
Project no. 609551
Project acronym: SyncFree
Project title: Large-scale computation without synchronisation

European Seventh Framework Program

ICT call 10

Deliverable reference number and title: D.2.1
CRDTs at the server side

Due date of deliverable: October 1, 2014
Actual submission date: November 17, 2014

Start date of project: October 1, 2013
Duration: 36 months
Name and organisation of lead editor
for this deliverable: Technische Universität Kaiserslautern
Revision: 0.1
Dissemination level: CO

SyncFree Deliverable D.2.1(v0.1), November 17, 2014

CONTENTS

Contents
1 Executive summary 1

2 Milestones in the Deliverable 3

3 Contractors contributing to the Deliverable 4
3.1 KL . 4
3.2 INRIA . 4
3.3 Louvain . 4
3.4 Nova . 4
3.5 Basho . 4
3.6 Trifork . 4

4 Making Operation-based CRDTs Operation-based 5

5 Antidote 7
5.1 System setting . 8
5.2 Log Layer . 8
5.3 Materializer Layer . 10
5.4 Transaction Layer . 11

5.4.1 Causally Consistent Transactions 12
5.5 Implementation . 16

5.5.1 Setting up Antidote . 18
5.6 Summary and Outlook . 20

6 Write Fast, Read in the Past- Causal Consistency for Client-side
Applications 21
6.1 Fault-tolerant session and durability 22
6.2 Implementation and experimental evaluation 24

7 Adaptive replication 25
7.1 Algorithm . 25
7.2 Comparison of replication schemes 33
7.3 Summary . 35

8 Outlook for WP2 36

9 Papers and publications 38

A Making Operation-based CRDTs Operation-based 44

B Write Fast, Read in the Past- Causal Consistency for Client-side
Applications 60

C Antidote API 75
C.1 Logging Layer . 75
C.2 Transactions . 76

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 2

1 EXECUTIVE SUMMARY

1 Executive summary
The SyncFree project aims to enable large-scale distributed applications in geo-
replicated settings. To this end, we rely on replicated yet consistent data types
(CRDTs), which allow information dissemination and sharing without the need for
global synchronization.

Within in the project, Work Package 2 (WP2) develops the core protocols and
algorithms for CRDT data stores in different topologies. The focus of the first year
of the project is architectures with replication at the server side. This scenario
assumes a small number of replicas, a mostly-static topology, rare failures, and
powerful servers.

The following paragraphs provide a short summary of our achievements in the
first year. Detailed information is given in the subsequent chapters of this report.

Making operation-based CRDTs operation-based Conflict-free replicated
data types (CRDTs) are the core concept of the SyncFree project. They can be
classified as being either state-based or operation-based. Replicas of state-based
CRDTs can be merged into a version where all updates performed against either
replica are reflected. For operation-based CRDTs, only the updates are propa-
gated and re-applied against the other replica. This reduces the bandwidth con-
siderably, but requires the communication middleware to provide a reliable causal
broadcast. Extending the foundational work of Shapiro et al. on CRDTs [40, 39],
we improved on the operation-based CRDT design by reducing the complexity and
meta-data involved. This work inspired us to build our research platform, Antidote,
on operation-based CRDTS in contrast to state-of-the-art geo-replicated datastores
such as Riak [13]. Details can be found in Section 4 and Appendix A.

Antidote In a collaboration involving most of the SyncFree academic partners
and one industry partner, we developed our common experimental platform which
provides the means for evaluating further research ideas and integrates results from
all other WPs. Antidote is a geo-replicated CRDT data store which features scal-
able, conflict-free implementations of transactions, by providing consistent, stable
snapshots and atomic multi-CRDT updates. Each data centre fully replicates the
CRDT store using a static partitioning scheme. Updates are propagated as oper-
ations in a causally-consistent order on transactions, thus requiring a lower band-
width than state-of-the-art architectures. Transactions with Causal Consistency+
semantics support the programmer in keeping data views consistent, while requiring
no global synchronization. We introduce Antidote in detail in Section 5.

Adaptive replication Next, we have developed an algorithm for Adaptive Repli-
cation, together with tools to analyze and visualize Adaptive Replication. With the
increasing growth of data that is accumulated and transferred to DCs for high
accessibility and scalability, full replication for all data items becomes unfeasible
eventually. The goal is therefore to find some replication distribution such that
replicas reside in DCs close to users while reducing the network traffic and space
requirements for keeping replicas up-to-date and highly accessible. The basic idea
is that accessing data items through reads and writes affects the likelihood with

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 1

1 EXECUTIVE SUMMARY

which the data will be replicated in a particular DC. To test a specific strategy,
we provide a simulation tool to trace the paths of a data item. The tool visualizes
how the shared object travels and replicates between the DCs under different con-
figurations. More on adaptive replication can be found in Section 7, details on the
simulation tool are available in the WP5 report.

SwiftCloud As a first contribution for supporting CRDTs at points-of-presence,
we continued to develop and engineer our background platform, SwiftCloud. The
objective of this work is to enable fault-tolerance and scalability by replicating data
objects to clients. We developed protocols using full replication at server side and
partial replication / sharding at client side. Our major contribution is the design for
small and bounded meta-data and associated protocols to ensure scalability up to
thousands of clients. Techniques such as object checkpoints and log pruning control
the size of the object store. Access to locally cached objects reduces latency to a few
milliseconds. Retrieving objects from a DC takes one round trip time in the normal
case. In case of network partitions or DC failure, clients can re-connect safely to
another DC while retaining a consistent data view. These advantages come at a low
and adaptable cost in form of data staleness. A submitted article on SwiftCloud is
provided in Section 6.

The results that we obtained from our work on SwiftCloud will be fed back into
the development of our common experimental platform Antidote. In particular, the
experiences on rendering a distributed data store faul-tolerant has inspired already
some planned adaptations to Antidote’s initial design (e.g. log layer and transaction
management).

Link with other WPs The requirements for the initial version of the Antidote
platform are taken from uses cases described in WP1. To validate the design de-
cisions taken, we implemented the wallet application. This app will be used for
starting extensive and comparative performance analysis in WP5.

The transaction algorithm for our experimental platform are building on our
experience with transactions in SwiftCloud. They were developed in cooperation
with WP3.

In addition to the development of algorithms and protocols, WP2 is also laying
the foundation for integration of protocols and techniques from WP3 and WP4, as
well as testing and profiling of the platforms to provide integration with WP5. The
integration with other WPs will intensify in the coming months as the component
reach maturity. For example, WP2 is working on integrating the Derflow program-
ming model developed in WP4 as well as the bounded counter CRDTs and CRDT
optimizations from WP3.

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 2

2 MILESTONES IN THE DELIVERABLE

2 Milestones in the Deliverable
WP2.1 has reached the following milestone:

Mil. no Mil. name Date due Actual date
MS1 CRDT consolidation in a static envi-

ronment
M12 M12

The corresponding tasks are:

Task no Task name Date due Actual date Lead contractor
D.2.1.1 Protocols for

CRDTs in small-
scale full replica-
tion

M6 M12 KL

D.2.1.2 Platform for
CRDTs in small-
scale full replica-
tion

M6 M12 KL

Shifting of milestones Several of the main developers on WP2 could only be
recruited and employed in February 2014, accounting to the delay of several months.
To allow for integration of tools and libraries provided by the industry partners
(e.g. riak_core, riak_bench, Quickcheck), we chose Erlang with its Open Telecom
Platform (OTP) as programming language and development platform. This led
to another delay of some weeks as the developers were not familiar with Erlang
initially. Thus, the design and development of Antidote has started effectively in
March/April 2014. All milestones for WP2 have therefore been moved by 6 months.
The executive board approved of this adjustment of the milestone dates.

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 3

3 CONTRACTORS CONTRIBUTING TO THE DELIVERABLE

3 Contractors contributing to the Deliverable
The following contractors contributed to the deliverables

3.1 KL

Annette Bieniusa, Deepthi Akkoorath.

3.2 INRIA

Alejandro Tomsic, Tyler Crain, Marc Shapiro.

3.3 Louvain

Manuel Bravo (together with WP4), Zhongmiao Li (together with WP4).

3.4 Nova

Valter Balegas (together with WP3), Nuno Preguica (together with WP3), Carlos
Baquero (together with WP3).

3.5 Basho

Christopher Meiklejohn (together with WP4 and WP5).

3.6 Trifork

Amadeo Ascó (together with WP1).

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 4

4 MAKING OPERATION-BASED CRDTS OPERATION-BASED

4 Making Operation-based CRDTs Operation-based

In distributed databases, data replication can improve system performance and
fault tolerance, but also impact the exposed level of data consistency. Offering
the users the impression of an always-available single consistent copy is not easy in
the presence of partitions among the replicas. As partitions, communication failures
and topology changes are deemed to occur in all but the smallest systems, and since
losing availability is normally not an option, developers have successfully explored
relaxed consistency models [13], such as eventual consistency [46, 5].

In eventually consistent systems, data replicas are allowed to diverge; however,
this divergence can be tracked so that, eventually, replicas can be reconciled into
a common consistent state. In particular, causal consistency makes sure that each
replica has access to all the operations that have influenced the state in the replica
where an operation was first applied, before applying it locally.

Crafting, by hand, correct merge functions that can reconcile divergent replicas
is costly and error prone, and errors can compromise eventual consistency. Merge
functions depend on the particular semantics of the concrete datatype the replica is
storing. For instance, in a replicated counter that is subject to increment operations,
the objective of the merge would be to account for all distinct increment operations
known to the replicas being merged. Conflict-free replicated datatypes (CRDTs)
[39, 40] offer a model for designing correct replicated datatypes that are always-
available and are guaranteed to eventually converge once all operations are known
to all replicas.

CRDTs have two complementary designs:

• Operation-based CRDTs ship each received operation to all replicas, typically
via reliable causal broadcast to ensure causal consistency. Replicas converge
as long as causal dependencies are respected and the effects of concurrent
operations are designed to be commutative, even if the operations are not
commutative themselves.

• State-based CRDTs ship full state payloads, resulting from applying opera-
tions to a local replica state, and have a commutative, associative, and idem-
potent merge function that deterministically reconciles any two replica states.
In mathematical terms, the merge in state-based CRDTs defines a least upper
bound over a join-semilattice.

There is a trade-off between the above two approaches. Operation-based CRDTs
can allow for simpler implementations and a simpler replica state, while requir-
ing more guarantees from the message dissemination layer, namely, reliable causal
broadcast. In contrast, state-based CRDTs require more complex states, i.e., stor-
ing more meta-data; however, they support ad-hoc dissemination of states, and can
handle duplicate and out-of-order delivery of state payloads once merged at the
destination replicas, without breaking causal consistency.

The current definition of operation-based CRDTs is very relaxed and allows for
implementations that send extra information beyond to what is needed to identify
an operation, e.g., sending sets of unique element identifiers when propagating a re-
move operation in an observed-removed set. This, makes it confusing to distinguish

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 5

4 MAKING OPERATION-BASED CRDTS OPERATION-BASED

the difference between the two models, and imposes a notable source of inefficiency
induced by this additional information.

In our work on operation-based CRDTs, we improve the current model of
operation-based CRDTs by leveraging the causal meta-data already present in most
reliable causal delivery broadcast protocols. The resulting model allows the ex-
change of small messages (only operation name and arguments) and a very compact
state at the replicas. We call these CRDTs pure operation-based.

Example The observed-remove set (OR-set) is a set CRDT supporting both in-
sertion and removal of elements. An element can only be removed if it had been
observed at the respective node. The standard op-based implementation would look
like this:

prepare i([add, v], (n, s)) = [add, v, i, n+ 1]

effect i([add, v, i
′, n′], (n, s)) = (n′ if i = i′ otherwise n, s ∪ {(v, i′, n′)})

prepare i[rmv, v], (n, s)) = [rmv, {(v′, i′, n′) ∈ s|v′ = v}]
effect i([rmv, r], (n, s)) = (n, s\r)

eval(rd, (n, s)) = {v|(v, i′, n′) ∈ s}

Every update is split into two distinct operations. The prepare builds the mes-
sage that is to be delivered to all replicas, whereas the effect actually applies the
update based on the information gathered by prepare. For the OR-Set, the object
state local to node i is represented as tuple of an operation counter n and value
set s. The add operation prepares in addition to the value v to be added, a unique
identifier (i, n + 1). When applying the effect, the counter is at the origin node
increment, and the value is added to the set together with the unique identifier.
When removing a value, the prepare collects all corresponding values in the set as
concurrent adds can lead to duplicates. Finally, when evaluating the current value
of the set, all meta-data (i.e. the unique identifiers) are stripped from the value set.

The pure op-based specification of the OR-set is considerably simpler:

prepare(o, s) = o with o either [add, v] or [rmv, v])}
effect(o, t, s) = s ∪ {(t, o)}

eval(rd, s) = {v|(t, [add, v]) ∈ s ∧ @(t′, [rmv, v]) ∈ s · t < t′}

The object state is reduced to the value set, the prepare does not need to inspect the
state of the object. However, the sender node generates a vector clock timestamp
t to be delivered with the message. To fulfill the OR-set specification, the CRDT
replica is represented as a partially ordered log of operations using the timestamp as
index to the log. This gives a simple way of tracking causality between operations
while reducing the meta-data involved. When evaluating the current value, data-
type specific interpretations are applied as shown here for the OR-Set.

This work was presented at PaPEC in April 2014 and has been published in
the proceedings of DAIS’14 [6]. The design of our experimental platform Antidote,
as described in the next section, will soon apply the techniques of pure op-based
CRDTs in one of its core components, namely the materializer cache (see Section
8).

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 6

5 ANTIDOTE

5 Antidote

Distributed computing infrastructure is offered today by cloud services in data
centres all around the world. Geo-scale applications and their underlying data stores
can benefit from this infrastructure as it can reduce latency and availability when
interacting with clients. To this end, these data stores rely heavily on replication
of data, both within a data centre to tolerate server faults and to perform load
balancing and load adaption, as well as across data centres to decrease latency
and to increase reliability. As theoretical results and practical experience show,
data replication in such a setting must aim for weaker notions of consistency than
provided by classical strong synchronization schemes [14, 20, 38].

Conflict-free replicated data types (CRDTs) provide a principled approach to
shared, mutable and replicated data under Eventual Consistency. An update can
execute immediately, irrespective of network latency, faults, or disconnection at the
local DC, and are then propagated to and replayed at the other DCs.

Though CRDTs relieve the programmer from constructing error-prone ad-hoc
reconciliation solutions, they are not enough to guarantee application correctness.
Usually, only updates to the same CRDT are observed in a causally consistent way
by the client as there are no cross-object guarantees given.

In a joint effort involving KL, INRIA, UCL, Nova and Basho, we developed a
common experimental platform targeting CRDT support at the server side with a
small number of replicas in a controllable, confined, and stable execution environ-
ment such as a cloud. Antidote is a geo-replicated CRDT data store which features
scalable, conflict-free implementations of transactions, by providing consistent, sta-
ble snapshots and atomic multi-CRDT updates. This type of transaction guarantees
Causal Consistency+ semantics and follows herein other eventual consistent object
stores.

Antidote is focusing on the following design objectives:

Low latency: Geo-replicating data on DC and replicating services within a DC,
while caching objects and operations, reduces latency for read and write re-
quests.

High scalability: Only carefully engineered protocols that rely on meta-data scal-
ing with the number of DC as well as connected clients can provide scalable
data stores. Further, mechanisms for garbage collection must be integrated
to have systems running reliably over a long time.

High availability and fault-tolerance: Even when failures of machines or infra-
structure occur, the system must be available and operate correctly. Fir exam-
ple, updates should never be lost when a server crashes. Employing replication
within DCs and making updates durable prevents this kind of information loss.

Robustness and safety: No internal information about the system’s consistency
mechanism is leaked to the client. Type checking and other safety mechanisms
prevent the system from client-induced, unintended faults.

High-level programming abstractions: Programmers can use data types such

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 7

5 ANTIDOTE

as counters, sets, or maps. Causal Consistency and transactions help in rea-
soning about program invariants and data evolution.

Extensibility and adaptability: As a research platform, Antidote will continu-
ally evolve and must thus be extensible, adaptable and easily configurable.

The main rationale behind these design decisions is that the protocols and algo-
rithms underlying Antidote need to be applicable in actual software systems under
real-world conditions.

One of the design goals of Antidote is to have a layered architecture that enforces
a clear separation of concerns, thus allowing to experiment with different approaches
for specific tasks. For instance, the Transaction Layer is in charge of implementing
protocols for retrieval and commit of objects and their update in accordance to the
transaction semantics required.

The code for Antidote is available at

http://github.com/SyncFree/antidote,

including test cases, example applications and benchmarks. The repository also pro-
vides a detailed description for the installation process and software dependencies
(see also Section 5.5.1). In Appendix C, the interfaces for the different components
of Antidote’s reference implementation is listed for documentation purpose.

Figure 1 shows the layered architecture of Antidote. In the following sections,
we introduce the system setting, give a short introduction to each layer, and detail
the behavior of the corresponding component. We provide for each layer at least
on reference implementation. In future work, we will refine this layer system and
provide a variety of implementations as well as integration of mechanisms defined
in the work packages.

5.1 System setting

Antidote provides a multi-versioned key-value data store, where the data is stored
as CRDTs. We assume to have a number of D stable data centres, where D is
in the order of tens. At each DC, the data store is partitioned into P partitions.
As for now, each DC employs the same static partitioning scheme, i.e., for every
partition pmi in DCi , there is a corresponding partition pmj in DCj such that pmi
and pmj replicate the same set of objects.

Every server is equipped with a hardware clock which is synchronized by a pro-
tocol such as the Network Time Protocol (NTP), such that the difference between
clocks of different servers is bounded by the clock synchronization skew.

5.2 Log Layer

The log layer constitutes the foundation of the system architecture. Antidote uses a
log-based backend to provide fast and fault-tolerant write access and efficient man-
agement of multi-versioning for CRDT objects. The log layer immediately accepts
all append operations it receives. Different implementations of this component may
write to disk, or to main memory of a quorum of processes, etc. Following the sep-
aration of concerns, any validation checks (e.g. for consistency or type correctness)

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 8

http://github.com/SyncFree/antidote

5 ANTIDOTE

Log

Materializer

Cache

InterDC replicationTransaction Manager

read/append

append

read/append

append read

propagate to
other DCs

Figure 1: Architecture of Antidote.

are delegated to other layers. Similarly, generating object states by replaying the
log is performed by a different layer.

Partioning a datastore can improve performance and scalability [18]. To simplify
investigation of different partitioning schemes at a later point in time, Antidote
implements a basic static datastore partitioning. For every DC, the logging layer
is split into a number of partitions and each partition maintains its own log. A
log is a sequence of operations. An operation is the composition of an operation
type and an operation payload. The payload depends on the kind of operation
performed, such as an update to some CRDT object or a transactional abort and
commitmarkers. Besides the operation and potential parameters, the operation also
contains the meta-data that the other layers require in order to obtain consistent
and correct objects. The persistence component is oblivious of the actual operation
and simply refers to an operation via a unique operation identifier.

The log layer’s interface provides three operations:

• append(partition, op) inserts a new log entry for an operation op to the
log of some partition;

• read(partition) returns all log entries for some partition;

• read_from(partition, op_id) returns the log entries for some partition
that have been added after some op_id.

For these methods, the following guarantees are given:

• Once an append operation has been successfully acknowledged, it will always
be contained in the operation log when reading from the partition.

• Once an operation has been returned in a read operation, it will always be
contained in the operation log for subsequent reads.

Failure handling In the current version of the platform, we offer one basic logging
mechanism: writing log entries synchronously to hard disk. This provides a simple,
but not necessarily safe, fault-tolerance mechanism. In particular, Antidote does
not replicate the partition logs; therefore, writing to disk becomes critical to achieve

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 9

5 ANTIDOTE

durability. By employing a more sophisticated logging scheme, it is straightforward
to achieve better fault-tolerance guarantees. As this problem is orthogonal to our
project goals, we are not planning to address this issue for the moment.

5.3 Materializer Layer

The materializer layer is a core component of Antidote. All high-level operations
pass through this layer. Its responsibility is to generate snapshots of an object by
applying operations and to reduce latency by avoiding access to the log on each
read operation. To achieve these goals, each partition runs a materializer process
with an in-memory cache, represented in the form of a key-value store mapping the
key to a CRDT replica.

The materialization process and the caching mechanism are discussed in the
following sections.

Materialization The materializer has to interpret the payload of the operations
stored in the log and combine them to build CRDT states. This materialization
process is done based on the meta-data encoding the consistency information in
the read request parameter. For example, if the system wants to provide consistent
snapshots of the object store, the materializer has to take care of generating an
object view from the stored snapshots and operations it contains in a way that no
operation which has been committed after the read’s snapshot time is applied to it.
Given a summary of the operations to include into a version, the materializer can
compute the corresponding versions of the objects. To apply the updates for some
object data type, the materializer is relying on some library providing functions to
build CRDTs from operations and update existing object views.

Cache Other than handling object generation, the materializer operates as a
write-through cache. It reduces read latency by avoiding accessing the log on each
read operation. The cache is split into two parts:

• an operation cache where the most recent operations are stored, and

• a snapshot cache which stores the latest materialized views (snapshots) of a
CRDT.

The materializer is involved in update and read operations. When the materi-
alizer receives an update operation, it first forwards it to the log layer to achieve
persistence. After the write to the log has been acknowledged, the materializer
forwards the acknowledgement to the client and then stores the operation to its
operation cache. Note that there is no materialization process triggered at this
stage.

When the materializer receives a read request, it checks whether there are suit-
able materialized views available in the snapshot cache and whether there are op-
erations to be applied in the operation cache. If so, it materializes a new version of
the CRDT that satisfies the request by applying the potentially missing operations
to the corresponding snapshot, thus creating a new snapshot. In the event that

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 10

5 ANTIDOTE

a snapshot exists for operations in the cache, but none which satisfy the read re-
quest parameters, the materializer reads missing entries form the log and generates
a corresponding snapshot.

Garbage Collection (GC) As new operations are stored and new snapshots of
CRDTs are created and cached, the size of the in-memory cache grows. To keep the
size bounded, it is necessary to implement mechanisms to clear both the operation
and snapshot cache. This process is controlled by a separate, concurrently running
process that is integrated into the materializer layer. The current implementation
provides a very simple and general mechanism, but could be optimized for specific
workloads.

As there are two cache components, interacting with any of them can generate
the need for the garbage collection mechanism to be triggered.

• Snapshot (or read-triggered) GC : In the event that the number of snapshots
stored for a key reaches the snapshot_threshold, the materializer keeps just the
latest snapshot_min snapshots. Note that the snapshot generation is done on
reads, hence this mechanism is triggered only by reads. All operations that
are not included in the remaining snapshots and are more recent than the
oldest one, remain in the operation cache while the rest are removed.

• Operation (or write-triggered) GC: In the event that the number of update
operations stored for a key reaches the ops_threshold, the materializer triggers
a read operation. The execution of this read operation will generate a snapshot
and remove the operations from the cache that are included in the snapshot.

Failure Handling In the event of a failure, the materializer is restarted and
restores its state by replaying the partition’s log.

