A School Case Study

EXERCISE 1 :

1. Start the sqlplus interaction.

Connect using ssh to one of these unix machines :

bootybay	astranaar
brill	auberdine
darkshire	bloodhoof
goldshire	crossroads
ironforge	darnassus
kargath	dolanaar
kharanos	feathermoon
menethil	gadgetzan
southshore	orgrimmar
stonard	ratchet
stormwind	senjin
undercity	thunderbluff

Then follow these instructions :

http://perso.efrei.fr/~bernardi/oracle.html

Essentially, from the shell type : \$\$> \$\$>. /opt/oracle/oracle.env \$\$> sqlplus login@sgbd Your password = login is your usual efrei account name.

2. Test these commands : run them and try to understand what is happening.

⇒⇒ First contact with SQL/Oracle : useful functions you should know about

SELECT **RPAD**('Soleil',17,'bla') "RPAD exemple" FROM **DUAL**;

SELECT **LPAD**('DESS EID',15,'*.') "LPAD exemple" FROM DUAL;

1

SELECT **SUBSTR**('DESS EID',6,3) "SUBSTR exemple" FROM DUAL; SELECT SUBSTR('ABCDEFGHIJ',-5,4) "SUBSTR exemple" FROM DUAL;

SELECT TO_CHAR (SYSDATE, 'MM-DD-YYYY HH24:MI:SS') "Now" FROM DUAL;

SELECT LENGTH('WEB WAREHOUSE') "Longueur en caractères" FROM DUAL;

SELECT **ROUND**(17.0958,1) "ROUND exemple" FROM DUAL; SELECT ROUND(17.58,2) "ROUND exemple" FROM DUAL;

SELECT **TRUNC**(1958.0917,1) "TRUNC exemple" FROM DUAL; SELECT TRUNC(1958.0917,2) "TRUNC exemple" FROM DUAL;

SELECT ROUND(TO_DATE('17-SEP-2002'), 'YEAR') "New Year" FROM DUAL;

SELECT EXTRACT(YEAR FROM SYSDATE) FROM DUAL;

SELECT ADD_MONTHS(SYSDATE,7) FROM DUAL;

SELECT TRUNC(MONTHS_BETWEEN(SYSDATE, TO_DATE('19-JUN-2001'))) AS AGEBB FROM DUAL;

SELECT TO_NUMBER(TO_CHAR(SYSDATE, 'YYYY')) FROM DUAL;

First run the School creation script, then try these commands :

SELECT **DECODE**(YEAR, 1, 'First', 2, 'Second', 'Value not 1 or 2 !!') AS STUDY_YEAR FROM STUDENTS;

SELECT **UPPER**(NAME) FROM STUDENTS;

SELECT LOWER(NAME) FROM STUDENTS;

SELECT **NVL**(SPECIALTY, 'Null value detected') FROM FACULTY; SELECT **NVL**(SPECIALTY, 'Null value detected ') AS SPEC_FACULTY FROM FACULTY;

If you need to change the date format (default depends on locale settings) :

ALTER SESSION SET NLS_DATE_FORMAT = 'DD-MM-YYYY';

3. Test these instructions :

⇒ ⇒ **Discovering the Oracle dictionnary**

show user ;

select * from all_users;
pause

desc user_tables ;
select table_name from user_tables;
pause

column table_name **heading** NAME_de_l_utilisateur select table_name from user_tables;

pause

column object_name format a30
set pages 30
select object_name, object_type from user_objects order by object_type;
pause

desc user_constraints; column constraint_name format a30 select constraint_name from user_constraints where table_name='&matable';

EXERCISE 2 :

Let us consider the Engineering School case study. The following conceptual schema describes the database using entity-relationship notation (sorry about the naming in French):

2. The corresponding relational schema is described below :

STUDENTS(**SID**, NAME, FIRSTNAME, BIRTH_DATE, WEIGHT, YEAR) COURSE(**CID**, NAME, HOURS, YEAR) FACULTY(**FID**, NAME, SPECIALTY, DATE_HIRE, LAST_RAISE, BASE_SALARY, CURRENT_SALARY) ACTIVITY (**LEVEL,NAME**, TEAM) RESULTS(**SID, CID**, POINTS) OFFER(**FID, CID**) PRACTICE(**SID, LEVEL, NAME**)

Schéma relationnel de la BD Ecole

The SQL table creation **script**, automatically generated using a IDE tool such as PowerAMC is given here :

 \Rightarrow The tables that correspond to entities (rectangles in the diagram) are the following :

