Galaxy R

Galaxy : Developpement collaboratif de systemes complexes

selon une approche guidée par les modeles

Deliverable D2.2: Mechanism for Collaborative Unit Synchronization

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 1 of 31

Galaxy R
NAME PARTNER DATE
WRITTEN BY J. Robin LIP6 09/12/2010
X. Blanc LIP6 09/12/2010
REVIEWED BY

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 2 of 31

Galaxy R
<Title> PROJECT: GALAXY ARPEGE 2009

REFERENCE: DX.X
<subtitle> DATE: 25/02/2010

ISSUE: X.X
RECORD OF REVISIONS
ISSUE DATE EFFECT ON REASONS FOR REVISION

PAGE |PARA

01 15/10/2010 Création du document
02 28/10/2010 Prise en compte de la réunion Galaxy Toulouse
03 03/12/2010 Prise en compte de la réunion Galaxy Bordeaux
04 09/12/2010 Finalisation premiere version SVN

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 3 of 31

Galaxy

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ARPEGE 2009

DATE:

25/02/2010

TABLE OF CONTENTS

1. INTRODUCTION

2. REMINDER ON THE GALAXY FRAMEWORK

21 LAYERED MVC ARCHITECTURE

2.2 MODEL FRAGMENTATION

2.3 FRAMEWORK CONFIGURATION AND REVISION STRATEGY

24 COMMIT AND UPDATE

3. DIFF

3.1 PRINCIPLES

3.2 DIFF DATA STRUCTURES

3.3 DIFF ALGORITHMS

3.3.1 Model Element Diff Algorithm
3.3.2 View diff algorithm

4. MERGE

4.1 PRINCIPLES

4.2 ERROR, CONFLICT AND INCONSISTENCY
4.3 ALGORITHM

4.3.1 Model Conflict

4.3.2 View Conflict

5. ILLUSTRATIVE EXAMPLE

6. DISCUSSION ON SCALABITY
7. REFERENCES

APPENDIX 1. IOCL SPECIFICATION OF THE DIFF OPERATIONS

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

11
12
13
15
16
17
19
19
19
20
20
20
21
21
21
22
26
27
28

Page 4 of 31

Galaxy R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 5 of 31

Galaxy

<Title>

<subtitle>

PROJECT: GALAXY

REFERENCE: DX.X

ISSUE:

xX.X

ARPEGE 2009

DATE:

25/02/2010

TABLE OF APPLICABLE DOCUMENTS

N°

TITLE

REFERENCE

ISSUE

DATE

SOURCE

SIGLUM

NAME

Al

A2

A3

A4

TABLE OF REFERENCED DOCUMENTS

N°

TITLE

REFERENCE

ISSUE

R1

Galaxy glossary

R2

Collaborative Unit Definition

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

D2.1

Page 6 of 31

Galaxy ’ R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

1. INTRODUCTION

This document presents D2.2., i.e. the second deliverable of the second work package of the

project. The goal of this deliverable is to detail three key aspects in the Collaborative Unit (CU)

specification presented in D2.1, the preceding deliverable of the same work package.

As defined in the D0.1.1 deliverable presenting the Galaxy project, these three aspects are the

following:

1.

Collaborative unit diff: a specification of the collaborative unit operation that compares different
versions of a given artifact set stored in the same or two different collaborative units; this
operation must return all the differences between the artifact set pair passed to it as input; it
constitutes the first main aspect of the collaborative unit synchronization mechanism;
Collaborative unit merge: the specification of one strategy to merge two versions of a given
artifact set stored in the same or two different collaborative units; this operation must return an
artifact set that contains all the compatible model elements that these artifact sets persistently
store; it constitutes the second main aspect of the collaborative unit synchronization
mechanism; note that if some model element in the two artifact set versions to merge are
incompatible, the merge operation fails; specifying it thus also entails defining one strategy to
detect incompatibility between elements;

Means to balance the collaboration strategy: there are two main collaborative development
schemes (a) the lock-modify-unlock sequence, called pessimist locking and (b) the copy-
modify-merge sequence, called optimist locking; depending on a variety of project specific
factors, such participant organization policies, modification granularity and frequency,
coupling level between artifacts, these two strategies may have significantly different relative
performance; insuring scalable interaction thus requires to support both approach; since this is
the case of the collaborative unit concept as defined in D2.1., this aspect was in effect already

address in D2.1 with no need for further elaboration in the present D2.2.

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 7 of 31

Galaxy R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

The document is organized as followed. In section 2, we quickly review the concepts defined in the
preceding deliverable D2.1 that the present D2.2 elaborates. In section 3 and 4, we then present in
turn the CU diff and the CU merge. For each concept, we first recall their usage and define the
principles on which they are based. We then provide the new data structures needed to add into
the Galaxy framework to specify, intuitively in natural language, the step-by-step algorithm for the
corresponding operation (diff or merge). Finally, in section 5, we provide a small illustrative
example of each operation call and result.

In Appendix 1, we give one precise procedural specification of the diff operation body as

expressions in IOCL (Imperative Object Constraint Language).

2. REMINDER ON THE GALAXY FRAMEWORK
21 LAYERED MVC ARCHITECTURE

D2.1 structures the Galaxy framework! in three layers:

" In this document and in the previous deliverable D2.1, we use the (albeit overloaded) word “framework” to
mean an object-oriented conceptual framework made of abstract classes, interfaces and concrete classes
that define general concepts. It does not constitute an architectural framework which is to be defined in WP4,

based on some of these concepts.

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 8 of 31

Galaxy ’ R

<Title> PROJECT: GALAXY ARPEGE 2009

REFERENCE: DX.X
<subtitle> DATE: 25/02/2010
ISSUE: XX

The Galaxy framework API, shown in

1. Figure 1; it defines a set of conceptual interfaces through which the CASE tool of each
development team can interoperate;

2. The Galaxy artifacts shown in Figure 2 ; it defines the conceptual data structures of models,
model elements and model views;

3. The Galaxy collaborative unit shown in Figure 3; it defines an intermediary layer that mediates

between the high-level Galaxy framework API layer and the low-level Galaxy artifact layer.

