

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 1 of 22

D3.1-Model Views Conceptual Approach
Model Virtualization

NAME PARTNER DATE

WRITTEN BY CLASEN C. ATLANMOD 04/02/2011
KLING W. ATLANMOD 04/02/2011

REVIEWED BY

Galaxy

D3.1-Model Views Conceptual Approach

Model Virtualization

PROJECT: GALAXY
REFERENCE: D3.1
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 2 of 22

RECORD OF REVISIONS
ISSUE DATE EFFECT ON REASONS FOR REVISION

PAGE PARA

1.0 02/11/2010 Document creation

Galaxy

D3.1-Model Views Conceptual Approach

Model Virtualization

PROJECT: GALAXY
REFERENCE: D3.1
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 3 of 22

TABLE OF CONTENTS

1.	 INTRODUCTION 5	

2.	 ON THE NEED FOR VIRTUAL MODELS 6	

2.1	 INTRODUCTION 6	

2.2	 MODEL COMPOSITION 7	

2.3	 QUALITY INDICATORS IN MODEL COMPOSITION 8	

2.4	 STATE OF THE ART 9	

3.	 MODEL VIRTUALIZATION (CONCEPTUAL) 11	

3.1	 THE NOTION OF A VIRTUAL MODEL 11	

3.2	 CONCEPTUAL ARCHITECTURE 12	

3.2.1	 Model Virtualization API 13	

3.2.2	 Linking API 16	

4.	 CONCLUSION 20	

5.	 REFERENCES 21	

Galaxy

D3.1-Model Views Conceptual Approach

Model Virtualization

PROJECT: GALAXY
REFERENCE: D3.1
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 4 of 22

TABLE OF APPLICABLE DOCUMENTS
N° TITLE REFERENCE ISSUE DATE SOURCE

SIGLUM NAME

A1
A2
A3
A4

TABLE OF REFERENCED DOCUMENTS
N° TITLE REFERENCE ISSUE

R1 Galaxy glossary
R2
R3
R4

ACRONYMS AND DEFINITIONS

Except if explicitly stated otherwise the definition of all terms and acronyms provided in [R1] is
applicable in this document. If any, additional and/or specific definitions applicable only in this
document are listed in the two tables below.

Acronymes
ACRONYM DESCRIPTION

Definitions
TERMS DESCRIPTION

Galaxy

D3.1-Model Views Conceptual Approach

Model Virtualization

PROJECT: GALAXY
REFERENCE: D3.1
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 5 of 22

1. INTRODUCTION

Modeling complex software systems involves a large number of heterogeneous models focusing
on different aspects of the system at different abstraction levels. These models must be later
combined in order to provide to each to each designer/developer of the system the specific view
they need to perform their tasks. This problem is tightly connected to model composition, in which
two or more models have their information captured to generate one single composed model.

However, current approaches present some important limitations concerning efficiency (due to the
copying mechanism of model elements into the composed model), interoperability (when the
composed model has a different nature than the contributing ones and needs to be manipulated
using specialized tools) and/or synchronization (by failing to propagate changes from the
generated model to the contributing ones, or the other way round) issues.

This document aims to describe a new model composition solution based on a model virtualization
mechanism. Instead of generating a new composed model our approach generates a virtual model
that provides the illusion to users (and tools) of working with a generated composed model while in
fact, all model access and manipulation requests on the (virtual) composed model are directly
translated to operations on the contributing models in a transparent way.

Galaxy

D3.1-Model Views Conceptual Approach

Model Virtualization

PROJECT: GALAXY
REFERENCE: D3.1
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 6 of 22

2. ON THE NEED FOR VIRTUAL MODELS

2.1 INTRODUCTION

Complexity of nowadays software systems is rapidly increasing and with this the difficulty to
comprehend, develop and maintain them. To handle this complexity, software systems are usually
represented by a series of models. Each model aims at representing a different aspect of the
system at a different abstraction level. Models can be used for different activities: forward
engineering, reverse engineering or even as run-time components of the system.

In either case, models must be combined to generate the most adequate view of the system for
each user working with it, depending on his/her role (both to show only the relevant information to
that user and to avoid errors due to improper manipulation of other aspects of the system in which
the user is not involved). This is a complex and challenging problem due to the heterogeneity of
the models and to the fact that most times several kinds of relationships exist between them, e.g.,
elements contained in one model may refine, extend or depend on other elements in a different
model (e.g. a table in a relational database model refines a class in a UML conceptual model).

