Galaxy ’ R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

- MovePu, moves a nested product unit to a new container product unit; reifies the operation
move(afld: String, ...) of CompositeArtifact in Figure 1. when afld is the uuid of a ProductUnit object;

- AddRu, adds a reuse unit in a container product unit; reifies the operation add(afld: String) of
CompositeArtifact in Figure 1. when afld is the uuid of a ReuseUnit object;

- DelRu, deletes a reuse unit from a container product unit; reifies the operation del(afld: String) of
CompositeArtifact in Figure 1. when afld is the uuid of a Reuselnit object

- MoveRu, moves a reuse unit to a new container product unit; reifies the operation
move(afld: String, ...) of CompositeArtifact in Figure 1. when afld is the uuid of a Reuselnit object;

- AddMu, adds a method unit to a container product unit; reifies the operation add(afld: String) of
CompositeArtifact in Figure 1. when afld is the uuid of a MethodUnit object

- DelMu, deletes an method unit from a container product unit; reifies the operation del(afld: String) of
CompositeArtifact in Figure 1. when afld is the uuid of a Methodbject

- MoveMu, moves a method unit to a new container product unit; reifies the operation
move(afld: String, ...) of CompositeArtifact in Figure 1. when afld is the uuid of a MethodUnit object;

- AddMe, adds a model element to a reuse unit; reifies the operation add(me: ModelElt) of Reuselnit;

- DelMe, deletes a model element from a reuse unit; reifies the operation del(me: ModelElt) of ReuseUnit

- MoveMe, moves a model element to a new reuse unit; reifies the operation
move(me: ModelElt, to: Resuelnit) of ReuseUnit;

- AddMr, adds a model reference to a reuse unit; reifies the operation add(mr: ModelRef) of ReuseUnit;

- DelMr, deletes a model reference from a reuse unit; ; reifies the operation add(mr: ModelRef) of ReuseUnit

- MoveMr, moves a model reference to a new reuse unit; reifies the operation
move(mr: ModelRef, to: ResueUnit) of Reuselnit;

- AddMa, adds an attribute to a model element; reifies the operation addMa(ma: Attribute) of ModelElt;

- DelMa, deletes an attribute from a model element; reifies the operation delMa(ma: Attribute) of ModelElt;

- MoveMa, moves a model attribute to another model element; reifies the operation
move(ma: Attribute, to: ModelElt) of ModelElt;

- AddMav, adds a value to an attribute; reifies the operation addMav(mav: PrimitiveValueSpec) of Attribute;

- RmMav, removes a value from an attribute; reifies the operation rmMav(mav: PrimitiveValueSpec) of

Attribute;

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 51 of 105

Galaxy ' R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

ShowMe, adds a model element to a view; reifies the operation showMe(me: ModelElt) of View;

HideMe: hides a model element in a view; reifies the operationHideMe(me: ModelElt) of View;

ShowMa, adds a model element attribute to a view; reifies the operation showMa(ma: Attribute) of View

HideMa: hides a model element attribute in aview; reifies the operation HideMa(ma: Attribute) of View

As shown in Figure 8, one operation of a model fragmentation strategy defines a mapping from a
sequence of Revision Unit actions (i.e., actions on model elements and views received from a CASE
tool by a galaxy framework instance) to a sequence of artifact actions (on artifacts and the model
elements and views they contain). This design allows to simultaneously: (a) represent Commit and
Diff objects as action sequences, which was shown scalable in distributed modeling environments
with trivial revision policy such as Praxis [4], [15] , and (b) decouple the representation of model
elements and views for user-friendly modeling edition purposes from their representation for
scalable collaborative revision control. In turn, this decoupling allows to experiment with a variety
of such artifact grains to achieve revision control scalability, in a way that is transparent to the
CASE tools connected to the galaxy and, consequently, their users. This is important since different
revision policies may be adapted only to projects within a certain range of model size, team size,
project lifetime etc. Therefore, the revision policy may have to evolve during the course of the
project. Decoupling it from the model element and view representation of the CASE tools
circumvents the need for such representation every time the revision policy is changed. Details on
the interfaces between CASE tools using the galaxy and the galaxy framework that realize this
decoupling are given in the next section.

6. CONTROLLING THE COLLABORATIVE UNIT LIFECYCLE FROM AN MDE
CASE TOOL

In this section, we explain how the concept of collaborative unit can be leveraged to support
transparent interoperability among potentially heterogeneous CASE tools used by collaborative

MDE software projects.

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 52 of 105

Galaxy ’ R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

6.1 APPROACH: DECOUPLING AND SEPARATION OF CONCERNS

In the previous section, we explained how the distinction between edit actions performed in an
MDE CASE tool and artifact actions performed by a collaborative unit helps decoupling the former
from the later. In Figure 7, we propose five separate interfaces to connect an MDE CASE tool to an
instance of the galaxy framework. This proposal constitutes a possible initial blueprint for tasks
T4.1 (architecture specification) and T4.2 (galaxy core framework) of the project that depend on
D2.1. It illustrates how the concept of collaborative unit defined in the present deliverable can be
leveraged for these tasks. The key idea of this proposal is to distinguish between five largely
separate concerns of revision control and provide one interface and corresponding realization class
(or component) for each such concern. These interfaces are described in turn in each of the
following subsections.

6.2 THE GALAXY QUERY API

The API GalaxyQuery provides read-only operations allowing an MDE CASE tool to query the
collaborative units of a galaxy framework instantiation. It includes operations to search for galaxy
users, projects, project participants, collaborative units, push and pull collaboration relations
between remote collaborative units, development history tags, including branches and locks,
model elements, references and views. It also includes diff operations to compare model elements
and views and an audit operation to detect and return inconsistencies in model elements and
views. Finally, it includes the checkOut operation that returns the model element or view found at
the tip of the current branch in the local collaborative unit associated with a given project-user

pair.

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 53 of 105

Galaxy S R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

package ReifiedActions Refs DomainModel [Gahxy]) GalaxyAdminA Pl

Galaxy +addUsen(name : String, url : String) : String [Case
Framework +mbUser(userld : String) . . . Tool
+addProj(name : String, projDescr : String, creatorkd : String) : String

vGaIaxy' +mProj(projk : String) <<use>>
{Admin - — — — — — — — — — — — — — — = — — ~1 +add ProjPartic(projid : String , partict : String)

+mProjPartic(projid : String, partic H : String)

+addPullRemote(projid : String, puller ParticH : String, pulleeParticH : String)
+mPullRemate(projid ing, pulerPartic b : String, pulleeParticHt : String)
+addPushRemote(proji : String, pusherPartick : String, pusheePartick : String)
+mPushRemotes(projid : String, pusherPartick : String, pusheePartick : String)

GalaxyQueryA Pl

HistUsers () : Participant [1]

Hist Projects() : Project [1]

Hist Proj Partic(projid : String) : Participant []

Hist Partic Proj(userH : String) : Project [1]

+get ColabUnit(projH : String, particld : &ring) : Collab Uni
HistPullers(projid : String, particH : String) : ColabUnit []
HistPulle es(projkd : String, partickd : String) : CollabUnit ['] i cuse>? |
HistPushers(projH : String, partick : String) : CollabUnit []

HistPushees (projM : String, partickl : String) : CollabUni

HistTags(projt : String, partick : String P..1], wuld : String [0..1]) : Tag [

HistBranches(proji : Sring, partick : String [0..1], vuld : String P..1]) : BranchTag []

HistLocks (projH : String, partickd : String) : LockTag []

+getivbdelBt(projl : String, meld : String, partic H : String [0..1], atTagD : String [0..1], atRev : hteger [0..1]) : ModelBt
+getivbdelRef(projk : String, mrH : String, particld : String P..1], atTaglD: String P..1], atRev : hteger [0..1]) : ModelRef
+get\iew (projk : String, partick : String [0..1], atTaglD : String [0..1], atRev : hteger P..1], view H) : View
+diffiviode IBt(projkd : String, mel : String, locaPartick : String, remoteParticH : String) : NeDiff

+diffview (projt : String, view H, String, localPartick : String, remotePartick : String) : view Diff

+checkOut(projid : String, particld : String, vuld : String) : RevisionUnt

+audit(projH : String, partick : String, vuld : String) : hconsistency []

Galaxy
— Query F — — — — — — — —
|Processcr

GalaxyLocal RevisionHstoryA Pl

+evert(projtl : String, partickd : String, wul : String, toRe v : Integer P ..1])
+ag(projt : String, partick : String, wu H : String, tagName : String, taghtsg : String P ..1], atRev : Integer [0..1]) : Tag
_______ —pHenameTag(projk : String, partick : String, wull : String, tagName : String, new TagName : String) <<uses>
+delTag(prok : String, particH : String, vuld : String , tagName : String) - -
+addBranch(projK : String, particd : String, vuld : String, branchName : String, branchég : String): BranchTag
+sw itchTo(projid : String, partic H : String, vuld : &ring,toBranchMl : String)

+ebase(projld : String, partick : String, wull : String, branchd : String, hH : String, B ht : String)

Galaxy

Local
= Revision

Hstory
Management

Galax yRevisionNotificationA PI

Galax i +publish(projid : String, wuld : String, fromPartick : String, toPartick : String, commitkd : String)
L Revi iyn - +publishTag(projt : String, vuld : String, fromPartick : String, toPartickd : String, tag : Tag)
" 1 Noti:ilcsatoion -0 0 7 +publishRenameTag (projt : String, vuld : String, fromPartickl : String, toPartickl : String , tagName : String, new TagName : Stnng) <use>>
L +publishDelTag(projid; String, wuld : String, fromPartick : String, toPartick : String . taglD : String)
Hock(projt : String, wuld : String, fromPartick : String, forPartick : String , lockivisg : String, atBranchH : String P..1]): LockTag
+unlock(proj : String, wul : String, fromPartickd : String, atBranchkd ..1] : String)

GalaxyModel RevisionA Pl

- +commil(projM : String, partick : String, wvull : String, wu : RevisionUnit P..1], EltTrace : VuAction ['], msg : String) : Conmit
e Galaxy +commitg(projk : String, partic H : String, vuld : String, vu : RevisionUnit [0..1], EdtTrace : VuAction [], msg : String) : Eror []

Modz| —1> 4clone(projid : String, toPartick : String, wull : String, fromPartict : String, sub\iew forlield : String [0..1], atTagH : String [0..1], atRe v : hteger P ..1]) <<uses>
| Revision +Hmerge(projHl : String, toPartic H : String, vuld : String, w ithBranchk : &ring, out : Eror []) : Bookan == -
+update(projid : String, toPartickl : String, vull : String, fromPartict : String, atTagh : String P..1]) : Bror []
+esolve(projt : String, partick : String, conflictid : String, prefe med Author B : String)

Figure 7: Interfaces between the galaxy framework and MDE CASE tools

This model element or view is passed to the CASE tool to provide the context for the next
Revision Unit revision sequence executed by its user. The basic operation cycle executed by such a
participant through a CASE tool connected to the galaxy thus consists of the three step sequence
checkOut, revise, commit. Optionally, a lock can be additionally executed before the revise, with an
accompanying unlock after the commit. There is no revise operation in galaxy framework API, since
model and view revision actions are executed only by the CASE tool on its owned internal model
representation. The revise action sequence is then passed to the galaxy framework instance as a

parameter to the commit operations of the APL

6.3 THE GALAXY ADMIN API

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 54 of 105

Galaxy R

<Title> PROJECT: GALAXY ARPEGE 2009

REFERENCE: DX.X
<subtitle> DATE: 25/02/2010
ISSUE: XX

The API GalaxyAdmin provides operations to administrate the galaxy. It includes operation to
add and delete users and projects to and from the galaxy, to add and delete users to and from the
participant list of a project, and to establish and close push and pull collaboration relations
between remote collaborative units. The network formed by these collaboration relationships
defines the collaborative workflow for the project.

6.4 THE GALAXY LOCAL REVISION HISTORY API

The API GalaxyLocalRevisionHistory provides operations to create, delete and navigate among
tag objects of a collaborative units. The collaborative unit design presented in section Erreur!
Source du renvoi introuvable. and inspired from the data structures used by state-of-the-art
DRCS for code-driven software engineering such as git, hg and bzr allows decoupling these
operations from the ones that manipulate the artifact objects that contain model element and view
versions.

6.5 THE GALAXY REVISION NOTIFICATION

The GalaxyRevisionNotification API provides operations allowing a collaborative unit Cu to
notify remote collaborative units, which are registered as puller of Cu, that stable new revisions
are available at Cu. It includes operations to notify the creation of new commit objects (and
consequently of the new artifact versions to which this object points) and new tag objects,
including branch and lock tags. It also includes the operation unlock used to notify release of a
lock tag.

6.6 THE GALAXY MODEL REVISION API

The GalaxyModelRevision API provides operations to exchange model elements and views
among a CASE tool, the local collaborative unit to which it is connected and the remote
collaborative units from which to pull updated versions of these elements and views that were
concurrently committed there by local collaborative units of other project participants.

These operations include:

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 55 of 105

Galaxy ’ R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

- cloning part of a remote collaborative unit into the local collaborative to initiate collaboration on a model
element or view;

- committing from the CASE tool a new version of a model element or view unit, either to the local
collaborative (decentralized workflow, using the commitl operation), or to a single blessed reference
remote collaborative unit (automated centralized workflow, using the commitg operation);

- merging two development branches available at the local collaborative unit;

- updating the local collaborative unit with a new version of a model element or view pulled from a remote
collaborative unit; this sometimes involves performing first a merge between two change sets executed
concurrently by two different participants on their respective CASE tools;

- resolving the conflicts that can result from a merge attempt.