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 9 of 31

Galaxy

<Title>

<subtitle>

PROJECT: GALAXY
REFERENCE: DX.X
DATE:

ISSUE: xX.x

ARPEGE 2009

25/02/2010

Reified Acti Do

L .[Gahly])

Galaxy
Framework

GalaxyAdminA Pl o

+addUser(name : String, url : String) : String
ﬁmu;u(userld :
ﬁoi(m String, projDescr : String, creatorkd : String) : String

hg puuercH Stnnn wlleePJmcH Slnng)
pmi : &ring, pusherParticld : String , pusheeParticld : String)
+mPushRemotes(projd : Rring, pusherParticld : String , pusheeParticld : String)

GalaxyQueryA Pl [9)

Galaxy
Query
Processor

+istPushees (projld : String, pmu

anm et :

S ide th(
o

HistT: H : Stri

""K" maring pmxmsrhg]
voklloels(pmill String, partickd : @ring) : LockTag [
mm.ﬂ(mu aring meld : Sthg particH : 31"\ [0..1), atTagD : String [0..1], atRev : hteger [0..1]) : ModelBt

)
s'W).wm String [0.1]) : Tag []
-1, vkl - String P.1]) - BranchTag [1]

articH : String P..1], atTagID: String P..1), atRev : mg)ervpi)! A1) : ModelRef

projid : Strhg"p‘:‘etl srm’pp 1], aTagn String [0..1], atRev : hteger P..1], view H

IBt(proji : Sﬁng meld : Rring, locaParticl : String, remote Partictl : String) : Me Diff

-niM-(pmH stmg view H, stmq localParticld : String, remoteParticld : String) : View Diff
, partickd : String, vuld : String) : Versioning Unit

&mg parlcli String, wuld : String) : hconsistency [']

GalaxyLocal RevisionHstoryA Pl (®)

Galaxy

Revision
Hstory
Management

+delTag(poki :

+addBranch(projd :
+sw itchTo(projid : srhg partic
+rebas e(projid : String, particd :

+revert(projH : String, pﬁcﬂ String, wild : String, toRe v : Integer P ..1])

Npmg(sm% String, .,m wsehgs‘m%

, particH : String, vl : String, tagName : String)
pam:l! String, wuld : String, branchName : Sr;m .branchkg : String): BranchTag

,tagName : String, tagMisg : P.1].atRev : nteger [0..1]) : Tag
: String, tagName : String, nuTag&mz String)

: String, wuld : Rring, toBranchMd : String

htl : String)

String, wull : String, branchid : String, hH : String,

Galax yRe visionNotific ationA P1 €

-——— -

ey qu)lshlinarmT
Notification ag("im&"a Sthu t

«.m!?’"

+publish(projid : String, wuld : String, fromParticK : String, toParticK : String, commitd : String)
+publishTag(projtl : String, wuld : srhg tomParch String, toPartickd : String, tag : Tag)

oannH String, toParticld : String . ta,
ng.
qu stng hnﬁnnu ang atBranchldp ..1] : String)

ng, fromParticld : String , toParticd : Stmgnvzg:hrm : String, new TagName : String)

. forParticl : String, lockvisg : String, :tBnnchH String P..1]): LockTag

<<use>>
E - -

<<use>>

GalaxyModelRevisionA Pl

(@)

Gal

Revision

m jH - String ,
toloneC profi - Sirng musvmwusmmw omPartict :

+merge(projHi : mwhﬂnu String, vl : Stlnu w ithBranch
+update(projid : String, toPartickd : String, vull :

: String, particd : String, wull : String, wu : VersioningUnit [0..1], EdtTrace : VuAction [], msg : String) : Commit
H : String, wuld : String, vu : Versioning Lhit [0..1], EditTrace : VuAction [). msg : String) :

Eror [
String, subView forield : String [0..1], atTagtl : String [0..1], atRe v : nteger P .1])
i : Qring, out : Error) : Bookan

. fromParticHl : String, atTagld : String P..1]) : Bror []
+resolve(projHi : String, particld Stthgeonlctu Sﬁngpnkmdﬁmhorﬂ String)

suse> |

Case
Tool

Figure 1: The Galaxy framework API (from D2.1)