Several approaches for model composition have been developed so far. Basically, they all propose
to generate a completely new composed model from a set of input models but differ on the
language/technique used to define how to select and combine the elements from the source
models that will be copied to the composed model. Fig. 1(a) illustrates the idea: models A and B
are the input to a model composition mechanism that, accordingly to its composition rules,
processes A and B and generates the composed model. Unfortunately, current approaches
present some important limitations (linked to the fact that the composed model is generated as a
separated new model by copying and merging pieces of information from the source models)
regarding the performance (due to the time required to copy the model elements into the
composed model), synchronization (due to the lack of propagation of changes from the generated
model to the contributing ones or the other way round) or interoperability (sometimes the
composed model has a different nature than the contributing ones and need to be manipulated
using specialized tools) of the approach.

Galaxy

D3.1-Model Views Conceptual Approach

Model Virtualization

PROJECT: GALAXY
REFERENCE: D3.1
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 7 of 22

Figure 1: (a) Standard Model Composition; (b) Virtual Model Composition

This work has the purpose of creating a new model composition solution based on a model
virtualization mechanism. Instead of generating a new composed model our approach generates a
virtual model that provides the illusion to users (and tools) of working with a generated composed
model while in fact, all model access and manipulation requests on the (virtual) composed model
are directly translated to operations on the contributing models in a transparent way. This
delegation avoids the problems mentioned above. Our solution is designed as a refinement of
standard Model Access APIs, allowing our virtual model to be directly manipulated by current tools
exactly in the same way as any other model.

2.2 MODEL COMPOSITION

Model composition is an emerging subfield in the area of Model Driven Engineering that has been
studied from different perspectives such as aspect-oriented modeling[5], database schema
integration[1], or model transformation[10]. In its simplest form, model composition is a modeling
process that combines two or more input models. in order to generate a single output model that
gathers the contents present in the input models[17]. The necessity of combining models come
from the fact that systems are usually described by means of a large set of models, each one
concerning different aspects of the system. Therefore, combining elements spread across different
models allows:

1. to analyze a system from different viewpoints;

2. to obtain a cross-domain view of a set of models;

3. to manipulate heterogeneous information in an integrated manner;

4. to check the consistency between a set of models;

5. to establish relationships between different views of the system.

A formal definition on model composition and its semantics may be found in [9]. Nevertheless we
provide here definitions on the most important elements involved in a composition process. We will
use this terminology throughout the paper:

Galaxy

D3.1-Model Views Conceptual Approach

Model Virtualization

PROJECT: GALAXY
REFERENCE: D3.1
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 8 of 22

Definition 1. A Contributing Model is a model used as input in a model composition
process. Its elements are named contributing elements.

Definition 2. A Composed Model is the output of a model composition process,
generated from a set of contributing models according to the rules specified in a model
composition operator . Its elements are named composed elements.

Definition 3. An Inter-Model Link Set is a set of predefined links between different
contributing models (describing relationships between their elements) that can be used as
additional information in a composition process.

Definition 4. A Model Composition Operator is a function that receives a set of
contributing models as input and produces a composed model as output such that : M x M
→ M, where M is the universe of models.

As seen from the previous definitions, the key element in a model composition process is the
composition operator. It has mainly two tasks: (i) defining the semantics of the composition, and (ii)
defining what we call the nature of the composed model. The first task is related to how the
contributing models and its elements are combined to generate the composed model. For
instance, the composition operator could simply define that the composed model is the union of all
elements, or discard those satisfying a given condition, apply a partial merge of similar elements
(where the similarity could be computed, e.g. by name matching, or predefined in a link set used
as additional input for the operator),...

Our mechanism is independent of how this first task is accomplished. We focus on the second
one: depending on the model composition operator applied, a composed model may have different
natures. Typically, the selected elements of the contributing models are copied (i.e. cloned) into
the composed one. In this case, the composed model is a concrete model, with exactly the same
nature of the contributing ones (and completely disconnected from them once the creation process
has finished). This is not the only possibility. As we will see, we propose an approach in which the
composed model has a virtual nature.

