

Project Galaxy: Model-‐‑Driven
Collaborative development of complex systems

Deliverable D2.3 :Mechanisms for

Model-‐‑Driven Team Communication

 NAME PARTNER

WRITTEN BY A. Kamoun LAAS (IRIT subcontractor)

G. Sancho LAAS (IRIT subcontractor)
REVIEWED BY S. Tazi LAAS

B. Coulette IRIT

K. Drira LAAS

E. Kedji IRIT

2

1	 Introduction ... 3	

2	 Collaboration ... 4	

2.1.	 Sessions ... 5	

2.2.	 Sessions management and deployment ... 6	

3	 Description of the GCO .. 6	

3.1.	 Generic Collaboration Rules .. 10	

3.2.	 Inference and rules processing .. 12	

4	 Design principles .. 14	

4.1.	 Ontology language .. 14	

4.2.	 Ontology contents ... 14	

4.3.	 Genericity and extensibility ... 14	

4.4.	 Multi-‐‑Layered Architectures ... 15	

4.5.	 Simplicity .. 15	

4.6.	 Naming ... 15	

5	 Constructing models from GCO at runtime ... 15	

6	 Example of GCO specialization in GALAXY ... 18	

7	 Conclusion ... 20	

8	 References .. 21	

Appendix (Semantic Web technologies, an overview) ... 25	

Deliverable2.3 3

1 Introduction

This document presents the third deliverable of the second work package of the project.

It describes the Generic Collaboration Ontology (GCO) [STV10][STV10] G. Sancho, S.

Tazi et T. Villemur : GCO : a Generic Collaboration Ontology. In Proceedings of the Fourth

International Conference on Advances in Semantic Processing (SEMPARO 2010), Florence,

Italy, octobre 2010.

[SVT10] . The main goal of this model is to serve as reference point in order to express

collaboration situations between users organized in groups.

This model is represented in the Web Ontology Language (OWL1) ontology language.

As far as we know, a common ontology for modeling collaborative sessions has not

been proposed yet. Ontologies have received great attention in the recent years, due to

their use for knowledge representation in the Semantic Web domain. The main idea is to

add metadata describing regular Web data (which is only human-readable) in order to

make it understandable by machines enabling the automation of distributed processing

over the Web. This metadata represents the semantics of collaboration.

GCO has been designed in a manner that it is independent of specific domain. However

it can be specified in order to capture the specific collaboration knowledge of the

considered domain. The main objective of GCO is to represent collaboration in a

conceptual manner. This enables its use to be specified to a specific domain. The second

goal of GCO is to serve as a core for the deduction and the expression of a deployment

schema that corresponds to a given collaboration configuration.

 We distinguish two types of ontologies: "top-level" ontologies and "domain"

ontologies. (1) "Top-level" ontologies, describe general concepts that are reusable

through different domains. They may be considered as meta-model. (2) "domain"

ontologies specifying a conceptualization of a part of the real world of a specific

domain. Domain ontologies may be considered as instances of “top-level” ontologies.

The GCO ontology is a top-level ontology. Concepts and relations defined in GCO are

specialized into specific concepts and relations of the domain ontology. In order to

1 Although the acronym should be WOL, OWL has been chosen for aesthetic reasons:
http://lists.w3.org/Archives/Public/www-‐webont-‐wg/2001Dec/0162.html	

4

apply GCO to model driven design by a group in the case of GALAXY, the domain

ontology is a set of concepts, properties and relations that represent Galaxy domain. The

Galaxy ontology specializes the GCO ontology.

The contents of this document are organized as follows. In section 2, we introduce the

notions of collaboration and session that are the core of GCO. Section 3 details the

elements of the GCO. Section 4 explains the principles that have guided its design.

Section 5 presents some guidelines for using an ontology as the core model of a run-

time system. Section 6 explains how GCO can be used as a model of collaboration in a

specific domain and we illustrate this application by an example of specialization of

GCO in the context of Galaxy. Section 7 concludes and provides some perspectives for

future work. In the appendix, we introduce the technologies and languages that we have

used for the expression and the processing of GCO namely OWL for ontologies, the

Semantic Web Rule language (SWRL) for rules and reasoning mechanisms in OWL.

These Semantic Web technologies allow the representation and management of

knowledge.

2 Collaboration

Collaborative applications are distributed systems especially designed to provide

support to groups of users that act in a coordinated way in order to achieve a common

goal. Such applications have been studied since the 1990s in the domain called

Computer-Supported Collaborative Work (CSCW). Kraemer [KK88] and Ellis [EGR91]

proposed two general definitions of the collaborative work:

“computer-based system that facilitates the solution of unstructured problems by a

set of decision makers working together as a group.”

“computer-based systems that support groups of people engaged in a common task (or

goal) and that provide an interface to a shared environment.”

In these definitions, the term work, in general, refers to any common task between

several persons, in domains such as game, education, co-design, etc. The developed

techniques in the domain of collaborative work can be applied to any kind of human

computer collaboration.

The collaborative work has four reference domains [vil06] :

- Social sciences (more specifically, sociology and the organization theory) in
order to study the organization of groups, their reports, the group efficiency, etc.

Deliverable2.3 5

- Cognitive sciences and distributed artificial intelligence in order to study the
semantic of information, tasks planning, assistance in performing these tasks,
etc.

- Human-machine interfaces for designing multi-user interfaces adapted to the
collective work.

- Distributed computing for the design of distributed systems that enable the
storage, exchange and processing of information remotely.

The groupware concept refers to the set of software products, services, platforms and

tools that support collaborative work [Kar94] .

2.1. Sessions

The concept of session is crucial in the collaborative work. A session consists

of a set of users who share common goals [DGLA99] . Those who participate in a

session should not be necessarily at the same place; the use of networks allows the

intervention of geographically distant participants.

Sessions can be synchronous or asynchronous. In a synchronous session,

all participants are presents simultaneously. Exchanges between these participants are

interactive, and data are manipulated in real time, e.g. a group of people participating in

a videoconference.

In an asynchronous session, the co-presence of group members is not necessary.

Exchanges are not in real time, because they are based on asynchronous media

such as email.

This distinction between synchronous and asynchronous sessions is used in the past

due to the different network technologies. Currently, we find tools that combine the two

modes: For example, in a collaborative editing of a document, authors may work

separately asynchronously, and with some meeting in a synchronous mode, to ensure

the consistency of the produced document.