6.7 THE GALAXY CLASSES REALIZING THE GALAXY APIS

One possible simple architecture blueprint for the galaxy framework, shown in Figure 7 and
Figure 8 and, is to include one class (or component) to realize each of the five APIs described in the
previous section. Although not shown in Figure 7 for conciseness’s reason, each such class would
possess one operation for each operation in the API that it realizes. These class operations would
realize the services offered by the API operations by calling the general operations defined in the
collaborative unit definition of section 3

Many such calls are fairly straightforward since the operations sets offered by the proposed
galaxy framework API on the one hand, and defined in the classes defining the collaborative units
on the other hand, are very similar. The main recurring differences between their respective
signatures are the following. The first results from the fact that there is a distinct collaborative unit
for each project-participant pair, whereas a CASE tool may be used by several users to participate

to several projects

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 56 of 105

Galaxy

<Title>

<subtitle>

PROJECT: GALAXY ARPEGE 2009

REFERENCE: DX.X
DATE: 25/02/2010

ISSUE: xX.x

package ReifiedActionsRefsDomainMoadel | RevisionStrategy U
s Galaxy Galaxy ccuses> ModelFragmentationStrategy
AT 1 Prt?:eesr!or LT T Tl +map(va: VuAction [1.*]) : AfAction [1..*]
+map(me : ModelElf, out pu : ProductUnit [4], out ru: ReuseUnit [1])
+map(v : View) : MethodUnit [0.. 1]
1 Galaxy +map(ad : AfDIff) : VUDIf [1]
1 L. Local
5 1 Revision [“<US&” >
: History :
Managem ent
H Py <<use>>
. Revision _ = = <<use>>
Notification K — — —
I 1
s |
Galaxy N
- | Model | <<use>> |
v Revision |
i M ergeStrategy
2 <<use>> . +mergeMe(med : MeDiff, out me : ModelElt [0.. 1], out ¢f Conflicl[*]) : Boolean I
+mergeMa(mad : MadDiff, out ma : Aftribute [0..1], out cf Conflictf"]) : Boolean |
+mergeMr(mrd : MrDiff, out mr : ModelRef [0.. 1], out cf Conflic{[*]) : Boolean
* 1| +mergeView(vd: ViewDiff, view: View [0..1], out cf Conflct[*]) : Boolean |
+mergeMu mud : MuDiff, out mu: MethodUnit [0.. 1], out cf Conflictf*]) : Boolean |
+mergeRu(rud : RuDIff, out ru: ReuseUnit [0.. 1], out cf Conflict [*]) : Boolean
1 +mergePu(pud : PuDIff, out pu: ProduetUnit [0.. 1], out cf Conflict[0..1]) : Boolean |
InconsistencyAuditStrategy |
+audit(me : ModelElt) : Inconsistency [*]
+audit(v: View) : Inconsistency [Y] = | — — — —~ __ o o - L o |
+audit(mu : MethoaUnit) : Inconsistency [*]
+audit(ru : ReuseUnit) : Inconsistency [*]
+audit(pu: ProductUnit) : Inconsistency [1]

Figure 8 : Revision strategy

Therefore, the API operations include two additional parameters to identify the project

concerned by the operation call and the participant executing it. The second difference between

galaxy framework API operation signatures and the collaborative unit operation signatures results

from the decoupling in the galaxy framework between Revision Units (i.e., model elements and

views) on the one hand, and the artifacts (i.e,, product, reuse and method units) used to

persistently store them for revision control. Therefore, while the API operations include Revision

Unit parameter identifiers, the collaborative units include artifact identifiers. The classes realizing

the galaxy framework API must therefore maps the former into the latter, by using the

relationships modeled as associations between the two shown in Figure 4. The third differences

between the respective signatures of operations in the galaxy framework API and collaborative

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 57 of 105

Galaxy ’ R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

unit definitions is that where the former includes version unit action sequences the latter includes

artifact action sequences.

As shown in Figure 8, the classes realizing API operations that contain parameter which type is
an action sequence or control meta-data represented using such sequences depends on the
mapping from Revision Unit action sequences to artifact action sequence encapsulated into a the
specific model fragmentation strategy chosen for a particular project. Figure 8 illustrate the key
idea of the proposed abstract galaxy framework: to be configurable through the specialization of
three abstract classes that serve as intervening processing layer between the operations of concrete
classes realization the galaxy framework API and the corresponding operations of the
collaborative units and their components.

These three classes are

- ModelFragmentationStrategy, which define how to group model elements and views in product,
reuse and method units;

- MergeStrategy which defines, whenever possible, how to automatically merge pairs of differing
product units, reuse units, method units and the model elements and views that they
persistently store;

- InconsistencyAuditStrategqy, which defines what constitute an automatically detectable
inconsistency in a model element, a model view, method unit, reuse unit and product unit.

A concrete revision strategy consists of an assembly of one concrete specialization of each of
these three classes. Figure 8 also shows which of the classes realizing the galaxy framework API

depends (i.e., uses the operations) depends on which of these three strategy components.

7. AN EXAMPLE OF COLLABORATIVE UNIT LIFECYCLE

The previous section showed a high-level blueprint for a galaxy framework that leverages the
concept of collaborative unit defined in the preceding sections to support collaborative model
construction. The present section gives a simple illustrative example script for such construction

using the framework outlined in the previous section. This script involves three participants

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 58 of 105

Galaxy ’ R

<Title> PROJECT: GALAXY ARPEGE 2009

REFERENCE: DX.X
<subtitle> DATE: 25/02/2010
ISSUE: XX

respectively called yb, jr and xb. The collaborative workflow pattern instantiated in this script is
the single blessed repository managed by a human gatekeeper. The gatekeeper is responsible for
creating the project in the galaxy, registering its participants, setting up the appropriate
collaborative relationships between them, and guaranteeing the consistency of the blessed
repository. In the script, galaxy user yb is the gatekeeper, while the two other participants jr and xb
are mere developers.

7.1 CONFIGURING THE COLLABORATIVE WORKFLOW AMONG GALAXY USERS

Before leveraging the galaxy framework to construct a model, a preliminary step is required. It
involves registering users to the framework, creating a project, assigning users to the project and
defining the workflow that these users must follow to collaborate on the project.

The preliminary step of our illustrative example script is shown in

Figure 9 in the form of a sequence diagram with eight lifelines:

—_

. ybCt representing the CASE tool of the gatekeeper yb;

. jrCt representing the CASE tool of developer jr;

. XbCt representing the CASE tool of developer xb;

. GalaxyAdmin representing the GalaxyAdmin API

. pjl representing the collaborative MDE project;

. yb representing the project participant and gatekeeper yb;

. jr representing the project participant jr;

x® NN o g s~ DN

. Xb representing the project participant xb;

The diagram features 17 messages between these lifelines that illustrate the detail usage of the
GalaxyAdmin API to initiate a project and set up a given collaborative workflow. Messages
number 1-9 create the project, register the three galaxy users and declare them as collaborators of
the project. Messages number 10-17 define the collaborative workflow for the project.

They allow the gatekeeper yb to push and pull revisions to and form the collaborative units of
both jr and xb. Conversley, both jr and xb can push and pull revisions to and from the

collaborative unit of yb. However, jr and xb cannot connect to each others’ collaborative unit. They

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 59 of 105

Galaxy ’ R

<Title> PROJECT: GALAXY ARPEGE 2009

REFERENCE: DX.X
<subtitle> DATE: 25/02/2010

ISSUE: X.X

thus only collaborate indirectly through the mediation of the gatekeeper yb. This is an example of
distributed revision control workflow that still retains some centralized communication aspects
Having presented the preliminary configuration step of our illustrative script, we can now
proceed with presenting its model construction and revision steps. This is the object of the next
eight subsections. Each such section follows the execution of one revision step in the example
script. It contains a stereotyped class diagram that shows a content snapshot for the three
collaborative units involved in this three participant script. In these diagrams we use UML
packages for two distinct purposes. The first use is to represent the three collaborative units of this
galaxy instance. By convention, each collaborative unit is called by adding the suffix Cu
(Collaborative unit) after the name of the participant owning it. The second use of UML package is
to represent UML model element of metaclass Package. By convention, packages representing

collaborative units are white, while packages representing UML packages are blue.

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 60 of 105

5
X
3
8
Q

ARPEGE 2009

PROJECT: GALAXY

<Title>

REFERENCE: DX.X

25/02/2010

DATE:

<subtitle>

xX.x

ISSUE:

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

uedidnied : qx

(ah=plompediaysnd ' d=pjloid)ajowayysndppe 21
(ah=piompediaind * Ld=plloid)ajowayindppe ‘9|

(ah=pioiuediaysnd ' d=pllo.d)ajowayysndppe 5|

(ah=piompediand * Ld=plloid)ajowayindppe |

(gx=pjopediaysnd ' Ld=pjlo.d)ajowagysndppe €|

(ax=piouediand * Ld=plloid)ajouagindppe i

(l=popediaysnd ' d=pjloid)ajowayysndppe |1

(l=pjopediaind * Ld=pilo.d)ajowagindppe 0L
(Woa gx=pn)iasnppe 8

(Wwoo il=ln)iasnppe 9

11111111111111 _ — _ _ _ 1 _ _ _ _ 4
1d g | |
(loidppe € | |
(woo nunB=|In)Jasnppe :| | | |
joo} oo} 100}
Axepes : ase) :1oqx ase): il ase) :0gh

? Blyuoodeliod Lduasuoneple @_ 16yu0d e Lidiosuoneple,, uonaelaul

Setting up a collaboration workflow between three Galaxy users

Figure 9

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 61 of 105

Galaxy R

<Title> PROJECT: GALAXY ARPEGE 2009

REFERENCE: DX.X
<subtitle> DATE: 25/02/2010

ISSUE: X.X

In addition to this dual use of packages, another non-standard notations used in these snapshot
diagrams are stereotypes of the form <<vN>> where N is an integer. When it decorates packages
used to represent a collaborative unit, N represents the step in the script to which the collaborative
unit state shown in the diagram corresponds. When it decorates a model element, it represents its
revision number. A third non-standard notation used in these model revision script snapshots are
dependency relationships between packages representing collaborative units. Each such
dependency is stereotyped by the galaxy API operation call sequence that triggered information to
be sent from collaborative unit source of the dependency to the collaborative unit target of the
dependency. Operations call sequences are represented by calls between curly brackets and
separated by semi-colons in both the dependency stereotypes and the notes associated to them.

7.2 STEP 1: BLESSED REPOSITORY GATEKEEPER CREATES FIRST VERSION OF THE
MODEL, PUBLISHES IT AND THE COLLABORATORS CLONE IT

During this step, shown in Figure 10, the gatekeeper participant yb uses his CASE tool to first
create an initial version of the UML model to build collaboratively leveraging the galaxy. For this
purpose, he calls the commit operation twice, first with a parameter instantiated by a model
edition action sequence, ypMdEasl, and then with a parameter instantiated by a view action
sequence, ybVwEasl.

The execution of these operations results in:

- A UML model in which a package Pkl containing two classes, Cl1 and CI2, the latter
generalizing the former;

- A commit object ypMdCol that points the artifact containing the elements of the UML model.

- A UML class diagram showing all the model elements, references and attributes of the UML
model;

A commit object ypVwCol that points to the arefact containing the diagram representation of the

UML model.

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 62 of 105

Galaxy

ARPEGE 2009

: GALAXY

PROJEC

<Title>

REFERENCE: DX.X

25/02/2010

DATI

<subtitle>

xX.x

ISSUI

{(sleu'z 2" Bp iy moys z2o
(z19"1Bp 1@ Moys
‘(1Bp'ssejo) MaIp Mau } <) A>>
= (z19)108185<-| SBMAQA noqx
< << A>>
N

) N
{{af'z19'1BpJauojo DX |
{(ah'zI0)8u00 10 0%} |
/

/
{:(.zI0. sweu'zp)le AppE < === —/— = — =]

4}e)

<<l A>>

LD
<<l A>>

((Z19'sse|0)1g mau }

noqgx
= (Z19)108]9 5<- |, SETPINAA 24

|<0r>

{100 MAGA ‘ax'1.Bp)ysiiand 10 aA
{(LooPNGA ‘ax'id)ysignd 1Dak}

id

<<| A>>

{(11oZ 16" 19" 01108ds 71, B)joy mau
(Z19z16'z10'ledousb 'z 6))ey mau

‘(z1B1xd 16" uswegpebexoed |yd)jedppe
(z16'uone z|elsush jy3 mau

(LTI0. sweu'zo)le Appe
(zroxd ziouswegpebesoed |yd)jeyppe
(g12'ssep g mau

(110, e’ L |o)le Appe
(Loxd Lo uswegpebesoed |yd) jedppe
((119'sse0 i3 mau

(uid,sweu’ yd) e Appe
(1yd'ebeyord))g MU }
= |, Se3pNGA

— —{(100 MAGA' L sE9 MAGA"| Bp 00 10k
(10PN aA"| se3PNAA" LY AW O 1DAA}

N Tndqhk
| <<|A>>

J_.|||

|

lc<on>>

n)qhk

[4be}

<<) A>>

<< A>>

1}e]

id

<<| A>>

{(qA'16p)euojo 101

‘(g yd)euciopaf} |

A

noual
<< A>>

|

{too-mAQA Il Bp)usignd 1094

“(1LoopnaA al d)ysignd 1094}

{(z1oz16"16p)joy moys
(119716 L6p)sey Moys
(z16'16p g moys

(sweu'g|o' L 6p)my moys
- (zro1d'LBp)yey moys
(210" Bp)yg moys

(aweu' 119" 6p)my moys
(11o1xd"LBp)jey moys
(11916)Ig Moys

((sweu’xd'|,6p)y moys
‘(1xd'LBp)ya moys

((1Bp'ssejo) malp mau }
= | segMAQA

N

nJal
<<QA>>

m L eoed] |1duosuonepiie [] 13duosuonepnie suosovpeliey eBeyoed

it gatekeeper creates initial UML diagram and publishes it.

