
Yann Thierry-Mieg, LIP6, 2010 EFREI-Advanced UML

M1 SIA : Lab Session 3 2008/09

ChessFighter
A company offering a Web site dedicated to the game of Chess (articles, tutorials, …) wishes
to build an application to compare computer chess artificial intelligences (AI). The AI will be
connected to the ChessFighter application through a specific API. ChessFighter determines
the winner of each game and computes the ratings of the Ais, using ELO rules not detailed
here.

Chess is a game for two players, designated as White and Black. The game is played on a
square chequered chessboard with 64 squares arranged in an eight-by-eight grid. At the start,
each player (one controlling the white pieces, the other controlling the black pieces) controls
sixteen pieces: one king, one queen, two rooks, two knights, two bishops, and eight pawns.
The object of the game is to checkmate the opponent's king, whereby the king is under
immediate attack (in "check") and there is no way to remove it from attack on the next move.

Each piece has specific rules governing its possible movements which will not be detailed
here. The game is finished when one player checkmates his opponent (victory), when a draw
situation is reached (draw), or when one of the players abandons (opponent victory). A draw
can also be proposed to the opponent, who can accept it or continue playing.

A game is started by configuring two virtual players that should implement a software
interface that needs to be designed. Players then alternate playing by notifying Chessfighter of
their moves. A move is described through two coordinates giving the start and end position,
e.g. “e2-e4”. The start cell should contain a piece of the player’s colour. The move should be
legal according to specific movement rules that depend on the piece (see question 4).

Question 1 (5 point)
Preliminary design has identified three main components in the application :

• A component « rating » whose role is to rate players according to their victories,
defeats and tied games. It records in a persistent manner the results of past games. It

Noir

Blanc

A game of chess : Black King e8 ; White King e1 ; White Pawn c3

http://en.wikipedia.org/wiki/Chessboard�
http://en.wikipedia.org/wiki/Chess_piece�
http://en.wikipedia.org/wiki/King_(chess)�
http://en.wikipedia.org/wiki/Queen_(chess)�
http://en.wikipedia.org/wiki/Rook_(chess)�
http://en.wikipedia.org/wiki/Knight_(chess)�
http://en.wikipedia.org/wiki/Bishop_(chess)�
http://en.wikipedia.org/wiki/Pawn_(chess)�
http://en.wikipedia.org/wiki/Checkmate�
http://en.wikipedia.org/wiki/Check_(chess)�

Yann Thierry-Mieg, LIP6, 2010 EFREI-Advanced UML

can be queried to know the rating of a player, his statistics… But this query interface
will not be detailed in this subject.

• A component « player » that represents an AI playing games. It can be notified of the
start or end of a game. During a game it is notified each time the opponent plays, and
provides in return his own move.

• A « referee » component, instantiated once per game. It checks that the moves
proposed by the « player » components are legal, otherwise moves are not validated.
The same player should then play again. When the move is valid, the opposing player
is informed of the move. It also controls the position of the pieces, and announces any
« check », « check mate » or particular win situation (End of clock time, tie
situations…) when they happen. Finally it informs the rating component of the game
outcome.

a) (2,5 pt) The following interfaces have been proposed by a group of students :

void notifierDébut (Couleur coul, IJoueur adversaire)
bool jouerCoup (Couleur coulJoueur, Position src, Position dest)
IDJoueur getID()

<<interface>>
IJoueur

void DébuterPartie (IJoueur blanc, IJoueur noir, IClassement cl)
void détecterFin (Couleur vainqueur, Raison r)
void notifierCoupAdverse(Position src, Position dest, bool isEchec)
void notifierIssuePartie (IDJoueur blanc, IDjoueur noir, Raison r, Couleur vainqueur)

<<interface>>
IArbitre

void stockerIssuePartie (IDJoueur blanc, IDjoueur noir, Raison r, Couleur vainqueur)

<<interface>>
IClassement

stocke l’issue des parties

Position : un couple
ligne/colonne
par exemple: [‘e’,2]

Raison : un enum
MAT, PAT, PENDULE

Another group of students propose instead this set of interfaces :

Yann Thierry-Mieg, LIP6, 2010 EFREI-Advanced UML

void notifierDébut(Couleur coul, IArbitre arbitre)
void notifierFin (Couleur vainqueur, Raison r)
void notifierCoupAdverse(Position src, Position dest, bool isEchec)
IDJoueur getID()