2.3 QUALITY INDICATORS IN MODEL COMPOSITION

Depending on the kind of composition operator provided, the composition process will
showcase a different set of functional and non-functional properties. We believe that the six most
important ones are the following:

1. Creation time: time required to create the composed model;

2. Manipulation time: time required to perform read and write operations in a composed
model;

3. Memory usage: memory requirements when performing a model composition.
Especially important when dealing with large-size models;

4. Interoperability: capability of a composed model to be handled in the same manner a
normal model would (i.e. this implies that we do not require special tools for
manipulating the composed model);

5. Modification capabilities: the set of operations that can be applied on a composed
model (e.g. read-only, establishing inter-model links, etc.);

Galaxy

D3.1-Model Views Conceptual Approach

Model Virtualization

PROJECT: GALAXY
REFERENCE: D3.1
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 9 of 22

6. Synchronization: automatic propagation of changes between composed and
contributing models, ensuring their consistency.

These properties will be used when evaluating the existing approaches and when discussing the
benefits of our alternative in the next sections.

2.4 STATE OF THE ART

A considerable number of works on model composition can be found in the literature (though there
is not yet a consensus on its formal definition and terminology). In what follows we summarize the
main “families” of approaches in the area.

Several works such as [17], [21] focus the formal semantics of model composition and discuss the
possible types of composition operators (e.g., merge, expand, diff, etc.). These differences can be
used to compare different model composition solutions [3], [2].

Other approaches as [8], [18] and [20] target the automatic composition of models proposing
algorithms to identify, select and combine elements from contributing models. Composition
frameworks, as in IBM Rational Software Architect[14], CCBM[16] or languages, as the Epsilon
Merging Language[11] may help during the composition process by, for instance, facilitating the
identification of the elements to merge or helping to compare the contributing models before
deciding the elements to merge [12].

Other solutions apply model composition to target a specific kind of problems, as in [6]. Research
has been also when considering the composition of a specific type of models, like ADLs[19],
Statecharts[15] or UML[22][4].

What the vast majority of the proposals for composing models have in common is the fact that
most of them completely generate a new (composed) model after the composition process (an
exception is [13] but it focuses on decorating a single model with new information and not on
composing models), completely discarding the contributing models once the new one was
generated. Another common approach was not to generate a new model, but rather use one of
them as a pivot that will receive the contents from the other. In a way or another we believe that all
these approaches share one or more of the following three main problems:

1. Approaches that generate a new composed model by copying elements from source
models do not scale well. The creation of the composed model may take too long and,
more severely, the memory usage could be a serious bottleneck during the creation
process because of the need of having available at the same time both the new instances
of the composed model and the existing instances of the contributing models;

2. Approaches that do not provide propagation mechanisms to ensure the consistency
between the contributing and the composede models. If synchronization is lost, tool using
the composed model will present users with an outdated version of the model;

3. Approaches that generate a composed model with a different format than that expected by
standard modeling tools. Visualizing and/or manipulating the composed model requires the
use of a different API or toolset.

These problems hamper the usefulness of these methods as the basis of a model composition
process. Next section presents our alternative model composition mechanism to overcome these
limitations. Note that our alternative mechanism changes the way the generated model is built but
not how to define the composition rules that specify how to select and merge the elements of the

Galaxy

D3.1-Model Views Conceptual Approach

Model Virtualization

PROJECT: GALAXY
REFERENCE: D3.1
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 10 of 22

contributing models. Our method is agnostic with respect to this. Any existing method could be
used for this purpose.

Galaxy

D3.1-Model Views Conceptual Approach

Model Virtualization

PROJECT: GALAXY
REFERENCE: D3.1
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 11 of 22

3. MODEL VIRTUALIZATION (CONCEPTUAL)

In this section we present the conceptual idea of our solution for model composition in order to
overcome the problems mentioned before. The main difference with relation to previous works is
the role contributing models play in the composition process. In our solution the main idea is to
consider the contributing models not only as simple input for the generation of the composed
model, discarded once the composed model has been created, but rather as core elements during
its whole lifecycle. This is achieved by adding virtualization techniques to the composition process
that integrate the contributing models within the composed model.

3.1 THE NOTION OF A VIRTUAL MODEL

The main innovation of our solution is the virtualization of the composed model. In our approach,
the composed model is a virtual model. They key difference between a virtual model and a
concrete model is that a virtual model is made of virtual elements, which are proxies to actual
elements contained in other models (usually concrete ones but we could also have a composition
of virtual models). Virtual model elements are perceived and manipulated by a tool in the same
manner as a normal model would, but in fact the actual elements being accessed (through the
proxies in the virtual model) are the elements contained in the contributing models from which the
virtual model was generated.

