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1. INTRODUCTION 

 
Modeling complex software systems involves a large number of heterogeneous models focusing 
on different aspects of the system at different abstraction levels. These models must be later 
combined in order to provide to each to each designer/developer of the system the specific view 
they need to perform their tasks. This problem is tightly connected to model composition, in which 
two or more models have their information captured to generate one single composed model. 
 
However, current approaches present some important limitations concerning efficiency (due to the 
copying mechanism of model elements into the composed model), interoperability (when the 
composed model has a different nature than the contributing ones and needs to be manipulated 
using specialized tools) and/or synchronization (by failing to propagate changes from the 
generated model to the contributing ones, or the other way round) issues. 
 
This document aims to describe a new model composition solution based on a model virtualization 
mechanism. Instead of generating a new composed model our approach generates a virtual model 
that provides the illusion to users (and tools) of working with a generated composed model while in 
fact, all model access and manipulation requests on the (virtual) composed model are directly 
translated to operations on the contributing models in a transparent way. 
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2. ON THE NEED FOR VIRTUAL MODELS 

2.1 INTRODUCTION 

Complexity of nowadays software systems is rapidly increasing and with this the difficulty to 
comprehend, develop and maintain them. To handle this complexity, software systems are usually 
represented by a series of models. Each model aims at representing a different aspect of the 
system at a different abstraction level. Models can be used for different activities: forward 
engineering, reverse engineering or even as run-time components of the system. 
 
In either case, models must be combined to generate the most adequate view of the system for 
each user working with it, depending on his/her role (both to show only the relevant information to 
that user and to avoid errors due to improper manipulation of other aspects of the system in which 
the user is not involved). This is a complex and challenging problem due to the heterogeneity of 
the models and to the fact that most times several kinds of relationships exist between them, e.g., 
elements contained in one model may refine, extend or depend on other elements in a different 
model (e.g. a table in a relational database model refines a class in a UML conceptual model). 
 
Several approaches for model composition have been developed so far. Basically, they all propose 
to generate a completely new composed model from a set of input models but differ on the 
language/technique used to define how to select and combine the elements from the source 
models that will be copied to the composed model. Fig. 1(a) illustrates the idea: models A and B 
are the input to a model composition mechanism that, accordingly to its composition rules, 
processes A and B and generates the composed model. Unfortunately, current approaches 
present some important limitations (linked to the fact that the composed model is generated as a 
separated new model by copying and merging pieces of information from the source models) 
regarding the performance (due to the time required to copy the model elements into the 
composed model), synchronization (due to the lack of propagation of changes from the generated 
model to the contributing ones or the other way round) or interoperability (sometimes the 
composed model has a different nature than the contributing ones and need to be manipulated 
using specialized tools) of the approach. 
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Figure 1: (a) Standard Model Composition; (b) Virtual Model Composition 

This work has the purpose of creating a new model composition solution based on a model 
virtualization mechanism. Instead of generating a new composed model our approach generates a 
virtual model that provides the illusion to users (and tools) of working with a generated composed 
model while in fact, all model access and manipulation requests on the (virtual) composed model 
are directly translated to operations on the contributing models in a transparent way. This 
delegation avoids the problems mentioned above. Our solution is designed as a refinement of 
standard Model Access APIs, allowing our virtual model to be directly manipulated by current tools 
exactly in the same way as any other model. 

2.2 MODEL COMPOSITION 

Model composition is an emerging subfield in the area of Model Driven Engineering that has been 
studied from different perspectives such as aspect-oriented modeling[5], database schema 
integration[1], or model transformation[10]. In its simplest form, model composition is a modeling 
process that combines two or more input models. in order to generate a single output model that 
gathers the contents present in the input models[17]. The necessity of combining models come 
from the fact that systems are usually described by means of a large set of models, each one 
concerning different aspects of the system. Therefore, combining elements spread across different 
models allows: 
 

1. to analyze a system from different viewpoints; 

2. to obtain a cross-domain view of a set of models; 

3. to manipulate heterogeneous information in an integrated manner; 

4. to check the consistency between a set of models; 

5. to establish relationships between different views of the system. 