<<interface>>
IJoueur

Raison : un enum
MAT, PAT, PENDULE

void DébuterPartie (IJoueur blanc, IJoueur noir, IClassement c)
bool jouerCoup (Couleur coulJoueur, Position src, Position dest)

<<interface>>
IArbitre

La fonction principale : joueur de couleur
coulJoueur joue le coup src->dest
Rends false si coup illégal.

void notifierIssuePartie (IDJoueur blanc, IDjoueur noir, Raison r, Couleur vainqueur)

IClassement
stocke l’issue des parties

Unfortunately, some students missed the course and have gotten things severely upside
down.
Which design is correct? Explain why and criticize the incorrect design.

b) Build a sequence diagram that shows these components interacting in a typical nominal
game situation. Try to exhibit all the operations defined.
c) Give a component diagram showing the required and provided interfaces of the three
components.
c) Represent a possible component instanciation in a game opposing « Deep Blue » to
« Simply Red ».

Question 2 (3 point)
a) (2 pt)
Define a class diagram allowing to represent the state of a game in the referee component :
game situation, player turn…
Detail all attributes (precise types) and relationships (navigability, cardinality,
composition/aggregations…).
Operations of these classes need not be represented in this question.
b) (1 pt)
Give the links that exist between these classes and the interfaces of question 1.

Question 3 (4 point)
The game of chess, particularly online, is often limited in length by a game clock. The clock
limits the amount of time available to play moves. A game clock consists of two adjacent
decrementing clocks and allows to stop one clock while starting the other, such that the two
component clocks never run simultaneously. The purpose is to keep track of the total time
each player takes for his own moves. When a player’s clock reaches 0, he loses the game. The
game duration can be configured when setting up the game, and is usually less than 10
minutes per player. Of course, the game can also finish normally before the clock runs out.

Yann Thierry-Mieg, LIP6, 2010 EFREI-Advanced UML

This behaviour will be integrated in the referee component. The “StartGame” (DébuterPartie)
operation will now take as additional parameters the initial clock values (cf. Q1)
We provide a Clock and an interface IClockListener, already implemented in a separate
project. The Clock manages a game clock, i.e. with separate time accounting for each player.

The existing Clock component is described by the following class diagram.

void initialiser (int tempsBlanc, int tempsNoir)
void coupJoué()
void addListener (IClockListener cl)

Clock exprimés en secondes, le temps alloué à chaque joueur.
Le temps ne commence à s’écouler que quand le premier
coup est joué.

Indique qu’on a joué un coup:
* si c’est le premier coup joué depuis l’initialisation, le temps de
«blanc» commence à s’écouler.
* Ensuite chaque appel à cette opération bloque l’écoulement
de la pendule du joueur courant at active celui de l’adversaire.

Permet de s’abonner à la réception de
notifications de fin de temps de pendule.

void notifyFinTemps (Couleur coul)

<<interface>>
IClockListener Signale que la pendule du joueur de couleur

« coul » est arrivée à expiration

a) (1 pt) Which Design Pattern do you recognize here ? Describe briefly its usefulness.
b) (1 pt) Explain how to use this existing Clock by integrating it into the diagram of

Question 2.
c) (2 pts) Show through some sequence diagrams how the interaction between the Clock and
the ClockListener happens. Represent one lifeline for the Clock and one for the
IClockListener. Represent:

c.1) The startup phase, with 5 minutes per player.
c.2) The interaction when a player has played a valid move.
c.3) What happens when a clock reaches 0.

Question 4 (4 point)
Analysis phase has identified the following Validation test :
Test TV2 : End of game on Clock timeout.
Context : A game has been started with 1 minute per player. Cf. TV1, to be executed before
this test.
Input : white’s move :« e2-e4 »
Scenario :
1. White plays the move « e2-e4 ».
2. We wait for one minute, without touching the GUI.
Expected result : ChessFighter announces White victory
Verification Means : use a manual chronometer outside the application.
We wish to set up some integration level tests to ensure the good behavior of the referee.
To this end, we wish to implement a minimal « cork » class, allowing to run an integration
test on the referee component that corresponds to this validation test.

a) (1 pt) Which interfaces must the cork class implement to represent the environment as
seen from the referee’s point of view ?

b) (3 pts) Explain how to implement this integration test by proposing an implementation
of the cork class operations. Use java or pseudo-code.

	ChessFighter
	Question 1 (5 point)
	Question 2 (3 point)
	Question 3 (4 point)
	Question 4 (4 point)