5.4 Transaction Layer

In addition to the traditional put-get interface of key-value stores, Antidote offers
a transactional interface to clients. Transactions provide Transactional Causal+
Consistency semantics, as defined by the following properties:

• Atomic writes: The updates from a transaction are executed in an all-or-
nothing manner.

• Isolation: Intermediate results of a transaction cannot be observed by other
transactions; a transaction reads from a causally consistent snapshot.

• Mergeable transactions: Results from two concurrent transactions on the same
key in different DCs can be merged.

An operation with a single update or a single read is internally also executed as
a transaction.

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 11

5 ANTIDOTE

Causal consistency with full replication Replication across multiple data
centres (DCs) around the world is important for high availability and low latency
access. Antidote supports replication of all objects fully across multiple data centres.

Transactional Causal+ Consistency[28, 50] allows transactions to execute in a
DC without synchronising with other DCs. However, tracking causality across mul-
tiple partitions and multiple DCs is non-trivial. There have been different mecha-
nisms proposed for causal consistency in the literature [28, 29, 17, 4, 18]. In short,
many approaches suffer from unbounded size of meta-data needed to keep track of
causality. Here, we discuss a protocol for Transactional Causal+ Consistency for
Antidote which is a fully replicated partitioned database. Transaction management
and replication protocol guarantees that the transactions are causally consistent,
while the use of CRDTs permits the mergeability of transactions.

Related Work The ClockSI [18] protocol provides snapshot isolation (SI) for
transactions in a partitioned data store without the need of a centralised entity
to assign snapshot and commit timestamps. Instead, it uses loosely synchronised
physical clocks to assign per-partition timestamps. Our protocol for transaction
read and commit is inspired by ClockSI. We have adapted it to incorporate repli-
cation of datastore partitions across multiple DCs. Further, we rely on CRDTs for
Transactional Causal+ Consistency instead of providing classical Snapshot Isolation
semantics.

COPS [28] is a distributed key-value store that provides Causal+ Consistency.
The causal dependencies are tracked per key resulting in large non-scalable meta-
data. The dependency of an update is explicitly checked whether it is satisfied in
the local data centre before writing it.

Orbe [17] is a protocol for causal consistency in partitioned and replicated data
centres. The causality is tracked per update operation. The causality meta-data
has size O(P × D), where P is the number of partitions and D is the number of
data centres. The paper further describes mechanism to reduce the meta-data size
such as dependency cleaning, which are employed similarly in other geo-replicated
databases.

5.4.1 Causally Consistent Transactions

A client executes a transaction T consisting of an arbitrary number of reads and
writes to multiple keys. Transactional Causal+ Consistency is achieved as follows:
A transaction T executes on a consistent snapshot for all objects accessed. The
snapshot of a transaction T denotes the causal dependencies of operations in T ,
and thus includes all updates covered by the snapshot.

Operations within a transaction T are of the following type:

• A read r returns all updates included in T ’s snapshot and all updates in T
which precedes r. Reads are causally consistent.

• A write u is an update to a key. A write is not visible until committed.

Protocol Antidote’s transaction protocol consists of two parts. The first part is
handles the transaction management within a DC. The second one is responsible

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 12

5 ANTIDOTE

for eventually replicating the updates from a transaction to other DCs. Both of
them together guarantee that the transactions are causally consistent.

The following data structures contain the meta-data required for causally con-
sistent transactions.

Meta-data per Partition

• The physical clock pckj is the current physical clock of partition k in DC j. It
issues totally ordered timestamps for this partition and is loosely synchronized
with clocks for the other partitions in the same DC.

• Each partition has a partition vector clock pvckj with an entry corresponding to
each DC. If pvckj [d] = t, then partition pkj has received all updates committed
on or before time t in partition pkd. pvckj [j] = t means that partition pkj has
committed all transactions with commit time ≤ t.

Meta-data per DC

• A snapshot s is represented by a vector having one entry for every DC. s = S
means that the snapshot contains all updates with c ≤ S, from all DCs. The
snapshot identified by a vector s is the same in all DCs. Every snapshot is
causally consistent.
A stable snapshot ssj denotes the latest snapshot which is available in all
partitions in DC j. For a stable snapshot, ssj[i] = t with i 6= j implies that
all partitions in DC j have seen at least all updates committed on or before
time t from DC i.

Meta-data per Transaction

• The vector snapshot time vs denotes a snapshot derived at the starting point
of the transaction. The transaction executes on this consistent snapshot iden-
tified by vs.

• Every transaction keeps a set UpdatedPartitions of partitions that will be
updated during the commit.

• Each client keeps a client vector clock cc with an entry corresponding to each
DC. It keeps track of dependencies for client operations. All read and update
operations should be executed on a snapshot with cc ≤ vs.

• The identifier dc denotes the DC at which the transaction was originally exe-
cuted and committed.

• The commit time c of a transaction is a vector clock with entries for each
DC. If a transaction T committed in DC d, then T.c = C implies that T
has committed at time C[d], where C[d] is derived from physical clocks of the
partitions involved in the transaction (see below). All other entries are taken
from the vector snapshot time vs.

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 13

5 ANTIDOTE

Algorithm 1 Transaction coordinator TC in partition k, DC j

1: function GetSnapshotTime(Clock cc)
2: for all i = 0..D − 1, i 6= j do
3: vs[i] = ssj[i]
4: end for
5: vs[j] = max(pckj , cc[j])
6: return vs
7: end function
8:
9: function StartTransaction(Transaction T , Clock cc)
10: for all i = 0..D − 1, i 6= j do
11: wait until cc[i] ≤ ssj[i]
12: end for
13: T.vs = GetSnapshotTime(cc)
14: return T
15: end function
16:
17: function Update(Transaction T , Key k, Operation u)
18: p = partition(k)
19: T .UpdatedPartitions = T .UpdatedPartitions ∪{p}
20: send ExecuteUpdate(T , k, u) to p
21: end function
22:
23: function Read(Transaction T , Key k)
24: p = partition(k)
25: send ReadKey(T , k) to p
26: end function
27:
28: function DistributedCommit(T)
29: for all p ∈ T .UpdatedPartitions do
30: send Prepare(T) to p
31: wait until receiving (T , prepared, timestamp) from p
32: end for
33: CommitTime = max(received timestamps)
34: T.c = T.vs
35: T.c[j] = CommitTime
36: T.dc = j
37: for all p ∈ T .UpdatedPartitions do
38: send Commit(T) to p
39: end for
40: end function

Transaction Manager The transaction manager is responsible for executing
transactions in a DC. Algorithm 1 shows the algorithm for a transaction coor-
dinator running in DC j, which executes the transaction on behalf of clients. A
client can contact any node in a DC and start a transaction coordinator TC. The

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 14

5 ANTIDOTE

Algorithm 2 Transaction execution at partition m, DC j

1: function ExecuteUpdate(Transaction T , Update u)
2: wait until T.vs[j] ≤ pcmj [m]
3: log u
4: end function
5: function ReadKey(Transaction T , Key K)
6: wait until T.vs[j] ≤ pvcmj [j]
7: return snapshot(K, T.vs)
8: end function
9:
10: function Prepare(Transaction T)
11: prepareTime = pcmj [m]
12: preparedTransactionsmj .add(T , prepareTime)
13: send (T , prepared, prepareTime) to T ’s coordinator
14: end function
15:
16: function Commit(transaction T)
17: log (T , commit, T.c, T.vs)
18: preparedTransactionsmj .remove(T)
19: end function
20:
21: function UpdateClock
22: if preparedTransactionsmj 6= ∅ then
23: timestamps = Get prepare timestamps in preparedTransactionsmj
24: pvcmj [j] = min(timestamps)− 1
25: else
26: pvcmj [j] = pcmj
27: end if
28: end function

client then issues update and read operations via TC.
When transaction T starts, it is assigned a snapshot time vs. It is desirable to

assign the latest snapshot available in the local DC as vs, so that the transaction
reads the latest updates. However, as we will see in the replication protocol, each
partition is replicated independently of other partitions. This may result in some
partitions having more recent snapshots and other partitions having older snap-
shots. Hence the ssj which is available in all partitions is assigned to the vs of the
transaction. Since the clocks of partitions within the same DC are less likely to be
out of sync for a long time, we can assign vs[j] to be the physical clock of the par-
tition running the transaction coordinator, so that T can see the latest committed
transactions in DC j.

The client can provide a client clock cc, which is the last observed snapshot by
the client. If a client clock cc is provided, the transaction coordinator waits until
the stable snapshot of DC j has reached cc. Thus, using a client clock cc guarantees
that a client always observes monotonic snapshots even when connecting to other
DCs.

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 15

5 ANTIDOTE

After transaction snapshot time is assigned, the client can issue operations.
These operations will be forwarded to the partitions of the key involved in the
operation. Using the stable snapshot vector ssj to assign T.vs guarantees that
all partitions have received all updates from other DCs required by T ’s snapshot.
Hence the read operation has to check only if the updates from DC j required for
the snapshot are available in the partition. The read protocol waits for pvckj [j] to
become T ’s snapshot time to commit, to ensure that updates from the transaction’s
in prepared phase which must be in T’s snapshot are also included in the read.
The update protocol waits until the physical clock of the partition dominates T ’s
snapshot time and log the update.

During the commit phase, the coordinator requests prepare timestamps from
partitions involved in the transaction. The maximum of the prepared timestamps
is assigned as the commit-time by the coordinator. The commit-time defines a new
snapshot of the DC. Hence T.c is derived from the scalar commit time decided by
the coordinator and T.vs.

Replication Protocol The replication protocol is responsible for replicating up-
dates committed in one DC, to other DCs. In the protocol, each partition pmj sends
updates to pmi , for i = 0 to d−1 DCs, i 6= j. The main idea behind the protocol is to
keep each partition causally consistent. This is guaranteed by following conditions.

• A transaction T from pmi is applied in pmj , only if T ’s causal dependencies are
satisfied locally in pmj .

The next condition is that each partition has an increasing clock.

• Each partition pmi in DC i sends transactions to pmj in DC j in commit time
order. If pmj receives a transaction T from pmi , where T.c = (i, c), pmj must
have received all transaction with commit time (i, v), such that v[i] < c[i]
from pmi . When the transaction is applied, the partition vector clock pvcmj [i]
is set to c[i].

Given the above two conditions are satisfied, if pvcmj = V , any snapshot S ≤ V
is available in partition pmj .

If a partition pmj does not execute any new transaction for a long time, the
remote partition pmi ’s entry pvcmi [j] will not be increased, resulting in a large gap
compared to vector clocks of other partitions. In order to avoid this, partitions send
a periodic heartbeat message with their vector clock to other remote partitions.

The algorithm for sending updates from DC i to j is given in Algorithm 3.
Algorithm 4 shows the process of handling updates from DC i received at DC j.

Given that each partition is causally consistent and pvcmj denotes all snapshots
available in partition pmj , the transaction manager ensures that a transaction exe-
cutes on a causally consistent snapshot always.

5.5 Implementation

In this section, we briefly introduce concepts and technologies that we use to develop
and test Antidote.

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 16

5 ANTIDOTE

Algorithm 3 Replication Algorithm at the sender, running in partition pmi
1: function ReplicateToDC(j)
2: loop
3: t = pvcmi [i]
4: Transactions = {T | T.c[i] ≤ t, T.dc = i, not propagated to DC j yet }
5: if Transactions = ∅ then
6: heartbeat = new Transaction()
7: heartbeat.c[i] = t
8: heartbeat.dc = i
9: heartbeat.vs = pvcmi
10: send heartbeat to pmj
11: else
12: sort Transactions in ascending order of T.c[i]
13: send Transactions to DC j
14: end if
15: end loop
16: end function

Algorithm 4 Replication Algorithm at the receiver, running in partition pmj
1: queue[i]: A queue for transactions received from DC i
2:
3: function ReceiveTransaction(ListofTransactions Transactions, DC i)
4: for all T in Transactions do
5: enqueue(queue[i], T)
6: end for
7: end function
8:
9: function ProcessQueue(i)
10: . This function is repeatedly called to process transactions from DC i
11: T = getFirst(queue[i])
12: T.vs[i] = 0
13: if T.vs ≤ pvcmj then
14: if T is not a heartbeat then
15: log T
16: end if
17: pvcmj [i] = T.c[i])
18: remove T from queue[i]
19: end if
20: end function
21:
22: function calculateStableSnapshot
23: for all j = 0..D − 1 do
24: ssi[j] = mink=0...P−1 pvc

k
i [j]

25: end for
26: end function

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 17

5 ANTIDOTE

Erlang OTP Erlang OTP provides a set of libraries for developing scalable dis-
tributed systems. Antidote is written using the Erlang programming language and
respecting the OTP design principles that define how to structure Erlang code in
terms of processes, modules and directories
(cf. http://www.erlang.org/doc/design_principles/des_princ.html).

Riak libraries and components riak_core is a toolkit for building distributed,
scalable, fault-tolerant applications. It is an Erlang OTP application that provides a
number of services useful for writing distributed applications, namely node liveness
and membership, partitioning and distributing work, and managing cluster state.
Antidote is build on top of riak_core. Using riak_core, Antidote partitions the
set of keys onto different nodes. The functionalities per partitions such as log,
transaction execution etc. are implemented as a virtual node (vnode) provided by
riak_core.

riak_dt provides a set of state-based CRDTs implemented in Erlang. Proto-
col buffers (https://github.com/google/protobuf/) is a library for standardized
message serialization. Antidote exposes a protocol buffer interface besides RPC,
through which clients can access the distributed data store.

Testing and benchmarking facilities riak_test is a system for testing riak_core
clusters. Tests are written in Erlang, and can interact with the cluster using dis-
tributed Erlang. Basho Bench is a benchmarking tool for performing accurate and
repeatable performance tests and stress tests, and produce performance graphs. It
focuses on two metrics of performance: throughput and latency.

5.5.1 Setting up Antidote

In this section we explain how to build and test Antidote.

Prerequisites

• A unix-based OS

• Erlang R16B02

Building Antidote

1. Clone Antidote from the github repository.

git clone http://github.com/SyncFree/antidote

2. Go to the antidote directory (the one that you’ve just cloned using git) and
build the system using make rel. This will now pull all the dependencies it
needs from github, build the application, and finally make an erlang "release"
of a single node. If all went well, you should be able to start a node of
Antidote.

rel/antidote/bin/antidote start

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 18

http://www.erlang.org/doc/design_principles/des_princ.html
https://github.com/google/protobuf/

5 ANTIDOTE

Using Antidote We can interact with Antidote directly using Distributed
Erlang and remote procedure calls.

• To start a client node

erl -name ’client@127.0.0.1’ -setcookie antidote

• First check whether client can connect to the cluster:

net_adm:ping(’antidote@127.0.0.1’).
pong

• Perform a write operation (example):

rpc:call(’antidote@127.0.0.1’, antidote, append,
[myKey, riak_dt_gcounter, {increment, actor}]).
ok,1,’dev1@127.0.0.1’

where myKey is the key to write to andriak_dt_gcounter is the type of the
Key.

• Perform a read operation (example):

rpc:call(’antidote@127.0.0.1’, antidote, read, [myKey, riak_dt_gcounter]).

Antidote can also be accessed using its protocol buffer interface.

• Start an erlang console with the required dependencies:

erl -pa antidote/deps/*/ebin/ antidote/ebin/

• Connect to the database

{ok, Pid} = antidotec_pb_socket:start("localhost", 8087).

• Read or create a new key with a counter data-type:

Obj = antidotec_pb_socket:get_crdt(Key, riak_dt_pncounter, Pid).

• Increment and read the value of the counter:

Obj2 = antidotec_counter:increment(Obj).
antidotec_counter:dirty_value(Obj2).

• Store the updated object:

antidotec_pb_socket:store_crdt(Obj2, Pid).

More information, tests, and benchmarks can be found at

http://github.com/SyncFree/antidote

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 19

http://github.com/SyncFree/antidote

5 ANTIDOTE

5.6 Summary and Outlook

In this Section, we introduced Antidote, the common research platform for the
SyncFree project. The first version of the platform provides a CRDT datastore
running on a small and stable number of data centres. Clients can interact with
the datastore by submitting read requests and update operations, possibly grouped
together using transactions with Transactional Causal+ Consistency semantics.

During the first months of the project, we gave particular attention to the archi-
tectural design of Antidote to be compliant with future adaptations and integrations
of results from the other WPs.

Special attention was given to chose, adapt and implement the inter-DC replica-
tion mechanisms. We plan to soon submit a paper on the involved protocols, thus
presenting the platform to the research community.

Applying the testing and benchmark tools, we are currently evaluating possible
bottlenecks in the implementation of Antidote. In particular, the extensive tests
already led to several improvements and bug fixes.

More on planned improvements can be found in Section 8.

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 20

6 WRITE FAST, READ IN THE PAST- CAUSAL CONSISTENCY FOR
CLIENT-SIDE APPLICATIONS

6 Write Fast, Read in the Past- Causal Consistency
for Client-side Applications

Client-side applications, such as in-browser and mobile apps, are not well served
by current technology for wide-area data sharing. Existing systems either do not
offer sufficient consistency and availability guarantees, or do not scale to large num-
bers of client devices, or both. For instance, access to data stored in the cloud
incurs a round-trip to the data centre, which is subject to wide-area latency [19],
unavailability, and lack of session guarantees [42]. This results in headaches for app
developers, who resort to implementing their own ad-hoc replication layer.

For the second milestone, WP2 targets a setting where the distributed datastore
takes the responsibility of ensuring correct, scalable access to client-side applications
by managing a partial replica close to clients at dedicated points of interest. In
particular, it should ensure consistency, availability, and convergence at least as well
as recent geo-replication systems [28, 29, 17]. Under the availability requirement,
critical to many client apps, the strongest consistency model is Causal+ Consistency
[32].

Supporting thousands or millions of client-side replicas challenges the assump-
tions of existing Causal+ algorithms.

• Algorithm that track causality per client replica [7, 33] lead to meta-data
whose size grows unacceptably, but offloading causality-tracking to servers
has fault-tolerance issues.

• Scalability to high numbers of small devices requires to replicate data and
metadata only partially at those devices [7]; but under partial replication,
clients replicas may suffer gaps in causality.

• Algorithms that assume that application is located inside a data centre (DC)
[28, 29, 17], for instance to ensure session guarantees, are inapplicable.

• Metadata compaction algorithms that require stability [33, 28, 29, 17], become
unavailable with many failure-prone replicas.

In anticipation of Task 2.2 in SyncFree, we continued and extended our work
on SwiftCloud, a system that addresses the challenges of client-side replication.
SwiftCloud ensures causally consistent, available, and convergent access to the cloud
database from client nodes. A flexible client-server topology both enables small
meta-data and ensures fault-tolerance. Our design demonstrates how to make use of
the presence of a client replica, and the fact that the local application session is tied
to it, into an advantage other than low latency. Our insight is to write fast into the
local replica, and when convenient read in the past slightly stale data. This allows
SwiftCloud to have small meta-data, to improve both latency and throughput, and
to remain available, without affecting consistency.

Protocols with decoupled, bounded meta-data. SwiftCloud uses novel meta-
data decoupling

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 21

6 WRITE FAST, READ IN THE PAST- CAUSAL CONSISTENCY FOR
CLIENT-SIDE APPLICATIONS

• tracking causality with small vectors, sized in the number of DCs, referring to
DC-assigned timestamps, from

• unique identification of an update with client-assigned timestamps, which pro-
tect from duplicated update execution.

Thanks to funnelling updates through DCs, the size of meta-data remains small
and stable, at the expense of staleness, but without affecting correctness. This
work is building on the ideas of Dotted Version Vectors, further described in the
WP3 report.

Partial-replica fail-over protocol. When a client connects to different DCs
(e.g., because of failure), they may be mutually inconsistent. SwiftCloud let a
client observe a remote update only if it is stored in a number K > 1 of DCs. Such
K-stable versions are likely to be in other DCs. This does not harm consistency,
because the client observes his own earlier updates from the local replica.

Always-available log pruning. Logs must be eventually pruned. In prior sys-
tems [33, 7], pruning was unsafe if a replica was unavailable, or caused large vectors
to be transmitted. In our design, any prefix of the log known by all DCs can be
replaced with a shared meta-data protecting from duplicates.

Scale-out DCs with gapless vectors. To allow parallelism inside the DC, with-
out causing gaps in timestamp vectors [34], SwiftCloud exposes only states for which
there are no gaps.

Our evaluation of SwiftCloud on EC2 and PlanetLab shows that the system
provides immediate and consistent client-side access for replicated (cached) objects,
with small and bounded metadata, and that the cost in staleness is low.

6.1 Fault-tolerant session and durability

We discuss now how SwiftCloud handles network, DC and client faults, focusing
on client-side mergeable transactions. When a client loses communication with its
current DC, due to network or DC failure, a client may need to switch over to a
different DC. The latter’s state is likely to be different, and it might have not pro-
cessed some transactions observed or indirectly observed (via transitive causality)
by the client . In this case, ensuring that the clients’ execution satisfies the consis-
tency model and the system remains live is more complex. As we will see, this also
creates problems with durability and exactly-once execution.

Causal dependency issue When a client switches to a different DC, the state
of the new DC may be unsafe, because some of the client ’s causal dependencies are
missing. Some geo-replication systems avoid creating dangling causal dependencies
by making synchronous writes to multiple data centres, at the cost of high update
latency [12]. Others remain asynchronous or rely on a single DC, but after failover
clients are either blocked or they violate causal consistency [28, 29, 27]. The former

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 22

6 WRITE FAST, READ IN THE PAST- CAUSAL CONSISTENCY FOR
CLIENT-SIDE APPLICATIONS

systems trade consistency for latency, the latter trade latency for consistency or
availability.

An alternative approach would be to store the dependencies on the client .
However, since causal dependencies are transitive, this might include a large part
of the causal history and a substantial part of the database.

Our approach is to make clients co-responsible for the recovery of missing session
causal dependencies at the new DC. Since, as explained earlier, a client cannot keep
track of all transitive dependencies, we restrict the set of dependencies. We define a
transaction to be K-durable [33] at a DC, if it is known to be durable in at least K
DCs, where K is a configurable threshold. Our protocols let a client observe only
the union of:

• its own updates, in order to ensure the “read-your-writes” session guarantee
[42], and

• the K-durable updates made by other client s, to ensure other session guar-
antees, hence causal consistency.

In other words, the client depends only on updates that the client itself can send to
the new DC, or on ones that are likely to be found in a new DC. When failing over
to a new DC, the client helps out by checking whether the new DC has received its
recent updates, and if not, by repeating the commit protocol with the new DC.

SwiftCloud prefers to serve a slightly old but K-durable version, instead of
a more recent but more risky version. Instead of the consistency and availability
vs. latency trade-off of previous systems, SwiftCloud trades availability for staleness.

Durability and exactly-once execution issue A client sends each transaction
to its DC to be globally-committed. The DC assigns a DC timestamp to the
transaction, and eventually transmits it to every replica. If the client does not
receive an acknowledgment, it must retry the global-commit, either with the same
or with a different DC. However, the outcome of the initial global-commit remains
unknown. If it happens that the global commit succeeded with the first DC, and
the second DC assigns a second DC timestamp, the danger is that the transaction’s
effects could be applied twice under the two identities.

