
Project no. 609551
Project acronym: SyncFree
Project title: Large-scale computation without synchronisation

European Seventh Framework Programme

ICT call 10

Deliverable reference number and title: D.3.1
Guarantees in the presence of CRDT composition

and transactions
Due date of deliverable: October 1, 2014
Actual submission date: November 17, 2014

Start date of project: October 1, 2013
Duration: 36 months
Name and organisation of lead editor
for this deliverable: FCT, Universidade Nova de Lisboa
Revision: 0.1
Dissemination level: CO

SyncFree Deliverable D.3.1(v0.1), November 17, 2014

CONTENTS

Contents

1 Executive summary 1

2 Milestones in the Deliverable 3

3 Contractors contributing to the Deliverable 4

3.1 KL . 4

3.2 INRIA . 4

3.3 Louvain . 4

3.4 Nova . 4

3.5 Basho . 4

4 Results 5

4.1 Composition . 5

4.1.1 Map CRDT . 5

4.1.2 General composition . 6

4.1.3 Decomposing CRDTs (for storage) 7

4.1.4 Related work . 8

4.1.5 Summary . 9

4.2 Transactions and Replication . 9

4.2.1 Foundations for efficient replication 10

4.2.2 Transactional Causal+ Consistency 11

4.2.3 Related work . 13

4.2.4 Summary . 14

4.3 Invariants . 14

4.3.1 Middleware for enforcing numeric invariants 15

4.3.2 Explicit consistency . 16

4.3.3 Related work . 18

4.3.4 Summary . 18

4.4 Final remarks . 19

5 Papers and Publications 20

A Published papers 28

A.1 Russell Brown, Sean Cribbs, Sam Elliot, Christopher Meiklejohn.
Riak DT Map: A Composable, Convergent Replicated Dictionary.
In Proc. PaPEC 14. 28

A.2 Christopher Meiklejohn. On The Composability of the Riak DT
Map: Expanding From Embedded To Multi-Key Structures. In Proc.
PaPEC 14. 30

A.3 Paulo Sérgio Almeida, Carlos Baquero, Ricardo Gonçalves, Nuno
Preguiça, and Victor Fonte. Scalable and Accurate Causality Track-
ing for Eventually Consistent Stores. In Proc. DAIS 14. 33

A.4 Paulo Sérgio Almeida, Ali Shoker, Carlos Baquero. Efficient State-
based CRDTs by Decomposition. In Proc. PaPEC 14. 49

SyncFree Deliverable D.3.1(v0.1), November 17, 2014, Page 2

CONTENTS

A.5 Nuno Preguiça, Marek Zawirski, Annette Bieniusa, Sérgio Duarte,
Valter Balegas, Carlos Baquero, Marc Shapiro. SwiftCloud: Fault-
Tolerant Geo-Replication Integrated all the Way to the Client Ma-
chine. In Proc. W-PSDS 14 (SRDS 14). 52

A.6 Valter Balegas, Mahsa Najafzadeh, Sérgio Duarte, Carla Ferreira,
Rodrigo Rodrigues, Marc Shapiro, Nuno Preguiça. The Case for
Fast and Invariant-Preserving Geo-Replication. In Proc. W-PSDS
14 (SRDS 14) . 57

B Papers under submission and technical reports 64
B.1 Carlos Baquero, Paulo Sérgio Almeia, Alcino Cunha, Carla Ferreira.

Composition of state-based CRDTs. Internal techinal report 64
B.2 Iwan Briquemont, Manuel Bravo, Zhongmiao Li, and Peter Van Roy.

Conflict-free Partially Replicated Data Types. Submitted to PPoPP
15. 78

B.3 Marek Zawirski, Nuno Preguiça, Annette Bieniusa, Sérgio Duarte,
Valter Balegas, Carlos Baquero, Marc Shapiro. Write Fast, Read in
the Past: Causal Consistency for Client-side Applications. Submit-
ted EuroSys 15. 89

B.4 Valter Balegas, Mahsa Najafzadeh, Sérgio Duarte, Carla Ferreira,
Rodrigo Rodrigues, Marc Shapiro, Nuno Preguiça. Extending Even-
tually Consistent Cloud Stores for Enforcing Numeric Invariants. In-
ternal technical report. 104

B.5 Valter Balegas, Mahsa Najafzadeh, Sérgio Duarte, Carla Ferreira,
Rodrigo Rodrigues, Marc Shapiro, Nuno Preguiça. Putting Consis-
tency Back into Eventual Consistency. Submitted to EuroSys’15. . 117

SyncFree Deliverable D.3.1(v0.1), November 17, 2014, Page 3

1 EXECUTIVE SUMMARY

1 Executive summary

The SyncFree project aims to enable trustworthy large-scale distributed applications
in geo-replicated settings. The core concept are replicated yet consistent data types
(CRDTs) which allow information dissemination and sharing without the need for
global synchronization.

Within the project, Work Package 3 (WP3) coordinates the work on extending
the safety, quality and security guarantees provided by a system that uses minimal
synchronisation. To this end, it intends to study the guarantees that can be pro-
vided by CRDTs: what are the guarantees that basic CRDTs provide, what are
their inherent power and limitations, how can the guarantees be extended without
synchronisation, and to identify at what point extra guarantees do require synchro-
nisation.

This goal of the first task, CRDT object composition and transactions, was to
research issues that arise in the development of applications with complex data
structures, namely: how to compose complex data structures from simpler ones;
how to access and modify multiple replicated objects with transactional properties;
how to guarantee invariant preservations while minimizing coordination.

The specific requirements addressed in our work were driven by both the use
cases studied in WP1 and previous experience of the project partners, both indus-
trial and academic, in the development and deployment of large scale systems. We
now briefly overview the results achieved during the reporting period.

Composition Applications manipulate complex data structures created by com-
posing simpler ones. For applications that use CRDTs, there is also the need to be
able to create complex objects from simpler ones, guaranteeing the the composed
object maintains the convergence properties of CRDTs. We have produced the
following contributions for addressing this challenge.

First, we have developed support for composing CRDTs using Maps [18] – in
this approach, the values stored in a Map can be Sets, Maps, Registers, Flags and
Counters CRDTs. This allows to create complex data structures for storing rich
data from application. while guaranteeing convergence in the presence of concurrent
updates. Support for the Map CRDT has been integrated in version 2.0 of Riak
database1 and it will also be included in Antidote, the platform prototype being
developed in the context of WP2.

This work is currently being extended to allow storing each object in a different
key [35], thus addressing the scalability issues in the initial approach. In a com-
plimentary work, we have proposed techniques for supporting partial replication of
large CRDT objects, while preserving convergence properties [17].

Finally, we have studied the problem of general composition. We proposed tech-
niques for creating complex CRDT by composing elementary monotonic elements
using a set of pre-defined composition rules that guarantee that the composed ob-
ject is still monotonic [11]. This work is being extended with techniques for defining
the semantics of composed objects.

1http://riak.basho.com

SyncFree Deliverable D.3.1(v0.1), November 17, 2014, Page 1

http://riak.basho.com

1 EXECUTIVE SUMMARY

Transactions and Replication In many cases, applications need to access and
modify data that does not fit naturally in a large composed object. In such cases,
there is a need to group operations in atomic units or transactions that need to be
replicated. In this context, we have made several contributions.

We have consolidated previous work on transactional models for weakly con-
sistent settings, including the algorithms for executing mergeable transactions, a
form of highly available transaction [6] that provides access to a causally consistent
database snapshot and allow concurrent updates that are merged relying on CRDTs
[51, 38, 52]. This work has served as the starting point for the development of the
algorithms for supporting transactions in Antidote, the platform being developed
in the context of WP2.

For supporting efficient replication protocols, we have proposed two general
techniques in the context of this work. First, we have introduced delta-mutators as
a technique for propagating a set of updates efficiently [2]. Second, we have proposed
dotted version vectors sets as a causality tracking technique that keeps metadata
small with complexity O(#replicas) [1]. Basho has adapted these proposals for
integration in Riak, with the latter already integrated in version 2.0 of Riak while
the former is currently being integrated for a future version. The ideas of dotted
version vectors have also been used in Antidote.

Invariants Although a large number of application can work correctly under weak
consistency models, other applications need to maintain strong invariants that can-
not be enforced using such models.

To address this challenge, we have proposed techniques for enforcing invariants
while minimizing the required coordination. A first approach addressed numeric
invariants only by relying on a new CRDT, the Bounded Counter CRDT, and a
middleware that runs on top of Riak [7]. The second approach addresses generic
invariants and includes a semi-automatic methodology for deriving a reservation
system from the specification of invariants and operations [9, 8]. The reservation
system enforces invariants on top of a weakly consistent data store while requiring
minimal synchronisation that can usually be executed outside of the critical path
of operation execution. This work has been developed in context of both WP3 and
WP4, and we expect to integrate the produced results (or part of them) with the
work being developed in WP2 during the next year, namely by integrating support
for enforcing invariants in Antidote.

SyncFree Deliverable D.3.1(v0.1), November 17, 2014, Page 2

2 MILESTONES IN THE DELIVERABLE

2 Milestones in the Deliverable

WP3, task 1 has the following milestone, shared with other work packages:

Mil. no Mil. name Date due Actual date Lead contractor
MS1 CRDT consolidation

in a static environ-
ment

M12 M12 INRIA

Task 3.1 has contributed to this milestone (and produced research to be included
in following milestones) by focusing on the following goals, as stated in the project
proposal:

This deliverable will report on the mechanisms for enforcing guarantees
in the presence of CRDT composition and transactions.

