labels, representing the |D| choices of x followed
by the |D| choices of y. In favorable cases, GAL instantiation thus produces only
n∗ |D| transitions. This rewriting is fully automated, thanks to a fine grain analysis
of statement semantics. It has allowed to analyze HLPN models that other tools re-
lying on first instantiating the HLPN to a basic PN could not treat due to explosion
of the PN size.

VI.2 Modeling Discrete Time

We now show in more detail how GAL can be used to model discrete time appli-
cations.

VI.2.1 Time Petri nets

We consider the formalism of Time Petri Nets (TPN) with discrete time semantics,
and show how to map it to GAL. TPN are used to compactly model concurrent
timed behaviors. Their semantics is usually expressed by Discrete Time Transition
Systems (DTTS), which are transition systems equipped with two types of (atomic)
transitions: action transitions as usual and an elapse transition, corresponding to a
global elapsing of 1 time unit. Regarding the problem of marking reachability, it
has been proved [Pop06; MLR08] that discrete time semantics capture all possible
behaviors, even those obtained with dense time semantics. This makes it possible
to compare experimentation results in both cases.

Concerning the syntax, we choose an extended definition of TPN because this
leads to easier and more compact modeling abilities. There is a quite strong com-
munity of extended TPN users and our definition below captures a wide superset
of what is understood as TPN in the literature: we consider an enabling predicate
and a firing function as syntactic requirements, instead of defining various sorts of
arcs. This homogeneously subsumes extensions such as reset arcs, read (or test)
arcs, inhibitor arcs, and even non-deterministic extensions like hyper-arcs (because
fire maps to 2N

Pl
), which are offered for instance by the Roméo tool [Gar+05]. The

rich formalism demonstrates the flexibility of our tool, which supports arbitrary
models with (finite) discrete time transition system semantics.

Definition A Time Petri Net is a tuple N = 〈Pl,Tr,A,enabled,fire, `,m0, α,β〉
where:

• Pl is a finite set of places, Tr is a finite set of transitions (with Pl∩Tr = /0),

• A is a finite set (alphabet) of action labels which contains a distinguished
local label >,

• enabled : NPl× Tr 7→ {true, f alse} is an enabling predicate, fire : NPl×
Tr 7→ 2N

Pl
is a transition firing function, ` : Tr 7→ A is a labeling function,

Chapter VI. Applications and Case Studies 79

• m0 ∈NPl is the initial marking of the net,

• α : Tr 7→N and β : Tr 7→N∪{∞} are functions satisfying ∀t ∈ Tr,α(t)≤ β(t)
called respectively earliest (α) and latest (β) transition firing times.

Transitions t for which α(t) = β(t) = 0 are called urgent. For instance, stan-
dard Place/Transition nets are usually defined using pre (noted Pre) and post (noted
Post) functions : Pl×Tr 7→N. Then, for a marking m∈NPl and a transition t ∈ Tr,
enabling is defined by enabled(m, t) iff ∀p ∈ Pl, m(p) ≥ Pre(p, t) and transition
firing by fire(m, t) = {m′} with ∀p∈ Pl, m′(p) = m(p)−Pre(p, t)+Post(p, t). In-
hibitor arcs Inh and test arcs Test are defined similarly and add enabling conditions
to a transition: enabled(m, t) iff ∀p ∈ Pl, m(p) < Inh(p, t)∧m(p) ≥ Test(p, t).
Note that the enabling predicate only considers markings while timing conditions
are defined separately. In definition VI.2.1, transitions are equipped with labels
for further composition of nets (see Section V.2.4). With slight notation abuse, we
write enabled(t) for the predicate enabled(m, t) over markings.

VI.2.2 Encoding TPN into GAL

To encode a N = 〈Pl,Tr,A,enabled,fire, `,m0,α,β〉, we define the corresponding
GAL as follows:

• Assume that Pl = {p1, . . . , pn}. Each place p in Pl gives rise to a variable p,
with initial value the initial marking of p;

• Each transition t in Tr, such that α(t) 6= 0∨ (β(t) 6= 0∧β(t) 6= ∞) gives rise
to a clock variable tc with initial value 0. Transition clocks with the interval
[0,0] are taken into account in the semantics but not given a variable (since
their value is trivially 0 in all states). Transition clocks with interval [0,∞[
are entirely suppressed as they are not useful semantically.

• Each transition t in Tr produces a GAL transition t = 〈`(t),g,σ〉. The guard g
is defined by g = enabled(t)∧ (α(t) = 0∨ tc ≥ α(t)). Similarly, σ is defined
from the firing function fire in a straightforward manner by assignments to
the variables that correspond to the places. If t is associated with a clock
variable tc, we add a statement 〈tc = 0〉 to the transition effects, to reset its
clock. The last statement of every transition is a call to the label "reset" with
call(reset), to reset clocks of transitions newly disabled by the firing of t.

• The reset transition is r = 〈reset,True,σ〉, where σ is a sequence of |Tr|
statements ite(enabled(t),nop, tc = 0), for t ∈ Tr. Statements concerning
clock variables that have been suppressed are simply nop.

• Additionally, the GAL model contains a “time elapse” transition e1 = 〈1,
True,σ〉, where σ is a sequence of |Tr| statements σ0; . . . ;σk, where σi is the
statement: ite(enabled(t), ite(tc < β(t), tc = tc + 1,abort),nop). This state-
ment is simplified to ite(enabled(t),abort,nop) for transitions with interval

Chapter VI. Applications and Case Studies 80

leave

App

on far
left

Exit
[2,4] [0,0]

public

local

enter

close
[3,5]

Figure VI.2: Behavior of a train in [BV03].

[0,0]. For transitions with α(t) 6= 0 and with β(t)=∞ as latest firing time, the
statement is written ite(enabled(t), ite(tc < α(t), tc = tc +1,nop), nop) thus
allowing the clock variable to progress up to α(t) for firing, but not keeping
track of its value above α(t). The statement is simply nop for transitions
with no time constraint α(t) = 0 and β(t) = ∞.

VI.2.3 Examples

Example of TPN.
The example of Fig. VI.2, describing the behavior of a train in the train-crossing

example [BV03], is used to illustrate the encoding of a TPN into GAL (see Fig. VI.3).
Each place is encoded as a variable, as well as each transition clock. We note that
the clock of Exit is not encoded because it is an urgent transition with a 0 delay.
Then, each transition has its corresponding code in GAL, defining its firing condi-
tion. Finally, elapse lets time elapse by one unit when no enabled time transition
has reached its upper bound, and reset sets the clocks of disabled transitions to 0.

Example of Composition.
As an example of composition, let us consider a gate modeled as a TPN with

labels “Close” and “Open” that respectively opens and close a barrier. The model is
not provided here (see [TM+11]), but for the purpose of composition its implemen-
tation is not important, only its interface or exported labels are. The barrier takes 1
to 2 time units to move from open to close position and vice-versa. The traingate
composite (see Fig. VI.4) allows to close the gate when a train is approaching and
open it when it leaves. However, when several trains share the same gate, the gate
could be opened by a leaving train while another one is in place “close” or “on”.
Additionally, the composite bears an elapse synchronization that forces time to
elapse at the same speed in enclosed components.

To solve this issue, we introduce a smarter composite having the same inter-
face as a gate: controlledgate (see Fig. VI.4). It carries a counter that is used
to trigger the gate only when the first (respectively last) train arrives (respectively
leaves) the section protected by the gate. This example shows a composition of a
TPN with a GAL as well as a sequence of synchronizations such as leavelast:
this sequence can only be fired if, after decrementing c, its value is 0.