Sessions are classified into two categories: explicit and implicit. A session is called

explicit when its possible configurations are set offline during the system design. The

designer explicitly defines the relationships between group members and their evolution

over time. Session instances are managed and deployed at run time. In most case, a

privileged user initiates the session and other users can join it if they are invited. Most

of proposed models for the formalization of synchronous sessions are based on graphs

[RPVD01]. In these graphs, nodes represent users, while edges represent the exchanged

flow of data. The labels of the edges indicate the tool that manages the sending and

receiving data.

6

Implicit sessions emerge from user’s actions and their context. When the system

detects situations of potential collaboration, for example according to the presence of

users and their interests, it creates an implicit session and invites users to join it. Few

studies have investigated this type of sessions. However, we cite the

work of Edwards [EDW94] and Texier and Plouzeau [TP03] , which propose models

based on the set theory, and that of Rusinkiewicz and al. [RKT95], based on first order

logic for describing the structure of session which is not fixed a priori.

2.2. Sessions management and deployment

In collaborative tools, models of sessions are used by session managers who control the

life cycle of sessions. They are used to identify sessions, to activate, to control user’s

access and their rights, to enable the necessary tools, etc...

An important aspect is the deployment of tools and components managing the flow of

data sent between users. Indeed, it is necessary to install and configure these elements

on users’ machines so they can exchange data.

Hammami [Ham07] made a comprehensive study of the types of deployment and

deployment systems that exist. The deployment can be static (when an administrator

indicates the application to use) or dynamic (when the choice is automatic during the

deployment process), centralized (with a main entity that manages the process) or

decentralized (when deployment nodes interact with each other). There

are two deployment strategies: push, in which the initiative of deployment is given to an

administrator, and pull, in which the nodes initialize the deployment process

themselves. In general, the systems found in the literature implement a static

deployment, in push mode, and often centralized. Automatic systems have been little

studied, and in general, they are very flexible.

3 Description of the GCO

The main elements of the Generic Collaboration Ontology are represented in Figure 4.1.

Concepts are represented as round-cornered rectangles, while relations are represented

as arrows going from one concept (the domain of the relation) to another concept (the

range of the relation). Relations are marked with cardinalities that allow to distinguish

between functional and not functional properties. Individuals are represented as dash-

line rectangles.

The basic concept of this ontology is Node. A node represents a communicating

entity which takes part in a collaborative activity.

Deliverable2.3 7

Nodes play a role in the collaborative activity which determines the position of

the entity within the collaborative group. This is captured by the concept Role.

Therefore a relation called hasRole links the Node and Role concepts. This relation is

not functional because one node may have many roles.

Groups are represented by the concept: Group. The membership of roles to

groups is expressed by the relation hasMember (going from Group to Role). Its opposite

is belongsToGroup.

A node represents a participant who collaborates with others. This participant

uses a physical machine. Such machines are represented by the concept Device, and

Node is linked to Device by the property hasHostingDevice. The inverse property is

called HasHostedNode. The device identifier can represent for example its IP address.

Entities take part in the collaborative activity by sending and receiving data

to/from other entities. The concept Flow represents a communication link between two

entities. Therefore, Flow is linked to Node by two properties: hasSource and

hasDestination. In this ontology, flows are considered as being unidirectional, and thus

if a bidirectional communication between two nodes is required, it will be represented

by two instances of Flow with two opposite directions. The hasSource property is

functional, while hasDestination is not functional, i.e., a flow has a single source node,

but it may have several destination nodes (thus representing multicast links).

The Session concept represents a set of flows belonging to the same

collaborative activity. The hasFlow property relates a session to a flow. The inverse

property, belongsToSession, is functional, i.e., a flow belongs to a single session. Since

flows are related to nodes, nodes are indirectly related to one or more sessions

depending on the flows that connect them to other entities.

In order to handle data flows, nodes use external software components that are

deployed on the same device than them. This enables the separation between business

code (specific to application domaine and implemented in entities’ components) and

collaboration code (implemented in such external components). These external

components are represented by the Tool concept. The tool is software that allows

sending and receiving data flows. They are composed of several components, e.g., a

sender component and a receiver component. Tools are managed by nodes; components

are "subparts", fragments of software, that's why there is a relationship between them.

8

Fig. 4.1 Main concepts and relations of GCO

Therefore the Tool concept is related to a concept called Component through the

property hasComponent. Since components handle flows, a property called

managesFlow links Component and Flow. Components have a data type (the same as

the data type of the flow that they manage) and are deployed (isDeployedOn property)

on a single node (thus, they are deployed on the device that hosts the node). The

Component concept has several subconcepts that represent components depending on

Deliverable2.3 9

the handled data type (AudioComponent, TextComponent and VideoComponent) and on

the direction of the handled flow (SenderComponent and ReceiverComponent).

SenderComponent and ReceiverComponent are linked to Flow by two sub-relations of

managesFlow: sendsFlow and receivesFlow, respectively.

In order to represent the nature of data exchanged through a flow, the Flow

concept has a functional property called hasDataType that relates it to the DataType

concept. Possible values of data types are captured through the DataType individuals

audio, text and video (additional data types could be considered). The subconcepts of

Flow differ in the value of their data type: AudioFlow, TextFlow and VideoFlow. Flow,

Tool and Component Classes have three defined subclasses depending on the data type.

For example, the class AudioComponent is defined as :

AudioComponent ≡ Component ∏ hasDataType(audio)
This means that if an individual belongs to the AudioComponent class, then it

must be a Component and its hasDataType property point towards the audio individual.

And conversely, every individual being a component and having audio as data type is

necessarily an AudioComponent. We used the same principle for the other subclasses of

Component and for those of Flow and Tool.

The Component subclasses taxonomy contains all variants according to the data

type (audio, text and video) and the component direction (sending, reception). Figure

4.2 details this taxonomy as it is represented in the ontology.

10

Fig. 4.2 Components taxonomy in GCO

Concepts and relations of GCO constitute a collaboration model, that is, a

generic pattern which captures possible collaboration situations. Model instances

express concrete collaboration situations. These instances are sets of OWL individuals

belonging to the GCO concepts and connected by properties instances described in

GCO.

GCO and its instances could be used as statics models representing concrete

situations of collaboration.

