

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 1 of 17

D4.5.2-Megamodel for Transformations prototype

MoScript – Models Scripting Language

NAME PARTNER DATE

WRITTEN BY KLING W. ATLANMOD 28/11/2011

REVIEWED BY BERNARD Y. Airbus

Galaxy

D4.5.2-Megamodel for Transformations prototype

MoScript – Models Scripting Language

PROJECT: GALAXY
REFERENCE: D4.5.2
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 28//10/2011

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 2 of 17

RECORD OF REVISIONS
ISSUE DATE EFFECT ON REASONS FOR REVISION

PAGE PARA

1.0 28/10/2011 Document creation

Galaxy

D4.5.2-Megamodel for Transformations prototype

MoScript – Models Scripting Language

PROJECT: GALAXY
REFERENCE: D4.5.2
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 28//10/2011

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 3 of 17

TABLE OF CONTENTS

1.	
 INTRODUCTION 5	

2.	
 INSTALLATION PROCESS 6	

3.	
 PROTOTYPE ARCHITECTURE 7	

3.1	
 PLUG-INS 7	

4.	
 MOSCRIPT LANGUAGE 9	

4.1	
 LANGUAGE GENERAL STRUCTURE 9	

4.2	
 MODEL ELEMENT DATA TYPE 9	

4.3	
 OPERATIONS 10	

4.4	
 EXAMPLES 12	

4.4.1	
 MoScript Hello World! 12	

Galaxy

D4.5.2-Megamodel for Transformations prototype

MoScript – Models Scripting Language

PROJECT: GALAXY
REFERENCE: D4.5.2
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 28//10/2011

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 4 of 17

TABLE OF APPLICABLE DOCUMENTS
N° TITLE REFERENCE ISSUE DATE SOURCE

SIGLUM NAME

A1
A2
A3
A4

TABLE OF REFERENCED DOCUMENTS
N° TITLE REFERENCE ISSUE

R1 D1.2.2 Galaxy glossary
R2 D3.2 Megamodel for Transformations Architecture
R3
R4

ACRONYMS AND DEFINITIONS

Except if explicitly stated otherwise the definition of all terms and acronyms provided in [R1] is
applicable in this document. If any, additional and/or specific definitions applicable only in this
document are listed in the two tables below.

Acronymes
ACRONYM DESCRIPTION

Definitions
TERMS DESCRIPTION

Galaxy

D4.5.2-Megamodel for Transformations prototype

MoScript – Models Scripting Language

PROJECT: GALAXY
REFERENCE: D4.5.2
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 28//10/2011

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 5 of 17

1. INTRODUCTION
Along the Galaxy project extensive research was carried out centred on the scalability problem
when using large numbers, big sized and heterogeneous models with complex interrelations, and
on how to best provide solutions to it. The results of this research work have been described in
D.3.1.2 in terms of a Domain Specific Language architecture called MoScript. As a next step, this
architecture has been materialized in a prototype, which serves as proof of concept for the
research and whose description is the main purpose of this document.

The developed prototype has been conceived as a complement for the AtlanMod MegaModel
Management (AM3) prototype, which is part of the Modisco MDT project and has been committed
to eclipse.

This document describes the MoScript prototype. It explains the role the different plug-ins play in
the language, its installation process and describes the concrete syntax of the language.

Galaxy

D4.5.2-Megamodel for Transformations prototype

MoScript – Models Scripting Language

PROJECT: GALAXY
REFERENCE: D4.5.2
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 28//10/2011

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 6 of 17

2. INSTALLATION PROCESS

The MoScript prototype is available from the Eclipse-MDT MoDisco SVN 1(sources only). The
steps to install MoScript are the following:

• Download the Eclipse Modeling Tools from here: Eclipse Modeling Tools (Indigo)
• Install ATL from sources:

o Download the ATL source code project set file (.psf) from here [1].
o Import it into Eclipse with File->Import->Team->Team Project Set.
o Download the MoScript patch for ATL from Bugzilla – Bug 361688.
o Click right click on any ATL plugin project and select Team->Apply Patch ... and

select the patch to apply it to ATL.
• Install subclipse and subversion if you have not done it yet.
• Install AM3 and MoScript from sources:

o Open the SVN perspective by selecting Window -> Open Perspective-> SVN
Repository Exploring perspective.

o Add a new repository location by selecting File->New->Repository Location. The
required parameters are the followings:

§ Url:
https://dev.eclipse.org/svnroot/modeling/org.eclipse.mdt.modisco/incubation/
trunk/am3

§ User: anonymous
o Browse the just created repository location until /plugins/trunk and checkout all the

plugins

1 http://www.eclipse.org/downloads/packages/eclipse-modeling-tools/indigosr1

Galaxy

D4.5.2-Megamodel for Transformations prototype

MoScript – Models Scripting Language

PROJECT: GALAXY
REFERENCE: D4.5.2
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 28//10/2011

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 7 of 17

3. PROTOTYPE ARCHITECTURE

This section presents the concrete architecture of the prototype. It describes the internal structure
of the prototype in terms of plug-ins, details its core metamodel and explains the extension
mechanism provided. As mentioned in deliverable D3.2 (Megamodel for Transformations
Architecture), MoScript depends on AM3 and ATL eclipse plugins as shown in Figure 1.

Figure 1 MoScript dependencies

3.1 PLUG-INS

As an Eclipse component, the prototype is implemented by a set of Eclipse plugins, each of them
having a specific role. Erreur ! Source du renvoi introuvable. shows the MoScript components
and their dependencies.

• org.eclipse.am3.common: Contains the MoScript abstract syntax in the form of an Ecore

metamodel and provides means for retrieving the resource.
• org.eclipse.am3.moscript.engine: Contains the MoScript to ATL binary code compiler.
• org.eclipse.am3.moscript.dsls: Contains the MoScript parser and lexer classes
• org.eclipse.am3.moscript.core.emf: Contains the EMF factory for instantiating the

MoScript EMF based engine.
• org.eclipse.am3.moscript.ui: Contains the classes related with MoScript project creation

wizard, nature and builder.
• org.eclipse.am3.moscript.launch: Contains the classes related to the launcher of

MoScript scripts.
• org.eclipse.am3.moscript.atl.ext: Contains the classes which extend the ATL OCL

engine with custom side effects free operations.

Galaxy

D4.5.2-Megamodel for Transformations prototype

MoScript – Models Scripting Language

PROJECT: GALAXY
REFERENCE: D4.5.2
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 28//10/2011

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 8 of 17

Galaxy

D4.5.2-Megamodel for Transformations prototype

MoScript – Models Scripting Language

PROJECT: GALAXY
REFERENCE: D4.5.2
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 28//10/2011

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 9 of 17

4. MOSCRIPT LANGUAGE

MoScript reuses a big part of the ATL syntax and semantics such as the OCL
expressions and data types, the control flow statements and the helpers. Any doubt about
MoScript may be usually solved imitating the ATL syntax. MoScript syntax specifics will be
explained next.

4.1 LANGUAGE GENERAL STRUCTURE

A MoScript program has the following general structure:

program program_name

uses library ...

[using {
 -- Comments
 ...
 -- Variable declarations
 variable :type = OclExpr ...
}]

do {
 -- Value assignements
 variable <− OclExpr;

 -- Operations invocations
 ... save(...);
 ... remove(OclExpr);
 ... register (...);

 -- Control flow statements
 if...
 for...
}

helper context OclAny def: helper_name(params) :return_type
 ...

;

The using section is optional, and is used for declaring variables and assigning their initial value.
The do section is mandatory and is the core of the program. In it, operations are used in
combination with control flow statements and OCL queries to perform modelling artefacts
manipulations.

