Galaxy

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 1 of 105

Galaxy ’ R

Galaxy : Developpement collaboratif de systemes complexes

selon une approche guidée par les modeles

Deliverable D2.1: Collaborative Unit Definition

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 2 of 105

Galaxy R
NAME PARTNER DATE
WRITTEN BY J. Robin LIP6
X. Blanc LIP6
REVIEWED BY Y. Bernard Airbus
F. Racaru Akka
B. Coulette IRIT
P. Vlaeminck, Softeam
F. Reynaud Softeam

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 3 of 105

Galaxy R
<Title> PROJECT: GALAXY ARPEGE 2009

REFERENCE: DX.X
<subtitle> DATE: 25/02/2010

ISSUE: X.X
RECORD OF REVISIONS
ISSUE DATE EFFECT ON REASONS FOR REVISION

PAGE PARA

01A Création du document

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 4 of 105

Galaxy

<Titie> PROJECT: GALAXY

REFERENCE: DX.X
<subtitle>
ISSUE: XX

ARPEGE 2009

DATE:

25/02/2010

TABLE OF CONTENTS

1. INTRODUCTION

2. APPROACH: MDE AND SEPARATION OF CONCERNS
3. DEFINITION OF THE COLLABORATIVE UNIT
3.1 CLASS NAMED ENTITY

3.2 CLASS GALAXY FRAMEWORK

3.2.1 Definition

3.2.2 Properties

3.3 CLASS PROJECT

3.3.1 Definition

3.3.2 Properties:

3.4 CLASS PARTICIPANT

3.4.1 Definition

3.4.2 Properties:

3.5 ASSOCIATION CLASS COLLAB UNIT
3.5.1 Definition

3.5.2 Properties:

3.5.3 Components

3.5.4 Operations

3.6 ABSTRACT CLASS HISTORY UNIT
3.6.1 Definition

3.6.2 Properties

3.7 ABSTRACT CLASS REVISION UNIT

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

13
16
17
20
20
20
23
23
23
23
23
23
24
24
24
24
25
25
30
30
30

31

Page 5 of 105

Galaxy

<Titie> PROJECT: GALAXY

REFERENCE: DX.X
<subtitle>
ISSUE: XX

ARPEGE 2009

DATE:

25/02/2010

3.7.1 Definition

3.7.2 Properties

3.8 ABSTRACT CLASS ARTIFACT
3.8.1 Definition

3.8.2 Properties

3.8.3 Operations

3.9 ABSTRACT CLASS ATOMIC ARTIFACT
3.10 ABSTRACT CLASS COMPOSITE ARTIFACT
3.10.1 Definition

3.10.2 Properties

3.10.3 Operations

3.11 CLASS COMMIT

3.11.1 Definition

3.11.2 Properties

3.11.3 Operations

3.12 ABSTRACT CLASS AFDIFF
3.12.1 Definition

3.12.2 Properties

3.12.3 Operations

3.13 ABSTRACT CLASS AFACTION
3.13.1 Definition

3.13.2 Operations

3.14 CLASS TAG

3.14.1 Definition

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

31

31

32

32

32

32

33

33

33

33

33

34

34

34

35

35

35

35

36

36

36

36

36

36

Page 6 of 105

Galaxy

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE:

xX.x

ARPEGE 2009

DATE:

25/02/2010

3.14.2 Properties

3.14.3 Operations

3.15 CLASS BRANCH TAG
3.15.1 Definition

3.15.2 Properties

3.15.3 Operations

3.16 CLASS LOCK TAG
3.16.1 Definition

3.16.2 Properties

3.16.3 Operations

4. DEFINITION OF VIEWS AND MODEL FRAGMENTATION MECHANISMS

41 HOW TO STRUCTURE MODEL ELEMENTS AND VIEWS ON THEM FOR REVISION
CONTROL PURPOSES?

42 CLASS MODEL ELT
4.2.1 Definition

4.2.2 Properties

4.2.3 Operations

4.3 CLASS ATTRIBUTE
4.3.1 Definition

4.3.2 Properties

4.3.3 Operations

44 CLASS MODEL REF
4.41 Definition

4.4.2 Properties

4.4.3 Operations

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

36

37

37

37

37

37

37

37

37

37

38

41

41

41

42

42

42

42

42

43

43

43

43

Page 7 of 105

Galaxy

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE:

xX.x

ARPEGE 2009

DATE:

25/02/2010

4.5 CLASS VIEW

4.5.1 Definition

4.5.2 Properties

4.5.3 Operations

46 CLASS METHOD UNIT
4.6.1 Definition

4.6.2 Properties

4.6.3 Operations

4.7 CLASS REUSE UNIT
4.7.1 Definition

4.7.2 Properties

4.7.3 Operations

4.8 CLASS PRODUCT UNIT
4.8.1 Definition

4.8.2 Components

4.8.3 Properties

4.8.4 Operations

44

44

44

44

45

45

45

45

45

45

45

46

46

46

46

47

47

5. ACTIONS TO EXECUTE DURING THE COLLABORATIVE UNIT LIFE CYCLE 47

6. CONTROLLING THE COLLABORATIVE UNIT LIFECYCLE FROM AN MDE

CASE TOOL

6.1 APPROACH: DECOUPLING AND SEPARATION OF CONCERNS
6.2 THE GALAXY QUERY API

6.3 THE GALAXY ADMIN API

6.4 THE GALAXY LOCAL REVISION HISTORY API

6.5 THE GALAXY REVISION NOTIFICATION

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

52
53
53
54
55

55

Page 8 of 105

Galaxy

<Title> PROJECT: GALAXY ARPEGE 2009

REFERENCE: DX.X

<subtitle> DATE: 25/02/2010

ISSUE: X.X

6.6
6.7
7.

7.1

7.2

7.3

7.4

7.5

7.6

7.7
7.8

7.9

9.1
9.2
9.3

9.4

9.4.
9.4.

10.

©Galaxy con sortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

THE GALAXY MODEL REVISION API

THE GALAXY CLASSES REALIZING THE GALAXY APIS

AN EXAMPLE OF COLLABORATIVE UNIT LIFECYCLE

CONFIGURING THE COLLABORATIVE WORKFLOW AMONG GALAXY USERS

STEP 1: BLESSED REPOSITORY GATEKEEPER CREATES FIRST VERSION OF
THE MODEL, PUBLISHES IT AND THE COLLABORATORS CLONE IT

STEP 2: CONFLICT FREE CONCURRENT REVISIONS OF THE MODEL BY
COLLABORATORS

STEPS 3 CONFLICTING CONCURRENT REVISIONS OF THE MODEL BY
COLLABORATORS

STEP 4 BLESSED COLLABORATIVE UNIT GATE KEEPER DELEGATES ERROR
RESOLUTION BY CREATING BRANCHES AND PUBLISHING THEM

STEP 6 ONE COLLABORATOR MERGES DESIGN CHOICES FROM BOTH
BRANCHES INTO ONE, DELETES THE OTHER AND PUBLISHES IT

STEP 7: COLLABORATOR AGREES WITH CHANGES MADE BY THE OTHER
STEP 8 BLESSED COLLABORATIVE UNIT OWNER CREATES RELEASE1.0 |

CONCLUSION ON THE GALAXY FRAMEWORK USAGE SCRIPT

AN EXAMPLE OF MODEL FRAGMENTATION STRATEGY
WHEN IS A STRATEGY SCALABLE?

DEFINITION

THEORETICAL SCALABILITY

PRAGMATIC SCALABILITY

EXAMPLE

1 Theoretical scalability

1 Pragmatically scalability

REFERENCES

55
56
58

59

62

64

68

80

85
87
87
91
91
100
100
101
102
103
103
104

104

Page 9 of 105

Galaxy R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 10 of 105

Galaxy

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE:

xX.x

ARPEGE 2009

DATE:

25/02/2010

TABLE OF APPLICABLE DOCUMENTS

N°

TITLE

REFERENCE

ISSUE

DATE

SOURCE

SIGLUM

NAME

Al

A2

A3

A4

TABLE OF REFERENCED DOCUMENTS

N°

TITLE

REFERENCE

ISSUE

R1

Galaxy glossary

R2

R3

R4

ACRONYMS AND DEFINITIONS

Except if explicitly stated otherwise the definition of all terms and acronyms provided in [R1] is

applicable in this document. If any, additional and/or specific definitions applicable only in this

document are listed in the two tables below.

Acronymes

ACRONYM

DESCRIPTION

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 11 of 105

Galaxy

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X
<subtitle> DATE: 25/02/2010
ISSUE: XX
Definitions
TERMS DESCRIPTION

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 12 of 105

Galaxy ' R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

1. INTRODUCTION

This document presents D2.1,, i.e. the first deliverable of the second work package of the project.
The goal of this deliverable is to provide a general, high-level specification of the concept of

collaborative unit in large scale model-driven software engineer projects.

The in scope of this specification was defined in the deliverable DO0.1.1. (Project Presentation)
which states three main tasks for D2.1.