 
A formal definition on model composition and its semantics may be found in [9]. Nevertheless we 
provide here definitions on the most important elements involved in a composition process. We will 
use this terminology throughout the paper: 
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Definition 1. A Contributing Model is a model used as input in a model composition 
process. Its elements are named contributing elements. 

Definition 2. A Composed Model is the output of a model composition process, 
generated from a set of contributing models according to the rules specified in a model 
composition operator . Its elements are named composed elements. 

Definition 3. An Inter-Model Link Set is a set of predefined links between different 
contributing models (describing relationships between their elements) that can be used as 
additional information in a composition process. 

Definition 4. A Model Composition Operator  is a function that receives a set of 
contributing models as input and produces a composed model as output such that : M x M 
→ M, where M is the universe of models. 

As seen from the previous definitions, the key element in a model composition process is the 
composition operator. It has mainly two tasks: (i) defining the semantics of the composition, and (ii) 
defining what we call the nature of the composed model. The first task is related to how the 
contributing models and its elements are combined to generate the composed model. For 
instance, the composition operator could simply define that the composed model is the union of all 
elements, or discard those satisfying a given condition, apply a partial merge of similar elements 
(where the similarity could be computed, e.g. by name matching, or predefined in a link set used 
as additional input for the operator),... 
 
Our mechanism is independent of how this first task is accomplished. We focus on the second 
one: depending on the model composition operator applied, a composed model may have different 
natures. Typically, the selected elements of the contributing models are copied (i.e. cloned) into 
the composed one. In this case, the composed model is a concrete model, with exactly the same 
nature of the contributing ones (and completely disconnected from them once the creation process 
has finished). This is not the only possibility. As we will see, we propose an approach in which the 
composed model has a virtual nature. 

2.3 QUALITY INDICATORS IN MODEL COMPOSITION 

Depending on the kind of composition operator provided, the composition process will 
showcase a different set of functional and non-functional properties. We believe that the six most 
important ones are the following: 

 
1. Creation time: time required to create the composed model; 

2. Manipulation time: time required to perform read and write operations in a composed 
model; 

3. Memory usage: memory requirements when performing a model composition. 
Especially important when dealing with large-size models; 

4. Interoperability: capability of a composed model to be handled in the same manner a 
normal model would (i.e. this implies that we do not require special tools for 
manipulating the composed model); 

5. Modification capabilities: the set of operations that can be applied on a composed 
model (e.g. read-only, establishing inter-model links, etc.); 
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6. Synchronization: automatic propagation of changes between composed and 
contributing models, ensuring their consistency. 

These properties will be used when evaluating the existing approaches and when discussing the 
benefits of our alternative in the next sections. 

2.4 STATE OF THE ART 

A considerable number of works on model composition can be found in the literature (though there 
is not yet a consensus on its formal definition and terminology). In what follows we summarize the 
main “families” of approaches in the area. 
 
Several works such as [17], [21] focus the formal semantics of model composition and discuss the 
possible types of composition operators (e.g., merge, expand, diff, etc.). These differences can be 
used to compare different model composition solutions [3], [2].  
 
Other approaches as [8], [18] and [20] target the automatic composition of models proposing 
algorithms to identify, select and combine elements from contributing models. Composition 
frameworks, as in IBM Rational Software Architect[14], CCBM[16] or languages, as the Epsilon 
Merging Language[11] may help during the composition process by, for instance, facilitating the 
identification of the elements to merge or helping to compare the contributing models before 
deciding the elements to merge [12]. 
 
Other solutions apply model composition to target a specific kind of problems, as in [6]. Research 
has been also when considering the composition of a specific type of models, like ADLs[19], 
Statecharts[15] or UML[22][4]. 
 