CREATE TABLE STUDENTS

(SID	NUMB	ER(4)	NOT N	ULL,
	NAME		VARCHAR2(2	5)	NOT NULL,
	FIRSTNAME		VARCHAR2(25	5)	NOT NULL,
	BIRTH_DATE	DATE		NOT N	ULL,
	WEIGHT		NUMB	ER,	
	YEAR		NUMBER,		

F. BOUFARES; Université Paris 13; 2002/2003

4

CONSTRAINT PK_STUDENTS PRIMARY KEY (SID));

CREATE TABLE COURSE

(CID NUMBER(2) NOT NULL, NAME VARCHAR(20) NOT NULL, HOURS NUMBER(2), ANNE NUMBER(1), CONSTRAINT PK_COURSE PRIMARY KEY (CID));

CREATE TABLE FACULTY

FID NUMBER(4) NOT NULL, (NAME VARCHAR2(25) NOT NULL, SPECIALTY VARCHAR2(20), DATE_ENTRÉE DATE, LAST RAISE DATE, BASE SALARYNUMBER, CURRENT_SALARY NUMBER, CONSTRAINT PK_FACULTY PRIMARY KEY (FID));

CREATE TABLE ACTIVITY

 (
 LEVEL
 NUMBER(1)
 NOT NULL,

 NAME
 VARCHAR2(20)
 NOT NULL,

 TEAM
 VARCHAR2(32),

 CONSTRAINT PK_ACTIVITY PRIMARY KEY (LEVEL, NAME)

);

⇔ The tables corresponding to relationships (ellipse in diagram) are the following :

CREAT (TE TABLE RESU SID CID POINTS CONSTRAINT	ULTS NUMBER(4) NUMBER(4) NUMBER, SPK_RESULTS PRIMA	NOT NULL, NOT NULL, RY KEY (SID, CID));
CREAT (TE TABLE OFFE NUM_PRO CID CONSTRAINT	R NUMBER(4) NUMBER(4) PK_OFFER PRIMARY K	NOT NULL, NOT NULL, XEY (CID, FID));	
CREAT (TE TABLE PRAC SID LEVEL NAME CONSTRAINT	CTICE NUMBER(4) NUMBER(1) VARCHAR2(20 PK_PRACTICE PRIMAR	NOT NULL, NOT NULL, 0) NOT NULL, RY KEY (SID, LEVEL, N	AME));
⇔⇔⊵	S Atten	tion : The foreign l	key constraints are	defined separately here !!!
ALTER TABLE RESULTS ADD CONSTRAINT FK_RESULTAT_STUDENTS FOREIGN KEY (SID) REFERENCES STUDENTS (SID) ;				
ALTER TABLE RESULTS ADD CONSTRAINT FK_RESULTAT_COURSE FOREIGN KEY (CID) REFERENCES COURSE (CID) ;				
ALTER TABLE OFFER ADD CONSTRAINT FK_OFFER_COURSE FOREIGN KEY (CID) REFERENCES COURSE (CID) ;				
ALTER TABLE OFFER ADD CONSTRAINT FK_OFFER_FACULTY FOREIGN KEY (FID) REFERENCES FACULTY (FID) ;				
ALTER TABLE PRACTICE ADD CONSTRAINT FK_ACTIVITE_STUDENTS FOREIGN KEY (SID) REFERENCES STUDENTS (SID) ;				
ALTER TABLE PRACTICE ADD CONSTRAINT FK_ACTIVITEPR_ACTIVITE FOREIGN KEY (NAME, LEVEL) REFERENCES ACTIVITY (NAME, LEVEL) ;				
Data insertion is done using : INSERT INTO table (attributs) VALUES (values) :				
	HIGHNI IIII		values),	

To validate your work : COMMIT;

To undo your actions since the last commit :

ROLLBACK ;

Please execute the command : set autocommit on

This executes a commit after each successful instruction, and prevents overloading the server when the whole class is working on the same database.

6

- 2.1. Run the table creation script. (file create_school.sql)
- 2.2. List the structure of table STUDENTS and list its contents.

2.3. Modify the structure of table STUDENTS.

Add the attributes :

ZipCode : a 5 digit number type, and Town a string of maximum 20 characters

2.4. Update the address of students SID 1, 2, 5 et 7 (respectively) with the following data :

75013 ; paris 93800 ; EPINAY / seine 93800 ; EPINAY SUR SEINE 91000 ; EPINAY / ORGE

2.5. Create a new table CITIES with the following schema : CITIES (<u>ZipCode</u>, CITY_NAME)

Define the constraint « A city name should be upper case ».