Chapter VI. Applications and Case Studies 81

1 GAL t r a i n {
2 i n t f a r =1 , on =0 , l e f t =0 , c l o s e =0;
3 i n t l e a v e . c l o c k =0 , e n t e r . c l o c k =0;
4 t r a n s i t i o n App [f a r >= 1]
5 l a b e l "App" {
6 f a r = f a r − 1 ;
7 on = on + 1 ;
8 s e l f . r e s e t ; }
9 t r a n s i t i o n e n t e r

10 [c l o s e >=1 && e n t e r . c lock >=3] {
11 c l o s e = c l o s e − 1 ;
12 on = on + 1 ;
13 e n t e r . c l o c k = 0 ;
14 s e l f . r e s e t ; }
15 t r a n s i t i o n l e a v e
16 [on >= 1 && l e a v e . c l o c k >= 2] {
17 on = on − 1 ;
18 l e f t = l e f t + 1 ;
19 l e a v e . c l o c k = 0 ;
20 s e l f . r e s e t ; }
21 t r a n s i t i o n E x i t [l e f t >= 1]
22 l a b e l " E x i t " {
23 l e f t = l e f t − 1 ;

24 f a r = f a r + 1 ;
25 s e l f . r e s e t ; }
26 t r a n s i t i o n e l a p s e [True]
27 l a b e l " e l a p s e " {
28 i f (c l o s e >= 1) {
29 i f (e n t e r . c l o c k < 5) {
30 e n t e r . c l o c k = e n t e r . c l o c k + 1 ;
31 } e l s e { abort ; }
32 }
33 i f (on >= 1) {
34 i f (l e a v e . c l o c k < 4) {
35 l e a v e . c l o c k = l e a v e . c l o c k + 1 ;
36 } e l s e { abort ; }
37 }
38 i f (l e f t >= 1) { abort ; }
39 }
40 t r a n s i t i o n r e s e t [True]
41 l a b e l " r e s e t " {
42 i f (! c l o s e >= 1) { e n t e r . c l o c k = 0 ; }
43 i f (! on >= 1) { l e a v e . c l o c k = 0 ; }
44 }
45 }

Figure VI.3: The GAL system encoding of the TPN shown in Fig. VI.2

1 compos i te t r a i n g a t e {
2 t r a i n t ;
3 g a t e g ;
4 s y n c h r o n i z a t i o n a r r i v e
5 { t . App ; g . C lose ; }
6 s y n c h r o n i z a t i o n l e a v e
7 { t . E x i t ; g . Open ; }
8 s y n c h r o n i z a t i o n e l a p s e l a b e l " e l a p s e "
9 { t . e l a p s e ; g . e l a p s e ; }

10 }
11

12 GAL c o u n t e r {
13 i n t c p t = 0 ;
14 t r a n s i t i o n i n c l a b e l " i n c "
15 { c p t = c p t + 1 ; }
16 t r a n s i t i o n dec [c p t > 0] l a b e l " dec "
17 { c p t = c p t − 1 ; }
18 t r a n s i t i o n z [c p t ==0] l a b e l " i s z e r o "

19 {}
20 t r a n s i t i o n nz [c p t ! = 0] l a b e l " n o t z e r o "
21 {}
22 }
23 composi te c o n t r o l l e d g a t e {
24 c o u n t e r c ;
25 g a t e g ;
26 s y n c h r o n i z a t i o n e n t e r f i r s t l a b e l " Close "
27 { c . i s z e r o ; c . i n c ; g . c l o s e ; }
28 s y n c h r o n i z a t i o n e n t e r o t h e r l a b e l " Close "
29 { c . n o t z e r o ; c . i n c ; }
30 s y n c h r o n i z a t i o n l e a v e l a s t l a b e l " Open "
31 { c . dec ; c . i s z e r o ; g . open ; }
32 s y n c h r o n i z a t i o n l e a v e o t h e r l a b e l " Open "
33 { c . dec ; c . n o t z e r o ; }
34 s y n c h r o n i z a t i o n e l a p s e l a b e l " e l a p s e "
35 {g . e l a p s e ; }
36 }

Figure VI.4: Composite description of variants on a gate and its controller.

Chapter VI. Applications and Case Studies 82

Node classNode classNode class
Environment: environmental scenario

Sensor: type + operating mode

Application: sending orders to sensors +
processing + sending data to network

Network: communication of messages

En
er

gy

co
ns

um
pt

io
n

m
od

el

Deployment: node class instantiations + topology

Figure VI.5: Structure of a Verisensor specification.

VI.3 Case studies

We present here some significant applications of the ITS-tools that we are aware
of.

The Behavioral Consistency Checker (BCC) developed in the ModelPlex IP
project [TH08] transformed UML activity diagrams to an early version of ITS to
verify a set of predefined consistency rules (absence of deadlocks, all activities can
eventually terminate...).

In [BM+13] ITS-tools were used to analyze compositions of time Petri nets
produced from a DSL VeriSensor dedicated to wireless sensor network modeling.
Verisensor separates specification of different aspects of a WSN through a notion
of views, represented in figure VI.5.

These views are combined to form the complete model, with heavy use of ITS
and label synchronization (figure VI.6). Depending on the target property, sim-
plified variants can be used for parts of the system, giving some property specific
abstraction. The specifications analyzed contained more than 50 clocks, many of
which are concurrently enabled, preventing analysis by explicit tools such as Tina.

ʻʻfreeʼʼ unconstrained Environment

Deployment:
2 Activity, 1 ECGTilt

and 1 PDA
ECGTilt

Sensors
Application

NetworkEn
er

gy

PDA
Sensors

Application
NetworkEn

er
gy

activity1

activity2
ecgtilt1 pda1





10···0

0
...

...
...

...0
0···01
0···01
0···01
0···01
0···01
0···01
0···01
0···01
0···01
0···01








10···0

0
...

...
...

...0
0···01
0···01
0···01
0···01
0···01
0···01
0···01
0···01
0···01
0···01








10···0

0
...

...
...

...0
0···01
0···01
0···01
0···01
0···01
0···01
0···01
0···01
0···01
0···01




node
classes

node
instances

environment

ActivityNetwork

Application

Sensor

En
er

gy

start/stop/sendVi

send,receive

recvVi

Figure VI.6: Translation to ITS of Verisensor uses label synchronizations (arcs)
and instantiation (each box is an instance). This figure depicts a Body Area Net-
work.

Chapter VI. Applications and Case Studies 83

Figure VI.7: Architecture AtSyRa.

With "its-reach" functional properties could be checked as well as quantitative mea-
sures such as worst-case lifetime analysis.

In the Neoppod project [Cho+10a] the CTL component was used to verify
response and consistency properties of a protocol for a distributed database.

Inria’s Atsyra project [PAV14] computes attack defense trees from a DSL using
a model-to-model transformation to GAL. Their expertise with Kermeta and meta-
modeling made it easy for them to use the EMF compliant GAL metamodel and
connect it to their own DSL. Figure VI.7 shows the architecture of the tool.

In terms of raw benchmark power, ITS-tools participated in several editions of
the model-checking contest at Petri nets conference, ranking first place in several
categories. It is compared favorably to LTSmin and to SAT solver Superprove on
the benchmark BEEM[Col+13]. It outperformed the symbolic tool Smart using
its own benchmark models in [TM+09]. On timed models, comparisons to Uppaal
show that we tend to scale better in number of clocks, but are more sensitive to large
bounds on clocks, something that was reported in previous similar experiments
[BLN03].

VI.4 Evaluation

The ITS-tools is composed of 148kloc of Java for the front-end and 123kloc of C++
for the back-end (a kloc is one thousand lines of code). A lot of configuration and

Chapter VI. Applications and Case Studies 84

build files bring this total to about 300kloc of manually built code. We started from
a fork of libddd by Jean-Michel Couvreur and Denis Poitrenaud written in 2001,
for which we don’t have version history, but we do have data since 2004. ITS-tools
includes contributions by 36 committers, amounting to 6600 commit operations
since 2004. This includes quite a few internships of Master students that I super-
vised and that contributed modules for language support. I am the author 5149 of
these commits, amounting to 78% of the activity. My former PhD students Max-
imilien Colange (384 commit) and Alexandre Hamez (144 commit) are the next
authors in terms of both volume and importance of the contributions (commits in
the kernel).