What the vast majority of the proposals for composing models have in common is the fact that 
most of them completely generate a new (composed) model after the composition process (an 
exception is [13] but it focuses on decorating a single model with new information and not on 
composing models), completely discarding the contributing models once the new one was 
generated. Another common approach was not to generate a new model, but rather use one of 
them as a pivot that will receive the contents from the other. In a way or another we believe that all 
these approaches share one or more of the following three main problems: 
 

1. Approaches that generate a new composed model by copying elements from source 
models do not scale well. The creation of the composed model may take too long and, 
more severely, the memory usage could be a serious bottleneck during the creation 
process because of the need of having available at the same time both the new instances 
of the composed model and the existing instances of the contributing models; 

2. Approaches that do not provide propagation mechanisms to ensure the consistency 
between the contributing and the composede models. If synchronization is lost, tool using 
the composed model will present users with an outdated version of the model; 

3. Approaches that generate a composed model with a different format than that expected by 
standard modeling tools. Visualizing and/or manipulating the composed model requires the 
use of a different API or toolset. 

These problems hamper the usefulness of these methods as the basis of a model composition 
process. Next section presents our alternative model composition mechanism to overcome these 
limitations. Note that our alternative mechanism changes the way the generated model is built but 
not how to define the composition rules that specify how to select and merge the elements of the 
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contributing models. Our method is agnostic with respect to this. Any existing method could be 
used for this purpose. 
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3. MODEL VIRTUALIZATION (CONCEPTUAL) 

In this section we present the conceptual idea of our solution for model composition in order  to 
overcome the problems mentioned before. The main difference with relation to previous works is 
the role contributing models play in the composition process. In our solution the main idea is to 
consider the contributing models not only as simple input for the generation of the composed 
model, discarded once the composed model has been created, but rather as core elements during 
its whole lifecycle. This is achieved by adding virtualization techniques to the composition process 
that integrate the contributing models within the composed model. 

3.1 THE NOTION OF A VIRTUAL MODEL 

The main innovation of our solution is the virtualization of the composed model. In our approach, 
the composed model is a virtual model. They key difference between a virtual model and a 
concrete model is that a virtual model is made of virtual elements, which are proxies to actual 
elements contained in other models (usually concrete ones but we could also have a composition 
of virtual models). Virtual model elements are perceived and manipulated by a tool in the same 
manner as a normal model would, but in fact the actual elements being accessed (through the 
proxies in the virtual model) are the elements contained in the contributing models from which the 
virtual model was generated. 
 

Definition 5. A Concrete Model is a model whose model elements hold concrete data. Its 
elements are named concrete elements. 

Definition 6. A Virtual Model is a model whose (virtual) model elements are proxies to 
elements contained in other models. A virtual model delegates the access to its elements to 
the models it references. Its elements are named virtual elements. 

Definition 7. A Virtual Reference is a reference in a virtual model that links two model 
elements contained in different concrete models. 

Definition 8. A Virtual Composition Operator ⊕ is a model composition operator that 
produces a virtual element as output, such that ⊕ : M x M → VM, where VM is the universe 
of virtual models. ⊕  does not duplicate elements from contributing models; it creates virtual 
elements (i.e. proxies) to them. 

To make this idea clearer — and denoting the universe of models as M, the universe of concrete 
models as CM, and the universe of virtual models as VM (where CM and VM ∈ M) —, let's 
consider two models ma = {a1, a2} and mb = {b1, b2} (where ma, mb ⊂ CM). In a traditional 
composition process, and considering the simplest composition algorithm possible (i.e., to 
generate a composed model with the union of all elements present in the contributing models), the 
result would be a (concrete) composed model mab whose model elements would have the same 
values as the elements present in the contributing models but without being really the same 
elements, that is: 

 :  M x M → CM         

ma  mb  = mab  where  mab = {a1’, a2’, b1’, b2’} 
 
Alternatively, what we propose in our solution is a new model composition operator ⊕ that 
produces as result a virtual composed model vmab that, instead of being populated with mere 
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copies of the elements from contributing models, would actually use the real elements contained in 
those, avoiding thus the need of duplicating elements. 
 

