

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 1 of 28

D3.2-Megamodel for Transformations Architecture

MoScript – Models Scripting Language

NAME PARTNER DATE

WRITTEN BY KLING W. ATLANMOD 04/02/2011

REVIEWED BY

Galaxy

D3.2-Megamodel for Transformations Architecture

MoScript – Models Scripting Language

PROJECT: GALAXY
REFERENCE: D3.2
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 2 of 28

RECORD OF REVISIONS
ISSUE DATE EFFECT ON REASONS FOR REVISION

PAGE PARA

1.0 02/11/2010 Document creation

Galaxy

D3.2-Megamodel for Transformations Architecture

MoScript – Models Scripting Language

PROJECT: GALAXY
REFERENCE: D3.2
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 3 of 28

TABLE OF CONTENTS

1.	 INTRODUCTION 5	

1.1	 GOAL OF THIS DOCUMENT 5	

2.	 PROBLEM STATEMENT 6	

3.	 PROPOSED STRATEGY 8	

3.1	 MEGAMODEL 8	

3.2	 MODEL DEREFERENCING 9	

3.3	 TRANSFORMATIONS AS MODELS AND OPERATIONS 10	

3.3.1	 Operations 11	

3.4	 REPOSITORY EVOLUTION 13	

3.4.1	 Statements 13	

4.	 THE MOSCRIPT LANGUAGE 16	

4.1	 ARCHITECTURE 16	

4.2	 MOSCRIPT ABSTRACT SYNTAX 18	

4.2.1	 Program structure 19	

4.2.1	 Operations 20	

4.2.1	 Statements 20	

4.3	 CONCRETE SYNTAX 21	

4.3.1	 Program structure 21	

5.	 QUALITY ATTRIBUTES AND CONSIDERATIONS 24	

5.1	 EXTENSIBILITY 24	

5.2	 USABILITY 24	

5.3	 PERFORMANCE 24	

5.4	 SECURITY 24	

6.	 CONCLUSIONS AND RELATED WORKS 25	

7.	 REFERENCES 27	

Galaxy

D3.2-Megamodel for Transformations Architecture

MoScript – Models Scripting Language

PROJECT: GALAXY
REFERENCE: D3.2
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 4 of 28

TABLE OF APPLICABLE DOCUMENTS
N° TITLE REFERENCE ISSUE DATE SOURCE

SIGLUM NAME

A1
A2
A3
A4

TABLE OF REFERENCED DOCUMENTS
N° TITLE REFERENCE ISSUE

R1 Galaxy glossary
R2
R3
R4

ACRONYMS AND DEFINITIONS

Except if explicitly stated otherwise the definition of all terms and acronyms provided in [R1] is
applicable in this document. If any, additional and/or specific definitions applicable only in this
document are listed in the two tables below.

Acronymes
ACRONYM DESCRIPTION

Definitions
TERMS DESCRIPTION

Galaxy

D3.2-Megamodel for Transformations Architecture

MoScript – Models Scripting Language

PROJECT: GALAXY
REFERENCE: D3.2
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 5 of 28

1. INTRODUCTION
As the Model-Driven Engineering (MDE) paradigm and tools are maturing, the number of
modelling artefacts consumed and produced by software or engineering processes (e.g., models,
metamodels, transformations, etc) has increased considerably.

MDE development processes for complex systems [MDMCS] are typical examples of this situation.
In these systems, every artefact (e.g. requirement specifications, analysis and design documents,
implementation artefacts, etc.,) is considered as a model. Apart from being numerous, these
artefacts are often large, heterogeneous, interrelated, with a complex internal structure, and
possibly distributed. Furthermore, unlike in traditional development processes, in MDE processes
systems are built by transforming models (from higher to lower abstraction levels). Then, a change
in the upper-level models has a considerable impact in all models derived from it, and requires the
re-execution of one or more transformations to propagate changes until the end of the
transformation chains [Pragm].

Actually, most of the mentioned characteristics are not inherent to MDE itself but rather to the
essential complexity of the domain to be modelled [SilvBul]. However, as any software engineering
approach, MDE inevitably introduces additional complexity, which can be referred to as accidental
complexity. As a consequence, for MDE to scale up efficiently, both the essential and accidental
complexities need to be harnessed.

1.1 GOAL OF THIS DOCUMENT
This document proposes a new strategy based on the Megamodel [GMM] concept, for dealing with
large amounts of models. This strategy facilitates the manipulation of Megamodels and the model
repositories they represent, to perform common modelling tasks. It allows retrieving information
from Megamodels, inspecting models and invoking operations on them, combining models to
produce new ones, and automatically evolve Megamodels by registering the newly produced
models in the repository. The strategy is presented in terms of a Domain Specific Language (DSL)
called MoScript and a supporting metadata platform. Although the supporting metadata platform is
not the focus of this work its desired characteristics will be also described in this document to
provide the global picture of the solution.

Galaxy

D3.2-Megamodel for Transformations Architecture

MoScript – Models Scripting Language

PROJECT: GALAXY
REFERENCE: D3.2
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 6 of 28

2. PROBLEM STATEMENT

Model repositories may contain hundreds or even millions of models. For instance, after a model
driven reverse engineering [MDRE] of a java system; each Java class may have a corresponding
XMI model. So, if the system has several hundreds or millions of classes there will be the same
amount of models. Furthermore, if we consider other kinds of models such as requirements,
analysis, design, architecture models etc., the total amount of models is even higher.