Building practical tools in academia is a challenge. From experience, we try
to always make consensual technology choices, supported by industry and a strong
user base. It is essential to reuse existing components and rely on frameworks to
leverage the thousands of man years of development effort that are made freely
available in projects such as Eclipse and EMF. Maintenance and upgrades to match
evolution of the framework are thus necessary, so continuity in the development
team is desirable. Student projects can help bootstrap an idea or test a framework,
but integration in a running code base requires a lot of testing, debugging and
manual inspection. So having some key developers with a permanent position
seems necessary to build and maintain solid tools in academia.

VI.5 Conclusion

All the contributions presented in this manuscript have been integrated in the freely
available at http://ddd.lip6.fr/ open-source symbolic model-checking suite
ITS-tools. It uses Java and leverages EMF to provide a user friendly front-end both
for direct modeling and definition of model transformation from a DSL. The back-
end uses optimized C++ for better time and memory efficiency, and leverages Spot
for LTL model-checking[DL14].

http://ddd.lip6.fr/

Part D

General Conclusion

85

Chapter VII

Conclusion and Perspectives

VII.1Conclusion

This manuscript presented my main research axis over the last decade : developing
the theory and practice of symbolic model-checking. We identified key contribu-
tions to definition of a symbolic kernel in part A, then described some symbolic
model-checking algorithms that use the kernel in part B. Part C presented in the
ITS framework for modeling hierarchy, and its complement GAL as a semantic as-
sembly language to describe concurrent semantics. We provide a free open-source
implementation of all the algorithms presented in this memoir, within ITS-tools,
one of the most efficient and general symbolic model-checkers available.

I’m a co-author of 26 conference papers including some of the best confer-
ences of the domain (3 TACAS, 1 CAV) and 9 papers in journals. I have also
participated in writing book chapters on formal verification and a course book on
UML [COTM10] for graduate students (3 editions, so relatively successful).

I have co-supervised 4 PhD students :

• Alexandre Hamez [Ham09] (with F. Kordon) on parallel and distributed ex-
plicit model-checking [Ham+07] and the definition of rewriting rules for ho-
momorphisms [HTMK08] which were presented in II.2.

• Yan Zhang [Zha13] (with B. Berard) on control theory [Zha+10], and its
integration in a software development process [Zha+14]. To this end we
developed a DSL VeriJ that builds on a fragment of Java and a transformation
chain to support its analysis. We built an explicit solution engine, since some
concepts (stack, heap) could not be easily mapped to the hypothesis of GAL.
We were able to design a solution that is competitive with other Java model-
checkers such as JPF [HP00].

• Yann Ben Maissa [BM13] (with F. Kordon and S. Mouline) on modeling and
analysis of wireless sensor networks (WSN). We defined a DSL VeriSen-
sor [BM+13] adapted to WSN, then analyzed properties such as worst case

86

Chapter VII. Conclusion and Perspectives 87

time to failure using a translation to ITS tools. These models involved both
real time constraints and resource constraints such as energy. The gener-
ated models used the ITS features of instantiation and label synchronization
heavily, and were large quite large real time models as a result (dozens of
clocks).

• Maximilien Colange [Col13] (with F.Kordon and S. Baarir) on the symbolic
symbolic approach initially (see [Col+12] and IV), then on expression eval-
uation in a symbolic setting (see [Col+13] and II.3).

Since we focused in this memoir on symbolic methods, the work with Yann
Ben Maissa and Yan Zhang was not fully presented. In both of these thesis, we
explored the applicative side, by defining high-level DSL designed for a specific
domain, then analyzing their behavior using model transformations. Thus they
were positioned in the role of a client of formal verification, and helped to de-
sign and stress test the translation approach and verification tools presented in this
manuscript.

VII.2Perspectives

Figure VII.1: ITS-tools 3.0, circa 2025.

As a long-term goal, we would like to handle verification of concurrent code,
using a model extraction approach that embeds automated abstractions. Figure VII.1
is an idealized view of ITS-tools in a few years : directly embedded in the IDE,
running the behavioral analysis on rich DSL for real-time embedded systems that
feature code fragments, and reporting diagnosis and traces to the user transparently
with respect to underlying solver technologies.

Several challenges still need to be solved however. Each perspective presented
here could be developed during a PhD thesis.

Multi-solver Integration
While ITS-tools is an efficient model-checker, the intermediate language GAL

and the translation approach we have developed supports introduction of other so-
lution engines.

Chapter VII. Conclusion and Perspectives 88

Connection to explicit multi-core solutions such as LTSmin seems particularly
desirable to complement our symbolic engine. We think a hybrid between GAL
and the PINS input of LTSmin could benefit both : extending PINS with ITS
compositions and sums of behaviors, and extending GAL with opaque functions
embedding code.

Because GAL currently expresses the whole system semantics, it is also possi-
ble to export the transition relation to SAT or SMT solvers such as Z3 to perform
bounded model-checking or other verifications.

A concurrent portfolio featuring multiple solvers would benefit from multi-core
evolutions of modern hardware.

Stack and Heap
While GAL can model systems with a fixed set of integer variables and arrays,

there is currently no support for modeling a procedural call stack or lists with a
variable number of elements such as a heap.

We currently use bounded inlining for procedures or a bound on maximal size
of a dynamic arrays to translate these concepts, but their native support would be
both more flexible and powerful. To treat such cases, we need to extend GAL with
support for dynamic lists, but also relax the assumptions of the solver(s).

For the specific case of a list representing a heap of objects allocated concur-
rently, we need to exploit symmetries between logically equivalent configurations
to limit the state explosion.

Abstractions and Rewriting
Abstraction is a fundamental part of modeling, but is also necessary for ver-

ification. Experiments with DSL such as VeriJ [Zha13] for controller design or
VeriSensor [BM13] to study wireless sensor networks have shown that exploiting
the domain knowledge allows to perform many automatic abstractions during the
translation of a formal model, while ensuring preservation of the property of inter-
est. We have also experimented some abstractions for HLPN in the context of the
model-checking contest with promising results.

The challenge is to express such abstractions in a general way, as rewriting
rules from GAL to GAL with some property specific preconditions governing when
they can be applied, thus profiting all input formalisms.

Bibliography

[AHI98] K. Ajami, S. Haddad, and J.-M. Ilié. “Exploiting Symmetry in Lin-
ear Time Temporal Logic Model Checking: One Step Beyond”. In:
First International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS’98). Vol. 1384. LNCS.
Springer-Verlag, 1998, pp. 52–67 (cit. on p. 49).

[AMS03] F. Aloul, I. Markov, and K. Sakallah. “FORCE: a fast and easy-to-
implement variable-ordering heuristic”. In: 13th ACM Great Lakes
symposium on VLSI. ACM. 2003, pp. 116–119 (cit. on p. 76).

[Arn02] A. Arnold. “Nivat’s processes and their synchronization”. In: Theor.
Comp. Sci. 281.1-2 (2002), pp. 31–36. ISSN: 0304-3975 (cit. on
pp. 60, 62).

[Bah+93] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii,
A. Pardo, and F. Somenzi. “Algebraic Decision Diagrams and Their
Applications”. In: Proceedings of the 1993 IEEE/ACM International
Conference on Computer-aided Design. ICCAD ’93. Santa Clara,
California, USA: IEEE Computer Society Press, 1993, pp. 188–191
(cit. on p. 8).

[Bar+10] J. Barnat, L. Brim, M. Češka, and P. Ročkai. “DiVinE: Parallel Dis-
tributed Model Checker (Tool paper)”. In: Parallel and Distributed
Methods in Verification and High Performance Computational Sys-
tems Biology (HiBi/PDMC). IEEE, 2010, pp. 4–7 (cit. on pp. 28,
59).