⊕        :   M x M → CM         
ma  ⊕    mb  = vmab where  mab = {a1, a2, b1, b2} 

 
Both mab and vmab conform to the same metamodel mmab. This metamodel defines the set of 
concepts that can appear in the composed model, i.e., which elements from the contributing 
models may be part of the composed model. In the simplest scenario, mmab would be a subset of 
the metamodels of the contributing models but our approach allows as well the definition of new 
inter-model links or virtual attributes in the composed metamodel (that then becomes richer that 
the union of the contributing ones) as will be detailed further on. 
 
In fact, since a metamodel is also a model it can be also virtualized, allowing for instance vmab (or 
even mab) to conform to a virtual metamodel vmmab. Similar to a virtual model, a virtual metamodel 
would not actually contain the metamodel elements itself but reference to the metamodel elements 
of the contributing metamodels. Nevertheless, virtualizing metamodels is not usually interesting 
because the size of metamodels is relatively small and therefore the benefits of virtualizing them 
are smaller compared with those we get when virtualizing models. 
 
It is also important to note that once virtual models are perceived as regular models, nested 
virtualization may be achieved without further effort, i.e., the contributing models of a virtual 
composition may be also virtual models. 

3.2 CONCEPTUAL  ARCHITECTURE 

To be useful, virtual models must appear as normal (i.e. concrete) models to the user. Therefore, 
we need to provide a mechanism to transparently use the elements from contributing models in the 
composed model. In short, we must modify the way model elements are accessed or viewed in a 
modeling environment, so that we can redirect an operation on a virtual element to the 
corresponding concrete one it refers. 
 
As examples of modeling frameworks we can cite the Eclipse Modeling Framework (EMF), the 
NetBeans Metadata Repository (MDR), and Microsoft's DSL Tools and SQL Server Modeling 
(formerly Oslo). Each one of those has its own particularities but they all provide a Model Access 
API to allow the creation and manipulation of its models. 
 

Definition 9. A Model Access API is the component of a modeling framework that 
provides an API that can be exploited by tools and users to access and manipulate models 
and their elements in that specific modeling framework. 

Although Model Access APIs present some differences (to adapt to the specificities of each 
modeling framework), they all share common functionalities. All of them must, for instance, provide 
operations to load and save models, or to get and set their model elements (and their properties). 
In this section, we will present our solution in terms of these generic operations to facilitate the 
implementation of our approach in any modeling framework. Next section presents the 
implementation for a specific framework (the EMF modeling framework in Eclipse). 
 
The typical signature of these basic model manipulation operations is the following: 
 

Method Behaviour 
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Model loadModel(String uri) 
loads a model from its persistence location 
(i.e., an XMI file, a relational database, etc.) 
identified by uri 

void saveModel(Model m, String uri) saves a model m to the location identified by 
uri 

Element getElement(Model m, Object id) gets, from the model m, the model element 
corresponding to the identifier id 

void setElement(Model m, Element e) sets, in model m, the model element e 

Object get(Element e, Property p) 

gets, from a model element e, the object 
corresponding to property p. The returned 
object may a simple data type value or 
another model element (e.g. when the 
property is an association/reference to 
another element) 

void set(Element e, Property p, Object value) 
sets the value of property p in model 
element e with the value value. As before, 
value can be a primitive type or an element 

Table 1 : Model Access API’s methods. 

Sometimes getElement and setElement are not directly offered as separate operations but overlap 
with get and set. In that case, the framework offers an operation to get the root element of the 
model; using get calls we can navigate from that root object to the contained ones until reaching 
the desired object. 

3.2.1 Model Virtualization API 

The Model Virtualization API implements the interfaces present in a Model Access API and refines 
the model management operations in order to deal with virtual models. In a traditional model 
composition solution, where the composed model is a concrete model, a standard Model Access 
API simply accesses directly the element from a model. What we propose by virtualizing model 
composition is seamless integration between contributing and composed models by modifying the 
way the access to model elements is performed. The fact that the Model Virtualization API just 
provides an implementation of a standard Model Access API also means that a virtual model may 
be handled by any modeling tool, which is not aware of the underlying implementation (in fact it 
would not even be aware that is dealing with a model of a different nature). The Model 
Virtualization API was also built with a concern to make it easily extensible, making it possible to 
be implemented in different manners. The implementation of the Model Virtualization API will also 
change accordingly to the modeling framework it targets. 
 