Applications create complex data structures by composing CRDTs un-
der some invariant. (For instance, a graph is the composition of a set of
vertices and a set of arcs, under the invariant that the end-points of ev-
ery arc are in the set of vertices.) Another composition pattern is CRDT
transactions to ensure cross-object invariants (e.g., referential integrity).
This task studies composition mechanisms and their suitability for dif-
ferent classes of invariants. In particular, we will examine the issues of
non-monotonic composition, not addressed in existing work. We will
study which transaction properties are required to maintain different
classes of invariants. Of particular interest is identifying at what point
stronger guarantees require introducing small doses of synchronisation.

SyncFree Deliverable D.3.1(v0.1), November 17, 2014, Page 3

3 CONTRACTORS CONTRIBUTING TO THE DELIVERABLE

3 Contractors contributing to the Deliverable

The following contractors contributed to the deliverables

3.1 KL

Annette Bieniusa.

3.2 INRIA

Marek Zawirski, Mahsa Najafzadeh, Marc Shapiro, Ahmed-Nacer Mehdi, Pascal
Urso.

3.3 Louvain

Iwan Briquemont, Manuel Bravo, Zhongmiao Li, Peter van Roy.

3.4 Nova

Valter Balegas, Sérgio Duarte, Ali Shoker, Carla Ferreira, Alcino Cunha, Paulo
Sérgio Almeida, Rodrigo Rodrigues, Carlos Baquero, Nuno Preguiça.

3.5 Basho

Russell Brown, Sean Cribbs, Sam Elliot, Chris Meiklejohn.

SyncFree Deliverable D.3.1(v0.1), November 17, 2014, Page 4

4 RESULTS

4 Results

This section presents the results obtained in this task, during the reporting period.
We organize the results in three groups: composition, discussing the approaches de-
veloped for creating complex objects by composing multiple CRDTs; transactions,
describing the algorithms developed for grouping the execution of multiple opera-
tions; invariants, detailing how to enforce invariant while minimizing the required
coordination.

4.1 Composition

Applications manipulate complex data that is modelled as a composition of basic
data structures, such as sets, maps, lists, etc. CRDT designs proposed in literature
[50, 41, 44, 43, 16, 47] provide versions of these basic data structures that can be
replicated, allow concurrent updates to modify different replicas, and provide an
automatic mechanism that combines these updates in a deterministic way. This
simplifies the design of eventually consistent systems, ensuring the convergence of
multiple replicas.

Some of the use-cases studied in WP1 and the experience in modelling complex
applications by some of the partners have shown that supporting the composition
of multiple CRDTs was an important requirement. To address this requirement, we
have proposed a limited solution that allows composing multiple CRDTs using a
Map CRDT [18]. We have also studied more general composition rules for creating
CRDTs from more elementary CRDTs [11].

4.1.1 Map CRDT

The Map CRDT [18] allows associating a key to a CRDT, with the current im-
plementation supporting Boolean, Register, Counter, Set and Map. This allows to
build complex data models that have a tree structure. The main challenge resided
in the definition and implementation of a sensible semantics for merging concur-
rent updates, in particular the case of a concurrent remove and update in the same
sub-tree.

The current implementation is state-based and provides the following update
operations: (i) put(key,obj), that links a new CRDT obj with key key (more
precisely, the key to the object is the pair (key, objtype)); (ii) rem(key), that unlinks
key key from the map. The put operation allows to create a tree of objects, with
the Map CRDTs serving as internal nodes. The effect of rem(key) is equivalent to
recursively resetting all objects in the tree of objects associated with key (or undo
the effect of all update operations in such objects).

The merge of two replicas of a given map, combines the updates to the map
and recursively performs merge on the linked objects. Updates on different keys
are merged trivially. Updates on the same key are handled as follows: (i) two
concurrent put operation linking some key to two different objects results in the
merge of the state of the objects. Note that two concurrent put operations linking
a key to objects of different types results in two different map entries, as the key
of the map entry is the pair (key, objtype). (ii) a rem(key) concurrent with some

SyncFree Deliverable D.3.1(v0.1), November 17, 2014, Page 5

4 RESULTS

Locat ion ahmedMap = new Locat ion (new Namespace (”maps” , ” customers ”) , ” ahmed info ”) ;

MapUpdate purchaseUpdate = new MapUpdate ()
. update (” f i r s t p u r c h a s e ” , new FlagUpdate () . s e t (true))
. update (”widget purchases ” , new CounterUpdate (1)) ;
. update (”amount” , new RegisterUpdate () . s e t (BinaryValue . c r e a t e (”1271”)))
. update (” items ” , new SetUpdate () . add (BinaryValue . c r e a t e (” l a r g e widget ”))) ;

MapUpdate annikaUpdate = new MapUpdate ()
. update (” purchase ” , purchaseUpdate) ;

MapUpdate ahmedUpdate = new MapUpdate ()
. update (” ann ika in f o ” , annikaUpdate) ;

UpdateMap update = new UpdateMap . Bui lder (ahmedMap , ahmedUpdate)
. withUpdate (ahmedUpdate)
. bu i ld () ;

c l i e n t . execute (update) ;

Figure 1: Access to Map CRDT in Java (adapted from [14]).

update in the object mapped by key is solved by keeping the tree of Map CRDTs
strictly necessary to access the modified object.

For implementing the described merge approach efficiently, each operation and
its effects are assigned a timestamp (or dot) [1]. The (outer) Map CRDT keeps a
version vector summarizing the updates applied to all CRDTs in the tree. With
this information it is possible to know what information has been added and deleted
to the Map, using an approach similar to the one used in the optimized OR-Set
[16] - when merging two states, the merge procedure detects that replica r1 was
updated concurrently with a remove in replica r2 if the dot associated with the
new information in r1 is not reflected in the vector of r2. Additionally, a bit of
information has been deleted if the dot associated with it in r1 is already reflected
in the vector of r2

Basho provides an open-source implementation of the Map CRDT, as well as
other CRDTs [43], in Erlang [13]. This implementation is integrated in the Riak
Database v. 2.0, released in September of 2014. It includes APIs to access the
CRDTs provided by the database in several languages - Figure 1 exemplifies the
access to the Map CRDT in Java.

4.1.2 General composition

Map CRDT provides a good practical design for storing complex application data.
However, the possible compositions are limited, and although it can address a large
number of application scenarios, it falls short in some cases. To address this lim-
itation, we have investigated the problem of general composition of CRDTs. The
work detailed in a (currently unpublished) technical report [11], is briefly described
here.

State-based CRDTs are rooted in mathematical structures called join-semilattices
(or simply lattices, in this context). These order structures ensure that the repli-
cated states of the defined data types evolve and increase in a partial order in a
sufficiently defined way, so as to ensure that all concurrent evolutions can be merged
deterministically.

We started by identifying a small set of primitive lattices that are useful to
construct more complex structures by composition, namely, (i) Singleton, that has

SyncFree Deliverable D.3.1(v0.1), November 17, 2014, Page 6

4 RESULTS

a single element; (ii) Boolean, with join the logical ∨; (iii) Naturals, with join being
the max.

State-based CRDTs can be specified by selecting a given lattice to model the
state, and choosing an initial value in the lattice. Operations can only change the
state by inflations (intuitively, by moving upwards in the lattice) and do not return
values. Query operations evaluate an arbitrary function on the state and return a
value.

For creating lattices that model the state of CRDTs we consider a number of
composition techniques that are known to derive lattices from other lattices or from
simpler structure, including: (i) the product of two lattices; (ii) the composition
according to a lexicographic order; (iii) the linear sum of two lattices.

We have shown that from the primitive lattices and the composition rules de-
scribed, it is possible to compose the CRDT proposed in literature and more com-
plex CRDTs.

4.1.3 Decomposing CRDTs (for storage)

Creating CRDTs that can be used for storing complex application data may simplify
application development, but it can lead to performance problems as the system
needs to handle these potentially large data objects. This problem occurs both in
the servers, as a small update to a large object may lead to loading and storing
large amounts of data from disk, and when transferring CRDT to clients, as large
objects may be transferred when only a part of the data is necessary. This problem
has been addressed in two complementary works in the context of the project.

Decomposition in Riak The Map CRDT implemented in Riak DT library pro-
vides the ability of composing CRDTs through embedding, in which the complete
tree of CRDT object is stored in a single key. This leads to performance problems,
in which a noticeable performance degradation can be observed when accessing ob-
ject larger than one megabyte. The naive approach of storing objects in different
keys cannot be used in Riak, as it does not guarantee causal consistency, which can
lead to the observation of reference for objects that are still not available in a given
replica.

To address these issues, we have been working on an alternative composition
mechanism that does not degrade in performance as size increases, but provides
values at read time which observe the lattice properties of state-based CRDTs
ensuring conflict-free merges with later states. The key ideas that are being pursued
in this on-going work, presented by Meiklejohn [35], are the following.

First, the API for interacting with Riak DT map needs to be extended to support
specifying whether the object should be composed by embedding or by reference.
When performing a write of an object containing references to other objects, the
system generates unique reference identifiers for each referenced object.

Second, when performing a read operation of an object containing references
to other objects, the system recursively attempts to retrieve the referenced objects
from the data store. For this step to work properly, it is necessary to guarantee that
a read operation observes a causally consistent database state. We are currently
exploring different alternative to achieve this goal.