Apart from being numerous, models are usually strongly interrelated. There exist direct
interrelations such as the one between a model and its metamodel or as the one between a
transformation and the metamodels of the models it transforms etc. There are also indirect
relations such as models that weave two or more models, or the transformation that produce target
models from input models.

Models are also usually heterogeneous; they can be stored and handled in different formats and
by different modelling frameworks. They also may model different aspects of a system or different
levels of abstraction. Moreover models can be distributed i.e. they may not reside locally with
respect to the tools that use them.

Because of the mentioned characteristics, organizations that deal with complex systems are facing
today scalability problems while building such systems or using models following the MDE
approach. This scalability problem leads them to build their own “ad-hoc” model management tools
or frameworks while they should be spending their resources designing their systems.

The automation of modelling tasks such as the execution of large amounts of transformations and
the orchestration of their execution have been done until now mostly with scripting or workflow
techniques brought from no MDE approaches, such as Ant1 Scripts, openArchitectureWare2
Workflow, etc. The problem of those techniques is that they do not scale automatically with the
model repositories, i.e. as soon as a new model enters or goes out from the repository, or change
its location scripts and workflows may became outdated. This is because scripts usually have the
models hardcoded in the scripts; in the best case they query the storage system to get the list of
existing models to do their work.

The mentioned problems are being somehow alleviated with the automatic generation of scripts.
However this script generation still requires a certain amount of repetitive work every time a new
script must be generated. This approach is also not very effective in collaborative environments
where several users create, delete or update models frequently. The execution of those scripts is
unsafe and may lead to many inconsistencies without additional verification mechanisms.

Another disadvantage of those approaches is that they do neither hide to the end user, several
unnecessary details inherent to the model driven approach and due to the fact of working with
several different technologies, nor hide the complexity due to that models may be distributed. Each
tool provider has its owns tools or script extensions to process the models and its users must be
completely aware of the location of models and technical details of each tool.

In any case those techniques are neither efficient to navigate model repositories because there is
missing a global view of the model repository, which describes with accuracy how the models are
related and on top of which the scripts or workflows could work.

1 The apache ant project. //ant.apache.org
2 openArchitectureWare. http://www.openarchitectureware.org/

Galaxy

D3.2-Megamodel for Transformations Architecture

MoScript – Models Scripting Language

PROJECT: GALAXY
REFERENCE: D3.2
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 7 of 28

To better illustrate the parts of the problem, we describe next some examples of model
manipulations over large and heterogeneous model repositories, which are difficult and time
consuming to accomplish with current approaches:

• Find a specific kind of model, e.g. models which are not metamodels, metamodels,
transformations, requirement specifications, architecture definitions etc.

• Find the models according to how they are related to each other, e.g., models which
conform to a specific metamodel, transformations that may be applied to a specific model,
etc, models that participate in a transformation chain etc.

• Search for specific models and be able to perform operations with the result of the search,
e.g.:

o Collect metrics from models content, e.g. number of class elements of all the
metamodels, models that have element instances of a specific metamodel element,
number of new elements produced by a transformation etc.

o Execute transformations after finding them, e.g. re-execute all the transformations of
a repository, find the transformation that produce a given set of models and re-
execute them.

o Run verifications to a given set of models.
o Perform comparisons between models
o Match models

• Perform test operations, e.g. select a set of transformations, execute them, and run
verifications to the resulting models or query them to check the obtained results

Galaxy

D3.2-Megamodel for Transformations Architecture

MoScript – Models Scripting Language

PROJECT: GALAXY
REFERENCE: D3.2
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 8 of 28

3. PROPOSED STRATEGY

Locate and work with specific models in a small model repository is a simple task. However in
large and complex systems, it is difficult to find the rights models to work with, to understand how
are they related to other models and therefore, how to correctly apply operations to them, such as
transform, query, match etc.

To facilitate the work with large amounts of models, we need ways to apply operations to large
sets of models without human intervention. This is possible if we manage to know which
operations may be applied to which models and if we are able to automate the application
of these operations without requiring constant human intervention.

3.1 MEGAMODEL

In order to know which operations may be applied to which models, we propose a metadata layer.
It is actually a model that stores the information of each model in the repository, how they are
related to other models, as well as the transformations and other operations that may be applied
on them, and the tools with which it can be carried out.

Such a model is called a Megamodel. The Megamodel is defined as a model, whose elements
represent models and the relations between them, within the scope of a repository or a system.
Since we consider that everything is a model, when we talk about models we are not exclusively
considering XMI3 files. Other kinds of artefacts such as source code, binary files or documentation,
which may be produced from XMI models or vice versa, are considered as well.

Figure 1: The Megamodel and the system it represents

3 XML Metadata Interchange (XMI®) - OMG Formally Released Versions Of XMI -
http://www.omg.org/spec/XMI/index.htm

Galaxy

D3.2-Megamodel for Transformations Architecture

MoScript – Models Scripting Language

PROJECT: GALAXY
REFERENCE: D3.2
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 9 of 28

Having all the information on models stored in the Megamodel, we are able to query it with query
languages such as OCL4, to find e.g. which models conform to a given metamodel, which models a
given transformation can be applied to and so on. Querying the Megamodel is also possible to
follow long chains of transformations and discover which models have been derived from a given
set of models.