1. Definition of the model fragmentation mechanism: The management of huge models needs a model
fragmentation mechanism; this mechanism must allow project participants to work only on
small model fragments relevant to their current task, while insuring the consistency of the
overall model from which these fragments are extracted and then merged; section 4 defines
such a mechanism; section 8 presents a concrete example of its application;

2. Definition of user workspace: in the context of model driven collaborative development, each
developer works on its own workspace composed only of model elements that are relevant for
him; section 4 defines the concept of workspace and its relationship with model and model
fragment;

3. Definition of collaborative unit life cycle: a collaborative unit is the data structure that underlies
the storage of model fragments and views; section 3 defines the collaborative unit and its
operations; section 5 and 6 define its life cycle, i.e., how calls to its operations affect its states
and vice-versa; section 7 gives illustrative examples of collaborative units and collaborative uni
lifecycles.

What is meant in practice by the adjective “huge” in the above description was quantitatively

estimated in deliverable D1.1. It mentions models developed by up to 150 collaborators and

comprising up to 1400 distinct entities and 5500 relationships among these entities. D1.1. also
suggests five metrics for collaborative MDE: (a) the persistent storage space requirement for the

model revision history, (b) the message size for the model revision synchronization operations, (c)

the computer processing time for the automated model revision control operations such as commit,

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 13 of 105

Galaxy R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

update or branch, (d) the human processing time for manual model revision control operations such
as semantic conflict resolution and (e) the number of project participants. The relation between the
model size metrics and the collaborative unit scalability metrics is not direct. It involves other
mediating factors. The first is the data format adopted for model persistent storage and update
messages (e.g., XMI [13] files vs. Praxis fact files [4] [15]) which defines how many bytes are needed
to store each model element and model element reference. The second factor is the metamodel(s)
of the modeling language(s) used to represent the model entities and relationships. This
metamodel allows estimating the number of model elements and model element references, per
domain model entity and model element relationship!. The third factor is the number of distinct
views 2 that needs to be maintained for a given model in the galaxy, since each view involves
storing, exchanging and processing additional metadata that stacks on top of model data. The
fourth factor is the number of modification steps registered in the model history executed during
the model development history, since it is the whole model revision history that needs to be stored
and processed by collaborative units, not merely the current state of the model. The fifth factor is
the usage patterns of model revision control operations, defined as the relative frequency of calls to
commit, diff, revert, update, branch, merge, tag, etc.

In addition to potential for scalability, another requirements for the collaborative unit specification
presented in this document precise enough to constitute a well-founded basis for subsequent
project deliverables of WP2 (conceptual model of model-driven collaborative development) and

WP4 (distributed work support prototype) that reuse D2.1 as starting point. Versatility is needed

' A domain entity such as a UML class consists of many domain elements (e.g., its ownedAttributes, its
ownedOperations, its nestedClassifiers, etc.) and many domain references (e.g., the references between the
class and its ownedAttributes, ownedOperations, etc). The same is true for domain relationships such a UML
association which also consists of many domain elements (e.g., its type, memberEnd, ownedEnd etc.,) and
many domain references (e.g., the references between the association and its type, ,its memberEnd,
ownedEnd etc.)

2 View are defined in section 4.5.1.

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 14 of 105

Galaxy ’ R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

to make sure that the proposed concept of collaborative unit will apply to a wide spectrum of large
scale industrial MDE projects. Only then will the Galaxy project makes a significant contribution to
MDE in general, and not merely to one of MDE numerous very specific niches.

To achieve such versatility the collaborative unit concept needs to be sufficiently generic and

abstract so as to as remain independent as possible from specific:

Modeling languages (e.g., UML, SysML, Petri nets, DLSs (Domain Specific Languages);

Model-driven software processes (e.g., RUP[11], KobrA [1]);

Revision control workflow (e.g., centralized with remote commit, centralized with local commit,

decentralized with shared mainline, decentralized with human gatekeeper, decentralized with

hierarchy of human gatekeepers [7], etc.);

- Revision control repository deployment (e.g., unique central server vs. P2P);

— Persistent data structure (e.g., XMI files vs. Praxis action fact files vs. relational DB table vs.

Eclipse Modeling Framework (EMF) [19] objects persistent on Google’s cloud);

The out of the collaborative unit specification was defined in the Project Presentation deliverable

DO0.1.1., which states three main tasks for later tasks in the Galaxy project that take D2.1. as starting

point. D2.1 therefore does not cover the precise definition of the three main point of T2.2, which

are:

- Collaborative Unit Diff: the mechanism that will compute differences between collaborative
units;

- Collaborative Unit Merge: the mechanism that will compute the merging between collaborative
units;

- Balancing the collaboration strategy: means to relax safety collaboration constraints, and to set the
collaboration level regarding safety and flexibility requirements.

D2.1 also does not cover the precise definition of:

- model views which is in the scope of T3.1,;

- the specification of the open and flexible architecture, which is within the scope of T4.1;

- the core API of the Galaxy framework, which is also within the positive scope of T4.1;

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 15 of 105

Galaxy R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

- project participant roles within the process used for a development project, which is within the
scope of T2.3.

- However, with the intent to serve as a rich starting point for these tasks, D2.1 does define
abstract and/or basic versions of these concepts to be elaborated in the appropriate subsequent

project tasks

2. APPROACH: MDE AND SEPARATION OF CONCERNS

Following an MDE approach to the elaboration of the present report, we use UML2 diagrams to
define and illustrate the concept of Collaborative Unit. Each diagram is accompanied by a text in
natural language. This text explains the semantics of the model elements appearing in the diagram
together with the motivation for the particular design that it embodies. Each of the next four
chapters presents and explains a set of class diagram that focuses on a single concern. Section 3
focuses on the concern of persistent data structures and operations to scalably and collaboratively
revises any sort of software artifacts whether following an MDE or code-driven approach. This is
where the concept of collaborative unit is introduced. Section 4 focuses on the concern of defining
model fragments of intermediary grains between, on the one hand, the macro-grain of the whole
project megamodel that integrates all the software project models, and, on the other hand, the
micro-grain of individual model elements, and diagrams?. This section introduces three distinct
types of medium grain fragments: product unit, reuse unit and method unit. Section 5 focuses on
defining a minimal set of primitive model and view revision actions in term of which any model
or view manipulation can be ultimately decomposed. Section 6 focuses on showing how the galaxy
framework data structures defined in the three preceding section allows providing to MDE CASE
tools external revision control services through five simple interfaces. This section introduces the

important concept of revision strategy, which defines how revision actions on model elements and

3 Here and in the rest of the document, we will use the word diagram meaning “the subset of model

elements show in the diagram”, not meaning the visual concrete syntax of these elements in the diagram.

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 16 of 105

Galaxy ’ R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

views executed by a developer in a CASE tool, are to be translated into revision actions on the
product units, reuse units and method units that group these elements and view for scalable
revision control purposes. The definition of a revision strategy for a particular class of projects will
be the key design task of project infra-structure staff to leverage the galaxy framework to
implement the revision control environment of an MDE software project. Section 6 closes the
presentation of the galaxy collaborative unit and framework domain model.

The subsequent sections validate this domain model by presenting an illustrative example of its
use on a script in which three developers collaborate to construct a simple UML class diagram.
Section 7 follows the step-by-step evolution of this diagram in the collaborative units of these three
developers from the construction of its initial version to its freezing as a first preliminary release.
Each step contains the model edition and revision control action sequence executed by each
developer using a CASE tool connected to an instance of the galaxy framework. It thus provides an
external, project artifact developer view of such framework instance. In contrast, section 8 defines
an internal view of the framework relevant to the project infrastructure support staff that will
configure it for a specific project. It defines a simple revision strategy, specific to UML modeling. It
then shows two snapshots of the product unit, reuse unit and method unit data structures that
represent the model and associated diagrams “under the-hood” of a revision control environment,
instance of the Galaxy framework, and which implements the strategy. These two snapshots
respectively correspond to the product, reuse and method unit states before and after one of the
eight revision steps shown in the preceding section. These snapshots are represented by UML
object diagrams.

3. DEFINITION OF THE COLLABORATIVE UNIT

The collaborative unit allows development project participants to collaboratively construct and
revise any artifacts to produce at any phase and step of the project. The PIM of the collaborative

unit that we propose is given in Figure 1. In essence, it is a workspace in a Revision Control System

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 17 of 105

Galaxy ’ R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

(RCS) (see section 3.4 of Galaxy deliverable D1.2 for a definition and review of such systems), since

it must provide the same services:

1. History recording: keeps track of who made which revision to what artifact(s) when and with
what purpose;

2. Revision roll back: allows seamless backtracking to past revisions of any artifact;

3. Branch handling: allows efficient forking and subsequent merging of concurrent development
branches

4. Artifact comparison (often called diff): point out the differences between two artifacts, generally
with respect to a third artifact from which the two being compared independently evolved;

5. Error detection: identify the problematic cases of artifact differences.

The collaborative unit concept corresponds to both the local workspaces of an RCS deployed on
the machine of a project participant, and the centralized workspace of an RCS that serves as
unique reference from which to update the local workspaces and to which commit changes from
local workspaces. We define error as a concept that subsumes both conflicts and inconsistencies. A
conflict occurs when two model fragments, views or artifacts cannot be automatically merged by
the simple union of the nodes and edges from the labeled directed graphs that (respectively)
represent them. This is the case for example if the name of the same model element in both
fragment is different (i.e., incompatible property value) or if an the origin or destination node of an
edge in one fragment has been deleted in another (i.e., a dangling link). A successful automatic

merge may result in a well-formed graph which nonetheless contains some inconsistencies.