SyncFree Deliverable D.3.1(v0.1), November 17, 2014, Page 7

4 RESULTS

Conflict-free Partially Replicated Data Structures Replicating large CRDTs
in the clients can be a waste of resources, of both storage and bandwidth. For ex-
ample, in a Facebook-like application, the posts of a user wall can be stored in a
set CRDT (or sequence CRDT). If the user is interested in only a small subset of
these posts, according to some criterium, storing the complete state of the CRDT
is not necessary.

We have proposed a new abstraction, the Conflict-free Partially Replicated Data
Structures (CPRDTs) [17], to address this issue. A CPRDT is a CRDT that can
be partitioned in multiple particles. We define particles as the smallest meaningful
elements of a CPRDT. By meaningful we refer to the smallest element that can be
used for query and update operations. For instance, a particle in a grow-only set
would be any element that can be added or looked up in the set.

When defining a CPRDT, it is necessary to define the particles that compose
the CPRDT and the operations that are defined. For each operation, the following
functions must be specified:

required For an operation op with its arguments, required(op) is the set of par-
ticles needed by op to be properly executed. This means that, for replica xi,
an operation is enabled only if required(op) ⊆ shard(xi). E.g. for the lookup
operation of a set, required(lookup(e)) = e where e is an element of the set.
In case e 6∈ shard(xi), the replica will not be able to know whether e is in the
set because it has not kept a state for it.

affected The function affected(op) returns the set of particles that may have their
state affected after executing operation op.

These functions provide the necessary information for the system to control the
access to partially replicated CPRDTs. Each replica of a CPRDT xi maintains
a set of particles, shard(xi). The replica only knows the state of the particles in
shard(xi); therefore, it can only enable query and update operations that require
and affect those particles. Furthermore, the CPRDT replica only needs to receive
update operations that affect the particles in shard(xi) in order to converge.

In the context of this work, we have defined several CPRDT version of existing
CRDTs - Figure 2 presents the specification of a G-SSet CPRDT. We have evaluated
the impact of using CPRDTs, showing that partially replicating a CPRDT can lead
to important performance benefits when manipulating large CRDT objects.

4.1.4 Related work

Lattices and lattice composition have been studied in order theory [22]. Our work
on composition builds on this work and applies it to the context of replicated data
structures.

Partial replication has been addressed in a large number of works. In most
of these works, such as Thor [30], PRACTI [15] and SwiftCloud [38, 51], partial
replication refers to replicating a subset of the database objects. The research
being pursued in this project extends these works by addressing the problem of
convergence for partially replicated objects that can be modified concurrently.

SyncFree Deliverable D.3.1(v0.1), November 17, 2014, Page 8

4 RESULTS

1: particle definition A possible element of the set.
2: payload set A
3: initial ∅
4: query lookup(element e) : boolean b
5: required particles {e}
6: let b = e ∈ A
7: update add(element e)
8: required particles ∅
9: affected particles {e}
10: A := A ∪ {e}
11: merge (S, T) : payload U
12: let U.A = S.A ∪ T.A
13: fraction (particles Z) : payload D
14: let D.A = A ∩ Z}

Figure 2: State-based Grow-Only Set (G-set) with Partial Replication

This problem has been addressed by Deftu et. al. [24] in the context of set
CRDTs. In contrast to this work, we are proposing a principled solution to the
problem that can be used with any CRDT.

4.1.5 Summary

The use-cases studied in WP1 and the experience in modelling complex applications
by some of the partners have shown that supporting the composition of multiple
CRDTs was an important requirement. To address this requirement, we have been
investigated two main approaches.

First, we proposed a solution that supports composition relying on a Map
CRDT. In this approach, it is possible to add to an existing map a new CRDT
(including other maps). This allows to compose CRDTs with the limitation that
the structure of the data model must be acyclic. The proposed solution has been
integrated in Riak 2.0 release.

Second, we have studied techniques for allowing the general composition of
CRDTs. To this end, we identified elementary CRDTs and compositions rules
that guarantee that the composed object is still a CRDT.

Large CRDTs can lead to performance problems as the system needs to handle
these potentially large data objects. We have addressed these problems in two
complementary works. The first proposes a solution for storing the elements of a
Map CRDT in different keys, allowing the system to manipulate each of the inner
object independently. The second work studies how to partition a large CRDT,
by decomposing it in multiple parts that can be manipulated independently by the
system.

4.2 Transactions and Replication

Creating CRDTs that maintain more complex data is only one part of the solution
for addressing the requirements of applications. In some cases, applications need to

SyncFree Deliverable D.3.1(v0.1), November 17, 2014, Page 9

4 RESULTS

access and modify data that does not fit naturally in a large object. In such cases,
there is a need to group operations in atomic units or transactions.

In this project, and continuing previous work from team members, we have
studied the models and algorithms for executing transactions in the the context of
weakly consistent geo-replicated systems. We have additionally proposed two gen-
eral techniques for supporting efficient replication, namely a mechanism for track-
ing causality and a new model for efficiently propagating updates on CRDTs. We
overview our contribution in the remaining of this section.

4.2.1 Foundations for efficient replication

Dotted Version Vector Sets Weakly consistent geo-replicated storage systems
[23, 31, 32, 3, 27] follow a design where the data store is always writeable and
concurrent writes may occur. While some systems use simple repair strategies,
such as last-writer-wins, that may lead to lost updates, others merge the effects of
all concurrent updates. CRDTs adopt this last strategy.

In such systems, it is important to track causality in an efficient and accurate
way. Version vectors [37] are the mostly used technique for comparing pairs of
replica versions and detect if they are equivalent, concurrent or if one makes the
other obsolete. However, in the presence of multiple clients executing concurrent
updates, version vectors lack the ability to accurately represent concurrent values
when using one entry per server. Alternatively, version vector can accurately track
causality when using one entry per client, but this approach leads to scalability
issues.

To address this issue, we have proposed in the past a new and simple causality
tracking mechanism, Dotted Version Vectors [1, 39], that overcomes these limita-
tions allowing both scalable and fully accurate causality tracking. A Dotted Version
Vector (DVV) is a logical clock which consists of a pair (d, v), where v is a tradi-
tional version vector and the dot d is a pair (i, n), with i a node identifier and n an
integer. The dot is the version identifier and it represents the globally unique event
being described, while the VV represents the causal past.

An event a with DVV ((ia, na), va) causally precedes an event b with DVV
((ib, nb), vb): a < b, iff na ≤ vb[ia] (i.e., the event identifier of a is in the causal
past of b). Two events are concurrent if neither causally precedes the other: a ‖ b
iff na > vb[ia] ∧ nb > va[ib].

Although DVVs address the problem of tracking causality efficiently, for systems
that maintain multiple concurrent object versions, storing a DVV for each one may
still represent an important overhead. To address this issue, we have proposed a
new container - Dotted Version Vector Sets (DVVSet) [1] - that efficiently compacts
a set of concurrent DVVs in a single data structure. The key idea is to factorize
common knowledge for the set of DVVs described, keeping only the strictly relevant
information in a single data structure. This results in not only a very succinct
representation, but also in reduced time complexity of operations: the concurrent
values will be indexed and ordered in the data structure, and traversal will be
efficient.

Basho has adopted DVV and DVVSets in the latest release of the Riak database.
The same idea, of decoupling the update identifier and its causal past has been used

SyncFree Deliverable D.3.1(v0.1), November 17, 2014, Page 10

4 RESULTS

in the transactional protocols described in the next subsection.

Delta Mutators State-based CRDTs are preferred to operation-based when causal
delivery is not guaranteed by the messaging middlware or when it is necessary to
propagate a large number of updates. However, shipping the complete state when
a single update has been executed becomes expensive when CRDTs get large.

We have addressed this issue by rethinking the way that state-based CRDTs are
designed and synchronized [2], having in mind the problematic shipping of the entire
state. Our aim is to ship a representation of the effect of recent update operations
on the state, rather than the whole state, while preserving the idempotent nature
of join. Thus, this allows unreliable communication, on the contrary to operation-
based CRDTs that demand exactly-once delivery and are prone to message replays.

To achieve this, we introduced Delta State-based CRDTs (δ-CRDT): a state
is a join-semilattice that results from the join of multiple fine-grained states, i.e.,
deltas, generated by what we call δ-mutators; these are new versions of the datatype
mutators that return the effect of these mutators on the state. In this way, deltas
can be retained in a buffer to be shipped individually (or joined in groups) instead
of shipping the entire object. The changes to the local state are then incorporated
at other replicas by joining the shipped deltas with their own states.

The challenge in this approach is to make sure that decomposing a CRDT into
deltas and then joining them into another replica state (after shipping) produces
the same effect as if the entire state had been shipped and merged. This is on-going
work, but we have already produced a library of δ-CRDTs that is publicly available
[10].

4.2.2 Transactional Causal+ Consistency

Cloud platforms improve availability and latency by geo-replicating data in several
data centers (DCs) across the world [23, 31, 32, 3, 27, 21, 29, 20]. Nevertheless, the
closest DC is often still too far away for an optimal user experience. Caching data
at client machines can improve latency and availability for many applications, and
even allow for a temporary disconnection. While increasingly used, this approach
often leads to ad-hoc implementations that integrate poorly with server-side storage
and tend to degrade data consistency guarantees.

Although extending geo-replication to the client machine seems natural, it raises
two big challenges. The first one is to provide programming guarantees for appli-
cations running on client machines, at a reasonable cost at scale and under churn.
Recent DC-centric storage systems [47, 31, 32] provide transactions, and combine
support for causal consistency with mergeable objects, i.e., CRDTs. Extending
these guarantees to the clients is problematic for a number of reasons: standard
approaches to support causality in client nodes require vector clocks entries pro-
portional to the number of replicas; seamless access to client and server replicas
require careful maintenance of object versions; fast execution in the client requires
asynchronous commit. We developed protocols that efficiently address these issues
despite failures, by combining a set of novel techniques.