3.1. Generic Collaboration Rules

We added SWRL rules to GCO in order to express certain relations, in particular

those that allow deducing a deployment schema from the sessions present in the

ontology instance. These relations would have been very difficult, or even impossible,

to express with OWL only.

The first three rules of the ontology are called, respectively,

audio_flows_datatype, text_flows_datatype and video_flows_datatype (figures 4.3, 4.4

and 4.5). For example, the rule audio_flows_datatype allows deducing that the data type

of AudioFlows is audio.

Deliverable2.3 11

Fig. 4.3 audio_flows_datatype rule

Fig. 4.4 text_flows_datatype rule

Fig. 4.5 video_flows_datatype rule

The same_group rule, represented in Figure 4.6, deduces that two roles belong to

the same group.

Fig. 4.6 same_group rule

The components_manage_flow rule, represented in Figure 4.7, states that,

whenever a flow belonging to a session is found between two nodes, a

SenderComponent has to be present in the source node and a ReceiverComponent has to

be present on the destination node. These components send and receive, respectively,

the flow, and they have the same data type as the flow. This rule uses the SWRL built-in

createOWLThing that allows creating new individuals. Please note that the first

createOWLThing matches the source node and the session, while the second matches

the destination node and the flow. This choice enables multicast flows where a single

sender component sends several flows to several receiver components.

Fig. 4.7 components_manage_flow rule

12

The components_datatype rule, represented in Figure 4.8, allows deducing the

component data type from flow data type managed by this component.

Fig. 4.8 components_datatype rule

3.2. Inference and rules processing

The processing of these rules over an instance of the ontology, as well as its

classification and its interrogation with an interference engine, allows to use information

contained in this instance.

Let us suppose that we have an instance of the ontology which expresses a

possible situation of collaboration. This instance will contain individuals belonging to

the concepts of GCO, which will be related through relations defined in GCO. The rules

processing will allow to:

1. Allocate to every individual of Flow subclasses his type of data (made by rules

audio_flows_datatype, text_flows_datatype and video_flows_datatype).

2. Create individuals of the classes SenderComponent and ReceiverComponent,

representing components which allow to send and to receive every flow. The

isDeployedOn relation will relate these components to nodes where they are

deployed. These components will have for value of the hasDataType property one

of the individuals of the DataType (audio, video or text) class. All this is made by

the components_manage_flow rule.

3. Get knowledge that was informed by an implicit way. This knowledge can be

obtained by an interrogation of the interference engine.

Example We consider the instance of GCO represented in Figure 4.9. This example is

very simple. It contains only a part of GCO elements. But it serves to illustrate how are

made the rules processing and reasoning with GCO. In this example there are two

individuals of the class Node (node1 and node2), and an individual of the class

AudioFlow (flow1). This flow has as source the node node1, and its destination is

node2. We also represent the audio individual of the DataType class, that is included in

GCO.

Deliverable2.3 13

Fig.4.9 example of reasoning and rules: initial situation

Figure 4.10 represents the ontology after rules processing and reasoning. We marked

next to every individual the class to which it belongs. First of all, the

audio_flows_datatype rule deduces that flow1 has audio as data type. After that, the

components_manage_flow rule added a SenderComponent (sc), having audio as data

type, deployed in node1. It also creates a ReceiverComponent, having audio as data

type, deployed in node2. The component sc1 sends the flow and rc1 receives it.

Fig.4.10 example of reasoning and rules: final situation

The reasoner deduces that flow1 is a Flow, because this class is a super-class of

AudioFlow. Since sc1 is SenderComponent and has audio as data type, the reasoner

deduced that it belongs to the classes AudioSenderComponent, AudioComponent and

Component. In a similar way, it deduces that rc1 belongs to the classes

AudioReceiverComponent, AudioComponent and Component.

The reasoner also deduces that sc1 manages the flow flow1 (managesFlow property),

because sendsFlow property is a sub-property of the ManagesFlow property. In a

similar way, rc1 is related to flow1 through the property managesFlow.

14

The reasoner also finds all the inverse relations, which we did not include in the figure

so that it remains legible; for example flow1 is related to sc1 through isManagedBy and

isSentBy, and to rc1 through isManagedBy and isReceivedBy.

4 Design principles

Several choices must be made in the ontology design. In this section, we present

the design principles which guided us to these choices during the GCO design, and we

focus on the properties that result from it.

4.1. Ontology language

The GCO is expressed in OWL, which is the current web standard for ontology

description. Since the expressivity of OWL is not enough for some of the required

relations, rules are used. Rules are expressed in SWRL. Standard, open-source tools are

available for processing OWL ontologies and SWRL rules.

4.2. Ontology contents

Since the main goal of the GCO is to support collaboration in run-time systems,

the concepts and relations present in this ontology have been chosen among those that

have been used in collaboration models until today (i.e., those presented in the previous

section). For example, it contains concepts representing sessions, flows, roles, etc. In

order to enable dynamic deployment services based on the GCO, some other elements

such as components tools, etc. have been added to this ontology. The rules associated to

the GCO are also designed in order to enable a simpler deployment process by making

explicit the deployment schema that must support the collaborative activity described by

the ontology.

4.3. Genericity and extensibility

The GCO has been designed in order to be as generic as possible. This means

that it may be used to model collaboration in any application, regardless of the domain.

In this aspect, the GCO can be viewed as an upper ontology that can be extended by

domain ontologies in order to model domain-specific concepts and relations. For

example, in an application of e-learning, this adaptation will consist in deriving the

generic notion of role in two notions professor and student, which correspond to the

specific domain. This adaptation is made by the creation of a second ontology that

imports GCO and defines concepts and relations that inherit from those which are

present in GCO.

Deliverable2.3 15

The simplest way of extending this ontology is to use inheritance by defining sub-

concepts and sub-relations of the concepts and relations present in the GCO (is-a

relation).

4.4. Multi-‐‑Layered Architectures

The genericity and extensibility of the GCO mean that it can be used inside a

multi-layered architecture. In such case, the GCO may be the core model of the layer

that handles collaborative sessions. Domain-specific data may be handled in upper

layers, while low-level data, such as network connections, can be handled in lower

layers.