Although the information about the models (that may be obtained from a Megamodel) is very
useful for understanding the models repository, and also as a support for taking decisions about
the further works with the models, we require additional mechanisms to benefit from this
information in order to be able to apply operations (e.g. transformations, matching, querying) to the
models obtained as result of a query to the Megamodel.

3.2 MODEL DEREFERENCING

In the field of RDBMS, some database engines have tables that describe what database objects
(e.g. tables, procedures, triggers etc) exist within the database. This is known as the database
catalogue and may contain information such as names, sizes and number of rows in each table,
etc. This information can be used e.g. to find all tables accessible by a user, get a list of stored
procedures, and get information about many other types of objects in a database.

Similarly, as explained before, a Megamodel describes models and can be used not only to find
models by their name, but also by its kind (e.g. metamodel, metametamodel, transformation etc),
by how they are related to others, or any another property provided by the metadata.

RDBMS also enable the users to access the content of tables via SQL queries, for finding tables
with specific inner values, or for the application of generic operations to tables e.g. the different
kinds of joins. This results in powerful data manipulations. These operations can be scripted
because they can be applied generically to all the tables.

Considering a Megamodel, a similar mechanism is not directly provided. We cannot, by querying
the Megamodel with standard query languages like OCL, e.g. find models by iinner characteristics.
We are also not able, as a result of a query to the Megamodel, to apply operations such as
transformatons, matchings, comparisons, extractions etc., to a set of models, even if they conform
to a same metamodel.

This limitation exists due to the inability of standard query languages to access the physical
models described from the metadata stored in a Megamodel. We need mechanisms to
dereference the models pointed at and described by the metadata, and thus be able to apply
operations to them such as query, transform, match etc.

Figure 2 shows the two kinds of relations we find in a Megamodel. On the one hand, we have
Element Reference relations, which in the case of the Megamodel, describe how the models are
related between them. These are references that can be navigated with a query language such as
OCL. On the other hand we have the Model Reference relations, which act as symbolic links to the
models but cannot be navigated using usual query languages. Because of that, is not possible for
instance to select a model from the Megamodel and then query directly inside of it.

4 Object Constraint Language (OCL) - OMG Formally Released Versions Of OCL -
http://www.omg.org/spec/OCL/

Galaxy

D3.2-Megamodel for Transformations Architecture

MoScript – Models Scripting Language

PROJECT: GALAXY
REFERENCE: D3.2
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 10 of 28

Figure 2: Model dereferencing

Thus, as another part of the strategy, we propose the introduction of a model dereferencing
mechanism. If the query language is enabled with this mechanism, it means that after finding an
element, which represents a model reference, the physical model it points to, may be obtained and
operations may be applied to it. Figure 2 shows the kind of navigation it would be possible to do
with a query language having a model dereferencing mechanism.

3.3 TRANSFORMATIONS AS MODELS AND OPERATIONS

In the context of MDE, we consider that all the operations that may be applied on models to
produce other models or artefacts are transformations. For instance the conventional java file
compilation may be seen as a transformation of a java textual syntax model into a java bytecode
model. A comparison between two models may be seen as a transformation of two input models
into a model of differences, etc.

We propose as another part of the strategy, to represent transformations as transformation models
in the Megamodel and to be able to apply them on other models stored in the Megamodel, after
retrieving them. To be able to run transformations, we also propose the association of callable
operations to model elements. In this case the element that represent a transformation will have
associated an operation that may be combined with models to apply transformations on them. As
specific tools must execute transformation definitions, we need to have an association between the
transformation models and the tools as well.

Galaxy

D3.2-Megamodel for Transformations Architecture

MoScript – Models Scripting Language

PROJECT: GALAXY
REFERENCE: D3.2
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 11 of 28

These strategies will greatly facilitate the management of huge repositories of models and
transformations by establishing a homogeneous way to retrieve them and to apply transformations
to models and by hiding de details.

We propose two kinds of operations; operations to transform models, operations to query inside
models and operations to query the properties of the physical models (e.g. their availability, size, if
they have been modified externally or not etc.).

3.3.1 Operations

The operations we propose in this section are side effects free. This means they do not modify the
repository. The manipulation of the artefacts performed with these operations is made “in memory”.

The set of operations we propose correspond to the following structure:

Model_type corresponds a Megamodel element type, which represents the model e.g.
Transformation, Metamodel, Model, etc. The operation corresponds to the operation that may be
invoked in the context of the model element after its retrieval. The operation may receive
arguments, which may also be model elements, and as result return new models or the content of
them.

The following are the set of operations we proposed in order to handle large amounts of models in
a batch-like way.

The invocation of the allContents operation on a Model element dereferences the physical
model it points to and obtains all its elements as a Collection. The model elements obtained in the
collection may be used to reach other model elements. Because the allContents operation may
be expensive, we propose other operations that enable us to filter the elements to be retrieved
from the model.

The operation allContentRoots permits to retrieve only the elements, which are top containers
of other model elements and elements that are not contained by others. From theses elements we
gain access to the rest of elements of the model.

The operation allContentInstancesOf operation retrieves all the contents of the model, which
are instances of the type type_name. The type_name must correspond to a name of a type of
the metamodel the model conforms to.