Definition 5. A Concrete Model is a model whose model elements hold concrete data. Its
elements are named concrete elements.

Definition 6. A Virtual Model is a model whose (virtual) model elements are proxies to
elements contained in other models. A virtual model delegates the access to its elements to
the models it references. Its elements are named virtual elements.

Definition 7. A Virtual Reference is a reference in a virtual model that links two model
elements contained in different concrete models.

Definition 8. A Virtual Composition Operator ⊕ is a model composition operator that
produces a virtual element as output, such that ⊕ : M x M → VM, where VM is the universe
of virtual models. ⊕ does not duplicate elements from contributing models; it creates virtual
elements (i.e. proxies) to them.

To make this idea clearer — and denoting the universe of models as M, the universe of concrete
models as CM, and the universe of virtual models as VM (where CM and VM ∈ M) —, let's
consider two models ma = {a1, a2} and mb = {b1, b2} (where ma, mb ⊂ CM). In a traditional
composition process, and considering the simplest composition algorithm possible (i.e., to
generate a composed model with the union of all elements present in the contributing models), the
result would be a (concrete) composed model mab whose model elements would have the same
values as the elements present in the contributing models but without being really the same
elements, that is:

 : M x M → CM

ma mb = mab where mab = {a1’, a2’, b1’, b2’}

Alternatively, what we propose in our solution is a new model composition operator ⊕ that
produces as result a virtual composed model vmab that, instead of being populated with mere

Galaxy

D3.1-Model Views Conceptual Approach

Model Virtualization

PROJECT: GALAXY
REFERENCE: D3.1
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 12 of 22

copies of the elements from contributing models, would actually use the real elements contained in
those, avoiding thus the need of duplicating elements.

⊕ : M x M → CM
ma ⊕ mb = vmab where mab = {a1, a2, b1, b2}

Both mab and vmab conform to the same metamodel mmab. This metamodel defines the set of
concepts that can appear in the composed model, i.e., which elements from the contributing
models may be part of the composed model. In the simplest scenario, mmab would be a subset of
the metamodels of the contributing models but our approach allows as well the definition of new
inter-model links or virtual attributes in the composed metamodel (that then becomes richer that
the union of the contributing ones) as will be detailed further on.

In fact, since a metamodel is also a model it can be also virtualized, allowing for instance vmab (or
even mab) to conform to a virtual metamodel vmmab. Similar to a virtual model, a virtual metamodel
would not actually contain the metamodel elements itself but reference to the metamodel elements
of the contributing metamodels. Nevertheless, virtualizing metamodels is not usually interesting
because the size of metamodels is relatively small and therefore the benefits of virtualizing them
are smaller compared with those we get when virtualizing models.

It is also important to note that once virtual models are perceived as regular models, nested
virtualization may be achieved without further effort, i.e., the contributing models of a virtual
composition may be also virtual models.

3.2 CONCEPTUAL ARCHITECTURE

To be useful, virtual models must appear as normal (i.e. concrete) models to the user. Therefore,
we need to provide a mechanism to transparently use the elements from contributing models in the
composed model. In short, we must modify the way model elements are accessed or viewed in a
modeling environment, so that we can redirect an operation on a virtual element to the
corresponding concrete one it refers.

As examples of modeling frameworks we can cite the Eclipse Modeling Framework (EMF), the
NetBeans Metadata Repository (MDR), and Microsoft's DSL Tools and SQL Server Modeling
(formerly Oslo). Each one of those has its own particularities but they all provide a Model Access
API to allow the creation and manipulation of its models.

Definition 9. A Model Access API is the component of a modeling framework that
provides an API that can be exploited by tools and users to access and manipulate models
and their elements in that specific modeling framework.

Although Model Access APIs present some differences (to adapt to the specificities of each
modeling framework), they all share common functionalities. All of them must, for instance, provide
operations to load and save models, or to get and set their model elements (and their properties).
In this section, we will present our solution in terms of these generic operations to facilitate the
implementation of our approach in any modeling framework. Next section presents the
implementation for a specific framework (the EMF modeling framework in Eclipse).