4.5. Simplicity

The contents of the GCO have been chosen to enable a complete modeling of

collaborative sessions. However, only basic elements have been retained. Therefore, this

ontology is lightweight and reasoning and rule processing may be performed at run-time

without heavy overhead. Moreover, this simplicity eases the task of designers willing to

use or extend this ontology for domain-specific applications.

4.6. Naming

In order to have a clear naming which facilitates the understanding Of GCO, we

followed the following principles to name the elements of this ontology:

4. Using the camel case.

5. The names of the concepts begin with a capital letter. Example:

VideoFlow.

6. The names of the relations begin with a small letter. The first word is a

verb and the second one is a complement to the verb. The subject of

the verb is the domain of the relation, whereas the concept pointed by

the relation is the complement of the verb.

7. The names of individuals and data types are written in small letter.

Example: audio, string.

5 Constructing models from GCO at runtime

An ontology may be considered as a meta-model that describes the possible concepts

and relations of a given domain. The instantiation of a meta-model to a specific

application enables the construction of the model of this domain for this application. For

example, in the case of GCO, the domain is cooperation, so GCO gathers all concepts

16

and relations that model cooperation between human in a working situation. If we

instantiate GCO to the application of artifact design by a group, the generated instance

is the model of design by a group. Actual instances of GCO considered as a meta-model

are represented by individuals of the concepts available in the ontology. Such

individuals (and the relations between them) may be used in order to represent the state

of the application at a given time. Relations and concepts are fixed at design-time, while

individuals representing the state are created at run-time. In order to use the ontology as

the core model in a run-time system, the system must be able to perform the following

tasks:

• read the concepts and relations of the ontology ;

• read/modify the individuals existing in the ontology and the values of their

properties;

• create new individuals and set the values of properties;

• perform reasoning and rule processing over the ontology and its individuals.

The monotonic nature of OWL inference may represent a problem. Indeed, OWL does

not take charge of non-monotonic inference [SWM04]. This means that reasoning and

rules cannot modify (addition or removal) the information contained in the ontology.

They only allow to find implicit knowledge contained in the ontology and making it

explicit. For example, if the processing of a rule in the GCO results in the creation of an

individual of the class Flow whose source is node A and whose destination is node B,

this information will always remain in the ontology. No other rule can remove it

afterwards. If the application needs to remove this individual in order to reflect a new

state, it can do it programmatically, but it can be very tricky and unpractical (or even

impossible) to keep a track of which information has been inferred and to decide what

has to be deleted at every moment.

The solution to this problem is to use the inference capabilities of OWL in a capture-

inference-results loop such as the one depicted in Figure 6.1. The first step consists in

capturing the state of the world that is modeled by the ontology. This is done by the

code of the application using the ontology. Then, this state is introduced in the ontology

by creating individuals of the available concepts and by establishing relations between

these individuals through object properties. The result is a set of ontology individuals

related between them reflecting the state of the modeled world. Once this model has

been built, the inference and rule engines can process the resulting ontology. The result

of this step is a new version of the ontology where new individuals and relations may

Deliverable2.3 17

have been introduced. Whenever the state of the world has changed (e.g., when one of

the users leaves), the whole loop has to be repeated in order to adapt the response of the

application to the new state.

Fig. 6.1 Capture-inference-results loop for run-time systems using ontology reasoning.

The presented loop is discrete; the results of a step are valid until the next change in the

state of the world. Whenever a change occurs, the whole loop is executed again in order

to get the new results. Because of the monotonicity of OWL inference, the new state

cannot be represented by directly modifying the resulting ontology individuals; it would

be necessary to delete all the inferred knowledge. Otherwise, the next inference process

will result in an inconsistent ontology.

18

6 Example of GCO specialization in GALAXY

In this section, we introduce an illustrative example of application ontology for Galaxy.

This example explains how to use the Generic Collaboration Ontology following the

specialization principle.

In order to use GCO, we must define an application level ontology that specializes GCO

and represents collaboration between work group members. Figure 7.1 represents a part

of a possible ontology.

Fig. 7.1- Example of application ontology

In this figure, we represent in grey the concepts and relations of GCO, which are

imported in this ontology with the prefix sessions, whereas those, which are specific to

GALAXY, are represented in white.

In this ontology, the concepts: Group, Role and Node are specialized into sub-concepts.

The sub-concepts of Role are: Integrator, Expert, Developer and Reviewer. The Group

concept is specialized into the WorkGroup sub-concept. The Node concept is

specialized into the concept Actor, which is a Galaxy concept.

The application ontology imports GCO, so that all GCO elements are accessible to this

ontology. The sub-concepts of Role can be members of a group. Similarly, the

WorkGroup concept inherits from Group, which allows groups to have members.

In this example, we consider three properties linking the WorkGroup concept to the

Session concept: hasIntegratorDeveloperSession, hasReviewerSession and

Deliverable2.3 19

hasDeveloperSession. These three properties, which are sub-properties of hasSession,

represent three types of communication that take place inside the work group.

A set of additional SWRL rules will be associated to the GCO in order to express some

additional knowledge and to enable deployment-related inference.

The Figure 7.2 represents an application level ontology. It contains two work groups

LAASGroup and LIP6Group and two sessions: Reviewer_s, which allows

communication between all reviewers; and Integrator_Developer_s, which allows

communication between the integrators and the developers. The group: LAASGroup

consists of an integrator Int1, which is the role of the actor actor1deployed in the device

kalil_PC, and a developer develop1, which is the role of the actor actor3 deployed in

the device aymen_PC. The other work group LIP6Group consists of a developer

develop1, which represents the role of the actor actor2 deployed in the device said_PC,

and a reviewer rev1, which represents the role of the actor actor4 deployed in the device

german_PC.

Fig. 7.2 – Application level ontology

The figure Fig. 7.3 represents all GCO individuals created by the SWRL rules of the

collaboration layer. This graph must contain all flows and components that allow

participants to communicate. In the example, the two groups contain two developers and

20

one integrator. Thus, participants, having these roles, can communicate within the

session: Integrator_Developer_s. This figure contains the 4 flows sent by participants

and the 7 components that manage these flows. We don’t find 8 flows because the two

flows that the actor1sends to actor2 and actor3, which belong to the session:

Integrator_Develoer_s, are managed by one sender component: SWRLInjected6.