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 18 of 105

Page 19 of 105

i IS
=
i IS
N
g8
@ %
S ~
S
o~
a5
SR
SR
< 3
AmgnaId+| 70| AR Ay
<
10 .
= M oL .
S QxR N IS+ Jup
o o= . {pasapic} « jopapyapsodwan : ()auojay
. M T Aayguwol+ . | (Buwg : yiedoy ' Buuyg : ypedwiosy ‘Bullg : fie JanouH
k2 o T (Buwig : pie)jap+
[g . «A{paszpic} . ; (Bug : yrgumop 'Buwg : pye) ppe+
¢ U 5 W mgast == K 208 ya2s0dwo)
g 2) 4
£ B o {passpuc) . é!. o3y - ()auojar Ayonucpy
Y MZISECH 2o 0 auoas . Buwg : yedjeaop| {yuiolsip *®ajdwoa}
ooy ()auojos {pasapic} « | Bugg : P+
= 3+ 2 epUYIWRY
uolia3y J3szaseq Sy 20843y
. 10| wip+]
ea+ n_w \
{pauapuo} et Junuoisnay : ()auojar -—— o UOISINGY 02 :pAALIBP
g o UOISN3.L OB 3 IXAW0D
ueyoog : paBueynhjowas Jpua
ueajoog : paysiqnd+ | =()3as¢-00 353
ueajoog : paBueynAjjesoH Ayhigsic-00 uayy
ue2|00g : PRAPUOI 1 (Be) yo07)40pub 9190 41
UEH00g : 3|qRIMH :aulBe) a0 01R3 10+ pIjeUH+ Hoduy
20unuos 13y N |
y; Joynes+ | Buug : P+ o [1anaas+ | anor
JJomaw el ueajoog : 3|qe:
/ . Bd+ 1B+ | £ | 1B+ o « 1004 : 3|qEIWH-
1) xe|en : Bugg : Josap+
U I e Bunis i paloyy
[o1 | eI [e _ o .
10| oo+ oo.__. 00+ I of B |
| o . Bey : Qauojo+ i - . (mzua D pse v_ov_o___:v
I duggawn : dueg g e007 1 (Buwgg @ |nnoJoy *Buwis : pgie ‘Bulss @ pie pooH
oot oo+ | By = .J:sm.muui (Bumg : |nocy'Budg : pBey’ Busgs : pye)Belagysiqnd+
- 3Se33H (Buug : pnno oy Buug : aueyBe) mau* Bugg : pBe)pjo ‘Buulg : fie)Be) aueuzyysignd+
Bey . v (Buuig : 1nnooy'Bey : B3)BeLysign+
" . w (Buwg : 1N 03" Juie) © 03 ysigne —=
; 0fdugiouc ?osxvcoﬁﬁ e._ES_:”A w“ a pejay : (Bulgg : pye inodjoayar|
) SAUJIALIOY X3 Juwog : augo+ . 3 . Bejyoue.g : (Burgg : Rgouo ‘Buwg : pguoy * Buag : paqBugg : pye Jaseqan |} 0
N BeywooT v (Buwms : g3q "Buwg : pye JoLyoy ms+ | Uibuo+
JaBayy : uoisAa M [Bejyouesg : (Buwgg : Bswi *Buuyg : aweniq Bugg : pe Jysueigppet
Buuyg : Bsuw 1w (Buuyg : pBey'Buwyg : pie)Beljapr =
dwejgaul] : dueg aug| | 0 10 upegyy r (Buuyg : aweyBe) mau'Bugg : pbey’ Bugg : pye)Be) aueuas| 33|nd+
G TR Bey : (J3Baqy : Azyie ‘Buulg : Bsw 'Bugg : aweyBey'Bulg : pye)Bep ——
d ol i geiuan J (4263 : A3y 0} BuLlS © e JUanaH Ll
1"0| paw | snonauds X [Joug : (4262 : Azyie ‘Buuy : pBe)ie 'Buug : | nowoy ‘Bugg : pe Jazepdnd |«
[J Aouaysisuooy : (JoBjapey : JE Jupne+ synd+
| Peay+ % ueajoog : ([] 4019 : Joua o [}~ d wuuey : pabiaw no *Buwyg : RIgyl m 'Buug : pye)abisus
yniiosy [J doug : (Buwyg : |03 '[,” |] uogowyy : sepe ‘Buuy : Bsw 'Buigg @ gie)62 x
{aclsip *333|duooui} | ulnEs o | ([.1] uonay iy : seye Buuyg : Bswi*Buug : piye)jRuuoo+ | aaysnd+
y _ .t.n.?_ _ N:S\tou..: _.oo_o._n__ = .e!G Be)youeg : (Jauoj+ - (43Bay : Azyie ‘Buugg : pBe) e 'Buulg : P owoy ‘Buigg @ pye Jauojo+ wysnd
x # B - GEs Be|youeg < ! Bugg : awew
A J3bBayy : azis+ gieag+ ueajoog : pi I —=
] ~ = iecioted] | thwopeaijBums : pinn v HUNGeloD
e < ba:mn!..mz 2upfioesiy
Q v v (T awnqsion [F]] izpomuimucg sy suonaypayiay aBesjoed

t

ive uni

The concept of galaxy collaborati

Figure 1

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Galaxy ’ R

<Title> PROJECT: GALAXY ARPEGE 2009

REFERENCE: DX.X

<subtitle> DATE: 25/02/2010

ISSUE: X.X

Such inconsistency occurs when the particular combination of labels in the merged graph violates
constraints from the model fragment’s metamodel, from some design pattern that the software
process requires to follow, etc. Since a precise taxonomy of errors is intimately linked to the
concepts of automatic merge and diff between two model fragments, views or artifacts, it will be
presented together with the definition of these related concepts in the next deliverable D2.2 that
focuses on these issues.

In the next paragraph, we explain the semantics of each class in the diagram of Figure 1 in one
subsection.

3.1 CLASS NAMED ENTITY

An abstract class generalizing all classes with the attribute name, i.e., Project, Participant,
HistoryUnit, AfDiff and AfAction.
3.2 CLASS GALAXY FRAMEWORK

3.2.1 Definition

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 20 of 105

Galaxy ’ R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X
<subtitle> DATE: 25/02/2010
ISSUE: XX

An abstract object-oriented framework of which concrete instantiations provide revision control

services for large-scale collaborative MDE projects. The collaborative unit defined in

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 21 of 105

Galaxy R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 22 of 105

Galaxy R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

Figure 1 is the main concrete class of the Galaxy framework. As shown in Figure 8, a Galaxy
framework assembles other classes beyond the collaborative units, notably the revision strategy. A
revision control system for MDE based on the Galaxy project implements a given Galaxy
framework instance. All such instances share instances of the same general-purpose concrete
collaborative unit class. In contrast, each specific instance of the framework assembles instances of
a specific concrete specialization of the abstract class revision strategy.Therefore , a particular
Galaxy revision systems results from assembling collaborative units with a particular revision
strategy. This way, the revision strategy can be customized to the specific revision control needs of
a specific class of projects in order to ensure the scalability of the revision control services provided
by the Galaxy framework instantiation for those projects.

3.2.2 Properties

- pj: the projects under revision control using a Galaxy framework instance;
- pa: the participants of the projects under revision control using a Galaxy framework instance;
- url: the web address to access the administration services of a Galaxy framework instance.

3.3 CLASS PROJECT
3.3.1 Definition

An MDE project under revision control using a galaxy framework instance.

3.3.2 Properties:

gf: the galaxy framework instance providing revision control for the projet

- creator: the galaxy framework user who created the project;

- pa: the participants of the project.

- client: an MDE project that is reusing a model built in another MDE project as model
component;

- server: an MDE project providing a model component for other MDE projects.

3.4 CLASS PARTICIPANT

3.4.1 Definition

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 23 of 105

Galaxy ’ R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

A participant to an MDE project under revision control using a galaxy framework instance.

3.4.2 Properties:

gf: the galaxy framework instance providing revision control for the projects to which the
participant takes part;

- created: the projects created by the participant;

- pj: the projects to which the participant takes part through the galaxy framework instance;
- co: the trace of the commit actions performed by the participant;

- tg: the tags put by the participant on commit objects;

- It: the locks on commit objects that the participant currently holds.

3.5 ASSOCIATION CLASS COLLAB UNIT
3.5.1 Definition

A local workspace owned by one project participant storing the artifacts of one collaborative
MDE project relevant to the participant. We make the simplifying assumption that if a participant
takes part to multiple projects using the same galaxy framework instance for revision control, it
owns one distinct collaborative unit per project to which (s)he takes part. The notion of
collaborative unit is purely conceptual. It is thus neutral with respect to the specific collaborative
workflows, artifact persistence technology and its deployment over a network. Consequently, is
can model either a local workspace in a centralized RCS such as svn, or a local repository in a
distributed RCS such as git, hg or bzr.