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 10 of 31

Galaxy

NR

<Title>

<subtitle>

PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

DATE: 25/02/2010
ISSUE: xx

1| [package Retieda ctions RetsDomannbdel [[Artefact)]
v cses eeseseses cseseases CompositeArtefact | . MuAction | .
R {subsets in} {subsets &} :}
i (k tedPu->union{ u) >union(mu)) +contanerPu § 17| +nestedPu © +mua| 1l
inv: 'ncs >union(ru) >uni mu) . . ‘e P d .
M 1) vinters sEmpty() | — — — Product Unit {ordered)
+pu_1 o *clong) : ProductUnit]
Gubsets | ¥OMI(WENPU : Sting) : PuD
Model Action 1
) Tl prorms 1 +nes tedEtContainer Sstho-thit
N +addView(w : View)
v {ordered) {subs ets &} {ordered} ImetaRef HmiView(w : View)
o +moveView(vw : View, to : MethodUnit
i +u |1 +u +me |1 +instance|* 1 | +me mu):m(dUnit)
5 e ModelBt VersoningUnit +diff{ withld : String) : MuDiff
. + +
rodiioe - Modelck) i] Name : String +uuid : String{re adOnl}
AT m) o 1 1.0 +hash : Stiing +mu 1
+m::b(nlw“:“ﬂ‘ eus eUnit) +addMa(ma : Attribute) +/mutable : Boohan
™ || [e Rat 5 Hoortined R oEt +lconflicted : Boolean +view [1.7
o || oo el to:rwetnt) | nenttel L™ ~—locabChanged: Booean [B
B +/contaner H { H . . P
v || |[+dfwithRuld : Sring) : RuDiff R X100) = Ma DIY yChanged : Boolean : String
*+imeFromTo +show Me(me : ModelBt)
v +hideMe(me : ModelBt
:] 0.1 +under Hiew ” osnmu(":- :Ihdeﬁzl)
i ! : | +hideM(v : ModelRef)
v 1 1 " +showsEf +shownin *|+show Ma(attr : Attribute)
4+ +HargetRu| | +sourceRu ’vm"v‘ﬁ_” 1 +hid
v Harget[1 1| +sour
) . . ar g soutce e 1 +clong() : View -
v . N . ~ sinstance +shownin » +diff{ wlfo\fmld : String) .-VIMD"
s Model Ref Oshunn-r +view |* +view |1
+uuid : String Har getOf +ma|* ~ +showsAttr |~ .
Do e Buoiean . ar ge e o : - {oldaed)
+cross Pu: Boolean vp ww
= +cross Ru : Bookan ‘o +uuid : String View | |ViewAction
[+cross OmgLevel : Boolean s ource Of String oy l 3
i Afmtaficpame : String . | #addMav(mav : PrimtiveValueSpec)
+moveSource(to : ModelEt) instance +rmivlav(mav : Primitiv éValueSpec) NamedEntity
i 4monavu|(lo ModelBt) +clone()
clone() +metaAttr 1| +diff{ wthMald : String) : MaDiff .
i +M(wmld) N -
+shows Ref |
+type |1 +val 1 = -
Primitive Primiti veValueSpec I R aUnit I
Type
{incomplte, disjoint)
< omicAttefact
Figure 2 : The Galaxy artifacts (Product, Reuse and Method Units, from D2.1)
i iznamevcfiorzfie-wwajiacix -Jroen]
package RefiedActionsRets DomainModel[ﬂc«uun]
.) . e amesnis |
Coltab Unit v
i o e | [|
Sboabt L |esee: mteger : :
" ranchTag -
1 1 wclone() : Infolhit
+clone() :
EEESa — =]]
InfoUnt
r *head 1
v
S . T sprevios ;;o...::’ 0.1
£ St Stiing. atRev : Ivteger) : T N g
4 +pulee mnmrn(nm o uﬂ s'u;';'n.v::n "sm:“) = ~ +remateMaing 1 0.2 | 1.7 TimeStamp
" +delTag(afld : Sting, taght : String) 1 +me g : Stiing
+addBranch(afid : Sting, m-— Sting. ms g : Sting) : BranchTag +1evsion : hleger
1 voi oM Suike: i owis) +cbneQ : Commt
v
L4 1
¥ : Sting
[I:.':s.... Y rimestamp LA Se0 +co
H +clone() : Tag f’"' - 1
v ! o veol |10 +ee (0.1
i wat {ordered) .
e
0.1 *d¥t (0.1 L
| context Tag iw: e Amiff AfAction
W MONLockTag) 1 . +elone() : Athction
| the: >6 Empty . clone() : AV
u::nnon wh ..;T:?::‘
ondi 1 O
+5 e2w th
comes ;':" " F {ordered "
| context - . " v
at.>unlon dif). »mmuuauny snotEmpty() ::(«::: ;::',“'np*) L) 4 | sclone() Aretact MionPrev Swiaser
o afid : String, mnm Sting. Path - String)| 1 | Mdiff(withARd ; S¥ing [0..1]) : AN 1] - ATTIT N
“""'o = +fint e o thilext
L5 e - 0.
ehexRev (0.1 * |eprevRev

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 11 of 31

Galaxy R

<Title> PROJECT: GALAXY ARPEGE 2009

REFERENCE: DX.X
<subtitle> DATE: 25/02/2010
ISSUE: XX

Figure 3 : The Galaxy collaborative unit (from D2.1)

2.2 MODEL FRAGMENTATION

As shown in Figure 2, D2.1 defined three classes of “artifacts”: Product Unit (PU), Reuse Unit (RU)
and Method Unit (MU). PU form an artifact containment tree which leaves are RU and MU. The

model is partitioned into the RU. The set of all model views is partitioned into the MU.

As shown in Figure 3, each project participant possesses its own Collaborative Unit (CU) which

groups the artifacts containing the model elements and views relevant to him (her).

As shown in

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 12 of 31

Galaxy R

<Title> PROJECT: GALAXY ARPEGE 2009

REFERENCE: DX.X
<subtitle> DATE: 25/02/2010

ISSUE: X.X

Figure 1, all four classes of units (CU, RU, MU and PU) are hidden for the participant (i.e., Galaxy
framework user). Participants only know that they are working on model elements, shown into

views (e.g. UML diagrams).

Figure 4 shows a simple example with a participant collaborating with others on a model that
contains five elements shown in two views. The participant has a CU that contains one PU that

itself contains one RU that stores all the model elements and two MU (one for each view).

The model O <]b A GDCU
DVQ i' PU (version 5)
2 diagrams [j] MU (version 5)
RU (version 5 MU (version 3)

Figure 4 : The CU of a project participant gathers the PU, RU and MU containing the model elements and

views (diagrams) onto which (s)he collaborates.

As shown in Figure 3, for each project, there is one Galaxy CU per participant and one Galaxy CU
per global blessed repository.

When a project follows the copy, modify, merge collaboration paradigm, synchronizing the local and
the remote collaborative units requires the availability of a merge operation between model

elements, model views and the artifact storing them (PU, RU and MU).

2.3 FRAMEWORK CONFIGURATION AND REVISION STRATEGY

As shown in Figure 5, the Galaxy framework is configurable by what we called a revision strategy.
Such strategy defines:
1. How the model is fragmented (model fragmentation strategy) by defining (1) how model

elements are partitioned into product and reuse units, (2) how model views are partitioned

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 13 of 31

Galaxy S R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

into product and method units and (3) how model and view revision actions are translated at
the CU layer into artifact revision actions (i.e.,, PU, RU and MU act);
2. How the pairs of different model elements and model views are merged into one;

3. How merged elements and views are audited for inconsistencies.

package ReifiedActionsRefsDomainModel [Bﬁ RevisionStrategy]J

+mergeMu(mud : MuDiff, out mu : MethodUnit [0..1], out cf : Confiict[*]) : Boolean
+mergeRu(rud : RuDiff, out ru : ReuseUnit [0..1], out cf : Conflict [*]) : Boolean
+mergePu(pud : PuDiff, out pu : ProductUnit [0..1], out cf : Conflict [0..1]) : Boolean

