Database Systems

Yann Thierry-Mieg

Outline

- 1. Introduction
- 2. SQL : a Simple Query Language
- 3. Data integrity
- 4. PL/SQL : Programming Language / SQL
- 5. Database Design
- 6. Organization and Administration of a RDBMS (Oracle)

Bibliography

- Books
 - Bases de données Objet et relationnel de Georges Gardarin (Edition Eyrolles)
- Web:
 - http://www-inf.int-evry evry.fr/COURS/BD/accueilext.html .(modèle relationnel, SQL, Conception Entité-Association)
 - http://esesa1.supelec.fr/www/yb/poly_bd/sql/tdm_sql.ht ml (language SQL)
 - http://cui.unige.ch/~nerima/index_bd.html (modèle relationnel, SQL, Conception Entité-Association)

Bibliography

- Eric Cestari's course at ECE 05-06 : http://www.ece.fr/~cestari/
- Jortiz course : cs.utsa.edu/~jortiz

1. Introduction

Definition

- Database : structured data
 - recorded with minimal redundancy
 - to simultaneously satisfy multiple users
 - in a selective manner
 - with fast response time
- Data storage
 - using a permanent media
- Data administration
 - Data Base Management System (DBMS)

Data Base Management System

- A DBMS is a software set that allows to search, update and save data on secondary storage
- Serves as additional layer between OS and user

users DBMS	OS	Disk
------------	----	------

DBMS

- A DBMS ensures
 - data description
 - **search** and **update** of data
 - safety : check user access rights, limit unauthorized access, crypt of sensitive information
 - security : saving and restoring data, limit impact of manipulation errors
 - integrity : define rules to maintain data integrity (depends on the nature of data stored)
 - concurrency : detect and offer resolution mechanisms for simultaneous/concurrent data access (transactions...)

Why Use a DBMS?

Suppose we need to build a university information system. How do we

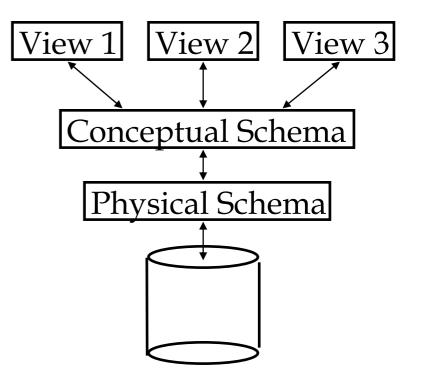
- store the data? (use file structures...)
- query the data? (write programs...)
- Update data safely? (more programs...)
- provide different views on the same data? (registrar versus students) (more prog...)
- deal with crashes? (more prog...)

Way too complicated! Go buy a DBMS!

DBMS

- Application Domain :
 - Knowledge base
 - Expert systems
 - Geographical Information System
 - Accounting and management
 - Digital content management
 - Genome projects

- ...


- Any domain in which (large amounts) of structured data need to be manipulated
- The actual DBMS system used depends on the application and its needs

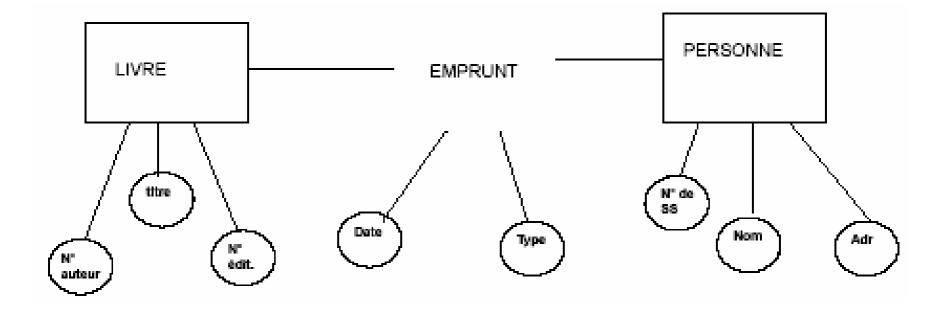
Data Description

- Three levels of description are distinguished:
 - External level (most abstract)
 - views on a database for instance
 - Conceptual schema
 - data structures of DBMS, basic types, access rights..
 - Physical schema
 - data storage media, file system, indexes...

Abstract levels of DB Schema

- Views describe how users see the data.
- Conceptual schema defines logical structure using a data model
- Physical schema describes the files and indices used.

Physical Schema


• Specifies how the data is physically stored (disk, tape storage...). The physical data model defines how the data is organized

• e.g. data files (name, size, data organization)

Conceptual schema

- Describes data **independently of physical storage** constraints
 - Elementary data types
 - e.g. book title, author name, ...
 - Composite data types
 - e.g. book, person
 - Data associations between composite types
 - e.g. a book is borowed by a person
 - Some data integrity rules
 - e.g. a person may not borrow more than 3 documents ...