For some data types, this is not a problem, because their updates are idempotent,
for instance put(key,value) in a last-writer-wins map. For other mergeable data
types, however, this is not true: think of executing increment(10) on a counter.
Systems restricted to idempotent updates can be much simpler [29], but in order
to support general mergeable objects with rich merge semantics, SwiftCloud must
ensure exactly-once execution.

Our approach separates the concerns of tracking causality and of uniqueness,
following by the insight of [3]. Recall that a transaction has both a client times-
tamp and a DC timestamp. The client timestamp identifies a transaction uniquely,
whereas the DC timestamp is used when a summary of a set of transactions is
needed. Whenever a client globally-commits a transaction at a DC, and the DC
does not have a record of this transaction already, the DC assigns it a new DC
timestamp. This approach makes the system available, but may assign several DC
timestamp aliases for the same transaction. All alias DC timestamps are equivalent

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 23

6 WRITE FAST, READ IN THE PAST- CAUSAL CONSISTENCY FOR
CLIENT-SIDE APPLICATIONS

in the sense that, if updates of T ′ depend on T , then the dependencies of T ′ com-
prise the dependencies of T , involving at least one of the aliased ids. The system
then guarantees that T ′ will execute after T in every replica.

When a DC processes a commit record for an already-known transaction with
a different DC timestamp, it adds the alias DC timestamp to its commit record on
durable storage.

To provide a reliable test whether a transaction is already known, each DC
maintains durably a map of the last client timestamp received from each client .
Thanks to causal consistency, this value is monotonically non-decreasing. Thus, a
DC knows that a transaction being received for global-commit from a client has
already been processed if the recorded value for that client is greater or equal to
the client timestamp of the received transaction.

6.2 Implementation and experimental evaluation

Our experimental study on a prototype shows that our design reaches its objective
at the modest cost in staleness. We evaluate SwiftCloud, on EC2 and Planet-
Lab, against the social network app of [41] and against the YCSB benchmark [11].
When data is cached, both reads and updates return immediately. Response time,
for updates to data missing in the cache, is two orders of magnitude lower than
for synchronous protocols with similar availability guarantees. With 3 DCs, the
overhead of meta-data is almost constant, at the level of max. 40 bytes per update
delivered to and from the client. When a DC fails, its clients switch to a new DC
in under 1000ms. The throughput for updates scales with the number of servers
in a DC (up to 5 servers, without impacting meta-data size. In benign runs, under
K = 2, which covers most common failure scenarios, aggregated staleness overhead
stays fewer than 1% of operations read stale data.
More details on SwiftCloud, including an extensive evaluation can be found in the
paper in Appendix B.

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 24

7 ADAPTIVE REPLICATION

7 Adaptive replication
The amount of data being processed in data centres (DCs) keeps growing at enor-
mous rate [44, 10, 9]. Some of the areas where the amount of stored data already
reach terabytes (TBs) and even petabytes (PBs) are data mining, social networks1,
particle physics, climate modeling, high energy physics and astrophysics, all data
which needs to be shared and analysed [25, 35, 36]. Yet, the location of a DC relative
to the client accessing the data has an impact on availability, access times (latency
- accessibility) and costs. Replicating data at multiple sites provides a solution
to undesirable effects [8, 1, 45]: Replication may result in reduction of bandwidth
usage and decrease of user response time on data access. But keeping (too) many
replicas of the data incurs extra costs, such as additional network traffic for keeping
all replicas consistent under concurrent updates, additional storage, and additional
computational power [21].

Replication strategies can be classified into two main groups:

• static replication where a replica persist until it is deleted by a user or its
lifetime expires, and

• dynamic replication where the creation and deletion of a replica are managed
automatically by the system and is normally directed by the access pattern
of the data used by the users [15].

Targeting the second milestone for the SyncFree project, we want to find an
replication strategy that minimises infrastructure utilisation under different access
patterns.Adaptive geo–replication is a form of dynamic replication that deals with
the problem of where the data (or parts of the data) is located within the network
of DCs and how many replicas exist simultaneously [23, 25, 48, 1, 2, 30].

We propose an adaptive algorithm which is based on Wolfson’s algorithm, [49],
which is an adaptive algorithm for replicated data between processors taking into
account changes in the read-write pattern. It further follows the principles of the
Ant Colony Optimisation algorithms, which are inspired by the behavior of ant
colonies when deciding which path to follow when foraging [16].

Note that the purpose of adaptive geo-replication is not disaster recovery. This
safety mechanism should be provided by an orthogonal scheme focusing on other
characteristics such as the geographical distribution of DCs.

7.1 Algorithm

The general idea of this algorithm is to decide without the need of human inter-
vention where and when to replicate some data item while keeping into account
the benefits and costs. To provide availability, every data item must be present
(replicated) in at least in one of the DCs. Any read operation performed in a DC
reinforces the need for a replica of the data in this DC. Similarly, this holds for
update operations. However, updates make it less desirable to have replicas of this
data in other DCs due to the overhead of propagating the updates.

1Facebook generates up to 4 PB of data per day that must be modifiable, see https://
research.facebook.com/blog/1522692927972019/facebook-s-top-open-data-problems/

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 25

https://research.facebook.com/blog/1522692927972019/facebook-s-top-open-data-problems/
https://research.facebook.com/blog/1522692927972019/facebook-s-top-open-data-problems/

7 ADAPTIVE REPLICATION

The algorithm is explained in more detail below. The variables and constants
used in the explanation are summarised in Figure 2.

Let Xdk = 1 denote the existence of a replica of data item k in DC d, while its
absence in this DC is given by Xdk = 0. The total number of replicas for data item
k is then given by

Rk =

|DC|∑
d=1

Xdk

Let Fkd denote the actual replication strength of data item k in DC d. It is
defined as

Fkd = max(0,min(Lk, rkd ∗∆rk + wkd ∗∆wk −
|DC|∑

i=1,i 6=d

Xkd ∗ wkd ∗∆wkdi −Xkd ∗ Γ))

The equation reflects that the replication strength is increased by the reads
and writes requested through DC d, with intensities ∆rk and ∆wk, respectively.
It is weakened by the writes requested through other DCs with intensity ∆wkdi.
Furthermore, it is weakened by a temporal decay factor in last term of the equation.
The model implies that only DCs with a replica of the data will be penalised by
writes and the time factor Γ.

Figure 3 illustrates the relation of the replication strength Fkd and the thresholds
for keeping (T+

k)and removing (T−k) a replica at some DC d.
A replica is created at a DC d once the replication strength Fkd reaches the

threshold T+
k . If the replication strength falls below the threshold T−k , the replica

is removed at the DC only if the total number of replicas for this data item would
then still be higher than the required minimum Nk. Therefore, every DC containing
a replica for some data item must know about the other DCs that keep replicas of
this data item.

The factor ∆wkdi represents the decay of replication strength in DC i as con-
sequence of a write request in another DC d. For a simple model of this factor,
we assume that ∆wkdi increases with the network distance between DCs d and i.
Further, we assume that the value is symmetrical, i.e. ∆wkdi = ∆wkid, so that it
incurs the same cost to transfer the data from DC d to DC i as to transfer from
DC i to DC d.

The effect of the time-based factor Γ is required to ensure that, in absence
of updates, the replication factor for a data item still decreases over time. In
particular, if the reads are concentrated in a few DCs, then the replicas in other
DCs are eventually removed, retaining at least Nk replicas.

A read request to a DC, which does not have a replica of the data, is forwarded
to the closest DC with a replica. This second DC does not gain strength from
the read operation as the read was not initiated originally at this DC. Until the
threshold T+

k has been reached, the first DC acts as a proxy for the data access.
Once the threshold is reached, the DC notifies all other DCs holding a replica about
the existence of the its own replica.

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 26

7 ADAPTIVE REPLICATION

Variable Description Type
DC Set of all DCs. d identifies one of the DCs,

d ∈ {1, . . . , |DC|}. DCd represents the DC
identified by d.

d ∈ N+

Dkd Replica of data item k in DC d, k ∈
{1, . . . , |D|}.

k ∈ N+

rkd Number of reads for data item k requested
at DC d

rkd ∈ N0

∆rk Increase of replication strength in a DC when
executing a read

∆rk ∈ R+

wkd Number of writes for data item k requested
at DC d

wkd ∈ N0

∆wk Increase of replication strength in a DC when
executing a write

∆wk ∈ R+

∆wkdi Decay of replication strength in DC i as con-
sequence of a write request in DC d. This
value depends on both DCs d and i and may
also depend on other factors (e.g. time of the
day).

∆wkdi ∈ R+

Γ Decay of replication strength with time. Ex-
ample: Linear decay with factor τ since the
creation is given by Γ = ∆t ∗ τ

Γ ∈ R+

Nk Minimum number of replicas of data k with
1 ≤ Nk ≤ |DC|, default Nk = 1

Nk ∈ N+

T+
k Threshold for replication strength required

to start the replication of data k in a DC
currently not containing a replica

T−k ∈ R+

T−k Threshold for replication strength below
which a replica of data item k is removed in
a DC currently containing a replica, default
T−k = 0

T−k ∈ R+

Lk Maximum replication strength for data item
k

Lk ∈ R+

Fkd Replication strength for data item k in DC
d, Fk ≤ Lk

Fk ∈ R0

Rk Number of replicas for data item k, with 1 ≤
Nk ≤ Rk ≤ |DC|

Rk ∈ N+

Xkd Existence of a replica of data k in DC d, with
value 1 if the replica exists, and 0 otherwise

Xkd ∈ (0, 1)

Figure 2: List of variables and constants.

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 27

7 ADAPTIVE REPLICATION

Figure 3: Relation of thresholds and replication strength at a DC.

Extending this basic replication model, it would be possible to add another
temporal effect, the Time To Live (TTL), to make sure that eventually the data
item will be fully removed. This value may not be applied to data stored in recovery
centres and data warehouses which may have their own TTL. Also, it would be
desirable for data that expires to be copied into those data centres before it is
removed from all normal DCs.

The algorithm is optimal in the sense that when the replication scheme stabilises,
the total number of replicas required for the reads and writes is minimal.

Figures 4 and 5 present sequence diagrams and a flowchart for the read protocol.
Similarly, Figures 6 and 7 details the write protocol. Note that the second figure in
Figure 4 does not show the notification step when a new replica is created.

The initial creation of a data item generates a replica in the directly accessed
DC, as the number of replicas must be at least one (Nk ≥ 1). If Nk > 1, then
the system should generate and distribute additional replicas in the close-by DCs.
This part of the replication protocol could be integrated with other initialization
processes such as checking for the existence of the proposed key when the system
provides unique keys.

Discussion For typical data access pattern,the number of reads is higher than
the number of writes. Further, we assume that a read should be executed before a
write. For this scenario, ∆wk could be chosen to be smaller than ∆rk (∆wk < ∆rk)
so that more writes are required to maintain or create a replica in a DC.

Some of the parameters may be generalised even further by allowing them to
depend on the DC where some calculation is executed, i.e. using some ∆rkd instead
of ∆rk, and similarly ∆wkd. To determine the replication strength, other factors
like bandwidth or storage capacity could be added. Paiva et al. [37] use a very
simple representation of the available storage capacity. For now, we assumed that
the capacity in a DC is sufficient high, and when more storage capacity is required,
extra storage can be added to the DC.

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 28

7 ADAPTIVE REPLICATION

Figure 4: Read Sequence Diagrams.

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 29

7 ADAPTIVE REPLICATION

Figure 5: Flowchart for read requests.

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 30

7 ADAPTIVE REPLICATION

Figure 6: Write Sequence Diagrams.

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 31

7 ADAPTIVE REPLICATION

Figure 7: Flowchart for write requests.

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 32

7 ADAPTIVE REPLICATION

7.2 Comparison of replication schemes

We now want to compare three different replication strategies for the different ac-
cesses. To this end, the following schemes are analysed:

A. Only one fixed replica, i.e. no replication as such.

B. Adaptive location of replicas as described in Section 7.1.

C. Full replication, i.e. one replica in every DC.

Table 1 shows the steps involved for the operations in the sequence diagram for
the respective scheme. Regarding the storage, using more replicates increases the
storage requirements. For reads, the existence of the data in several DCs reduces the
total number of operations required as it is more likely that the initially accessed DC
already has a replica of the data compared to when the data only exists in one DC.
For writes, having the data replicated in multiple DCs increases the total number
of operations proportionally to the number of replicas. One technique to reduce the
number of writes would be to combine multiple write in one before forwarding it to
other DCs.

All these schemes can actually be achieved by adapting the minimum number
of replicas and threshold values in the proposed algorithm:

• One fixed replica: Nk = 1, T+
k =∞, T−k = −1.

• Full replication: Nk = |DC|.

This means that systems where the number of reads is significantly higher than
the number of writes will benefit from replicating the data in multiple DCs, whereas
systems with similar of higher number of writes will benefit from low or no replica-
tion (only one replica). However, this is a rather simplified view as there are more
requirements that have an important influence on the selection of the actual system
configuration. Some of the most common requirements are Scalability, Accessibility,
Latency and Security.

• Scalability: Scheme (A) does not provide scalability in contrast to the actual
replication schemes. Jimenez-Peris et al. [24] provide an analytical study
which shows the scalability limits of full replication as updates have to be sent
and executed at all replicated sites (symmetric processing). To reduce this
cost, one could use asymmetric processing where transactions are processed
first at the originating site, then collected, and eventually propagated and
applied to the other sites, thus improving scalability. From the point of view
of scalability, the processing power in a DC, when a write is received, is
invested in processing the write and the actual updates. As the number of
replicas increases, there is a point at which the increase on the number of
replicas does not increase any more the total system capacity. The main
reason is that most of the system processing power is then used in processing
the updates.

• Availability/Accessibility: Schemes (B) and (C) improve accessibility, while
scheme (A) provides only limited accessibility, see [26].

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 33

7 ADAPTIVE REPLICATION

S
equ

en
ce

O
n
e
fi
xed

rep
lica

(A
)

A
lgorith

m
(B

)
Fu

ll
rep

lica
(C

)
Storage

1∗
data

R
k ∗

(data
+

info)
+

∆
info

|D
C|∗

data
F
irst

read
w
ithout

replica
2∗

reads
+

(|D
C|−

1)∗
discoveries

2∗
reads

+
(|D

C|−
1)∗

discoveries
1∗

reads
R
ead

w
ithout

replica
2∗

reads
+

(|D
C|−

1)∗
discoveries

2∗
reads

R
ead

w
ith

replica
1∗

reads
1∗

reads
F
irst

w
rite

w
ithout

replica
2∗

w
rites

+
(N

k −
1)∗

discoveries
(R

k
+

1)∗
w
rites

+
(N

k −
1)∗

discoveries
|D
C|∗

w
rites

W
rite

w
ithout

replica
2∗

w
rites

+
(N

k −
1)∗

discoveries
(R

k
+

1)∗
w
rites

W
rite

w
ith

replica
1∗

w
rite

R
k ∗

w
rites

C
reate

data
1∗w

rite
N

k ∗
w
rites

|D
C|∗

w
rites

Table
1:

R
equired

operations
by

the
different

im
plem

entations
for

the
specified

sequences,
1≤

N
k ≤

R
k ≤
|D
C|.

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 34

7 ADAPTIVE REPLICATION

• Latency: As schemes (B) and (C) provide replicas in multiple DCs, the
data can be accessed from any of those DCs. Choosing the one which is
closest improves the latency experienced by the customer, thus improving
responsiveness.

• Security/Fault-tolerance: Security is usually achieved by setting up re-
covery data centres, but it is also improved/achievable by the provision of
replicas by means of redundancy [22, 47].

7.3 Summary

In this Section, we introduced an algorithm for adaptive geo–replication where the
replication scheme is dynamically modified based on the current replication strength
for some data item.

1. For reads, if the DC to which the clients connects has a replica of the requested
data item, the DC does not need to communicate any information to any of
the other DCs.

In case a read is executed on a DC without a replica of the data, storage
and processing power in the DC will be required and the request is forwarded
to its closest neighbor DC with a replica. This operation incurs additional
network traffic, but also increases the replication strength of the data, thus
making it more likely that the data item is eventually replicated in the DC
contacted first.

2. For writes, the DC receiving the original request will (eventually) transmit it
to the other DCs, which have a replica of the data. Depending of the type
of CRDT used, i.e. op-based or state-based, different methods for update
propagation could be employed.

3. If data is not accessed frequently, the number of replicas is reduced as time
passes, due to the temporal effect (Γ), until the data is only replicated in a
minimal number of DCs.

To adapt replication schemes to access patterns requires simple and fast replica
generation and removal. Furthermore, values for the parameters for calculating the
cost could be determined and continuously adpated at runtime by some learning
algorithm.

The work on adaptive replication spans several work packages: WP1 helped to
infer the requirements and desirable characteristics for replication schemes; in WP2
we are developing protocols to implement adaptive replication and integrate it into
the Antidote platform; WP5 contributes a visualisation and testing tool to evaluate
different replication strategies. In the next section, we give an outlook on future
work regarding adaptive replication, in particular the integration with Antidote.

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 35

8 OUTLOOK FOR WP2

8 Outlook for WP2

For the next months, we plan to progress in WP2 in several directions.

Improving and extending Antidote The Antidote platform as of now con-
tains a prototype implementation for every component as presented in Section 5.
Applying the recent research results from within the project consortium, we are
continuously adapting and modifying Antidote. For the next 6 months, we plan to
improve in the following way:

• We are currently investigating how to apply the techniques for pure op-based
CRDTs to Antidote’s materializer cache to overcome some performance issues
we detected. The contributions of this work will be a new optimized op-based
CRDT library2 , an improved cache layout based on partially ordered logs
and corresponding garbage collection mechanisms.

• WP3 proposes mechanisms for enforcing invariants on CRDTs while restrain-
ing from strong synchronization. This work complements Antidote’s trans-
actions which provide weak cross-CRDT guarantees. To consolidate these
results, we will integrate the reservation/escrow technique into Antidote in
the next couple of months to fully address the WP1 use cases “Wallet appli-
cation” and “Ad counter”.

• Similarly, we are about to implement composition mechanisms developed in
WP3 and WP4, such as a Map CRDT and the techniques for partially repli-
cating large CRDTs.

CRDTs under partial replication In anticipation of the next milestone, we
already started in parallel to work on tracking causal consistency in partially-
replicated datastores. In comparison to the layout of the current Antidote ar-
chitecture, such a datastore is not fully replicated at every DC. Tracing the causal
dependencies is considerably more difficult in this setting because the transitive
closure of the causality relation needs to be determined even though elements in
this relation might not be available locally.

The work on adaptive replication (see Section 7) layed the foundation for this
work by showing how replication schemes can be adapted to different, dynamically
changing access patterns to the objects. However, we need to investigate further
the principles and mechanisms of partitioned (or shareded) databases to provide
fast and correct implementations of partial replication schemes.

The algorithm for causal consistency which we are working on is based on using
vector clocks. Each vector clock contains an entry for every DC subsuming all
shards within this DC. As a next steps, we will refine the protocols to reducing the
size of the vector clock in order to decrease the meta-data overhead.

Further, the protocols for consistent partial and adaptive replication will be in-
tegrated in Antidote, thus providing different platforms for different system setups.

2As there is no op-based CRDT library in Erlang available yet, we are currently using the
state-based riak_dt library to simulate op-based CRDTs.

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 36

8 OUTLOOK FOR WP2

All platforms will share the CRDT code base, the logging system and materializer,
and parts of the code for transactions, but provide new or extended implementations
for components dealing with replication strategies and update propagation.

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 37

9 PAPERS AND PUBLICATIONS

9 Papers and publications
The following papers have emerged from the work in WP2:

• Carlos Baquero, Paulo Sérgio Almeida, and Ali Shoker. Making operation-
based crdts operation-based. In Distributed Applications and Interoperable
Systems (DAIS), pages 126–140. Springer, 2014 (Appendix A)

• Marek Zawirski, Nuno Preguiça, Sergio Duarte, Annette Bieniusa, Valter
Balegas, and Marc Shapiro. Write fast, read in the past: Causal consistency
for client-side applications. Under submission. (Appendix B)

• Nuno Preguiça, Marek Zawirski, Bieniusa Annette, Paulo Sérgio Almeida,
Valter Balegas, Carlos Baquero, and Marc Shapiro. SwiftCloud: Fault-tolerant
geo-replication integrated all the way to the client machine. In Proceedings of
the Workshop on Planetary-Scale Distributed Systems. Springer, 2014

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 38

REFERENCES

References
[1] Cristina L. Abad, Yi Lu, and Roy H. Campbell. Dare: Adaptive data repli-

cation for efficient cluster scheduling. In Proceedings of the 2011 IEEE In-
ternational Conference on Cluster Computing, CLUSTER ’11, pages 159–168,
Washington, DC, USA, 2011. IEEE Computer Society.

[2] S. Abdul-Wahid, R. Andonie, J. Lemley, J. Schwing, and J. Widger. Adaptive
distributed database replication through colonies of pogo ants. In Parallel and
Distributed Processing Symposium, 2007. IPDPS 2007. IEEE International,
pages 1–8, March 2007.

[3] Paulo Sérgio Almeida, Carlos Baquero, Ricardo Gonçalves, Nuno M. Preguiça,
and Victor Fonte. Scalable and accurate causality tracking for eventually con-
sistent stores. In Magoutis and Pietzuch [31], pages 67–81.

[4] Sérgio Almeida, João Leitão, and Luís Rodrigues. Chainreaction: A causal+
consistent datastore based on chain replication. In Proceedings of the 8th ACM
European Conference on Computer Systems, EuroSys ’13, pages 85–98, New
York, NY, USA, 2013. ACM.

[5] Peter Bailis and Ali Ghodsi. Eventual consistency today: limitations, exten-
sions, and beyond. Commun. ACM, 56(5):55–63, 2013.

[6] Carlos Baquero, Paulo Sérgio Almeida, and Ali Shoker. Making operation-
based crdts operation-based. In Magoutis and Pietzuch [31], pages 126–140.

[7] Nalini Moti Belaramani, Michael Dahlin, Lei Gao, Amol Nayate, Arun
Venkataramani, Praveen Yalagandula, and Jiandan Zheng. PRACTI repli-
cation. In Larry L. Peterson and Timothy Roscoe, editors, 3rd Symposium on
Networked Systems Design and Implementation (NSDI 2006), May 8-10, 2007,
San Jose, California, USA, Proceedings. USENIX, 2006.

[8] Iwan Briquemont. Optimising client-side geo-replication with partially repli-
cated data structures. Master’s thesis, Louvain-la-Neuve, September 2014.

[9] Aimee Chanthadavong. Internet of things to drive explosion of useful data:
Emc. Technical report, ZDNet, April 2014.

[10] Cisco. The zettabyte era-trends and analysis. Technical report, Cisco, June
2014.

[11] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and
Russell Sears. Benchmarking cloud serving systems with YCSB. In Joseph M.
Hellerstein, Surajit Chaudhuri, and Mendel Rosenblum, editors, Proceedings
of the 1st ACM Symposium on Cloud Computing, SoCC 2010, Indianapolis,
Indiana, USA, June 10-11, 2010, pages 143–154. ACM, 2010.