InconsistencyAuditStrategy

+audit(me : ModelElt) : Inconsistency [*]
+audit(v: View) : Inconsistency '] L _ _ _ _ __ _— o i
+audit(mu : MethodUnit) : Inconsistency [*] : : : . : : :
+audit(ru : ReuseUnit) : Inconsistency [*]

+audit(pu : ProductUnit) : Inconsistency [*]

Galaxy Galaxy <<uses> ModelFragmentationStrategy
Framework aq Prg::gor i T _)+map(va : VuAction [1..*]) : AfAction [1..*]
+map(me : ModelElt, out pu : ProductUnit [*], out ru : ReuseUnit[*])
+map(v : View) : MethodUnit [0..1]
Galaxy +map(ad : AfDiff) : VuDIff[*]
Local
. T Revision | “YS€2”
. History
Management
T G'!W <<yse>>
* 1/ Revision | — — — = <<use>>
. - |Notification . e — — - —
1 |
Galaxy T |
S Model | <<use>>
Revision |
. | - N MergeStrategy |
<<use>> | +mergeMe(med : MeDiff, out me : ModelElt [0..1], out cf : Conflict[*]) : Boolean
+mergeMa(mad, out ma : Attribute [0..1], out cf : Conflict[*]) : Boolean I
+mergeMr(mrd, out mr : ModelRef [0..1], out cf : Conflict [*]) : Boolean |
+mergeView(vd : ViewDiff, view : View [0..1], out cf) : Boolean
|
|
|
|

Figure 5 : Configurating the Galaxy framework with a revision strategy (from D2.1)

To use the Galaxy framework as revision control system for a collaborative MDE project a team
must first configure it by defining the ModelFragmentationStrateqy, MergeStrategy and
InconsistencyStrategy. In deliverable D2.1, we gave several examples of concrete model
fragmentation strategies. In the present deliverable D2.2, we give one example of concrete merge
strategy. We also explain how an inconsistency strategy is used in concert with the merge strategy
in the basic revision control operations commitg and update of the framework. These operations
were specified in D2.1 deliverable, we summarize their role, as well, as their relation with the

operations diff and merge, focus of the D2.2.

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 14 of 31

Galaxy ’ R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

24 COMMIT AND UPDATE

After a participant locally changes model elements or views by using a CASE tool connected to a
Galaxy framework, (s)he needs to commit these changes to a CU to make them available to
participants with whom (s)he collaborates. In this short reminder, we will suppose, for the sake of
simplicity, that the framework is configured in centralized mode. In such mode, a participant
action results in a call to the commitg operation of the Galaxy framework API to commit its local
changes to a remote blessed CU. As argument, the commitg of the API takes as main input either a

model element or a view element.

The Galaxy framework assumes that when selecting one model element to be committed, the
participant in fact wishes to commit not only this element (called the root element), but together
with it all the elements located below it in the element containment tree; commitg calls the map
operations of the model fragmentation strategy on both the root element selected by the

participant and all its descendants in the containment tree.

Depending on the model fragmentation strategy implemented by these map operations, these
descendants may be located in different PUs and RUs. Therefore, after calling those map functions,
the commitg operation of Galaxy model revision class, calls the commitg of the CU for all artifacts
(PU or RU) that contains the root and its descendant elements. This commitg call increments the

revision attribute (an integer) of these artifacts.

After this increment, the remotelyChanged attribute of the root artifact (PU) containing all these
elements (and those referenced by them) is read. If it is false, the remote CU contains the same
version than the one contained in the local CU before the local changes. A new commit object is
then simply created in the remote CU history. This object points to a copy of the artifacts resulting

from the committed local changes.

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 15 of 31

Galaxy ’ R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

If in contrast, the value of remotelyChanged is true, it means than remote changes occurred
concurrently with the local ones. In this case, the commitg operation fails and the participant needs
to call the update operation before attempting to commit again the local changes. It is this update
operation that calls the merge operations defined in the merge strategy to try automatically merge
those two concurrent set changes: the local one and the remote one. It is thus the need for reconcile

concurrent changes that motivates the merge operations.

Automatic merge only succeeds when the concurrent local and remote changes concerned
unrelated model elements, references and attributes. When the changes interfere in a conflicting
way, the merge fails. In such case, it returns a conflict (class Conflict) instead of returning a merged
element (or branch, view or artifact). As we will explain in section 4, a conflict occurs when the

local and remote changes cannot be reconciled into a single well-formed labeled directed graph.

Even if such purely syntactic reconciliation is possible, the merge operation does not return before
calling the audit operation of the inconsistency audit strategy on the reconciled well-formed
labeled direct graph, To goal of this audit call is to check whether this graph does not violate
consistency constraints (e.g, those specified in a meta-model). If it does violate one such constraint,
the merge then fails and returns the inconsistencies that caused the failure instead of the reconciled

graph.

When a merge operation fails, the update operation that called it also fails. This is when the
participant who called the update operation needs to call the diff operation. This operation
compares the elements resulting from the local changes, from those resulting from the concurrent
remote changes. It explicitly displays all the differences between the two. This allows the
participant to understand the causes of the error returned by the failed merge call, correct them

manually using a CASE tool, and call commitg again on the correction.

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 16 of 31

Galaxy ’ R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

3.1 PRINCIPLES

At the Galaxy framework layer, a participant calls the diffModelElt operation (resp. diffView)
operation to compare two versions of one model element (resp. one model view).

The principles of diffModelElt are the following. First, this operation does not merely compare the
versions of the single model element rootMe passed as input argument. Instead, it recursively
compares:

- all the descendants down(rootMe) of rootMe in the model element containment tree;

- all the elements stored in the same RU sameRu(down(rootMe)) than these descendants;

- all the elements stored in the RU set ref(sameRu(down(rootMe))) where some reference from or

to sameRu(down(rootMe)) was locally changed;

Recursing on the model element containment tree is motivated by a user-interface concern. When a
participant wishes to compare two versions of a model element, (s)he generally implicitly means to

compare not only the attributes of these elements but also those of all its nested elements.

Recursing on other elements stored in the same or referenced artifacts than the one to compare is
also motivated by a user-interface concern: the model fragmentation strategy that partitions

elements in artifacts must remain transparent to the participant.