[Bar+13] J. Barnat, L. Brim, V. Havel, J. Havlíček, J. Kriho, M. Lenčo, P.
Ročkai, V. Štill, and J. Weiser. “DiVinE 3.0 – An Explicit-State
Model Checker for Multithreaded C & C++ Programs”. In: Com-
puter Aided Verification (CAV). LNCS 8044. Springer, 2013, pp. 863–
868 (cit. on p. 77).

[BCN11] Y. Boichut, J.-M. Couvreur, and D.-T. Nguyen. “Functional Term
Rewriting Systems Towards Symbolic Model-Checking”. In: Int. J.
Crit. Comput.-Based Syst. 2.3/4 (Sept. 2011), pp. 378–408. ISSN:
1757-8779 (cit. on p. 14).

89

BIBLIOGRAPHY 90

[BCS09] G. Blair, T. Coupaye, and J.-B. Stefani. “Component-based archi-
tecture: the Fractal initiative”. In: annals of telecommunications -
annales des télécommunications 64.1 (2009), pp. 1–4 (cit. on p. 61).

[BCZ99] A. Biere, E. M. Clarke, and Y. Zhu. “Multiple State and Single State
Tableaux for Combining Local and Global Model Checking”. In:
Correct System Design. Vol. 1710. LNCS. Springer-Verlag, 1999,
pp. 163–179 (cit. on pp. 38, 44).

[BDH02] D. Bošnački, D. Dams, and L. Holenderski. “Symmetric Spin”. In:
International Journal on Software Tools for Technology Transfer 4.1
(2002), pp. 92–106 (cit. on p. 50).

[Beh+01] G. Behrmann, K. G. Larsen, O. Moller, A. David, P. Pettersson, and
W. Yi. “Uppaal-present and future”. In: Decision and Control, 2001.
Proceedings of the 40th IEEE Conference on. Vol. 3. IEEE. 2001,
pp. 2881–2886 (cit. on pp. 59, 77).

[Beh+99] P. Behm, P. Benoit, A. Faivre, and J.-M. Meynadier. “Météor: A Suc-
cessful Application of B in a Large Project”. In: FM’99 — Formal
Methods: World Congress on Formal Methods in the Development
of Computing Systems, Proceedings, Volume I. Springer Berlin Hei-
delberg, 1999, pp. 369–387 (cit. on p. 4).

[Ber+09] B. Berthomieu, J. Bodeveix, C. Chaudet, S. Dal-Zilio, M. Filali,
and F. Vernadat. “Formal Verification of AADL Specifications in the
Topcased Environment”. In: Ada-Europe. Vol. 5570. LNCS. Springer,
2009, pp. 207–221 (cit. on p. 58).

[BET10] V. Beaudenon, E. Encrenaz, and S. Taktak. “Data decision diagrams
for Promela systems analysis”. In: STTT 12.5 (2010), pp. 337–352
(cit. on pp. 14, 15, 35, 67).

[Bey01] D. Beyer. “Improvements in BDD-Based Reachability Analysis of
Timed Automata”. In: Formal Methods Europe (FME). LNCS 2021.
Springer-Verlag, 2001, pp. 318–343 (cit. on p. 77).

[Bey15] D. Beyer. “Software Verification and Verifiable Witnesses (Report
on SV-COMP 2015)”. In: Proceedings of the 21st International Con-
ference on Tools and Algorithms for the Construction and of Analy-
sis Systems (TACAS 2015, London, UK, April 13-17). LNCS 9035.
Springer-Verlag, Heidelberg, 2015, pp. 401–416. ISBN: 978-3-662-
46680-3 (cit. on p. 59).

[BHI04] S. Baarir, S. Haddad, and J.-m. Ilié. “Exploiting partial symmetries
in well-formed nets for the reachability and the linear time model
checking problems”. In: in Proc. of the 7th Workshop on Discrete
Event Systems (WODES’04. Citeseer. 2004 (cit. on p. 42).

BIBLIOGRAPHY 91

[BLN03] D. Beyer, C. Lewerentz, and A. Noack. “Rabbit: A Tool for BDD-
Based Verification of Real-Time Systems”. In: Computer Aided Ver-
ification (CAV). LNCS 2725. Springer-Verlag, 2003, pp. 122–125
(cit. on p. 83).

[BM+13] Y. Ben Maïssa, F. Kordon, S. Mouline, and Y. Thierry-Mieg. “Mod-
eling and Analyzing Wireless Sensor Networks with VeriSensor:
an Integrated Workflow”. In: Transactions on Petri Nets and Other
Models of Concurrency (ToPNoC) VIII (2013), pp. 24–47 (cit. on
pp. 82, 86).

[BM10] R. K. Brayton and A. Mishchenko. “ABC: An Academic Industrial-
Strength Verification Tool”. In: CAV. Vol. 6174. LNCS. Springer,
2010, pp. 24–40 (cit. on p. 33).

[BM13] Y. Ben Maissa. “Contribution to the modeling and verification of
wireless sensor networks”. PhD thesis. Paris, France and Rabat, Mo-
rocco: Universite Pierre et Marie Curie and Universite Mohammed
V Agdal, 2013 (cit. on pp. 86, 88).

[BP08] S. Blom and J. van de Pol. “Symbolic Reachability for Process Al-
gebras with Recursive Data Types”. In: ICTAC. Vol. 5160. LNCS.
Springer, 2008, pp. 81–95 (cit. on p. 8).

[BPW10] S. Blom, J. van de Pol, and M. Weber. “LTSmin: Distributed and
symbolic reachability”. In: Computer Aided Verification (CAV). Springer.
2010, pp. 354–359 (cit. on pp. 28, 33, 35, 72, 75).

[Bra+96] R. K. Brayton, G. D. Hachtel, A. L. Sangiovanni-Vincentelli, F.
Somenzi, A. Aziz, S.-T. Cheng, S. A. Edwards, S. P. Khatri, Y. Kuki-
moto, A. Pardo, S. Qadeer, R. K. Ranjan, S. Sarwary, T. R. Shiple,
G. Swamy, and T. Villa. “VIS: A System for Verification and Syn-
thesis”. In: Computer Aided Verification (CAV). Vol. 1102. Lecture
Notes in Computer Science. Springer, 1996, pp. 428–432 (cit. on
pp. 58, 76).

[Bry86] R. Bryant. “Graph-Based Algorithms for Boolean Function Manip-
ulation”. In: IEEE Transactions on Computers 35.8 (1986), pp. 677–
691 (cit. on pp. 8, 9).

[BS+14] A.-E. Ben Salem, A. Duret-Lutz, F. Kordon, and Y. Thierry-Mieg.
“Symbolic Model Checking of stutter invariant properties Using Gen-
eralized Testing Automata”. In: Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS). Vol. 8413. LNCS. Springer,
2014, pp. 440–454 (cit. on pp. 46, 76).

BIBLIOGRAPHY 92

[Buc+10] D. Buchs, S. Hostettler, A. Marechal, and M. Risoldi. “AlPiNA:
An Algebraic Petri Net Analyzer”. In: Tools and Algorithms for the
Construction and Analysis of Systems: 16th International Confer-
ence, TACAS 2010. Springer, 2010, pp. 349–352 (cit. on pp. 14, 15,
35).

[Bur+92] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. Hwang.
“Symbolic model checking: 1020 States and beyond”. In: Informa-
tion and computation 98.2 (1992), pp. 142–170 (cit. on pp. 8, 19,
23).

[BV03] B. Berthomieu and F. Vernadat. “State Class Constructions for Branch-
ing Analysis of Time Petri Nets”. In: Tools and Algorithms for the
Construction and Analysis of Systems – TACAS. Vol. 2619. LNCS.
Springer, 2003, pp. 442–457 (cit. on p. 80).

[BV06] B. Berthomieu and F. Vernadat. “Time petri nets analysis with tina”.
In: Quantitative Evaluation of Systems (QEST). IEEE. 2006, pp. 123–
124 (cit. on p. 58).