Model_Type :: operation(arguments) [: Return_Type]

Model :: allContents() : Collection(OclAny)

Model :: allContentRoots() : Collection(OclAny)

Model :: allContentInstancesOf(typeName: String) : Collection(OclAny)

Galaxy

D3.2-Megamodel for Transformations Architecture

MoScript – Models Scripting Language

PROJECT: GALAXY
REFERENCE: D3.2
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 12 of 28

Instead of using the name of the type we may use the instance of the type as well, which should be
selected from the metamodel.

The former operations are useful for querying the model contents. For applying transformations to
models, we propose the following operations.

Transformation :: applyTo(models : Sequence(Model)) : Sequence(Model)

The Transformation element represents any kind of transformation, such as model-to-model
transformations (m2m), model-to-text transformations (m2t) and text-to-model transformations
(t2m). For m2m transformations we propose the applyTo operation.

The applyTo operation is an operation that may be invoked on a Transformation model element.
The applyTo operation receives as argument a sequence (ordered collection) of models to which
the transformation should be applied on. The order of the models in the sequence does not have
any importance unless the transformation receives several models which conform to a same
metamodel. In that case the order of the models in the sequence must match the order and type
(metamodel) of the transformation.

The applyTo operation with a Map as argument applies also a transformation to one or more
models. In this case, its key distinguishes the models one from the other. The models must of
course match with the metamodel type specified by the transformation in the Megamodel.

If the transformation execution fails, a model with the problems encountered during execution is
returned anyway.

The applyTo operation is especially useful when the transformation is in some sense generic.
This means that the transformation may be applied to a broad set of different models, e.g. a
transformation that transforms UML sequence diagrams into UML class diagrams, or class
diagrams into entity relationships diagrams. For these kinds of transformations it is necessary to be
able to easily variate their input models.

There are other transformations, which are very specific. This means they take always the same
models (e.g. same file names) as input and produce the same models (same file names). For this
kind of transformations is not necessary to specify each time which are the models we want the
transformation to transform. Instead of that, we store this configuration in an element called
TransformationRecord. A TransformationRecord knows the transformation and the
models, which it should be applied on. Of course, if we want to change the model we could use the
applyTo operation to do so.

Model :: allContentInstancesOf(type: OclAny) : Collection(OclAny)

Transformation :: applyTo(models : Map(String, Model)) : Map(String, Model)

TransformationRecord :: run()

Galaxy

D3.2-Megamodel for Transformations Architecture

MoScript – Models Scripting Language

PROJECT: GALAXY
REFERENCE: D3.2
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 13 of 28

For these kinds of transformation we propose the run operation. This operation is associated to
the TransformationRecord element. This operation runs the transformation with a set of
predefined models. We can then, for any transformation, retrieve its TransformationRecord (if
it exists) and invoke the run method to rerun it. In fact, a TransformationRecord record is
created each time a transformation is executed storing the configuration of the transformation
execution and the status of the result.

For T2M transformations, we propose the inject operation. This operation enables us to convert
files using concrete textual syntaxes to XMI models. The operation is useful to be then able to
apply m2m transformations to the result of the injection (i.e. a model).

The operation inject receives as parameter an element that represents a file using a concrete
textual syntax and return its corresponding XMI. Of course, the metamodel, which the textual
syntax corresponds to, must exist and must be related to it in the Megamodel. We gave the name
Entity to the elements in the repository that are not models in XMI format.

Finally, we propose the following operation to check if the physical model exists or is available.
Because models may be stored in a file system, a registry or somewhere in the web, and may also
be removed or modified externally, we need a way to check their availability before actually
manipulating them.

The available operation may be invoked on any Entity, which represents an artefact of the
repository. This operation returns “true” if the physical artefact exists or is available. This is one of
the many operations we can define to check the state in the artefacts of the repository.

3.4 REPOSITORY EVOLUTION

Systems change with time, so we need ways to evolve the repository, which contains all their
artefacts, i.e. ways to register, modify and remove artefacts from it. The operations we presented
so far enable us to manipulate existing artefacts and produce new ones, but they do not persist the
changes to the repository. These operations are useful when the manipulation of artefacts is made
for testing purposes, however when we are sure the manipulations of the artefacts will generate
the expected results, we need to persist these changes to evolve the repository.

To this intent, we propose a set of Statements for evolving the repository.

3.4.1 Statements

The first statement is the save instruction statement. After running a transformation or injecting a
file using textual syntax, we obtain a new model. So if we want it to be part of the Megamodel
permanently, we need to serialize and register it in the Megamodel. This is what the save
statement does.

Transformation :: inject(textual_syntax : Entity) : Model

Entity :: available(artefact : Entity) : Boolean

save <Model> to <locator> as <identifier> in <Megamodel>

Galaxy

D3.2-Megamodel for Transformations Architecture

MoScript – Models Scripting Language

PROJECT: GALAXY
REFERENCE: D3.2
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 14 of 28

The save statement takes a Model element as argument, which represents the model we want to
save. The locator is the model URI where the model should be stored. The identifier is a
name which the Model will be unequivocally identified with, within the Megamodel. The
Megamodel argument is a model element that represents the Megamodel, which the model should
be registered in. Note that a Megamodel is a model, so a Megamodel can contain several
megamodels as well as other models.