This transparency may lead to the following situation for a participant Ip:
- participant Ip calls commitg on a model element rootMe;
- it fails, because while Ip was changing rootMe locally, another participant rp concurrently

changed another element pointingMe and committed it to the blessed CU before Ip,

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 17 of 31

Galaxy ’ R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

unfortunately both rootMe and pointingMe belongs to the same RU. As a consequence, while rp
has committed pointingMe, the version of RU has been increased.
- comparing the local and remote versions of down(rootMe), thus requires comparing all the

artifacts that were changed by rp’s commit.

The consequence of the first principle is thus that the diffModelElt operation compares two versions
of a model element set. These two versions, a local one and a remote one, concurrently evolved from

a base version, their common ancestor in the revision history.

The second principle of the diffModelElt operation (resp. diffView) is that it proceeds in three main
steps. The first compares the local version with the base version. The second compares the remote
version with the base version. These two steps are asymmetric comparisons of model elements.
They return the elements that have been created (or deleted) and the attributes and the references
that have been assigned from the base version. The third step makes a symmetric comparison on
the results of the first two steps. It returns a set of mismatches. In the next subsection, we give and

explain a precise data model for such mismatches.

3.2 DIFF DATA STRUCTURES

The data structure representing both the input and output of the operations diffModelElt and
diffView are shown in Figure 6. The former returns an object of class MeDiff (Model Element Diff)

while the latter returns an object of the class ViewDiff.

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 18 of 31

Galaxy R
<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X
<subtitle> DATE: 25/02/2010
ISSUE: x.x
ReifiedActi inthodel |} VuDIff) :
5 e) VuDiff
v %
: . [+ocal . +local.] N I
+valLocal MaDiff Attribute | | MeDiff |; 7/ ModelEtt View |7 ~ ViewDiff L ModelEtt
" 1 A ¥
+remote +remote +meShowninRemoteNotLocal
+valRemote T n - -
: 0.1 ' +meHiddenFromLocalNotRemote
+valBase 3 | - thase | +base. .
4 1 i)
0.1 ' g +meHiddenFromRemoteNotLocal
L +baseZlocal +base2local !
v || | ModelRef {ordered) +{ordered) *

+outMrAddedToLocalNotRemote

+outhMrAddedToRemoteNotLocal

+outMrDeletedFromLocalNotRemote

.

+outMrDeletedFromRemoteNotLocal

+hase2remote

{ordered}*

+hase2remote

+{ordered)

+root

1

.

+inMrAddedToLocalNotRemote

inMrAddedToRemoteNot:Local

+inMrDeletedFromLocalNotRemote

.

+inMrDeletedFromRemoteNotLocal

inLs

+maShowninRemoteNotLocal

+maHiddeninLocalNotRemote

+maHiddeninRemotéNotLocal

+mrShowninLocalNotRemote

ModelRef

+mrShowninRemotéNotLocal

mrHiddenLocalNotRemote

mrHiddeninRemoteNorLocal

Figure 6 : Diff data structures

A MeDiff defines the differences that exist between three versions (local, remote, base) of a same

model element. MeDiff lists the primitive values that differ in the local, remote and base versions

(class MaDiff, i.e., Model Attribute Diff). MeDiff also lists all the references (objects of class

ModelRef) ingoing to or outgoing from the element, that were added or deleted from the base to the

local version but not from the base to the remote version, or vice-versa from the base to remote

version but not from the base to the local version.

An MeDiff object recursively contains other MeDiff objects (auto-composition from the root role to

the ramification role).

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 19 of 31

Galaxy ’ R

<Title> PROJECT: GALAXY ARPEGE 2009

REFERENCE: DX.X
<subtitle> DATE: 25/02/2010

ISSUE: X.X

3.3 DIFF ALGORITHMS
3.3.1 Model Element Diff Algorithm

As input, diffModelElt take two versions, local and remote of the same model element. From these

versions it has access to their common ancestor base version in the revision history. As input,

diffModel EIt may also have access to:

- the local sequence of model actions (role base2local) that changed the base version into the local
version;

- the remote sequence of model actions (role base2remote) that changed the base version into the
remote version.

This is the case if the commitg operation stores these actions in the RU of the committed element

(role mda navigating from ModelElt class to the ModelAction class shown in Figure 2).

If it is not the case, such sequences can be computed from the local, remote and base elements

following algorithms described in [9] (diff by ids algorithm).

3.3.2 View diff algorithm

As input, diffView takes two versions, local and remote of the same model view. From these versions

it has access to their common ancestor base version in the revision history. As input, diffViewt may

also have access to:

- the local sequence of view actions (role base2local) that changed the base version into the local
version;

- the remote sequence of view actions (role base2remote) that changed the base version into the

remote version.

This is the case if the commitg operation stores these actions in the MU of the committed view (role

vwa navigating from the View class the ViewAction class shown in Figure 2). There are only six

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 20 of 31

Galaxy ’ R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

subclasses of ViewAction: showMe, hideMe, showMr, hideMr, showMa and hideMa, to show in the
view or hide from the view a given a model element, a model element attribute or a model
reference. Since these actions are all trivial switches without any recursion or iteration, computing
them from the local and base views is straightforward. The ouput ViewDiff of the diffView operation
simply lists the model elements (resp. model attribute, model references) that are shown (resp.

hidden) in the local version of the view but not in the remote, and vice-versa.

4. MERGE
4.1 PRINCIPLES

A merge is used when changes are performed concurrently. The main goal is to return one model
that integrates almost all the changes.

A merge has to analyze the differences between the changes in order to identify if they are in
conflict or not. A conflict is a pair of incompatible changes. For instance, if one change consists in
removing a model element while another consists in assigning a property value to the element,
then those two changes are in conflict. Only one of them can be integrated in the resulting model.
Regarding all non-conflict changes, all of them can be integrated. However, the merge algorithm

can choose not to consider some of them.

4.2 ERROR, CONFLICT AND INCONSISTENCY

In our context, changes are either expressed by ModelDiff or ViewDiff. A ModelDiff (resp.
ViewDiff) targets only one element and represents all the differences between the three versions

(base, remote or local) of the element.