[Bér+08] B. Bérard, S. Haddad, L. M. Hillah, F. Kordon, and Y. Thierry-Mieg.
“Collision Avoidance in Intelligent Transport Systems: towards an
Application of Control Theory”. In: 9th International Workshop on
Discrete Event Systems (WODES’08). Goteborg, Sweden: IEEE Com-
puter Society, May 2008, pp. 346–351 (cit. on p. 67).

[Cav+14] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A.
Micheli, S. Mover, M. Roveri, and S. Tonetta. “The nuXmv Sym-
bolic Model Checker”. In: Proceedings of the 16th International
Conference on Computer Aided Verification - Volume 8559. New
York, NY, USA: Springer-Verlag New York, Inc., 2014, pp. 334–
342. ISBN: 978-3-319-08866-2 (cit. on p. 58).

[CC79] P. Cousot and R. Cousot. “Systematic design of program analysis
frameworks”. In: In 6th POPL. ACM Press, 1979, pp. 269–282 (cit.
on p. 5).

[CDLP05] J.-M. Couvreur, A. Duret-Lutz, and D. Poitrenaud. “On-the-Fly Empti-
ness Checks for Generalized Büchi Automata”. In: Proceedings of
the 12th International SPIN Workshop on Model Checking of Soft-
ware (SPIN’05). Vol. 3639. LNCS. Springer, Aug. 2005, pp. 143–
158 (cit. on p. 40).

[CGP99] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press,
Cambridge MA, USA, 1999 (cit. on pp. 8, 37).

[Chi+90] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. “On Well-
Formed Coloured Nets and their Symbolic Reachability Graph”. In:
Proc. 11th International Conference on Application and Theory of
Petri Nets. Paris, France, 1990 (cit. on pp. 50, 65, 66).

BIBLIOGRAPHY 93

[Chi+93] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. “Stochas-
tic well-formed colored nets and symmetric modeling applications”.
In: Computers, IEEE Transactions on 42.11 (1993), pp. 1343–1360
(cit. on pp. 47, 50).

[CHM16] L. Cabac, M. Haustermann, and D. Mosteller. “Renew 2.5 – To-
wards a Comprehensive Integrated Development Environment for
Petri Net-Based Applications”. In: Application and Theory of Petri
Nets and Concurrency: 37th International Conference, PETRI NETS
2016, Toruń, Poland, June 19-24, 2016. Proceedings. Cham: Springer
International Publishing, 2016, pp. 101–112 (cit. on p. 58).

[Cho+10a] C. Choppy, A. Dedova, S. Evangelista, S. Hong, K. Klai, and L.
Petrucci. “The NEO Protocol for Large-Scale Distributed Database
Systems: Modelling and Initial Verification”. In: Application and
Theory of Petri Nets (ICATPN). LNCS 6128. Springer, 2010, pp. 145–
164 (cit. on p. 83).

[Cho+10b] C. Choppy, A. Dedova, S. Evangelista, S. Hong, K. Klai, and L.
Petrucci. “The NEO Protocol for Large-Scale Distributed Database
Systems: Modelling and Initial Verification”. In: Petri Nets. Vol. 6128.
LNCS. Springer, 2010, pp. 145–164 (cit. on p. 14).

[Cim+02] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella. “NuSMV Version 2: An
OpenSource Tool for Symbolic Model Checking”. In: Proc. Inter-
national Conference on Computer-Aided Verification (CAV 2002).
Vol. 2404. LNCS. Copenhagen, Denmark: Springer, 2002 (cit. on
pp. 58, 69).

[Cla+03] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. “Counterexample-
guided Abstraction Refinement for Symbolic Model Checking”. In:
J. ACM 50.5 (Sept. 2003), pp. 752–794. ISSN: 0004-5411 (cit. on
p. 5).

[Cla+96] E. Clarke, R. Enders, T. Filkorn, and S. Jha. “Exploiting symmetry
in temporal logic model checking”. In: Formal Methods in System
Design 9.1 (1996), pp. 77–104 (cit. on pp. 50, 51, 53, 56).

[Cla+98] E. Clarke, E. Emerson, S. Jha, and A. Sistla. “Symmetry reduc-
tions in model checking”. In: Computer Aided Verification. Springer.
1998, pp. 147–158 (cit. on pp. 47, 49).

[CMS03] G. Ciardo, R. Marmorstein, and R. Siminiceanu. “Saturation un-
bound”. In: Tools and algorithms for the construction and analysis
of systems. Springer Varlag, LNCS 2619, 2003, pp. 379–393 (cit. on
pp. 23, 25, 26, 43).

BIBLIOGRAPHY 94

[Col+11] M. Colange, S. Baarir, F. Kordon, and Y. Thierry-Mieg. “Crocodile:
a Symbolic/Symbolic tool for the analysis of Symmetric Nets with
Bag”. In: 32nd International Conference on Petri Nets and Other
Models of Concurrency (ICATPN 2011). Vol. 6709. Lecture Notes in
Computer Science. Springer, June 2011, pp. 338–347 (cit. on pp. 14,
15, 51).

[Col+12] M. Colange, F. Kordon, Y. Thierry-Mieg, and S. Baarir. “State Space
Analysis using Symmetries on Decision Diagrams”. In: Application
of Concurrency to System Design (ACSD). IEEE Computer Society,
2012, pp. 164–172 (cit. on pp. 29, 51, 55, 67, 76, 87).

[Col+13] M. Colange, S. Baarir, F. Kordon, and Y. Thierry-Mieg. “Towards
Distributed Software Model-Checking using Decision Diagrams”.
In: Computer Aided Verification (CAV). LNCS 8044. Springer Ver-
lag, 2013, pp. 830–845 (cit. on pp. 32, 33, 72, 73, 77, 83, 87).

[Col13] M. Colange. “Symmetry Reduction and Symbolic Data Structures
for Model Checking of Distributed Systems”. PhD thesis. Paris, France:
Universite Pierre et Marie Curie, 2013 (cit. on pp. 29, 35, 55, 76, 87).

[COTM10] B. Charroux, A. Osmani, and Y. Thierry-Mieg. UML2 : Pratique
de la Modelisation. 3eme. Pearson Education, 2010, p. 288. ISBN:
2744074667 (cit. on p. 86).

[Cou+02] J.-M. Couvreur, E. Encrenaz, E. Paviot-Adet, D. Poitrenaud, and P.-
A. Wacrenier. “Data decision diagrams for Petri net analysis”. In:
Application and Theory of Petri Nets (ICATPN) (2002), pp. 129–
158 (cit. on pp. 8–10, 20, 21, 35, 67).

[Cou+91] C. Courcoubetis, M. Y. Vardi, P. Wolper, and M. Yannakakis. “Memory-
Efficient Algorithm for the Verification of Temporal Properties”. In:
Proceedings of the 2nd international workshop on Computer Aided
Verification (CAV’90). Vol. 531. LNCS. Springer-Verlag, 1991, pp. 233–
242 (cit. on p. 37).

[CTM05] J.-M. Couvreur and Y. Thierry-Mieg. “Hierarchical decision dia-
grams to exploit model structure”. In: Formal Techniques for Net-
worked and Distributed Systems (FORTE) (2005), pp. 443–457 (cit.
on pp. 11, 13).

[Dal+12] A. E. Dalsgaard, A. Laarman, K. G. Larsen, M. C. Olesen, and J.
van de Pol. “Multi-core Reachability for Timed Automata”. In: For-
mal Modeling and Analysis of Timed Systems: 10th International
Conference, FORMATS 2012, London, UK, September 18-20, 2012.
Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,
pp. 91–106 (cit. on p. 72).

BIBLIOGRAPHY 95

[DL+11] A. Duret-Lutz, K. Klai, D. Poitrenaud, and Y. Thierry-Mieg. “Self-
loop aggregation product a new hybrid approach to on-the-fly LTL
model checking”. In: Automated Technology for Verification and
Analysis (ATVA). Springer, 2011, pp. 336–350 (cit. on pp. 43, 46,
76).