Fig. 7.3 – Collaboration level ontology

In the basic model GCO, a node, theoretically, can be distributed on several

devices. In that case, an actor, represented by a node, is associated to all devices in

question. For Galaxy, we assume that the cardinalities of the relations: node/device

are 1-1. Thus, either a node or a device can identify the actor, and existing flows

between nodes reflect exchanges between actors via their devices.

7 Conclusion

This deliverable has presented the GCO, a generic collaboration ontology that

represents knowledge about model-driven team communication for collaborative

Deliverable2.3 21

activities. This ontology is generic because it can be extended in order to model

domain-specific collaboration knowledge following the specialization principle. Rules

associated to the GCO allow to implement ontology-driven systems using the GCO as

their core collaboration model for implementing session management and deployment

services. Brief explanations on this usage of the GCO in run-time systems have also

been provided.

After a theoretical study provided in this deliverable, a good design is required in order

to exploit this collaboration model in the GLAXY project. The adaptation of GCO

requires a specialization that heeds all necessary concepts of GALAXY.

8 References

[BCM+] D. F. Baader, D. Calvanese, D. L. McGuinness, P. Patel-‐‑Schneider et D. Nardi : The

Description Logic Handbook. Theory, Implementation, and Applications.

[DGLA99] H.-‐‑P. Dommel et J. Garcia-‐‑Luna-‐‑Aceves : Group coordination support for

synchronous internet collaboration. Internet Computing, IEEE, 3(2):74 –80, mar. 1999.

[EDW94] W. K. Edwards : Session management for collaborative applications. In CSCW ’94 :

Proceedings of the 1994 ACM conference on Computer supported cooperative work, pages 323–

330, New York, NY, USA, 1994. ACM.

[EGR91] C. A. Ellis, S. J. Gibbs et G. Rein : Groupware : some issues and experiences. Commun.

ACM, 34(1):39–58, 1991.

[Ham07] E. Hammami : Déploiement sensible au contexte et reconfiguration des applications

dans les sessions collaboratives. Thèse de doctorat, Université Paul Sabatier, Toulouse, 121p,

2007.

[Hor51] A. Horn : On sentences which are true of direct unions of algebras. Journal of Symbolic

Logic, 16(1):14–21, 1951.

[HPSB+04] I. Horrocks, P. F. Patel-‐‑Schneider, H. Boley, S. Tabet, B. Grosof et M. Dean : SWRL :

A Semantic Web Rule Language Combining OWL and RuleML. W3C Member Submission 21

May 2004, 2004. Url : http://www.w3.org/Submission/SWRL/, accédé le 23/07/2010.

22

[Kar94] A. Karsenty : Le collecticiel : de l’interaction hommemachine à la communication

homme-‐‑homme. Technique et Science Informatique (TSI), 13(1):105–127, 1994.

[KFNM04] H. Knublauch, R. W. Fergerson, N. F. Noy et M. A. Musen : The Protégé OWL

plugin : An open development environment for semantic web applications. pages 229–243.

Springer, 2004.

[KK88] K. L. Kraemer et J. L. King : Computer-‐‑based systems for cooperative work and group

decision making. ACM Comput. Surv., 20(2):115–146, 1988.

[PSG+05] B. Parsia, E. Sirin, B. C. Grau, E. Ruckhaus et D. Hewlett : Cautiously approaching

SWRL. Url : http://www.mindswap.org/papers/CautiousSWRL.pdf, accede le 23/07/2010, 2005.

[RKT95] M. Rusinkiewicz, W. Klas, T. Tesch, J. Wäsch et P. Muth : Towards a cooperative

transaction model – the cooperative activity model. In VLDB ’95 : Proceedings of the 21th

International Conference on Very Large Data Bases, pages 194–205, San Francisco, CA, USA,

1995. Morgan Kaufmann Publishers Inc.

[RPVD01] L. Rodriguez Peralta, T. Villemur et K. Drira : An XML on-‐‑line session model based

on graphs for synchronous cooperative groups. In 2001 International Conference on Parallel

and Distributed Processing Techniques and Applications (PDPTA’2001), pages 1257–1263, Las

Vegas (USA), 2001.

[SSS91] M. Schmidt-‐‑Schaubß et G. Smolka : Attributive concept descriptions with complements.

Artif. Intell., 48(1):1–26, 1991.

[STV10] G. Sancho, S. Tazi et T. Villemur : GCO : a Generic Collaboration Ontology. In

Proceedings of the Fourth International Conference on Advances in Semantic Processing

(SEMPARO 2010), Florence, Italy, octobre 2010.

[SVT10] G. Sancho, T. Villemur et S. Tazi : An ontology-‐‑driven approach for collaborative

ubiquitous systems. International Journal of Autonomic Computing, 1(3):263–279, 2010.

Deliverable2.3 23

[SWM04] M. K. Smith, C. Welty et D. L. McGuinness : OWL Web Ontology Language Guide.

W3C Recommendation, février 2004. Url : http://www.w3.org/TR/owl-‐‑guide/, accédé le

21/07/2010.

[TP03] G. Texier et N. Plouzeau : Automatic Management of Sessions in Shared Spaces. The

Journal of Supercomputing, 24(2):173–181, 2003.

[vil06] T. Villemur : Modèles et services logiciels pour le travail collaboratif. Habilitation à

diriger des recherches, Université Paul Sabatier, Toulouse, France, septembre 2006.

24

ACRONYMS AND DEFINITIONS
ACRONYM DESCRIPTION
OWL Web Ontology Language. A web ontology language, it is defined be

compatible with the architecture of the World Wide Web in general, and the
Semantic Web in particular. OWL builds on RDF and RDF Schema and
adds more vocabulary for describing properties and classes: among others,
relations between classes

SWRL Semantic Web Rule Language, a proposal for a Semantic Web rules-
language, combining sublanguages of the OWL (OWL DL and Lite) with
those of the Rule Markup Language .

CSCW Computer Supported Cooperative Work, a generic term, which combines

the understanding of the way people work in groups with the enabling

technologies of computer networking, and associated hardware, software,

services and techniques.

Deliverable2.3 25

Appendix (Semantic Web technologies, an overview)

In this appendix, we describe the basic principles of the OWL ontologies [SWM04], the

reasoning in OWL and SWRL rules [HPSB+04]. This description will allow

understanding concepts and choices detailed in the rest of this report. We also present

some available tools for the manipulation of OWL ontologies and SWRL rules and for

reasoning engines in OWL.