3.5.2 Properties:

- url: the web address that serves as entry point to the galaxy;

- blessed: a boolean indicating that the collaborative unit plays the role of central reference repository in a
centralized copy-revise-merge collaborative workflow; when this is the case, all non-blessed collaborative
units synchronize their respective revision only with a single blessed collaborative unit and not directly
among themselves; a separate synchronization network among several blessed collaborative units can also

be independently set up to insure the redundancy needed for continued and responsive service in the

occurrence of node and/or connection downtime;

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 24 of 105

Galaxy ’ R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

- pj: the project for which the collaborative unit was created;

- pa: the galaxy framework instance user owning the collaborative unit;

- pusher: the set of remote collaborative units allowed to send artifact change notifications to the host
collaborative unit (using the publish operation);

- pushee: the set of remote collaborative units to which the host collaborative unit is allowed to send
artifact change notification (using the publish operation);

- puller: the set of remote collaborative units allowed to pull updates of their artifacts from those stored in
the host collaborative unit (using the update operation);

- pullee: the set of remote collaborative units from which the host collaborative unit is allowed pull updates
of its artifacts (using the update operation);

- origin: the remote collaborative unit from which the initial revision of the artifacts were copied into the
host collaborative unit artifacts were (using the clone operation); becomes the default source for
subsequent update operations;

- localBt: a set of pointers to the development branches whose artifacts might have been locally changed
since their last updates from a remote collaborative unit;

- localMain: a pointer, member of localBt, to the branch that holds the main development trunk of the
project;

- head: a pointer, member of localBt, to the branch containing the artifacts that have been checked out for
edition by the client application of the host collaborative unit;

- remoteBt: a set of pointers to untouched copies of the branches pointed to by localBt as they were at the
time of their last update from a remote collaborative unit;

- remoteMain: a pointer to an untouched copy of the main development branch as it was when it was last
updated from a remote collaborative unit.

3.5.3 Components

Class HistoryUnit (see section 3.6). The information units of a collaborative unit are the artifacts of
project pj relevant for participant pa, together with the meta-data used to control their revision.

3.5.4 Operations

3.5.4.1 clone(afld: String, fromCuUrl: String, atTagld: String, atRev: Integer)

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 25 of 105

Galaxy R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

Copies to the host collaborative unit a copy of the artifact which uuid = afld, pointed to by the
commit object with revision number atRev and tagged by the tag which uuid = atTagld inside the
remote collaborative unit located at the web address fromCulrl. It addition to the artifact itself, it
also copies the versioning meta-data about the artifact stored in the above mentioned commit and
tag objects; the remote collaborative unit then fills the host collaborative unit’s origin property;
This operation is allowed only if the host collaborative unit has been previously added to the
puller property of the remote collaborative unit which url = fromCulrl. Clone is realized by calls to
the operation of the same name on the artifact objects and artifact revision meta-data objects
(instances of classes HistoryUnit and Diff) contained by the host collaborative unit.

3.5.4.2 commitl(afld: String, msg:String, afas: AfAction[*]): Commit

Commits to the local collaborative unit cu the new revision of the artifact af with uuid = afld. afas
corresponds to the canonical sequence of artifact revision actions (defined in section 3.13) needed
to apply to the latest revision of one stored in cu‘obtain af. Commitl first creates a copy of af. It then
creates a new commit object co pointing to this new copy. It then makes the head branch points to
co as the updated tip of its revision history. It returns co.

3.5.4.3 commitg(afld: String, msg:String, afas: AfAction[*], fromPaUrl: String,
toCuUrl: String): Error[*]

Commits to a blessed collaborative unit bcu with url = toCullrl the new revision of the artifact af
with uuid = afld. Commitg first checks whether the host collaborative unit’s participant is the author
of the last commit for af on bcu.. If it is the case, commitg first creates in bcu a copy of af. It then
creates in bcu a new commit object co pointing to this new copy. It then makes the head branch in
bcu point to co as the updated tip of its revision history and returns an empty error list. If the
participant pal who last committed a revision afl of af to bcu is not the host collaborative unit’s
participant, commitg it then calls merge taking as arguments afld and the head branch id at bcu..

3.5.4.4 merge(afld: String, withBtld: String): Error[*]

*i.e., the one pointed to by the tip commit object of the host collaborative unit's head branch.

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 26 of 105

Galaxy R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

Attempts to automatically merge the latest revision of artifact which uuid = afld in the head
branch of the host collaborative unit, with the revision of the same artifact in the branch which
uuid = withBtld. If they are not automatically mergeable, it leaves the two revisions unchanged and
returns the conflicts that caused the merge failure. If the two revisions are mergeable, it then calls
the audit operation on the artifact resulting from the successful merge. If the audit reports at least
one inconsistency, it leaves both revisions of the input artifact unchanged, and returns the
inconsistencies returned by the audit. If the audit reports no inconsistency, it creates a new commit
object co having two fillers for its previous property: the commit node at the tip of the head branch
before the call to merge, and the commit node at the tip of the branch with uuid = withBtld. It then
fills the tip property of the head branch with co. This general merge operation on two arbitrary
artifacts is realized by calls to specific merge operations on product units, reuse units, method
units, views, model elements, model element references and model element attributes. As shown
in Figure 8, these specific operations are abstract. It is their specializations in concrete operations
with the same signature that define the merge strategy of a specific galaxy framework instance.

3.5.4.5 audit(af: Artifact): Inconsistency[*]

Audits artifact which uuid = afld and returns the inconsistencies that it contains (if any).

3.5.4.6 update(afld: String, fromCuUrl: String, atTagld: String, atRev: Integer):
Error[*]

Firts fetches the revision of artifact which uuid = afld pointed to by the commit object of revision
number atRev and tagged by the tag which uuid = atTagld in the remote collaborative unit located
at web address fromCullrl. The calls merge with afld as afld paramenter and atTagld as btld
parameter.

3.5.4.7 revert(afld: String, toRev: Integer)

Backtracks to revision number toRev of the artifact which uuid = afld. Just changes the current
branch tip so that it points to the commit object of revision number toRev.

3.5.4.8 tag(afld: String, tagName: String, msg: String, atRev: Integer): Tag

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 27 of 105

Galaxy R

<Title> PROJECT: GALAXY ARPEGE 2009

REFERENCE: DX.X
<subtitle> DATE: 25/02/2010

ISSUE: X.X

Creates in the host collaborative unit a new tag object named tagName with message msg to the
commit object with revision number atRev for artifact which uuid = afld. Adds only a simple tag,
such as a release tag. Does not work properly for branch and lock tags.

3.5.4.9 renameTag(afld: String, tagld: String, newTagName: String)

Changes to newTagName, the name of the tag which uuid = tagld for artifact which uuid = afld.
3.5.4.10 addBranch(afld: String, btName: String, msg: String): BranchTag

Creates in the host collaborative unit a new development branch named btName with message msg
for the artifact which uuid = afld. Creates a new branch tag object which tip points to the commit
object already pointed to by the current branch;

3.5.4.11 delBranch(afld: String, btld: String)

Deletes from the host collaborative unit the branch tag object which uuid = btld for artifact which
uuid = afld. Depending on the memory management policy adopted may also trigger deletion of all
the objects accessible from the tip property of the deleted branch object by recursively following
the previous, af, diff and ea properties of commit objects.

3.5.4.12 switchTo(afld: String, btld: String)

Switches the head property of the host collaborative from its current value to the branch object
which uuid = btld for artifact which uuid = afld.

3.5.4.13 rebase(afld: String, btld: String, fromBtId: String, ontoBtId: String):
BranchTag

Linearizes three branches for artifact which uuid = afld in the host collaborative unit into two in
order to make past development history easier to follow. First finds the commit object coBase from
which the branch which uuid = btld diverged from the branch which btld = fromBtld. Then replays
the artiact actions associated to all commit objects between coBase and the tip of btName onto the tip
of a third branch which uuid = ontoBtld. Finally deletes the branch btld which is then no longer
needed. Repeated calls to this rebase operation allows to fully linearize a very branchy, hard to

follow development history with a lot of trials and errors into a simpler, neat, linear one.

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 28 of 105

Galaxy R

<Title> PROJECT: GALAXY ARPEGE 2009

REFERENCE: DX.X
<subtitle> DATE: 25/02/2010

ISSUE: X.X

Introduced by Git, this rebasing concept has since then been adopted by other DRCS such as
Mercurial and Bazaar.

3.5.4.14 publish(co: Commit, toCuUrl: String)

Notifies the remote collaborative unit at web address toCuUrl that a new commit object co has been
added to the host collaborative unit. Requires the target remote collaborative unit to be registered
as pushee of the host collaborative unit.

3.5.4.15 publishTag(tg: Tag, toCuUrl: String)

Notifies the remote collaborative unit at web address toCuUrl that a new tag object tg has been
added to the host collaborative unit. Requires the target remote collaborative unit to be registered
as pushee of the host collaborative unit.

3.5.4.16 publishRenameTag(afId : String, tagld : String, newTagName : String,
toCuUrl : String)

Notifies the remote collaborative unit at web address toCullrl that the tag object which uuid = tagld
had been renamed newTagName in in the host collaborative unit. It requires the target remote
collaborative unit to be registered as pushee of the host collaborative unit.

3.5.4.17 publishDelTag(afld: String, tagld: String, toCuUrl: String)

Notifies the remote collaborative unit at web address toCullrl that the tag which uuid = tagld has
been deleted from the host collaborative unit. It requires the target remote collaborative unit to be
registered as pushee of the host collaborative unit.

