
1

Embedded SQL

John Ortiz

Lecture 15 Embedded SQL 2

Why Isn’t Interactive SQL Enough?
How to do this using interactive SQL?

Print a well-formatted transcript of a
student with either a name or an id

What does it take for someone to use SQL?
To know schemas, syntax, semantics,
mathematics, logic, …
Solution?
Write application programs to help naïve users
to manipulate the data.
How to access database from within a
program?

2

Lecture 15 Embedded SQL 3

Idea of Embedded SQL
Combine the power of both SQL & a general
purpose programming language.

Use (embedded) SQL to perform data
retrieval and updates.
Use the general purpose programming
language (host PL) to perform more
complex data processing and to provide a
friendly user interface.

Lecture 15 Embedded SQL 4

Oracle API
Support embedded SQL through five host PLs
(pro*languages)
C/C++, Cobol, PL/I, Ada, Pascal

Oracle8i supports Java/JDBC and SQLJ
SQL stmts are placed in host PL programs
Data flow from database to program variables
and vice versa
Two step compilation:

Precompilation: prog.pc → prog.cc
Compilation: prog.cc → prog.o

3

Lecture 15 Embedded SQL 5

A Sample Pro*C/C++ Program
The program is sample1.pc
Common tasks:

Declare variables interfacing SQL & host PL
Prepare for any SQL error

Include sqlca (communication area)
Use whenever sqlerror, …
Provide for error processing

Connect to database
Issue SQL statements
Disconnect the database

Lecture 15 Embedded SQL 6

Embedded SQL Statements
Every SQL statement is preceded by exec sql
Can use all SQL statements plus special ones.

Connect, disconnect
Whenever
Select … into … from …
Rollback
Commit
Statements declare and use cursors
Statements define and execute dynamic
queries

4

Lecture 15 Embedded SQL 7

Sample Program Using A Cursor
How does a program handle query result
containing more than one tuple?
Use a cursor. See sample2.pc
A cursor is a “window” through which one tuple
can be accessed.
A cursor must be declared with a query
Open cursor executes the query
Fetch cursor moves to the next tuple
A cursor can be closed and re-opened

Lecture 15 Embedded SQL 8

Dynamic SQL
Create SQL statements at run time and then
execute the newly created statements.
General framework:

Declare a host string variable.
Place an SQL statement in the variable at
run-time.
Let the DBMS parse & execute the SQL
statement in the host variable.

5

Lecture 15 Embedded SQL 9

Pro*C/C++ and PL/SQL
On Oracle, Pro*C/C++ programs may contain
any SQL statement and PL/SQL blocks.
See this sample program
Precompiled and stored PL/SQL procedures
and functions can be used directly in
embedded SQL statement

exec sql execute p(…)

Lecture 15 Embedded SQL 10

Oracle JDBC
JDBC (Java Database Connectivity): API
that allows Java applications and applets to
connect to Oracle databases, send SQL
statements, and receive data from
databases.
Need to set up CLASSPATH environment
variable.
See QueryUnivDB.java

6

Lecture 15 Embedded SQL 11

JDBC: Program Tasks
Import Java SQL API library
Load JDBC driver: Class.forName(…)
Create a DB connection
DriveManager.getConnection(<connect string>)
Create a query statement object
Create a result object by executing the query
Process the result
Close the query
Close the connection

Lecture 15 Embedded SQL 12

Oracle SQLJ
Java with embedded SQL (prec. w/ #sql)
Part of the new SQL 1999 Standard.
Much easier to use:

Connect to database
Create iterators for query results

Oracle8i only supports JDK1.1
Need two compilation steps:

sqlj file[.sqlj]
javac file.java

See QueryUnivDB.sqlj

7

Lecture 15 Embedded SQL 13

Embedded SQL Summary
Many additional statements handling
communication between database and PL
system
Special handling of multiple tuple result
(cursor)
Must handle errors and exceptions generated
by DBMS
Must pay special attention to program
structure (goto, whenever not found,…)
JDBC & SQLJ have much better DB-PL
interface