Client-side execution is not always beneficial. For instance, computations that
access a lot of data, such as search or recommendations is best done in the DC.

SyncFree Deliverable D.3.1(v0.1), November 17, 2014, Page 11

4 RESULTS

We show how to support server-side execution, without breaking the guarantees of
client-side in-cache execution.

The second challenge is to maintain these guarantees when the client-DC con-
nection breaks. Upon reconnection, possibly to a different DC, the outcome of the
client’s in-flight transactions is unknown, and state of the DC might miss the causal
dependencies of the client. We discuss how to address this challenge in the context
of WP2 report.

System model SwiftCloud is a data storage systems for cloud platforms that
spans both client nodes and data center servers (DCs). The core of the system
consists of a set of DCs that replicate every object. At the periphery, applications
running in client nodes access the system through a local module called scout. A
scout caches a subset of the objects.

SwiftCloud provides a straightforward transactional key-object API. An ap-
plication executes transactions by interactively executing sequences of reads and
updates, concluded by either a commit or rollback.

Our transactional model, Transactional Causal+ Consistency, offers the follow-
ing guarantees: every transaction reads a causally consistent snapshot; updates
of a transaction are atomic (all-or-nothing) and isolated (no concurrent transac-
tion observes an intermediate state); and concurrently committed updates do not
conflict.

This transactional model allows different clients to observe the same set of con-
current updates applied in different orders, which poses a risk of yielding different
operation outcomes on different replicas or at different times. We address this
problem by disallowing non-commutative (order-dependent) concurrent updates.
Practically, we enforce this property with Mergeable transactions.

Mergeable transactions commute with each other and with non-mergeable trans-
actions, which allows to execute them immediately in the cache, commit asyn-
chronously in the background, and remain available in failure scenarios. Mergeable
transaction are either read-only transaction or update transactions that modify
CRDTs. Next, we present the key ideas for supporting mergeable transactions.

Algorithms An application issues a mergeable transaction iteratively through
the scout. Reads are served from the local scout; on a cache miss, the scout fetches
the data from the DC it is connected to. Updates execute in a local copy. When a
mergeable transaction terminates, it is locally committed and updates are applied to
the scout cache. Updates are also propagated to a DC for being globally committed.
The DC eventually propagates the effects of transactions to other DCs and other
scouts as needed.

Atomicity and Isolation: For supporting atomicity and isolation, a transaction
reads from a database snapshot. Each transaction is assigned a DC timestamp by
the DC that received it from the client. Each DC maintains a vector clock with the
summary of all transactions that have been executed in that DC, which is updated
whenever a transaction completes its execution in that DC. This vector has as n
entries, with n the number of DCs. Each scout maintains a vector clock with the
version of the objects in the local cache.

SyncFree Deliverable D.3.1(v0.1), November 17, 2014, Page 12

4 RESULTS

When a transaction starts in the client, the current version of the cache is
selected as the transaction snapshot. If the transaction accesses an object that is
not present in the cache, the appropriate version is fetched from the DC - to this
end, DCs maintain recent versions of each object.

Read your writes: When a transaction commits in the client, the local cache is
updated. The following transactions access a snapshot that includes these locally
committed transactions. To this end, each transaction executed in the client is as-
signed a scout timestamp. The vector that summarizes the transactions reflected in
the local cache has n+1 entries, with the additional entry being used to summarize
locally submitted transactions. This approach guarantees that a client always reads
a state that reflects his previous transactions.

Causality: The system ensures the invariant that every node (DC or scout)
maintains a causally-consistent set of object versions. To this end, a transaction
only executes in a DC after its dependencies are satisfied - the dependencies of a
transaction, summarized in the transaction snapshot, are propagated both from the
client to the initial DC and from one DC to other DCs. The combination of the
server timestamp and the transaction dependencies form a Dotted Version Vector,
introduced previously.

When a scout caches some object, the DC it is connected to becomes respon-
sible of notifying it with updates to those cached objects. SwiftCloud includes a
notification subsystem that guarantees that updates from a committed transaction
are propagated atomically and respecting causality. As a result, the cache in the
scout is also causally consistent.

We have implemented SwiftCloud, as detailed elsewhere [52, 38, 51]. The evalu-
ation in a cloud environment, using Amazon AWS DCs for running the servers and
PlanetLab nodes for running the client shows that extending geo-replication to the
client machine leads to a huge latency and throughput benefit for scenarios that
exhibit good locality, a property verified in real workloads.

The algorithms being developed in the context of WP2 build on the knowl-
edge and ideas of this work. The new algorithms focus on scaling the execution in
the DCs, by avoiding the use of any centralized component. Besides this work, in
the future we intend to explore two main directions. First, the design of efficient
algorithms for supporting also traditional strong transactions, akin to the model
of Walter [47] or Red-Blue [29]. Second, to study the implementation of weaker
transactional models that provide only read committed isolation, addressing re-
quirements of some use cases of WP1. In this context, we intend to understand
how further relaxing isolation can help improving latency, availability and perfor-
mance.

4.2.3 Related work

Cloud storage systems provide a wide range of consistency models. Some systems
[21, 53, 26, 34] provide strong consistency, at the cost of unavailability when a
replica is unreachable (network partitions). At the opposite end of the spectrum,
some systems [23] provide only eventual consistency (EC), but allow any replica to
perform updates even when the network is partitioned. Other systems’ consistency
model lies between these two extremes or combine both models [47, 29, 48, 20, 46].

SyncFree Deliverable D.3.1(v0.1), November 17, 2014, Page 13

4 RESULTS

Causal consistency strengthens EC with the guarantee that if a write is observed,
all previous writes are also observed. [33] show that, in the presence of partitions,
this is the strongest possible guarantee in an always-available, one-way convergent
system. To cope with concurrent updates, Causal+ Consistency incorporate merge-
able data. This is the model of COPS [31], Eiger [32] and ChainReaction [3]. These
systems merge by last-writer-wins.

We extended Causal+ Consistency with mergeable transactions. COPS and
ChainReaction implement read-only transactions that are non-interactive, i.e, the
read set is known from the beginning. Eiger additionally supports non-interactive
write-only transactions. Our work extends this work with interactive transactions
and support for DC failover. An approach similar to ours, including the study of
isolation levels, session guarantees and causality, was proposed by Bailis et. al. [6].
Burckhardt et. al. [19] also provide a model of transactions for EC that uses a
centralized main revision, being more suitable for smaller databases.

Systems that support strong consistency often present support for transactions
that provide serializable semantics [21, 53] or variants of snapshot isolation [47, 4].
When compared with mergeable transactions, these approaches offer stronger se-
mantics by incurring in higher latency for transaction execution, as multiple replicas
need to be contacted before a transaction commit.

4.2.4 Summary

Applications often need to access and modify data that does not fit naturally in
a large composed object. In these cases, it is necessary to group operations for
providing correct behavior. We have proposed the transactional causal+ consis-
tency model and algorithms that allow a transaction to access a causally consistent
database snapshot while concurrent updates are merged relying on CRDTs. These
algorithms execute in a geo-replicated storage, SwiftCloud, that we have continued
to develop during this period. This work has served as the basis for the transaction
protocols proposed and implemented in Antidote.

We have also proposed two general techniques for supporting efficient replication.
First, a mechanism for efficiently tracking causality in geo-replicated data stores,
by keeping metadata of size O(#replicas). Second, a new model for propagating
updates in state-based CRDTs, that allows to propagate deltas instead of the full
CRDT state.

4.3 Invariants

Systems that adopt weak consistency models have to deal with concurrent oper-
ations not seeing the effects of each other. If CRDTs can be used to guarantee
eventual convergence in these cases, they cannot be used to guarantee that ap-
plication invariants are enforced, which can lead to non-intuitive and undesirable
semantics.

Semantic anomalies do not occur in systems that offer strong consistency guaran-
tees, namely those that serialize all updates [21, 29, 48]. However, these consistency
models require coordination among replicas, which increases latency and decreases
availability. An alternative is to try to combine the strengths of both approaches by

SyncFree Deliverable D.3.1(v0.1), November 17, 2014, Page 14

4 RESULTS

supporting both weak and strong consistency for different operations, as supported
by SwiftCloud [38, 51] and other systems [47, 29, 48]. However, operations requiring
strong consistency still incur in high latency.

To address these issues we have investigated two approaches to maintain ap-
plication invariants. The first addresses numeric invariants, which accounts for an
important class of application invariants, and can be deployed as a middleware on
top of existing key-value stores. The second is more general and can address generic
application invariants.

4.3.1 Middleware for enforcing numeric invariants

Our first work focused on enforcing numeric invariants [7] in the presence of con-
current updates to counter objects, thus helping to address the requirements of the
ad counter use case studied in WP1.

In our work, we showed that fast geo-replicated operations on counters can
coexist with strong invariants. To this end, we proposed a novel abstract data
type called Bounded Counter. This replicated object, like conventional CRDTs,
allows for operations to execute locally, automatically merges concurrent updates,
and, in contrast to previous counter CRDTs, also enforces numeric invariants while
avoiding any coordination in most cases.