Looking at the differences of a ModelDiff, the following rules define whether the changes that

apply to the element of ModelDiff are in conflict:

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 21 of 31

Galaxy R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

e If a same attribute is modified with two different values in the remote and the local version,
then there is a conflict.
* If the element is deleted in one version (local or remote) and modified in the other version

(remote or local), then there is a conflict.

Looking at the differences of a ViewDiff, the following rules define whether the changes that target
the element are in conflict:
* If an attribute of an element is showed in one version (local or remote) and the element is
hidden in another version (remote or local), then there is a conflict.
* If a reference of an element is showed in one version (local or remote) and the element is

hidden in another version (remote or local), then there is a conflict.

4.3 ALGORITHM

In this section, we propose one possible Merge algorithm. It should be noted that any other
algorithm can be substituted to this algorithm. This algorithm considers that all non-conflict
changes are integrated in the returned model.

4.3.1 Model Conflict

The following rules apply to merge the two possible kinds of conflict:
e If the conflict is related to the attribute values, then the value of the local version is used in
the returned model.
e If the conflict is related to the deletion of a model element, then the element is not deleted

in the returned model and the other change is intergrated.

4.3.2 View Conflict

The following rule applies to merge the different kinds of conflict:

* The show operation is integrated whereas the hid operation is not.

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 22 of 31

Galaxy ’ R

<Title> PROJECT: GALAXY ARPEGE 2009

REFERENCE: DX.X

<subtitle> DATE: 25/02/2010

ISSUE: X.X

5. ILLUSTRATIVE EXAMPLE

This section presents a simple example that highlights how collaborative units are synchronized.
In this example, two developers (Developer A and Developer B) collaborate to build a same model.
They use a global blessed repository to synchronize their work. They both share a same model
fragmentation revision strategy (see D2.1) that consists in storing each model element in its own
Reuse Unit (RU). Moreover, for each Reuse Unit, there is only one Product Unit that contains it. On
top of that, a single root Product Unit groups all Product Units. The Figure 7 presents the icons we

use to present this example.

‘1 A model element whose id is el vl A Reuse Unit named r1, version vl
e
rl
a=2 A model element has a property < > Bi-directionnal references
a assigned to 2 between Reuse Units
A model element references A Product Unit named p1,
—> another model element version vl
P1

A model element contains

—>
another model element <£I:|I:> A Collaborative Unite named C1

C1l

Figure 7 : icons used to presents model elements and units

The Figure 8 presents the initial model. This model is composed of two model elements (el and
e2). There is a link between el and e2, which is a containment link (i.e. the Association that types
this link is an composition). According to the strategy, each model element has its own RU (rul
and ru2). Moreover, each RU has its own PU (pul and pu2). On top of that, all PUs are contained

in the root PU (pu0 is the root PU). The blessed Collaborative Unit contains all the units.

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 23 of 31

Galaxy R

<Titie> PROJECT: GALAXY ARPEGE 2009

REFERENCE: DX.X
<subtitle> DATE: 25/02/2010
ISSUE: XX

Blessed

Figure 8 : Initial model (in the blessed CU)

In our example, the two developers (developer A and developer B) update their Collaborative

Units in order to start to collaborate.

A modifies the model. He removes the link between el and e2. Then he deletes e2. Then he creates
a new model element (e3) and assigns a link from el to e3. Figure 9 presents the Collaborative Unit
of developer A after performing those modifications. According to the strategy, a reuse unit has
been created to store e3. Moreover, since el and e2 have changed, the versions of rul, ru2 and their

containing PUs have been increased.

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 24 of 31

Galaxy R

<Titie> PROJECT: GALAXY ARPEGE 2009

REFERENCE: DX.X
<subtitle> DATE: 25/02/2010

ISSUE: xX.x

pu0

Developer A

Figure 9: CU of developer A, after modification

Now, imagine that developer A commits his work to the blessed collaborative unit. He selects el
as the root element to commit. The algorithm finds that rul has to be committed but also ru2 (as a
reference has been removed between rul and ru2) and ru3 (as el references e3). As the versions of
those RUs match the versions of the corresponding RU stored in the blessed CU, the commit is

accepted. Hence, the blessed CU and the CU of developer A are synchronized.

Concurrently, the developer B modifies the model. He changes the assigned value of el::a (a=4)
and the value of e2::b (b=3). Figure 10 resents the collaborative unit of developer B. As el and e2

have been changed, the versions of their RU have been increased.

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 25 of 31

Galaxy S R

<Title> PROJECT: GALAXY ARPEGE 2009

REFERENCE: DX.X
<subtitle> DATE: 25/02/2010

ISSUE: xX.x

Developer B

Figure 10: The CU of developer B, after the changes

Now, imagine that developer B wants to commit his work to the blessed collaborative unit. He
selects el as the root element to commit. The algorithm finds that rul and ru2 has to be committed
(both el and e2 have been changed). As the versions of those RUs mismatch the version of the

corresponding RU stored in the blessed CU, the commit is not accepted.

Developer B then decides to update his work and to call the diff algorithm. The diff algorithm
yields that conflictual changes have been made. Regarding el, the property “a” is either assigned
to 3 (by developer A) or to 4 (by developer B). Regarding e2, either it is removed (by developer B)
or its property is changed (b=3). Other changes are not conflicts (the link between el and e2 has

been removed; e3 has been created and linked with el).

B then manually changes the model. He keeps the change of the developer A for el (a=3) but keeps
his change for e2 (e2 is not deleted and b=3). Figure 11 presents the final Collaborative Unit that is
committed to the blessed Collaborative Unit. Developer B and the blessed Collaborative Unit are

now synchronized. Developer A will be synchronized when he will update his model.

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 26 of 31

Galaxy S R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

pu0

Developer A

Figure 11: Changes commited by the developer

A, after conflicts resolution

6. DISCUSSION ON SCALABITY

Regarding scalability, the less PU, MU and CU are modified in reaction to committing a model
element, the less conflict may occur. Section 3 clearly explains that a set of PU, MU and RU are
considered while committing one model element. Those PU, MU and RU contain model elements
others than the one that has been changed. At least, they contain the containment tree of the root

model element.