An example conceptual description

External Level

- Most abstract description level
- Contains **views**, which may be specific to a single user or user group, and only presents a partial view of the conceptual level
- Many views of a single database schema may coexist

History of DBMS

• Three main evolutions, each has its own data model

- Hierarchical and network systems
- Relational DBMS (90 % of DBMS today)
 - Oracle, DB2, MySQL, ...
- Object-Oriented DBMS

Hierarchical and Networked Systems

- Hierarchical system (1960)
 - First generation DBMS
 - extension of file system with inter-file links (pointers)
 - Data stored in a tree
 - Access to a data is determined by traversing the tree

Hierarchical and Networked Systems

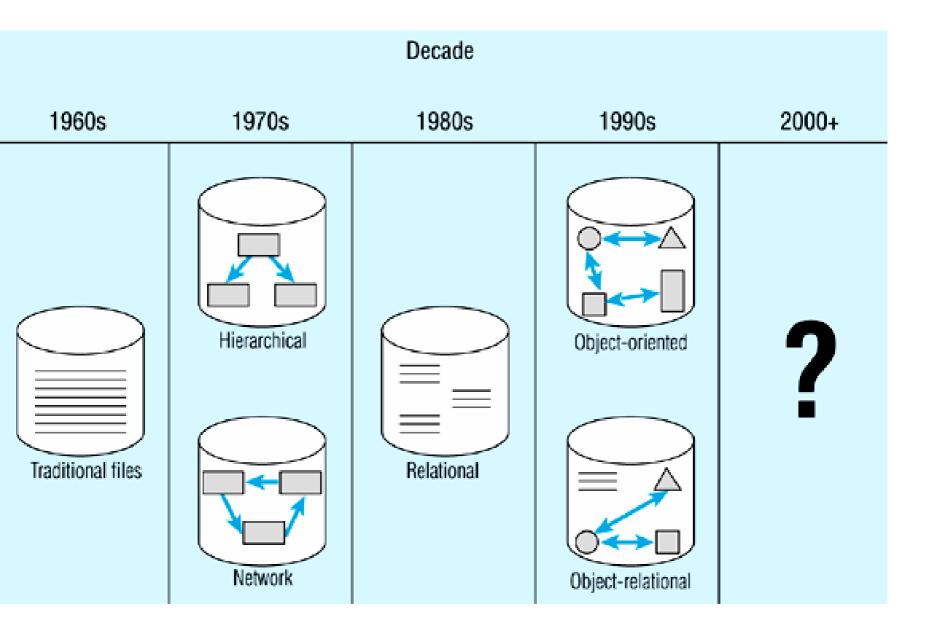
- Networked system (1970)
 - Same prinicples as hierarchical DBM
 - Data stored in a more general graph instead of a tree
 - Access to a data is determined by traversing the graph and following pointers

Relational DBMS

- Second generation DBM
- Based on relations <=> set theory
- Vast majority of DBM today (Oracle, DB2,...)
 - '70 : relational model is defined
 - '80 : first commercial RDBMS
 - '90 : Over 50% of DBMs based on relational
- Supports very large data sets, very efficiently

Relational DBMS

- RDBMS are based on **relational theory**
- Data represented as **TABLES** composed of **ROWS** and **COLUMNS**


BOOK	
BOOK_ID	TITLE
8399	"Tom
	Sawyer"
1664	"Lord of
	the Rings"

PERSON	
PERS_ID	NAME
A1234	"John
	Smith"
E3456	"J. F.
	Kennedy"

Object-Oriented DBMS

- O-O DBMS are based on the object model ('90s)
- Pro :
 - flexibility of schema definition
 - efficiency of cross indexing
- Con :
 - Object loading less efficient
 - poor commercial support

Figure 1-12 Evolution of database technologies

RDBMS

- Basic Concepts
 - Relational model due to Codd 1970
- Definition :
 - A **domain** is a set of values
- e.g:
 - integer domain
 - string of length 25 domain

Relational basic concepts

- Definition
 - A relation is a subset of a Cartesian product of domains, characterized by it's name
- Example
 - let Country={China, USA, France} and Money={dollar, yuan, euro, florin} be two domains

CURRENCY	
COUNTRY_NAME	MONEY_NAME
China	Yuan
France	Euro
USA	dollar

Relational Schema

- Definition
 - an attribute of a relation is one of it's columns, characterized by a domain and a name
- e.g. COUNTRY_NAME:COUNTRY
- Definition:
 - A relational schema is noted by the relation name, followed by the definition of it's attributes in the form NAME:DOMAIN
- R(A1:D1,A2:D2,....An:Dn)

Key and Unicity

- Definition :
 - a subset of a relation's attributes (columns) is a KEY for a relation if it allows to uniquely identify a row of the relation
 - In other wortds, for any two rows of a relation, the columns forming the key have distinct values
- Any relation has at least one KEY = PRIMARY KEY
 - at worst, use all columns of the relation
 - usually, choose a minimal key, such that if you remove one element from the key, the unicity property is violated

Key Unicity

- Examples :
 - PERSON(<u>ss_num</u>, name, address, birth_date)
 - GRADE(<u>student_id, course_id</u>, grade)
 - note that this means a student may not have more than one grade for a given course !!