A.1 Definition of OWL ontology elements

This sub-section presents necessary definitions to understand OWL ontologies. We

begin with a general definitionillustrated by simple samples:

Def. 3.1 Specific domain

The specific domain is the domain that is represented by an ontology, or, the part of the

world that we model.

Example 3.1

Assume we model the relations between human family members. The doamin is all persons

and realtions between them.

Def. 3.2 Individual/instance

Individuals or instances are the objects of the specific domain.

Example 3.2

Following the domain defined in the example 3.1, individuals are all implied persons, such as

for example Louis, or Jean, they are instances of persons object.

Def. 3.3 Concept/class, subclass, super-class, inheritance, taxonomy

A concept or a class represents a set of individuals having common features. A class can

be a subclass of another one, called super-class. The subclass inherits from the super-

class. In this case, every individual belonging to the subclass also belongs to the super-

class. Taxonomy is a hierarchy of classes which have subclass / super-class relations

between them.

Example 3.3

A person is a concept. Woman is a subclass of the concept person. Person is a super-‐‑class of

woman. Jane is a woman that inherits all properties of person. The set of concepts of a domain

constitutes a taxonomy.

26

Def. 3.4 Relation/property, domain, range, sub-relation, super-relation

A relation or property models the relationship that exists between two classes or

between a class and a data type. The domain of a relation is the set of classes that can be

the origin of the relation. The range of the relation is the set of classes or data types that

can be the destination of the relation. A relation can be a sub-relation of another one,

called super-relation. In that case, the domain and the range of the sub-relation are

respectively contained in the domain and in the range of the super-relation.

Example 3.4

In the example represented in the figure Fig.A.1, the Person class represents the

domain of the relation hasResponsability, whereas the Responsability class represents

the range. The relations: hasManResposability and hasWomanResponsability are sub-

relations of hasResponsability. The domain of the relation hasManResponsability is

Man, which is contained in the domain of the super-relation: hasResponsability. The

domain of the relation hasWomanResponsability is Woman, which is also contained in

the domain of the super-relation: hasResponsability. The Responsability, which is the

contained in the range of the hasResponsability relation, represents the range of the two

relations: hasManResponsability and hasWomanResponsability.

Fig.A.1 Example of sub-relations

Def. 3.5 Instance of a relation

An instance of a relation binds an individual that belongs to the domain of the relation

to an individual or a data type that belongs to the range of the relation.

Deliverable2.3 27

Instances of relations are often called relation. The context allows distinguishing if we

speak about relations themselves or about their instances.

Example 3.5

If we consider an individual Jeans which is a Man and an instance resp of the class

Responsibility, then we can define an instance of the relation: hasManResponsability

which binds Jeans and resp

The following definitions detail all the attributes of properties.

Def. 3.6 Inverse property

We define a property as the inverse of a given one. This means that, if an instance of

this last property relates the individual a to the individual b, then we can deduct that an

instance of the inverse property relates b to a.

Example 3.6

If we have a man and a woman and the man is related to the woman by the property

isBrotherOf, then we can deduce that the woman is related to the man by the property

isSisterOf.

Def. 3.7 Functional property and inverse functional property

A property is functional if it can have only one single instance for each individual. The

inverse of a functional property is its functional reverse.

Example 3.7

If in our domain ontology, a man could not be married to two women, then the

property MarriedTo between men and wemen is functional.

Def. 3.8 Transitive property

A property p is transitive when, if an individual a is related to b by an instance of p and

b is related to c by another instance of p, then we can deduce that a is related to c by an

instance of p.

Example 3.8

hasBrother is transitive because If the individual Louis is related to Jean by an instance

of the property hasBrother, and Jean is related to Nicolas by another instance of

hasBrother, then we can deduce that Louis is related to Nicolas by hasBrother.

Def. 3.9 Symmetrical property

A property p is symmetrical if for each individual a related to individual b by an

instance of p, we can deduce that b is related to a by another instance of p.

Example 3.9

isBrother is symmetrical because If Louis is related to Je an by the property

isBrother, then we can deduce that Jean is related to Louis by isBrother property.

28

 In order to define a class in OWL, we provide a set of logical conditions. These

conditions can be “necessary” or “necessary and sufficient.” They are built from other

classes, by union, by intersection or by inheritance. We can also impose restrictions to

the properties of the class.

Def. 3.10 Restriction, existential restriction, universal restriction, cardinality restriction,

 value restriction

A restriction consists in limiting the number or the nature of values that the properties

of class individuals can have. A restriction can be existential (if it should have at least a

value of the property in a given set), universal (if it should have all the values of a

property in a given set), of cardinality (if it should have a minimal, maximal or exact

values number for a property) or of value (if she should have a given value for the

property).

Example 3.10

Existential restriction: a man MarriedTo a woman means that there is a woman that

fulfill the prperty

Universal restriction: belongToFamily has a universal restriction to all individuals of

the family

Cardinality restriction: a man MarriedTo for a woman means that there is only one

woman that fulfill the prperty

Value restriction: an animal, whatever it is carnivorous or herbivorous, should eat,

Thus the property eats should have a given value in a set specified by the

nature of the animal. Carnivorous should eat meat and herbivorous should eat

vegetable .

Def. 3.11 Disjoint classes

Two classes are disjoint if there is no individuals that belong at the same time to both

classes.

Example 3.11

See the Example 3.12.

In OWL, classes are not disjoint by default; it is necessary to declare it

explicitly.

Def. 3.12 Importing ontology

An ontology can import another ontology in order to have visibility into its elements.

The ontology that imports has only reading access to all elements contained in the

imported ontology. Then, it can add new elements, which will be visible only to the

Deliverable2.3 29

ontology which imports. The import action is transitive: an ontology that imports a

second one imports indirectly all imported ontologies in this second ontology.

Generally, the import is made by indicating, in the ontology which imports, the

imported ontology URL. This mechanism allows a big flexibility, because we can reuse

existing ontologies just by referencing them in a new OWL file and by adding new

classes, properties, individuals, rules, etc. Ontologies often follow this schema: a first

high-level ontology which contains generic elements is imported by a second domain

ontology which specialize it into concrete domain. In that case, the second ontology

extends the first one.