[DL+16] A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, E. Renault,
and L. Xu. “Spot 2.0 — a framework for LTL and ω-automata ma-
nipulation”. In: Proceedings of the 14th International Symposium
on Automated Technology for Verification and Analysis (ATVA’16).
Vol. ???? LNCS. To appear. Springer, Oct. 2016, ??–?? (Cit. on
pp. 43, 76).

[DL14] A. Duret-Lutz. “LTL Translation Improvements in Spot 1.0”. In: In-
ternational Journal on Critical Computer-Based Systems 5.1/2 (2014),
pp. 31–54 (cit. on pp. 43, 76, 84).

[DLP04] A. Duret-Lutz and D. Poitrenaud. “SPOT: an Extensible Model Check-
ing Library using Transition-based Generalized Büchi Automata”.
In: Proceedings of the 12th IEEE/ACM International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommuni-
cation Systems (MASCOTS’04). Volendam, The Netherlands: IEEE
Computer Society Press, Oct. 2004, pp. 76–83 (cit. on pp. 40, 43).

[EB10] M. Eysholdt and H. Behrens. “Xtext: Implement Your Language
Faster Than the Quick and Dirty Way”. In: Proceedings of the ACM
International Conference Companion on Object Oriented Program-
ming Systems Languages and Applications Companion. OOPSLA
’10. Reno/Tahoe, Nevada, USA: ACM, 2010, pp. 307–309 (cit. on
p. 77).

[EL87] E. A. Emerson and C.-L. Lei. “Modalities for Model Checking: Branch-
ing Time Logic Strikes Back”. In: Science of Computer Program-
ming 8.3 (June 1987), pp. 275–306 (cit. on p. 76).

[Ete99] K. Etessami. “Stutter-Invariant Languages, ω-Automata, and Tem-
poral Logic”. In: Proceedings of the 11th International Conference
on Computer Aided Verification (CAV’99). Vol. 1633. LNCS. Springer-
Verlag, 1999, pp. 236–248 (cit. on p. 37).

[Fis+01] K. Fisler, R. Fraer, G. Kamhi, M. Y. Vardi, and Z. Yang. “Is There a
Best Symbolic Cycle-Detection Algorithm?” In: Proc. of TACAS’01
(TACAS’01). Vol. 2031. LNCS. Springer, 2001, pp. 420–434 (cit. on
pp. 38, 43).

[Gam+95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-oriented Software. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1995. ISBN: 0-201-
63361-2 (cit. on p. 61).

BIBLIOGRAPHY 96

[Gar+05] G. Gardey, D. Lime, M. Magnin, and O. H. Roux. “Roméo: A Tool
for Analyzing time Petri nets”. In: 17th International Conference
on Computer Aided Verification. Vol. 3576. LNCS. http://romeo.rts-
software.org/. Springer, July 2005 (cit. on p. 78).

[Gil+04] F. Gilliers, F. Bréant, D. Poitrenaud, and F. Kordon. “Model Check-
ing of Highlevelobject Oriented Specifications : The LfP Experi-
ence”. In: 3rd Workshop on Modelling of Objects, Components, and
Agents (MOCA ’04). INT LIP6 MoVe. Aarhus, Denmark, 2004, pp. 149–
168 (cit. on p. 67).

[Ham+07] A. Hamez, F. Kordon, Y. Thierry-Mieg, and F. Legond-Aubry. “dmcG:
a Distributed Symbolic Model Checker Based on GreatSPN”. In:
28th International Conference on Petri Nets and Other Models of
Concurrency (ICATPN 2007). Lecture Notes in Computer Science
(LNCS). INT LIP6 MoVe. Siedlce, Poland: Springer-Verlag, June
2007, pp. 495–504 (cit. on p. 86).

[Ham09] A. Hamez. “Generation efficace de grands espaces d’etats”. PhD the-
sis. Paris, France: Universite Pierre et Marie Curie, 2009 (cit. on
pp. 24, 32, 35, 86).

[Hen+04] M. Hendriks, G. Behrmann, K. Larsen, P. Niebert, and F. Vaan-
drager. “Adding Symmetry Reduction to Uppaal”. In: Formal Mod-
eling and Analysis of Timed Systems: First International Workshop,
FORMATS 2003. Springer Berlin Heidelberg, 2004, pp. 46–59 (cit.
on pp. 50, 65).

[Her+03] H. Hermanns, M. Kwiatkowska, G. Norman, D. Parker, and M. Siegle.
“On the use of MTBDDs for performability analysis and verification
of stochastic systems”. In: The Journal of Logic and Algebraic Pro-
gramming 56.1 (2003), pp. 23 –67. ISSN: 1567-8326 (cit. on p. 8).

[HIK04] S. Haddad, J.-M. Ilié, and K. Klai. “Design and Evaluation of a Sym-
bolic and Abstraction-based Model Checker”. In: Proceedings of the
2nd International Symposium on Automated Technology for Verifi-
cation and Analysis (ATVA’04). Vol. 3299. LNCS. National Taiwan
University, Taiwan: Springer, Oct. 2004, pp. 198–210 (cit. on pp. 38,
42, 44).

[HMP92] T. A. Henzinger, Z. Manna, and A. Pnueli. “What good are digi-
tal clocks?” In: Automata, Languages and Programming. Springer,
1992, pp. 545–558 (cit. on p. 77).

[Hol97] G. J. Holzmann. “The model checker SPIN”. In: IEEE Transactions
on Software Engineering 23 (1997), pp. 279–295 (cit. on pp. 28, 59,
77).

BIBLIOGRAPHY 97

[Hon+12] S. Hong, F. Kordon, E. Paviot-Adet, and S. Evangelista. “Computing
a Hierarchical Static Order for Decision Diagram-Based Represen-
tation from P/T Nets”. In: Trans. Petri Nets and Other Models of
Concurrency 5 (2012), pp. 121–140 (cit. on p. 15).

[Hos11] S. Hostettler. “High-level Petri net model checking : the symbolic
way”. PhD thesis. Genève, Suisse: Universite de Genève, 2011 (cit.
on p. 14).

[HP00] K. Havelund and T. Pressburger. “Model Checking JAVA Programs
using JAVA PathFinder”. In: STTT 2.4 (2000), pp. 366–381 (cit. on
p. 86).

[HPV02] H. Hansen, W. Penczek, and A. Valmari. “Stuttering-Insensitive Au-
tomata for On-the-fly Detection of Livelock Properties”. In: Pro-
ceedings of the 7th International ERCIM Workshop in Formal Meth-
ods for Industrial Critical Systems (FMICS’02). Vol. 66(2). ENTCS.
Málaga, Spain: Elsevier, July 2002 (cit. on p. 37).

[HST09] M. Heiner, M. Schwarick, and A. Tovchigrechko. “DSSZ-MC –
A Tool for Symbolic Analysis of Extended Petri Nets”. In: Appli-
cations and Theory of Petri Nets: 30th International Conference,
PETRI NETS 2009, Paris, France, June 22-26, 2009. Proceedings.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 323–332
(cit. on pp. 14, 58).

[HTMK08] A. Hamez, Y. Thierry-Mieg, and F. Kordon. “Hierarchical Set De-
cision Diagrams and Automatic Saturation”. In: Applications and
Theory of Petri Nets (ICATPN). LNCS 5062. 2008 (cit. on pp. 24,
67, 72, 86).

[HTMK09] A. Hamez, Y. Thierry-Mieg, and F. Kordon. “Building Efficient Model
Checkers using Hierarchical Set Decision Diagrams and Automatic
Saturation”. In: Fundamenta Informaticae 94.3-4 (2009), pp. 413–
437 (cit. on pp. 24, 61, 67).

[INH96] H. Iwashita, T. Nakata, and F. Hirose. “CTL model checking based
on forward state traversal”. In: Computer-Aided Design (ICCAD).
IEEE/ACM. 1996, pp. 82–87 (cit. on p. 76).