[12] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, Wilson C. Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 39

REFERENCES

Li, Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quin-
lan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christo-
pher Taylor, Ruth Wang, and Dale Woodford. Spanner: Google’s globally-
distributed database. In Thekkath and Vahdat [43], pages 261–264.

[13] Sean Cribbs and Russell Brown. Data structures in riak. RICON, San Fran-
cisco, CA, USA, October 2012.

[14] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakula-
pati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter
Vosshall, and Werner Vogels. Dynamo: Amazon’s highly available key-value
store. SIGOPS Oper. Syst. Rev., 41(6):205–220, October 2007.

[15] Xiaohua Dong, Ji Li, Zhongfu Wu, Dacheng Zhang, and Jie Xu. On dynamic
replication strategies in data service grids. In Object Oriented Real-Time Dis-
tributed Computing (ISORC), 2008 11th IEEE International Symposium on,
pages 155–161, May 2008.

[16] M. Dorigo. Optimization, Learning and Natural Algorithms. PhD thesis, Po-
litecnico di Milano, Italy, 1992.

[17] Jiaqing Du, Sameh Elnikety, Amitabha Roy, and Willy Zwaenepoel. Orbe:
Scalable causal consistency using dependency matrices and physical clocks. In
Proceedings of the 4th Annual Symposium on Cloud Computing, SOCC ’13,
pages 11:1–11:14, New York, NY, USA, 2013. ACM.

[18] Jiaqing Du, Sameh Elnikety, and Willy Zwaenepoel. Clock-si: Snapshot isola-
tion for partitioned data stores using loosely synchronized clocks. In Proceed-
ings of the 2013 IEEE 32Nd International Symposium on Reliable Distributed
Systems, SRDS ’13, pages 173–184, Washington, DC, USA, 2013. IEEE Com-
puter Society.

[19] Felix Gessert, Florian Bucklers, and Norbert Ritter. Orestes: A scalable
database-as-a-service architecture for low latency. In Workshops Proceedings
of the 30th International Conference on Data Engineering Workshops, ICDE
2014, Chicago, IL, USA, March 31 - April 4, 2014, pages 215–222. IEEE, 2014.

[20] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services. SIGACT News, 33(2):51–
59, June 2002.

[21] Sushant Goel and Rajkumar Buyya. Data replication strategies in wide area
distributed systems. In Robin G. Qiu, editor, Enterprise Service Computing:
From Concept to Deployment, pages 211–241. Idea Group Inc, 2006.

[22] Rachid Guerraoui and André Schiper. Fault-tolerance by replication in dis-
tributed systems. In Alfred Strohmeier, editor, Reliable Software Technologies
– Ada Europe 96, volume 1088 of Lecture Notes in Computer Science, pages
38–57. Springer Berlin Heidelberg, 1996.

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 40

REFERENCES

[23] Junsang Kim; Won Joo Lee; Changho Jeon. A priority based adaptive data
replication strategy for hierarchical cluster grids. International Journal of Mul-
timedia & Ubiquitous Engineering, 9(6):127–140, 2014.

[24] Ricardo Jiménez-Peris, M. Patiño Martínez, Gustavo Alonso, and Bettina
Kemme. Are quorums an alternative for data replication? ACM Trans.
Database Syst., 28(3):257–294, September 2003.

[25] R. Kingsy Grace and R. Manimegalai. Dynamic replica placement and selection
strategies in data grids- a comprehensive survey. J. Parallel Distrib. Comput.,
74(2):2099–2108, February 2013.

[26] Rivka Ladin, Barbara Liskov, Liuba Shrira, and Sanjay Ghemawat. Providing
high availability using lazy replication. ACM Trans. Comput. Syst., 10(4):360–
391, November 1992.

[27] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno M. Preguiça,
and Rodrigo Rodrigues. Making geo-replicated systems fast as possible, con-
sistent when necessary. In Thekkath and Vahdat [43], pages 265–278.

[28] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Ander-
sen. Don’t settle for eventual: Scalable causal consistency for wide-area storage
with cops. In Proceedings of the Twenty-Third ACM Symposium on Operat-
ing Systems Principles, SOSP ’11, pages 401–416, New York, NY, USA, 2011.
ACM.

[29] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Ander-
sen. Stronger semantics for low-latency geo-replicated storage. In Nick Feam-
ster and Jeffrey C. Mogul, editors, Proceedings of the 10th USENIX Symposium
on Networked Systems Design and Implementation, NSDI 2013, Lombard, IL,
USA, April 2-5, 2013, pages 313–328. USENIX Association, 2013.

[30] Thanasis Loukopoulos and Ishfaq Ahmad. Static and adaptive distributed data
replication using genetic algorithms. J. Parallel Distrib. Comput., 64(11):1270–
1285, November 2004.

[31] Kostas Magoutis and Peter Pietzuch, editors. Distributed Applications and In-
teroperable Systems - 14th IFIP WG 6.1 International Conference, DAIS 2014,
Held as Part of the 9th International Federated Conference on Distributed Com-
puting Techniques, DisCoTec 2014, Berlin, Germany, June 3-5, 2014, Proceed-
ings, volume 8460 of Lecture Notes in Computer Science. Springer, 2014.

[32] Prince Mahajan, Lorenzo Alvisi, and Mike Dahlin. Consistency, availability,
and convergence. Technical Report UTCS TR-11-22, Dept. of Comp. Sc., The
U. of Texas at Austin, Austin, TX, USA, 2011.

[33] Prince Mahajan, Srinath T. V. Setty, Sangmin Lee, Allen Clement, Lorenzo
Alvisi, Michael Dahlin, and Michael Walfish. Depot: Cloud storage with min-
imal trust. ACM Trans. Comput. Syst., 29(4):12, 2011.

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 41

REFERENCES

[34] Dahlia Malkhi and Douglas B. Terry. Concise version vectors in winfs. Dis-
tributed Computing, 20(3):209–219, 2007.

[35] Noriyani Mohd. Zin, A. Noraziah, AinulAzila Che Fauzi, and Tutut Her-
awan. Replication techniques in data grid environments. In Jeng-Shyang Pan,
Shyi-Ming Chen, and NgocThanh Nguyen, editors, Intelligent Information and
Database Systems, volume 7197 of Lecture Notes in Computer Science, pages
549–559. Springer Berlin Heidelberg, 2012.

[36] Shaik Naseera and K.V. Madhu Murthy. Agent based replica placement in a
data grid environement. Computational Intelligence, Communication Systems
and Networks, International Conference on, 0:426–430, 2009.

[37] João Paiva, Pedro Ruivo, Paolo Romano, and Luís Rodrigues. AutoPlacer:
scalable self-tuning data placement in distributed key-value stores. In Proceed-
ings of the 10th International Conference on Autonomic Computing, ICAC’13,
San Jose, CA, USA, June 2013. USENIX.

[38] Karin Petersen, Mike Spreitzer, Douglas B. Terry, Marvin Theimer, and Alan J.
Demers. Flexible update propagation for weakly consistent replication. In
SOSP, pages 288–301, 1997.

[39] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. A compre-
hensive study of convergent and commutative replicated data types. Rapport
de recherche RR-7506, INRIA, January 2011. Printed.

[40] Marc Shapiro, Nuno M. Preguiça, Carlos Baquero, and Marek Zawirski.
Conflict-free replicated data types. In Xavier Défago, Franck Petit, and Vin-
cent Villain, editors, Stabilization, Safety, and Security of Distributed Systems
- 13th International Symposium, SSS 2011, Grenoble, France, October 10-12,
2011. Proceedings, volume 6976 of Lecture Notes in Computer Science, pages
386–400. Springer, 2011.

[41] Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. Transac-
tional storage for geo-replicated systems. In Ted Wobber and Peter Druschel,
editors, Proceedings of the 23rd ACM Symposium on Operating Systems Princi-
ples 2011, SOSP 2011, Cascais, Portugal, October 23-26, 2011, pages 385–400.
ACM, 2011.

[42] Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike Spreitzer, Marvin
Theimer, and Brent B. Welch. Session guarantees for weakly consistent repli-
cated data. In Proceedings of the Third International Conference on Parallel
and Distributed Information Systems (PDIS 94), Austin, Texas, September
28-30, 1994, pages 140–149. IEEE Computer Society, 1994.

[43] Chandu Thekkath and Amin Vahdat, editors. 10th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2012, Hollywood, CA,
USA, October 8-10, 2012. USENIX Association, 2012.

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 42

REFERENCES

[44] K.M. Tolle, D. Tansley, and A.J.G. Hey. The fourth paradigm: Data-intensive
scientific discovery [point of view]. Proceedings of the IEEE, 99(8):1334–1337,
Aug 2011.

[45] Srikumar Venugopal, Rajkumar Buyya, and Kotagiri Ramamohanarao. A tax-
onomy of data grids for distributed data sharing, management, and processing.
ACM Comput. Surv., 38(1), June 2006.

[46] Werner Vogels. Eventually consistent. Commun. ACM, 52(1):40–44, January
2009.

[47] J. von Neumann. Automata Studies, chapter Probabilistic Logics and Synthesis
of Reliable Organisms from Unreliable Components, pages 43–98. Princeton
University Press, 1956.

[48] Zhe Wang, Tao Li, Naixue Xiong, and Yi Pan. A novel dynamic network data
replication scheme based on historical access record and proactive deletion. J.
Supercomput., 62(1):227–250, October 2012.

[49] Ouri Wolfson. A distributed algorithm for adaptive replication of data. Tech-
nical report, Department of Computer Science, Columbia University, 1990.

[50] Marek Zawirski, Annette Bieniusa, Valter Balegas, Sérgio Duarte, Carlos Ba-
quero, Marc Shapiro, and Nuno Preguiça. SwiftCloud: Fault-tolerant geo-
replication integrated all the way to the client machine. Technical Report
RR-8347, August 2013.

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 43

A MAKING OPERATION-BASED CRDTS OPERATION-BASED

A Making Operation-based CRDTs Operation-based

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 44

Making Operation-based CRDTs
Operation-based

Carlos Baquero, Paulo Sérgio Almeida, and Ali Shoker

HASLab/INESC TEC and Universidade do Minho, Portugal

Abstract. Conflict-free Replicated Datatypes (CRDT) can simplify the
design of eventually consistent systems. They can be classified into state-
based or operation-based. Operation-based designs have the potential for
allowing very compact solutions in both the sent messages and the object
state size. Unfortunately, the current approaches are still far from this ob-
jective. In this paper, we introduce a new ‘pure’ operation-based frame-
work that makes the design and the implementation of these CRDTs
more simple and e�cient. We show how to leverage the meta-data of
the messaging middleware to design very compact CRDTs, while only
disseminating operation names and their optional arguments.

1 Introduction

Eventual consistency [1] is a relaxed consistency model that is often adopted by
large-scale distributed systems [2–5] where losing availability is normally not an
option, whereas delayed consistency is acceptable. In eventually consistent sys-
tems, data replicas are allowed to temporarily diverge, provided that they can
eventually be reconciled into a common consistent state. Reconciliation (or merg-
ing) used to be error-prone, being application-dependent, until new datatype-
dependent models like the Conflict-free Replicated DataTypes (CRDTs) [6, 7]
were recently introduced. CRDTs allow both researchers and practitioners to
design correct replicated datatypes that are always available, and are guaran-
teed to eventually converge once all operations are known to all replicas. Though
CRDTs have been successfully deployed in practice [2], a lot of work is still re-
quired to improve their designs and performance.

CRDTs support two complementary designs: operation-based (or simply, op-
based) and state-based. In principle, op-based designs are supposed to dissemi-
nate operations, while state-based designs disseminate object states. In op-based
designs [8, 7], the execution of an operation is done in two phases: prepare and
e↵ect. The former is performed only on the local replica and looks at the opera-
tion and current state to produce a message that aims to represent the operation,
which is then shipped to all replicas. Once received, the representation of the
operation is applied remotely using e↵ect. Di↵erent replicas are guaranteed to
converge as long as messages are disseminated through a reliable causal broadcast
messaging middleware, and e↵ect is designed to be commutative for concurrent
operations. On the other hand, in a state-based design [9, 7], an operation is

only executed on the local replica state. A replica propagates its local changes
to other replicas through shipping its entire state. A received state is incorpo-
rated with the local state via a merge function that, deterministically, reconciles
the merged states. To maintain convergence, merge is defined as a join: a least
upper bound over a join-semilattice [9, 7].

Typically, state-based CRDTs support ad hoc dissemination of states and
can handle duplicate and out-of-order delivery of messages without breaking
causal consistency; however, they impose complex state designs and store extra
meta-data. On the other hand, in the systems where the message dissemination
layer guarantees reliable causal broadcast, operation-based CRDTs have more
advantages as they can allow for simpler implementations, concise replica state,
and smaller messages. This paper only focuses on op-based CRDTs.

Unfortunately, current designs of op-based CRDTs [6] do not fully exploit the
benefits that an op-based approach is supposed to o↵er. The relaxed framework
that is currently used to build op-based CRDTs leads to many e�ciency and
complexity issues.

In standard op-based CRDTs the designer is given much freedom in defining
prepare, namely using the state in an arbitrary way. This is needed to have the
e↵ects of concurrently invoked data-type operations commute, and thus provide
replica convergence despite the absence of causality information in current causal
delivery APIs. This forces current op-based designs to include causality infor-
mation in the state to be used in prepare, sent in messages, and subsequently
used in e↵ect. The designer ends up intervening in many components (the state,
prepare, e↵ect, and query functions) in an ad hoc way. This can result in large
complex state structures and also large messages.

Currently, a prepare not only builds messages that duplicate the information
already present in the middleware (even if it is not currently made available),
but causality meta-data is often incorporated in the object state, hence, reusing
design choices similar to those used in state-based approaches. Such designs, are
made to work with little messaging guarantees impose larger state size, and do
not fully exploit causal delivery guarantees. This freedom in current op-based
designs is against the spirit of ‘sending operations’, and leads to confusion with
the state-based approach. Indeed, in the current op-based framework, a prepare
can return the full state, and an e↵ect can do a full state-merge (which mimics
a state-based CRDT) [9, 7].

We believe that the above weaknesses can be avoided if the causality meta-
data can be provided by the messaging middleware. Causal broadcast imple-
mentations already posses that information internally, but it is not exposed to
clients. In this paper we propose and exploit such an extended API to achieve
both simplicity and e�ciency in defining op-based CRDTs.

We introduce a Pure Op-Based CRDT framework, in which prepare cannot
inspect the state, being limited to returning the operation (including potential
parameters). The entire logic of executing the operation in each replica is del-
egated to e↵ect, which is also made generic (i.e., not datatype dependent). For
pure op-based CRDTs, we propose that the object state is a partially ordered log

of operations – a PO-Log . Causality information is provided by an extended
messaging API: tagged reliable causal broadcast (TRCB). We use this infor-
mation to preserve convergence and also design compact and e�cient CRDTs
through a semantically based PO-Log compaction framework, which makes use
of a datatype-specific obsolescence relation, defined over timestamp-operation
pairs.

Furthermore, we propose an extension that improves the design and imple-
mentation of op-based CRDTs through decomposing the state into two compo-
nents: a PO-Log (as before), and a causality-stripped-component which, in many
cases, will be simply a standard sequential datatype. The idea is that operations
are kept only transiently in the PO-Log, but once they become causally stable,
causality meta-data is stripped, and the operations are stored in the sequential
datatype. This reduces the storage overhead to a level that was never achieved
before in CRDTs, neither state-based nor op-based.

2 System Model and Notations

2.1 System and Fault Models

The system is composed of a fixed set of nodes, each with a globally unique iden-
tifier in a set I. Nodes execute operations at di↵erent speeds and communicate
using asynchronous message passing, abstracted by reliable causal broadcast (or
gossip in the brief discussion about state-based CRDTs). Messages can be lost,
reordered or duplicated, and the system can experience arbitrary, but transient,
partitions. A node can fail by crashing and can recover later on; upon recov-
ery, the last durable state of a node is assumed to be intact (not destroyed).
We do not consider Byzantine faults. A fixed membership is assumed for causal
broadcast: messages towards a node that is temporarily crashed or partitioned
are bu↵ered until it becomes reachable.

For presentation purposes, and without loss of generality, we consider a sin-
gle object that is replicated at each node; each replica initially starts with the
same state. Once a datatype operation is locally applied on a replica, the latter
can diverge from the other replicas, but it may eventually convergence as new
operations arrive. A local operation is applied atomically on a given replica.

2.2 Definitions and Notations

⌃ denotes the type of the state. P(V) denotes a power set (the set of all subsets
of V). The initial state of a replica i is denoted by �0

i 2 ⌃. Operations are taken
from a set O and can include arguments (in which case they are surrounded by
brackets, e.g., inc and [add, v]). We use total functions K ! V and maps (partial
functions) K ,! V from keys to values, both represented as sets of pairs (k, v).
Given a function m, the notation m{k 7! v} maps k to v, and behaves like m
on other keys, e.g., Figure 1a.

⌃ = I ! N �0
i = {(r, 0) | r 2 I}

applyi(inc, m) = m{i 7! m(i) + 1}
evali(rd, m) =

X

r2I

m(r)

mergei(m, m0) = {(r, max(m(r), m0(r))) | r 2 I}

(a) State-based counter

⌃ = N �0
i = 0

preparei(inc, n) = inc

e↵ecti(inc, n) = n + 1

evali(rd, n) = n

(b) Op-based counter
Fig. 1: Counter CRDT in both state-based and op-based approaches.

2.3 Conflict-free Replicated Data Types Approaches

State-based CRDTs. These CRDTs maintain a state representation of an ob-
ject, which evolves according to a well defined partial order. A state evolves
via executing datatype operations or through applying a join operation, which
merges any two states, thus resolving conflicting states. State-based replicas of
an object converge by always shipping the entire local state, and applying the
join operation on received states. State-based CRDTs are costly as the entire
replica state must be shipped, but they demand less guarantees from the net-
work because joins are designed to be commutative, idempotent, and associative.
Figure 1a represents a state-based increment-only counter. In this paper we do
not address state-based CRDTs.

Operation-based CRDTs. In op-based CRDTs, representations of operations is-
sued at each node are reliably broadcast to all replicas. Once all replicas receive
all issued operations (on all nodes), they eventually converge to a single state,
if: (a) operations are broadcast via a reliable causal broadcast, and (b) ‘apply-
ing’ representations of concurrently issued operations is commutative. Op-based
CRDTs can often have a simple and compact state since they can rely on the
exactly-once delivery properties of the broadcast service, and thus do not have to
explicitly handle non-idempotent operations. Figure 1b represents an op-based
increment-only counter. The state contains a simple integer counter that is in-
cremented for each inc operation that is delivered.

The API of the underlying middleware at each node i provides an interface
method cbcasti(m) that sends a message m using causal broadcast. When apply-
ing an operation o at some node i with state �, function preparei(o,�) is called
returning a message m. This message is then broadcast by calling cbcasti(m).
Once m is delivered to each destination node j, e↵ectj(m,�) is called, return-
ing the new replica state �0. For each node that broadcasts a given operation,
the broadcast, the corresponding local delivery, and the e↵ect on the local state
are executed atomically. When a query operation q is performed, evali(q,�) is
invoked. eval takes the query and the state as input and may return a result
(leaving the state unchanged).

⌃ = N⇥ P(I ⇥N⇥ V) �0
i = (0, {})

preparei([add, v], (n, s)) = [add, v, i, n + 1]

e↵ecti([add, v, i0, n0], (n, s)) = (n0 if i = i0 otherwise n, s [{(v, i0, n0)})

preparei[rmv, v], (n, s)) = [rmv, {(v0, i0, n0) 2 s | v0 = v}]

e↵ecti([rmv, r], (n, s)) = (n, s \ r)

eval(rd, (n, s)) = {v | (v, i0, n0) 2 s}

Fig. 2: Standard op-based observed-remove add-wins set.

3 Pure Op-based CRDTs

In this section we introduce pure op-based CRDTs and discuss what datatypes
can be implemented as pure using standard causal broadcast.

Definition 1 (Pure op-based CRDT). An op-based CRDT is pure if mes-
sages contain only the operation (including arguments, if any). Given operation
o and state �, prepare is always defined as:

prepare(o,�) = o.

This means that prepare cannot build an arbitrary message depending on the
current state; in fact, in pure op-based CRDTs the operation can be immediately
broadcast without even reading the replica state. As an example, the counter
in Figure 1b is pure op-based, while the observed-remove set implementation
(from [6]) in Figure 2 is not, because in a remove operation prepare builds a
set of triples present in the current state, to be removed from the state at each
replica when performing e↵ect.

3.1 Pure Implementations of Commutative Datatypes

As we discuss now, the pure model of op-based CRDTs can be directly applied,
using standard reliable causal broadcast [10], to implement datatypes whose
operations are commutative.

Definition 2 (Commutative datatype). A concurrent datatype is commu-
tative if (a) for any operations f and g, their (sequential) invocation commutes:
f(g(�)) = g(f(�)), and (b) concurrent invocations are defined as equivalent to
some linearization.

Commutative datatypes reflect a principle of permutation equivalence [11]
stating that “If all sequential permutations of updates lead to equivalent states,
then it should also hold that concurrent executions of the updates lead to equiv-
alent states”.

As the extension to concurrent scenarios follows directly from their sequential
definition, with no room for design choices, commutative datatypes can have a

⌃ = N �0
i = 0

preparei(o,�) = o

e↵ecti(inc, n) = n + 1

e↵ecti(dec, n) = n � 1

evali(rd, n) = n

(a) Pure PN-counter

⌃ = P(V) �0
i = {}

preparei(o,�) = o

e↵ecti([add, v], s) = s [{v}
evali(rd, s) = s

(b) Pure grow-only set
Fig. 3: Pure op-based CRDTs for commutative datatypes.

standard sequential specification and implementation. As such, a pure op-based
CRDT implementation is trivial: as when using the standard causal broadcast,
the message returned from prepare, containing the operation, will arrive exactly
once at each replica, it is enough to make e↵ect consist simply in applying the
received operation to the state, over a standard sequential datatype, i.e., defining
for any datatype operation o:

e↵ecti(o,�) = o(�).

Two examples of commutative datatypes, presented in Figure 3, are: a PN-
counter with inc and dec operations; a grow-only set (G-set) with add operation.
Both cases use a standard sequential datatype for the replica state, and applying
e↵ect is just invoking the corresponding operation in the sequential datatype.
Both these examples explore commutativity and rely on the exactly-once deliv-
ery, leading to a trivial pure implementation.

3.2 Non-commutative Datatypes

In the case where datatype operations are not commutative, such as a set with
add and rmv operations, where add(v, rmv(v, s)) 6= rmv(v, add(v, s)), we have
two reasons that prevent e↵ect from being simply applying the operation over a
sequential datatype.

One reason is that, even when the semantics of concurrent invocations can
be defined as equivalent to some linearization of those operations, the messages
corresponding to concurrent operations will be, in general, delivered in di↵erent
orders in di↵erent replicas. Therefore, as the operations do not commute, simply
applying them in di↵erent orders in di↵erent replicas makes replicas diverge.
Under the assumption of causal delivery and the aim of convergence, e↵ect must
always be commutative, and therefore, cannot be defined directly as operations
that are not commutative themselves. It must be defined in some other way.