1ve un

Blessed collaborati

Figure 10

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 63 of 105

Galaxy R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

After having called these two commit operations, the gatekeeper yb calls the publish operation to
notify the collaborative units of the two other participants, jr and xb, that a new model and a new
view of it are now available. As parameters, these publish operations contains the commit objects
that were created by the corresponding commit operations.

Upon receiving the notification, both jr and xb then concurrently call the clone operation to
create copies of the model and diagram in their respective collaborative units. jr clones the model
elements (and corresponding diagram) from the top-level element package Pkl. In contrast, xb
clones only the model elements (and corresponding diagram) from the nested element CI2. At the
end of this step, both yb and jr then possess identical full models and views of the project’s initial
version in their respective collaborative units, whereas xb contains a partial copy of both with only
Cl2.

7.3 STEP 2: CONFLICT FREE CONCURRENT REVISIONS OF THE MODEL BY
COLLABORATORS

The next step of the script is shown in Figure 11. This step starts by jr and xb concurrently
making changes to their respective copies of project’s first revision. They do so by calling the
commit operation twice, one to persistently store in their respective collaborative units the change
they made to the UML model elements and another one to persistently store in their respective
collaborative units the changes they made to the UML diagram. This practice of making two calls
to galaxy framework API operations, one to manipulate model elements, and another one to
manipulate views and diagrams that show some of these elements, will be maintained throughout
the presented script. We chose it to illustrate how the concerns of model revision (in our case the
UML model element containment tree) and model view revision (in our case the UML class
diagram displaying chosen elements in this tree) can be cleanly separated while using our
proposed concepts of collaborative unit and galaxy framework API. However, it does not
precludes a specific implementation of this framework to (a) force diagrams to be attached below
some model element in the containment tree and (b) have a single call to the galaxy API operation

to simultaneously execute on a model element and its associated diagrams. After locally

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 64 of 105

Galaxy ’ R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

committing their respective changes to their collaborative units, jr and xb then make them

available to xb by (concurrently) calling publish operations. Note that this operation is merely a

notification. It does not trigger any form of automatic update in the target collaborative unit.

Hence, after the execution of these publish operations, each of the three collaborative units of the
galaxy contains a distinct UML model:

- yb’s unit contains a diagram showing a package Pk1 containing a class CI2 with no features generalizing a
class Cl1 also without features;

- jr's unit contains a diagram showing a new revision of package Pkl that contains a new enumeration E1
with two literals 11 and 12, in addition to ClI1, CI2 and the generalization between the two that it shares
with the revision in yb’s collaborative unit; in jr’s version, CI2 also contain a new attribute al of type E1

- xb’s unit contains a diagram showing only a new revision of the class CI2 with two new attributes, a2 of
type integer and a3 of type string.

- In all three units, the diagram provides a full disclosure of the UML model elements, references and
attributes stored at that unit.

After receiving the notifications from both jr and xb, yb decides to first update his collaborative
unit with the changes made by jr in his. The update operation calls a merge operation that take as
parameter (a) the current base revision of the model element (or model view) stored in the local
collaborative unit and (b) its more recent revision published by a remote collaborative unit. In our
illustrative script, since the changes made by jr in his collaborative unit (remote for yb) were mere
monotonic additions of new elements, the automatic merge (and thus the update that called it) of
xb’s collaborative unit with jr's succeeds and triggers no conflict. It results in xb’s collaborative

units being successfully updated with the content of jr’s.

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 65 of 105

Galaxy

ARPEGE 2009

: GALAXY

PROJEC

<Title>

REFERENCE: DX.X

25/02/2010

DATI

<subtitle>

xX.x

ISSUI

{ (nsce’1bp)Jay moys
-(103s"L6p)iE moys
“(£eg2'1bp)Jad mous
‘(€e"16p)1a mous

‘(nsze' 16p)yay moys
‘(i1 6p)1g Moys
!(zeg2'1bp) sy moys
‘(ze'1op)igmoys } |-
= | SEIMALX |-

|

-+ {(ZOOPG X' |SET MAL X LBP)ILLIO IO X - -
“(Z0DPING XL SEIPNAX' 1 2L 300X }

]
1]
[E] 1
<<U0/jEIALNUE>> =]
<< | A>> L . . L .
{(gxz)aepdniouA <
fus : ger L axaoaendnoak)
smﬁmh : NFNH : - M a e
a TR o 2 Bere
<<f o> << LAs> 40 all—>
o o id
Pid {(rispyeepdnionk 1 <<z o>
<<EA>> S Enumﬁun:dgb\ |

bus :ge+
1abau| : Ze+

(AR}

<<TA>>

nogh
<<f o>

DG P

a1 [Lo
<< A= << o>

noqhk
<<TA>>

&« — — — — — — —

| (zooax'a A 1Bp)ysyand 100 x

... nogx
<< h>>

|
=
|

Hzoopwaxa A pidusiandiogx }

Wid | | (2o marrak' iBp)ustand-ouf
<<Lh>> | | (zoopufia &' prdusiand o) }

‘(nsge'ns'ad fy'ce)syppe
L(ns'Bulys)yg mau

‘(£Eg)9'€R NN YPBU MO'Z|2)J5HpPE
‘(,ge ALeU’'ee)le Appe
‘(ge'Apadoid)yg mau

‘(uize'ns'ad fy'ze)jsgppe
‘(u‘1ahaunyg mau
‘(zezIa'ze'sInaLy ypaU Mo Z)9)Jadppe
‘(.. Aueu'ze)e Appe
‘(ze'Auadosd)ygmau }

= | se3pwax

N

noak

<< o>

{(Zoo MAILSEI MAIL 1BP)ILLLIO 30
‘(zeopmr ﬁmmwsa P00 } - I

/

N

{ (la1e’La'ad ' |e)jsdppe

“(1EZ| 2" LB BN YR aU MO'Z)2)jsgppe
{(u1e ALEU’ LB APPE
(1e'Apadoid)yg mau

‘(.21 aueu'z)e Appe
‘@187 e lnpaumo’ |a)jsyppe
{(Z11es2)UONE JANUE)YT MEU

“(ub1, .U’} e AppE
lelsyrpaumo’ 1a)jsgppe
EJ3)MUONE JALINUS)3 MBU

‘e

‘(13 pd |a"wauazpabey sed'pid)jsyppe
‘(.13 2weu’ |8)e Appe

‘(18'uone Jawnua)ygmau }

= |segpml

al
]

13
<<UoljeJjaunuas=
<< o>

13 1.+

a L
<< o> << | As>

bid
<<TA>>

A Thoal |
N << o>

~ R
~N
~
N _
L { (12 18" 16p))2y Mous
a0 (1eZ|2'16p) J2d mous
S ‘(L& Bp)ya moys
[N
:] eweu' i Bpy mous
i) (2113'16p) J mous
i (' 6p)ya moys
(Bweu ' |Bp) 1Y moys
a | | ‘(1113 15p) Jay mous
<<l s> <<l s> “(11'1Bp)3 Moys
1id ‘(Jaiid' 16p) jag Mmoys
<< A>> (eweu’ 13 |Bp)In Y Moys
‘(181 Bp)yaMoys }
. naal = |segmAll
. << Ao A

: ﬁ 73381 Pl Iguolieple A m] pduaguohepnie ASuoI vpaliay abexoed

ions made by two collaborators

iagram revis

Conflict-free concurrent d

Figure 11

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 66 of 105

Galaxy ’ R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

Then yb attempts to update his collaborative unit with the changes made by xb in his. Since these
changes were also mere monotonic additions of new elements that were completely orthogonal to
those concurrently made my jr’s, this update also triggers no conflict and succeeds.

Step 3 continues at the top of Figure 12 that shows yb notifying both jr and xb that he just
updated the content of his collaborative units with the content of theirs. He does so by calling the
publish operation, once for the package pkl model element, and then a second time for the
diagram dgl. One important parameter of the first call is the commit objects xbMdCo3 that fills the
tip role of the main branch of yb’s collaborative units. For conciseness” sake, in Figure 12 and the
rest of the script, we omit to show this main branch when it is the only one present in a
collaborative unit. It is the third commit object for the pkl model element in yb’s collaborative
unit. The first such commit object was created as a result of yb’s initial commit. The second one
resulted from the update operation that merged the result of this initial commit with the changes
introduced and published by jr’s first changes to package pkl. The third commit object resulted
from the update operation that merged the result of this second commit with the changes
introduced and published by xb’s first changes to the class CI2. Similarly, an important parameter
of the second call is the commit object xbVwCo3. Just as xbMdCo3, it also fills the tip role of the
main branch of yb’s collaborative unit. But instead of pointed to the current third revision of root
model element pkl, it points to the third revision of the diagram that visually displays this model
element, together with its contained elements. Therefore, yb’s collaborative units contains two
parallel revision threads of commit objects on the main branch: one representing the history of
artifacts persistently storing the model elements, and one representing the history of the model

view provided by the class diagram.

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 67 of 105

Galaxy R

<Title> PROJECT: GALAXY ARPEGE 2009

REFERENCE: DX.X
<subtitle> DATE: 25/02/2010

ISSUE: X.X

7.4 STEPS 3 CONFLICTING CONCURRENT REVISIONS OF THE MODEL BY
COLLABORATORS

At this point, jr and xb resume to work in parallel, each one updating their collaborative units
with the changes published by yb. On jr’'s side the update simply results in incorporating the
attributes a2 and a3, originally introduced by xb, into to the class CI2.

On xb’s side, the situation is more complex due to the different scope of the models stored in the
respective collaborative units of yb and xb: the whole package Pkl in yb’s but only the class CI2 in
xb’s. Since xb remains interested in working only on Cl2, considering that the other elements of
Pk1 are irrelevant to his current modeling concern, he calls the update operation on CI2 and not on
Pkl. As a result, he gets the new attribute al for class Cl2. However, the type of al is the
enumeration E1, which is defined outside of the scope of xb’s current model.

This example points out to two possible alternatives for the detailed semantics of the update
operation in this case. The first is to maintain the scope of xb’s local copy of the model under
construction to class C12 and warning him that the type of the newly added attribute al is outside
of this scope, and therefore a dangling reference from a local perspective. The second possibility is
to have update automatically extend the scope of xb’s local model so as to avoid such local
dangling references. In our particular case, this involves applying to xb’s current model, the action
sequences corresponding to the creation of Pkl, the creation of E1 and the creation of the nesting

references from Pk1 to Cl2 and E1.

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 68 of 105

Page 69 of 105

ions made by two collaborators (part 1)