This work builds on some ideas previously developed in the context of escrow
transactions [36] and adapt them to run efficiently in cloud environments. The basic
idea is to consider that the difference between the value of a counter and its bound
can be seen as a set of rights to execute operations. For example, in a counter,
n, with initial value n = 40 and invariant n ≥ 10, there are 30 (40 − 10) rights
to execute decrement operations. Executing dec(5) consumes 5 of these rights.
Executing inc(5) creates 5 rights. These rights can be split among the replicas of
the counter – e.g. if there are 3 replicas, each replica can be assigned 10 rights. If
the rights needed to execute some operation exist in the local replica, the operation
can execute safely locally, knowing that the global invariant will not be broken –
in the previous example, if the decrements of each replica are less or equal to 10,
it follows immediately that the total decrements are at most 30 and the invariant
still holds. If not enough rights exist, then either the operation fails or additional
rights must be obtained from other replicas.

Unlike previous works that include some central authority [36, 40, 45] and are
often based on synchronous interactions between nodes, our approach is completely
decentralized and asynchronous, relying on maintaining the necessary information
for enforcing the invariant in a new CRDT – the Bounded Counter CRDT. This
allows for replicas to synchronize peer-to-peer and asynchronously, thus minimizing
the deployment requirements and avoiding situations where the temporary unreach-
ability of the master data center can prevent operations from making progress

For deploying the Bounded Counter in existing cloud infrastructures, we have
developed two middleware designs. While the first design is implemented using
only a client-side library, the second includes server side components deployed in a
distributed hash table. Both designs require only that the underlying cloud store
executes operations sequentially in each replica (not necessarily by the same order
across replicas) and that it provides a reconciliation mechanism that allows for

SyncFree Deliverable D.3.1(v0.1), November 17, 2014, Page 15

4 RESULTS

merging concurrent updates. This makes our solutions generic and portable, but for
achieving performance comparable with accessing directly to the underlying cloud
store our middleware had to include a set of techniques to minimize overhead, which
are fully described elsewhere [7].

Our evaluation shows that the proposed approach enforces numeric invariants
with latency similar to weak consistency systems.

4.3.2 Explicit consistency

We have also proposed a general approach for maintaining applications invariants,
based on explicit consistency [8, 9].

Explicit consistency is a novel consistency semantics for replicated systems. The
high level idea is to let programmers define the application-specific correctness rules
that should be met at all times. These rules are defined as invariants over the
database state.

Given the invariants expressed by the programmer, we propose a methodology
for enforcing explicit consistency that has three steps: (i) detect the sets of op-
erations that may lead to invariant violation when executed concurrently (we call
these sets I-offender sets); (ii) select an efficient mechanism for handling I-offender
sets ; (iii) instrument the application code to use the selected mechanism in a weakly
consistent database system.

The first step consists of discovering I-offender sets . For this analysis, it is
necessary to model the effects of operations. This information should be provided
by programmers, in the form of annotations specifying how predicates are affected
by each operation 2. Using this information and the invariants, a static analysis
process infers the minimal sets of operation invocations that may lead to invariant
violation when executed concurrently (I-offender sets), and the reason for such
violation.

The second step consists in deciding which approach will be used to handle I-
offender sets . The programmer must select from the two alternative approaches
supported: invariant-repair, in which operations are allowed to execute concur-
rently and invariants are enforced by automatic conflict resolution rules; violation-
avoidance, in which the system restricts the concurrent execution of operations that
can lead to invariant violation.

Third, the application code is instrumented to use the conflict-repair and conflict-
avoidance mechanisms selected by the programmer. This involves extending oper-
ations to call the appropriate API functions of a system that support such mech-
anisms. We have designed and implemented such system on top of SwiftCloud
[51, 38].

In this deliverable we briefly discuss how to avoid invariant violation based
on reservations. Other aspects of the proposed methodology are addressed in the
deliverable of WP4.1.

Reservations For avoiding operations that can lead to invariant violation from
executing concurrently, we use the following techniques.

2This step could be automated using program analysis techniques, as done for example in
[28, 42].

SyncFree Deliverable D.3.1(v0.1), November 17, 2014, Page 16

4 RESULTS

UID generator: The system provides a unique identifier generator, which splits
the space of identifiers among replicas. This is an important source of invariant
violations, as discussed elsewhere [29, 5].

Escrow reservation: For numeric invariants of the form x ≥ k, we include
an escrow reservation for allowing decrements to be executed without coordina-
tion. Given an initial value for x = x0, there are initially x0 − k rights to ex-
ecute decrements. These rights can be split by different replicas. For executing
x.decrement(n), the operation must acquire and consume n rights to decrement x
in the replica it is submitted. If not enough rights exist in the replica, the system
will try to obtain additional rights from other replicas. If this is not possible, the
operation will fail. Executing x.increment(n) creates n rights to decrement n ini-
tially assigned to the replica in which the operation that executes the increment is
submitted.

A similar approach is used for invariants of the form x ≤ k, with increments
consuming rights and decrements creating new rights. For invariants of the form
x+y+ . . .+z ≥ k, a single escrow reservation is used, with decrements to any of the
involved variables consuming rights and increments creating rights. If a variable x
is involved in more than one invariant, several escrow reservations will be affected
by a single increment/decrement operation on x.

Multi-level lock reservation: When the invariant in risk is not numeric,
we use a multi-level lock reservation (or simply multi-level lock) to restrict the
concurrent execution of operations that can break invariants. A multi-level lock
can provide the following rights: (i) shared forbid, giving the shared right to forbid
some action to occur; (ii) shared allow, giving the shared right to allow some action
to occur; (iii) exclusive allow, giving the exclusive right to execute some action.

When a replica holds some right, it knows no other replica holds rights of a
different type - e.g. if a replica holds a shared forbid, it knows no replica has any
form of allow.

Multi-level mask reservation: For invariants of the form P1∨P2∨. . .∨Pn, the
concurrent execution of any pair of operations that makes two different predicates
false may lead to an invariant violation if all other predicates were originally false.
In our analysis, each of these pairs is an I-offender set .

Using simple multi-level locks for each pair of operations is too restrictive, as
getting a shared allow on one operation would prevent the execution of the other op-
eration in all pairs. In this case, for executing one operation is suffices to guarantee
that a single other operation is forbidden (assuming that the predicate associated
with the forbidden operation is true).

To this end, we propose multi-level mask reservation that maintains the same
rights as multi-level lock regarding a set of K operations. With multi-level mask,
when obtaining a shared allow right for some operation, it is necessary to obtain (if
it does not exist already) a shared forbid right on some other operation.

Indigo system We have built a prototype named Indigo on top of the SwiftCloud
geo-replicated data store, leveraging on the following properties: (i) causal con-
sistency; (ii) support for transactions that access a database snapshot and merge
concurrent updates using CRDTs; (iii) linearizable execution of operations for each
object in each datacenter.

SyncFree Deliverable D.3.1(v0.1), November 17, 2014, Page 17

4 RESULTS

The details of the implementation are described in Balegas et. al. [8]. The
evaluation in a geo-replicated environment shows that the proposed approach can
enforce application invariants while most operations complete in the local data-
center, thus providing a much lower latency than solutions requiring coordination
among replicas.

In the future, we intend to focus on studying approaches that implement in-
variant repair across multiple objects. This approach has the potential to further
reduce the required synchronization among replicas.

4.3.3 Related work

A large number of systems supporting weakly consistent geo-replication emerged in
recent years [23, 31, 32, 3, 27]. These systems cannot address the requirements of
applications that require (some operations to execute under) strong consistency for
correctness.

Other geo-replicated systems provide strong consistency [21, 53, 26, 34], or a
combination of weak and strong consistency [47, 29, 48, 20, 46]. Unlike these sys-
tems, our proposals enforce application invariants by exploring application seman-
tics to let (most) operations execute in a single datacenter.

A number of systems have been proposed for maintaining application invari-
ants in a distributed way. Escrow transactions [36] offer a mechanism for enforcing
numeric invariants under concurrent execution of transactions. By enforcing local
invariants in each transaction, they can guarantee that a global invariant is not
broken. This idea can be applied to other data types, and it has been explored
for supporting disconnected operation in mobile computing [49, 40, 45]. The de-
marcation protocol [12] is aimed at maintaining invariants in distributed databases.
Although its underlying protocols are similar to escrow-based approaches, it fo-
cuses on maintaining invariants across different objects. Warranties [25] provide
time-limited assertions over the database state, which can improve latency of read
operations in cloud storages.

Our work builds on these works, but it is the first to provide an approach
that, starting from application invariants expressed in first-order logic leads to the
deployment of the appropriate techniques for enforcing such invariants in a geo-
replicated weakly consistent data store.

4.3.4 Summary

Some applications need to maintain invariants that cannot be enforced in a pure
weakly consistent replicated store. To address this issue, we have proposed two
approaches to enforce application invariants while minimizing the required coordi-
nation and moving the needed coordination outside of the critical path of operation
execution.

The first approach addresses numeric invariants, which are an important class
of application invariants. The solution uses a new CRDT, the Bounded Counter,
and a middleware design to enforce invariants in existing key-value stores.

The second approach allows to enforce generic application invariants, by re-
lying on reservations [40]. We propose a novel methodology that, starting from

SyncFree Deliverable D.3.1(v0.1), November 17, 2014, Page 18

4 RESULTS

application invariants and operation side-effects, helps programmers deploying a
reservation system that enforces invariants with minimal coordination.

4.4 Final remarks

According to the DOW, the goal of this deliverable was to “report on the mecha-
nisms for enforcing guarantees in the presence of CRDT composition and transac-
tions”, by “studying composition mechanisms”, “which transaction properties are
required to maintain different classes of invariants” and “identifying at what point
stronger guarantees require introducing small doses of synchronisation”.