The remove statement allows removing models from the Megamodel. The identifier is the
name of the Model we want to remove from the Megamodel. The Megamodel argument is a model
element that represents the Megamodel, which we want to remove the model from.

remove <identifier> from <Megamodel>

Galaxy

D3.2-Megamodel for Transformations Architecture

MoScript – Models Scripting Language

PROJECT: GALAXY
REFERENCE: D3.2
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 16 of 28

4. THE MOSCRIPT LANGUAGE

We already talked about a strategy from a user point of view, which intends to cope with the
complexity due to large amounts of models and the complexity introduce by the MDE approach. In
this section, we will show how we could materialize this strategy in terms of a DSL called MoScript
and a concrete architecture for supporting it.

4.1 ARCHITECTURE

MoScript is supported by architecture with several components: A DSL (MoScript), a metadata
engine, the Megamodel, transformations tools, external tools and model repositories. These
components are described in detail below.

Megamodel: As mentioned in section 3.1 the Megamodel describes the models repository.
MoScript uses the Megamodel for being able to query and browse the model repository in a
coherent manner. MoScript uses the Megamodel to know how the artefacts in the repository are
interrelated and what kind of artefacts they are.

Galaxy

D3.2-Megamodel for Transformations Architecture

MoScript – Models Scripting Language

PROJECT: GALAXY
REFERENCE: D3.2
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 17 of 28

Metadata Engine: It provides MoScript a simple and homogenous interface for retrieving and
storing models, for the application of transformations on models, and for models itself. This
component is in charge of:
• Keeping in sync the Megamodel and the models repository when artefacts come in or out from

it.
• Providing models and transformation definitions location transparency.
• Providing modelling frameworks technology transparency (model handlers).
• Providing transformation tools technology transparency.
• Ensuring integrity between the Megamodel and the models in the repository, when artefacts

come in or out from it.
• Protecting models from unauthorized access.
• Indexing models content for fast retrieval
• Providing models with appropriate model handlers to increase the support for scalability, e.g.

small models are retrieved with in memory model handlers, big sized model are retrieved with
lazy model handlers, remote models are retrieved with remote model handlers etc.

MoScript DSL: Is a DSL that facilitates the models manipulation. It uses OCL for browsing
Megamodels and for retrieving the models metadata. MoScript uses the metadata engine for
retrieving physical artefacts, executing transformations and for register new models or removing
existing ones. A detail explanation of MoScript will be given in the next section.

DSLs, Editors and Discoverers: In some cases models may not be derived from other models
e.g when creating a models by hand. In those cases external tools (e.g. DSLs, Editors,
Discoverers etc.) may use MoScript for register or unregister models outiside from MoScript.

Model Repositories represent consistent sets of models, which have a common storage method.
A model repository may be a file system based, a database repository, etc. A repository provides
interfaces for adding, accessing or deleting models from the repository, which are used by the
metadata layer. Most of the model repositories or the models itself are linked to specific model
handlers and cannot work with models in other formats (for instance, Teneo[??], Netbeans
MetaData Repository[??], Adaptive Metadata Manager[??], etc.). Model Repositories may exist
locally with respect to the Metadata Engine or be distributed.

Transformation Tools represent the different transformation tools that may be plugged to the
architecture. These tools may be model-to-model (m2m) transformation tools, model-to-text (m2t),
text-to-model (t2m) or generally any kind of transformation tools. To this intent the Metadata
Engine and the Megamodel are extended to support each transformation tool particularities.
According to the information in the Megamodel, the Metadata Engine uses the appropriate
transformation tool to run the transformations that should be applied to the models and send the
result back to MoScript. Tools for matching, comparing, merging etc., are also considered
transformations tools, because they take models as input and produce new views of them.

The information flow that takes place between the architecture components when performing
models manipulations with MoScript is denoted by the numbers in figure 4.1. (1) Users write,
compile and run a MoScript query or program. (2) MoScript queries the Megamodel for retrieving
the models elements (metadata) which describe the models and relations involved in the process.
(3) MoScript asks the Metadata engine to apply the transformations to the models providing all the
information about them (metadata). (4) MoScript retrieves the models and transformation
definitions (using the information stored in the model elements like location, protocol, access
restrictions etc). (5) The metadata engine applies the transformation to the retrieved models and
(6) registers the new models in the Megamodel if necessary. Finally the metadata engine returns
to MoScript the models or model elements, which constitute the result of the program execution.

Galaxy

D3.2-Megamodel for Transformations Architecture

MoScript – Models Scripting Language

PROJECT: GALAXY
REFERENCE: D3.2
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 18 of 28

4.2 MOSCRIPT ABSTRACT SYNTAX
The abstract syntax represents the syntactic structure of the source code of a language. It is
considered abstract because it does not represent all the details that appear in the syntax of
source code, such as brackets or symbols that delimit blocks of code. Abstract syntax however,
represents the data structure of a language by means of data types (Fowler).

The abstract syntax is divided into two main packages: a OCL package and a MoScript package.
The OCL package contains OCL expressions, which enable the navigation and querying of the
Megamodel. The MoScript package contains language statements for control flow, library
declarations and program sections. MoScript statements make use of OCL expressions to obtain
the data to work with. The complete lists of abstract syntax elements are shown in Figure 3.

Galaxy

D3.2-Megamodel for Transformations Architecture

MoScript – Models Scripting Language

PROJECT: GALAXY
REFERENCE: D3.2
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 19 of 28

 Figure 3: MoScript abstract syntax packages

4.2.1 Program structure

Figure 4: MoScript programs structure

As shown in Figure 4, MoScript provides three kinds of program modules: queries, programs and
libraries.