=
=
¥ =3
g N
S
o s
S 2
=3
o~
0
&)
g @
M N . . .
{ (g01£6'g1p" y10ads’ | gB)yagppe '
vvvvvvvvvvvvvvvvvvvv (110 1£6' o' BIauab' LeB)jauppe Amwmw ”mwwm%%w ;
(€26 pid'ezb' Wawapgpabesoed id)jayppe e LBp)amous al
(1£6' Uogezye1auzb)yamau U
(aweu'gd’ |Bp)apymoys 1
(.£D. aueU'go)e APpE ‘(1o pid LBp)sagmoys <<UonEIaWNUS>>
(g1 et wawapgpsbexoed' |id)adppe : d A
........... (Elo'ssep)yIMau |- e’ 1Bp)yIMoys | <<|A>> I
o 5 - . (gel12' LBp)saymoys BULS : gB+
M S {ge'ee oﬁa_hgvo:&mmurm_w%oﬁﬁw (1eyo’ |Bp)jagmoys uesjoog : ze+ 13: e+
I BULIS : B+ ’ (oocze" 75} [TE)
= " f— | ‘(joocge’ |Bp)jaygmoys
M D M ,,,,,,,,,, Jabay : e+ Jaba) @ e+ (legp'ee 053:«33:3% w:ov__vww_um._m._ ‘(poq’ LBp)yamoys } <<Zh>> <<ZA>>
. €10 FTe) Rlatia =zeamAl
© M <<|A>> <<ZA>> ‘(jooqze' pog'adAy ze)sayppe | m. - id
E ﬂ i} ‘(j00q' uB3j00g)YIMaU ~ \ <<EAS>
$ & 3 Did : Guluun . .
& 2 <<GA>> =ze3pil . . nvou\s>h_.NMmm>>>h_. prd)punuos il - noi
x X N ©(poopyiizseIpnl pipuwoapa} | | <spAe>
Cp | <epnes : : { (cecp'ce'anauywpaumo'spyagppe | 0 o b o
v S - _Enm_w:omé S 5
Wz Ly LBP)IaMMOUS - H(poomaax zseamaax 1Bp)auwos ax (cegp'zeanqupypsuUmo Ep)agppe |
xwzmr___ P ﬁmwwsm;ouw 1 ,Asougnx«&musg/x PRjumioo o } (esE S 4
(1nd" 1Bp)yamous } - = = . = o (Z1pezh glo'o0ads g Zh)sauppe (2]
...... = |SEIMAGNSIR R CRLERTEE R P G ouab e ouhhe <loRIAWNUES>
zl o 3 <<|A>>
) -) 0 : : | fezbuid e wawagpabeoed Ld)axppe
{ (zp1d o' wawajpabeyoed |yd)jayppe . e\ . . ‘(czb'vonezeiauab)ygmau
| (ubAd, aweu' pyd)iesppe 13 { (eecp' LBp)Jaymoys o buus : ge+
(pid'abexped)ygmau } 1 < cuopeiswnuass (zeep' 1Bp)jaymoys (€10, 2WeU' gp)eAPPE 1aBa) : ze+
...... = Ise3ppansud <<A>> 62 1BP)JeuMOUS gm_u:_n_mv,Euem_mBmwm_omn,Fiw_emuuw R 130 e+
(g10'ssER)yaMau
1LoOMAL e (EI0EZB LBp)JaHMOUS . @) L
pue joJpil Ul |3 0} sasuaie)al uiajoau 19623 Y e+ (ezhb 1’ LBp)aymoys (qui e adAy 12)ayppe . : <<ZA>> <<TA>>
20ouanbaggns uoloe Ppa ay} |PIMAGX pue i ‘(aweu'gld |Bp) Iy Mmoys {12)y31ep
LOoPIIGX Paysignd snoiaa.d sy woy 123ps 13- 18 (€1 1Bp)yamoys (Jale)janun } wid
0} (ifz[o)aepdn saunbal yuj yans Buiiy P16 . — zseapnax|. <<gh>>
210 U pauyap jou si 13" e Jo <<gh>> (1 L6p)yaamoys })
adAy ayyaouis yui Buibuep e ulynsal pjnom = ZSEgMAPX A_ . . 7 TVl
] ‘212 uo uonawupT Lol Buikeld Ajaiai Pid : © (gh"yBp)erepchll | ms
AN <<pro> Aok pi)aepdn o} | | <sEAs
,,,,,, . A : : ; - ;
\ mgx 2l
: : <<Ch>> 1] zl
.......... :n.>.._‘_m3vﬁun:.~.odx S — 13 1]
.S> Nuvuﬁunzng v”_ <<UONRIAWNI3>> 1
[<<|AS> <<Uoljelaunuas:=
BullS : gB+ << A>>
Bha : ze+r funs :ge+
L L - 2B : ze+ T T 13: 1+
a . : ;
<sgas> | | {(goomaakiaxibplusiand pak 42y B b Lot a0 [TS)
. {eocpniakax’ pRDusiand Hak } 78] Al_ wa ||| <<zhs>[" | <<hs>
<<CA=> << A
id
............... Md S Lrer
<<ChA>>
> = ==
a A A nJqk |e<gas>
— h 5 <<EA>> : T
N - Bl | T o
-~ =
O _n 3 a gaoeu] pduosuotepie &) 1 1idussuonepniessuonoypayiay aBesped
%

lagram revis

td

1ng concurren

Conflict

Figure 12

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Galaxy R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X
<subtitle> DATE: 25/02/2010
ISSUE: XX

At this point, it is worth to notice several things:

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 70 of 105

Galaxy ’ R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X
<subtitle> DATE: 25/02/2010
ISSUE: XX

The two publish operation calls that yb sent to xb’s collaborative unit (respectively shown in

Figure 10 and Figure 11) contained commit object parameters; recall from the collaborative unit

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 71 of 105

Galaxy R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

definition in

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 72 of 105

Galaxy ’ R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

Figure 1 that such object points to the action sequence used to insert the committed model and
model view elements inside the artifact persistently storing them for revision purpose. If we
assume that xb’s collaborative units upon reception of the publish notification from yb’s
collaborative units, persistently stored the uuids of these remote commit objects, it can now
request the sub-action sequences, remotely stored under these uuids in yb’s collaborative unit, that
its update operation now may need to minimally extend the scope of xb’s partial copy of yb’s
model so as to resolve its dangling references.

- This scope extension is not total, since class Cl1 is still not included in xb’s model; indeed, it is not yet
relevant to his current focus which is CI2, since there is no reference from Cl12 to Cl1; while Pk1 is also not
directly relevant to xb’s current concern, it is the common container of CI2, E1 and the reference from CI2
to E1; thus, the new scope of xb’s model must include it if it is to possess a single top-level containing
model element which is often required by CASE tools;

- Had xb chosen in the first step of the script to clone the entire model rooted at Pk1 to start working on the
project, instead of cloning only the sub-model rooted at CI2, he would have avoided the need to either
accommodate himself with a locally dangling reference or to require update operations with built-in
scope extension preventing dangling references.

This simple example illustrates the trade-offs involved in choosing between potentially partial
collaborative unit cloning, commits and updates and only global ones. While the former possess
on-demand information flavor that seems more scalable at first sight, the latter allows the
collaborative unit operation implementation to be far more simple. All three major DRCS for code-
driven development, git, hg, and bzr only allow cloning, committing and updating of an entire
project in their current releases. Only the experimental subtrees library of git [8] allows partial
cloning, committing and updating. However its usage has not yet been tested on large software
projects. Concerning this issue of global vs. local clone, commit and update operations, it is worth
remembering that in our proposal, the concept of revision strategy allows decoupling these
operations as provided in the galaxy framework API from the corresponding ones as provided in
the collaborative unit. While the API operations take Revision Units and Revision Unit actions as

parameters, the corresponding collaborative unit operations take as parameters artifacts and

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 73 of 105

Galaxy ’ R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

artifact actions. This decoupling offers the possibility to explore the trade-off between various
policies with respect with operation scope, without having to change the CASE tools client of
galaxy framework instantiations.

In the rest of this script, we assume that galaxy framework instantiation in use does support
partial cloning, commits and updates. We also assume that the merge operation called by the
update operation implements an automated minimal scope extension of partial models, which
both prevents local dangling references and insures the presence of a single root model element
containing all the others.

With these assumptions, the result of xb updating its collaborative unit from the changes
published by yb at the top of Figure 12 is that xb’s collaborative unit is now rooted at package Pk1,
which contains the class CI2 with attribute al originally introduced by jr and attributes a2 and a3
originally introduced by xb, as well as the enumeration E1 with literals 11 and 12 originally
introduced by jr.

After this update and the concurrent update performed by jr, both jr and xb then concurrently
execute concurrent commit operations. With these operations, jr changes the type of a2 from
integer to Boolean, moves the al and a3 attributes form CI2 to CI1 and adds a new class CI3 as a
specialization of CI1. On his side, xb changes the type of al from E1 to integer, deletes E1 which is
no longer needed with this change (at least from the limited local perspective on which xb
currently focuses), creates a new class CI3 as a generalization of CI2 and moves the attributes a2

and a3 from CI2 to CI3.

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 74 of 105

Galaxy ’ R

<Title> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X
<subtitle> DATE: 25/02/2010
ISSUE: x.x
This step of the script continues at the top of

Figure 13, where both jr and xb concurrently publish these respective changes to the

gatekeeper’s collaborative unit. Like for the first set of publish notification that he had received

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 75 of 105

Galaxy ’ R

<Title> PROJECT: GALAXY ARPEGE 2009

REFERENCE: DX.X
<subtitle> DATE: 25/02/2010

ISSUE: X.X

from jr and xb, yb decides to first update his collaborative unit with content of jr’s. This particular
update execution results in one conflict and two inconsistencies shown in the package Errorsl of
Figure 13.

The conflict concerns the type of the a2 attribute of class Cl2. While in yb’s blessed collaborative
unit this type is integer, in jt’s collaborative unit this type Boolean. Since integer and Boolean are
exclusive types in the UML, this type mismatch is a genuine semantic conflict. As a result, the
respective copies of the attribute, the one in jr’s collaborative unit and the one in yb’s collaborative
unit cannot be merged.

The two inconsistencies concern redundancies that would occur as a result of executing the
merge: the attributes al of type E1 and a3 of type String would inherited by class CI1 from its
superclass CI2 and redundantly defined with the same types in Cl1 itsef. Note, that there are two
assumptions that need to be made about the galaxy framework instance in use for it to return these
two inconsistencies as a result of the update operation call at the top left of Figure 14. The first is
that this update operation automatically calls a merge operation that implements UML2’s package
merge specification. The second is that after the merge, the update operation then performs an

audit operation which, among other things, performs redundancy analysis on the merge result.

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 76 of 105

25/02/2010

ARPEGE 2009

DATI

GALAXY
x.x

REFERENCE: DX.X

PROJEC
ISSUI

{ (¢ 1Bp)aiepdn ok
(o' pichagepdnoak } +

Page 77 of 105

de by two collaborators (part 2)

.A { (gse3gx)puadde zseaul siolgseq

[eg6:: pid:ngax 'z

(z16::14d:naA) *Leg

204 ' LB pjd:ndaA] LAQuB)Asuaisisuooujajahjuonezelauah
Ad::nDah' zeaRl)Aoualsisuooujaouepunpal

yd:noah ‘zzeamas)Aoualsisuoou)
spdinDgh’ Lzepas)Aouagsisuoouy,)
:$10413 [2INONNS

Bulys : ge+
Jaba) : ze+ Jaba : e+
£1D [4}
<<|As> <<ZA>>

Pid
<<GA>>

Zs10113

lagram revisions ma

Galaxy
<Title>

<subtitle>

T nogx |
<<ph>> |-

{ (poom/aX k' |Bp)usand 100X
(poopyiex k' pidusiand e }

— — o

ting concurrent d

1C

Confli

. RS oty Srriverorbortoit) EELERERRRE SRR
2l 7 (nouf plepeaeApsarpah |
I ¥ {(nouf okyanosarioak } i
S . [F] €19
oo || <<uonesswnuass| | <<pass . { (geo'ge anqupypaumMo’ Ljo)jayppe:zsesul
. <<|A>> (eezp)aywizsezul
BULS : EB+ _A_oogmuﬁ,_oog_c&:ﬁawom%w“Numm_“
A 13 e+ {(jooq' uajoog)yamau::zsedl
ueajoog Nu+AI uize)yayw:zseul }
Pl 1] ‘sioligse3
<<ZA>> <<qA>>
Pid U0DUIR2UBPUNPE
<<gA>> uooujEduepunpal
(ze'z100: pd:noul ‘zerzioz: pid:noak’ LoAouogadhy }
N noqk :S10113[BINPNAS
<<pAss A
- .\.N.. e ~ [s10113
: g : : : -
: z Carsmeepdniak =
U P {(ar yd)agepdn 1oak } : : o
a - o S A J T
<<UoNjEIaWNUS>>" £
<<|A>> . <<uonelalnua>>| | << |As>
. . . << |A>>
Bulls : ge+ > . - N bus :
o [P S L — = LIS : £B+
1aBap) : ze+ Al {(poomnttar ip)u - : : ueajoog : Ze+ 13 e+
13: 18+ (poopyuafak’ Pidusiiand1oil} - : o) =
aw Al_ ud T . <<zA>> <<zrss
<<EAS> << |A>> .
Md id
e <<EA>>
Tagqk | . . noul
<<pA>>
<<EA>> |- . .

: : paoey pduosuonepien 3] 1 1iduoguonepniesuoypaysy abexoed

Figure 13

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Galaxy ’ R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

This is a possible scenario, but not the only one. Alternative merge and audit strategies includes
(a) performing the merge but not including the redundancy analysis in the audit and (b)
performing a variation of the merge that automatically removes the redundancies by keeping
attributes duplicated in several classes down a specialization path only at the highest level where
they appear. Choosing among these alternatives is part of what we call the revision strategy. In the
rest of our illustrative script, we will assume that every update first calls a UML package merge (or
the specification of its recursive semantics on packageable element pairs for finer grain model
elements such as classes) and then performs on the result an audit that detects redundancies.

The type conflict and the two attribute redundancy inconsistencies shown at the bottom left of
Figure 13 are instances of the Error subclasses Conflict and MeBinInconsistency (respectively)
defined in Erreur ! Source du renvoi introuvable.. Conflicts and such inconsistencies involve only
two model elements. They are thus also instances of the class MeDiff to define in detail in the D2.2.
However, we can anticipate that, as a difference specification, it will, just as AfDiff defined in
Figure 1, have a role self, for the most recent local version, a role base for the preceding local
version and a role with for an intervening remote version committed after base but before self6.
The difference is that for a MeDiff these roles are filled with model elements, whereas for AfDiff
they filled with artifacts. The conflict or inconsistency that such MeDiff introduce can thus be
resolved simply by choosing for the updated revision either the model element filling the self role
or the model element filling the with role. This is done by calling the operation resolve of the
GalaxyModelRevisionAPI (see Figure 7). In the our validation script, after receiving the type
conflict and redundancy inconsistencies as result of his attempt to update his collaborative units
with the latest changes published by jr, yb resolves them by picking the with revision over his self
revision in all three cases. As shown at the bottom center of Figure 14. These choices result in yb’s

collaborative unit containing exactly the same model and diagram as jr’s.

® Svn calls mine the revision we call self and calls other the revision we call with.