The other reason is that it is useful to specify concurrent datatypes in which
the outcomes of concurrent executions are not equivalent to some linearization.
The best example is the multi-value register, where two concurrent writes make
a read in their causal future return a set with both values written. This outcome
could not arise under a sequential specification.

state:
�i 2 ⌃

on operationi(o):
tcbcasti(prepare(o,�i))

on tcdeliveri(m, t):
�i := e↵ect(m, t,�i)

on tcstablei(t):
�i := stable(t,�i)

Algorithm 1: Distributed algorithm for node i using tagged causal broadcast.

In general, a concurrent datatype will have a specification depending on the
partial order of operations over the datatype. Given that such information about
that partial order is already present in metadata in causal delivery middleware,
we propose an approach for pure op-based CRDTs for general non-commutative
datatypes that leverages this metadata, now exposed by an extended causal
delivery API, what we call tagged reliable causal broadcast.

4 Tagged Reliable Causal Broadcast (TRCB)

A common implementation strategy for a reliable causal broadcast service [12]
is to assign a vector clock to each message broadcast and use the causality in-
formation in the vector clock to decide at each destination when a message can
be delivered. If a message arrives at a given destination before causally preced-
ing messages have been delivered, the service delays delivery of that message
until those messages arrive and are delivered. Unlike totally ordered broadcast,
which requires a global consensus on the delivery order, causal broadcast can
progress with local decisions. For general datatypes, causal consistency is likely
the strongest consistency criteria compatible with an always-available system
that eventually converges [13].

By leveraging this information, we can specify a reliable causal broadcast
service with an extended API, and refer to its broadcast operation at each replica
i as tcbcasti(m). Algorithm 1, running on each node i, shows how the events
triggered by the tagged causal delivery service are used to invoke the generic
functions for pure op-based CRDTs: prepare, e↵ect and stable; these functions,
in di↵erent variants, will be discussed in the following sections. This extended
service provides nodes with information about two aspects.

Partial order The first salient di↵erence is that message delivery on each node
i, given by the event tcdeliveri(m, t), provides not only the message m itself, but
also the vector clock timestamp t corresponding to m. When implementing pure
op-based CRDTs, in which only the operations are sent in messages, we can use
the timestamp supplied by the service upon delivery in the definition of e↵ect;
i.e., we can have e↵ect(o, t, s) as a function of the operation, the timestamp and
the current state.

As we will see in the next section, this information about the partial order
can be embedded in the state in a general way so that e↵ect is commutative and
reference implementations of general possibly non-commutative datatypes can
be obtained, following their specification. Moreover, in Section 6 we will see how
realistic e�cient pure CRDTs can be obtained, in which the use of this causality
information, together with the semantics of the datatype operations is essential.

Causal stability TRCB also provides information about what we denote by causal
stability.

Definition 3 (Causal Stability). A clock t, and corresponding message, is
causally stable at node i when all messages subsequently delivered at i will have
timestamp t0 � t;

This implies that no message with a timestamp t0 concurrent with t can be
delivered at i when t is causally stable at i. This notion di↵ers from classic mes-
sage stability [10] in which a message is stable if it has been delivered at all
nodes. Here we not only need this to happen but also that no further concur-
rent messages may be delivered. Therefore, causal stability is a stronger notion,
implying classic message stability.

The extended API will provide an event tcstablei(t) which will be triggered
when it is determined that t is stable at i. The middleware at node i can check
if timestamp t is causally stable at i by checking if a message with timestamp
t0 � t has already been delivered at i from every other other node j, i.e.:

tcstablei(t) when 8j 2 I \ {i} · 9t0 2 deliveredi() · origin(t0) = j ^ t t0,

where deliveredi() returns the set of messages that have been delivered at node
i, while origin(t) denotes the node from where the message corresponding to t
has been sent. To evaluate this clause e�ciently, the middleware only needs to
keep the most recently delivered timestamp from each origin [14].

We will see in Section 6 how causal stability can be used to reduce CRDT
state size, by stripping causality information from causally stable operations.

5 Pure CRDTs Based on a Partially Ordered Log

Having a tagged causal broadcast service, it is now possible to obtain a univer-
sal mechanism for obtaining pure reference implementations for any (possibly
non-commutative) concurrent datatype in which semantics are defined over the
partial order of operations.

The reference mechanism, presented in Figure 4, uses a uniform notion of
state for a replica: a partially ordered log of operations, what we call a PO-Log.
This uses the ordering information o↵ered by the messaging middleware to keep
information about concurrent operations, not trying to impose a local total-order
over them, contrary to a classic sequential log.

The PO-Log can be defined as a map (a partial function) T ,! O from
message timestamps (as given by the tagged causal broadcast service) to the

⌃ = T ,! O �0
i = {}

prepare(o, s) = o

e↵ect(o, t, s) = s [{(t, o)}
eval(q, s) = [datatype-specific query function over partial order]

Fig. 4: PO-Log based reference implementation for pure op-based CRDTs.

⌃ = T ,! O �0
i = {}

prepare(o, s) = o (with o either [add, v] or [rmv, v])

e↵ect(o, t, s) = s [{(t, o)}
eval(rd, s) = {v | (t, [add, v]) 2 s ^6 9(t0, [rmv, v]) 2 s · t < t0}

Fig. 5: PO-Log based observed-remove add-wins set.

corresponding operation. Here we have a universal datatype-independent defini-
tion of e↵ect as:

e↵ect(o, t, s) = s [{(t, o)},

which is trivially commutative, as needed. Only the query functions will need
datatype-specific definitions according to desired semantics. Their definition over
the PO-Log will typically be a direct transposition of their specification.

Figure 5 shows a pure PO-Log based implementation of an add-wins observed-
remove set over the new tcbcast service. The add-wins semantic is defined in the
rd query function: the set of values reported to be in the set are those values
that have been added with no rmv causally in the future of the add. Another
example, shown in Figure 6, is a multi-value register. Here a read reports the set
of all concurrently written values that have not been subsequently overwritten.

These reference implementations are not realistic to be actually used, namely
because state size in each replica is linear with the number of operations. They
are a starting point from which actual e�cient implementations can be derived,
by semantically based PO-Log compaction, as we show in the next section. But
they are relevant, as they provide a clear description of the concurrent semantics
of the replicated datatype. This is possible since we are capturing the partial
ordered set of all operations delivered to each replica. (A similar approach to
express the semantics is found in [15] when relating to the visibility relation.)

6 Semantically Based PO-Log Compaction

We now show how PO-Log based CRDTs can be made e�cient by performing
PO-Log compaction. There are two ingredients that we explore. The first one is
to prune the PO-Log after each operation is delivered in the e↵ect, so as to keep
the minimum number of operations such that all queries return the same result

⌃ = T ,! O �0
i = {}

prepare([wr, v], s) = [wr, v]

e↵ect([wr, v], t, s) = s [{(t, [wr, v])}
eval(rd, s) = {v | (t, [wr, v]) 2 s ^6 9(t0, [wr, v0]) 2 s · t < t0}

Fig. 6: PO-Log based multi-value register.

⌃ = T ,! O �0
i = {}

prepare(o, s) = o

e↵ect(o, t, s) = {x 2 s | ¬ obsolete(x, (t, o))} [{(t, o) | x 2 s) ¬ obsolete((t, o), x)}
obsolete() = [datatype-specific relation to identify obsolete operations]

eval(q, s) = [datatype-specific query function over partial order]

Fig. 7: Reference implementation for PO-Log compaction.

as when the full PO-Log is present. The second one is to explore causal stability
information, to discard timestamp information for elements once they become
stable, possibly merging some elements.

6.1 Exploring Causality Information

As the possibility of discarding operations while preserving semantics is datatype
dependent, we propose a unified framework which includes the PO-Log, prepare,
and a more sofisticated e↵ect which makes use of a datatype-specific relation to
discard operations made irrelevant by newer arrivals, according to both operation
content and corresponding timestamp, as shown in Figure 7.

This relation between pairs timestamp-operation – obsolete((t, o), (t0, o0)) –
is used by e↵ect in the following way: when a new pair (t, o) is delivered to a
replica, e↵ect discards from the PO-Log all elements x such that obsolete(x, (t, o))
holds; also, the delivered pair (t, o) is only inserted into the PO-Log if it is not
redundant itself, according to the current elements, i.e., if for any current x
in the PO-Log obsolete((t, o), x) is false. This relation is not restricted to be a
partial-order, but can be a more general relation, allowing, e.g., a newly arrived
operation to discard others in the PO-Log without necessarily being itself added.

It is easy to see by simple induction that this execution mechanism pro-
vides the invariant that for any two di↵erent pairs p1 and p2 in the PO-Log,
obsolete(p1, p2) is false. This invariant allows reasoning about the datatype,
namely to be able to write simplified query functions that give the same result
over the compact PO-Log as the original query functions over the full PO-Log.

An observed-remove add-wins set using the PO-Log compaction framework
can be seen in Figure 8 (which presents only the datatype-specific funtions). Here
it can be clearly seen that obsolete was defined directly according to the essence

obsolete((t, [add, v]), (t0, [add, v0])) = t < t0 ^ v = v0

obsolete((t, [add, v]), (t0, [rmv, v0])) = t < t0 ^ v = v0

obsolete((t, [rmv, v]), x) = true

eval(rd, s) = {v | (t, [add, v]) 2 s}

Fig. 8: Observed-remove add-wins set with PO-Log compaction.

obsolete((t, [wr, v]), (t0, [wr, v0])) = t < t0

eval(rd, s) = {v | (t, [wr, v]) 2 s}

Fig. 9: Multi-value registed with PO-Log compaction.

of the datatype: a subsequent add obsoletes a previous add of the same value; a
rmv obsoletes an add of the same value. The more interesting rule is that any rmv
is made obsolete by any other timestamp-operation pair; this implies that a rmv
can only exist as the single element of a PO-Log (if it was inserted into an empty
PO-Log), being discarded once other operation arrives (including another rmv),
and never being inserted into a non-empty PO-Log. This reflects the add-wins
nature, in which the role of a rmv is basically to discard same-value additions in
its causal past. Under the now compacted PO-Log, the query function rd can be
defined in a simple way, and clearly seen to give the same result as the original
one over the full PO-Log (in Figure 5).

Another example where PO-Log compaction leads to an e�cient datatype is
the multi-value register, in Figure 9, where it is obvious the e↵ect of a write in
making all writes in its causal past obsolete, regardless of value written. The set
of concurrent writes that have not been made obsolete will be returned in a read,
which is equivalent to the original definition in Figure 6 over the full PO-Log.

6.2 Exploring Causal Stability Information

The second component of PO-Log compaction involves using causal stability to
strip logical clocks from the PO-Log. From the definition of causal stability, if
some pair (t, o) is in the PO-Log, with t causally stable, all future deliveries
(t0, o0) used in e↵ect will be causally in the future, i.e., t0 > t.

Because e↵ect only compares, through obsolete, new arrivals and PO-Log
elements – but never PO-Log elements among themselves – and for a stable
t, all future deliveries will be causally in its future, the value of t is no longer
needed, and it can be replaced by any timestamp that is less than all other
timestamps: the bottom (?) of the timestamp domain; e.g., a null map {} for a
vector-clock timestamp.

In practice this means that, instead of having timestamps that are maps/vectors
with size linear on the number of replicas, we can have a special marker denoting

⌃ = P(O) ⇥ (T ,! O) �0
i = ({}, {})

prepare(o, (s, p)) = o

e↵ect(o, t, (s, p)) = (s0, p0), where

s0 = {x 2 s | ¬ obsolete((?, x), (t, o))}
p0 = {x 2 p | ¬ obsolete(x, (t, o))} [{(t, o) | x 2 p) ¬ obsolete((t, o), x)},

stable(t, (s, p)) = (s [p(t), p \ {(t, p(t))})

obsolete() = [datatype-specific relation to identify obsolete operations]

eval(q, (s, p)) = [datatype-specific query function over PO-Log]

Fig. 10: Full PO-Log compaction framework exploring causal stability.

bottom (e.g. a null pointer). This greatly diminishes the size of a replica state for
two reasons. For some CRDTs where size may be a problem, like sets of integers,
values may take considerably less space than timestamps, which constitute the
great percentage of state size; stripping a timestamp from an element can be
a huge percentual improvement per element. The second reason is that, again
in such scenarios with large states, the percentage of elements in the PO-Log
that are not yet causally stable will be quite small, with most already stable.
This means that this optimization, which gives good results per element, will be
applied to most elements, leading to a large overall improvement.

Instead of being a map T ,! O, the PO-Log is split in P(O)⇥ (T ,! O), de-
taching into a plain set all operations that have stable timestamps (i.e., making
the ? timestamp implicit). A new framework using the split PO-Log is presented
in Figure 10. In e↵ect a new delivery possibly discards elements both from the
set of operations and the partially ordered set of operations; elements from the
latter are used to decide on the addition of the new delivery, as before. (The
possibility of a stable operation obsoleting a new arrival, in its causal future, is
not considered, but this can easily be changed if some example shows its useful-
ness.) In stable, the operation corresponding to a stable timestamp is fetched, to
be added to the set and the corresponding entry removed from the map.

This PO-Log split allows actual implementations, tailored to specific datatypes
to achieve further improvements. As an example, an or-set will have only (t, [add, v])
entries in its PO-Log (except for the singleton {(t, [rmv, v]}) which can be pre-
vented by a special rule); when elements become causally stable, only the value
v needs to be migrated and not the operation name. The set component of the
split PO-Log becomes a plain set of values (and not lists of operation-argument),
allowing traditional implementations of sets to be used, for example a bitmap if
the datatype is for a dense set of integers. (Such implementations will need spe-
cialized versions of e↵ect to avoid the implicit traversal of the set when applying
obsolete, but that is something desirable in any actual implementation.)

By exploiting both causality and causal stability information, made available
by the proposed tagged causal delivery API, we have paved the way for these

optimizations that allow pure op-based CRDTs that are much more suitable for
large datatypes than current designs.

7 Related Work

Weakly consistent replication The design of replicated systems that are always
available and eventually converge can be traced back to historical designs in [14,
16, 17], among others. Lazy Replication [18] allows enforcing causal consistency,
but may apply concurrent operations in di↵erent order in di↵erent replicas, pos-
sibly leading to divergence if operations are not commutative; TSAE [19] also
either applies concurrent operations in possibly di↵erent orders, or allows en-
forcing a total order compatible with causality, at the cost of delaying message
delivery. Both these systems use a message log, the former with complete causal-
ity information, but the log is pre-delivery, unseen by the application: operations
are applied sequentially to the current state and queries use only the state. In
our framework the PO-Log is post-delivery, being part of the datatype state,
maintains causality information and is used in query operations.

Conflict-free replicated data types The formalization of the commutativity re-
quirements for concurrent operations in replicated datatypes was introduced
in [8, 20], and that of the state based semi-lattices was presented in [9]. After-
wards, the integration of the two models with many extensions was presented
in Conflict-free Replicated Datatypes [6, 7]. Currently, CRDTs have made their
way into the industry through designing highly available scalable systems in
cloud databases like RIAK [2], and mobile gaming industry such as Rovio [21].

Message stability The notion of message stability was defined in [10] to represent
a message that has been received by all recipients; each replica can discard any
message it knows to be stable after delivering it. Similar notions are used in Lazy
Replication [18] and TSAE [19]. In all these cases the aim is message garbage
collection. Our definition of causal stability is the stronger notion that no more
concurrent messages will be delivered ; here we use it inside the datatype both
to discard operations acting as tombstones, and to discard causality information
while keeping the operation. Causal stability is close to what is used in the
mechanics of Replicated Growable Arrays (RGA) [20], although no definition is
presented there.

Message obsolescence Semantically reliable multicast [22] uses the concept of
message obsolescence to avoid delivering messages made redundant by some
newly arrived message, where obsolescence is a strict partial order that is a subset
of causality, possibly relating messages from the same sender or totally ordered
messsages from di↵erent senders. Our obsolescence relation is more general, being
defined on clock-operation pairs, and can relate concurrent messages. Also, it is
defined per-datatype, being used inside each datatype, post-delivery.

8 Conclusions

In this paper we improved the CRDT model by introducing the stricter no-
tion of pure op-based, and establishing a clear frontier with state-based models,
breaking the equivalence between the two models for general datatypes. We have
shown which pure datatypes are possible over o↵-the-shelf causal delivery mid-
dleware and then introduce an extended API, tagged reliable broadcast, that
supports the remaining datatypes, those non-commutative in their sequential
specifications. Supported by this API, that conveys causal information present
in the middleware, we were able to define a partially ordered log, named PO-Log,
that supports a clear semantic description and abstract implementation of each
concurrent datatype.

To obtain e�cient implementations we developed a framework for semantic
compaction of a PO-Log and, in a final step, resorted to a notion of causal
stability to determine when it is safe to strip PO-Log entries of their causal
order metadata. This final step allows eventually moving all data to a standard
sequential datatype, or a local database, and harvest the e�ciency gains of re-
using existing optimized data structures and database engines.

Having exemplified the framework with relevant non-trivial datatypes (repli-
cated sets and registers) we expect that future research, and the existing devel-
oper community, can apply these techniques to other derived datatypes, such a
maps, graphs, and sequences.

Aknowledgments We would like to thank Marek Zawirski, Ricardo Gonçalves
and anonymous reviewers for comments that helped improve this work. Project
Norte-01-0124-FEDER-000058 is co-financed by the North Portugal Regional
Operational Programme (ON.2 O Novo Norte), under the National Strategic
Reference Framework (NSRF), through the European Regional Development
Fund (ERDF). Funding from the European Union Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement 609551, SyncFree project.

References

1. Vogels, W.: Eventually consistent. ACM Queue 6(6) (October 2008) 14–19
2. Cribbs, S., Brown, R.: Data structures in Riak. In: Riak Conference (RICON),

San Francisco, CA, USA (oct 2012)
3. Bailis, P., Ghodsi, A.: Eventual consistency today: Limitations, extensions, and

beyond. Queue 11(3) (March 2013) 20:20–20:32
4. Terry, D.B., Theimer, M.M., Petersen, K., Demers, A.J., Spreitzer, M.J., Hauser,

C.H.: Managing update conflicts in Bayou, a weakly connected replicated storage
system. In: Symp. on Op. Sys. Principles (SOSP), Copper Mountain, CO, USA,
ACM SIGOPS, ACM Press (December 1995) 172–182

5. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s highly avail-
able key-value store. In: Symp. on Op. Sys. Principles (SOSP). Volume 41 of
Operating Systems Review., Stevenson, Washington, USA, Assoc. for Computing
Machinery (October 2007) 205–220

6. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: A comprehensive study of
Convergent and Commutative Replicated Data Types. Rapp. Rech. 7506, Institut
National de la Recherche en Informatique et Automatique (INRIA), Rocquencourt,
France (January 2011)

7. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Conflict-free replicated data
types. In Défago, X., Petit, F., Villain, V., eds.: Int. Symp. on Stabilization, Safety,
and Security of Distributed Systems (SSS). Volume 6976 of Lecture Notes in Comp.
Sc., Grenoble, France, Springer-Verlag (October 2011) 386–400

8. Letia, M., Preguiça, N., Shapiro, M.: CRDTs: Consistency without concurrency
control. Rapp. Rech. RR-6956, Institut National de la Recherche en Informatique
et Automatique (INRIA), Rocquencourt, France (June 2009)

9. Baquero, C., Moura, F.: Using structural characteristics for autonomous operation.
Operating Systems Review 33(4) (1999) 90–96

10. Birman, K., Schiper, A., Stephenson, P.: Lightweight causal and atomic group
multicast. ACM Trans. Comput. Syst. 9(3) (August 1991) 272–314

11. Bieniusa, A., Zawirski, M., Preguiça, N., Shapiro, M., Baquero, C., Balegas, V.,
Duarte, S.: Brief announcement: Semantics of eventually consistent replicated sets.
In Aguilera, M.K., ed.: Int. Symp. on Dist. Comp. (DISC). Volume 7611 of Lecture
Notes in Comp. Sc., Salvador, Bahia, Brazil, Springer-Verlag (October 2012) 441–
442

12. Schmuck, F.B.: The use of e�cient broadcast protocols in asynchronous distributed
systems. Technical Report TR 88-928, Cornell University (1988)

13. Mahajan, P., Alvisi, L., Dahlin, M.: Consistency, availability, and convergence.
Technical Report UTCS TR-11-22, Dept. of Comp. Sc., The U. of Texas at Austin,
Austin, TX, USA (2011)

14. Wuu, G.T.J., Bernstein, A.J.: E�cient solutions to the replicated log and dictio-
nary problems. In: Symp. on Principles of Dist. Comp. (PODC), Vancouver, BC,
Canada (August 1984) 233–242

15. Burckhardt, S., Gotsman, A., Yang, H., Zawirski, M.: Replicated data types:
specification, verification, optimality. [23] 271–284

16. Johnson, P.R., Thomas, R.H.: The maintenance of duplicate databases. Internet
Request for Comments RFC 677, Information Sciences Institute (January 1976)

17. Quarterman, J.S., Hoskins, J.C.: Notable computer networks. Commun. ACM
29(10) (October 1986) 932–971

18. Ladin, R., Liskov, B., Shrira, L., Ghemawat, S.: Providing high availability using
lazy replication. ACM Trans. Comput. Syst. 10(4) (November 1992) 360–391

19. Golding, R.A.: Weak-consistency group communication and membership. PhD
thesis, University of California Santa Cruz, Santa Cruz, CA, USA (December 1992)
Tech. Report no. UCSC-CRL-92-52.

20. Roh, H.G., Jeon, M., Kim, J.S., Lee, J.: Replicated Abstract Data Types: Building
blocks for collaborative applications. Journal of Parallel and Dist. Comp. 71(3)
(March 2011) 354–368

21. Rovio Entertainment Ltd.: Rovio gaming. http://www.rovio.com/en (2013)
22. Pereira, J., Rodrigues, L., Oliveira, R.: Semantically reliable multicast: Defini-

tion, implementation, and performance evaluation. IEEE Trans. Comput. 52(2)
(February 2003) 150–165

23. Jagannathan, S., Sewell, P., eds.: The 41st Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’14, San Diego, CA,
USA, January 20-21, 2014. In Jagannathan, S., Sewell, P., eds.: POPL, ACM
(2014)

B WRITE FAST, READ IN THE PAST- CAUSAL CONSISTENCY
FOR CLIENT-SIDE APPLICATIONS

B Write Fast, Read in the Past- Causal Consis-
tency for Client-side Applications

This article is currently under submission with double-blind review. Brie is the
codeword for SwiftCloud, in order to make the submission anonymous.

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 60

Write Fast, Read in the Past: Causal
Consistency for Client-side Applications

EuroSys 2015 Paper #174 Total length: 14 pages

Abstract
Client-side (e.g., mobile or in-browser) apps need local ac-
cess to shared cloud data, but current technologies either
do not provide fault-tolerant consistency guarantees, or do
not scale to high numbers of unreliable and resource-poor
clients, or both. Addressing this issue, we describe the Brie
distributed object database, which supports high numbers of
client-side partial replicas. Brie offers fast reads and writes
from a causally-consistent client-side cache. It is scalable,
thanks to small and bounded metadata, and available, toler-
ating faults and intermittent connectivity by switching be-
tween data centres. The price to pay is a modest amount of
staleness. This paper present the Brie algorithms, design, and
experimental evaluation, which shows that client-side apps
enjoy the same guarantees as a cloud data store, at a small
cost.

