RDBMS

Relational Algebra

Relational algebra

- Operands: relations (tables)
- Closure: the result of any operation is another relation
- Complete: all combinations of operators allowed
- Unary operators (single operand): sélection (noté σ), projection (π)
- Binary operators:

Cartesian product (\times), join (\bowtie), union (\cup), intersection (\cap), set difference (-), division (/)

Outline

- For each of these 8 operators:
- the operation
- syntax (notation)
- semantics (expected result)
- schema
- some annotation
- an example

Selection

- Goal: only select some tuples (lines) of a relation

Country

name	capital	population	surface
Austria	Vienna	8	83
UK	London	56	244
Switz.	Berne	7	41

We wish to select only countries with a small surface :
small-country $=\sigma$ [surface $<100]$ Country

small-Country name	capital	population surface	
Austria	Vienna	8	83
"Un	Lornu'ul	50	244
Switz.	Berne	7	41

Projection

- Goal: only keep some attributes (columns) of a relation

Country

name	capital	population	surface
Austria	Vienna	8	83
UK	London	56	244
Switz.	Berne	7	41

We only want to keep name and capital attributes :

$$
\text { capitals }=\pi \text { [name, capital] Country }
$$

capitals
name
Austria
UK
Switz.
capital
Vienna
London
Berne

Side-effect of projection

- Elimination of repeated tuples
- A projection that does not preserve the primary key of a relation may produce identical tuples in its result
- The result will only contain one instance of the tuple
- In SQL, this is not the default behavior, use DISTINCT keyword to force this behavior

R (B,C, D)
$\pi(\mathrm{B}, \mathrm{C}) \mathrm{R}$

three tuples
two tuples

Selection-projection

- We want the capitals of smalls Country:
- small-Country = σ [surface < 100] Country
- capitals $=\pi$ [name, capital] small-Country
capital-small-Country =
π [name, capital] σ [surface <100] Country

name	capital	population	surface
Ireland	Dublin	3	70
Austria	Vienna	8	83
UK	London	56	244
Switz.	Berne	7	41

(grey and beige parts eliminated)

Cartesian product \times

- Goal: construct all combinations of tuples of two relations (usually before a selection)
- syntax : R $\times \mathrm{S}$
- example :

$R \times S$	A	B	C		D	E
	a	b	c		d	e
	a	b	b			b
	a	b	a		a	c
	b	c	c		d	e
	b	c	b		a	b
	b	c	$\begin{aligned} & a \\ & c \end{aligned}$		d	e
	c	b	b		a	b
	c	b	a		a	c

$\mathrm{n} \times \mathrm{m}$ tuples

Natural join

- Goal: create all significative combinations of the tuples of two relations
- significative = bear the same value for the attribute on which the join is performed
- precondition: the two relations have an attribute of a the same type
- example:

$$
\begin{array}{r}
R \bowtie S \begin{array}{|l|l|l|l|}
\hline A & B & C & D \\
\hline a & b & c & d \\
c & b & c & d \\
\text { R.B }=S . B
\end{array} \\
=9
\end{array}
$$

Union

- binary operator
- syntax: R $\cup S$
- semantics : adds into a single relation the tuples (lines) of R and S
- schema : schema(R $\cup S)=$ schema $(R)=$ schema(S)
- precondition : schema(R) = schema(S)
- example:

R1 | A | B |
| :---: | :---: |
| a | b |
| b | b |
| y | z |

R2 | A | B |
| :---: | :---: |
| \mathbf{u} | v |
| y | z |

Intersection

- binary operator
- syntax : R $\cap \mathrm{S}$
- semantics : selects tuples that belong to both R and S
- schema : schema ($\mathrm{R} \cap \mathrm{S}$) = schema $(\mathrm{R})=$ schema (S)
- precondition : schema (R) = schema (S)
- example :

R1 | A | B |
| :---: | :---: |
| a | b |
| y | z |
| b | b |

R2 | A | B |
| :--- | :--- |
| u | v |
| y | z |

Set Difference

- binary operator
- syntax : R - S
- semantics : selects tuples of R that are not in S
- schema : schema (R - S) = schema (R) = schema (S)
- precondition : schema (R) = schema (S)
- example :

R2 | A | |
| :--- | :--- |
| u | B |
| | v |
| y | z |

R1 - R2 | A | B |
| :---: | :---: |
| a | b |
| b | b |

Division

- Goal: treat requests of the type «the ... such that ALL the. . »
- let R(A1, ..., An) and V(A1, .., Am) with $n>m$ and $A 1, \ldots, A m$ attributes of the same name in R and V
- $R / V=\{<a m+1, a m+2, . .$, an $>/ \forall<a 1, a 2, \ldots, a m>\in V$,

$$
\exists<a 1, a 2, \ldots, a m, a m+1, a m+2, \ldots, a n>\in R\}
$$

- examples: \mathbf{R}

A	B	C
1	1	1
1	2	0
1	2	1
1	3	0
2	1	1
2	3	3
3	1	1
3	2	0
3	2	1

example division

- R

STUDENT	COURSE	PASSED	COURSE	PASSED	STUDENT
Francois	RDB	yes	Prog	yes	Francois
Francois	Prog	yes	RDB	yes	
Jacques	RDB	yes			
Jacques	Math	yes			
Pierre	Prog	yes			
Pierre	RDB	no			

Division

certifications		PILOTE
	APPAREIL	
	Sierra	737
	Sierra	757
	Delta	747
	Delta	750
	Alpha	737
	Alpha	757
	Alpha	747
	Alpha	320
	India	737

certificationsA	PILOTE
	Delta
	Alpha

Division

certifications		PILOTE
	APPAREIL	
	Sierra	737
	Sierra	757
	Delta	747
	Delta	757
	Alpha	737
	Alpha	757
	Alpha	747
	Alpha	320
	India	737

avions	APPAREIL
	737
	757
	747

certificationsA $=$ certifications \div avions

certificationsA	PILOTE
	Sierra
	Alpha

Examples of algebraic requests

- let us consider the following relations :

J ournal (code-j, title, price, type, periodicity)

Depot (no-Depot, name-Depot, adress)

Delivery (no-Depot, code-i, date-deliv, quantity-delivered)

Satisfy these requests :

- What is the price of the journals ?
π [price] J ournal
- Give all known information on weekly journals.
$\sigma[$ periodicity $=$ "weekly"] J ournal
- Give the codes of the journals delivered in Paris.
π [code-j] (σ [adress $=$ "Paris"] Depot \bowtie Delivery)

Satisfy these requests :

- Give the number of the depots that receive several journals.
π [no-Depot]
(σ [code-j \neq code']
(π [no-Depot, code' $] \alpha$ [code-j, code'] Delivery)
$\bowtie \pi[$ no-Depot, code-j] Delivery)
π Note : α [code-j, code'] renames attribute code-j into code'
π Algebraic trees allow to reason on request evaluation order and request optimization

Give the number of the depots that receive several journals :

Delivery

(no-Depot, code-j, date, qty)

α [code-j, code']
$\pi[$ no-Depot, code-j]
$\pi[$ no-Depot, code' $]$
(no-Depot, code-j)

(no-Depot, code')

(no-Depot, code-j, code')
π [no-Depot]
$\sigma\left[\right.$ code $-\mathrm{j} \neq$ code $\left.^{\prime}\right]$
(no-Depot)