Definition 10. A Model Virtualization API is an API that implements a standard Model 
Access API modifying its behavior in order to allow the manipulation of virtual models by 
delegating the access to its referenced contributing models. 

When a given tool accesses a element from a virtual model it is in fact accessing a virtual element, 
which, as previously said, is a proxy to a concrete model element. The Model Virtualization API 
must then be able to navigate these proxies in order to reach the desired concrete element. The 
solution to handle this is through the use of a series of mappings relating virtual and concrete 
model elements (and virtual and concrete metaelements) that are built during the loading phase of 
a virtual model, allowing the API to know to which concrete model element a given virtual element 



Galaxy 
 

D3.1-Model Views Conceptual Approach 

Model Virtualization 

PROJECT: GALAXY 
REFERENCE: D3.1 
ISSUE: 1.0 Draft1 

ARPEGE 2009  

DATE: 25/02/2010 

 

 
  
©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.  

Page 14 of 22 

points (and consequently, to which concrete model it belongs). The Model Virtualization API then 
uses the standard Model Access API to access the elements from concrete models. 
 
Fig. 2 depicts the relationship between the Virtualization API and the other APIs of the modeling 
framework. Tools access the virtual model using the standard methods in the Model Access API. 
This API may have different implementations (e.g. to access models stored in an XMI format, or in 
a database) and our Virtualization implementation. Calls to virtual models are automatically 
redirected to this Virtualization implementation (e.g. in Eclipse you can register what kinds of 
models each API implementation should handle). When processing the request the API will identify 
the referenced element(s) and request a get (or set or ...) operation on the contributing model 
where the element belongs. This request will be processed using the right API for the contributing 
model. If the requested feature is a virtual reference (see definition 7), the Virtualization API will 
use the Linking API (detailed in the next subsection) to handle it. 
 

 
Figure 2 : API Relationship for Model Virtualization 

 
In the following we describe the implementation of the model manipulation methods by the 
Virtualization API. 
 

3.2.1.1 Load and Save Models 

As virtual models do not hold concrete data, they just store the paths to the resources involved in 
the composition (concrete models and metamodels and, optionally, an inter-model link set detailing 
the virtual references). Therefore, when a loadModel operation is invoked, the Virtualization API 
performs the following tasks (Fig. 3): (i) load the virtual model file to get the paths to concrete 
resources, (ii) load all concrete metamodels and models, (iii) load the composition metamodel (or 
build it in case it is not specified), (iv) build the mappings that will assist the navigation from virtual 
to concrete elements, and (v) load the Linking API (that can also load an inter-model link-set, if 
available). For (ii) and (iii) the loadModel method of the standard Model Access API would be 
used. The save operation behaves analogously: all contributing models are saved (since they may 
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have been modified through the virtual model) using the standard saveModel method. A Linking 
API operation to save the virtual references is also called, in case they were updated. 
 

 
Figure 3 : loadModel operation of a virtual model. 

 
Due to space limitations, the same lifelines and loops are used to represent different objects: 
contributing metamodels, models and the composition metamodel. 
 
 

3.2.1.2 Get and Set Model Elements 

The mappings creating during the loading phase allow the identification of the contributing element 
each virtual element represents. First, by comparing the type (metaelement from the composition 
metamodel) of a given requested (virtual) element, the Virtualization API can locate the 
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corresponding metaelement of the referenced concrete element (with Virtualization API's internal 
virtualToConcreteMetaElement method), and then use it to identify the container contributing 
model (with internal getContainerModel method). From there it can retrieve the concrete element 
itself by using the standard Model Access API's getElement on the concrete contributing model. 
There are several ways to implement this last step. The simplest option is to assign the same id to 
the virtual and concrete element. The behaviour for setElement follows the same pattern. 
 