Example 3.12

 A simple ontology is represented in the Figure 3.1. This ontology illustrates the

explained elements. In this ontology, there are 8 classes: Person, ManualWorker,

Plumber, Politician, Job, ManualJob, Plumbing and Politics. is-a Arrows represent

super-class/subclass relations: for example, Plumber is a subclass of Person, because all

plumbers are persons. The relation hasJob binds Person to Job, this means that persons

can have a job. The relations father, uncle and brother bind the class Person to itself,

because the father, the uncle or the brother of a person are also persons. The classes

Person and Job are disjoint.

Fig. 3.1 – Example of OWL ontology

The class ManualWorker is defined as:

ManualWorker ≡ Person ∏ hasJob.ManualJob

30

This means that the necessary and sufficient condition (≡) which confirms that an

individual is considered as worker is that he should be a person (Person) and (∏) have

an instance of the relation hasJob which relates him to a manual job (

hasJob.ManualJob). By the same way:

Politician ≡ Person ∏ hasJob.Politics

Plumber ≡ Person ∏ hasJob.Plumbing

Finaly, there are two individuals, jean and louis. We know that the first one is a plumber

and that the second is a person and that its job is politics.

A.2 Reasoning in OWL

As we mentioned, the fact that OWL has a formal theoretical base (the description

logic) allows the setting-up of software tools called inference engines or reasoners,

which process OWL ontology to deduct facts which are not explicitly declared [BCM

+], i.e. they can find information which are implicitly contained in the ontology in order

to make them explicit. This process is called inference or reasoning.

The main task of reasoning that an inference engine can carry out is known as

subsumption. Subsumption allows to know if a class is a subclass of another one or not.

By using it on all classes of the OWL ontology, the inference engine can build a

hierarchy of deduced classes (in opposition to the declared hierarchy of classes) in

which all relations super-class/subclass are explicit.

In our example, the deduced hierarchy of classes contains the fact that Plumber is a

subclass of ManualWorker, because all plumbers have Plumbing as job, which is a

ManualJob, thus they perform all necessary and sufficient conditions in order to be in

the class ManualWorker. Plumbing is also a subclass of Job, and all manual jobs are

jobs.

Another task of standard reasoning is the check of the ontology consistency, which

allows to detect if there are not coherent classes, i.e. it is not possible to declare an

individual of these classes without having a logical contradiction. This task is very

useful during the creation process of the ontology for the debugging of this one. For

example, if we want to declare a new class which is a sub-concept of Job and Person at

the same time, a reasoner engine will deduct that this class is incoherent, because

Person and Job are disjoint and we cannot have individual that belongs to both classes.

Other tasks of reasoning allow deducting facts such as the belonging of an individual to

a class. Reasoning may enable for example the deduction of the existence of properties

relating two individuals by transitivity, symmetry and inverse properties, etc.

Deliverable2.3 31

The setting-up of these tasks uses well known algorithms as the board method based

algorithms [SSS91] which work with logical definitions of classes and properties to

make deductions.

Inference engines can use these tasks of basic reasoning in order to provide more

complex services of reasoning, in particular:

1. Research: allows finding all individuals that are instances (direct or indirect) of a

given concept;

2. Execution: allows finding the most specific concept to which belongs (directly or

indirectly) a given individual.

For example, in our ontology, these services allow finding that the individual jean

belongs to the classes Plumber, ManualWorker and Person and that louis belongs to the

classes Person and Politician. These tasks are very useful because they allow a

transparent usage of the deduced knowledge in applications.

The reasoning in OWL applies the principle known as the Opened World Assumption.

This principle stipulates that we cannot consider that a fact does not exist, unless having

declared explicitly its nonexistence. In other words, we shall not consider as false a

proposition simply because we did not declare it as true; the proposition will be

considered as "unknown". This assumption has a strong influence on the way of

defining the ontology elements. For example, if we declare two classes A and B and an

individual a that belongs to the class A, we cannot consider that a does not belong to the

class B; it would be necessary to declare it explicitly so that the reasoning (and the rules

processing) know that a is not an instance of B. By the same way, it will be necessary to

declare explicitly that two classes are disjoint in order to be able to deduct that an

individual belonging to the first class does not belong to the second one, etc. After all,

with the Opened World Assumption, we consider that the knowledge that we have is not

necessarily complete, and we cannot suppose anything on what is not declared. In our

example, we cannot suppose that jean is not politician, because the classes Plumber and

Politician are not disjoint.

Another concept, related to the Opened World Assumption, is the Unique Name

Assumption, which is not considered in OWL. This means that the fact of having two

individuals having two different names does not imply that these individuals are

different. If we want to consider that two given individuals are different, it is necessary

to declare it explicitly. In our example, we cannot know if jean and louis are the same

individual or not, because we have not enough information.

32

The last important feature of the reasoning in OWL is the monotonic effect. The fact

that OWL is monotonous implies that any present fact in an ontology cannot be

removed [SWM04] by new deduced information. In particular, the propositions deduced

by an inference engine can only add information, but never erase it. Even if the added

information contradicts the one which existed previously, this last one will not be

erased. For example, if in the ontology of the example above (Fig 2), we say that jean is

a politician, it does not erase the fact that he is a plumber. He will be a politician and a

plumber at the same time in this ontology, because the new fact does not replace the

precedent. If we had declared the classes Politician and Plumber as disjoint, then an

inference engine can detect that the new fact is incoherent.

A.3 SWRL Rules

The Semantic Web Rule Language (SWRL) [HPSB+04] is a rule language proposed by

the W3C which combines OWL-DL with the Rule Markup Language (RuleML). SWRL

extends OWL-DL by adding Horn clauses [Hor51]. This addition increases the OWL

expressiveness, but, generally, this expressiveness implies loosing of the decidability

[PSG+05]. However, in the most part of the practical applications, it is possible to use

only a subset of rules called DL-safe, which is decidable.

An SWRL rule is represented as:

b1 ^ _ _ _ ^ bn à a1 ^ _ _ _ ^ an

b1 ^ _ _ _ ^bn is the body or the antecedent of the rule and a1 ^ _ _ _ ^ an is the

consequent. The terms a1… an, b1…bn are the SWRL atoms. An atom can represent a

relation (binary predicate), a concept (unary predicate) or a built- in (n-arity predicates).

The interpretation of the rule is the following: if the conditions specified in the

antecedent are verified, then we can infer that the propositions specified in the

consequent are also verified. SWRL may be written in XML, which allows including an

ontology and its associated SWRL rules in the same XML file.