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 78 of 105

Galaxy ’ R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

Yb then attempts to update this result with the latest changes published by xb. This results in
four inconsistencies shown at the bottom right of Figure 13. The first two are substitutability
violations: ClI1 can no longer substitute (i.e., be used in operation invokations) its super class Cl2,
since it locally redefines to enumeration E1 the type of the attribute al which it inherits with type
integer from Cl12. Similarly, CI2 can no longer substitute CI3 since it locally redefines to Boolean
the type of attribute a2 that it inherits from CI3 with type integer. The third inconsistency is a
redundancy warning signaling that attribute a3 locally defined in CI1 is also inherited by CI1 from
Cl13 via Cl2.

These inconsistencies are cases of good design pattern violations. In contrast, the fourth and last
one is a case of metamodel violation : the UML metamodel prohibits generalization cycles, but one
would be introduced by merging package Pkl from yb’s collaborative unit with package Pkl from
xb’s collaborative unit. Indeed, in the former CI2 generalizes Cl1 which generalizes CI3, while in
the latter, CI3 generalizes CI2. The four generalizations resulting from merging the two would
form a loop. All four inconsistencies are instances of the class MeNaryInconsistency defined in
Erreur! Source du renvoi introuvable., since their detection involves more than two model
elements not related by containment relationships. For example the fourth one involved six
elements (three classes and three generalizations), that do not contain each other.

Sophisticated audit operations must be called by the merge operation (itself called by the update
operation) in order to detect inconsistencies such as substitutability violations and generalization
cycles. In addition to the model fragmentation strategy into product, reuse and method units and
the merge strategy, a third, largely orthogonal aspects that compose a revision strategy is the audit
strategy. It defines what errors in an automatic merge result must be automatically detected to
trigger rollbacking the merge and require the modeler to change his version to resolve the
inconsistency.

How yb deals with the inconsistencies just described is explained in the next step 5 and in Figure

13.

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 79 of 105

Galaxy R

<Title> PROJECT: GALAXY ARPEGE 2009

REFERENCE: DX.X
<subtitle> DATE: 25/02/2010
ISSUE: XX

7.5 STEP 4 BLESSED COLLABORATIVE UNIT GATE KEEPER DELEGATES ERROR
RESOLUTION BY CREATING BRANCHES AND PUBLISHING THEM

The gatekeeper yb realizes that the conflicts in the last updates that he respectively received from
his two collaborators seem to stem from a disagreement among them. Since he has no strong
personal preference between the two alternatives, he thus opts to create two development
branches, one that merges yb’s visions with jr’s last revision, and another that merges yb’s visions
with xb’s last revision. This is shown in Figure 14where we introduce an additional non-standard
notation, using UML packages to distinguish distinct branches inside a collaborative unit. At this
point we need to clarify that from the time they are created, each collaborative unit includes one
main branch. We omitted the explicit representation of the main branch in the packages
representing the collaborative units in the diagrams illustrating the first four steps of the script
already presented only to avoid cluttering them.

Thus, the revision v4 of ybCu’s collaborative unit should really contain a package called BtMain
nested inside the package called ybCu and nesting the package called Pkl. Since yb had already
solved the conflicts between his base revision and jr’s last published one by choosing for all
conflicts the alternative from jr’s, before attempting the failed update with xb’s last published
changes, his current sole main branch contains the same model and diagram than the main branch

in jr’s collaborative unit. Yb thus starts by renaming his main branches BtJr, for both the artifacts

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 80 of 105

Galaxy
<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X
<subtitle> DATE: 25/02/2010
ISSUE: XX

storing the model elements and the artifacts storing the diagram displaying them. Since, as shown

in

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 81 of 105

Galaxy ’ R

<Title> PROJECT: GALAXY ARPEGE 2009

REFERENCE: DX.X
<subtitle> DATE: 25/02/2010
ISSUE: XX

Figure 1, in our proposed galaxy framework branches are special cases of tags, yb executes two
calls to the operation renameTag. It then calls the operation addBranch twice, one to create a new
branch for the model elements and another to create a new branch for the diagram. Note that in
our proposed framework, creating a branch is merely creating a new BranchTag object that points

to the tip Commit object for each artifact which revision history is stored in the collaborative unit.

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 82 of 105

5
X
3
8
Q

ARPEGE 2009

GALAXY

PROJECT:

<Title>

REFERENCE: DX.X

25/02/2010

DATE:

<subtitle>

x.x

ISSUE:

BuLys : ge+
Jabay| : ze+

o L (nex 'zeepmal)anpsar pak

1D
<<|A>>

(noax ‘icepananpsarpak | -
((noak 'ciofpanpsarpal } Zsexqx spoligse]
{ mamwmu _,__nu:osa_mm glopdinogx “mw:m_ B Pinsonh ZEBAMRI1)ADURISISUOIURIUEPUNDS.L
([egh:pydndax] ze g pd:n)ax ‘ze:go:: 1 nJah’ |Eepal)Aous)sIsuooupIUEpUNRS.
(perzigo:pdinga ' Lezio: pid:noak’ e oApiuogadiy
13 13 D '$10113 [RINPNINS
<<loljRIaWNIa>> M <<UoIElaunuas> << |A>
<<|A>> << |A>> << | A>> T - - - - —— o
, T : C Cocmmendnpat T siou3.
buns (ge+ buus ge+ Coo ot pd)aepdn gl Y | o
_— ueapog :ze+| 13: 1B+ ueajoog : Ze+ 13: 1B+)
€12 n wn M
<< A= <<gA=> <<TAS> <A
Nd IXd 13
GRS SLED <<uogEINUE>> =] €10
<< A>> <<UoljEBWNUR>>
uleplg inrng e <<|A>>
<<QA>> << |A>> buls : e+ kv
Rbawy : ze+ Bus : ge+
o nJqA 13: 1B+ uegoog : ze+ 13: 1B+
: . : : : : | <<GA>> [dn} w an w
:u .__.x.moo> o . . . o <<EAS> << NS> <<ghe> <<A>>
e oo oo
P arax (Bppoor A |- (uepng I pyd)por pak d
:ﬁﬁ Ao pydpoorpak “(ahg Jrr |Bp)ipor DUA” <<gA>>
{ueyig'ax | Bp)BeLusiand pak | o rE U idpor pak
Huepg' nx—x&mn Jusind pak o . {uepg il Ibp)fe Lysiknd pad ma
CiGpgax BpEelysnd pak | {ieying Jf bid)BeLysiknd pak
- Upglax pid)Be[ysiand pak | © P ibp)Be Lysikind Ak <<|Ass
(RIS, | pa ey et T
g’ Ul B |aWeusyysin B A anarpah . E
ﬁ u\cﬁa ;” L : mr__ . mz_ : o%m., cus.ma zemﬂoswsy_ﬁﬁ:a 00_3 : ZAM, "ﬂvﬁ?o r Mu> I : <<Ghs>
_Acw—a«m—mvvohcoswdn?..“..I“
© 0 uemgpidolomsypak Lo o
: . (ueing ibpjycueigppepak : : : :
-:..;xc_mz.m.‘c_&:ﬂu.‘_m%ch:i:...
k] < Ao - pguepg’ LBp)beaweuarpah |
<<uogelaunuas> o Urguerng' e swieuarpak)
<< |AS> n_u
BULS : B+ (zsegqx)puadde zsegl 'so.113se3
= || | i1 L { (ez6:4e:n0ax 7 16 pid:nogk ' g6 ik ngok] LAOUBoUSISISUCOUBPAUOEZI 18US6
(4] : : () w lezh::pydnep 'z b ppd:inogA] gergro s pdingax gepa:: pd:no g’ Zeae) ous)sisuodupouEpuUnpR.l
<<ZAz> cet aeenand <> <<A>> ([ezb:pid:ngax] ' zeglo: p:ingax 'gerg) pid: NOA ‘ZZeWAS MoualsisuooulAYideryisans
[z 1Bz pydingad] * perzia:pd:inoax * pe pja: pdndah’ Lzewws MousisisuoaulAgidenysadns }
id Md 'S10112 [RINPNIS
<<GA>> <<EAS>
nyax noal . gslon3
<<pA>> <<pA>> . " " " " o . o .
> ’ : ﬂ_muow; ndsoswiepien (5] 1 pduosusiepniensuogaypeyiay aBeyoed

= == o. Wl

e == =0, .

R | N

ol - = - - =

Figure 14

ing

by branch

ion

Blessed repository gate keeper delays conflict resolut

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 83 of 105

Galaxy ’ R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

This tip Commit object itself points to the most recent element of the revision history for the
corresponding artifact.

Having renamed the old main branch BtJr and having created a new main branch BtMain had no
effect on the current branch. After these two operations the main branch is still the old main
branch which is now called BtJr. At this point yb wishes to incorporate the latest changes
published by xb to the new main branch. To do so, he must first switch the current branch to this
new branch BtMain.

Then, he must revert it to the last revision before the updates with jr’s latest changes, since they
introduce inconsistencies when merge with xb’s lastest changes. He can now, as shown at the
bottom left of Figure 13, update the new main branch with xb’s lastest published changes?.

The attempt to update the reverted version of yb’s main branch with xb’s latest published
changes fails, returning to the errors shown at the bottom left of Figure 13. The first is the conflict
between the type of the attribute al of class Cl2: integer in xb’s updated collaborative unit vs.
enumeration E1 in yb’s base collaborative unit. The second and third are warnings about the
redundancy of having a2 and a3 attributes defined CI2 in yb’s base collaborative unit, while they
are defined in Cl2’s superclass ClI3 in xb’s updated collaborative unit. Yb solves the type conflict by
choosing al’s enumeration E1 type from his base collaborative unit, in effect rejecting xb’s change
of this type to integer. In contrast, he removes the warnings’ causes by accepting xb’s moving up
a2 and a3 definition from CI2 to its new superclass CI3. The result of these calls to the resolve
operation is the revision v6 of the branch BtMain in yb’s collaborative unit.

Yb then publishes to both jr and xb the changes that occurred in his collaborative from revision
v4 that was stored in his collaborative unit when he last received published changes from jr and

xb, to the current revision v6. To do so he first notifies jr and xb of the changes he made on the

” Note that nearly all actions discussed in this script from now on is duplicated, one handling model elements
and the other the model’s diagram. In the rest of this explanation we will focus on describing the operations
handling model elements since the one handling diagrams are identical except for the first parameter which

is dg1 instead pk1.

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 84 of 105

Galaxy R

<Title> PROJECT: GALAXY ARPEGE 2009

REFERENCE: DX.X
<subtitle> DATE: 25/02/2010
ISSUE: XX

branch structure of his collaborative units. He notifies his collaborators of the branch renaming
between v4 and v6 by calling the operation publishRenameTag. He then notifies his collaborators
of the updated content of this renamed branch by calling the operation publishTag. He then calls
the same operation to notify his collaborators of the content of the newly created main branch.
Finally, to avoid receiving again conflicting concurrent changes from his two collaborators, he
locks the artifacts so that from then on only jr can now alter them. He notifies this locking to both jr

and yb.

7.6 STEP 6 ONE COLLABORATOR MERGES DESIGN CHOICES FROM BOTH
BRANCHES INTO ONE, DELETES THE OTHER AND PUBLISHES IT

With exclusive access to the galaxy model, jr then updates his collaborative units with the
changes that yb just published. This operation and its result are shown on the left side of Figure 14.
These changes not only include the changes made to the data in yb’s collaborative units, i.e., the
model elements and diagrams stored in the artifact objects, but also to changes made the
development branching meta-data. The update thus takes into account the renaming of the main
branch BtMain into BtJr, and the creation of a new branch called BtMain. Since yb created this BtJr
branch to match the content of the latest version of jr's BtMain branch, the update his successful
and jr’s collaborative unit now contains an exact copy of xb’s.

By executing a diff operation on the two branches, jr identifies their differences:

1. the location of class ClI3 in the class hierachy, below Cl1 in BtJr vs. above CI2 in BtMain;
2. the location of attribute al, in CI1 in BtJr vs. in its superclass CI2 in BtMain;

3. the location of attribute a2, in CI2 in BtJr vs. in its super class C13 in BtMain;

4. the location of attribute a3, in Cl1 in BtJr vs. in its super-super class CI3 in BtMain.

Each of these difference correspond to an error that yb received when attempting to update the
last consistent revision of Pkl from both jr's last published changes and xb’s last published

changes.