3.2.1.3 Get and Set Properties 

Once retrieved a concrete element from its corresponding virtual one, it is straightforward to get or 
set its properties. Fig. 4 shows how the Virtualization API process a get request (property name of 
an element vb1 in a virtual model vmab). First it needs to recover the correct concrete element 
containing the property (cb1). As for the getElement description above, it does so by first 
discovering the metaelement of vb1 (i.e. vmeb1) and then by recovering its concrete version 
(cmeb1), the container contributing model and finally the actual concrete element cb1. Then, the 
Virtualization API uses the standard Model Access API to retrieve the name property of cb1. The 
set operation behaves in the same way, only replacing the last get call by a set call. 
 

 
Figure 4 : A get operation on a virtual model 

3.2.2 Linking API 

An important aspect in model composition, besides the simple union of elements from contributing 
models, is the possibility of creation of relationships between them. To cover this aspect of model 
composition we proposed the use of a separate Linking API in our solution. The decision for a 
separate API to handle inter-model relationships was made in order to gain in modularity, since 
different implementations based on different techniques may be used in different contexts without 
the need of modifying the core of the Model Virtualization API. For instance, algorithms for 
automatic model composition based on different criteria (e.g., name matching) may be built. 
The Linking API is used by the Model Virtualization API to navigate references (which we call 
virtual references) between elements contained in different models and, based on the type of the 
reference, provide the correct visualization on the composed model. Alternatively, it also provides 
the possibility to create model views (i.e., by hiding elements) and virtual attributes. Although 
model views and virtual attributes exactly inter-model relationships, a decision has been made to 
include these elements in the linking API since this information is also store in separate models (in 
order to preserve the original contributing models intact). 
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Definition 1. A Virtual Reference is a reference in the virtual model that links two model 
elements contained in different concrete models. 

Definition 2. A Virtual Attribute is an extra attribute in the virtual model that is not 
contained in any of its concrete models. 

The different types of virtual references we propose are: 
 

• Inter Model Associations: similar to regular references between model elements, but 
between model elements contained in different concrete models. May have or not an 
opposite reference and different multiplicities; 

• Merging: allows to indicate that elements in different models correspond to the same 
element in a system (semantical overlapping). After composition, only one the merged 
instance is presented to the user/tool and updates in it are propagated to all merged 
elements in the concrete models. It allows also to specify (through FeatureMerged, which 
feature from the merged element should be merged into a single feature; 

• Extension: allows to specify that an element in one model extends an element in a different 
model, inheriting its properties; 

• Expansion: allows to expand the virtual model with model elements (virtual attributes) not 
contained in any of the concrete models. It does not modify the original concrete models, 
and are stored in a separate model; 

• Model Views: allows to view a model from a specific perspective, i.e., to hide elements not 
relevant for a given application. This is particularly important when dealing with large 
models. A user may, for instance, only desire to see model elements conforming to a 
specific metaelement, or to browse only elements whose values satisfy a given condition. 

These different kinds of references may be implemented in different manners (e.g., one may 
implement it directly in different java classes), but we propose the adoption of models in every 
aspect of our solution and therefore we chose to represent the references in a weaving 
metamodel[7] (see Figure 5). Each reference between concrete models will then be an instance of 
one of the metaclasses in the weaving metamodel and will be stored in a weaving model 
conforming to this metamodel. By performing like this when the Model Virtualization API requests 
to the Linking API the access to one of the virtual references, it will check the type of the reference 
(e.g., merge or extension) and will perform differently according to it. 
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Figure 5 : Simplified Class Diagram of the Virtualization Weaving Metamodel. 

 
For instance, when a virtual reference of type association is requested on one model element, the 
Linking API will identify to which model element (in a different concrete model) this element is 
linked, and return it. For two merged elements, one pivot element is chosen whose element will be 
displayed in the virtual model (with the other hidden). But when a setElement operation is 
requested to this merged elements, both will be modified in order to maintain consistency. For 
extension, the attributes of one element will be added to the attributes of the element that inherits 
from it. 
 
