
SQL: Interactive Queries (2)

Prof. Weining Zhang
Cs.utsa.edu

Lecture 12 SQL: Interactive Queries (2) 2

Aggregate Functions
Functions that take a set of tuples and
compute an aggregated value.
Five standard functions:

count, min, max, avg, sum
They ignore null values.
Find the total number, the average, minimum,
and maximum GPA of students whose age is 17.
select count(*), avg(GPA), min(GPA), max(GPA)
from Students
where Age = 17

Lecture 12 SQL: Interactive Queries (2) 3

Aggregate Functions (cont.)
Find id and name of students who take 5 or
more courses.
select SID, Name
from Students s
where 5 <= (select count(distinct Cno)

from Enrollment
where SID = s.SID)

Count(distinct Cno) ≠ distinct count(Cno). Why?
Must make sure the subquery generates a value
comparable in the predicate.

Lecture 12 SQL: Interactive Queries (2) 4

Group By Clause
List id and name of students together with the
number of hours still needed to graduate,
assuming 120 hours are required.
select s.SID, Name,

120 - sum(Hours) Hours-Needed
from Students s, Enrollment e, Courses c
where s.SID = e.SID and e.Cno = c.Cno

and Grade <= ‘C’
group by s.SID, Name
Enrolled courses are grouped by students.

Lecture 12 SQL: Interactive Queries (2) 5

Group By Clause (cont.)
Aggregate functions often applied to groups.
One tuple is generated per group
When using group by, select clause can contain
only grouping attributes and aggregate func.
Every grouping attribute must be in the select
clause.The following is an illegal query (why?):

select Age, SID, avg(GPA)
from Students
group by Age

Lecture 12 SQL: Interactive Queries (2) 6

Having Clause
For each student age group with more than 50
members, list the age and the number of
students with that age.
select Age, count(*)
from Students
group by Age
having count(*) > 50

Conditions on aggregate functions are specified
in the having clause.
Select & Having may have different functions.

Lecture 12 SQL: Interactive Queries (2) 7

Order By Clause
List student names in ascending order.

select Name from Students
order by Name asc

The default is ascending order.
List students with GPA higher than 3.5, first in
descending order of GPA, and then in ascending
order of name.

select * from Students
where GPA > 3.5
order by GPA desc, Name asc

Lecture 12 SQL: Interactive Queries (2) 8

Some Complex Queries
Find the average number of CS courses a
student takes.
For non-CS major students who take more CS
courses than he does with his major courses,
and have taken at lease 2 CS courses, list their
id, name, number of CS courses, number of
major courses, sorted first in descending order
of number of CS courses, then in ascending
order of name.

Lecture 12 SQL: Interactive Queries (2) 9

Interactive SQL Summary
A query may have six clauses: select, from,
where, group by, having, order by.
Conceptual evaluation of the query:
1. Evaluate From (cross product)
2. Evaluate Where (selection)
3. Evaluate Group By (form groups)
4. Evaluate Aggregate functions on groups
5. Evaluate Having (choose groups to output)
6. Evaluate Order By (sorting)
7. Evaluate remaining Select (projection)

Lecture 12 SQL: Interactive Queries (2) 10

Interactive SQL Summary (count.)
Many ways to express a query.

Flat queries may be more efficient.
Nested queries may be easier to understand.

Duplicate elimination may be costly.
<> (not equal) at predicate level often gives a
wrong answer. Use set difference, not in, not
exists, etc. instead.
Need to handle null values explicitly.
DBMSs often provide many convenient
functions. But need to check the compatibility.

Lecture 12 SQL: Interactive Queries (2) 11

Expressive Power of SQL
SQL is relational complete.

Can express any relational algebraic query.
SQL is more powerful then relational algebra.

Can express aggregation, ordering,
recursion, etc.

SQL is not computational complete.
Can not do everything a general programming
language can do.