[JK07] T. Junttila and P. Kaski. “Engineering an Efficient Canonical La-
beling Tool for Large and Sparse Graphs”. In: Proceedings of the
Meeting on Algorithm Engineering & Expermiments. Society for In-
dustrial and Applied Mathematics, 2007, pp. 135–149 (cit. on p. 54).

[Jun03] T. Junttila. “On the Symmetry Reduction Method for Petri Nets and
similar formalisms”. PhD thesis. Espoo, Finland: Helsinki Univer-
sity of Technology, 2003 (cit. on pp. 47–50).

BIBLIOGRAPHY 98

[KP08] K. Klai and D. Poitrenaud. “MC-SOG: An LTL Model Checker
Based on Symbolic Observation Graphs”. In: Application and The-
ory of Petri Nets (ICATPN). LNCS. Springer-Verlag, 2008, pp. 288–
306 (cit. on pp. 38, 42, 76).

[KPR98] Y. Kesten, A. Pnueli, and L. on Raviv. “Algorithmic Verification of
Linear Temporal Logic Specifications”. In: Proceedins of the 5th In-
ternational Colloquium on Automata, Languages, and Programming
(ICALP’98). Vol. 1443. LNCS. Springer-Verlag, 1998, pp. 1–16 (cit.
on p. 38).

[KV97] R. Kaivola and A. Valmari. “The Weakest Compositional Semantic
Equivalence Preserving Nexttime-less Linear temporal Logic”. In:
Proc. of CONCUR’92. Vol. 630. LNCS. Springer, 1997, pp. 207–
221 (cit. on p. 37).

[LA04] C. Lattner and V. Adve. “LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation”. In: Proceedings of
the 2004 International Symposium on Code Generation and Opti-
mization (CGO’04). Palo Alto, California, 2004 (cit. on p. 68).

[LB15] E. Lopez Bobeda. “Symbolic Model-checking with Set Rewriting”.
PhD thesis. Genève, Suisse: Universite de Genève, 2015 (cit. on
pp. 14, 33, 35).

[LBCB14] E. López Bóbeda, M. Colange, and D. Buchs. “StrataGEM: A Generic
Petri Net Verification Framework”. In: Petri Nets. Vol. 8489. LNCS.
Springer, 2014, pp. 364–373 (cit. on pp. 14, 33).

[Ler09] X. Leroy. “Formal verification of a realistic compiler”. In: Commu-
nications of the ACM 52.7 (2009), pp. 107–115 (cit. on p. 4).

[Lin09] A. Linard. “Sémantique paramétrable des Diagrammes de Décision
: une démarche vers l’unification”. PhD thesis. Université Pierre &
Marie Curie, EDITE, 2009 (cit. on p. 8).

[LL95] F. Laroussinie and K. G. Larsen. “Compositional Model Checking
of Real Time Systems”. In: CONCUR. Vol. 962. LNCS. Springer,
1995, pp. 27–41 (cit. on pp. 60, 64).

[MC99] A. S. Miner and G. Ciardo. “Efficient Reachability Set Generation
and Storage Using Decision Diagrams”. In: ICATPN. Vol. 1639.
LNCS. Springer, 1999, pp. 6–25 (cit. on p. 8).

[Min06] A. Miné. “The Octagon Abstract Domain”. In: Higher Order Sym-
bol. Comput. 19.1 (Mar. 2006), pp. 31–100. ISSN: 1388-3690 (cit.
on p. 5).

[MLR08] M. Magnin, D. Lime, and O. H. Roux. “Symbolic state space of
Stopwatch Petri nets with discrete-time semantics”. In: ICATPN.
Vol. 5062. LNCS. 2008, pp. 307–326 (cit. on p. 78).

BIBLIOGRAPHY 99

[MT00] N. Medvidovic and R. N. Taylor. “A Classification and Comparison
Framework for Software Architecture Description Languages”. In:
IEEE Trans. Software Eng. 26.1 (2000), pp. 70–93 (cit. on p. 61).

[NID96] C. Norris Ip and D. Dill. “Better verification through symmetry”.
In: Formal methods in system design 9.1 (1996), pp. 41–75 (cit. on
pp. 47, 50, 65).

[PAV14] S. Pinchinat, M. Acher, and D. Vojtisek. “Towards Synthesis of At-
tack Trees for Supporting Computer-Aided Risk Analysis”. In: Work-
shop on Formal Methods in the Development of Software (co-located
with SEFM). 2014 (cit. on p. 83).

[Pel07] R. Pelánek. “BEEM: Benchmarks for Explicit Model Checkers”. In:
Model Checking Software, 14th Int’l SPIN Workshop. Vol. 4595.
LNCS. Springer, 2007, pp. 263–267 (cit. on p. 33).

[Pop06] L. Popova. “Time Petri Nets State Space Reduction using Dynamic
Programming”. In: Journal of Control and Cynernetics 35.3 (2006),
pp. 721–748 (cit. on p. 78).

[Ran+95] R. K. Ranjan, A. Aziz, R. K. Brayton, B. Plessier, and C. Pixley. “Ef-
ficient BDD Algorithms for FSM Synthesis and Verification”. In: In
IEEE/ACM Proceedings International Workshop on Logic Synthe-
sis, Lake Tahoe (NV. 1995 (cit. on p. 19).

[Rat+03] A. V. Ratzer, L. Wells, H. M. Lassen, M. Laursen, J. F. Qvortrup, M.
S. Stissing, M. Westergaard, S. Christensen, and K. Jensen. “CPN
Tools for Editing, Simulating, and Analysing Coloured Petri Nets”.
In: Proceedings of the 24th International Conference on Applica-
tions and Theory of Petri Nets. ICATPN’03. Eindhoven, The Nether-
lands: Springer-Verlag, 2003, pp. 450–462. ISBN: 3-540-40334-5
(cit. on p. 58).

[RCP95] O. Roig, J. Cortadella, and E. Pastor. “Verification of asynchronous
circuits by BDD-based model checking of Petri nets”. In: 16th In-
ternational Conference on the Application and Theory of Petri Nets.
Vol. 815. 1995, pp. 374–391 (cit. on pp. 23, 26).

[Sch03] K. Schmidt. “Distributed Verification with LoLA”. In: Fundam. In-
form. 54.2-3 (2003), pp. 253–262 (cit. on p. 58).

[Sim71] C. Sims. “Computation with permutation groups”. In: Proceedings
of the second ACM symposium on Symbolic and algebraic manipu-
lation. ACM. 1971, pp. 23–28 (cit. on pp. 47, 54).

[Som05] F. Somenzi. CUDD: CU Decision Diagram Package (release 2.4.1),
http://vlsi.colorado.edu/fabio/CUDD/cuddIntro.
html. 2005 (cit. on p. 23).

http://vlsi.colorado.edu/fabio/CUDD/cuddIntro.html
http://vlsi.colorado.edu/fabio/CUDD/cuddIntro.html

BIBLIOGRAPHY 100

[SRB02] F. Somenzi, K. Ravi, and R. Bloem. “Analysis of Symbolic SCC
Hull Algorithms”. In: Proc. of FMCAD’02 (FMCAD’02). Vol. 2517.
LNCS. Springer, 2002, pp. 88–105 (cit. on pp. 38, 43, 76).

[STC98] M. Silva, E. Terue, and J. M. Colom. “Linear algebraic and linear
programming techniques for the analysis of place/transition net sys-
tems”. In: Lectures on Petri Nets I: Basic Models. Springer Berlin
Heidelberg, 1998, pp. 309–373 (cit. on p. 5).

[Ste+09] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF:
Eclipse Modeling Framework 2.0. 2nd. Addison-Wesley Professional,
2009. ISBN: 0321331885 (cit. on pp. 72, 77).