The contributions produced during this first year by the project consortium
reached the goals of task 3.1. Namely, we have studied different composition mech-
anisms that still guarantee data convergence, name a composition based on a Map
CRDT and a generic composition framework. For providing stronger guarantees
and maintaining invariants, we have researched two main complementary mecha-
nisms. Mergeable transactions provide atomicity guarantees and allow accessing a
database snapshot. We have shown how to enforce generic application invariants
with low latency by moving the required coordination outside of the critical path
of operations and by amortizing the cost of coordination over multiple operations.

These works have been described in several papers that are either published or
under submission, and several prototypes have been created and are publicly avail-
able in the project repository (some works are available in other public repositories,
as mentioned in this report).

As discussed throughout this section, some of the works described are still on-
going, either because we are awaiting successful publication or because new di-
rections have been uncover during our work. During this first year, some works
produced in the context of this WP have contributed to development of the An-
tidote prototype, in coordination with WP2. During the next year we intend to
continue contributing and integrating some of the developed techniques in Anti-
dote, namely the support for partial replication of large and composed CRDTs and
the techniques for enforcing invariants.

The work produced in the task has received as input the requirements identified
in the use-cases of WP1. As discussed throughout the report, where appropriate,
some works have different aspects that conceptually belong to multiple work pack-
ages, namely: (i) the work on composition is related with both WP2 and WP4 -
the Map CRDT and techniques for partially replicating large CRDTs are expected
to be integrated in the Antidote prototype with adequate programming support;
(ii) the work on mergeable transactions served as the basis for the protocols devel-
oped in WP2; (iii) the work on invariants is related with WP4 and we expect to
integrate our proposals in the prototype being developed in WP2 in the next year.

SyncFree Deliverable D.3.1(v0.1), November 17, 2014, Page 19

5 PAPERS AND PUBLICATIONS

5 Papers and Publications

The work performed in the context of WP3 and in collaboration with other work
packages has led to several papers. The following papers have been accepted and
published during this period:

• [1] Paulo Sérgio Almeida, Carlos Baquero, Ricardo Gonçalves, Nuno Preguiça,
and Victor Fonte. Scalable and accurate causality tracking for eventually con-
sistent stores. In Proceedings of the 14th IFIP WG 6.1 International Con-
ference on Distributed Applications and Interoperable Systems, DAIS 2014,
Berlin, Germany, June 3-5, 2014, Proceedings, volume 8460 of Lecture Notes
in Computer Science, pages 67–81. Springer, 2014. (appendix A.3)

• [2] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. Efficient state-
based crdts by decomposition. In Proceedings of the First Workshop on Prin-
ciples and Practice of Eventual Consistency, PaPEC ’14, New York, NY, USA,
2014. ACM. (appendix A.4)

• [9] Valter Balegas, Mahsa Najafzadeh, Sérgio Duarte, Carla Ferreira, Ro-
drigo Rodrigues, Marc Shapiro, and Nuno Preguiça. The Case for Fast and
Invariant-Preserving Geo-Replication. In Proceedings of the SRDS Workshop
on Planetary-Scale Distributed Systems, October 2014. (appendix A.6)

• [18] Russell Brown, Sean Cribbs, Christopher Meiklejohn, and Sam Elliott.
Riak dt map: A composable, convergent replicated dictionary. In Proceedings
of the First Workshop on Principles and Practice of Eventual Consistency,
PaPEC ’14, New York, NY, USA, 2014. ACM. (appendix A.1)

• [35] Christopher Meiklejohn. On the composability of the riak dt map: Ex-
panding from embedded to multi-key structures. In Proceedings of the First
Workshop on Principles and Practice of Eventual Consistency, PaPEC ’14,
New York, NY, USA, 2014. ACM. (appendix A.2)

• [38] Nuno Preguiça, Marek Zawirski, Annette Bieniusa, Valter Balegas, Sérgio
Duarte, Carlos Baquero, and Marc Shapiro. SwiftCloud: Fault-Tolerant Geo-
Replication Integrated all the Way to the Client Machine (invited talk). In
Proceedings of the SRDS Workshop on Planetary-Scale Distributed Systems,
October 2014. (appendix A.5)

The following paper are under submission or being prepared for submission.

• [7] Valter Balegas, Mahsa Najafzadeh, Sergio Duarte, Carla Ferreira, Rodrigo
Rodrigues, Marc Shapiro, and Nuno Preguiça. Extending Eventually Consis-
tent Cloud Stores for Enforcing Numeric Invariants. Technical report, 2014.
(appendix B.4)

• [8] Valter Balegas, Mahsa Najafzadeh, Sérgio Duarte, Carla Ferreira, Rodrigo
Rodrigues, Marc Shapiro, and Nuno Preguiça. Putting Consistency Back into
Eventual Consistency. Submitted to EuroSys’2015, 2014. (appendix B.5)

SyncFree Deliverable D.3.1(v0.1), November 17, 2014, Page 20

5 PAPERS AND PUBLICATIONS

• [11] Carlos Baquero, Paulo Sérgio Almeia, Alcino Cunha, and Alcin Ferreira.
Com- position of state-based CRDTs. Technical report, U. Minho, 2014.
(appendix B.1)

• [17] Iwan Briquemont, Manuel Bravo, Zhongmiao Li, and Peter Van Roy.
Conflict- free partially replicated data types. Submitted to 20th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming, 2014.
(appendix B.2)

• [52] Marek Zawirski, Nuno Preguiça, Annette Bieniusa, Sérgio Duarte, Valter
Balegas, Carlos Baquero, and Marc Shapiro. Write Fast, Read in the Past:
Causal Consistency for Client-side Applications. Submitted to EuroSys’2015,
2014. (appendix B.3)

SyncFree Deliverable D.3.1(v0.1), November 17, 2014, Page 21

REFERENCES

References

[1] Paulo Sérgio Almeida, Carlos Baquero, Ricardo Gonçalves, Nuno M. Preguiça,
and Victor Fonte. Scalable and accurate causality tracking for eventually con-
sistent stores. In Distributed Applications and Interoperable Systems - 14th
IFIP WG 6.1 International Conference, DAIS 2014, Held as Part of the 9th
International Federated Conference on Distributed Computing Techniques, Dis-
CoTec 2014, Berlin, Germany, June 3-5, 2014, Proceedings, volume 8460 of
Lecture Notes in Computer Science, pages 67–81. Springer, 2014.

[2] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. Efficient state-based
crdts by decomposition. In Proceedings of the First Workshop on Principles
and Practice of Eventual Consistency, PaPEC ’14, pages 3:1–3:2, New York,
NY, USA, 2014. ACM.

[3] Sérgio Almeida, Joao Leitão, and Lúıs Rodrigues. Chainreaction: A causal+
consistent datastore based on chain replication. In Proceedings of the 8th ACM
European Conference on Computer Systems, EuroSys ’13, pages 85–98, New
York, NY, USA, 2013. ACM.

[4] Masoud Saeida Ardekani, Pierre Sutra, and Marc Shapiro. Non-monotonic
snapshot isolation: Scalable and strong consistency for geo-replicated transac-
tional systems. In Proceedings of the 2013 IEEE 32Nd International Symposium
on Reliable Distributed Systems, SRDS ’13, pages 163–172, Washington, DC,
USA, 2013. IEEE Computer Society.

[5] Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M. Heller-
stein, and Ion Stoica. Coordination-avoiding database systems. CoRR,
abs/1402.2237, 2014.

[6] Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica.
Hat, not cap: Towards highly available transactions. In Proceedings of the 14th
USENIX Conference on Hot Topics in Operating Systems, HotOS’13, pages
24–24, Berkeley, CA, USA, 2013. USENIX Association.

[7] Valter Balegas, Mahsa Najafzadeh, Sérgio Duarte, Carla Ferreira, Rodrigo Ro-
drigues, Marc Shapiro, and Nuno Preguiça. Extending Eventually Consistent
Cloud Stores for Enforcing Numeric Invariants. Technical Report, 2014.

[8] Valter Balegas, Mahsa Najafzadeh, Sérgio Duarte, Carla Ferreira, Rodrigo
Rodrigues, Marc Shapiro, and Nuno Preguiça. Putting Consistency Back into
Eventual Consistency. Submitted to EuroSys’2015, 2014.

[9] Valter Balegas, Mahsa Najafzadeh, Sérgio Duarte, Carla Ferreira, Rodrigo
Rodrigues, Marc Shapiro, and Nuno Preguiça. The Case for Fast and
Invariant-Preserving Geo-Replication. In Proceedings of the SRDS Workshop
on Planetary-Scale Distributed Systems, October 2014.

[10] Carlos Baquero. Delta crdt library. https://github.com/CBaquero/

delta-enabled-crdts, 2014.

SyncFree Deliverable D.3.1(v0.1), November 17, 2014, Page 22

https://github.com/CBaquero/delta-enabled-crdts
https://github.com/CBaquero/delta-enabled-crdts

REFERENCES

[11] Carlos Baquero, Paulo Sérgio Almeia, Alcino Cunha, and Alcin Ferreira. Com-
position of state-based crdts. Technical report, U. Minho, 2014.

[12] Daniel Barbará-Millá and Hector Garcia-Molina. The demarcation protocol:
A technique for maintaining constraints in distributed database systems. The
VLDB Journal, 3(3):325–353, July 1994.

[13] Basho. Riak dt library. https://github.com/basho/riak_dt, 2014.