3.5.4.18 lock(afld: String, atBtld: String, forCuUrl: String): LockTag

Locks the artifact which uuid = afld at the tip of the branch which uuid = atBtld, for exclusive
changes by participant whose collaborative unit web address is forCullrl. First creates a lock tag
object It in host collaborative unit that points the latest commit object for the artifact. In a
centralized setup, lock then calls publishTag with It as parameter to notify the single blessed
collaborative unit of the lock. In a decentralized setup, lock then notifies all the collaborative units

registered as pushees of the host collaborative unit of the lock. Upon reception of this lock

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 29 of 105

Galaxy ’ R

<Title> PROJECT: GALAXY ARPEGE 2009

REFERENCE: DX.X
<subtitle> DATE: 25/02/2010
ISSUE: XX

notification, these pushees in turn notify their pushee, thus triggering a recursive propagation of
the lock throughout the whole galaxy. This distributed version works properly only if all the
galaxy collaborative units for a given project are reachable from any other galaxy collaborative
unit for that project through pushee, pusher relationships. Calling lock is only permitted when the
commit object which points to af in the host collaborative unit it itself free of lock tag.

3.5.4.19 unlock(afId: String, atBtId: String)

Unlocks the artifact af which uuid = afld at the tip of the branch which uuid = atBtId. First deletes the
lock tag in the host collaborative unit that points to the latest commit object for the artifact. In a
centralized setup, lock then calls publishDelTag with It as parameter to notify the single blessed
collaborative unit of the lock release. In a decentralized setup, lock then notifies all the
collaborative units registered as pushees of the host collaborative unit of the lock release. Upon
reception of this lock release notification, these pushees in turn notify their pushee, thus triggering
a recursive propagation of the lock release throughout the whole galaxy. This distributed version
works properly only if all the galaxy collaborative units for a given project are reachable from any
other galaxy collaborative unit for that project through pushee, pusher relationships. Calling
unlock is only permitted when there is a lock tag on the commit object pointing to af in the host
collaborative unit.

3.6 ABSTRACT CLASS HISTORY UNIT
3.6.1 Definition

An abstract class that generalizes the three main classes of objects used to store artifact revision
history in a collaborative unit (1) Revision unit for project data, and (2) Commit and Tag, for
revision control metadata.

3.6.2 Properties

- uuid: a string allowing to identifying uniquely all the revisions of the same HistoryUnit objects in distinct

collaborative units of the galaxy, even if they differ in terms of content;

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 30 of 105

Galaxy ’ R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

- hash: a string allowing rapid indexing and (almost) uniquely identifying Historylnit objects in the whole
galaxy by their content;
- size: number of memory bytes occupied by the HistoryUnit object;

3.7 ABSTRACT CLASS REVISION UNIT
3.7.1 Definition

An abstract class that generalizes all project data under revision control (versioning). Our first
general assumption is that a modeling team may wish to version model elements and model
views. This is why RevisionUnit generalizes the concrete classes ModelElt and View. Exactly which
class of model elements and model view should be versioned depends on a specific modeling
language, MDE process and CASE tool connected to an instance of the galaxy framework. It is
during the instantiation of the framework that RevisionUnit can be constrained to generalize not all
instances of ModelElt and View but only restricted subclasses of them. model elements, model
views and the artifacts storing them in collaborative units (see section 4). The revision number of
model elements and views are derived from the artifacts containing them that are persistently
stored in collaborative units and exchanged among them for synchronization. In turn, the revision
number of any such artifact (project data) is derived from the revision number of the commit object
(project history metadata) that is created when the artifact is committed to the collaborative unit.

3.7.2 Properties

- uuid: a string allowing to identifying uniquely all the revisions of the same RevisionUnit objects in
distinct collaborative units of the galaxy, even if they differ in terms of slots;

- hash: a string allowing rapid indexing and (almost) uniquely identifying RevisionUnit objects in the whole
galaxy by their slot content.

- mutable: a boolean indicating whether the artifact is read-only or can be altered; in the MDE context,
example of non-mutable artifacts, from the perspective of an application developer, include the classes
forming the meta-model of the model under construction, the built-in architectural framework that this

model specializes or the built-in types provided by the modeling language;

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 31 of 105

Galaxy ’ R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

- locallyChanged: a boolean that is true iff the revision unit has been locally modified since it was last
committed (either locally using commitl, or globally using commitg) or updated;

- remotedChanged: a boolean that is true iff the revision unit has been modified in a remote collaborative
unit, since it was last committed in, committed to or updated to the local collaborative unit; the local
collaborative can know about such change only if it was carried out in a remote collaborative unit of
which it is a puller; in centralized mode, all collaborative units are puller of a blessed collaborative unit;

- conflicted: a boolean which is true iff the last update attempt from a remote collaborative resulted in at
least one conflict;

- published: a boolean which is true iff the artifact has been published by the owner of the collaborative
unit where it is stored, so that other project participants can update their own copy of this artifact in their
collaborative units with this more recent revision; committing an artifact while not publishing it allows an
artifact to be persistent while remaining private to a given collaborative unit;

3.8 ABSTRACT CLASS ARTIFACT
3.8.1 Definition

Any artifact constructed during a software project, whether it be a natural language document, a
code file or a model that follows a meta-model. Due to its genericity, we model this concept as an
abstract class.

3.8.2 Properties

— url: the web address where the artifact is stored;

— localPath: the tail of the url that starts after the url of the collaborative unit where the artifact is stored;
- prevRev: pointers to the previous local revisions of the artifact in the collaborative unit (if any);

- nextRev: pointer to the next local revision of the artifact in the collaborative unit (if any);

- co: the commit object that points to the artifact;

- fromRev: the diff between the artifact and its previous revision (if any);

- toRev: the diff between the artifact and its next revision (if any).

3.8.3 Operations

- diff(withAfid: String): AfDiff[*]: returns all the differences between the host artifact and the argument

artifact; an abstract operation that must be specialized into a concrete one, for each different concrete

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 32 of 105

Galaxy ’ R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

subclass of the abstract class artifact; these specializations are beyond the scope of D2.1 and will be
defined in the D2.2;
- clone(): Artifact: returns a copy of the host artifact; an abstract operation that must be specialized into a

concrete one, for each different concrete subclass of the abstract class artifact;

3.9 ABSTRACT CLASS ATOMIC ARTIFACT

An artifact that does not contain any other artifact. A leaf in the artifact containment tree.

3.10 ABSTRACT CLASS COMPOSITE ARTIFACT
3.10.1 Definition

An abstract subclass of Artifact that contains other artifacts. Form a complete and disjoint
generalization set of Artifact with AtomicArtifact. Together, these three classes follow a
composition pattern that models a containment tree. That they are structured in such tree is the
only assumption made about artifacts at the level of the collaborative unit. This design choice is
motivated by the pervasiveness of such structure in MDE CASE tools, file systems and XML
documents. In an MDE CASE tool, model elements are structured in such tree following the
composition meta-associations of the meta-model. The nesting of elements in XML documents also
follows this containment pattern. File systems are similarly structured with the individual files
being the atomic artifacts and the folders being the composite artifacts.

3.10.2 Properties

- Is: a pointer to the artifacts directly contained by the composite artifact (i.e., nested at level 1);

- Isr: a pointer to all the artifacts nested in the composite artifact, whether contained at its top-level (i.e.,

nested at level 1) or recursively contained in one of its nested composite artifacts (i.e., nested at any level >
1);
3.10.3 Operations

- add(afId: String): nests a new artifact of uuid = afld inside the composite artifact;

- del(afId: String): deletes the artifact of uuid = afld from the composite artifact;

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 33 of 105

Galaxy ’ R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

- move(afld: String, fromPath: String, toPath: String): moves nested artifact of uuid = afld inside the host
composite artifact containment tree from being a direct child of nested composite artifact of uuid =
fromPath to being a direct child of nested composite artifact of uuid = toPath;

3.11 CLASS COMMIT
3.11.1 Definition

A snapshot node, in the revision history, of an artifact stored in a collaborative unit. One object of
this class is added to the revision history each time a new version of the artifact is committed to
one collaborative unit (by executing the operation commit).

3.11.2 Properties

- author: the participant that executed the commit action that the commit object records in the revision
history;

- timeStamp: the date and time when the commit action was executed;

- msg: a text that describes what has been changed from the last revision of the committed artifact and
explains the motivation for the change;

- revision: an integer which gets incremented every time the artifact is committed;

- previous: a pointer to the previous commit object for the same artifact (if any);

- next: pointer(s) to the next commit object for the same artifact (if any); there can be several ones if the
commit object served as base for a branch;

- author: the project participant who called the commit operation which resulted in the creation of the
commit object;

- tg: the tag that points to the commit object;

- bt: the subset of tg that contains only the branch tags;

- af: a pointer to the persistent snapshot of the new revision of the committed artifact;

- diff: a pointer to an AfDiff object containing all the differences between af and its revision and

- af. prevRev, its preceding revision in the revision history;

- ea: a pointer to the canonical sequence of artifact actions whose execution would produce af from

af.prevRev.