Query modules use OCL expressions exclusively. With these OCL expressions it is possible to
query the model that describes the model repository (Megamodel) and to call operations on model
elements such as the operations for querying inside models and for applying transformations to
them described (section 3.3.1). Keeping in mind the side effects free philosophy of OCL, a query
cannot modify the model that describes the repository neither the model repository itself. When a
transformation is executed, the resulting models are not persisted and their live end when the
query execution ends. Query modules are useful for testing purposes. Using a query, it is possible
to navigate the Megamodel, apply transformations to models and check the results of the
transformations without modifying the model repository.

Program modules combine OCL expressions with statements. The statements enable MoScript to
modify the model that describes the model repository (Megamodel) and the repository itself. It
allows creating, modifying or deleting elements, which describe the models of the repository and
their interrelationships. It also allows the serialization of newly produced models, the replacement
of existing ones or their deletion from the repository.

Program modules are required to evolve the repository. Once a transformation is executed and the
resulting model has been validated, they should be persisted in the model repository and also
registered in the Megamodel for further use.

Galaxy

D3.2-Megamodel for Transformations Architecture

MoScript – Models Scripting Language

PROJECT: GALAXY
REFERENCE: D3.2
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 20 of 28

Library modules allow us to factorize OCL queries for future reuse. These queries may be grouped
in library modules, which in turn may be imported by query or program modules. These query units
are called Helpers. The kinds of Helper that may be used frequently are, e.g., the queries for
navigating the Megamodel. As model repositories may have a well-defined structure, the ways to
navigate across them may be also well defined. Model repository navigations may be represented
by OCL queries that navigate the Megamodel to retrieve specific kinds models.

4.2.1 Operations

In section 3.3.1, we proposed a set of operations for inspecting models and applying
transformations. As we explained, these operations are related to the model elements of the
Megamodel. Because we use OCL to query the Megamodel, these operations correspond to the
OperationCallExp element of the OCL abstract syntax. As shown in Figure 5, the
OperationCallExp element has a name, arguments and an OclType (inherited from
OclExpression), which corresponds to the type of the result of the expression evaluation. The
figure also shows that the expressions may be composed to produce more complex expressions.

Figure 5 OCL abstract syntax excerpt

4.2.1 Statements

Statements are used exclusively in program modules. We propose statements for control flow,
variable definition and Megamodel evolution, as shown in section Erreur ! Source du renvoi
introuvable.. Statements are executed sequentially and rely on OCL queries to retrieve the data
from the Megamodel and work with them.

The set of statements of the language is shown in figure 3.4.1

Galaxy

D3.2-Megamodel for Transformations Architecture

MoScript – Models Scripting Language

PROJECT: GALAXY
REFERENCE: D3.2
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 21 of 28

Figure 6 MoScript statements

Note that MoScript statements are linked to OCL through the OCLExpression.

4.3 CONCRETE SYNTAX
4.3.1 Program structure

For the purpose of this document, we will give a briefly description of the concrete syntax in terms
of the program modules structure, to give an idea of what the DSL could look like.

As shown in Table 1, a query module must have a name and its result is the result of the
evaluation of an OCL expression.

1
2
3
4
5
6
7
8
9
10
11
12

query query_name = OclExpr;

uses library1
uses library2
…
uses libraryn

helper [context context_type] def : helper_name1(parameters) : return_type = OclExpr;

helper [context context_type] def : helper_name2(parameters) : return_type = OclExpr;
…
helper [context context_type] def : helper_namen(parameters) : return_type = OclExpr;

Table 1 Query module structure

1
2
3
4
5
6
7
8
9

program program_name

uses library1
uses library2
…
uses libraryn

[using {
 variable1 : type = OclExpr;

Galaxy

D3.2-Megamodel for Transformations Architecture

MoScript – Models Scripting Language

PROJECT: GALAXY
REFERENCE: D3.2
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 22 of 28

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

 variable2 : type = OclExpr;
 ...
 variablen : type = OclExpr;
}]

do {
 …
 variablen <− OclExpr;
 …
 save OclExpr to OclExpr as OclExpr in OclExpr;
 …
 remove OclExpr;
 …
 if(OclExpr) {
 …
 save …
 …
 remove …
 }
 else {
 …
 save …
 …
 remove …
 }
 …
 …

 for(variable : OclExpr) {
 …
 save …
 …
 remove …
 }
}

helper [context context_type] def : helper_name1(parameters) : return_type = OclExpr;

helper [context context_type] def : helper_name2(parameters) : return_type = OclExpr;
…
helper [context context_type] def : helper_namen(parameters) : return_type = OclExpr;

Table 2 Program module structure

A program, as shown in Table 2, has two sections, the using and does sections. The using
section is optional, and is used for declaring variables and assigning their initial value. The do
section is mandatory and is the core of the program. In it, the statements with side effects are used
in combination with the control flow statements and OCL queries.

1
2
3
4
5
6
7
8
9
10
11
12

library library_name;

uses library1
uses library2
…
uses libraryn

helper [context context_type] def : helper_name1(parameters) : return_type = OclExpr;

helper [context context_type] def : helper_name2(parameters) : return_type = OclExpr;
…
helper [context context_type] def : helper_namen(parameters) : return_type = OclExpr;

Galaxy

D3.2-Megamodel for Transformations Architecture

MoScript – Models Scripting Language

PROJECT: GALAXY
REFERENCE: D3.2
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 23 of 28

Table 3 Library module structure

A library, as said before, contain helpers and may include other libraries. A Helper may be defined
in the context of an element type of the Megamodel or in the context of the program module. Note
that we took inspiration from ATL for defining the abstract and concrete syntax of MoScript.