The utility of those rules is to express complex relations that would be impossible to

express with OWL-DL only. For example, in our ontology we can represent the relation

between an uncle and his nephew through the relations father-son and brother-brother.

The SWRL rule which expresses this relation is represented in the Figure 3.2.

Fig. 3.2 – Example of SWRL rules
Person (?x) ∩ Person (?y) ∩ Person (?z) ∩ father (?x, ?y)

∩ brother (?x, ?z) à Uncle (?z, ?y)

Deliverable2.3 33

The elements x, y and z, which are preceded by a question mark, are variables which

Fig. 3.2 - Example of SWRL rules

This rule means that, if we have three individuals belonging to the class Person called x,

y and z. x is the father of y and x has a brother z, then z is the uncle of y.

In SWRL rules, we can use two special relations sameAs(p,q) and differentFrom(p,q)

which serve respectively to declare that two individuals are the same or are different.

They are necessary because OWL does not use the Unique Name Assumption.

The Built-ins are free arity predicates, i.e. a predicate may have 0 or more arguments.

They serve to implement useful practical functions in SWRL rules. There is a set of

predefined built-ins which serve for example to make comparisons, to make

mathematical operations, to concatenate character strings, etc. For example, the built-in

swrlb:greaterThan(?Age, 17) allows to compare two numbers (which is in the variable

age and the integer 17). If the first one is bigger, then the built-in will be estimated as

true; otherwise, it will be false.

A.4 Tools for processing OWL ontologies and SWRL rules

One of the reasons of the success of OWL and technologies of Semantic Web is the

existence of several tools for ontologies management. Indeed, there are libraries, API,

editors, inference engines and rules which facilitate creating and editing ontologies and

rules. Furthermore, a big part of these software tools are free, what allows to obtain, to

study, to modify and to share them more easily.

Edition of ontologies

The editor Protégé2 [KFNM04], developed at Stanford's University in association with

the University of Manchester, is a standard for creating and editing OWL ontologies. Its

source code is written in Java and it admits plug-in extensions. There are several plug-

ins, for example to display ontologies or to edit the associated SWRL rules. The last

available stable version at present is 3.4.4, but the beta version 4.1 is also available. The

version 4 is a total revision of the editor. In particular, it is in compliance with the

standard OWL 2.

There are other editors of ontologies, less popular, such as KAON23, Swoop4 and

Ontolingua5.

APIs for processing OWL ontologies

2 http://protege.stanford.edu/
3 http://kaon2.semanticweb.org/
4 http://www.mindswap.org/2004/SWOOP/
5 http://ksl.stanford.edu/software/ontolingua/

34

These software libraries provide an access by program to OWL ontologies; they provide

functions that allow creating and reading the ontology, to create the corresponding

model in memory, to modify it, to save it, etc. Most of these libraries are implemented

in Java.

The two main libraries are OWL API6 and Protégé-OWL API. OWL API is the

reference setting-up for the creation, the manipulation and the serialization of OWL

ontologies. OWL-API is a free project led by the University of Manchester which takes

charge of OWL 2. It also provides several interfaces for the transparent access to the

inference engines. Protégé-OWL API is a Protégé's plug-in which is used to access to

OWL ontologies in the versions 3.4 of the editor (from the version 4.0, OWL API is

used). It can be used by external programs as a java API, independently of Protégé. As

OWL-API, it allows the access to external inference engines.

Inference engines

Those engines tools are able, by deduction, to extract implicit knowledge contained in

the ontology. They can be run as an independent application or be called by another

program, in particular the APIs mentioned above. There are owner setting-ups, such as

Bossam7 or RacerPro8, as well as others free as Pellet9, Fact ++10, KAON2 or HermiT11.

Among these tools, Pellet is the most popular at the moment, thanks to its capabilities,

to its features and to its clear and simple conception.

Tools for SWRL rules processing

Most of inference engines are able to process SWRL rules added to the ontology. For

example, Pellet implements natively a specific algorithm for DL-sure rules in OWL. In

order to process rules, it is also possible to use engines specifically dedicated to rules,

such as the Jess engine12. This engine has an appropriate language to express knowledge

in the form of rules. It can be used in Protégé (or Protégé-OWL API) thanks to the

existence of a bridge that allows to translate an ontology model to Jess's language, to

execute rules in Jess and finally to get back the result in Protégé.

Tools choices

6 http://owlapi.sourceforge.net/
7 http://bossam.wordpress.com/
8 http://www.racer-‐‑systems.com/
9 http://clarkparsia.com/pellet/
10 http://owl.man.ac.uk/factplusplus/
11 http://hermit-‐‑reasoner.com/
12 http://www.jessrules.com/

Deliverable2.3 35

Here, we explain the choices we made for the creation and the processing of OWL

ontologies and rules. These choices were used for the creation of GCO as well as for its

use (instanciation of individuals, reasoning, rules processing, individuals' reading). Our

choices are represented in Tab 3.1.

Tool/language Choices

Creation/edition of ontologies Protégé 3.4.1

Creation/edition of SWRL rules Plugin SWRLTab for Protégé

Access by program to ontologies Protégé-OWL API 3.4.1

inference engine Pellet 1.5.2

Rules engine Jess 7.0

OWL version OWL 1

Tab. 3.1 – Choice of tools and languages for the creation and the processing of GCO

The choice is the following: Protégé 3.4.1 for the creation and the edition of ontologies,

with the SWRLTab plug-in for the edition of SWRL rules, Protégé-OWL API for the

access by program to the ontologies, Pellet as inference engine and Jess for the

execution of rules. We have chosen this because we need to use some SWRL built-ins

which are available only in Protégé's version 3.4. In particular, we needed the

experimental built-in swrlx:createOWLThing, which allows to create new individuals in

a SWRL rule. This kind of experimental built-in is not available in Pellet, and this

motivates the use of Jess for rules processing. However, we retained Pellet for other

tasks of reasoning such as the check of the ontology consistency or its classification

because it is more complete and more powerful than Jess to make these tasks. The

access to Pellet and to Jess from Protégé-OWL API is very simple thanks to the

available specific bridges. The choice Of Protégé 3.4 and Jess don’t allow the use of the

version 2 of OWL for the description of ontologies and OWL-API for their processing.