[14] Basho. Using data types. http://docs.basho.com/riak/2.0.0/dev/using/
data-types/, 2014.

[15] Nalini Belaramani, Mike Dahlin, Lei Gao, Amol Nayate, Arun Venkataramani,
Praveen Yalagandula, and Jiandan Zheng. Practi replication. In Proceedings of
the 3rd Conference on Networked Systems Design & Implementation - Volume
3, NSDI’06, pages 5–5, Berkeley, CA, USA, 2006. USENIX Association.

[16] Annette Bieniusa, Marek Zawirski, Nuno Preguiça, Marc Shapiro, Carlos Ba-
quero, Valter Balegas, and Sérgio Duarte. An optimized conflict-free replicated
set. Rapport de recherche RR-8083, INRIA, October 2012.

[17] Iwan Briquemont, Manuel Bravo, Zhongmiao Li, and Peter Van Roy. Conflict-
free partially replicated data types. Submitted to 20th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, 2014.

[18] Russell Brown, Sean Cribbs, Christopher Meiklejohn, and Sam Elliott. Riak
dt map: A composable, convergent replicated dictionary. In Proceedings of the
First Workshop on Principles and Practice of Eventual Consistency, PaPEC
’14, pages 1:1–1:1, New York, NY, USA, 2014. ACM.

[19] Sebastian Burckhardt, Manuel Fähndrich, Daan Leijen, and Mooly Sagiv.
Eventually consistent transactions. In European Symposium on Programming
(ESOP), Tallinn, Estonia, March 2012.

[20] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein,
Philip Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana
Yerneni. Pnuts: Yahoo!’s hosted data serving platform. Proc. VLDB Endow.,
1(2):1277–1288, August 2008.

[21] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi
Li, Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quin-
lan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christo-
pher Taylor, Ruth Wang, and Dale Woodford. Spanner: Google’s globally-
distributed database. In Proceedings of the 10th USENIX Conference on Oper-
ating Systems Design and Implementation, OSDI’12, pages 251–264, Berkeley,
CA, USA, 2012. USENIX Association.

[22] Brian A. Davey and Hilary A. Priestley. Introduction to Lattices and Order (2.
ed.). Cambridge University Press, 2002.

SyncFree Deliverable D.3.1(v0.1), November 17, 2014, Page 23

https://github.com/basho/riak_dt
http://docs.basho.com/riak/2.0.0/dev/using/data-types/
http://docs.basho.com/riak/2.0.0/dev/using/data-types/

REFERENCES

[23] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakula-
pati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter
Vosshall, and Werner Vogels. Dynamo: Amazon’s highly available key-value
store. In Proceedings of Twenty-first ACM SIGOPS Symposium on Operat-
ing Systems Principles, SOSP ’07, pages 205–220, New York, NY, USA, 2007.
ACM.

[24] Andrei Deftu and Jan Griebsch. A scalable conflict-free replicated set data
type. In Proceedings of the 2013 IEEE 33rd International Conference on Dis-
tributed Computing Systems, ICDCS ’13, pages 186–195, Washington, DC,
USA, 2013. IEEE Computer Society.

[25] ed Liu, Tom Magrino, Owen Arden, Michael D. George, and Andrew C. Myers.
Warranties for faster strong consistency. In Proceedings of the 11th USENIX
Conference on Networked Systems Design and Implementation, nsdi’14, Berke-
ley, CA, USA, 2014. USENIX Association.

[26] Tim Kraska, Gene Pang, Michael J. Franklin, Samuel Madden, and Alan
Fekete. Mdcc: Multi-data center consistency. In Proceedings of the 8th ACM
European Conference on Computer Systems, EuroSys ’13, pages 113–126, New
York, NY, USA, 2013. ACM.

[27] Avinash Lakshman and Prashant Malik. Cassandra: A decentralized struc-
tured storage system. SIGOPS Oper. Syst. Rev., 44(2):35–40, April 2010.

[28] Cheng Li, J. Leitão, Allen Clement, Nuno Preguiça, Rodrigo Rodrigues, and
Viktor Vafeiadis. Automating the choice of consistency levels in replicated
systems. In Proceedings of the 2014 USENIX Conference on USENIX Annual
Technical Conference, USENIX ATC’14, pages 281–292, Berkeley, CA, USA,
2014. USENIX Association.

[29] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguiça, and
Rodrigo Rodrigues. Making geo-replicated systems fast as possible, consistent
when necessary. In Proceedings of the 10th USENIX Conference on Operating
Systems Design and Implementation, OSDI’12, pages 265–278, Berkeley, CA,
USA, 2012. USENIX Association.

[30] Barbara Liskov, Miguel Castro, Liuba Shrira, and Atul Adya. Providing persis-
tent objects in distributed systems. In Proceedings of the 13th European Con-
ference on Object-Oriented Programming, ECOOP ’99, pages 230–257, London,
UK, UK, 1999. Springer-Verlag.

[31] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Ander-
sen. Don’t settle for eventual: Scalable causal consistency for wide-area storage
with cops. In Proceedings of the Twenty-Third ACM Symposium on Operat-
ing Systems Principles, SOSP ’11, pages 401–416, New York, NY, USA, 2011.
ACM.

[32] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Ander-
sen. Stronger semantics for low-latency geo-replicated storage. In Proceedings

SyncFree Deliverable D.3.1(v0.1), November 17, 2014, Page 24

REFERENCES

of the 10th USENIX Conference on Networked Systems Design and Implemen-
tation, nsdi’13, pages 313–328, Berkeley, CA, USA, 2013. USENIX Association.

[33] Prince Mahajan, Lorenzo Alvisi, and Mike Dahlin. Consistency, availability,
and convergence. Technical Report UTCS TR-11-22, Dept. of Comp. Sc., The
U. of Texas at Austin, Austin, TX, USA, 2011.

[34] Hatem Mahmoud, Faisal Nawab, Alexander Pucher, Divyakant Agrawal, and
Amr El Abbadi. Low-latency multi-datacenter databases using replicated com-
mit. Proc. VLDB Endow., 6(9):661–672, July 2013.

[35] Christopher Meiklejohn. On the composability of the riak dt map: Expanding
from embedded to multi-key structures. In Proceedings of the First Workshop
on Principles and Practice of Eventual Consistency, PaPEC ’14, pages 13:1–
13:2, New York, NY, USA, 2014. ACM.

[36] Patrick E. O’Neil. The escrow transactional method. ACM Trans. Database
Syst., 11(4):405–430, December 1986.

[37] D. S. Parker, G. J. Popek, G. Rudisin, A. Stoughton, B. J. Walker, E. Walton,
J. M. Chow, D. Edwards, S. Kiser, and C. Kline. Detection of mutual incon-
sistency in distributed systems. IEEE Trans. Softw. Eng., 9(3):240–247, May
1983.

[38] Nuno Preguiça, Marek Zawirski, Annette Bieniusa, Valter Balegas, Sérgio
Duarte, Carlos Baquero, and Marc Shapiro. SwiftCloud: Fault-Tolerant Geo-
Replication Integrated all the Way to the Client Machine (invited talk). In
Proceedings of the SRDS Workshop on Planetary-Scale Distributed Systems,
October 2014.

[39] Nuno Preguiça, Carlos Bauqero, Paulo Sérgio Almeida, Victor Fonte, and
Ricardo Gonçalves. Brief announcement: Efficient causality tracking in dis-
tributed storage systems with dotted version vectors. In Proceedings of the
2012 ACM Symposium on Principles of Distributed Computing, PODC ’12,
pages 335–336, New York, NY, USA, 2012. ACM.

[40] Nuno Preguiça, J. Legatheaux Martins, Miguel Cunha, and Henrique Domin-
gos. Reservations for conflict avoidance in a mobile database system. In Pro-
ceedings of the 1st International Conference on Mobile Systems, Applications
and Services, MobiSys ’03, pages 43–56, New York, NY, USA, 2003. ACM.

[41] Nuno Preguiça, Joan Manuel Marques, Marc Shapiro, and Mihai Letia. A
commutative replicated data type for cooperative editing. In Proceedings of the
2009 29th IEEE International Conference on Distributed Computing Systems,
ICDCS ’09, pages 395–403, Washington, DC, USA, 2009. IEEE Computer
Society.

[42] Sudip Roy, Lucja Kot, Nate Foster, Johannes Gehrke, Hossein Hojjat, and
Christoph Koch. Writes that fall in the forest and make no sound: Semantics-
based adaptive data consistency. CoRR, abs/1403.2307, 2014.

SyncFree Deliverable D.3.1(v0.1), November 17, 2014, Page 25

REFERENCES

[43] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. A compre-
hensive study of Convergent and Commutative Replicated Data Types. Rap-
port de recherche RR-7506, INRIA, January 2011.

[44] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-
free replicated data types. In Xavier Défago, Franck Petit, and V. Villain, edi-
tors, Proceedings of the 13th International Symposium on Stabilization, Safety,
and Security of Distributed Systems (SSS), volume 6976 of Lecture Notes on
Computer Science, pages 386–400, Grenoble, France, October 2011. Springer.

[45] Liuba Shrira, Hong Tian, and Doug Terry. Exo-leasing: Escrow synchroniza-
tion for mobile clients of commodity storage servers. In Proceedings of the
9th ACM/IFIP/USENIX International Conference on Middleware, Middle-
ware ’08, pages 42–61, New York, NY, USA, 2008. Springer-Verlag New York,
Inc.