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 34 of 105

Galaxy ’ R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

Taken together, the af, diff and ea properties allows a collaborative unit to implement any
representation used for commit nodes in RCS such as svn, git, hg and bzr, and in distributed CASE
tools with trivial revision policies such as Praxis [4], [15]. Maximizing scalability, involves devising
clever combination of these three representations.

Note that a galaxy commit object does not necessarily points to the root of the entire artifact tree
as do commit objects in state-of-the-art DRCS git, hg and bzr. This is because the revision
operations of a galaxy collaborative unit can be executed any sub-artifact nested down the artifact
containment tree. This feature is not currently supported by the consolidated versions of DRCS
which revision always apply to the full versioned artifact containment tree of the entire project.
However, there is an experimental git library that addresses this need for partial cloning, checkout,
commit and merge. But it has not yet been tested on large projects. Revision operations at the low-
level grain of individual artifacts seem a valuable option to limit space requirement of non-blessed
collaborative units as well as avoiding updating locally irrelevant artifacts. However, how we will
illustrate in section 7.4, it also makes the automated avoidance of dangling references among
artifacts most complex and thus potentially computationally costlier. This suggests that there exists
some fundamental trade-off between artifact grained and collaborative unit grained revision
operations. Supporting any grain is thus an important feature of collaborative unit concept
proposed for Galaxy. Note that to implement a policy similar to that of current DRCS using a
galaxy collaborative unit is simply a matter of using it with a process that forces all revision
operations to be called using as first argument the top-level node in the artifact containment tree.

3.11.3 Operations

- clone():Commit, creates a copy of the Commit object;

3.12 ABSTRACT CLASS AFDIFF
3.12.1 Definition

An abstract class representing the differences between two revisions of the same artifact

3.12.2 Properties

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 35 of 105

Galaxy ’ R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

- self: the host artifact object that called the diff operation;

- with: the artifact with which the host compared itself by calling such an operation;

- base: the common ancestor (if any) revision in the artifact’s history from which self and with originated
before diverging is separate change branches;

- co: the commit node (if any) that points to the AfDiff object as an alternative persistent storage format to
the whole snapshot of the artifact revision it committed;

- base2Self: the canonical action sequence which results into self when applied to base;

- base2With: the canonical action sequence which results into with when applied to base;

- self2With: the canonical action sequence which results into with when applied to self;

with2Self: the canonical action sequence which results into with when applied to base;

3.12.3 Operations

- clone():AfDiff, creates a copy of the AfDiff object;
3.13 ABSTRACT CLASS AFACTION

3.13.1 Definition

An abstract class modeling the minimal set of primitive change actions on artifacts into which any
artifact manipulation can be ultimately decomposed. The concrete classes specializing AfAction
include the addition, deletion and move of product units, reuse units and method units inside their
container product unit. They are defined in section 5.

3.13.2 Operations

- clone():AfAction, creates a copy of the AfAction object;
3.14 CLASSTAG

3.14.1 Definition

A label put on a Commit object in the revision history of an artifact. Direct instances of this concrete
class can be leveraged for a variety of purposes, notably the fast retrieval of release versions.
3.14.2 Properties

- co: a pointer to the Commit object being tagged;

- author: the participant that put the tag on the co commit object;

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 36 of 105

Galaxy R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

- timeStamp: the date and time when the tag was created;
- msg: a text giving the semantics of the tag.

3.14.3 Operations

- clone():Tag, creates a copy of the Tag object;

3.15 CLASS BRANCH TAG
3.15.1 Definition

A special kind of tag indicating a development branch. This branching as tagging approach

pioneered by git is in sharp contrast with the branching as copy approach used by svn. It was one of

the most dramatic scalability improvement brought about by git.

3.15.2 Properties

- tip: a pointer to the Commit object that in turns points to the lastest revision of the artifact in the host
branch.

— It: the lock tag that currently locks the branch;

3.15.3 Operations

- clone():BrancgTag, creates a copy of the BranchTag object;

3.16 CLASS LOCK TAG
3.16.1 Definition

A special kind of tag used to lock an artifact for the exclusive, non-concurrent edition of the artifact
revision accessible from the Commit object to which the LockTag object points to. This design allows
reusing the delTag, publishTag, publishDelTag operations to propagate locks and lock releases
among collaborative units.

3.16.2 Properties

- bt: a pointer to the branch that is locked;

- for: the project participant currently holding the lock on bt

3.16.3 Operations

- clone():LockTag, creates a copy of the LockTag object;

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 37 of 105

Galaxy ’ R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

4. DEFINITION OF VIEWS AND MODEL FRAGMENTATION MECHANISMS

In the previous section we focused on the concern of defining meta-data to support revision
control for software artifact of within any software engineering paradigm. In this section, we specialize
the abstract class Artifact defined in the previous section into concrete classes to address the
central issue that is specific to revision control within the MDE paradigm: how to group model
elements in very large models into intermediate grain structures that can be scalably manipulated for
distributed revision control purposes? By “intermediate grain” here we mean any grain between
the coarser possible grain of the whole project megamodel and the finest possible grain of

individual model elements.

41 HOWTO STRUCTURE MODEL ELEMENTS AND VIEWS ON THEM FOR REVISION
CONTROL PURPOSES?

The intermediate grains that we propose are derived from the following reasoning. First, we
distinguish between three general classes of intermediate grain structures: (1) flat model partition,
(2) flat model element overlapping subsets and (3) nesting containment tree. They are respectively
illustrated on the left part of Figure 2, on the right part of Figure 2 and in Figure 3. In these figures,
individual model elements are represented by small grey squares, references between them by
lines and model fragments of intermediate grains as large white squares or ellipses. Then, we
notice that we already used the containment tree structure for the abstract artifact concept that

relates the paradigm-independent collaborative unit model presented in the previous section.

1

1

Figure 2: Flat model fragmentation: partition vs. overlapping model element subsets

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 38 of 105

Galaxy e R

<Title> PROJECT: GALAXY ARPEGE 2009

REFERENCE: DX.X
<subtitle> DATE: 25/02/2010
ISSUE: XX

3333
HEE
Tl
HEE

Figure 3: Model fragmentation as a containment tree with references

In Figure 3, we do not show any direct reference between elements at different depths in the
containment tree because such cross-level references can always be realized by a path constituted
of intra-level references and nesting relationships between an element and its parent or child in the
containment tree.

Then, we notice that the three intermediate structures of Figure 2 and in Figure 3, far from being
mutually exclusive, can be combined to maximize representational flexibility. We also notice that
the decomposition of a system in subsystems, components, packages or other reuse units, aims at
structuring the system into highly cohesive units that are very loosely coupled between them. Such
units are thus near partitions. Within the MDE paradigm, these reuse units can thus be considered
to partition the model elements of a software model, even though there exist references between
elements in different partition set. In contrast, views, aspects, diagrams and other software method
units significantly overlap between themselves while cutting across reuse unit boundaries.

These observations lead us to propose the MDE artifact model of Figure 4. In this model the

paradigm-independent abstract class CompositeArtefact from the collaborative unit model is

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 39 of 105

Galaxy ’ R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

specialized into the ProductUnit concrete class. This specialization restricts the nested artifacts of a
product unit to be either product units, reuse units or method units. This sub-categorization is
mutually exclusive and covers all cases (this is represented in Figure 4 by the OCL invariant
attached to ProductUnit). Reuse units and method units are concrete classes that form a mutually
exclusive and covering sub-categorizations of the abstract class AtomicArtifact from the
collaborative unit model. Atomic artifacts are atomic in the sense of not containing any other
artifact. However reuse units contain model elements and method units contain views. There is no
contradiction here since model elements are not artifacts.

This design choice allows full decoupling between, on the one hand, the direct structural
relationships among elements in the model, and one the other hand, the structural relationships
among meta-data used to support revision control of the model. It thus insures the versatility of
the key concepts of product unit, reuse unit and method unit for a variety of software modeling
languages, methods, processes and application domains. In section 6.7 we also introduce the
concept of a revision strategy defined as a mapping from (a) classes of model elements onto
product units and reuse units and (b) classes of model views onto product units and method units.
A key step in the process of instantiating the general galaxy RCS framework presented in this
document into a concrete DRCS service to which MDE CASE tools can delegate model revision
control is to define the revision strategy that the concrete DRCS realizes. Note that what we call
model element classes for revision strategy definition can but do not necessarily correspond to
metaclasses in the metamodel(s) of the modeling language(s) used in the model. They could be for
instance model elements that contained elements that together occupy some space threshold.

Similarly, classes of views for revision strategy definition can but do not necessarily correspond to
the viewpoints or diagram classes defined used in the model.

Having explained the general design rational behind the model of Figure 4, we now proceed to

give precise definition for each of its elements.

