
RDBMS

Relational Algebra

2

Relational algebra

Operands: relations (tables)

Closure: the result of any operation is another relation

Complete: all combinations of operators allowed

Unary operators (single operand):
sélection (noté σ), projection (π)

Binary operators:
Cartesian product (×), join (), union (∪), intersection
(∩), set difference (−), division (/)

3

Outline

For each of these 8 operators:
the operation
syntax (notation)
semantics (expected result)
schema
some annotation
an example

4

Selection σ
Goal: only select some tuples (lines) of a relation

Country name capital population surface
Austria Vienna 8 83
UK London 56 244
Switz. Berne 7 41

We wish to select only countries with a small surface :
small-country = σ [surface < 100] Country

small-Country name capital population surface
Austria Vienna 8 83
UK London 56 244
Switz. Berne 7 41

5

Projection π
Goal: only keep some attributes (columns) of a relation

Country name capital population surface
Austria Vienna 8 83
UK London 56 244
Switz. Berne 7 41

We only want to keep name and capital attributes :

capitals = π [name, capital] Country

capitals name capital population surface
Austria Vienna 8 83
UK London 56 244
Switz. Berne 7 41

6

Side-effect of projection

Elimination of repeated tuples
A projection that does not preserve the primary key of a
relation may produce identical tuples in its result
The result will only contain one instance of the tuple
In SQL, this is not the default behavior, use DISTINCT
keyword to force this behavior

R (B , C, D)

b c d
a a b
a a c

π (B , C) R

b c
a a

three tuples two tuples

7

Selection-projection
We want the capitals of smalls Country:

small-Country = σ [surface < 100] Country

capitals = π [name, capital] small-Country

capital-small-Country =

π [name, capital] σ [surface < 100] Country

name capital population surface

Ireland Dublin 3 70
Austria Vienna 8 83

UK London 56 244
Switz. Berne 7 41

(grey and beige parts eliminated)

8

Cartesian product ×
Goal: construct all combinations of tuples of two
relations (usually before a selection)

syntax : R × S

example :

R A B
a b
b c
c b

S C D E
c d e
b a b
a a c

R × S A B
a b
a b
a b
b c
b c
b c
c b
c b
c b

C D E
c d e
b a b
a a c
c d e
b a b
a a c
c d e
b a b
a a c

n tuples m tuples n x m tuples

9

Natural join
Goal: create all significative combinations of the
tuples of two relations

significative = bear the same value for the attribute on
which the join is performed

precondition: the two relations have an attribute of a
the same type

example :

R A B
a b
b c
c b

S B C D
b c d
a a b
d a c

A
a
c

B C D
b c d
b c d

R S

R.B = S.B

10

Union ∪
binary operator

syntax : R ∪ S

semantics : adds into a single relation the tuples
(lines) of R and S

schema : schema(R ∪ S) = schema(R) = schema(S)

precondition : schema(R) = schema(S)

example :
R1 A B

a b
b b
y z

R2 A B
u v
y z

R1 ∪ R2 A B
a b
b b
y z
u v

11

Intersection ∩
binary operator

syntax : R ∩ S

semantics : selects tuples that belong to both R and S

schema : schema (R ∩ S) = schema (R) = schema (S)

precondition : schema (R) = schema (S)

example :

R1 A B
a b
y z
b b

R2 A B
u v
y z

R1 ∩ R2 A B
y z

12

Set Difference -
binary operator

syntax : R − S

semantics : selects tuples of R that are not in S

schema : schema (R − S) = schema (R) = schema (S)

precondition : schema (R) = schema (S)

example :

R1 A B
a b
y z
b b

R2 A B
u v
y z

R1 − R2 A B
a b
b b

13

Division /
Goal: treat requests of the type «the … such that ALL the…»

let R(A1, …, An) and V(A1, …, Am)
with n>m and A1, …, Am attributes of the same name in R and
V

R/V = { <am+1, am+2, …, an> / ∀<a1, a2, …, am> ∈V,
∃<a1, a2, …, am ,am+1, am+2, …, an> ∈R}

examples : R A B C
1 1 1
1 2 0
1 2 1
1 3 0
2 1 1
2 3 3
3 1 1
3 2 0
3 2 1

V B C
1 1
2 0

B C
1 1

V’’ B C
3 5

R/V A
1
3

V’ R/V’ A
1
2
3

R/V’’ A
/

14

example division

R V R/V

STUDENT COURSE PASSED
Francois RDB yes
Francois Prog yes
Jacques RDB yes

Jacques Math yes

Pierre Prog yes

Pierre RDB no

COURSE PASSED

Prog yes

RDB yes

STUDENT
Francois

15

Division

16

Division

17

Examples of algebraic requests

let us consider the following relations :

Journal (code-j, title, price, type, periodicity)

Depot (no-Depot, name-Depot, adress)

Delivery (no-Depot, code-j, date-deliv, quantity-delivered)

18

Satisfy these requests :

What is the price of the journals ?

π [price] Journal

Give all known information on weekly journals.

σ [periodicity = "weekly"] Journal

Give the codes of the journals delivered in Paris.

π [code-j] (σ [adress = "Paris"] Depot Delivery)

19

Satisfy these requests :

Give the number of the depots that receive several journals.

π [no-Depot]
(σ [code-j ≠ code’]

(π [no-Depot, code’] α [code-j, code’] Delivery)

π [no-Depot, code-j] Delivery)

π Note : α [code-j, code’] renames attribute code-j into code'

π Algebraic trees allow to reason on request evaluation order and
request optimization

20

Give the number of the depots that receive several
journals :

Delivery
(no-Depot, code-j, date, qty)

(no-Depot, code-j)

π [no-Depot, code-j]

(no-Depot, code')

π [no-Depot, code’]

α [code-j, code’]

σ [code-j ≠ code’]

π [no-Depot]
(no-Depot, code-j, code')

(no-Depot)

	RDBMS
	Relational algebra
	Outline
	Selection s
	Projection 
	Side-effect of projection
	Selection-projection
	Cartesian product 
	Natural join
	Union 
	Intersection 
	Set Difference-
	Division/
	example division
	Division
	Division
	Examples of algebraic requests
	Satisfy these requests :
	Satisfy these requests :
	Give the number of the depots that receive several journals :