1. Introduction
Client-side applications, such as in-browser and mobile
apps, are poorly supported by the current technology for
sharing mutable data over the wide-area. Existing client-side
systems either make only limited consistency guarantees, or
do not scale to large numbers of client devices, or both. App
developers may resort to implementing their own ad-hoc
application-level cache, in order to avoid slow, costly and
sometimes unavailable round-trips to a data centre, but they
cannot solve system issues such as fault tolerance or ses-
sion guarantees [36]. Recent application frameworks such as
Google Drive Realtime API [14], TouchDevelop [12] or Mo-
bius [15] support client-side access at a small scale, but do
not provide system-wide consistency and/or fault tolerance
guarantees. Algorithms for geo-replication [5, 6, 19, 25, 26]
or for managing database replicas on clients [10, 28] ensure
some of the right properties, but were not designed to sup-
port high numbers of client replicas.

Our thesis is that the system should be responsible for
ensuring correct and scalable database access to client-side
applications. It should address the (somewhat conflicting)
requirements of consistency, availability, and convergence
[27], at least as well as geo-replication systems. Concurrent
updates (which are unavoidable if updates are to be always
available) should not be lost, nor cause the database to di-
verge permanently. Under these requirements, the strongest

possible consistency model is causal consistency where con-
current updates to objects converge [25, 27].

Supporting thousands or millions of client-side replicas
challenges classical assumptions. To track causality pre-
cisely, per client, creates unacceptably fat metadata; but
the more compact server-side metadata management has
fault-tolerance issues. Full replication at high numbers of
resource-poor devices would be unacceptable [10]; but par-
tial replication of data and metadata could cause anomalous
message delivery or unavailability. It is not possible to as-
sume, like many previous systems, that fault tolerance or
consistency is solved by locating the application is located
inside the data centre (DC), or has a sticky session to a sin-
gle DC [7, 36].

This work addresses these challenges. We present the al-
gorithms, design, and evaluation of Brie, the first distributed
object store designed for a high number of replicas. It effi-
ciently ensures consistent, available, and convergent access
to client nodes, tolerating failures. To enable both small
metadata and fault tolerance, Brie uses a flexible client-
server topology, and decouples reads from writes. The client
writes fast into the local cache, and reads in the past (also
fast) data that is consistent, but occasionally stale. The novel
aspects of our approach include:

Cloud-backed support for partial replicas (§3) A DC
serves a consistent view of the database to the client, which
the client merges with its own updates. In some failure sit-
uations, a client may connect to a DC that happens to be
inconsistent with its previous DC. Because it does not have
a full replica, the client cannot fix the issue on its own. We
leverage “reading in the past” to avoid this situation in the
common case, and provide control over the inherent trade-
off between staleness and unavailability. A client observes a
remote update only if it is stored in some number K ≥ 1 of
DCs [28]. The higher the value of K, the more likely that a
K-stable version is in both DCs, but the higher the staleness.

Protocols with decoupled, bounded metadata (§4)
Thanks to funnelling communication through DCs and to
“reading in the past,” our metadata design decouples track-
ing causality, which uses small vectors assigned in the back-
ground by DCs, from unique identification, based on client-
assigned scalar timestamps. This ensures that the size of

1 2014/10/11

DC#

DC#

DC# C#

C#

C#

C#

C#

C#
notification

A"
P"
I"

C# C#

C#

A"
P"
I"

A"
P"
I"

App#

App#

App#

geo-replication

transfer
fail-over!

Figure 1. System components (Application processes,
Clients, Data Centres), and their interfaces.

metadata is small and bounded. Furthermore, a DC can
prune its log independently of clients, ensuring safety by
storing a local summary of delivered updates.

We implement Brie and demonstrate experimentally that
our design reaches its objective, at a modest staleness cost.
We evaluate Brie in Amazon EC2, against a port of Walt-
Social [35] and against YCSB [16]. When data is cached,
response time is two orders of magnitude lower than for
server-based protocols with similar availability guarantees.
With three DC servers, the system can accommodate thou-
sands of client replicas. Metadata size does not depend on
the number of clients, the number of failures, or the size of
the database, and increases only slightly with the number of
DCs: on average, 15 bytes of metadata overhead per update,
compared to kilobytes for previous algorithms with similar
safety guarantees. Throughput is comparable to server-side
replication, and improved for high locality workloads. When
a DC fails, its clients switch to a new DC in under 1000 ms,
and remain consistent. Under normal conditions, 2-stability
causes fewer than 1% stale reads.

2. Problem overview
We consider support for a variety of client-side applications,
sharing a database of objects that the client can read and
update. We aim to scale to thousands of clients, spanning
the whole internet, and to a database of arbitrary size.

Fig. 1 illustrates our system model. A cloud infrastructure
connects a small set (say, tens) of geo-replicated data cen-
tres, and a large set (thousands) of clients. A DC has abun-
dant computational, storage and network resources. Simi-
larly to Sovran et al. [35], we abstract a DC as a powerful
sequential process that hosts a full replica of the database.1

DCs communicate in a peer-to-peer way. A DC may fail and
recover with its persistent memory intact.

Clients do not communicate directly, but only via DCs.
Normally, a client connects to a single DC; in case of failure
or roaming, to zero or more. A client may fail and recover
(e.g., disconnection during a flight) or permanently (e.g.,
destroyed phone) without prior warning. We consider only
non-byzantine failures.

1 We refer to prior work for the somewhat orthogonal issues of parallelism
and fault-tolerance within a DC [5, 19, 25, 26].

Client-side apps require high availability and respon-
siveness, i.e., to be able to read and update data quickly and
at all times. This can be achieved by replicating data locally,
and by synchronising updates in the background. However,
a client has limited resources; therefore, it hosts a cache that
contains only the small subset of the database of current in-
terest to the local app. It should not have to receive messages
relative to objects that it does not currently replicate [32]. Fi-
nally, control messages and piggy-backed metadata should
have small and bounded size.

Since a client replica is only partial, there cannot be a
guarantee of complete availability. The best we can expect is
partial availability, whereby an operation returns without
remote communication if the requested data is cached; and
after retrieving the data from a remote node (DC) otherwise.
If the data is not there and the network is down, the operation
may be unavailable, i.e., it either blocks or returns an error.

2.1 Consistency with convergence

Application programmers wish to observe a consistent view
of the global database. However, with availability as a re-
quirement, consistency options are limited [21, 27].

Causal consistency The strongest available and convergent
model is causal consistency [3, 27].

Informally, under causal consistency, every process ob-
serves a monotonically non-decreasing set of updates that
includes its own updates, in an order that respects the
causality between operations.2 Specifically, if an applica-
tion process reads x, and later reads y, and if the state of
x causally-depends on some update u to y, then the state of y
that it reads will include update u. When the application re-
quests y, we say there is a causal gap if the local replica has
not yet received u. The system must detect such a gap, and
wait until u is delivered before returning y, or avoid it in the
first place. Otherwise, reads with a causal gap expose both
application programmers and users to anomalies [25, 26].

We consider a transactional variant of causal consistency
to support multi-object operations: all the reads of a causal
transaction come from a same database snapshot, and either
all its updates are visible as a group, or none is [8, 25, 26].

Convergence Another requirement is convergence, which
consists of two properties: (i) At-least-once delivery (live-
ness): an update that is delivered (i.e., is visible by the app) at
some node, is delivered to all (interested) nodes after a finite
number of message exchanges; (ii) Confluence (safety): two
nodes that delivered the same set of updates read the same
value.

Causal consistency is not sufficient to guarantee conflu-
ence, as two replicas might receive the same updates in
different orders. Therefore, we rely on CRDTs, high-level

2 This subsumes the well-known session guarantees [13].

2 2014/10/11

data types that guarantee confluence and have rich semantics
[13, 34]. An update on a high-level object is not just an as-
signment, but is a high-level method associated with the ob-
ject’s type. For instance, a Set object supports add(element)
and remove(element); a Counter supports increment() and
decrement().

CRDTs include primitive last-writer-wins register
(LWW) and multi-value register (MVR) [1, 18, 22], but
also higher level types such as Sets, Lists, Maps, Graphs,
Counters, etc. [2, 33–35]. The implementation of high-level
objects is eased by adequate support from the system.
For instance, an object’s value may be defined not just by
the last update, but also depend on earlier updates; causal
consistency is helpful, by ensuring that they are not lost or
delivered out of order. As high-level updates are often not
idempotent (consider for instance increment()), safety also
demands at-most-once delivery.

Although each of these requirements may seem familiar
or simple in isolation, the combination with scalability to
high numbers of nodes and database size is a novel chal-
lenge.

2.2 Metadata design

Metadata serves to identify updates and to ensure correct-
ness. Metadata is piggy-backed on update messages, increas-
ing the cost of communication.

One common metadata design assigns each update a
timestamp as soon as it is generated on some originating
node. The causality data structures tend to grow “fat.” For
instance, dependency lists [25] grow with the number of up-
dates [19, 26, §3.3], whereas version vectors [10, 28] grow
with the number of clients. (Indeed, our experiments here-
after show that their size becomes unreasonable). We call
this the Client-Assigned, Safe but Fat approach.

An alternative delegates timestamping to a small number
of DC servers [5, 19, 26]. This enables the use of small vec-
tors, at the cost of losing some parallelism. However, this is
not fault tolerant if the client does not reside in a DC. For
instance, it may violate at-most-once delivery. Consider a
client transmitting update u to be timestamped by DC1. If
it does not receive an acknowledgement, it retries, say with
DC2 (fail-over). This may result in u receiving two distinct
timestamps, and being delivered twice. Duplicate delivery
violates safety for many confluent types, or otherwise com-
plicates their implementation considerably [4, 13, 26]. We
call this the Server-Assigned, Lean but Unsafe approach.

Clearly, neither “fat” nor “unsafe” is satisfactory.

2.3 Causal consistency with partial replication is hard

Since a partial replica receives only a subset of the updates,
and hence of metadata, it could miss some causal depen-
dencies [10]. Consider the following example: Alice posts a

photo on her wall (update a). Bob sees the photo and men-
tions in a message to Charles (update b), who in turn men-
tions it to David (update c). When David looks at Alice’s
wall, he expects to observe update a and view the photo.
However, if David’s machine does not cache Charles’ inbox,
it cannot observe the causal chain a → b → c and might
incorrectly deliver c without a. Metadata design should pro-
tect from such causal gaps, caused by transitive dependency
over absent objects.

Failures complicate the picture even more. Suppose
David sees Alice’s photo, and posts a comment to Alice’s
wall (update d). Now a failure occurs, and David’s machine
fails over to a new DC. Unfortunately, the new DC has not
yet received Bob’s update b, on which comment d causally
depends. Therefore, it cannot deliver the comment, i.e., ful-
fill convergence, without violating causal consistency. David
cannot read new objects from the DC for the same reason.3

Finally, a DC logs an individual update for only a limited
amount of time, but clients may be unavailable for unlimited
periods. Suppose that David’s comment d is accepted by
the DC, but David’s machine disconnects before receiving
the acknowledgement. Much later, after d has been executed
and purged away, David’s machine comes back, only to retry
d. This could violate at-most-once delivery; some previous
systems avoid this with fat version vectors [10, 28].

3. The Brie approach
We now describe a design that addresses the above chal-
lenges, first in the failure-free case, and next, how we support
DC failure.

3.1 Causal consistency at full DC replicas

Ensuring causal consistency at fully-replicated DCs is a
well-known problem [3, 19, 25, 26]. Our design is a hybrid
between state-based (storing and transmitting a whole ob-
ject states, called checkpoint) and log-based (sending and
transmitting operations incrementally) [10, 30]. Hereafter,
we focus on the log-based angle, and discuss checkpoints
only where relevant.

A database version, noted U , is any subset of updates,
ordered by causality. A version maps object identifiers to
values (via the read API), by applying the relevant subse-
quence of the log. We say that a version U has a causal
gap, or is inconsistent if it is not causally-closed, i.e., if
∃u, u′ : u → u′ ∧ u 6∈ U ∧ u′ ∈ U . As we illustrate shortly,
reading from an inconsistent version should be avoided, be-
cause, otherwise, subsequent accesses might violate causal-
ity. On the other hand, waiting for the gap to be filled would
increase latency and decrease availability. To side-step this

3 Note that David can still perform updates, but they cannot be delivered.
From David’s perspective, writes remain available. However, the system as
a whole does not converge.

3 2014/10/11

x.add(1) x.add(3)

V1 V2

y.add(2) y.add(1)

U1

(a) Initial state

x.add(1) x.add(3)

V1 V2

y.add(2) y.add(1)

x.add(4)

UC

read x
{1,3}

(b) Continuation from 2(a) to risky state

x.add(1)
x.add(3)

V1 V2

y.add(2) y.add(1)

x.add(4)
read x

{1}

UC

(c) Read-in-the-past: continuation from 2(a) to conservative state

Figure 2. Example evolution of states for two DCs, and a
client. x and y are Sets; box = update; arrow = causal depen-
dence (an optional text indicates the source of dependency);
dashed box = named database version/state.

conundrum, we adopt the approach of “reading in the past”
[3, 25]. Thus, a DC exposes a gapless but possibly delayed
state, noted V .

To illustrate, consider the example of Fig. 2(a). Objects
x and y are of type Set. DC 1 is in state U1 that includes
version V1 ⊆ U1, and DC 2 in a later state V2. Versions
V1 with value [x 7→ {1}, y 7→ {1}] and V2 with value
[x 7→ {1, 3}, y 7→ {1, 2}] are both gapless. However, version
U1, with value [x 7→ {1, 3}, y 7→ {1}] has a gap, missing
update y.add(2). When a client requests to read x at DC 1

in state U1, the DC could return the most recent version,
x = {1, 3}. However, if the application later requests y,
to return a safe value of y requires to wait for the missing
update from DC 2. By “reading in the past” instead, the same
replica exposes the older but gapless version V1, reading
x = {1}. Then, the second read will be satisfied immediately
with y = {1}. Once the missing update is received from
DC 2, DC 1 may advance from version V1 to V2.

A gapless algorithm maintains a causally-consistent,
monotonically non-decreasing progression of replica states
[3]. Given an update u, let us note u.deps its set of causal
predecessors, called its dependency set. If a full replica, in
some consistent state V , receives u, and its dependencies are
satisfied, i.e., u.deps ⊆ V , then it applies u. The new state is
V ′ = V ⊕ {u}, where we note by ⊕ a log merge operator
that filters out duplicates, further discussed in 4.1. State V ′

is consistent, and monotonicity is respected, since V ⊆ V ′.

If the dependencies are not met, the replica buffers u until
the causal gap is filled.

3.2 Causal consistency at partial client replicas

As a client replica contains only part of the database and
its metadata, this complicates consistency [10]. To avoid the
complexity, we leverage the DC’s full replicas to manage
gapless versions for the clients.

Given some interest set of objects the client is interested
in, its initial state consists of the projection of a DC state
onto the interest set. This is a causally-consistent state, as
shown in the previous section.

Client state can change either because of an update gen-
erated by the client itself, called an internal update, or be-
cause of one received from a DC, called external. An in-
ternal update obviously maintains causal consistency. If an
external update arrives, without gaps, from the same DC as
the previous one, it also also maintains causal consistency.

More formally, consider some recent DC state, which we
will call the base version of the client, noted VDC . The
interest set of client C is noted O ⊆ x, y, The client
state, noted VC , is restricted to these objects. It consists
of two parts. One is the projection of base version VDC

onto its interest set, noted VDC |O. The other is the log of
internal updates, noted UC . The client state is their merge
VC = VDC |O ⊕ UC |O. On cache miss, the client adds the
missing object to its interest set, and fetches the object from
base version VDC , thereby extending the projection.

Base version VDC is a monotonically non-decreasing
causal version (it might be slightly behind the actual cur-
rent state of the DC due to propagation delays). By induc-
tion, internal updates can causally depend, only on internal
updates, or on updates taken from the base version. There-
fore, a hypothetical full version VDC⊕UC would be causally
consistent. Its projection is equivalent to the client state:
(VDC ⊕ UC)|O = VDC |O ⊕ UC |O = VC .

This approach ensures partial availability. If a version is
in the cache, it is guaranteed causally consistent, although
possibly slightly stale. If it misses in the cache, the DC
returns a consistent version immediately. Furthermore, the
client replica can write fast, because it does not wait to com-
mit updates, but transfers them to its DC in the background.

Convergence is ensured, because the client’s base version
is maintained up to date by the DC, in the background.

3.3 Failing over: the issue with transitive causal
dependency

The approach described so far assumes that a client connects
to a single DC. In fact, a client can switch to a new DC
at any time, in particular in response to a failure. Although
each DC’s state is consistent, an update that is delivered to
one is not necessarily delivered in the other (because geo-
replication is asynchronous, to ensure DC availability and
for performance [9]), which may create a causal gap in the
client.

4 2014/10/11

To illustrate the problem, return to the example of
Fig. 2(a). Consider two DCs: DC 1 is in (consistent) state
V1, and DC 2 in (consistent) state V2; DC 1 does not include
two recent updates of V2. ClientC, connected to DC 2, repli-
cates object x only; its state is V2|{x}. Suppose that the client
reads the Set x = {1, 3}, and performs update u = add(4),
transitioning to the state shown in Fig. 2(b).

If this client now fails over to DC 1, and the two DCs
cannot communicate, the system is not live:
(1) Reads are not available: DC 1 cannot satisfy a request

for y, since the version read by the client is newer than
the DC 1 version, V2 6⊆ V1.

(2) Updates cannot be delivered (divergence): DC 1 cannot
deliver u, due to a missing dependency: u.deps 6⊆ V1.

Therefore, DC 1 must reject the client to avoid creating the
gap in state V1 ⊕ UC .

3.3.1 Conservative read: possibly stale, but safe

To avoid such gaps that cannot be satisfied, the insight is to
depend on updates that are likely to be present in the fail-
over DC, called K-stable updates.

A version V is K-stable if every one of its updates is
replicated in at leastK DCs, i.e., |{i ∈ DC | V ⊆ Vi}| ≥ K,
where K ≥ 1 is a threshold configured w.r.t. failures model.
To this effect, our system maintains a consistent K-stable
version V K

i ⊆ Vi, which contains the updates for which
DC i has received acknowledgements from at least K − 1
distinct other DCs.

A client’s base version must be K-stable, i.e., VC =
V K
i |O ⊕ UC |O, to support failover. In this way, the client

depends, either on external updates that are likely to be
found in any DC (V K

i), or internal ones, which the client
can always transfer to the new DC (UC).

To illustrate, let us return to Fig. 2(a), and consider the
conservative progression to Fig. 2(c), assuming K = 2. The
client’s read of x returns the 2-stable version {1}, avoiding
the dangerous dependency via an update on y. If DC 2 is
unavailable, the client can fail over to DC 1, reading y and
propagating its update remain both live.

By the same arguments as in §3.2, a DC version V K
i is

causally consistent and monotonically non-decreasing, and
hence the client’s version as well. Note that a client observes
his internal updates immediately, even if not K-stable.

Parameter K can be adjusted dynamically. Decreasing it
has immediate effect without impacting correctness. Increas-
ing K has effect only for future updates, in order to not vio-
late montonicity.

3.3.2 Causal consistency and partial replication:
discussion

The source of the problem is an indirect causal dependency
on an update that the two replicas do not both know about

(y.add(2) in our example). As this is an inherent issue, we
conjecture a general impossibility result, stating that gen-
uine partial replication, causal consistency, partial availabil-
ity and timely at-least-once delivery (convergence) are in-
compatible. Accordingly, some requirements must be re-
laxed.

Note that in many previous systems, this impossibility
translates to a trade-off between consistency and availability
on the one hand, and performance on the other [17, 25, 35]
By “reading in the past,” we displace this to a trade-off
between freshness and availability, controlled by adjusting
K. A higherK increases availability, but updates take longer
to be delivered;4 in the limit, K = N ensures complete
availability, but no client can transfer a new update when
some DC is unavailable.A lower K improves freshness, but
increases the probability that a client will not be able to fail
over, and that it will block until its original DC recovers.
In the limit, K = 1 is identical to the basic protocol from
§3.2, and is similar to previous blocking session-guarantee
protocols [36].
K = 2 is a good compromise for deplyoments with three

or more DCs that covers common scenarios of a DC failure
or disconnection [17, 23]. Our evaluation withK = 2 shows
that it incurs a negligible staleness.

Network partitions Client failover between DCs is safe
and generally live, except when the original set of K DCs
were partitioned away from both other DCs and the client,
shortly after they delivered a version to the client. In this
case, the client blocks. To side-step this unavoidable possi-
bility, we provide an unsafe API to read inconsistent data.

When a set of fewer thanK DCs is partitioned from other
DCs, the clients that connect to them do not deliver their up-
dates until the partition heals. To improve liveness in this
scenario, Brie supports two heuristics: (i) a partitioned DC
announces its “isolated” status, automatically recommend-
ing clients to use another DC, and (ii) clients who cannot
reach another DC that satisfies their dependencies can use
the isolated DCs with K temporarily lowered, risking un-
availability if another DC fails.

4. Implementation
We now describe a metadata and concrete protocols imple-
menting the abstract design.

4.1 Timestamps, vectors and log merge

The Brie approach requires metadata: (1) to uniquely iden-
tify an update; (2) to encode its causal dependencies; (3) to
identify and compare versions; (4) and to identify all the up-
dates of a transaction. We now propose a new type of meta-
data, which fulfils the requirements and has a low cost. It

4 The increased number of concurrent updates that this causes is not a
problem, thanks to confluent types.

5 2014/10/11

combines the strengths of the two approaches outlined in
Section 2.3 and is both lean and safe.

A timestamp is a pair (i, k) ∈ (DC ∪ C) × N, where
i identifies the node that assigned the timestamp (either a
DC or a client) and k is a sequence number. The metadata
assigned to some update u combines both: (i) a single client-
assigned timestamp u.tC that uniquely identifies the update,
and (ii) a set of zero or more DC-assigned timestamps
u.TDC . Before being delivered to a DC, the update has no DC
timestamp; it has one thereafter; it may have more than one
in case of delivery to multiple DCs (on failover, §3.3.1). The
updates in a transaction all have the same timestamp(s), to
ensure all-or-nothing delivery [35]. Our approach provides
the flexibility to refer to an update via any of its timestamps,
which is handy during failover.

We represent a version or a dependency as a version
vector [29]. A vector is a partial map from node ID to
integer, e.g., VV = [DC 1 7→ 1,DC 2 7→ 2], which we
interpret as a set of timestamps. For example, when VV
is used as a dependency for some update u, it means that
u causally depends on {(DC 1, 1), (DC 2, 1), (DC 2, 2)}. In
Brie protocols, every vector has at most one client entry,
and multiple DC entries; thus, its size is bounded by the
number of DCs, limiting network overhead. In contrast to a
dependence graph, a vector compactly represents transitive
dependencies and can be evaluated locally by any node.