2.6. Fill this CITIES with correct data :

Warning : EPINAY / seine is a different string than EPINAY SUR SEINE

ZIPCODE	CITY_NAME
75001	PARIS
75013	PARIS
93800	EPINAY SUR SEINE
93430	Villetaneuse
	Remark : This line should provoke a constraint
	violation error !!!
91000	EPINAY SUR ORGE
Etc	

INSERT INTO CITIES (ZIPCODE, CITY_NAME) VALUES (75001, 'PARIS'); INSERT INTO CITIES (ZIPCODE, CITY_NAME) VALUES (75013, 'PARIS');

2.7. Update table STUDENTS. Use a single request to do so. Display the updated contents.

UPDATE Table1 SET AttribToUpdate = (SELECT Attribute FROM Table2 WHERE JoinCondition);

3. Query the database to obtain the following information :

- 1- Obtain the list (NAME, firstname , birth date) of all students.
- 2- Obtainall information available about activities.
- 3- Obtain the list of specialties from faculty.
- 4- Obtain the NAME and firstname of students that weigh less than 45 kilos and enrolled in first year or of students in second year.
- 5- Obtain the NAME of students who weigh between **60 and 80 kilos**.
- 6- Obtain the NAME of FACULTY whose specialty is 'poésie' or SQL.
- 7- Obtain the NAME of students whose NAME starts by 'L'.
- 8- Obtain the NAME of FACULTY whose specialty is unknown.
- 9- Obtain the NAME and firstname of students that weigh less then 45 kilos and enrolled in first year.
- 10- Obtain, for each FACULTY, his NAME and his specialty. If the specialty is unknown, display the string: '****'.
- 11- What are the names and firstnames of students the practice **surf at LEVEL 1.** Write this request in 5 different ways.
- 12- Obtain the NAME of students in team AMC INDUS.
- 13- Obtain the pair of faculty names that have the same specialty.
- 14- For each faculty specialized in **sql**, obtain the NAME, the current <u>monthly</u> salary, and his raise per month with respect to his base salary.
- 15- Obtain the NAME of FACULTY whose raise with respect to the base salary exceeds 25%.
- 16- Display the points **Tsuno** has obtained in each course using a total out of **100 rather than out of 20.**
- 17- Obtain the average weight of students in first year.
- 18- Obtain the total points of student of sid 3.
- 19- Obtain the smallest and larget result points of student Brisefer.
- 20- Obtain the number of students enroled in second year.
- 21- What is the average monthly raise of salary of FACULTY specialized in SQL ?
- 22- Obtain the year of FACULTY Pucette's last raise.
- 23- For each FACULTY, display the hire date, his last raise year and the number of years between these two dates.
- 24- Display the average age of students. This average should be displayed as an integer.
- 25- Display the NAME of FACULTY for whom 50 months at least separate the hire date and the last raise date.
- 26- Obtain the list of students who will be 24 within the next 4 months (24 is wrong, adapt the request to obtain some results).
- 27- Obtain a list of students in alphabetical name order.
- 28- Display in decreasing order the points obtained by student Tsuno, with totals out of 100 rather than 20.
- 29- Obtain for each first year student his name and his average points.
- 30- Obtain the average points of students in first year whose total points is at least 40.
- 31- Obtain the student who has the best total points.
- 32- Obtain the NAME of students who play in team AMC INDUS.
- 33- Find the first year students whose average points is superior to the global average of students in first year.
- 34-Obtain the NAME and weight of first year students heavier than all second year student.
- 35-Obtain the NAME and weight of first year students heavier than at least one second year student.
- 36-Obtain the NAME of FACULTY that do not offer course of cid 1.

- 37-Obtain the NAME of first year students that obtained an average of at least 60% and that play tennis.
- 38-list FACULTY who OFFER all COURSE of second year ; we ask for FID and name.
- 39- Students that practice all activities. We ask for SID and name.

Remark : Request 38 requires a division ; an answer is given here to serve as template for other division queries. You can also try the oracle specific DIVIDE sql keyword.

TTITLE ' FACULTY who OFFER all COURSE of second year '

SELECT FID, NAME FROM FACULTY WHERE **NOT EXISTS** (SELECT * FROM COURSE WHERE YEAR = 2 AND **NOT EXISTS** (SELECT * FROM OFFER WHERE FACULTY.FID = OFFER.FID AND OFFER.CID = COURSE.CID));

Note that you can create views to help you answer complex queries :

CREATE OR REPLACE VIEW view_name (attributes if you want to rename them) AS (SELECT etc FROM ...);

4. Create an index to improve performance Create an index over student name.

CREATE INDEX NDXSTUDENTS ON STUDENTS (NAME ASC);

5. Test using :

SET TIMING ON & SET TIMING OFF