4.2 MODEL ELEMENT DATA TYPE

The OCL specification introduces de model element data type. This type corresponds to the
classes contained in the metamodel of the model is being queried. In the case of MoScript, the
model which is being queried, is a megamodel, so the model elements allowed in MoScript

Galaxy

D4.5.2-Megamodel for Transformations prototype

MoScript – Models Scripting Language

PROJECT: GALAXY
REFERENCE: D4.5.2
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 28//10/2011

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 10 of 17

correspond to classes of the metamodel of the megamodel. MoScript uses the implementation of
the megamodel provided by AM3 which conforms to the following metamodels among others:

• AM3Core: Is the top hierachy metamodel and can be found
in /org.eclipse.gmt.am3.platform.runtime.core/model/AM3Core.ecore

• GMM: Which extends AM3Core and can be found
in/org.eclipse.gmt.am3.platform.extension.globalmodelmanagement/model/GlobalModelMa
nagement.ecore

• GMM4ATL: A megamodel extension specific for ATL M2M transformations, which extends
AM3Core and GMM and can be found
in/org.eclipse.gmt.am3.platform.extension.gmm4atl/model/GMM4ATL.ecore

Model element variables are referred to by means of the notation !Class. For
instance, !Model, !TerminalModel, !ATLTransformation etc.

4.3 OPERATIONS

Model :: allContentInstancesOf(elementType :String): Collection(OclAny)

This operation dereferences and load the physical model represented by the Model element. Then
it queries the model and return a collection of OCL elements of type elementType. The elements
of the resulting collection are used as entry points to the model, from where the rest of the
elements may be reached. Subsequent queries to the model content are made with standard OCL
expressions.

Model :: inject(injectorName: String, modelElement: TupleType(...)) : Model

This operation make a projection of model expressed in a textual syntax to a model in XMI
conforming to a given metamodel. injectorName is the name of the injector that is going to be
used to make the projection of the model and modelElement represents the metadata information
that will describe the new model. The structure of the tuple is explained along with the register
operation.

Model :: save(location :String)

This operation stores the model in location

ATLTransformation :: applyTo(Map{(key :String, model :Model),
 ...,(..., ...)}) :Map(key :String, model :Model)

This operation applies the a transformation to one or more models. The key is the alias of that
identifies the model inside an ATL transformation module and model is a model obtained from the
megamodel.

Galaxy

D4.5.2-Megamodel for Transformations prototype

MoScript – Models Scripting Language

PROJECT: GALAXY
REFERENCE: D4.5.2
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 28//10/2011

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 11 of 17

register(TupleType(concreteType :String, value :Set(TupleType(...))))

This operation does the registration of a model in the megamodel i.e. it creates a new element in
the megamodel of type concreteType where:

• concreteType: Is a string with the concrete type of the model element to be created. The
string must be in the form ofPackage::ConcreteType. For instance
GlobalModelManagement::URI, GlobalModelManagement::ReferenceModel etc.

• value: Corresponds to a set of attributes and references of the model element, each of
them described again by a tuple as follows:

•
o Attribute tuple:

TupleType(attributeName :String, primitiveType :String, attributeValue :String)

o Reference tuple:

TupleType(creationId :String, referenceName :String, concreteType :String,
 referenceValue :Set(TupleType(...)))

TupleType(referenceName: String, concreteType :String, creationId: String)

There are two ways for declaring reference tuples. The first one creates the element
to be referenced and then references it, the second one asumes that the elements
have been already created (in the same register operation), thus it uses
the creationId of the element to be referenced to find it and reference it.

The creationId is just a kind name that must be given to a model element instance
when it is created, if we want it to be referenced by another élément in the same
register operation. Otherwise it is not mandatory.

Note that the Tuples are used as a recursive way of expressing the creation of model elements,
the model elements referenced by this elements and so on, and also the attributes contained in
each model element.

IdentifiedElement :: remove()

This operation allows removing any megamodel element, which extends from the
Core::IdentifiedElement element.