Formally, the timestamps represented by a vector VV are
given by a function T :

T (VV) = {(i, k) ∈ dom(VV)× N | k ≤ VV (i)}

Similarly, the version decoding function V of vector VV on
a state U (defined for states U that cover all timestamps of
VV) selects every update in state U that matches the vector:

V(VV , U) = {u ∈ U | (u.TDC ∪ {u.tC}) ∩ T (VV) 6= ∅}

For the purpose of the decoding function V , a given up-
date can be referred equivalently through any of its times-
tamps. Moreover, V is stable with growing state U .

The log merge operator U1 ⊕ U2, which eliminates du-
plicates, is defined using client timestamps. Two updates
u1 ∈ U1, u2 ∈ U2 are identical if u1.tC = u2.tC . The merge
operator merges their DC timestamps into u ∈ U1⊕U2, such
that u.TDC = u1.TDC ∪ u2.TDC .

4.2 Protocols

We now describe the protocols of Brie by following the
lifetime of an update, and with reference to the names in
Fig. 1.

State A DC replica maintains its state UDC in durable stor-
age. The state respects causality and atomicity for each in-
dividual object, but due to internal concurrency, this may

not be true across objects. Therefore, the DC also has
a vector VVDC that identifies a safe, monotonically non-
decreasing causal version in the local state, which we note
VDC = V(VVDC , UDC).

A client replica stores the commit log of its own updates
UC , and the projection of the base version from the DC, re-
stricted to its interest set O, VDC |O, as described previously
in §3.2. It also stores a copy of vector VVDC that describes
the base version.

Client-side execution When the application starts a trans-
action τ at client C, the client replica initialises it with an
empty buffer of updates τ.U = ∅ and a snapshot vector
of the current base version τ.depsVV = VVDC ; the base
version can be updated concurrently with the transaction ex-
ecution. A read in transaction τ is answered from the version
identified by the snapshot vector, merged with recent inter-
nal updates, τ.V = V(τ.depsVV , VDC |O)⊕UC |O⊕τ.U . If
the requested object is not in the client’s interest set, o 6∈ O,
the clients extends its interest set, and returns the value once
the DC updates the base version projection.

When the application issues internal update u, it is ap-
pended to the transaction buffer τ.U ← τ.U ⊕ {u}, and in-
cluded in any later read. The transaction commits locally at
the client and never fails [26].5 If the transaction made up-
date u ∈ τ.U , the client replica commits it locally as fol-
lows: (1) assign it client timestamp u.tC = (C, k), where
k counts the number of updates at the client; (2) assign it a
dependency vector initialised with the transaction snapshot
vector u.depsVV = τ.depsVV ; (3) append it to the com-
mit log of local updates on stable storage UC ← UC ⊕ {u}.
This terminates the transaction; the client is now free to start
a new one, which will observe the committed updates.

Transfer protocol: Client to DC The transfer protocol
transmits committed updates from a client to its current DC,
in the background. It repeatedly picks the first unacknowl-
edged committed update u from the log. If any of u’s internal
dependencies has recently been assigned a DC timestamp, it
merges this timestamp into the dependency vector. Then, the
client sends a copy of u to its current DC. The client ex-
pects to receive an acknowledgement from the DC, contain-
ing the timestamp T that the DC assigned to update u. If so,
the client records the DC timestamp(s) in the original update
record u.TDC ← T .

It may now iterate with the next update in the log.

A transfer request may fail for three reasons:

(a) Timeout: the DC is suspected unavailable; the client con-
nects to another DC (failover) and repeats the protocol.

5 To simplify the notation, and without loss of generality, we assume
hereafter that a transaction performs at most one update. This is easily
extended to multiple updates, by assigning the same timestamp to all the
updates of the same transaction, ensuring the all-or-nothing property [35].

6 2014/10/11

(b) The DC reports a missing internal dependency, i.e., it
has not received some update of the client, as a result
of a previous failover. The client recovers by marking
as unacknowledged all internal updates starting from the
oldest missing dependency, and restarting the transfer
protocol from that point.

(c) The DC reports a missing external dependency; this is
also an effect of failover. In this case, the client tries yet
another DC. The approach from §3.3.1 avoids repeated
failures.

Upon receiving update u, the DC verifies if it dependen-
cies are satisfied, i.e., if T (u.depsVV) ⊆ T (VVDC). (If
this check fails, it reports an error to the client, indicating
either case (b) or (c)). If the DC has not received this up-
date previously, i.e., ∀u′ ∈ UDC : u′.tC 6= u.tC , the DC
does the following: (1) Assign it a DC timestamp u.TDC ←
{(DC ,VVDC (DC) + 1))}, (2) store it in its durable state
UDC ⊕ {u}, (3) make the update visible in the DC version
VDC , by incorporating its timestamp(s) into VVDC . This
last step makes u available to the geo-replication and notifi-
cation protocols, described hereafter. If the update has been
received before, the DC looks up its previously-assigned DC
timestamps, u.TDC . In either case, the DC acknowledges the
transfer to the client with the DC timestamp(s). Note that
steps (1)–(2) can be parallelised between transfer requests
received from different client replicas.

Geo-replication protocol: DC to DC The geo-replication
protocol consists of a uniform reliable broadcast across DCs.
An update enters the geo-replication protocol when a DC ac-
cepts a fresh update during the transfer protocol. The accept-
ing DC broadcasts it to all other DCs. A DC that receives a
broadcast message containing u does the following: (1) If
the dependencies of u are not met, i.e., if T (u.depsVV) 6⊆
T (VVDC), buffer it until they are; and (2) incorporate u into
durable state UDC ⊕ {u} (if u is not fresh, the duplicate-
resilient log merge safely unions all timestamps), and incor-
porate its timestamp(s) into the DC version vector VVDC .
This last step makes it available to the notification protocol.
The K-stable version V K

DC is computed similarly.

Notification protocol: DC to Client A DC maintains a
best-effort notification session, over a FIFO channel, to each
of its connected clients. The soft state of a session includes
a copy of the client’s interest set O and the last known base
version vector used by the client, VVDC

′. The DC accepts
a new session only if its own state is consistent with the
base version of the client, i.e., if T (VVDC

′) ⊆ T (VVDC).
Otherwise, the DC would cause a causal gap with the client’s
state; in this case, the client is redirected to another DC (see
§3.3.1).

The DC sends over each channel a causal stream of up-
date notifications.6 Notifications are batched according to ei-
ther time or to rate [10]. A notification packet consists of a
new base version vector VVDC , and a sequence of log of
all the updates U∆ to the objects of the interest set, between
the client’s previous base vector VVDC

′ and the new one.
Formally, U∆ = {u ∈ UDC |O | u.TDC ∩ (T (VVDC) \
T (VVDC

′)) 6= ∅}. The client applies the newly-received
updates to its local state, described by the old base ver-
sion: VDC |O ← VDC |O ⊕ U∆, and assumes the new vec-
tor VVDC . If any of received updates is a duplicate w.r.t. to
the old version or to a local update, the log merge operator
handles it safely.

When the client detects a broken channel, it reinitiates the
session, possibly on a new DC.

The interest set can change dynamically. When an object
is evicted from the cache, the notifications are lazily unsub-
scribed to save resources. When it is extended with object
o, the DC responds with the current version of o, which in-
cludes all updates to o up to the base version vector. To avoid
races, a notification includes a hash of the interest set, which
the client checks.

4.3 Object checkpoints and log pruning

Update logs contribute to substantial storage and, to smaller
extent, network costs. To avoid unbounded growth, pruning
protocol prediocially replaces the prefix of a log and by a
checkpoint. In the common case, a checkpoint is more com-
pact than the corresponding log of updates; for instance, a
log containing one thousand increments to a Counter object
and their timestamps, can be replaced by a checkpoint con-
taining just the number 1000 and a version vector.

4.3.1 Log pruning in the DC

The log at a DC provides (a) unique timestamp identifica-
tion of each update, which serves to filter out duplicates by⊕
operator, as explained earlier, and (b) the capability to com-
pute different versions, for application processes reading at
different causal times. Update u is expendable once all of
its duplicates have been filtered out, and once u has been
delivered to all interested application processes. However,
evaluating expendability precisely would require access to
the client replica states.

In practice, we need to prune aggressively, but still avoid
the above issues, as we explain next.

In order to reduce the risk of pruning a version not yet
delivered to an interested application (which could force it
to restart an ongoing transaction), we prune only a delayed
version VV ∆

i , where ∆ is a real-time delay [25, 26].
To avoid duplicates, we extend our DC local metadata as

follows. DC i maintains an at-most-once guard Gi, which

6 Alternatively, the client can ask for invalidations instead, trading respon-
siveness for lower bandwidth utilization and higher DC throughput.

7 2014/10/11

YCSB [16] SocialApp [35]
Type of objects LWW Map Set, Counter, Register
Object payload 10× 100 bytes variable

Read txns
read fields read wall (80%)

(A: 50% / B: 95%) see friends (8%)

Update txns
update field message (5%)

(A: 50% / B:5%) post status (5%)
add friend (2%)

Objects / txn 1 (non-txnal) 2–5
Database size 50,000 objects 400,000 objects

Object popularity uniform / zipfian uniform
Session locality 40% (low) / 80% (high)

Table 1. Characteristics of applications/workloads.

records the sequence number of each client’s last pruned up-
date Gi : C → N. Whenever the DC receives a transfer
request for update u with timestamp (C, k) = u.tC and can-
not find it in its log, it checks the at-most-once guard en-
try whether u is contained in the checkpoint. If the update
was already pruned away (Gi(C) ≥ k), the update is ig-
nored; the DC discarded information about the exact set of
update’s DC timestamps in this case; therefore, in transfer
reply, they are overapproximated by vector VV ∆

i . Similarly,
on a client cache miss, the DC sends object state that con-
sists of the most recent checkpoint of the object together the
client’s guard entry, so that the client can merge it with his
updates safely. Note that a guard is local to and shared at a
DC. It is never fully transmitted.

4.3.2 Pruning the client’s log

Managing the log at a client is comparatively simpler. A
client logs his own updates UC , which may include updates
to object that is currently out of his interest set. This enables
the client to read its own updates, and to propagate them
lazily to a DC when connected. An update u can be discarded
as soon as it appears inK-stable base version V K

i , i.e., when
the client becomes dependent on the presence of u at a DC.

5. Evaluation
We implement Brie and evaluate it experimentally, in com-
parison to other protocols. In particular, we show that Brie
provides: (i) fast response, under 1 ms for both reads and
writes to cached objects (§5.3); (ii) scalability of throughput
with the number of DCs, and small metadata size, linear in
the number of DCs (§5.4); (iii) fault-tolerance w.r.t. client
churn (§5.5) and DC failures (§5.6); and (iv) modest stale-
ness cost, under 3% of stale reads (§5.7).

5.1 Implementation and applications

Brie and the benchmark applications are implemented in
Java. Brie uses a library of CRDT types, BerkeleyDB for
durable storage (turned off in the present experiments), and

Kryo for data marshalling. A client cache has a fixed size
and uses an LRU eviction policy.

Our client API resembles modern object stores, such as
Riak 2.0, Redis, or COPS [2, 25, 31]:
begin_transaction () read (object) : value
commit_transaction () update(object, method(args . . .))

Along the lines of previous studies of weak consistency
[5, 6, 26, 35], we use two different benchmarks, YCSB and
SocialApp, summarized in Table 1.

YCSB [16] serves as a kind of micro-benchmark, with
simple requirements, measuring baseline costs and specific
system properties in isolation. It has a simple key-field-value
object model, implemented as a LWW Map type, using a
default payload size of ten fields of 100 bytes each. YCSB
issues single-object reads and writes. We use two of the
standard YCSB workloads: update-heavy Workload A, and
read-dominated Workload B. The object access pattern can
be set to either uniform or Zipfian. YCSB does not rely on
transactional semantics or high-level data types.

SocialApp is a social network application modelled
closely after WaltSocial [35]. It employs high-level data
types such as Sets, for friends and posts, LWW Register for
profile information, Counter for counting profile visits, and
inter-object references. SocialApp accesses multiple objects
in a causal transaction to ensure that operations such as read-
ing a wall page and profile information behave consistently.
The SocialApp workload is read-dominated, but the ostensi-
bly read-only operation of visiting a wall actually increments
the wall visit counter. The access distribution is uniform.

In order to model the locality behaviour of a client, both
YCSB and SocialApp are augmented with a facility to con-
trol locality, mimicking social network access patterns [11].
Within a client session, the application draws draws uni-
formly from a pool of session-specific objects with either
40% (low locality) or 80% (high locality) probability. Ob-
jects not drawn from this local pool are drawn from the
global (uniform or zipfian) distribution described above. The
size of the pool is smaller than the size of cache.

5.2 Experimental setup

We run three DCs in geographically distributed Ama-
zon EC2 availability zones (Europe, Virginia, and Oregon),
and a pool of distributed clients. Round-Trip Times (RTTs)
between nodes are as follows:

Oregon DC Virginia DC Europe DC
nearby clients 60–80 ms 60–80 ms 60–80 ms

Europe DC 177 ms 80 ms
Virginia DC 60 ms

Each DC runs on a single m3.m EC2 instance, equivalent
to a single core 64-bit 2.0 GHz Intel Xeon virtual processor
(2 ECUs) with 3.75 GB of RAM, and OpenJDK7 on Linux
3.2. Objects are pruned at random intervals between 60–
120 s, to avoid bursts of pruning activity. We deploy 500–

8 2014/10/11

Server replicas only Brie w/client replicas

0
R

T
T

1
R

T
T

2
R

T
T

locality potential

locality potential

0
R

T
T

1
R

T
T

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

Low
 locality

H
igh locality

0 50 100 150 200 250 0 50 100 150 200 250
operation response time [ms]

C
D

F
 fo

r
al

l s
es

si
on

s

read

update

Figure 3. Response time for YCSB operations (workload
A, zipfian object popularity) under different system and
workload locality configurations.

2,500 clients on a separate pool of 90 m3.m EC2 instances.
Clients load DCs uniformly and use the closest DC by de-
fault, with a client-DC RTT ranging in 60–80 ms.

For comparison, we provide three protocol modes based
on the Brie implementation: (i) Brie mode (default) with
client cache replicas of 256 objects, and refreshed with
notifications at a rate ≤1 s by default; (ii) Safe But Fat
metadata mode with cache, but with client-assigned meta-
data (similarly to PRACTI, or to Depot without cryptog-
raphy), (iii) server-side replication mode without client
caches. In this mode, an update incurs two RTTs to a DC,
modelling the cost of a synchronous writes to a quorum of
servers to ensure fault-tolerance comparable to Brie.

5.3 Response time and throughput

We run several experiments to compare Brie’s client-side
caching, with server-only geo-replication.

Fig. 3 shows response times for YCSB, comparing server-
only (left side) with client replication (right side), under low
(top) and high locality (bottom). Recall that in server-only
replication, a read incurs a RTT to the DC, whereas an up-
date incurs 2 RTTs. We expect Brie to provide much faster
response, at least for cached data. Indeed, the figure shows
that a significant fraction of operations respond immediately
in Brie mode, and this fraction tracks the locality of the
workload (marked “locality potential” on the figure), within
a±7.5 percentage-point margin, attributable to caching arte-
facts. The remaining operations require one round-trip to the
DC, indicated as 1 RTT. As our measurements for SocialApp
show the same message, we do not report them here. These
results demonstrate that the consistency guarantees and the
rich programming interface of Brie do not affect responsive-
ness of read and update caching.

In terms of throughput, client-side replication is a mixed
blessing: it lets client replicas absorb read requests that
would otherwise reach the DC, but also puts extra load of
maintaining client replicas on DCs. In another experiment
(not plotted), we saturate the system to determine its max-

YCSB A (50% updates) YCSB B (5% updates)

1

10

100

1000

1

10

100

1000
zipfian distrib.

uniform
 distrib.

1250 2500 5000 5000 10000 20000
throughput [txn/s]

re
sp

on
se

 ti
m

e
[m

s]

server replicas only, 70th percentile of response time (exp. local)
client replicas, 70th percentile of response time (exp. local)
server replicas only, 95th percentile of respone time (remote)
client replicas, 95th percentile of respone time (remote)

Figure 4. Throughput vs. response time for different system
configurations running variants of YCSB.

imum throughput. Brie’s client-side replication consistently
improving throughput for high-locality workloads, by 7% up
to 128%. It is especially beneficial to read-heavy workloads.
In contrast, low-locality workloads show no clear trend; de-
pending on the workload, throughput either increases by up
to 38%, or decrease by up to 11% with Brie.

Our next experiment studies how response times vary
with server load and with the staleness settings. The results
show that, as expected, cached objects respond immediately
and are always available, but the responsiveness of cache
misses depends on server load. For this study, Fig. 4 plots
throughput vs. response time, for YCSB A (left side) and B
(right side), both for the Zipfian (top) and uniform (bottom)
distributions. Each point represents the aggregated through-
put and latency for a given transaction incoming rate, which
we increase until reaching the saturation point.

The curves report two percentiles of response time: the
lower (70 th percentile) line represents the response time for
requests that hit in the cache (the session locality level is
80%), whereas the higher (95 th percentile) line represents
misses, i.e., requests served by a DC.

As expected, the lower (cached) percentile consistently
outperforms the server-side baseline, for all workloads and
transaction rates. A separate analysis, not reported in detail
here, reveals that a saturated DC slows down its rate of
notifications, increasing staleness, but this does not impact
response time, as desired. In contrast, the higher percentile
follows the trend of server-side replication response time,
increasing remote access time.

Varying the target notification rate (not plotted) between
500 ms and 1000 ms, reveals the same trend: response time
is not affected by the increased staleness. At a lower refresh
rate, notification batches are less frequent but larger. This
increases throughput for the update-heavy Workload A (up
to tens of percent points), but has no effect on the throughput

9 2014/10/11

●
●

● ●

● ● ●
●

● ● ● ● ●● ● ● ● ●
/ limit

●

● ●

●

●

●

●
●

●
●

●

●
●

● ●
●

●

●

/ limit

● ● ●
● ●

● ● ● ● ●

● ●
● ● ●●

● ● ● ●

YCSB A, uniform YCSB B, uniform SocialApp

0

5000

10000

15000

20000

25000

500 1500 2500 500 1500 2500 500 1500 2500
#client replicas

m
ax

. t
hr

ou
gh

pu
t [

tx
n/

s] ●●

●●

refresh rate 1s
refresh rate 10s

3 DC replicas
1 DC replica

Figure 5. Maximum system throughput for a variable num-
ber of client and server (DC) replicas.

YCSB A, uniform YCSB B, uniform SocialApp w/stats

max. notification data max. notification data max. notification data

10

100

1K

10K

100K

500 1500 2500500 1500 2500500 1500 2500
#client replicas

no
tif

ic
at

io
n

m
et

ad
at

a
[B

]

Brie metadata
Safe But Fat metadata (Depot*)

1 DC replica
3 DC replicas

Figure 6. Size of metadata in notification message for a
variable number of replicas, mean and standard error. Nor-
malised to a notification of 10 updates.

of read-heavy Workload B. However, we expect the impact
of refresh rate to be amplified for workloads with lower rate
of notification updates.

5.4 Scalability

Next, we measure how well Brie scales with increasing num-
bers of DC and of client replicas. Of course, performance is
expected to increase with more DCs, but most importantly,
the size of metadata should be small, should increase only
marginally with the number of DCs, and should not depend
on the number of clients. Our results support these expecta-
tions.

In this experiment, we run execute Brie with a variable
number of client (500–2500) and server (1–3) replicas. We
report only on the uniform object distribution, because under
the Zipfian distribution different numbers of clients skew the
load differently, making any comparison meaningless. To
control staleness, we run Brie with two different notification
rates (every 1 s and every 10 s).

Fig. 5 shows the maximum system throughput on the
Y axis, increasing the number of replicas along the X axis.
The thin lines are for a single DC, the bold ones for three
DCs. Solid lines represent the fast notification rate, dashed

lines the slow one. The figure shows, left to right, YCSB
Workload A, YCSB Workload B, and SocialApp.

The capacity of a single DC in our hardware configu-
ration peaks at 2,000 active client replicas for YCSB, and
2,500 for SocialApp.

As to be expected, additional DC replicas increase the
system capacity for operations that can be performed at
only one replica such as read operations or sending noti-
fication messages. Whereas a single Brie DC supports at
most 2,000 clients. With three DCs Brie supports at least
2,500 clients for all workloads. Unfortunately, as we ran out
of resources for client machines at this point, we cannot re-
port an upper bound.

For some fixed number of DCs, adding client replicas
increases the aggregated system throughput, until a point
where the cost of maintaining client replicas up to date
saturates the DCs, and further clients do not absorb enough
reads to overcome these costs. Note that the lower refresh
rate can reduce the load at a DC by 5 to 15%.

In the same experiment, Fig. 6 presents the distribution
of metadata size notification messages. (Notifications are
the most common and the most costly messages sent over
the network.) We plot the size of metadata (in bytes) on
the Y axis, varying the number of clients along the X axis.
Left to right, the same workloads as in the previous figure.
Thin lines are for one DC, thick lines for three DCs. A solid
line represents Brie “Lean and Safe” metadata, and dotted
lines the classical “Safe But Fat” approach. Note that our
Safe-but-Fat implementation includes the optimisation of
sending vector deltas rather than the full vector [28]. Vertical
bars represent standard error. As notifications are batched,
we normalise metadata size to a message carrying exactly
10 updates, corresponding to under approx. 1 KB of data.

This plot confirms that the Brie metadata is small and
constant, at 100–150 bytes/notification (10–15 bytes per up-
date); data plus metadata together fit inside a single standard
network packet. It is independent both from the number of
client replicas and from the workload. Increasing the number
of DC replicas from one to three causes a negligible increase
in metadata size, of under 10 bytes.

In contrast, the classical metadata grows linearly with the
number of clients and exhibits higher variability. Its size
reaches approx. 1 KB for 1,000 clients in all workloads,
and 10 KB for 2,500 clients. Clearly, metadata being up to
10× larger than the actual data this represents a substantial
overhead.

5.5 Tolerating client churn

We now turn to fault tolerance. In the next experiment, we
evaluate Brie under client churn, by periodically disconnect-
ing client replicas and replacing them with a new set of ac-
tive clients. At any point in time, there are 500 active clients
and a variable number of disconnected clients, up to 5000.

10 2014/10/11

YCSB − all objects SocialApp − stats counters

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

1K

10K

100K

1M

10M

100M

0 1000 2000 3000 4000 0 1000 2000 3000 4000
#unavailable client replicas

st
or

ag
e

oc
cu

p.
 [B

]

●

Brie
(Brie's at−most−once guard only)
Lean But Unsafe approach w/o at−most−once guarantees

Figure 7. Storage occupation at a single DC in reaction to
client churn for Brie and Lean-but-Unsafe alternative.

Fig. 7 illustrates the storage occupation of a DC for rep-
resentative workloads. We compare Brie’s log pruning pro-
tocol to a protocol without at-most-once delivery guarantees
(Lean But Unsafe).

Brie storage size is approximately constant. This is safe
thanks to the at-most-once guard table per DC. Although
the size of the guard (bottom curve) grows with the number
of clients, it requires orders of less storage than the actual
database itself.