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 85 of 105

Galaxy

ARPEGE 2009

GALAXY

PROJECT:

<Title>

REFERENCE: DX.X

25/02/2010

DATI

<subtitle>

x.x

ISSUI

. ST I: i L6p) 0) 13 a2
........ <<uogesawnuas> | | | © {UhiBp cucm._m_mu 104 <<uope.awnus>>
<<|AS> : ‘(g id)youesgiep 0 << A>> << A>> <<uojjelaunusz= <A
(900 ;Z_,mmmm MAL L BP0 3300 T Seoee &
BT Bulis : ge+ - (geopnalesegpal idiuwo 3300} Bus : ge+ BULS © cB+
: ueajoog : Ze+ 13 e+ | ueajoog : ze+ 13 1B+ uea|00g : Ze+ FER
A .)) L Dyt) 210 219 o e
<< [A>> <KCNA>> . * AN_UN_.mvhmeL << | A>> <LCA>> <KCA>> <<TA>
......... (119z16)125u
id ‘(16 pid) Jauw id Md
<<GA>> . (z1Bhaisp <pA>> <<gA>>
......... (1o Fm_&w_mw_é v
} (Han3ep
1 noul u:mmM_u_wE_. ulej\ig 4Mg
| << | <<GA>> <<LAS>
{ (wepwng'aA'L Bppaojunoul ”_ i y
‘(ueag oA pidpaounionl N nDal
Em gA pd)ysuelgiegusignd:aoal. L Lo Lo L : [<«<Grs>
‘(amg'af 1bd)yauesgiegysiandodl | : -
- (900 madr gk L Bp)usiandio.l _ _

Goo us:_.g _v_a E m__n:a %01 | LI

13 13) SRR
<<UDRI3WNUa>> [1E] <<UD)RIAWNUS>> << AS> : :
<< A>> << A>> << A>> a o
Bulgs : ge+ 2 BuLns : ge+
ueajoog : ze+ 13 1B+ ueaj00g : Ze+ (== 0 I
€19 219 as LD :
<<LAS> <<TA>> <<TA>> «<gh> || :
id d
<<pA>> <KGA>> |||
ule\lg g
<<GA>> < A>T
........................... nJgA A
<<GA>>

| { 3> asﬁmu% 101
(A pid)egepdnol } -

......... S O S
€10
13 <y ||
<<UoljelaWnuas> .
<L AS> Lw .
B R
ueajoog : Ze+ == .
219) P—O e
<<TA>> <<CA>>
ma 1
<<EN>>
T
<<pA>>

3 gaselL duasuonepiie [| iduosuogepnieAsuogavpalisy eBesoed

One collaborator resolve conflicts and deletes useless branch

Figure 15

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 86 of 105

Galaxy R

<Title> PROJECT: GALAXY ARPEGE 2009

REFERENCE: DX.X
<subtitle> DATE: 25/02/2010

ISSUE: X.X

By locking Pkl for exclusive access by jr, yb in effect delegated to jr the task of solving these
inconsistencies. Jr does so by deleting Cl1 the model in the BtMain branch since it had no feature
there and then deleting the BtJr branch.

These two operations correspond to choosing the second option for all four alternatives listed
above. After executing the local change operations, jr publishes them to yb’s collaborative unit and
releases the lock.

As shown at the top of Figure 15, yb then uses those changes to updates his collaborative unit. In
order to verify whether xb agrees with them, yb then publishes his updated collaborative unit to

xb. He also locks it so that only xb can now change it.

7.7 STEP 7: COLLABORATOR AGREES WITH CHANGES MADE BY THE OTHER

Upon receive the latest changes from yb and the accompanying lock, xb now attempts to update
his collaborative unit with these changes.

It results in two binary conflicts:

- The type of attribute al, enumeration E1 in yb’s latest revision vs. integer in xb’s base revision;
- The type of attribute a2, Boolean in yb’s latest revision vs. integer in xb’s base revision.;

Xb resolves both these conflicts by choosing the types in yb’s latest revision. This results in all
three collaborators having the same model and diagram versions in their respective collaborative

units. After resolving conflicts, xb’s unlocks both the model and the diagram.

7.8 STEP 8 BLESSED COLLABORATIVE UNIT OWNER CREATES RELEASE1.01

In the last step of our galaxy framework illustrative use case, yb’s tags the current revision of the
model and diagram as releasel.0 of the project. This is an appropriate moment, since at this point
an identical and consistent copy of the project is stored in all its collaborative units. As shown in
Figure 18, yb creates this releasel.0 by first calling the operation tag on the model and diagram in
his collaborative unit. He then calls the operation publishTag to notify his two collaborators, jr and

xb, of this new tag. Since yb’s last notification message to jr’s collaborative unit was a lock on both

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 87 of 105

Galaxy ’ R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X
<subtitle> DATE: 25/02/2010
ISSUE: XX

the model and the diagram, xb additionally calls the operation unlock on both to release the lock

and thus allows jr to resume making changes taking this first release as base revision.

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 88 of 105

ARPEGE 2009

: GALAXY

PROJEC

REFERENCE: DX.X

25/02/2010

DATI

x.x

ISSUI

Page 89 of 105

Galaxy

<Title>

<subtitle>

S || e D e e e e
<<Uoljejaunuas=
............... Elier
buns :ge+
............... ueapoog - e+ 13 e
€1 zZn (@ pdpiaouniogx
......... A A - —_ - —_—— -
<< A>> <<fA>> . 3
id . . . <<UOleJALNUE>>
............... oty ,i.,.........v.:_msﬂ.m_”.n._x.n_x.mauv_&_wdim e
uemig e MOk e,
........................... nagx | qx Lop)beibe ysiand g A A9]
ou (0"1sealalx pid)6e Lusnand 100 k. el e | RIS U
: - : N Rl {(zoomAa A ax’ 1bp)usiand 104 A €12 22
......... L mogkzrmManosarpgx - Mo s oo (zoopwak gt pd)uysignd 100 A} i <<ziaS o
L A R

.................... PR Vid

s <<GA>>

- o {emgaxaxibppoopah
R S N I -._Un; . / . .”E_wszm_.n_”x.nx.—.,v_ev.ooﬁog\,, } R
: e : S D sl ” : : . . :
PR oo 1{uriep)aepdnipah
P .

buls :ge+
Jabap : ze+ laba|: e+
1
€10 a1

<< A>> <<TA>>

id
<<GA>>
....... nogqx
<< A=>

[pd)siepdnioah } oo

<<UO[BJALNUE>>
<< | As>

BuLlS : ge+
uesjoog : Ze+

[ER

€10

<< | A=>

a1

<< A>>

id

<<GA>>

13 13 €10
<<UOljBIALNUE>> k) <<UO)EJELNUA>> << As>
<< | o> << A>> << | As> nﬁ
bulns : ge+ & bus : ge+
uea|00g : ZB+ 13 1B+ ueajoog : Ze+ [ERL:
€10 aa (A Ld
<< | A>> << o> << A>> << A>>
id Kid
<< A=z <<QA>>
uleARg Mg
<<QA>> << | o>
noqh
<<QA>>

Collaborator agrees with changes made by the other.

Figure 16

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

>
X
5
)

ARPEGE 2009

GALAXY

PROJECT:

<Title>

REFERENCE: DX.X

25/02/2010

DATE:

<subtitle>

x.x

ISSUE:

13
<<U0lE JALNU3>>
<< A=
bus : ge+
ueajoog : Ze+ 13- 1B+
g€ | | a
<< A>> << o>
d
<<G o>

jo"1esealey

© {@kibpyaepdnpagx M
©Hakpd)aepdnHax)

nogx

<<GA>>

- (0" 1@seajar’x’ pd)be Lysiand oA }

13 —
<cuopelaunUEs> | | [0 T
<< o> . -
<
Bullg : ge+
ues|oog : Ze+ 13 e+
€10 [4}
<< [A=> <afhon N X X . .
. {(o1eseapribpbenh -
1id U ocjesesjpr bRy
<<Ghs> X X X . .
nogx
<<GA>>

AS 18 mwm. _E.ax..«au vmw&w._.:m__.nsa.ﬁunx -

(=}
<<UOlelaunuas=
<< o>
buls : ge+
uesjoog:ze+| |13 e+
€12 [4l}
<<| Ao <<CA>>
d
<<G s>
————————————— _O. |aseaay
d noar
: : : : <<lh>>
<<UONEJALNUES> : : : : : : - {(@Abp)eepdnpex -
<<lh>> (afpd)aepdnpax} | -
: (0°1aseajar'ax’ \bp)BeLysiand A -
BUNS : EB+ { (0"12sesa.'gx L6p)6e (:
. - :(0" 1aseajau‘gx’ pid)be (ysiandpgA
ues|oog : Ze+ 13 1B+ = R 6P DIOUN DX -
€10 a1 M- (k' pdpaounax }- =}
<<|h>> << h>> T = e T <<UOJEJALNUSS >
T - - << A
IAd : 3
<<GAs> e Buls : Ee+
ueajoog : Ze+ 13 1.+
_o.—amuo_oz €10 (4}
<< Ao <afhon
- :) nogh
coto e o AAN>VV —‘sm
<<GAs>
noufl
<<QA>>
13
<<Uoljelaunuas:
<<| Ao
bulns :ge+
ues|oog : Ze+ 13 LB+
€12 [dn]
<< A>> <<TA>>
d
<<GA>>
bt : nm%sta_smsﬁu__gmﬂ_ 1diaguonEpnie ASUORI Y3y abiesped

irst release tag and publishes it.

it owner creates f

1ve un

Blessed collaborati

17

Figure

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 90 of 105

Galaxy R

<Title> PROJECT: GALAXY ARPEGE 2009

REFERENCE: DX.X
<subtitle> DATE: 25/02/2010
ISSUE: XX

7.9 CONCLUSION ON THE GALAXY FRAMEWORK USAGE SCRIPT

The script just presented illustrated, on a simple example, the usage of the proposed galaxy
framework interfaces to MDE case tools. Although concise, this use case example is a thorough
validation script for these interfaces since it contains instances of calls to 24 of the 31 operations
provided by the read-write interfaces. The only ones not covered are commitg, the centralized
alternative to commitl, removals duals of addition operations in the GalaxyAdmin API (rmUser,
rmProj, rmProjPartic, rmPullRemote, rmPushRemote) which side-effect are trivial and the rebase
operation of the GalaxyLocalRevisionHistory API which is only used to simplify histories of old
and very branchy projects and thus could not be illustrated on a simple example. At each step of
the script, we showed the MDE CASE tool provided view of the project revision for each of its
participant. To build these views, the MDE CASE tool calls the read-only operation of the
GalaxyQuery APL

The operations of the GalaxyLocalRevision, GalaxyRevisionNotification = and
GalaxyModelRevision APIs validated by this script are all realized by calls to corresponding
operations of: the generic association class CollabUnit mediated by calls to concrete specializations
of the abstract class RevisionStrategy. Therefore, this script also validates our definition of the
galaxy collaborative unit which is the focus of this deliverable.

In the next and last section of it, we give a concrete example of a model fragmentation strategy
and we show instances of the artifact data structures that persistently store model element and
views for revision control purposes in a collaborative unit when following this strategy.

Figure 18: Blessed collaborative unit owner creates first release tag and publishes it.

8. AN EXAMPLE OF MODEL FRAGMENTATION STRATEGY

In this section, we provide and explain examples of the internal representation stored in a
collaborative unit of a model and one view of it. More precisely, we show the artifact objects stored
in revisions v3 and v4 of xb’s collaborative unit in the example script of the previous sections. The

diagram and model elements contained in these versions are shown on the left-side of Figure 12, in

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 91 of 105

Galaxy ’ R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

the middle and at the bottom. This figure provides the external, modeler’s perspective that xb gets of
his collaborative unit content through his CASE tool connected to the galaxy instance. In contrast,
Figure 19, Figure 20 and

Figure 21 below provides the internal, system perspective of the collaborative unit data structure
that persistently store this content for revision control purposes. More precisely, Figure 19 shows
the artifacts storing the model elements shown in package xbCu stereotyped with <<v3>> in Figure
12, Figure 20 shows the artifact storing how the diagram shown in xbCu stereotyped with <<v3>>
displays these model elements and

Figure 21 shows the artifacts storing the the model elements shown in package xbCu stereotyped
with <<v4>> in Figure 12. Since the changes made from revision v3 to revision v4 of xb’s
collaborative unit only alter the model elements that it stores and not the way these elements are
displayed in the diagram, we omitted, for conciseness’ sake, the diagram artifacts for revision v4.

As explained in section 6.7, a revision strategy is decomposed into a model fragmentation
strategy, a model merging strategy and an inconsistency audit strategy. Since the latter two define
the behavior of a specific instantiation of the galaxy framework, in concert with the generic
behavior specified in the operations of the generic association class CollaborativeUnit, they remain
beyond the scope of this deliverable D2.1. These strategies will be the focus of the next deliverable
D2.2. In contrast, a model fragmentation strategy defines how to project model elements and views
into the three generic artifact classes that we proposed in the definition of the galaxy collaborative
unit: product, reuse and diagram units. Such strategy defines the structural modeling approach
chosen when instantiating the abstract galaxy framework into a concrete galaxy RCS. Illustrating
the definition and usage of one such model fragmentation strategy thus belongs to the scope of

deliverable D2.1.