The typical signature of these basic model manipulation operations is the following:

Method Behaviour

Galaxy

D3.1-Model Views Conceptual Approach

Model Virtualization

PROJECT: GALAXY
REFERENCE: D3.1
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 13 of 22

Model loadModel(String uri)
loads a model from its persistence location
(i.e., an XMI file, a relational database, etc.)
identified by uri

void saveModel(Model m, String uri) saves a model m to the location identified by
uri

Element getElement(Model m, Object id) gets, from the model m, the model element
corresponding to the identifier id

void setElement(Model m, Element e) sets, in model m, the model element e

Object get(Element e, Property p)

gets, from a model element e, the object
corresponding to property p. The returned
object may a simple data type value or
another model element (e.g. when the
property is an association/reference to
another element)

void set(Element e, Property p, Object value)
sets the value of property p in model
element e with the value value. As before,
value can be a primitive type or an element

Table 1 : Model Access API’s methods.

Sometimes getElement and setElement are not directly offered as separate operations but overlap
with get and set. In that case, the framework offers an operation to get the root element of the
model; using get calls we can navigate from that root object to the contained ones until reaching
the desired object.

3.2.1 Model Virtualization API

The Model Virtualization API implements the interfaces present in a Model Access API and refines
the model management operations in order to deal with virtual models. In a traditional model
composition solution, where the composed model is a concrete model, a standard Model Access
API simply accesses directly the element from a model. What we propose by virtualizing model
composition is seamless integration between contributing and composed models by modifying the
way the access to model elements is performed. The fact that the Model Virtualization API just
provides an implementation of a standard Model Access API also means that a virtual model may
be handled by any modeling tool, which is not aware of the underlying implementation (in fact it
would not even be aware that is dealing with a model of a different nature). The Model
Virtualization API was also built with a concern to make it easily extensible, making it possible to
be implemented in different manners. The implementation of the Model Virtualization API will also
change accordingly to the modeling framework it targets.

Definition 10. A Model Virtualization API is an API that implements a standard Model
Access API modifying its behavior in order to allow the manipulation of virtual models by
delegating the access to its referenced contributing models.

When a given tool accesses a element from a virtual model it is in fact accessing a virtual element,
which, as previously said, is a proxy to a concrete model element. The Model Virtualization API
must then be able to navigate these proxies in order to reach the desired concrete element. The
solution to handle this is through the use of a series of mappings relating virtual and concrete
model elements (and virtual and concrete metaelements) that are built during the loading phase of
a virtual model, allowing the API to know to which concrete model element a given virtual element

Galaxy

D3.1-Model Views Conceptual Approach

Model Virtualization

PROJECT: GALAXY
REFERENCE: D3.1
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 14 of 22

points (and consequently, to which concrete model it belongs). The Model Virtualization API then
uses the standard Model Access API to access the elements from concrete models.

Fig. 2 depicts the relationship between the Virtualization API and the other APIs of the modeling
framework. Tools access the virtual model using the standard methods in the Model Access API.
This API may have different implementations (e.g. to access models stored in an XMI format, or in
a database) and our Virtualization implementation. Calls to virtual models are automatically
redirected to this Virtualization implementation (e.g. in Eclipse you can register what kinds of
models each API implementation should handle). When processing the request the API will identify
the referenced element(s) and request a get (or set or ...) operation on the contributing model
where the element belongs. This request will be processed using the right API for the contributing
model. If the requested feature is a virtual reference (see definition 7), the Virtualization API will
use the Linking API (detailed in the next subsection) to handle it.

Figure 2 : API Relationship for Model Virtualization

In the following we describe the implementation of the model manipulation methods by the
Virtualization API.

3.2.1.1 Load and Save Models

As virtual models do not hold concrete data, they just store the paths to the resources involved in
the composition (concrete models and metamodels and, optionally, an inter-model link set detailing
the virtual references). Therefore, when a loadModel operation is invoked, the Virtualization API
performs the following tasks (Fig. 3): (i) load the virtual model file to get the paths to concrete
resources, (ii) load all concrete metamodels and models, (iii) load the composition metamodel (or
build it in case it is not specified), (iv) build the mappings that will assist the navigation from virtual
to concrete elements, and (v) load the Linking API (that can also load an inter-model link-set, if
available). For (ii) and (iii) the loadModel method of the standard Model Access API would be
used. The save operation behaves analogously: all contributing models are saved (since they may

Galaxy

D3.1-Model Views Conceptual Approach

Model Virtualization

PROJECT: GALAXY
REFERENCE: D3.1
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 15 of 22

have been modified through the virtual model) using the standard saveModel method. A Linking
API operation to save the virtual references is also called, in case they were updated.