Galaxy

D3.2-Megamodel for Transformations Architecture

MoScript – Models Scripting Language

PROJECT: GALAXY
REFERENCE: D3.2
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 24 of 28

5. QUALITY ATTRIBUTES AND CONSIDERATIONS

In this section we present the set of desirable quality attributes, which MoScript and its supporting
platform should have.

5.1 EXTENSIBILITY
One of the main objectives of the global solution is to allow extensibility. The motivation for this is
the current explosion of DSLs for model transformation and other modelling tasks, as well as the
high diversity of tools and model kinds available in the market. Thus, the solution should be design
based on abstractions of them to easily accommodate to its different requirements (e.g. m2m, m2t
and t2m), and integrate them in a consistent and uniform way.

5.2 USABILITY
Although the model manipulations that can be made with the solution are far from being simple,
the corresponding user interface should stay as simple as possible. It must make less complex for
the users to automate specific tasks by using a dedicated focused syntax and a supporting
platform that takes care of e.g. errors recovery, transactions, memory management etc. The use of
a well-known and accepted query language such as OCL as the base of MoScript, is one concrete
strategy for guaranteeing its usability. In any case, for having success in this aspect, it is
fundamental to obtain feedback from several external users.

5.3 PERFORMANCE
Handling large numbers of models implies a performance issue specially if models are also large
and with complex structure. Memory management when working with many models at the same as
well as exhaustive model searches by inspecting them along large and distributed repositories
must be treated with special care. The solution must then include mechanisms such as indexing,
models lazy loading, garbage collection etc., to be able to locate models into acceptable amounts
of time and to avoid enormous memory footprints.

5.4 SECURITY
The platform must ensure models security, especially because it will provide access to several
distributed model repositories. Models must be protected against unauthorized access, use,
disclosure, corruption, modification, or destruction in order to ensure their integrity, confidentiality
and availability. For this purpose, the platform should count with mechanism such as
authentication, authorization and transaction management at both, at the model level and the
model element level.

Galaxy

D3.2-Megamodel for Transformations Architecture

MoScript – Models Scripting Language

PROJECT: GALAXY
REFERENCE: D3.2
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 25 of 28

6. CONCLUSIONS AND RELATED WORKS

We introduced MoScript a DSL that greatly simplifies the manipulation of large quantities of models
(i.e. repositories of software artefacts) based on megamodels. MoScritpt combines both the
declarative and imperative approaches. The declarative part uses OCL to query megamodels and
may execute side effects free operations. The imperative part combines queries and statements
for evolving the megamodel content, i.e. for evolving the corresponding models repositories.
MoScript works on top of a metadata engine, which provides location and technology transparency
of models and model handlers as well as other services such as concurrency handling and security
policies.

This work may be compared with previous works that propose scripting or orchestration workflow
facilities for modelling tasks and with other works that propose platforms for (generic and global)
model management.

On the one hand almost all transformation languages and tools come with a scripting language for
chaining transformations and running these transformation chains in a batch mode. For instance,
ATL [ATL] provides scripting by extending an external build tool (Apache Ant) with specific tasks
for transformation, injection and extraction of models, as a solution mainly targeted for composing
transformations. A similar approach is followed by the Epsilon platform [EPSWF], which also
extends Ant for orchestrating model management operations such as model validation,
transformation, comparison, merging and model-to-text transformations. Epsilon platform include
facilities for transaction management and models disposal. The openArchitectureWare5 Workflow
allows specifying a workflow for chaining m2m and m2t transformations by means of an XML.
RubyTL [RubyTL] a Ruby6 based transformation language, relies on Rake7 for running custom
defined tasks to execute to model-to-model and model-to-code transformations.

We could continue mentioning other several transformation languages that follow the same
approach, but the important point here is, that none of them are model oriented neither take
advantage of a semantic view of the repositories. This implies that: 1) all necessary metadata (e.g.,
source and target metamodels of transformations) must be encoded into the scripts, and 2) there is
not a way to keep track of the evolution of the repositories e.g., newly produced elements, which
are only created as files without attached metadata 3) there is no way to browse the model
repositories consistently, 4) compositions defined in such scripts require the specification of many
details every time that are used that could be avoided if they where predefined.

On the other hand there are the model management platforms. Model Management [MOMGM]
applies operations to models as whole rather than to their individual elements for simplifying the
work with models. In [THGLB] a script is proposed for the declarative combination of specific and
generic model management operations. Rondo [RONDO] a platform for Generic Model
Management supports the execution of model management scripts that are written using high-level
operators. The idea is to provide generic operations such as match, merge, extract and compose
models. Although we use the same philosophy of handling models as a whole, we do not provide
generic operations. Instead we provide a mechanism for new DSLs to provide their own operations
that may be generic or specific to a particular DSL. We also have a fundamental difference, which
is that we work on top of a model that gives semantics to the repository (megamodel) so we have
the possibility to use a query language for first finding models and then apply operations to them.
We also provide means to evolve the system and follow its evolution, characteristics that are not
mentioned in the former approaches.