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 92 of 105

it (cf.
Page 93 of 105

1ve un

ion script’s model in xb’s collaborat

3 of the validat

1ng revision

Artifacts represent

=3
=
w J .
W JBuLs, = awensse|eRw LadAy, = awepdoigesw
g] TETSPONT 1 = T : :
S - - : . . . - oSt fadoid, = swensseelsw |
M N L2INCURYPAUMO, = aweNdoldejaw [~ yapie THTEPO " EB i
M i [T = = R . : :
< 3 Jabaj, = awenssejoelRw | - - : . : C C
JHRPEAEE] 1961gy : : . ,2dAy, = awepndoidelaw
3sie} = aiqenu : - ey Apadoug, = awensseeRw |
JaTssnEg C ngd . . LAINgURYPaumo, = awepndoidesw |- | .ﬁu.z HEET
- T : T e
< X
M > “ T ,adAy, = awepndoidelaw
S 2 3 . . .
o m u Y @omos| Auadoig, = awensse|elaw f-
B2 | B .
g H & . : : : : LANAURYPauUMmo, = awepndoideiaw T 3abie}
$ & H {(nsee)wppernyze || | o [] .
§ & @ (eego)wppengad |- . : : _ T 301na s !
.Am_wwms,_uwwnnww | . JSSEID, = AWeNSSE|DBRW f
(= go)wppPE N | - . : . Juawagpabeyoed, = awendoideiaw I LR
((ze)anppe nyg o — THTSPON - 2P Td
((LaZe)WIPPE NY A2 E._ -
@e)wppenyd | : : FATSSTRY TR
(aanppenyL - V- _ _—
H(upe)appenygd | :] :
(anppenygyd | - : | Juawajgpabeyoed, = awepndoigelaw
apnd)pppenygd |||
; xrmuwmzuvu.:m_.ﬁ . : | TSgTSpon - 2T d
H(uLayeyppenyl i .
Giauppengind | [T eove I R JEI2YIUONEIBWNUT, = BWENSSE|BIRW [—om.
(lego)wppenyze | : - — g - Wb ULl T :
Ledawppenyga || |i]t S
(_@ovm_wﬁuum.umuvu
(@o/m, nyA2)ppeNdL : -
NP N3y M3U = Ny Zo L Juawzigpabeyoed, = awendoidelaw |.
: : : TSHEPOW LT . . .
o ”:._n_r_“_‘u_%m.:m_.ﬁ A1) L — JJEJ2YTUONEIBWNUT, = SWENSSE|DBIRW [
(upndng, ‘nyyyd)ppendl —— TEEPOR T
‘yunasnay meu =nyLE | : : Jelaypaumo, = awepdoidelsw “[eBue¥ - -
{(uopnd,, ny L ppe i saungpu | D] ﬁm._u.ud.zlﬂ.nu . T eminos :
TUGRR CIDRDE: B L P - - - - - : TS JuoljeIauInug, = SWeNSSe|oelRW [
(nsppppengd | . : - - - 1 1 BT
Hquispppengyd | : . Juawagpabeyoed, = awepdoideiaw - A . -
A_ta....é_&%m.é_.ﬁ o W FmeremEEE . :
Junasnay Meu = ny . i -
I G ey | B : : ; ; - : - ; : 301n0 J2bejoed, = awensse|elaw aPm
‘yumanpold meu =ndid |- Y L K . 30in0 4 TETSPOR 1rd :
: UNIINPO LY MaU = ngpuw }| © : 1 : : : : : : !
] A Al e .
[h = N - . X - . . N -
] s = n_%os_n%2ésﬁu:w;a:zag.o:mmn_o:m:%n%un_ ﬂ:%o_z...goausﬁco_sﬁa;& abejjced
k=
Q v

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Figure 19
Figure 12)”.

Galaxy ’ R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

The strategy we choose here to present can be intuitively specified in natural language as follows:

1. Create a root product unit for the whole model;

2. Create one product unit and one reuse unit inside this product unit to store the UML2 primitive
types;

3. Create a separate product unit for each different UML2 component or package in the model;

4. Reflect nesting relationships of UML2 components or packages inside larger gain components or
packages by nesting relationships between the product units created for these components or
packages;

5. Create a separate method unit for each diagram in the model

6. Create a separate reuse unit for each different non-relationship classifier (e.g., classes, interfaces,
components) and package in the model;

7. Nest the reuse unit storing a component or package element inside the product unit created for
this component or package element;

8. Nest the reuse units storing all the model elements packaged into a UML2 component or
package inside the product unit created for this component or package;

9. Store the features of a classifier inside its reuse unit;

10.Store the generalization between two classifiers inside the reuse unit of the more specific
classifier;

11.Store the association from a source classifier to a target classifier inside the reuse unit of the
source classifier;

12.Store the references between two model elements stored in the same reuse unit in this reuse
unit;

13.Store the reference of meta-association specific and type from a model element mel of reuse unit
rul to a model element me2 of reuse unit ru2 # rul in rul;

14.Store the reference of meta-association packagedElement from a model element mel of reuse unit

rul to a model element me2 of reuse unit ru2 # rul in ru2.

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 94 of 105

Galaxy ’ R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

The artifact resulting from applying this model fragmentation strategy on the revision v3 of the
model stored in xb’s collaborative unit (shown in Figure 12) is shown in Figure 19 It is an object
diagram containing instances of the classes ProductUnit and ReuseUnit defined in Figure 4. Recall
from section 4 that we propose to structure galaxy artifacts are organized to form a containment
tree. Following the fragmentation strategy just described, the root object of this containment tree is
a product unit, called mdpu, which contains all the other artifacts of the project’'s model. It
contains two nested product units, ptpu, which contains the model-independent UML2 primitive
type and pklpu which contain the package pkl. Ptpu contains only one reuse unit ptru which in
turns contains the UML2 primitive type model elements. In the diagram of Figure 19 we only
show the two primitive types appearing in the revision v3 of xb’s collaborative unit, i.e., integer int
and string str. Pklpu contains one reuse unit pklru which contains the model element pkl and one
reuse unit cl2ru which contains the class cl2. In addition to pkl, pklru also contains three other
model elements, enumeration el and its two enumeration literals 11 and 12. It also contains five
references pklel from pkl to el, pklll from pkl to 11, pk1l2 from pkl1 to 12, elll from el to 11 and
ell2 from el to 12. In addition to cl2, cl2ru also contains three other model elements, al, a2 and a3
one per attribute of cl2. It also contains seven references: pklcl2 from pkl to cl2, cl2al from cl2 to
a2, cl2a2 from cl2 to a2, cl2a3 from cl2 to a3, alel from al to el, a2int from a2 to int and a3str from
a3 to str.

On the top right of Figure 19, we show the product unit and reuse unit action sequences that
represents the construction trace of the units displayed in the rest of the figure. Task T2.2 of the
project, we will investigate what representation is more scalable to be passed for change
notification purposes among collaborative units: the structural snapshot, a structural diff from the
previous revision snapshot, the behavioral diff consisting of the artifact action sequence or some
combination of the three. One last thing to explain about Figure 19, is that references internal to a
reuse unit are highlighted by a green frame and font, whereas references across reuse units are
highlighted by a red frame and font. In the artifact base shown in this figure, there are thus eight

internal references and four cross-references. Minimizing cross-reference is a simple general

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 95 of 105

Galaxy ’ R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

scalability heuristics when devising a model fragmentation strategy, since changing an internal
reference can be done by loading into main memory and searching inside a single reuse unit,
whereas a changing a cross-reference involves loading and searching two such units.

Having shown an illustrative example of persistent storage format for model elements in a
collaborative unit, we now discuss an illustrative example of persistent storage format to keep the
information of which model elements, references and attributes are displayed in each view of the
model. The example is given in Figure 20. It is an object diagram that contains an instance of the
class MethodUnit defined in Figure 4. This instance stores the class diagram that shows all model
elements in revision v3. The left side of Figure 20 contains a sequence of method unit actions
which constitute the construction trace of the method unit shown in the same figure. It is the
translation, at the internal collaborative unit layer, for the model fragmentation strategy specified
at the beginning of this section, of the view actions executed by the CASE tools of yb, jr and xb at
the galaxy framework API layer, and which collectively resulted into the class diagram shown in
revision v3 of xb’s collaborative unit. Similarly than for the model artifacts, such method unit
action sequence constitutes an alternative representation of the method unit object network shown
in the same figure. Either one or some clever combination of the two could be passed among
collaborative units for scalable notification of changes in the views and diagrams that correspond
not to changes in the model but only to visualization choice changes over that model. The

scalability strengths and drawback of each representation will be investigated in T2.2

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 96 of 105

5
X
3
8
Q

ARPEGE 2009

: GALAXY

PROJEC

<Title>

REFERENCE: DX.X

25/02/2010

DATI

<subtitle>

xX.x

ISSUI

3dAy, = awepndoidelsw

ToUIBPON ™ 5 E8

L2INQURYPaUMO, = aLepdoldeiaw

1ays moys

TSURPON ™ 025

{ (nsge)an moys -y Bp
‘(ns)a moys np Bp

‘(e @a)w moys L Bp
‘(uge)epw moys | Bp
“(ee.an moys L Bp

‘(uize) iy moys i Bp
“(u)an moys r Bp

‘(zega)iw moys | Bp
“(uze)ep moys | Bp
‘(ze)an moys T L Bp

“(zi118)am moys | Bp
H(uzn)e moys | Bp
‘(z1)ain moys | Bp

H(1118)a moys T Bp
“(ur)en moys | Bp
“(1)aw moys | Bp

‘(121e) 2y moys rw | Bp
H(uya)ep moys v | Bp
‘(18)an moys v | Bp

‘(Lega)In moys | Bp
H(uje)ep moys | Bp
‘(1e)an moys T L Bp

‘(@2 p1d)aw moys | Bp
H(uzja)e moys v | Bp
{(z10)am moys T | Bp

H(upyd)e moys | Bp
“(11d)aw moys | Bp

1 Bp = mara) Bp
‘yunpoa mau =y Bp }

,2dAy, = awepdoigeiaw

184S moys

JSHPPOW - UTZe

LAINQUAYPAUMO, = alendoldelaw

184S Moys

JBuig, = awensse|oelaw

TARPOW T 1S

Jafaju), = awepsse|oe)aL

JIABPOW Ul

ToUISPON T 2220

3dAy, = awepndoidelsw

134s moys

Jfuadold, = awepnsse|oelaw

WAPPOW T

JSUIPPOW - T3¢

L2INQURYPaUMO, = aLepdoldelaw

JOUIPPON * 182D

184S moys

Jfuadolg, = awepsse|QeW

WAPPOWT @

Juawagpabeyaed, = awepdoidelaw

JUIPPOW = ZP LY

184S Moys

Jfuadoud, = awepnsse|QeRW

TARPOWTE

JJesarjpaumo, = awendoldelaw

184S Moys

LSSB|D, = alUeNSSE|Dejall

H3spo

TSHIBPON Ao

JJeszyrpaumo, = awendoldelaw

184S Moys

JJelajrjuofelawnug, = aWweNsse|Jelaw

UIIBPON -2l

JTSURPOW - T3

Juawagpabeyaed, = awepdoideiaw

184S moys

JJeJajrjuofesawnug, = aWeNSse|DeIaW

TIEPOW T T

,UO[eI3WNUT, = 3WeNSSeIORIaW

TSHRPOW T30

N

184S Moys

THPOW 13

J2beyoed, = awepsse|Qelaw

YAEPOWT Tl

1gs moys
§3s Moys:
.£B, = anjeA LJaLeU, = aLeNTyeIEW
ST U yS moys §3s Moys:
b
2B, = anjeA L8UBU, = aWeNTyeIBW
ATy U I3YS Moys 13s moys
WLB, = 3N[eA JAWeU, = awepnyeaw i
Sy UTe INY'S Moys 33s moys
WZ10, = anjea JAWeu, = 3WenIpyeIaw &
|o—= v uzZp ys moys 1gs Mmoys,
L8LBU, = aLeNMyRI3W &
|INqUY *Aq Nys B.o:w ym_mz.,osm
LaleU, = aWeNTyeIaW &
ST AT 1Y'S MOys 185 Moys:
- - a
ol =3N.A | WSUBU, = SWEN.JyeIaW
IPAINY UL NS moys s moys,
Wd, = anjea LBLLUBU, = SLBN.PYRISW &
Sy U s mous | | BEMOUS
uju moys uju moys

uju Moys’

Jweibeigsse|D, = awepjuiodmala

WIINTTBP

ﬁ weibeigeAn)qxpioys deugnpuelBeignysse) nyngab exaeq ﬂ J1ap o uielogs jaysuonaypaliay abeyoed

it (cf.

1ve un

iagram in xb’s collaborati

iptd

10N SCr

ision 3 of the validat

ing rev

Artifacts represent

Figure 20

Figure 12)”.

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 97 of 105

Galaxy ’ R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

To conclude our presentation of illustrative examples of artifact data structures internal to
collaborative units, we show in Figure 21 the artifacts in xb’s collaborative for its next revision v4
originally shown in Figure 12. These updated artifact object network results from the execution on
the artifact shown in Figure 19 (corresponding to revision v3) of the artifact action sequence shown
on the left side of Figure 21. This action sequence is itself the translation of the model action
sequence from revision v3 to revision v4 of xb’s collaborative unit show in in Figure 12, given the
model fragmentation strategy specified at the beginning of this section. Let us compare, on the one
hand, the model element, galaxy API level differences between revisions v3 and v4, and on the
other hand, the artifact, collaborative unit level differences between these two revisions.

At the model element level the differences are:

1. attribute a1 type changed from enumeration type E1 to primitive type integer;

2. no longer needed enumeration E1 (and its two literals) deleted;

3. new class cl3 created;

4. attributes a2 and 43 moved from class cI2 to class cl3;

At the artifact level these differences translate into:

1. reference alel deleted from reuse unit c/2ru and new reference alint created in cl2ru;

2. model elements el, I1, I2 and the references from and to them (i.e., pklal, elll1, pk1l1, 12, pk1I2)
deleted from reuse unit pklru;

3. reuse unit c/3ru created and added to product unit pk1ru; model element cI3 and reference pk1cl3
from pk1 to cI2 added to cl3ru;

4. model elements a1 and a2 and references to and from them moved from reuse unit c/2ru to reuse

unit cl3ru.