Figure 3 : loadModel operation of a virtual model.

Due to space limitations, the same lifelines and loops are used to represent different objects:
contributing metamodels, models and the composition metamodel.

3.2.1.2 Get and Set Model Elements

The mappings creating during the loading phase allow the identification of the contributing element
each virtual element represents. First, by comparing the type (metaelement from the composition
metamodel) of a given requested (virtual) element, the Virtualization API can locate the

Galaxy

D3.1-Model Views Conceptual Approach

Model Virtualization

PROJECT: GALAXY
REFERENCE: D3.1
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 16 of 22

corresponding metaelement of the referenced concrete element (with Virtualization API's internal
virtualToConcreteMetaElement method), and then use it to identify the container contributing
model (with internal getContainerModel method). From there it can retrieve the concrete element
itself by using the standard Model Access API's getElement on the concrete contributing model.
There are several ways to implement this last step. The simplest option is to assign the same id to
the virtual and concrete element. The behaviour for setElement follows the same pattern.

3.2.1.3 Get and Set Properties

Once retrieved a concrete element from its corresponding virtual one, it is straightforward to get or
set its properties. Fig. 4 shows how the Virtualization API process a get request (property name of
an element vb1 in a virtual model vmab). First it needs to recover the correct concrete element
containing the property (cb1). As for the getElement description above, it does so by first
discovering the metaelement of vb1 (i.e. vmeb1) and then by recovering its concrete version
(cmeb1), the container contributing model and finally the actual concrete element cb1. Then, the
Virtualization API uses the standard Model Access API to retrieve the name property of cb1. The
set operation behaves in the same way, only replacing the last get call by a set call.

Figure 4 : A get operation on a virtual model

3.2.2 Linking API

An important aspect in model composition, besides the simple union of elements from contributing
models, is the possibility of creation of relationships between them. To cover this aspect of model
composition we proposed the use of a separate Linking API in our solution. The decision for a
separate API to handle inter-model relationships was made in order to gain in modularity, since
different implementations based on different techniques may be used in different contexts without
the need of modifying the core of the Model Virtualization API. For instance, algorithms for
automatic model composition based on different criteria (e.g., name matching) may be built.
The Linking API is used by the Model Virtualization API to navigate references (which we call
virtual references) between elements contained in different models and, based on the type of the
reference, provide the correct visualization on the composed model. Alternatively, it also provides
the possibility to create model views (i.e., by hiding elements) and virtual attributes. Although
model views and virtual attributes exactly inter-model relationships, a decision has been made to
include these elements in the linking API since this information is also store in separate models (in
order to preserve the original contributing models intact).

Galaxy

D3.1-Model Views Conceptual Approach

Model Virtualization

PROJECT: GALAXY
REFERENCE: D3.1
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 17 of 22

Definition 1. A Virtual Reference is a reference in the virtual model that links two model
elements contained in different concrete models.

Definition 2. A Virtual Attribute is an extra attribute in the virtual model that is not
contained in any of its concrete models.

The different types of virtual references we propose are:

• Inter Model Associations: similar to regular references between model elements, but
between model elements contained in different concrete models. May have or not an
opposite reference and different multiplicities;

• Merging: allows to indicate that elements in different models correspond to the same
element in a system (semantical overlapping). After composition, only one the merged
instance is presented to the user/tool and updates in it are propagated to all merged
elements in the concrete models. It allows also to specify (through FeatureMerged, which
feature from the merged element should be merged into a single feature;

• Extension: allows to specify that an element in one model extends an element in a different
model, inheriting its properties;

• Expansion: allows to expand the virtual model with model elements (virtual attributes) not
contained in any of the concrete models. It does not modify the original concrete models,
and are stored in a separate model;

• Model Views: allows to view a model from a specific perspective, i.e., to hide elements not
relevant for a given application. This is particularly important when dealing with large
models. A user may, for instance, only desire to see model elements conforming to a
specific metaelement, or to browse only elements whose values satisfy a given condition.

These different kinds of references may be implemented in different manners (e.g., one may
implement it directly in different java classes), but we propose the adoption of models in every
aspect of our solution and therefore we chose to represent the references in a weaving
metamodel[7] (see Figure 5). Each reference between concrete models will then be an instance of
one of the metaclasses in the weaving metamodel and will be stored in a weaving model
conforming to this metamodel. By performing like this when the Model Virtualization API requests
to the Linking API the access to one of the virtual references, it will check the type of the reference
(e.g., merge or extension) and will perform differently according to it.