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 40 of 105

Galaxy R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

package ReifiedActions Refs Domainhviodel [Artefact]J

MuAction

lComposiaeAraefacz |
N {subsetsin} {subsets Is}
+containerPu § 1 *| +nestedPu

N Hwa (1.7
inv: (Is = nested Pu->union(ru)- >union(rmu)) " ordered,
and (ne stedPu-i on(ru) vinterse cion(mu)-sisErpty0) | — — — — _| Product Lhit {)
’ spu_ 1 +clone() : ProductUhit ' o

{subsetsin} subsets .
[RuAction | [WodeiAcion | P e [fubsesis) 1
— prowre (et 1| -+he sted Bt Root Container MethodLhit
r N +add\View (vw :\iew)
{ordered} {subsets Is} {ordered} metaRef N [emiview (e : View)
Hu |1 * HU context ModelBt: ne sted B Container +move\iew (vw :\View to :MethodUnit)
= - +Hme |1 +instance | * 1 | +inetaClass " +e derived: +chne() : Method Unit
ReuseLhit Model Bt let nestedBtPu = contaned->ru->pu
+addhe(me : ModelBt) HU He o innestedBtPu->sekectipu|
+rmive(me : ModelBt) 1 T~ |omtact : String | nestedBtPu->exclud Pu)) -
+HmovehE(me : ModelBt, to : Reuselnit) - Adtri |
+addhi{ e : ModelRef) +contained * m(,;u ﬁgzﬁ) +view [1.7
Hmivk(e : NbdelRef) nestRef _+movehda(ma : Attribute, to : Model &) "
+move (i : MbdelRef, to : Reuse Lht) ' sclone() : hbdelBt X View
+chne() : Reuse Unit +/container 0..1 T RevisionUnit F +vie w pointNarre : String
* +/nt FromTo +show Me(me : ModelBt)
., |+hidehie(me : ModelBt)
= D..1 +under HVIEW | yshow Ma(attr : Attribute)
+hideMa(attr : Attribute)
1 1 1 "+showsB +show nh ™ |+Hmove(to : ModelBt)
+Hu +argetRu +source Ru Frop 1 +clone() : \iew
Harget [1 1| +source
+hternal | +inGoinghr| | +outGoinght +me |1
. . N . +shownh =
ModelRef +view |” +iiew |1
+nesting : Boolean +target Of +ma | +show sAttr | * {ordered}
+crossPu :_Boole:n L Attribute r N a1 wallr
+lcros sRu : Boolean TS St (I P =
+crossOmglevel : Bookan +sourceOf *ta 08 context view ::revision View point ViewAction
+metaPropName : String L |derived: mu.re vision
. . +addhvBv(mav : Primitive\/alue Spec)|
+move Source(to : ModelBt) #instance " 4rmivlv(mav : PrimiiveValue Spec) N NamedEntity
+moveTarget(to : ModelBt) +clone() : Attribute context Model B: revision
+clone() : ModelRef HretaAttr 1 derived: ru.revision ModelRef |
L ode

aweJ,l +val]'I

context ModelRef zmetaProphame F”T';"’,”e"e PrimitiveValueSpec

|derived: metaProp.name

N N D N N
context ModelRef inv: context Reuse Lhi:mrFromTo derived: context Attribute :meta AttrNamre context Model Bt :container derived: context Model Bt: meta Clas s Name
|nesting xor cross OmgLevel /inGoin ght->union(out Goinghtr) | derived: metaAttr.name [target Of- >select(nesting } >source Of | | derived: metaClass.name

N {incorrplete, disjpint}
N Atomic Artefact

AtomicArtefact

context Model Bt::contained derived:
let direct Contained = source Of- >select{nesting)- >targetOf
ot o ined)

in directContained- >union(di

Figure 4: Concepts to structure models and views for revision purposes
42 CLASS MODEL ELT
421 Definition

A model element.

4.2.2 Properties

- uuid: string that uniquely identifies several model element with distinct content contained in different
galaxy artifacts as being different revisions of the same reference

- metaClass: a property pointing to the metaClass of which the model element is an instance; it is derived
through a reference between the model element of the model and its metaclass as a model element of the

metamodel;

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 41 of 105

Galaxy R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

- metaClassName: a derived property containing the name of the model element’s metaclass

- mda: the construction trace of the model element in terms of model actions.

- ma: the attributes of the model elements;

- contained: the model elements contained in the model element; an element W contains an element P iff

there is nesting model reference from W to P;

container: the model element that contains the model element;

4.2.3 Operations

- addMa(ma: Attribute): adds attribute ma to host model;

- rmMa(ma: Attribute): removes attribute ma from host model;

- moveMa(ma: Attribute, to: ModelElt): moves attribute ma from host model element to the to

model element;

clone():ModelElt, creates a copy of the host ModelElt object;

diff(withMeld: String): MeDiff, returns all the differences between the host model element

and the model element which uuid = withMeld. The details on how to realize this operations

and the structure of its results will be given in D2.2.

4.3 CLASS ATTRIBUTE
4.3.1 Definition

A model element property typed by a primitive type such as a MOF, OCL, Ecore or XML type:
boolean, integer, real, string, date, time, dateTime, uri or collections of such types.

4.3.2 Properties

- metaAttr: the property of the meta-model that the attribute , (i.e., from OMG level N down to OMG level
N-1) instantiates;

- metaAttrName: a derived property of the attribute containing the name of property of the attribute’s
meta-attribute.

- me: the model element that contains the attribute.

4.3.3 Operations

- addMav(mav:PrimitiveValueSpec,): adds value mav to host attribute ma;

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 42 of 105

Galaxy ’ R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

- rmMav(mav: PrimitiveValueSpec,): removes value mav to host attribute;

- clone():Attribute, creates a copy of the host Attribute object;

- diff(withMald: String): MeDiff, returns all the differences between the host attribute and the attribute
which uuid = withMald. The details on how to realize this operations and the structure of its results will
be given in D2.2.

44 CLASS MODEL REF

4.4.1 Definition

A model element property typed by another model element.

4.4.2 Properties

— source: the model element source of the reference;

- target: the model element target of the reference;

- nesting: a boolean which is true iff the reference models a model element containment relationship in
which the source is the container and the target the contained element;

- crossPu: a boolean which is true iff its source and target model elements are contained in different
product units, (derived property)

- crossRu: a boolean which is true iff its source and target model elements are contained in different reuse
units (derived property)

- crossOmgLevel: a boolean which is true iff the reference’s source and target pertain to different OMG
modeling level, for example a reference from model element (level 1) to a meta-model element (level 2) or
from a meta-model element to a meta-meta-model element (level 3);

- metaProp: the property of the meta-model of which the reference is a instance;

- metaPropName: a derived attribute containing the value of the name property of the reference’s
metaProp property.

- ru: the reuse unit to which the model reference pertains; a model reference is also stored in the reuse unit
that stores its source model element;

- sourceRu: the reuse unit containing the source element of the model reference;

- targetRu: the resue unit containing the target element of the model reference;

4.4.3 Operations

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 43 of 105

Galaxy ’ R

<Title> PROJECT: GALAXY ARPEGE 2009

REFERENCE: DX.X
<subtitle> DATE: 25/02/2010

ISSUE: X.X

- moveSource(to: ModelElt): change source property of host reference to fo model element;

- moveTarget(to:ModelElt): change target property of host reference to to model element;

- clone():Attribute, creates a copy of the host ModelRef object;

- diff(withMrld: String): MrDiff, returns all the differences between the host model reference and the
model reference which uuid = withMrld. The details on how to realize this operations and the structure of
its results will be given in D2.2.

45 CLASS VIEW
451 Definition

A methodologically defined partial model fragment showing the model elements, references and
attributes relevant to a single concern; may represent views in orthographic MDE [2] aspects in
Aspect-Oriented Modeling (AOM), diagram in UML modeling, etc.

4.5.2 Properties

under: the model element, if any, of which the view is a partial fragment;

— showsElt: the model elements shown in the view;

— showsAttr: the model element attributes shown in the view;

- mu: the method unit containing the revision control meta-data for the view;

- vp: the viewpoint defining the schema of the view, ie., constraints defining what classes of model
element, model element references and model element attributes are allowed to appear in the view;

- viewpointName: a derived property containing the name of the viewpoint;

- vwa: view construction trace as a sequence of show and hide actions on model elements, model element
references and model element attributes.

4.5.3 Operations

— showMe(me: ModelElt): shows model element me in the view of the host’ method unit;
— hideMe(me: ModelElt): hides model element me from the view of the host method unit;
— showMr(mr: ModelRef): shows model element reference mr in the view of the host method unit;

— hideMr(mr: ModelRef): hides model element reference mr in the view of the host method unit;

® In this document we call “host” the object which operation is invoked.

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 44 of 105

Galaxy R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

- showMa(ma: Attribute): shows model element attribute ma in the view of the host method unit;

- hideMa(ma: Attribute): hides model element attribute ma in the view of the host method unit;

- move(to: ModelElt): moves the view from under the model element under to the model element
parameter of move;

- clone(): View, creates a copy of the View object;

- diff(withViewld: String): ViewDiff, returns all the differences between the host model view and the
model view which uuid = withViewld. The details on how to realize this operations and the structure of

its results will be given in D2.2

4,6 CLASS METHOD UNIT
4.6.1 Definition

A container of model views for scalable revision control purpose.

4.6.2 Properties

- pu: the product unit containing the method unit;
- view: the view which revisions are controlled by the method unit;
- mua: the construction trace of view as a sequence of method unit operation calls;

4.6.3 Operations

- addView(vw: View): adds view vw to the host method unit;

- rmView(vw: View): removes view vw to the host method unit;

- moveView(vw: View): moves view vw from the host method unit to the method unit fo.