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 98 of 105

it (cf.
Page 99 of 105

1ve un

ipt’s model in xb’s collaborat

10N SCr

ision 4 of the validat

ing rev

Artifacts represent

=
¥ =3
g
2 w bulys, = awensse|oeaWw ,«092 - ,adhy, =swepndoidelsw
S au WIIPPON : 15 . . ToUPPON © 1ISEE v
3 Ju 3208} 1115001, = BWENSSE|DE}ELL -
M M LBINGURYPaUMO,, = awendoldelal - ke W3IPPON - €8
< Q JoUIPPOW - ceEd
Jabaj|, = awensse|Deaw]
o [ew RPN wbuey [...;.,_maz__umEmZQoiEmE
| ~ Tiwbey “ Jw{ JPUIPPOWTuIZE Y somos| fHadoid, = BWeNsSEIDBlW [
TSP
m CEED SR : : : LSINQUYPaumo,, = awendoldelaw «om..a. :
<X Junasnay : ngyd R R e R ey . : .
M w " nt . . SISO ZRES . aoinos| ,SSE|D, = SWENSSE|DE}AL
© g - . by WIBPON T ED au
8 z R : |<|. Juawa|gpabeyied, = awendoidelaw : : : : :
3 m H : : . : -
T ¥ e i ; : : : : : : : i
unasnay : g0 —_—
: i .
. Jet6uat, =eENORIRE : b .
9UI2POIN : £ - .
JMOPOWCFIREE 82In0S| UojjeZI[eIBUB 9, = BLUENSSE|DBIBW | - - -
SPON : £2B e
D28ds, = auendoidejaw oosom._m__us_:
. . . . J3UISPON : ¢IPEC
{ (ngeia'uize)nanowr nyz|o
(nygeln’'ze)apanowrnyz)o
(nero'ze)an Al . . . Adiy, = awendoldelaw - : : :
(NYEI0" JIZE)INBAOW NYZID . : SOOI LILE 20.n0s adold. = aWENSSE|DBIAW — - .
e e anaAOU e IERRRTRY EETRTTTIRRR OO JoUIoPOW : Juije . 3dinos| Ay du NSSE|DE): gl |-
| HIIPPON : L&
xm_m mﬂ%hxnnwum% LAINGURYPaUMo, = awepndoldelaw .ﬁm_ﬂ - -
glormu, ‘ngio)ppe napid N u JoUIPPON * 1EZI ——1 .SSEI0. = SUWENSSEIDBIBW o - |
Junasnay mau = nigp N : . W3IIPPONW : 2P M . M
(une)apnppe nizo . X N Juawsa|3pabeyaed, = awepndoidelaw | . jabuey
{2 1e)wppnizio ol T ToUISPON : ZP L o
(Zia)anip napd : : : ———— - - - - - : :
A(znawip napyd N HUNISNIAY : MYCP _4 ‘e
i3 miep c_u : : - ” - - - - - - : !
. q E.ﬂ%xww.ﬁw__n RS JBhexoed, = aWeNsseoeRW [—
m ‘(1@)ansp nagyd } : : : : : . 82nos W3PPON : 1d
R : : : e _ WUNSSHoY MyglAd
.| Jumanpoig: n .
y . ndpajsau -
(] v I JUMPNPOI : Ngpw
0} 2 = - - - - - - - - - -
G _ﬁ W ﬁ _muos_v>:onxEo.._wn_u.cw:s_:._Emw_osmwwm_o:w_:uo.mwxowa.ﬂ __o.uoE_.__m.Eoo&mzw_._o_ﬁ<uoc_mm abeyoed

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Figure 21
Figure 12)”.

Galaxy R
<Titie> PROJECT: GALAXY ARPEGE 2009

REFERENCE: DX.X
<subtitle> DATE: 25/02/2010

ISSUE: X.X

9. WHEN IS A STRATEGY SCALABLE?

A strategy has to be scalable in order to manage the revision control of huge models. From a theoretical

point of view, a strategy is scalable if the size of the artifact remains constant (in order of magnitude) with the

model size and if the number of messages sent to deal with revision control is bounded. From a

pragmatically point of view, a strategy is scalable if the artifacts and the messages can be handled by the

underlying Revision Control System (RCS) using an acceptable amount of resources and in an acceptable

time frame.

9.1 DEFINITION
To measure the scalability of a strategy, we define the following concepts:
* Model corresponds to the whole model that is collaboratively edited in a galaxy;
* Size(Model) corresponds to the size of a model, in number of model elements;.
* Artifact corresponds to the set of artifacts used by a galaxy.
* Product corresponds to the product units used by a galaxy
* Reuse corresponds to the reuse units used by a galaxy

* Method correspond to the method units used by a galaxy

* Size(Artifact(i)) corresponds to the size of the it artifact stored in a galaxy’s collaborative

units. It is equal to:

o 0if it the artifact is a product unit.

o the number of model elements that it contains, if the artifact is a reuse unit.

o the number of model elements that it references, if the artifact is a method unit

* VuActions corresponds to the sequence of model (elements) and view edition actions

executed by a developer;throuh his (her) CASE tool connected to a galaxy framework

instance;

* AfActions corresponds to a sequence of artifacts actions sequence executed by a galaxy

framework instance in reaction to VuActions;
* Size(VuActions) is the length of VuActions;

» Size(AfActions) is the length of AfActions;

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 100 of 105

Galaxy ’ R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

* Artifact(AfActions) is to the set of artifacts appearing as arguments of an action in
AfActions;

* MAS (Maximum Artifact Size).is the maximum number of model element in the largest
galaxy artifact;

MEM (Maximum number of Exchanged Messages) is the maximum number of messages exchanged among

collaborative units of a galaxy to reflect an update to a new version of a model fragment or view?;

* card(Artifact(s)) is the number of artifacts needed to store a given model and its various

view following revision strategy s

9.2 THEORETICAL SCALABILITY

In order to be theoretically scalable, the size of artifacts should be far inferior to the size of the
whole model. Otherwise, a few artifacts will contain the majority of the model elements, which
presents the following scalablity problems:
* Loading in main memory any model element contained in those overly large artifacts
becomes too space and time consuming;
* Locking any model element contained in those overly large artifacts will result in locking a
a large fragment of the global model , namely all the model elements the ones that are
contained in the same artifacts than the one being edited by one developer; this results in
locking most developers out of their current tasks most of the time;
* Exchanging any model element contained in those overly large artifacts will then result in
prohibitively costly exchange of needlessly large sets of model elements;
e Versioning any model element contained in those overly large artifacts will result in
needlessly versioning all model elements contained in the same artifact.

Consequently, if the size of the artifacts is not bound, the approach does not scale up.

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 101 of 105

Galaxy ’ R

<Title> PROJECT: GALAXY ARPEGE 2009

REFERENCE: DX.X
<subtitle> DATE: 25/02/2010

ISSUE: X.X

Quantitatively, this requirement is expressed by the first Theoretical Scalability Property (TSP1),
which defines a bound:

(TSP1) |Max(Size(Artifact(i)) - MAS | <¢

This is a necessary but not sufficient theoretical scalability condition. In addition, another
parameter should be bound: the number of artifact actions performed by a galaxy framework
configured with a given strategy in response to model modifications typically carried out by
developers. If this number is not bound then each time a developer commit its last modifications,
two many messages will be exchanged among the collaborative units of the framework to update
the model within an acceptable response time, Here we talk about typical modifications, i.e., those
that are actually commonly performed by developers in real, industrial MDE projects. We do not
worry here about any theoretically possible sequences given the action vocabulary we provided in

section 5.

Quantitatively, this second scalability condition is expressed by the second theoretical scalability
property (TSP2):
(TSP2) V VuActions € TypicalActions |Size(AfActions) - MEM | <

9.3 PRAGMATIC SCALABILITY

From a pragmatic point of view, existing revision control systems fail in managing a huge set of
artifacts. As a consequence, a strategy is more pragmatically scalable than another one if it needs

fewer artifacts. .

Quantitatively, this is expressed by the first pragmatic sclalability property (PSP1) :.
Let s1, s2 be two strategies, s1 is more pragmatically scalable than s2 if and only if

Card(Artifact(s1)) < Card(Artifact(s2))

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 102 of 105

Galaxy ’ R

<Title> PROJECT: GALAXY ARPEGE 2009

REFERENCE: DX.X

<subtitle> DATE: 25/02/2010

ISSUE: X.X

Additionally, existing revision control systems fail in scalably versioning tightly coupled artifacts.
In such cases, one change made to a model by a developer may require to be propagated into
changes to many artifacts, the revision control system must then open most artifacts in order to

perform conflict detection during a merge.

Quantitatively, this is expressed by the second Pragmatic Scalability Property (PSP2):
Let s1, s2 be two strategies, s1 is more pragmatically scalable than s2 if and only if

Card(Artifact(AfActions))s: < Card(Artifact(AfActions))s

So while PSP1 compares the structural scalability of two strategies, PSP2 compares their behavioral
scalability. PSP1 measures the impact of a change in terms of the number of data structures onto
which the consequences of the change need to be propagated. In contrast, PSP2 measures that
impact in terms of the number of operations to execute on these data structures to perform such

propagation.

9.4 EXAMPLE

This section assesses the scalability of the revision strategy given as an example provided in

sections 7 and 8.

9.4.1 Theoretical scalability

This strategy is theoretically scalable since it verifies both TSP1 and TSP2.

Regarding (TSP1):
* Max(Size(Artifacti)) = F
o Where F is the maximum number of feature per classifier.
We can reasonably state that MAS is a constant (a class contains at most 100 model elements, then

| F-100 | <¢).

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 103 of 105

Galaxy ’ R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

Regarding (TSP2):
* Size(AfActions) = K * VuActions
o Where K is a constant. Indeed, for each action in VuAction, at most K actions are
needed.
We can reasonably state that MEM is a constant as a typical change is a bounded sequence of
actions (K_VU), then | Size(AfActions) — K*K_VU | <g)..

9.4.1 Pragmatically scalability

As the pragmatically scalability, we can state that:
* Card(Artifact) = 1(PU Project) + P*(PU Package) + 1 (PU BuiltIn) + 1 (RU BuiltIn) + C*(RU
Non Relationship Classifier) + D * (MU Diagram)=3+P +C+D
o Where P is the number of packages, C is the number of non relationship classifier
and D is the number of diagram.
» Card(Artifact(AfActions)) will depend on how much classifiers are classically modified

conjointly by developers.

10. REFERENCES

[1] Atkinson, C., Bayer, J., Bunse, C., Kamsties, R., Laitenberger, O., Laqua, R., Muthig, D., Paech. Barbara, Wust, J. and
Zettel, J. Component-based product line engineering in UML. Addison-Weslei. 2001.

[2] Akinson, C., Stoll, D. Orthographic modelling environment. In proceedings of the 11% International Conference on
Fundamental Approaches to Software Engineering (FASE’08). 2008. Budpaest, Hungary.

[3] Atkinson, C., Gutheil, M and Kennel, B. A flexible infrastructure for multi-level language engineering. IEEE Transactions
on Software Engineering, 35, 2009.

[4] Blanc, X., Mougenot, A., Mounier, I. and Mens. T. Incremental detection of model inconsistencies based on model
operations. CAiSE’09. 21st Conference on Advanced Informatin Systems Engineering. Amsterdam, The Netherlands.
20009.

[5] Canonical Ltd. The Bazaar wiki. http://wiki.bazaar.canonical.com/

[6] Canonical Ltd. Bazaar 2.x benchmarking results. http://wiki.bazaar.canonical.com/Benchmarks

[7] Canonical Ltd. Bazaar supported workflows. http://wiki.bazaar.canonical.com/Workflows

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 104 of 105

Galaxy ’ R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

[8] Chacon. S. Pro Git. APress. 2009.

[9] Chacon, S. Why is Git better than X. http://whygitisbetterthanx.com/

[10] Collins-Sussman B., Firtzpatrick, B. and Pilato, M.C. Version Control with Subversion. O’'Reilly. 2008.

[11] Kruchten, P.B. The Rational Unified Process: an introduction (3 Ed). Addison-Wesley. 2003.

[12] Object Management Group. The Meta-Object Facility. www.omg.org/mof/

[13] Object Management Group. The XML Metadata Interchange.

www.omg.org/technology/documents/formal/xmi.htm.

[14] O’Sullivan. Mercurial: The Definitive Guide. O’Reilly. 2009.

[15] Mougenot, A., Blanc, X. and Gervais, M.P. D-Praxis: a peer-to-peer collaborative editing framework. DAIS’09. 9t
Internation Conference on Distributed Applicatio] n and Interoperable Systems.

[16] Murta, L., Dantas, H., Oliveira, H., Lopes, L. and Werner, C. Odyssey-SCM: An integrated software configuration
management infrastructure for UML models. Science of Computer Programming. 65(3). 2007. Elsevier.

[17] Murta, L., Corréa, C., Prudéncio, J.G. and Werner, C. Towards Odyssey-VCS 2: Improvements over a UML-based
Version Control System. In proceedings of the ACM/IEEE ICSE Workshop on Comparison and Versioning of Software
Models (CVSMO08), Leipzig, Germany, May 2008, pp. 25-30.

[18] Sriplakich, P., Blanc, X. and Gervais, M.P. Collaborative software engineering on large-scale models: requirements and
experience in ModelBus. SAC’08. ACM Symposium on Applied Computing. Fortaleza, Ceara, Brazil. 2008.

[19] Steinberg, D., Budinsky, F., Paternostro, M. and Merks, Ed. Eclipse Modeling Framework (2°¢ Ed.). Addison-Wesley.

2008.

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 105 of 105