Galaxy

D3.1-Model Views Conceptual Approach

Model Virtualization

PROJECT: GALAXY
REFERENCE: D3.1
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 18 of 22

Figure 5 : Simplified Class Diagram of the Virtualization Weaving Metamodel.

For instance, when a virtual reference of type association is requested on one model element, the
Linking API will identify to which model element (in a different concrete model) this element is
linked, and return it. For two merged elements, one pivot element is chosen whose element will be
displayed in the virtual model (with the other hidden). But when a setElement operation is
requested to this merged elements, both will be modified in order to maintain consistency. For
extension, the attributes of one element will be added to the attributes of the element that inherits
from it.

For the case of virtual attributes the solution is a little different. Once a virtual attribute does not
conform to any metaelement present in the contributing metamodels (we we do not want to modify
the contributing metamodels since it goes completely against the philosophy of the solution of
maintaining the consistency of contributing (meta)models for use in different scenarios), and it is
mandatory that a metamodel describes all the possible concepts a given model may have, we
handle this problem by adding a metaelement to which the virtual attribute will conform directly in
the metamodel of the virtual model. But a problem remains when deciding how to persist the
values of virtual attributes. To handle this we have opted to save virtual values in a separate extra
model, completely dedicated to save their values. This keeps the elegance of the solution without
interfering in any of the quality aspects we desire.

The main methods provided by the Linking APi are the following:

• void loadVirtualReferences(String weavingModel-Uri): loads the weaving model based on
the given weavingModelUri by invoking the loadModel method from the Model Access API.
Also navigates the values the create the mappings between the elements participating in
the virtual references;

• void saveVirtualReferences(String weavingModel-Uri, Model m): saves m to the location
specified by weavingModelUri;

• Boolean isVirtualReference(Object o, Property p): checks if the property p of Object o is a
virtual reference;

• Object getVirtualReference(Object o, Property p): gets the referenced Object of element o
by the (reference) property p;

Galaxy

D3.1-Model Views Conceptual Approach

Model Virtualization

PROJECT: GALAXY
REFERENCE: D3.1
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 19 of 22

• void getVirtualReference(Object o, Property p, Object referencedObject)}: sets the
reference p in Object o to Object referencedObject.

Fig. 6 shows the use of the LinkingAPI to set a virtual reference. The first part of the operation
(retrieving the involved concrete models) follows the same pattern as before (Fig. 4). Once it is
detected that the feature link to set is in fact a virtual reference (operation isVirtualReference) the
Linking API uses the operation setVirtualReference to set b2 as the value of r b2 for a1. Again, the
implementation of this operation can be done in several ways. For instance, the Linking API could
store the links as additional information in the contributing models or persist/load virtual references
to an external location (we encourage the use of weaving models[7] for this, as storing links in a
separate model avoids polluting the contributing models with extra information).

This is precisely one of the reasons to separate the Linking API from the Model Virtualization API:
better modularity and easier creation of alternative implementations. At this stage of the research
we only consider simple association links (e.g. element a in model ma references element b in
model mb) between model elements in different models, but more complex ones could also exist
(e.g. inheritance, merging,...). Support for these additional relationships could be easily integrated
by providing a more powerful implementation of the Linking API without having to change the
Virtualization API.

Figure 6 : A set operation for a virtual reference

Galaxy

D3.1-Model Views Conceptual Approach

Model Virtualization

PROJECT: GALAXY
REFERENCE: D3.1
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 20 of 22

4. CONCLUSION

In this document we have presented a new approach for model composition based on a model
virtualization mechanism that offers a direct and transparent access to the contributing models
used in the composition process. This is achieved by means of a specific Model Virtualization API
that takes care of translating the model manipulation requests on the virtual model to appropriate
operations on the elements of the comntributing models. Users of the model (and tools
manipulating it) are not aware of this indirection when manipulating the virtual model. We have
shown that this approach provides additional benefits to traditional model composition approaches.
As further work, we plan to extend the list of possible inter-model relationships to enrich our model
virtualization mechanism and experiment with the virtualization of metamodels and with the
composition of virtual models. For the latter, we plan to implement an existing model composition
solution on top of our Model Virtualization solution, to prove that our virtualization mechanism is
extensible and that virtual models can take the role of contributing models in other model
composition process. We will also continue the development of our prototype to provide an
adequate tool support to these extensions and to facilitate the experimentation of this approach
with real end users.