A protocol without at-most-once delivery guarantees can
use Lean-but-Unsafe metadata, without Brie’s at-most-once
guard. However this requires more complexity in each ob-
ject’s implementation, to protect itself from duplicates. This
increases the size of objects, impacting both storage and net-
work costs. As is visible in the figure, the cost depends on
the object type: none for idempotent YCSB’s LWW-Map,
which is naturally idempotent, vs. linear in the number of
clients for SocialApp’s Counter objects.

5.6 Tolerating DC failures

This experiment studies the behaviour of Brie when a DC
disconnects. The scatterplot in Fig. 8 shows the response
time of a SocialApp client application as the client switches
between DCs. Starting with a cold cache, response times
quickly drops to near zero for transactions hitting in the
cache, and to around 110 ms for misses. Some 33 s into the
experiment, the current DC disconnects, and the client is
diverted to another DC in a different continent. Thanks to
K-stability the fail-over succeeds, and the client continues
with the new DC. Its response time pattern reflects the higher
RTT to the new DC. At 64 s, the client switches back the
initial DC, and performance smoothly recovers to the initial
pattern.

5.7 Staleness cost

The price to pay for our read-in-the-past approach is an in-
crease in staleness, which our next experiment measures. A
read is considered stale if a version more recent (but not K-
stable) than the one it returns exists at the current DC of a
client that performed the read. A transaction is stale if any
of its reads is stale. In the experiments so far, we observed a

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 10 20 30 40 50 60 70 80

re
sp

on
se

 ti
m

e
[m

s]

time [s]

/ transient DC failure /

Figure 8. Response time for a client that hands over be-
tween DCs during a 30 s failure of a DC.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 0 5000 10000 15000 20000 25000

st
al

e
re

ad
s

[%
]

#users in SocialApp

transactions
individual reads

Figure 9. K-stability staleness overhead.

negligible number of stale reads. The reason is that the win-
dow of vulnerability (the time it takes for an update to be-
come K-stable) is approximately the RTT to the closest DC.
For this experiment, we artificially increase the probability
of staleness by various means. We run the SocialApp bench-
mark with 1000 clients in Europe connected to the Ireland
DC and replicated in the Oregon DC.

Fig. 9 shows that stale reads and stale transactions remain
under 1% and 2.5% respectively. This shows that even under
high contention, accessing a slightly stale snapshot has very
little impact on the data read by transactions.

6. Related work
We now discuss a number of systems that support consis-
tent, available and convergent data access, at different scales.
In particular, Table 2 presents the approach to metadata of
causally consistent systems. Each row groups some systems
that share a similar metadata approach. The columns indi-
cate: (i) Which replicas assign timestamps; (ii) the guar-
anteed (worst-case) size of metadata summarising a depen-
dency or a version; (iii) whether it ensures at-most-once de-
livery; (iv) whether it supports general confluent types.

Client-side replication PRACTI is a seminal work on
causal consistency under partial replication [10]. PRACTI
uses Safe-but-Fat client-assigned metadata and an ingenious
log-exchange protocol that supports an arbitrary communi-
cation topology. While such a full generality has advantages,
it is not viable for large-scale client-side app deployments
backed by the cloud: (i) Its fat metadata approach (version
vectors sized as the number of clients) is prohibitively ex-
pensive (see Fig. 6), and (ii) any replica can easily make an-
other unavailable, because of the indirect dependence issue
discussed in §3.3.2.

11 2014/10/11

Representative system Timestamp assignment
Summary metadata At-most-once

Support for confluent types
max. size, O(#entries) delivery

PRACTI [10], Depot [28], COPS [25] client/any replica #replicas ≈ 1 000 000 yes weak (COPS) / medium (rest)
Eiger [26], Orbe [19], Bolt-on [6] DC server (shard) #servers ≈ 100–1 000 no weak

Walter [35], ChainReaction [5] DC (full replica) #DCs ≈ 5–10 no weak

Brie
DC (full replica) #DCs ≈ 5–10 no

strong
client replica + 1 client entry yes

Table 2. Analytical comparison of different classes of metadata used by causally consistent systems.

Our design is strongly inspired by Depot, a (fork-join)
causally consistent system that provides a reliable storage
on top of untrusted cloud [28]. Depot tolerates Byzantine
clients, which our current implementation does not address.
Their assumption of Byzantine cloud behaviour requires fat
metadata to support direct client-to-client communication.
Furthermore, Depot is at at odds with genuine partial repli-
cation. It requires every replica to process the metadata of
every update, and puts the burden of computing a K-stable
version on the client. In the case of extensive DC partitions,
it floods all updates to the client. In contrast, Brie relies on
DCs to provide K-stable and consistent versions, and uses
lean metadata. In the event of failure, Brie provides the flex-
ibility to decreaseK dynamically rather than to flood clients.

Both Practi and Depot systems use Safe-but-Fat meta-
data. They support only LWW Registers, but extension to
other confluent types appears feasible.

Recent web and mobile application frameworks, such as
TouchDevelop [12], Google Drive Realtime API [14], or
Mobius [15] support replication for in-browser or mobile
applications. These systems are designed for small objects
[14], database that fits on a mobile device [12], or a database
of independent objects [15]. It is unknown if/how they sup-
port multiple DCs and fault tolerance. This is in contrast with
Brie’s support for large consistent database, and fault toler-
ance. TouchDevelop provides a form of object composition,
and offers integration with strong consistency [12]. We are
looking into ways of adapting similar mechanisms.

Server-side replication A number of geo-replicated sys-
tems offer available causally consistent data access inside
a DC with excellent scale-out by sharding [5, 6, 19, 25, 26].

Table 2 shows that server-side systems use variety of
types of metadata. COPS assigns metadata directly at
database clients, and uses explicit dependencies (a graph)
[25]. Later publications show that this approach is costly
[19, 26]. Consequently, later systems assign metadata at par-
tition replicas [19, 26], or on a designated node in the DC
[5, 35]. The location of assignment directly impacts the size
of causality metadata. In most systems, it varies with the
number of reads, with the number of dependencies, and with
the stability conditions in the system. When fewer nodes as-
sign metadata, it tends to be smaller (as in Brie), but this may
limit throughput.

Previous designs are not directly applicable to client-side
replication, because: (i) their protocols do not tolerate client
or server failures; (ii) as they assume that data is updated by
overwriting, implementing high-level confluent data types
is complex and costly (see Fig. 7); (iii) the size of their
metadata can grow uncontrollably.

Du et al. [20] make use of full stability, a special kase of
K-stability, to remove the need for dependency metadata in
messages, thereby improving throughput.

Integration with strong consistency Some operations or
objects of application may require stronger consistency,
which requires synchronous protocols [21]. For instance, we
observe that our social network application port would ben-
efit from strongly consistent support for user registration or
a password change. Prior work demonstrates that combin-
ing strong and weak consistency is possible on shared data
[24, 35]. We speculate that these techniques are applicable
to Brie, grounded on preliminary experience.

Theoretical limits Mahajan et al. [27] prove that causal
consistency is the strongest achievable model in an available,
convergent, full replication system. We conjecture that these
properties are not simultaneously achievable under partial
replication, and demonstrate how to weaken one of the live-
ness properties. Bailis et al. [7] give an argument for a sim-
ilar result for a client switching server replicas, but do not
take into account the capabilities of a client replica.

7. Conclusion
We presented the design of Brie, the first system that offers
client-side apps a local access to partial database replica with
the guarantees of geo-replicated systems.

Our experiments confirm that Brie is able to provide im-
mediate and consistent response on reads and updates on
local objects, and maintain the throughput of a server-side
replication system, or better. The novel form of metadata al-
lows the system to scale to thousands of clients with con-
stant size objects and metadata, independent of the number
of available and unavailable clients. Our fault-tolerant pro-
tocols handle failures nearly transparently.

Many of these properties are due to a common principle
demonstrated by Brie design: client buffering and controlled
staleness can absorb the cost of scalability, availability, and
consistency. Staleness cost is moderate and well separated.

12 2014/10/11

References
[1] Riak, 2010. http://basho.com/riak/.
[2] Introducing Riak 2.0: Data types, strong consistency, full-

text search, and much more, Oct. 2013. http://basho.com/
introducing-riak-2-0/.

[3] M. Ahamad, J. E. Burns, P. W. Hutto, et al. Causal memory. In
Proc. 5th Int. Workshop on Distributed Algorithms, pp. 9–30,
Delphi, Greece, Oct. 1991.

[4] P. S. Almeida and C. Baquero. Scalable eventually consistent
counters over unreliable networks. Number 1307.3207, July
2013.

[5] S. Almeida, J. Leitão, and L. Rodrigues. ChainReaction: a
causal+ consistent datastore based on Chain Replication. In
Euro. Conf. on Comp. Sys. (EuroSys), Apr. 2013.

[6] P. Bailis, A. Ghodsi, J. M. Hellerstein, et al. Bolt-on causal
consistency. In Int. Conf. on the Mgt. of Data (SIGMOD), pp.
761–772, New York, NY, USA, 2013.

[7] P. Bailis, A. Davidson, A. Fekete, et al. Highly Available
Transactions: Virtues and limitations. In Int. Conf. on Very
Large Data Bases (VLDB), Riva del Garda, Trento, Italy,
2014.

[8] P. Bailis, A. Fekete, A. Ghodsi, et al. Scalable atomic visibility
with RAMP transactions. In ACM SIGMOD Conference,
2014.

[9] P. Bailis, A. Fekete, M. J. Franklin, et al. Coordination avoid-
ance in database systems. In Int. Conf. on Very Large Data
Bases (VLDB), Kohala Coast, Hawaii, 2015. To appear.

[10] N. Belaramani, M. Dahlin, L. Gao, et al. PRACTI replication.
In Networked Sys. Design and Implem. (NSDI), pp. 59–72,
San Jose, CA, USA, May 2006.

[11] F. Benevenuto, T. Rodrigues, M. Cha, et al. Characterizing
user behavior in online social networks. In Internet Measure-
ment Conference (IMC), 2009.

[12] S. Burckhardt. Bringing TouchDevelop to the cloud. Inside
Microsoft Research Blog, Oct. 2013. http://blogs.technet.
com/b/inside_microsoft_research/archive/2013/10/28/
bringing-touchdevelop-to-the-cloud.aspx.

[13] S. Burckhardt, A. Gotsman, H. Yang, et al. Replicated data
types: Specification, verification, optimality. In Symp. on
Principles of Prog. Lang. (POPL), pp. 271–284, San Diego,
CA, USA, Jan. 2014.

[14] B. Cairns. Build collaborative apps with Google Drive
Realtime API. Google Apps Developers Blog, Mar.
2013. http://googleappsdeveloper.blogspot.com/2013/
03/build-collaborative-apps-with-google.html.

[15] B.-G. Chun, C. Curino, R. Sears, et al. Mobius: Unified
messaging and data serving for mobile apps. In Int. Conf.
on Mobile Sys., Apps. and Services (MobiSys), pp. 141–154,
New York, NY, USA, 2012.

[16] B. F. Cooper, A. Silberstein, E. Tam, et al. Benchmarking
cloud serving systems with YCSB. In Symp. on Cloud Com-
puting, pp. 143–154, Indianapolis, IN, USA, 2010.

[17] J. C. Corbett, J. Dean, M. Epstein, et al. Spanner: Google’s
globally-distributed database. In Symp. on Op. Sys. Design
and Implementation (OSDI), pp. 251–264, Hollywood, CA,
USA, Oct. 2012.

[18] G. DeCandia, D. Hastorun, M. Jampani, et al. Dynamo: Ama-
zon’s highly available key-value store. In Symp. on Op. Sys.
Principles (SOSP), volume 41 of Operating Systems Review,
pp. 205–220, Stevenson, Washington, USA, Oct. 2007.

[19] J. Du, S. Elnikety, A. Roy, et al. Orbe: Scalable causal
consistency using dependency matrices and physical clocks.
In Symp. on Cloud Computing, pp. 11:1–11:14, Santa Clara,
CA, USA, Oct. 2013.

[20] J. Du, C. Iorgulescu, A. Roy, et al. Closing the performance
gap between causal consistency and eventual consistency. In
Workshop on Principles and Practice of Eventual Consistency
(PaPEC), Amsterdam, Netherland, 2014.

[21] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasi-
bility of consistent, available, partition-tolerant web services.
SIGACT News, 33(2):51–59, 2002. ISSN 0163-5700.

[22] P. R. Johnson and R. H. Thomas. The maintenance of du-
plicate databases. Internet Request for Comments RFC 677,
Information Sciences Institute, Jan. 1976.

[23] A. Kansal, B. Urgaonkar, and S. Govindan. Using dark fiber
to displace diesel generators. In Hot Topics in Operating
Systems, Santa Ana Pueblo, NM, USA, 2013.

[24] C. Li, D. Porto, A. Clement, et al. Making geo-replicated
systems fast as possible, consistent when necessary. In Symp.
on Op. Sys. Design and Implementation (OSDI), pp. 265–278,
Hollywood, CA, USA, Oct. 2012.

[25] W. Lloyd, M. J. Freedman, M. Kaminsky, et al. Don’t settle
for eventual: scalable causal consistency for wide-area storage
with COPS. In Symp. on Op. Sys. Principles (SOSP), pp. 401–
416, Cascais, Portugal, Oct. 2011.

[26] W. Lloyd, M. J. Freedman, M. Kaminsky, et al. Stronger se-
mantics for low-latency geo-replicated storage. In Networked
Sys. Design and Implem. (NSDI), pp. 313–328, Lombard, IL,
USA, Apr. 2013.

[27] P. Mahajan, L. Alvisi, and M. Dahlin. Consistency, avail-
ability, and convergence. Technical Report UTCS TR-11-22,
Dept. of Comp. Sc., The U. of Texas at Austin, Austin, TX,
USA, 2011.

[28] P. Mahajan, S. Setty, S. Lee, et al. Depot: Cloud storage
with minimal trust. Trans. on Computer Systems, 29(4):12:1–
12:38, Dec. 2011.

[29] J. Parker, D.S., G. J. Popek, G. Rudisin, et al. Detection of
mutual inconsistency in distributed systems. IEEE Trans. on
Soft. Engin., SE-9(3):240–247, May 1983.

[30] K. Petersen, M. J. Spreitzer, D. B. Terry, et al. Flexible update
propagation for weakly consistent replication. In Symp. on
Op. Sys. Principles (SOSP), pp. 288–301, Saint Malo, Oct.
1997.

[31] Redis. Redis is an open source, BSD licensed, advanced key-
value store. http://redis.io, May 2014.

[32] N. Schiper, P. Sutra, and F. Pedone. P-Store: Genuine partial
replication in wide area networks. In Symp. on Reliable Dist.
Sys. (SRDS), pp. 214–224, New Dehli, India, Oct. 2010.

[33] M. Shapiro, N. Preguiça, C. Baquero, et al. A comprehen-
sive study of Convergent and Commutative Replicated Data
Types. Number 7506, Rocquencourt, France, Jan. 2011.

13 2014/10/11

[34] M. Shapiro, N. Preguiça, C. Baquero, et al. Conflict-free
replicated data types. In Int. Symp. on Stabilization, Safety,
and Security of Distributed Systems (SSS), volume 6976 of
Lecture Notes in Comp. Sc., pp. 386–400, Grenoble, France,
Oct. 2011.

[35] Y. Sovran, R. Power, M. K. Aguilera, et al. Transactional
storage for geo-replicated systems. In Symp. on Op. Sys.
Principles (SOSP), pp. 385–400, Cascais, Portugal, Oct. 2011.

[36] D. B. Terry, A. J. Demers, K. Petersen, et al. Session guar-
antees for weakly consistent replicated data. In Int. Conf. on
Para. and Dist. Info. Sys. (PDIS), pp. 140–149, Austin, Texas,
USA, Sept. 1994.

14 2014/10/11

C ANTIDOTE API

C Antidote API
This section describes the API for the different layers in Antidote. The notation here
follows the implementation in Erlang. Every partition of the datastore is managed
by its own vnode.

The types appearing in the signature are defined as follows:

• A log node lognode() :: {Partition::integer(), node()} represents a process
(virtual node/vnode) in the local Erlang VM managing the log for a partition
of the data store.

• The log() :: [Partition::integer()] consists of a list of partitions.

• An operation op() :: #operation{operation_number=op_id(), payload=term()}
consists of an operation identifier and (optionally) the payload.

• The operation id op_id() :: {Clock::non_neg_integer(), node()} uniquely
identifies an operation using a per-node clock time stamp.

• The key key() :: term() uniquely identifies a CRDT object in the key-value
data store.

• The type type() :: atom() denotes the CRDT type for a CRDT object.

C.1 Logging Layer

Log

• append(Node::lognode(), Log::log(), Record::term())
Appends Record to the persistant log.

Input:

– Log is the identifier for the log to which the record belongs to.

– Node is the virtual node which hosts the Log.

– Record is any operation defined by the transaction layer to be appended
to the log.

Return:

– {ok, {Node, op_id}} if the append was successfull. op_id is the unique
identifier for the newly appended record.

• read(Node::lognode(), Log::log())
Returns all records stored in the log identified by Log

Input:

– Log is the identifier for the log.

– Node is the virtual node which hosts the Log.

Return:

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 75

C ANTIDOTE API

– {ok, {Node, Ops::op()}} if the read was successful. Ops is a list of records
with their op_ids.

• read_from(Node::lognode(), Log::log(), From::op_id())
Returns all records stored in the log identified by Log that were inserted after
the record with id op_id.

Input:

– Log is the identifier of the log.

– Node is the virtual node which hosts the Log.

– op_id is the operation identifier

Return:

– {ok, {Node, Ops}} if the read was successful. Ops is a list of records
with their op_ids.

Materializer

• read(Key::key(), Type::type(), SnapshotTime::vectorclock())
Reads a particular version of CRDT identified by Key from the in-memory
cache.

Input:

– Key : The key to be read

– Type : The type of key

– SnapshotTime : The version to be read. It is a vectorclock defined by
the transactional causal+ protocol.

Return:

– {ok, CRDT::term()} : The state of the Key as defined by the CRDT
type

• update(Key::key(), Operation::op())
Appends an operation for a Key to the in-memory cache of the materializer.
A successfull append returns ok which guarantees that further read operations
include this operation if the version requested contains this operation.

C.2 Transactions

The transactional interface of Antidote supports three types of transactions. The
clients can use these interface to execute operations on CRDTs in Antidote.

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 76

C ANTIDOTE API

Single Key operations

• append(Key :: key(), T ype :: type(), Operation :: term()) This executes the
append operation on Key as if it is a transaction with single update operation.

Input:

– Key : The key to which the operation is applied.

– Type : The type of the key

– Operation : A valid operation on the type of the key

Returns:

– ok if append was successfull

– {error, Reason} if there is any error

• read(Key :: key(), T ype :: type) This reads the latest value of Key available
in the data centre.

Input:

– Key : The key to which the operation is applied.

– Type : The type of the key

Retuns:

– {ok, Val} - if the read was successful. Val is the value of the key which
is read

– {error, Reason} - if there was any error

• clocksi_read(ClientClock :: vectorclock(), Key :: key(), T ype :: type()) Re-
turns the latest value of Key available in the data centre whose version is
atleast ClientClock. If the data centre does not have that version, it waits
until the version is available.

Input:

– ClientClock: the last clock the client has seen from a successful transac-
tion.

– Key: the key intended to be read.

– Type: the CRDT type, a valid type from riak_dt.

Returns:

– {ok, ReadResult::term()} an ok message along with the result of the read
operation.

– {error, Reason::term()} an error message in case of a failure.

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 77

C ANTIDOTE API

Multiple Key updates

• clocksi_bulk_update(ClientClock :: vectorclock(), Operations :: [op()])

The client can execute multiple updates atomically with the transactional
causal+ semantics.

Input:

– ClientClock : the last clock the client has seen from a successful transac-
tion. It can be empty if the client doesnot require to see its own writes
from previous transactions.

– Operations : the list of the update operations in the transaction.

Returns:

– {ok, CommitTime} : an ok message along with the transaction’s commit
time. This CommitTime can be used by the client in following transac-
tions to guarantee “read your own writes” semantics.

– {error, Reason::term()} :an error message in case of a failure.

Interactive transactions

• clocksi_istart_tx(ClientClock :: vectorclock()) Starts a new interactive trans-
action.

Input:

– ClientClock : the last clock the client has seen from a successful trans-
action.

Returns:

– {ok, TxId::tx_id()}: an ok message along with the transaction Id that
will be used by the client every time an operation for that transaction
is sent. This snapshot time will be used for defining the snapshot the
transaction reads from.

– {error, Reason::term()}: an error message in case of a failure.

• clocksi_iread(TxId :: tx_id(), Key :: key(), T ype :: atom())

Reads a key within an interactive transaction according to the transactional
causal+ semantics.

Input:

– TxId: the transaction ID, as returned by the start transaction function.

– Key: the key intended to be read.

– Type: the CRDT type, a valid type from riak_dt.

Returns:

– {ok, ReadResult}: in case of success.

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 78

C ANTIDOTE API

– {error, Reason} :error message in case of a failure.

• clocksi_iupdate(TxId :: tx_id(), Key :: key(), Op : term())

update a key within an interactive transaction according to the transactional
causal+ semantics. The update is not visible until the transaction commits.

Input:

– TxId: the transaction ID, as returned by the start transaction function.

– Key: the key that the operation updates.

– Op: the operation and parameters that the update operation receives,
as in the riak_dt implementation of the CRDT type that is updated.

Returns:

– ok when the updates successes.

– {error, Reasonn}: error message in case of a failure.

• clocksi_iprepare(TxId :: tx_id()) Sends the prepare command for starting
to commit the transaction.

Input:

– TxId : the transaction ID, as returned by the start transaction function.

Returns:

– {ok, PrepareTime::integer}, where PrepareTime is the time that the
transaction will commit with.

– {error, Reason::term()}: error message in case of a failure.

• clocksi_icommit(TxId :: tx_id()) Sends the commit command for the trans-
action identified by TxId.

Input:

– TxId: the transaction ID, as returned by the start transaction function.

Returns:

– {ok, CommitTime::vectorclock()}, the time that is used in the transac-
tion’s commit record.

– {error, Reason::term()}: error message in case of a failure.

SyncFree Deliverable D.2.1(v0.1), November 17, 2014, Page 79

	Executive summary
	Milestones in the Deliverable
	Contractors contributing to the Deliverable
	KL
	INRIA
	Louvain
	Nova
	Basho
	Trifork

	Making Operation-based CRDTs Operation-based
	Antidote
	System setting
	Log Layer
	Materializer Layer
	Transaction Layer
	Causally Consistent Transactions

	Implementation
	Setting up Antidote

	Summary and Outlook

	Write Fast, Read in the Past- Causal Consistency for Client-side Applications
	Fault-tolerant session and durability
	Implementation and experimental evaluation

	Adaptive replication
	Algorithm
	Comparison of replication schemes
	Summary

	Outlook for WP2
	Papers and publications
	Making Operation-based CRDTs Operation-based
	Write Fast, Read in the Past- Causal Consistency for Client-side Applications
	Antidote API
	Logging Layer
	Transactions