The first principle that has to be respected is the fact that the number of considered PU, MU and
RU should be bounded. Indeed, committing one model element should not end up with
committing all PU, MU and RU. We argue that the number of PU, MU and RU should be

proportional to the number of elements that belong to the containment tree of the committed

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 27 of 31

Galaxy ’ R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

element. This number is always bounded with models that follow a power law, which is the case

of UML models.

The second principle that governs scalability is the ratio of modified elements versus versioned
elements. While only one element is committed, it represents all its containment tree. As a
consequence, all the containment is committed. When those elements are committed, the version of
their corresponding PU, MU and RU are increased. However, those PU, MU and RU certainly
possess other elements. As a consequence, those elements are impacted by the commit although
they have not been modified. We consider that the root model element and its containment tree are
the truly modified elements (ModE). All the elements that belong to the corresponding PU, MU
and RU are versioned elements (VersE). Regarding scalability, we argue that ModE should be close

to VersE (ideally ModE = VersE).

7. REFERENCES

[1] Blanc, X., Mougenot, A., Mounier, I. and Mens. T. Incremental detection of model inconsistencies based on model
operations. CAiSE’09. 21st Conference on Advanced Informatin Systems Engineering. Amsterdam, The Netherlands.
2009.

[2] Object Management Group. The Meta-Object Facility Core. www.omg.org/mof/

[3] Object Management Group. The Object Constraint Language, Version 2.2. http://www.omg.org/spec/OCL/2.2/

[4] Object Management Group. Meta-Object Facility (MOF2.0) Query/View/Transformation 1.0
http://www.omg.org/spec/QVT.

[5] Object Management Group. The XML Metadata Interchange. www.omg.org/technology/documents/formal/xmi.htm.
[6] O’Sullivan. Mercurial: The Definitive Guide. O’Reilly. 2009.

[7] Mougenot, A., Blanc, X. and Gervais, M.P. D-Praxis: a peer-to-peer collaborative editing framework. DAIS’09. 9th
Internation Conference on Distributed Applicatio] n and Interoperable Systems.

[8] Sriplakich, P., Blanc, X. and Gervais, M.P. Collaborative software engineering on large-scale models: requirements and
experience in ModelBus. SAC’08. ACM Symposium on Applied Computing. Fortaleza, Ceara, Brazil. 2008.

[9] Sprilakich, P. ModelBus: un environment réparti et ouvert pour l'ingéniérie de modeéles. PhD. Thesis. Université Pierre et

Marie Curie, Paris, France, 2007. (In spite of its French title, the thesis is written in English).

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 28 of 31

Galaxy ’ R

<Title> PROJECT: GALAXY ARPEGE 2009

REFERENCE: DX.X
<subtitle> DATE: 25/02/2010
ISSUE: XX

Appendix 1. IOCL specification of the diff operations
IOCL is part of the OMG MOF-QVT (Meta-Object Facility Query, View, Transform) standard [4]

for model transformation specification. Its original purpose is to support procedural specifications
of imperatively executable model transformations. It is a simple and intuitive extension of the
OCL, (another OMG standard, part of UML2, to specify constraints on UML models and MOF
meta-models [3]) with basic imperative constructs such a variable definition, variable assignment,
conditionals and loops. The goal of the IOCL specifications is merely to prove that the diff and
merge algorithm models provided in the present D2.2 deliverable are sufficiently precise to serve
as a sound basis for implementation. It is in no way prescriptive. Once the algorithm has been
understood, a given implementation might provide the specified services in alternative fashions
using alternative data structures (for example to satisfy specific non-functional requirements or

reuse legacy tools).

1 context GalaxyQueryProcessor::diffModelElt(projld: String, meld: String, localParticld: String, remoteParticld: String): MeDiff
2 body: do { var localCu:CollabUnit := getCollabUnit(projld, localParticld);
-- get the local collaborative unit localCu for project whose id is projld and whose participant is localParticld

3 var localRev:Integer = localCu->head->tip.revision
-- get revision number of last commit in the local head branch of localCu

4 var localMe:ModelElt := getModelElt(projld, melD, localParticld, localRev);
-- get latest local version localMe of modelElt whose Id is meld in localCu

5 var baseMe:ModelElt := getModelElt(projld, melD, localparticld, localRev-1);
-- get base version baseMe of modelElt whose Id is meld in local Cu

6 var diffBase2LocalActions:ModelAction[*] := localMe->mda;
-- the action sequence from baseMe to localMe was stored in the galaxy when the same participant last called commit|
or update on localMe;

7 var remoteCu:CollabUnit := getCollabUnit(projld, remoteParticld);
-- get the remote collaborative unit remoteCu for project whose id is projld and whose participant is remoteParticld

8 var remoteRev:Integer = remoteCu->head->tip.revision
-- get revision number of last commit in the remote head branch of remoteCu

9 var remoteMe:ModelElt := getModelElt(projld, melD, remoteParticld, remoteRev);
-- get latest remote version remoteMe of modelElt whose Id is meld in remoteCu

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 29 of 31

Galaxy ' R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

10 compute diffBase2RemoteActions:ModelAction[*] := remoteMe.mda

1" {

12 var prevRemote : ModelElt := remoteMe->prevRey;

13 var prevRemoteRev:Integer = prevRev.revision;

14 while (prevRemoteRev => localRev-1)

15 {

16 prevRemote := prevRemote->prevReyv;

17 prevRemoteRev := prevRemoteRev -1;

18 diffBase2RemoteActions := diffBase2RemoteActions->prepend(prevRemote.mda);

19 }

20 }

-- the action sequence from the BaseMe to RemoteMe is constructed by iterating over prevRev links from remoteMe
-- until reaching a model element which revision number matches that of baseMe;

21 var inLocalNotRemote:ModelAction[*] := diffBase2LocalActions - diffBase2RemoteActions;
-- the actions in the baseMe to localMe sequence, but not in baseMe to remoteMe sequence;

22 var inRemoteNotLocal:ModelAction[*] := diffBase2RemoteActions - diffBase2LocalActions;
-- the actions in the baseMe to remoteMe sequence, but not in the baseMe to localMe;

23 diffLocalRemote := new MeDiff;
-- create new MeDiff object;
24 diffLocalRemote.local := localMe;
25 diffLocalRemote.remote := remoteMe;
26 diffLocalRemote.base := baseMe;