ReferenceModel :: registerInEMFpkgReg()

Galaxy

D4.5.2-Megamodel for Transformations prototype

MoScript – Models Scripting Language

PROJECT: GALAXY
REFERENCE: D4.5.2
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 28//10/2011

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 12 of 17

This operation registers the reference model in the EMF packages registry

collectWrkSpaceFileNames() :Collection(String)

The collectWrkSpaceFileNames operation queries the eclipse workspace to get all the workspace
filenames.

4.4 EXAMPLES

The followings are a set of examples that demonstrate the use of some of the operations. Select all
the models in the megamodel, get the first one and get a collection of all its elements of type
EClass.

!Model.allInstances()->first().allContentInstancesOf('EClass');

Select all the models in the megamodel, get the first one and remove it from the megamodel.

!Model.allInstances()->first().remove();

Select the models in textual syntax, which conform to a given xmlRefernceModel (grammar), get
the first one and then inject it with the XML injector to obtain an XML model in XMI format
conforming to an XML metamodel. The xmlEcoreModelTuple contains the metadata information
for the creation of the new model element like, identifier, locator, referenceModel etc.

xml <- !TerminalModel.allInstances()->select(m | m.conformsTo = xmlReferenceModel)
 ->first();

xmlModel <- xml.inject('XML', xmlEcoreModelTuple);

4.4.1 MoScript Hello World!

Create a new MoScript project by clicking on File-> New-> Project and selecting the MoScript
project type under the AM3 Folder.

Galaxy

D4.5.2-Megamodel for Transformations prototype

MoScript – Models Scripting Language

PROJECT: GALAXY
REFERENCE: D4.5.2
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 28//10/2011

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 13 of 17

Then create a MoScript script by clicking in File-> New-> File. Give it the name helloWorld.mscr.
When the file is open, fill it with the following script code:

program helloWorld

do{
 'HelloWorld'.debug();

}

After saving the file, if there are no errors, you should see a new binary file called helloWorld.asm
in the project explorer or navigator.

Now that the code is ready, create a MoScript launcher to run the script, by clicking in

Run-> Run Configurations...

Galaxy

D4.5.2-Megamodel for Transformations prototype

MoScript – Models Scripting Language

PROJECT: GALAXY
REFERENCE: D4.5.2
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 28//10/2011

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 14 of 17

Browse in the workspace for the HelloWorld.mscr file and select it. Then, in the advanced tab,
check the options Clear console before launch and Print execution times to console, so that you
can clearly see when de script finishes.

Galaxy

D4.5.2-Megamodel for Transformations prototype

MoScript – Models Scripting Language

PROJECT: GALAXY
REFERENCE: D4.5.2
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 28//10/2011

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 15 of 17

Then press the Apply button and the Run button. In the console window you will see an error like
the following:

Error loading file:...workspacePath/.am3/megamodel.xmi: java.io.FileNotFoundException:
... (No such file or directory)

This is because the megamodel file has not been created yet. For creating the megamodel file,
open the AM3 Perspective.

Galaxy

D4.5.2-Megamodel for Transformations prototype

MoScript – Models Scripting Language

PROJECT: GALAXY
REFERENCE: D4.5.2
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 28//10/2011

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 16 of 17

Create any model element in the megamodel left clicking in any element in the left panel, selecting
new [element]. Give any value to the element and then use File->Save option to save the
Megamodel. With this operation the Megamodel file is created in the filesystem.

Now try again to run the script by clicking on Run->Run History->Hello World and you should see
the output in the console.

Galaxy

D4.5.2-Megamodel for Transformations prototype

MoScript – Models Scripting Language

PROJECT: GALAXY
REFERENCE: D4.5.2
ISSUE: 1.0 Draft1

ARPEGE 2009

DATE: 28//10/2011

©Galaxy consortium, 2010. ALL RIGHTS RESERVED. CONFIDENTIAL AND PROPRIETARY DOCUMENT.

Page 17 of 17