For the case of virtual attributes the solution is a little different. Once a virtual attribute does not 
conform to any metaelement present in the contributing metamodels (we we do not want to modify 
the contributing metamodels since it goes completely against the philosophy of the solution of 
maintaining the consistency of contributing (meta)models for use in different scenarios), and it is 
mandatory that a metamodel describes all the possible concepts a given model may have, we 
handle this problem by adding a metaelement to which the virtual attribute will conform directly in 
the metamodel of the virtual model. But a problem remains when deciding how to persist the 
values of virtual attributes. To handle this we have opted to save virtual values in a separate extra 
model, completely dedicated to save their values. This keeps the elegance of the solution without 
interfering in any of the quality aspects we desire. 
 
The main methods provided by the Linking APi are the following: 
 

• void loadVirtualReferences(String weavingModel-Uri): loads the weaving model based on 
the given weavingModelUri by invoking the loadModel method from the Model Access API. 
Also navigates the values the create the mappings between the elements participating in 
the virtual references; 

• void saveVirtualReferences(String weavingModel-Uri, Model m): saves m to the location 
specified by weavingModelUri; 

• Boolean isVirtualReference(Object o, Property p): checks if the property p of Object o is a 
virtual reference; 

• Object getVirtualReference(Object o, Property p): gets the referenced Object of element o 
by the (reference) property p; 



Galaxy 
 

D3.1-Model Views Conceptual Approach 

Model Virtualization 

PROJECT: GALAXY 
REFERENCE: D3.1 
ISSUE: 1.0 Draft1 

ARPEGE 2009  

DATE: 25/02/2010 

 

 
  
©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.  

Page 19 of 22 

• void getVirtualReference(Object o, Property p, Object referencedObject)}: sets the 
reference p in Object o to Object referencedObject. 

Fig. 6 shows the use of the LinkingAPI to set a virtual reference. The first part of the operation 
(retrieving the involved concrete models) follows the same pattern as before (Fig. 4). Once it is 
detected that the feature link to set is in fact a virtual reference (operation isVirtualReference) the 
Linking API uses the operation setVirtualReference to set b2 as the value of r b2 for a1. Again, the 
implementation of this operation can be done in several ways. For instance, the Linking API could 
store the links as additional information in the contributing models or persist/load virtual references 
to an external location (we encourage the use of weaving models[7] for this, as storing links in a 
separate model avoids polluting the contributing models with extra information). 
 
This is precisely one of the reasons to separate the Linking API from the Model Virtualization API: 
better modularity and easier creation of alternative implementations. At this stage of the research 
we only consider simple association links (e.g. element a in model ma references element b in 
model mb) between model elements in different models, but more complex ones could also exist 
(e.g. inheritance, merging,...). Support for these additional relationships could be easily integrated 
by providing a more powerful implementation of the Linking API without having to change the 
Virtualization API. 

 
Figure 6 : A set operation for a virtual reference 
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4. CONCLUSION 

In this document we have presented a new approach for model composition based on a model 
virtualization mechanism that offers a direct and transparent access to the contributing models 
used in the composition process. This is achieved by means of a specific Model Virtualization API 
that takes care of translating the model manipulation requests on the virtual model to appropriate 
operations on the elements of the comntributing models. Users of the model (and tools 
manipulating it) are not aware of this indirection when manipulating the virtual model. We have 
shown that this approach provides additional benefits to traditional model composition approaches. 
As further work, we plan to extend the list of possible inter-model relationships to enrich our model 
virtualization mechanism and experiment with the virtualization of metamodels and with the 
composition of virtual models. For the latter, we plan to implement an existing model composition 
solution on top of our Model Virtualization solution, to prove that our virtualization mechanism is 
extensible and that virtual models can take the role of contributing models in other model 
composition process. We will also continue the development of our prototype to provide an 
adequate tool support to these extensions and to facilitate the experimentation of this approach 
with real end users. 
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