--fills it local (resp. remote, base) role with localMe (resp. remoteMe, baseMe);

27 diffLocalRemote.base2local := diffBase2LocalActions;
28 diffLocalRemote.base2remote := diffBase2RemoteActions;
--fills its base2local (resp. base2remote) role with the actions sequence from baseMe to localMe (resp. remoteMe)

29 diffLocalRemote.outMrAddedToLocalNotRemote := inLocalNotRemote->select(ar:AddRef | ar.from = localMe)-
>collect(result);

-- the references added from baseMe to localMe but not to remoteMe are obtained by selecting the outgoing AddRef
actions

-- from the sequence from baseMe to localMe minus the sequence from baseMe to remoteMe

30 diffLocalRemote.outMrAddedToRemoteNotLocal := inRemoteNotLocal->select(ar:AddRef | ar.from = remoteMe)-
>collect(result);

-- the references added from baseMe to remoteMe but not to localMe are obtained by selecting the outgoing AddRef
actions

-- from the sequence from baseMe to remoteMe minus the sequence from baseMe to localMe

31 diffLocalRemote.outMrDeletedToLocalNotRemote := inLocalNotRemote->select(ar:RmRef | ar.from = localMe)-
>collect(result);

-- the references deleted from baseMe to localMe but not to remoteMe are obtained by selecting the outgoing RmRef
actions

-- from the sequence from baseMe to localMe minus the sequence from baseMe to remoteMe

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 30 of 31

Galaxy ' R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X

<subtitle> DATE: 25/02/2010
ISSUE: XX

32 diffLocalRemote.outMrDeletedToRemoteNotLocal := inRemoteNotLocal-->select(ar:RmRef | ar.from = remoteMe)-

>collect(result);
-- the references deleted from baseMe to remoteMe but not to localMe are obtained by selecting the outgoing RmRef

actions
-- from the sequence from baseMe to remoteMe minus the sequence from baseMe to localMe

33 diffLocalRemote.inMrAddedToLocalNotRemote := inLocalNotRemote->select(ar:AddRef | ar.to = localMe)-

>collect(result);
-- the references added from baseMe to localMe but not to remoteMe are obtained by selecting the ingoing AddRef

actions
-- from the sequence from baseMe to localMe minus the sequence from baseMe to remoteMe

34 diffLocalRemote.inMrAddedToRemoteNotLocal := inRemoteNotLocal->select(ar:AddRef | ar.to = remoteMe)-

>collect(result);
-- the references added from baseMe to remoteMe but not to localMe are obtained by selecting the ingoing AddRef

actions
-- from the sequence from baseMe to remoteMe minus the sequence from baseMe to localMe

35 diffLocalRemote.inMrDeletedToLocalNotRemote := inLocalNotRemote->select(ar:RmRef | ar.to = localMe)-

>collect(result);
-- the references deleted from baseMe to localMe but not to remoteMe are obtained by selecting the ingoing RmRef

actions
-- from the sequence from baseMe to localMe minus the sequence from baseMe to remoteMe

36 diffLocalRemote.inMrDeletedToRemoteNotLocal := inRemoteNotLocal-->select(ar:RmRef | ar.to = remoteMe)-

>collect(result);
-- the references deleted from baseMe to remoteMe but not to localMe are obtained by selecting the ingoing RmRef

actions
-- from the sequence from baseMe to remoteMe minus the sequence from baseMe to localMe

diffLocalRemote.outMrAddedToBothWithDiffTargets := localMe->sourceOf->iterate(r:ModelRef; av:AddVal |

localme.mda->
37 var finalAddValsinLocal:AddVal[*] := localMe.attr->iterate(a:Attribute; sv:AddVal | localMe.mda->select(sv: AddVal |

sv.host = localMe and sv.attr = a)->last());
-- extract from the action sequence from baseMe to localMe the last AddVal action for each attribute

38 var finalAddValsinRemote:AddVal[*] := remoteMe.attr->iterate(a:Attribute; sv:AddVal | remoteMe.mda->select(sv:
AddVal | sv.host = remoteMe and sv.attr = a)->last());
-- extract from the action sequence from baseMe to remoteMe the last AddVal action for each attribute

39 finalAddValsInLocal->asSet().symmetricDifference(finalAddValsInRemote->asSet())-> forEach(sv);
-- for each action sv in the symmetric difference between the respective last AddVal action sequences from baseMe to
localMe and from baseMe to remoteMe, recasted as sets

40 {
41 mad := new MabDiff;
-- create a new object mad of type MaDiff
42 mad.attr ;= sv.attr;
-- concerning the attribute argument of sv and showing:
43 mad.valLocal := sv.val;

-- the attribute value in localMe

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 31 of 31

Galaxy ’ R

<Titie> PROJECT: GALAXY ARPEGE 2009
REFERENCE: DX.X
<subtitle> DATE: 25/02/2010
ISSUE: x.x
44 mad.valRemote := localMe.attr->select(name = sv.attr.name)->val;
-- the value of the same attribute in remoteMe
45 mad.valBase := mad.valRemote;
-- and the value of the same attribute in baseMe
46 difflLocalRemote->mabDiff := diffLocalRemote->maDiff->including(mad)
-- add this new mabDiff object to the maDiff role of the meDiff object under construction
47
48 var containedMeRus := localMe.contained->ru;
-- get the reused units containing all the model elements with nesting reference ingoing to localMe or outgoing from
localMe;
49 var changedRefRus := containedMeRus->union(containedMeRus->mrFromTo->select(locallyChanged));

-- get all the reuse units that contain model elements which reference from or to model elements in containedMeRus has
locally changed;

50 var changedPus := changedRefRus->pu->select(locallyChanged);
-- get all the locally changed product units that contains reuse units in changedRefRus

51 changedPus->ru->me->forEach(me)
52 { diffLocalRemote.ramification := diffRemote.ramification->union(diffModelElt(projld, me.uuid, localParticld,

remoteParticld) }
-- fill the ramification role of diffLocalRemote with the result of recursive calls to diffModelElts on each model element in

the reuse units contained in the product units changedPus

53 return diffLocalRemote;
-- finally, return the meDiff object constructed by the preceding sequence of operation calls

54 }

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.
Page 32 of 32