Galaxy

D3.1-Model Views Conceptual Approach

Model Virtualization

PROJECT: GALAXY
REFERENCE: D3.1
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 21 of 22

5. REFERENCES

[1] C. Batini, M. Lenzerini, and S. B. Navathe. A comparative analysis of methodologies for
database schema integration. ACM Comput. Surv., 18(4):323-364, 1986.

[2] J. B_ezivin, M. Barbero, and F. Jouault. On the applicability scope of model driven
engineering. In MOMPES '07, pages 3-7.

[3] G. Brunet, M. Chechik, S. Easterbrook, S. Nejati, N. Niu, and M. Sabetzadeh. A manifesto
for model merging. In GaMMa '06, pages 5-12.

[4] S. Clarke. Extending standard uml with model composition semantics. Sci. Comput.
Program., 44(1):71-100, 2002.

[5] T. Cottenier, A. van den Berg, and T. Elrad. Modeling aspect-oriented compositions. In
MoDELS Satellite Events, pages 100-109, 2005.

[6] J. S. Cuadrado and J. G. Molina. A model-based approach to families of embedded
domain-speci_c languages. IEEE Trans. Software Eng., 35(6):825-840, 2009.

[7] M. D. D. Fabro and P. Valduriez. Towards the e_cient development of model
transformations using model weaving and matching transformations. Software and System
Modeling, 8(3):305-324, 2009.

[8] F. Fleurey, B. Baudry, R. B. France, and S. Ghosh. A generic approach for automaticmodel
composition. In MoDELS Workshops, pages 7-15, 2007.

[9] C. Herrmann, H. Krahn, B. Rumpe, M. Schindler, and S. V�olkel. An algebraicview on the
semantics of model composition. In ECMDA-FA '07, pages 99-113.

[10] F. Jouault, F. Allilaire, J. B_ezivin, and I. Kurtev. Atl: A model transformationtool. Sci.
Comput. Program., 72(1-2):31-39, 2008.

[11] D. S. Kolovos, R. F. Paige, and F. Polack. Merging models with the epsilon
merginglanguage (eml). In MoDELS '06, pages 215{229.

[12] D. S. Kolovos, R. F. Paige, and F. A. Polack. Model comparison: a foundationfor model
composition and model transformation testing. In GaMMa '06, pages13{20. ACM, 2006.

[13] D. S. Kolovos, L. M. Rose, N. D. Matragkas, R. F. Paige, F. A. C. Polack, and K. J.
Fernandes. Constructing and navigating non-invasive model decorations. InICMT '10, pages
138{152.

[14] K. Letkeman. Comparing and merging uml models in ibm rational software architect v7.0
part 7: Ad-hoc modeling - fusing two models with diagrams. developer-Works, pages 454{470,
2007.

[15] S. Nejati, M. Sabetzadeh, M. Chechik, S. M. Easterbrook, and P. Zave. Matching and
merging of statecharts speci_cations. In ICSE '07, pages 54{64.

[16] Occello, A.-M. Pinna-Dery, M. Riveill, and G. Kniesel. Managing model evolution using the
ccbm approach. In ECBS '08, pages 453{462.

Galaxy

D3.1-Model Views Conceptual Approach

Model Virtualization

PROJECT: GALAXY
REFERENCE: D3.1
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 22 of 22

[17] K. S. F. Oliveira and T. C. de Oliveira. A guidance for model composition. In ICSEA '07,
page 27.

[18] R. Pottinger and P. A. Bernstein. Merging models based on given correspondences. In
VLDB '03, pages 826{873.

[19] D. D. Ruscio, I. Malavolta, H. Muccini, P. Pelliccione, and A. Pierantonio. Developing next
generation adls through mde techniques. In ICSE '10, pages 85{94.

[20] M. Sabetzadeh, S. Nejati, S. M. Easterbrook, and M. Chechik. A relationship driven
approach to view merging. ACM SIGSOFT Software Engineering Notes '06, 31(6):1{2.

[21] Vallecillo. On the combination of domain speci_c modeling languages. In ECMFA '10,
pages 305{320.

[22] Z. Xing and E. Stroulia. Umldi_: an algorithm for object-oriented design differencing. In ASE
'05, pages 54{65.

