
1

SQL: Advanced topics

Prof. Weining Zhang
Cs.utsa.edu

Lecture 12 SQL: Interactive Queries (2) 2

Assertions
Constraints defined over multiple tables.
No student is allowed to take more than six
courses.

SQL> create assertion Course_Constraint
check (not exists

(select * from Students s
where 6 < (select count(*)

from Enrollment
where SID = s.SID)));

2

Lecture 12 SQL: Interactive Queries (2) 3

Recursion
Examples of Recursive Queries.

Ancestors
Relation: ParentOf(Parent, Child)
Query: Find all of Mary's ancestors

Company hierarchy
Relations: Employee(ID, Salary)

Manager(MgrID, EmpID)
Project(Name, MgrID)

Query: What's the total salary cost of
project "X“

Lecture 12 SQL: Interactive Queries (2) 4

With Statement
with R1 as (query),

...,
Rn as (query)

<query involving R1, ..., Rn & other relations>
Conceptual Evaluation

Compute R1, ..., Rn into temporary relations
Evaluate the query
Destroy R1, ..., Rn

Can also specify schema for Ri's:
with R1(A1, A2, ..., Am) as (query), ...

3

Lecture 12 SQL: Interactive Queries (2) 5

Example of With
Relation: Apply(ID, Name, Location, Date)
with DL as(select ID, Date from Apply

where Location = ‘Dallas’),
HO as (select ID, Date from Apply

where Location = ‘Houston’)
select ID, DL.Date DLdate, HO.Date HOdate
from DL, HO where DL.ID = HO.ID

Just like "temporary view definitions".
The Ri's can be recursive or mutually recursive
- Must use keyword recursive
- Usually need to union base case & recursion

Lecture 12 SQL: Interactive Queries (2) 6

Recursion in SQL
Find Mary's ancestors from ParentOf relation.
with recursive Ancestor(Anc, Desc) as
((select Parent Anc, Child Desc from ParentOf)
union
(select A.Anc Anc, P.Child Desc
from Ancestor A, ParentOf P
where A.Desc = P.Parent))

select Anc from Ancestor where Desc = ‘Mary’
Ancestor = ParentOf
Repeat Ancestor = Ancestor joins ParentOf
Until no more changes to Ancestor

4

Lecture 12 SQL: Interactive Queries (2) 7

Restrictions & Features
Only support “linear recursion”: each from-
clause can have at most one recursively defined
relation.
With relations can be defined as views. Not
evaluated until being queried (Why useful?).
Can define “mutual recursion”: two recursive
relations mutually define each other.

Lecture 12 SQL: Interactive Queries (2) 8

Commit and Rollback
Changes to data in a user session may not be
visible to other users immediately (why?)
Use commit to make changes made by insert,
delete and update permanent and visible to
other users.
Use rollback to undo uncommitted changes
made by insert, delete and update.
Normal exit performs a commit.
Abnormal exit performs a rollback.
Used for transaction processing (more later).

5

Lecture 12 SQL: Interactive Queries (2) 9

Grant Statement
The owner of a table can grant privileges of
access to the table to other users.
Syntax: grant {all | privilege {, privilege} on

table_name | view_name
to {public | user_name {, user_name} }
[with grant option]

Privileges: select | delete | insert |
update [column_name {, column_name ...}] |
references [column_name {, column_name ...}]

Lecture 12 SQL: Interactive Queries (2) 10

Sample Grant Statements
Grant select and insert access to Students
table to users john and terry.
grant select, insert on Students to john, terry
Grant all privileges to user john.
grant all on Students to john
Allow all user to update Age and GPA.
grant update (Age, GPA) on Students to public
Allow user john to create a foreign key to
referencing SID.
grant references (SID) on Students to john

6

Lecture 12 SQL: Interactive Queries (2) 11

Features of Grant
The owner of a table has all privileges.
Public includes current and future users.
If columns are not named, all current and
future columns are implied.
To grant privileges on a view, one must be the
owner of the view and have the privileges on all
base tables used to define the view.
With grant option allows the grantee to grant
the privileges transitively.

Lecture 12 SQL: Interactive Queries (2) 12

Roles
A role is a named group of privileges that can
be granted to users.
Used to ease the task of granting privileges.

create role TA;
grant create table, create view to TA;
grant TA to Wang, Johnson;

7

Lecture 12 SQL: Interactive Queries (2) 13

Create External Schema *
Create a view and grant privileges to a group of
intended users.
Allow John the select and insert access only to
SID, Name and Age of students with GPA
higher than 3.8.

create view Stud1
as select SID, Name, Age

from Students where GPA > 3.8
grant select, insert on Stud1 to john

Lecture 12 SQL: Interactive Queries (2) 14

Revoke Statement
Revoke granted privileges on DB objects.
Syntax:
revoke {all | privilege {, privilege ...} }
on table_name | view_name
from {public | user_name {, user_name ...}}
Owner's privileges can not be revoked.
Revoke all privileges of John on Students.

revoke all on Students from john

8

Lecture 12 SQL: Interactive Queries (2) 15

Sequence in Oracle SQL
An Oracle object for generating a sequence of
integer values. Often used to generate unique
key values.
Syntax of create sequence:
create sequence sequence_name
[increment by integer]
[start with integer]
[maxvalue integer | nomaxvalue]
[minvalue integer | nominvalue]
[cycle | nocycle]

Lecture 12 SQL: Interactive Queries (2) 16

Sample Sequences
create sequence emp_seq start with 1000;
create sequence even_seq

increment by 2 start with 2 maxvalue 2000;
create sequence negative_seq

increment by -1 start with -1;
Default increment value is 1.
Default start value for positive (negative)
increment value is minvalue = 1 (maxvalue).
With cycle specified, the integers between
minvalue and maxvalue will be recycled

9

Lecture 12 SQL: Interactive Queries (2) 17

Use Sequences
Two functions for sequence seq:

seq.currval returns the current value of seq.
seq.nextval returns the next value of seq.

insert into Employees(Emp_no, Name,Age)
values (emp_seq.nextval, ‘John’, 22);

nextval must be used at least once before using
currval.

Lecture 12 SQL: Interactive Queries (2) 18

Oracle SQL*Loader
sqlldr (SQL*Loader) is a Unix command (in
CSLab) to load data into an Oracle table from a
Unix text file.
Requires two files:

control file (with extension .ctl)
data file (with extension .dat)

Usage: sqlldr userid/passwd control=foo.ctl
Other options: direct (direct load), skip (skip
n lines), load (load m lines)
Will generate .log .bad files.

10

Lecture 12 SQL: Interactive Queries (2) 19

A Sample Control File
The control file is pub.ctl for Publishers table.

load data
infile 'pub.dat’ into table publishers
fields terminated by ","
(pub_id, pub_name, city, state)

It expects an empty table.
Other options: append into, replace into.

Lecture 12 SQL: Interactive Queries (2) 20

A Sample Data File
The data file is pub.dat.

0736,New Age Books,Boston,MA
0877,Binnet & Hardley,Washington,DC
1111,stone Age BooAo,Boston,MA
1389,Algodata Infosystems,Berkeley,CA
2222,Harley % adkfj,Wash,DC
3333,adfadh adfhj,Berkey,CA

Other formats of control and data files are
also supported.