[STV05] R. Sebastiani, S. Tonetta, and M. Y. Vardi. “Symbolic Systems, Ex-
plicit Properties: on Hybrid Approches for LTL Symbolic Model
Checking”. In: Proceedings of 17th International Conference on Com-
puter Aided Verification (CAV’05). Vol. 3576. LNCS. Edinburgh,
Scotland, UK: Springer, July 2005, pp. 350–363 (cit. on p. 38).

[TH08] Y. Thierry-Mieg and L. Hillah. “UML behavioral consistency check-
ing using instantiable Petri nets”. In: ISSE 4.3 (2008), pp. 293–300
(cit. on pp. 61, 82).

[TM+09] Y. Thierry-Mieg, D. Poitrenaud, A. Hamez, and F. Kordon. “Hier-
archical set decision diagrams and regular models”. In: Tools and
Algorithms for the Construction and Analysis of Systems (TACAS)
5505 (2009), pp. 1–15 (cit. on pp. 61, 65, 66, 83).

[TM+11] Y. Thierry-Mieg, B. Bérard, F. Kordon, D. Lime, and O. H. Roux.
“Compositional Analysis of Discrete Time Petri nets”. In: 1st work-
shop on Petri Nets Compositions (CompoNet 2011). Vol. 726. CEUR,
2011, pp. 17–31 (cit. on pp. 62, 63, 67, 80).

[TMDM03] Y. Thierry-Mieg, C. Dutheillet, and I. Mounier. “Automatic Sym-
metry Detection in Well-Formed Nets”. In: Proc. of ICATPN 2003.
Vol. 2679. LNCS. Springer Verlag, June 2003, pp. 82–101 (cit. on
p. 55).

[TMIP04a] Y. Thierry-Mieg, J.-M. Ilié, and D. Poitrenaud. “A Symbolic Sym-
bolic State Space”. In: Proc. of the 24th IFIP WG 6.1 Int. Conf. on
Formal Techniques for Networked and Distributed Systems (FORTE’04).
Vol. 3235. LNCS. Madrid, Spain: Springer, 2004, pp. 276–291 (cit.
on pp. 50, 51).

[TMIP04b] Y. Thierry-Mieg, J.-M. Ilié, and D. Poitrenaud. “A Symbolic Sym-
bolic State Space Representation”. In: Formal Techniques for Net-
worked and Distributed Systems – FORTE 2004: 24th IFIP WG 6.1.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 276–291
(cit. on p. 67).

BIBLIOGRAPHY 101

[Var96] M. Y. Vardi. “An Automata-Theoretic Approach to Linear Tempo-
ral Logic”. In: Proceedings of the 8th Banff Higher Order Workshop
(Banff’94). Vol. 1043. LNCS. Banff, Alberta, Canada: Springer-Verlag,
1996, pp. 238–266. ISBN: 3-540-60915-6 (cit. on p. 37).

[Vit+04] V. Vittorini, M. Iacono, N. Mazzocca, and G. Franceschinis. “The
OsMoSys approach to multi-formalism modeling of systems”. In:
Software and System Modeling 3.1 (2004), pp. 68–81 (cit. on p. 60).

[Voe+13] M. Voelter, S. Benz, C. Dietrich, B. Engelmann, M. Helander, L.
C. L. Kats, E. Visser, and G. Wachsmuth. DSL Engineering - De-
signing, Implementing and Using Domain-Specific Languages. dsl-
book.org, 2013, pp. 1–558. ISBN: 978-1-4812-1858-0 (cit. on pp. 59,
76).

[Wan04] F. Wang. “Formal Verification of Timed Systems: A Survey and Per-
spective”. In: IEEE 92.8 (2004) (cit. on p. 13).

[Zha+10] Y. Zhang, B. Bérard, F. Kordon, and Y. Thierry-Mieg. “Automated
Controllability and Synthesis with Hierarchical Set Decision Dia-
grams”. In: Workshop on Discrete Event Systems (WODES). Berlin,
Germany: IFAC/Elsevier, Sept. 2010, pp. 291–296 (cit. on pp. 76,
86).

[Zha+14] Y. Zhang, B. Bérard, L. M. Hillah, F. Kordon, and Y. Thierry-Mieg.
“Controllability for Discrete Event Systems Modeled in VeriJ”. In:
International Journal of Critical Computer-Based Systems 5.3/4 (Sept.
2014), pp. 218–240. ISSN: 1757-8779 (cit. on p. 86).

[Zha13] Y. Zhang. “Semi-Automatic Controller Design in a Java-like Lan-
guage”. PhD thesis. Paris, France: Universite Pierre et Marie Curie,
2013 (cit. on pp. 86, 88).

	Introduction
	A Symbolic Kernel
	I Hierarchical Set Decision Diagrams
	I.1 Decision Diagrams for Symbolic Model-Checking
	I.1.1 Introduction
	I.1.2 Binary Decision Diagram
	I.1.3 Data Decision Diagrams

	I.2 Hierarchical Set Decision Diagrams
	I.2.1 Intuition
	I.2.2 SDD Definition

	I.3 Evaluation
	I.3.1 Hierarchy Helps
	I.3.2 Exponential Examples

	I.4 Conclusion

	II Homomorphisms as Symbolic Transitions
	II.1 Symbolic Transition Relation
	II.1.1 Introduction
	II.1.2 Homomorphisms as Transition Relations
	II.1.3 Available Homomorphisms

	II.2 Automatic Saturation
	II.2.1 Computing a least fixpoint
	II.2.2 Intuition
	II.2.3 Rewriting Least Fixpoint to Saturation

	II.3 Symbolic Evaluation of Expressions
	II.3.1 Arrays and Arithmetic in a Symbolic Setting
	II.3.2 Intuition
	II.3.3 Expressions : Definition
	II.3.4 Expressions : Equivalence Relation
	II.3.5 Evaluating expressions on DDD

	II.4 Evaluation
	II.5 Conclusion

	B Symbolic Model-Checking Algorithms
	III Self-Loop Aggregation Product : SLAP
	III.1 LTL model-checking
	III.2 Context and Definitions
	III.2.1 Boolean Formulas
	III.2.2 Kripke Structure
	III.2.3 TGBA

	III.3 Self-Loop Aggregation Product (SLAP)
	III.3.1 Intuition
	III.3.2 Definition

	III.4 Evaluation
	III.5 Conclusion

	IV Symbolic Symbolic Model-Checking
	IV.1 Quotient Graph
	IV.2 Context and Definitions
	IV.2.1 Symmetry Groups of a Transition System
	IV.2.2 Quotient Graph
	IV.2.3 Explicit Quotient Graph Algorithm

	IV.3 Symbolic Symbolic State Space
	IV.3.1 Intuition
	IV.3.2 Assumptions
	IV.3.3 Symbolic Symbolic algorithm
	IV.3.4 Illustrative example.

	IV.4 Evaluation
	IV.5 Conclusion

	C A Domain Specific Language for Concurrent Semantics
	V Instantiable Transition Systems and Guarded Action Language
	V.1 A Language Based Front-end
	V.2 Instantiable Transition Systems
	V.2.1 Context
	V.2.2 Intuition
	V.2.3 ITS Type and Instance
	V.2.4 Composite ITS
	V.2.5 Scalar ITS

	V.3 Guarded Action Language
	V.3.1 Context
	V.3.2 Intuition
	V.3.3 GAL definition
	V.3.4 Parametric GAL

	V.4 Evaluation
	V.5 Conclusion

	VI Applications and Case Studies
	VI.1 A Multi-Formalism Model-Checker
	VI.1.1 Symbolic Kernel
	VI.1.2 Model-checking
	VI.1.3 Model transformations

	VI.2 Modeling Discrete Time
	VI.2.1 Time Petri nets
	VI.2.2 Encoding TPN into GAL
	VI.2.3 Examples

	VI.3 Case studies
	VI.4 Evaluation
	VI.5 Conclusion

	D General Conclusion
	VII Conclusion and Perspectives
	VII.1 Conclusion
	VII.2 Perspectives