- clone(): MethodUnit, creates a copy of the host MethodUnit object;

- diff(withMuld: String): MuDiff, returns all the differences between the host method unit and the
method unit which uuid = withMuld.

4.7 CLASS REUSE UNIT
4.7.1 Definition

A container of model elements for scalable revision control purpose. What classes of model
element it can contain is defined by a model fragmentation strategy as defined in section 6.

4.7.2 Properties

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 45 of 105

Galaxy R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

- pu:its product unit container;

- rua: the construction trace of the reuse unit as a reuse unit action sequence;

- mr: the model references contained in the reuse unit;

- me: the model elements contained in the reuse unit.

- mrFromTo: reuse units that contain model references which source or target elements are in
the reuse unit;

4.7.3 Operations

- addMe(me: ModelElt): adds model element me to the host reuse unit;

- rmMe(me: ModelElt): removes model element me from the host reuse unit;

- moveMe(me: ModelElt, to: ReuseUnit): moves model element me from the host reuse unit to
the fo reuse unit;

- addMr(mr: ModelRef): adds model element reference mr to the host reuse unit;

- rmMr(mr: ModelRef): removes model element reference mr from the host reuse unit;

- moveMr(mr: ModelRef, to:ReuseUnit): moves model element reference mr from the host reuse
unit to the to reuse unit;

- clone(): ReuseUnit, creates a copy of host reuse unit with the same properties;

- diff(withRuld: String): RuDiff, returns all the differences between the host reuse unit and the
reuse unit which uuid = withRuld.

4.8 CLASS PRODUCT UNIT
4.8.1 Definition

Software project structuring unit of larger grain than the minimal reuse units and
methodological views for revision control purposes. Allows defining structures of arbitrary grain
through a recursive containment relationship. A model fragmentation strategy maps specific
classes of composite model elements or methodological groups of such elements onto product
units.

4.8.2 Components

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 46 of 105

Galaxy R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

- nestedPu: product units directly contained in the host product unit, i.e., its child in the product unit
containment tree;

- ru: reuse units contained in the host product unit;

- mu: method units contained in the host product unit.

4.8.3 Properties

- containerPu: product unit that directly contains the host product unit, i.e., its parent in the product
containment tree;

4.8.4 Operations

- clone():Attribute, creates a copy of the host ProductUnit object;

- diff(withPuld: String): PuDiff, returns all the differences between the host product unit and the product
unit which uuid = withPuld. The details on how to realize this operations and the structure of its results
will be given in D2.2.

- To add to, remove from and move product units, reuse units and method units inside a product unit, one
can use the operations add, del and move that ProductUnit inherits from it superclass CompositeArtifact

(shown in Figure 1).

5. ACTIONS TO EXECUTE DURING THE COLLABORATIVE UNIT LIFE CYCLE

In this section, we define two distinct, complementary minimal sets of primitive revision actions
into which higher-level ones can all be ultimately decomposed. The first set, shown in Figure 5,
specialize the abstract class VuAction. They correspond to the primitive model and view edition
actions executed by a CASE tool in response to user actions with its GUI The second set, shown in
Figure 6, specialize the abstract class AfAction introduced in section 3.13. They correspond to
primitive artifact revision actions executed by an instance of the galaxy framework providing
revision control services to connected CASE tools.

The model actions are:

— NewElt, creates a new model element in the model;

- DelElt, deletes an existing model element from the model;

— NewRef, creates a new model reference between two model elements;

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 47 of 105

Galaxy

<Titie> PROJECT: GALAXY

REFERENCE: DX.X

<subtitle>
ISSUE: XX

ARPEGE 2009

DATE: 25/02/2010

- DelRef, deletes an existing model reference between two model elements;
- AddVal, adds a value to an attribute of a model element;

- RmVal, removes a value from an attribute of a model element.

The view actions are:

— ShowElt, includes a model element in a view;

HideElt, hides a model element in a view;
- ShowAttr, display a model element attribute in a view;

HideAttrf, hides a model element attribute in a view.

Model and view actions must be passed by the connected CASE tool to the galaxy instance

framework. There is one artifact action class for each are operation of the three concrete artifact

subclasses, ProductUnit, ReuseUnit, MethodUnit and their content, classes ModelElt, ModelRef,

Attribute and View. Each operation of these concrete classes is realized by calling the execute()

operation of the corresponding action class. For example, if ru is a ReuseUnit object and me a

ModelElt object, then a call ru.addMe(me) is realized by the call rua.execute() where rua is a RuAction

object which ru role is filled with ru and which me role is filled with me. This reification pattern

allows an action to possess two dual aspects: a behavioral aspect encapsulated by the operation

that it realizes and a data aspect that corresponds to the trace of calls to this operation.

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 48 of 105

5
X
3
8
Q

ARPEGE 2009

GALAXY

PROJECT:

<Title>

REFERENCE: DX.X

25/02/2010

DATE:

<subtitle>

xX.x

ISSUE:

: o
cm,soox?L:.m::

maip
1| wouy+ poue [wons Ve Mmain+| 1| main+ e
SR —— T IS PR LE P LY SXPRTE SRR
________ oo e
. ¥ ¥ ¥ . ¥ S % . . ¥ b 138 ¥ 13 .
.............. (Janoaxa+|| (anoaxa+| | (anoaxas+|, - || (=a;noaxa+| OoSooxo.?_ | Qanoaxas|l b
: IRYAPIH | opun| IRymoys ¥IBPIH | opun| yImoy IN: E_ : INR@ | °PUN | maipman |+
........ R Bl IR R I e N | I U e e o
: : : : : o RymaAA
... {juolsip ‘apaidwod} -
._ | ssou+ K sou+ i ¥+ iwes owlL yfwoys
o _ 3312PoIN
L[Isou+ 1 : : N Lo L] aw+ dulL - pfsal
........ B LU R T e N L ! MNP IT T
: . 5 : | . R : : : :
— [BA% v _az_ouos_ S : : : el
O mes b | :
N EEEEEEE e [Jal+ - 330.0:», R N IR IR U SR
I b L : . v v b]
(Japnoaxa+ : Qamnoaxa+| | Qanoaxas L Oainoaxas| | Qapoaxas|L I (apoaxas) |
lepury |k OPUN L IEAPPY e My 12uPPY ¥3I1ea oPun | yaman
it : T pun F == [S S AR i A ARRAIAEe

: uonoyny [Jisporiuieuiogsjagsuondypayisy aBesoed

ions

t

10n ac

tive model and view editi

imi

imal set of pri

imn

M

Figure 5

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 49 of 105

Galaxy

<Titie> PROJECT: GALAXY ARPEGE 2009

REFERENCE: DX.X
<subtitle> DATE: 25/02/2010
ISSUE: x.x

package ReifiedActionsRefs DomainModel[i] ArtefactAction u :
NamedEntity .
| Model Bt || Attribute

AfAction : T . 1 : 1 . T4
* {+uuid : String

+clone() : AfAction | | ShowMe |undo| HdeMe ShowMa |undo | HdeMa
= :

j"+execute()1 1+execute0'+execuﬁ()1j1+execute0‘Hj..”f““?uufuHj’”'vf‘H‘?”HEHH;”H
471 | . . |- - | X .| ;
MuAction |_*mu Method Lhit | : : : :

+execute() |1 1

1 : 1 : 1 : : : : : : : : : : : :
. | AddMu |yndo| DelMu MoveMu |1 : : : : : : : : : : :
s rexecute) [q|+executeq | [+execute() :Iundo
ey e S w il) eSS S S S S S
. $. . +to . . . X
. |BuAction § +pu | Product Unit I : : : :
-lexecuteo 1.,..,;1
. zr . . . X . . o1 +to . 0.1| +n +from | 0.1 +from|1 1| +o

IZ . ZI . ZI B . | 1 . . 1I| ZI 1:1 .

AddRu | ndg| DelRu || MoveRru |1 - | AddPu | .| DelPu | | MovePu [1.. ...

+execute() | q 1+execute() +execute() _] undo: +execute() 1 1 +execute() | |+execute() -‘]Eundo

1 . Al . 1 : : : . : : :
T l

‘|RuAction | +iu |
sexecute) |1 1hes e A A
pay 1 2

000 SO V! O U0 TS VO RO T I I (N
AddMe |undo| DelMe MoveMe |1 . AddMr |unda| DelMr | | MoveMr |1 .| AddMav undo Rm Mav

: 7 und

| +execute() |1 1[+execute)|. +execute():]_ undo |4execute()[1 1| +executs()|: +execute()9 4N leexecute)[1
: 1 . I’ :

-
-

1| +execute()

Y I O L T R L

+me |1 Co+me |1 +me 1 - : +me 1 Ceme 1 e : : : 1.-h.la.| vak 1
Model Bt |: : I T I 1.|anmvev.alues,pec|

+ma ...

I Attribute |

Figure 6: Minimal set of primitive artifact manipulation actions.

The artifact actions are:

- AddPu, adds a product unit toa container product unit; reifies the operation add(afld: String) of
CompositeArtifact in Figure 1. when afld is the uuid of a ProductUnit object;

- DelPu, deletes a product unit from a container product unit; reifies the operation

del(afld: String) of CompositeArtifact in Figure 1. when afld is the uuid of a ProductUnit object;

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 50 of 105