Lecture 12 SQL: Interactive Queries (2) 12

Create Table Re-visited
Can combine table creation with insertion of
tuples using a query.

create table Full-Professors
as select FID, Name, Office

from Faculty
where Rank = ‘Full Professor’

Lecture 12 SQL: Interactive Queries (2) 13

Update By Queries
Relation: Top_Students (SID, Name, GPA)
Insert students with a GPA 3.8 or higher into
the Top_Students table.

insert into Top_Students
select SSN, Name, GPA
from Students where GPA >= 3.8

Delete all students who take no courses.
delete from Students where SID not in

(select SID from Enrollment)

Lecture 12 SQL: Interactive Queries (2) 14

Update Statement
For every student who takes Database I, set
the Grade to ‘A’.

update Enrollment
set Grade = 'A'
where Cno in

(select Cno
from Courses
where Title = ‘Database I')

Lecture 12 SQL: Interactive Queries (2) 15

Truncate vs Delete *
Use delete to remove data and keep the table
storage space.

delete from Departments;
Use truncate to remove data and release table
storage space.

truncate table Departments;

Lecture 12 SQL: Interactive Queries (2) 16

Views
A view is a virtual table (as opposed to stored
base table) defined by a query, directly or
indirectly, on base tables.

create view Top_Students
as select SSN, Name, GPA

from Students
where GPA >= 3.8

A view may be defined in terms of other views.

Lecture 12 SQL: Interactive Queries (2) 17

Views (cont.)
The query in view definition is usually not
executed until the view is queried. Typically, no
data is stored for a view.
A view is queried as if it is a base table.
Find name and GPA of top students whose name
starts with a `K'.
select Name, GPA
from Top_Students
where Name like 'K%'

Lecture 12 SQL: Interactive Queries (2) 18

Query Modification
Queries on a view are translated into queries
on base tables by folding the view.
Previous query is translated first into:
select Name, GPA
from (select SSN, Name, GPA

from Students where GPA >= 3.8)
where Name like 'K%‘

Then into
select Name, GPA from Students
where GPA >= 3.8 and Name like 'K%'

Lecture 12 SQL: Interactive Queries (2) 19

Why Use Views?
Data independence: keep existing application
programs from changes of base table schemas.
Access control: provide a mechanism for hiding
sensitive data from certain users.
Productivity improvement: make user queries
easier to express.

Lecture 12 SQL: Interactive Queries (2) 20

Example of Using Views
Consider following base tables and a view:
Students (SID, Name, Birthday, GPA, Phone)
Emrollment(SID, Cno, Grade)
Courses(Cno, Title, Hours, Dept)

create view Student-Course
as select SID, Name, Age(Birthday) Age, GPA,

c.Cno, Title
from Students s, Enrollment e, Courses c
where s.SID=e.SID and e.Cno = c.Cno

Lecture 12 SQL: Interactive Queries (2) 21

Example of Using Views (cont.)
Data independence: Applications using the view
are not affected if Age is stored or derived.
Access control: Phone and Birthday of students
are hidden from users.
Productivity improvement: “Find all courses
taken by a given student” is much simpler:

select Cno, Title
from Student_Course
where SID = X

Lecture 12 SQL: Interactive Queries (2) 22

Views and Updates
What should happen if a user changes the data
in the Student-Course view?
insert into Student-Course
values (1234, ‘Dave Hall’, 32, 3.15, ‘CS334’, ‘B’)

A view can not be updated if
Contains group by and aggregate functions
Involves multiple tables

A single-table view can be updated if it
contains a key of the table

Lecture 12 SQL: Interactive Queries (2) 23

View Update Example *
Which student should be deleted?
create view Age_distribution
as select Age, count(*) TotalNo

from Students group by Age
update Age_distribution
set TotalNo = TotalNo – 1 where Age = 20
Which base relation should be changed?
delete from Student_Course
where SID = '1234'

Lecture 12 SQL: Interactive Queries (2) 24

Maintaining Materialized Views
One may want to materialize a view (i.e., run
its definition query and store the result) as is
commonly done in industry (data warehouse).
(Why?)
View Maintenance: How to maintain the
consistency between a view and its base tables,
when base tables are updated?
Incremental View Maintenance: How to
maintain a view without re-computing the entire
view?