5 http://www.eclipse.org/modeling/emft/?project=mwe
6 Ruby programming languange: http://www.ruby-lang.org/
7 RAKE – Ruby Make: http://rake.rubyforge.org/

Galaxy

D3.2-Megamodel for Transformations Architecture

MoScript – Models Scripting Language

PROJECT: GALAXY
REFERENCE: D3.2
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 26 of 28

There are other works such as [SRCHMO] and [MOOGLE] which handle large model repository
artefacts. They also use an index as metadata model, which points to each model of the
repository. Those works provide means for finding models by their internal characteristics. They
differ from our approach in that they do not work on top of a model management tool, thus the
results obtained from a model search, cannot be processed or combined with other models. The
results are usually shown as a list of model names, which at most can be downloaded.

Galaxy

D3.2-Megamodel for Transformations Architecture

MoScript – Models Scripting Language

PROJECT: GALAXY
REFERENCE: D3.2
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 27 of 28

7. REFERENCES

[AM3] Allilaire, F., Bézivin, J., Brunelière, H., & Jouault, F. (2006). Global Model Management in
Eclipse GMT/AM3. Procedings of the Eclipse Technology eXchange (eTX) workshop at ECOOP.

[ATL] Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: Atl: A model transformation tool. Science of
Computer Programming 72 (1-2), 31 – 39 (2008), special Issue on Second issue of experimental
software and toolkits.

[EPSWF] Dimitrios S. Kolovos, Richard F. Paige, Fiona A.C. Polack. A Frame- work for Composing
Modular and Interoperable Model Management Tasks. In Proc. Workshop on Model Driven Tool
and Process Integra- tion (MDTPI), ECMDA, Berlin, Germany, June 2008.

[GMM] Bézivin, J., Jouault, F., and Valduriez, P., On the Need for Megamodels. In: Proceedings of
the OOPSLA/GPCE: Best Practices for Model-Driven Software Development workshop, 19 th
Annual ACM Conference on Object-Oriented Programming, Systems, Languages, and
Applications.

[GMMDISCO] Mahé, V., Jouault, F., Brunelière, H.: Megamodeling software platforms: Automated
discovery of usable cartog-raphy from available metadata. In: Proc. Of REM09 (workshop),
Organized in conjunction with WCRE09 (2009).

[GMMPERF] Fritzsche, M., Brunelière, H., Vanhooff, B., Berbers, Y., Jouault, F., Gilani,
W.:Applying megamodelling to model driven performance engineering. In: ECBS ’09: Proc. of the
2009 16th Annual IEEE Int.Conf. and Workshop on the Engineering of Computer Based Systems.
pp. 244–253. IEEE Computer Society, Washington, DC, USA (2009).

[MDRE] Spencer Rugaber, Kurt Stirewalt, "Model-Driven Reverse Engineering," IEEE Software,
pp. 45-53, July/August, 2004

[MOMGM] Melnik, S.: Generic Model Management: Concepts And Algorithms (Lecture Notes in
Computer Science). Springer-Verlag New York, Inc., Secaucus, NJ, USA (2004) 17. Mernik, M.,
Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. 37(4), 316–344 (2005)

[MOOGLE] Lucredio, D., de M. Fortes, R.P., Whittle, J.: Moogle: A model search engine. In: Proc.
of Model Driven Engineering Languages and Systems, 11th Int.Conf., MoDELS 2008. pp. 296–
310. Springer-Verlag (2008)

[MDMCS] Barbero, M., Jouault, F., B ́ezivin, J.: Model driven management of complex systems:
Implementing the macroscopes vision. In: Proc. of ECBS08, IEEE Computer Society (2008)

[OMGXMI] OMG: XML Metadata Interchange (XMI®)

[PRAGM] Selic, B.: The pragmatics of model-driven development. IEEE Softw. 20(5), 19–25
(2003)

[RONDO] Melnik, S., Rahm, E, Bernstein, P.A: Rondo: A Programming Platform for Generic
Model Management, ACM SIGMOD Int. Conf., San Diego, Ca, 2003.

[RubyTL] Rensink Arend, Warmer Jos, Cuadrado Jesús, Molina Jesús, Tortosa, Marcos. RubyTL:
A Practical, Extensible Transformation Language. Model Driven Architecture – Foundations and
Applications. Lecture Notes in Computer Science 2006. Springer Berlin / Heidelberg

Galaxy

D3.2-Megamodel for Transformations Architecture

MoScript – Models Scripting Language

PROJECT: GALAXY
REFERENCE: D3.2
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 25/02/2010

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 28 of 28

[SILVBUL] Brooks, F.P.: No silver bullet: Essence and accidents of software engineering. In:
Proc. of the IFIP Tenth World Computing Conf. p. 10691076 (1986)

[SRCHMO] Bozzon, A., Brambilla, M., Fraternali, P.: Searching repositories of web applica-
tion models (to appear). In: Web Engineering, 10th Int.Conf., ICWE 2010 Proc.

[THGLB] Reiter, T., Altmanninger, K., Retschitzegger, W.: Think global, act local: imple- menting
model management with domain-specific integration languages. In: MoDELS’06: Proc. of the 2003
international conference on Models in software engineer- ing. pp. 263–276. Springer-Verlag,
Berlin, Heidelberg (2007)

[UniTI] Vanhooff, B., Ayed, D., Van Baelen, S., Joosen, W., Berbers, Y.: UniTI: A Unified
Transformation Infrastructure. In: En-gels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS
2007. LNCS, vol. 4735, pp. 31–45. Springer, Heidelberg (2007)