[46] Swaminathan Sivasubramanian. Amazon dynamodb: A seamlessly scalable
non-relational database service. In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’12, pages 729–
730, New York, NY, USA, 2012. ACM.

[47] Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. Transactional
storage for geo-replicated systems. In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, SOSP ’11, pages 385–400, New
York, NY, USA, 2011. ACM.

[48] Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Mahesh Bal-
akrishnan, Marcos K. Aguilera, and Hussam Abu-Libdeh. Consistency-based
service level agreements for cloud storage. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles, SOSP ’13, pages 309–324,
New York, NY, USA, 2013. ACM.

[49] G. D. Walborn and P. K. Chrysanthis. Supporting semantics-based transaction
processing in mobile database applications. In Proceedings of the 14TH Sympo-
sium on Reliable Distributed Systems, SRDS ’95, pages 31–, Washington, DC,
USA, 1995. IEEE Computer Society.

[50] Stephane Weiss, Pascal Urso, and Pascal Molli. Logoot: A scalable optimistic
replication algorithm for collaborative editing on p2p networks. In Proceed-
ings of the 2009 29th IEEE International Conference on Distributed Comput-
ing Systems, ICDCS ’09, pages 404–412, Washington, DC, USA, 2009. IEEE
Computer Society.

[51] Marek Zawirski, Annette Bieniusa, Valter Balegas, Sérgio Duarte, Carlos Ba-
quero, Marc Shapiro, and Nuno Preguiça. SwiftCloud: Fault-Tolerant Geo-
Replication Integrated all the Way to the Client Machine. Rapport de recherche
RR-8347, INRIA, October 2013.

[52] Marek Zawirski, Nuno Preguiça, Annette Bieniusa, Sérgio Duarte, Valter Bale-
gas, Carlos Baquero, and Marc Shapiro. Write Fast, Read in the Past: Causal
Consistency for Client-side Applications. Submitted to EuroSys’2015, 2014.

SyncFree Deliverable D.3.1(v0.1), November 17, 2014, Page 26

REFERENCES

[53] Yang Zhang, Russell Power, Siyuan Zhou, Yair Sovran, Marcos K. Aguilera,
and Jinyang Li. Transaction chains: Achieving serializability with low latency
in geo-distributed storage systems. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, SOSP ’13, pages 276–291, New
York, NY, USA, 2013. ACM.

SyncFree Deliverable D.3.1(v0.1), November 17, 2014, Page 27

A PUBLISHED PAPERS

A Published papers

A.1 Russell Brown, Sean Cribbs, Sam Elliot, Christopher
Meiklejohn. Riak DT Map: A Composable, Conver-
gent Replicated Dictionary. In Proc. PaPEC 14.

SyncFree Deliverable D.3.1(v0.1), November 17, 2014, Page 28

Riak DT Map: A Composable,
Convergent Replicated Dictionary

Russell Brown
Basho Technologies, Inc.
russelldb@basho.com

Sean Cribbs
Basho Technologies, Inc.

sean@basho.com

Sam Elliott
Basho Technologies, Inc.
sam.elliott@basho.com

Christopher Meiklejohn
Basho Technologies, Inc.
cmeiklejohn@basho.com

Abstract
Conflict-Free Replicated Data-Types (CRDTs) [6] provide greater
safety properties to eventually-consistent distributed systems with-
out requiring synchronization. CRDTs ensure that concurrent, un-
coordinated updates have deterministic outcomes via the properties
of bounded join-semilattices.

We discuss the design of a new convergent (state-based) repli-
cated data-type, the Map, as implemented by the Riak DT li-
brary [4] and the Riak data store [3]. Like traditional dictionary
data structures, the Map associates keys with values, and provides
operations to add, remove, and mutate entries. Unlike traditional
dictionaries, all values in the Map data structure are also state-
based CRDTs and updates to embedded values preserve their con-
vergence semantics via lattice inflations [1] that propagate upward
to the top-level. Updates to the Map and its embedded values can
also be applied atomically in batches. Metadata required for ensur-
ing convergence is minimized in a manner similar to the optimized
OR-set [5].

This design allows greater flexibility to application develop-
ers working with semi-structured data, while removing the need
for the developer to design custom conflict-resolution routines for
each class of application data. We also discuss the experimental
validation of the data-type using stateful property-based tests with
QuickCheck [2].

Categories and Subject Descriptors C.2.4 [Distributed Systems]:
Distributed databases; D.3.3 [Programming Techniques]: Lan-
guage Constructs and Features - abstract data types, patterns, con-
trol structures; E.1 [Data Structures]: Distributed data structures;
H.2.4 [Database Management Systems]: Distributed databases

Keywords Dynamo, Eventual Consistency, Data Replication,
Commutative Operations, Riak, Erlang, Property-based Testing,
QuickCheck

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PaPEC ’14, April 13-16, 2014, Amsterdam, Netherlands.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2716-9/14/04. . . $15.00.
http://dx.doi.org/10.1145/2596631.2596633

Acknowledgments
The research leading to these results has received funding from the
European Union Seventh Framework Programme (FP7/2007-2013)
under grant agreement no 609551.

References
[1] P. S. Almeida, C. Baquero, and A. Cunha. Composing Lat-

tices and CRDTs. In B. Kemme, G. Ramalingam, A. Schiper,
M. Shapiro, and K. Vaswani, editors, Consistency in Distributed Sys-
tems (Dagstuhl Seminar 13081), volume 3, pages 92–126, Dagstuhl,
Germany, Feb. 2013. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik. . URL http://www.dagstuhl.de/mat/Files/13/13081/
13081.BaqueroCarlos.Slides.pdf.

[2] T. Arts, L. M. Castro, and J. Hughes. Testing Erlang Data Types with
Quviq Quickcheck. In Proceedings of the 7th ACM SIGPLAN Workshop
on ERLANG, ERLANG ’08, pages 1–8, New York, NY, USA, 2008.
ACM. ISBN 978-1-60558-065-4. . URL http://doi.acm.org/10.
1145/1411273.1411275.

[3] Basho Technologies, Inc. Riak source code repository. https://
github.com/basho/riak, 2009-2014.

[4] Basho Technologies, Inc. Riak DT source code repository. https:
//github.com/basho/riak_dt, 2012-2014.

[5] A. Bieniusa, M. Zawirski, N. Preguiça, M. Shapiro, C. Baquero,
V. Balegas, and S. Duarte. An optimized conflict-free replicated set.
ArXiv e-prints, Oct. 2012.

[6] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. A compre-
hensive study of Convergent and Commutative Replicated Data Types.
Rapport de recherche RR-7506, INRIA, Jan. 2011. URL http://hal.
inria.fr/inria-00555588.

A PUBLISHED PAPERS

A.2 Christopher Meiklejohn. On The Composability of the
Riak DT Map: Expanding From Embedded To Multi-
Key Structures. In Proc. PaPEC 14.

SyncFree Deliverable D.3.1(v0.1), November 17, 2014, Page 30

On The Composability of the Riak DT Map:
Expanding From Embedded To Multi-Key Structures

(Work in progress report)

Christopher Meiklejohn
Basho Technologies, Inc.
cmeiklejohn@basho.com

Abstract
The Riak DT library [2] provides a composable, convergent repli-
cated dictionary called the Riak DT map, designed for use in the
Riak [1] replicated data store. This data type provides the ability
for the composition of conflict-free replicated data types (CRDT)
[7] through embedding.

Composition by embedding works well when the total object
size of the composed CRDTs is small, however suffers a perfor-
mance penalty as object size increases. The root of this problem is
based in how replication is achieved in the Riak data store using
Erlang distribution. [4]

We propose a solution for providing an alternative composition
mechanism, composition by reference, which provides support for
arbitrarily large objects while ensuring predictable performance
and high availability. We explore the use of this new composition
mechanism by examining a common use case for the Riak data
store.

Categories and Subject Descriptors C.2.4 [Distributed Systems]:
Distributed databases; D.3.3 [Programming Techniques]: Lan-
guage Constructs and Features - abstract data types, patterns, con-
trol structures; E.1 [Data Structures]: Distributed data structures;
H.2.4 [Database Management Systems]: Distributed databases

Keywords Dynamo, Eventual Consistency, Data Replication,
Commutative Operations, Riak, Erlang

1. Introduction
The Riak DT library [2] provides a composable, convergent repli-
cated dictionary called the Riak DT map, designed for use in the
Riak [1] replicated data store. This data type provides the ability
for the composition of conflict-free replicated data types (CRDT)
[7] through embedding.

Composition by embedding works well when the total object
size of the composed CRDTs is small, however suffers a perfor-
mance penalty as object size increases. The root of this problem is
based in how replication is achieved in the Riak data store using
Erlang distribution. [4]

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PaPEC ’14, April 13-16 2014, Amsterdam, Netherlands.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2716-9/14/04. . . $15.00.
http://dx.doi.org/10.1145/2596631.2596635

We propose a solution for providing an alternative composition
mechanism, composition by reference, which provides support for
arbitrarily large objects while ensuring predictable performance
and high availability. We explore the use of this new composition
mechanism by examining a common use case for the Riak data
store.

2. Motivation
Consider a social network application where each user can create
events that are visible to other users via a timeline. One way to
implement this, that has been used by existing users of the Riak
data store [5] [6], has been to model each user’s timeline as lists
of references to independent objects in the data store, one for each
event with a unique key.

We can model this using the Riak DT map by creating a dic-
tionary of entries in the map from timestamps to embedded maps
containing the information for each post. Modeling the timeline ob-
jects this way has two problems:

• Once objects grow to be over one megabyte, a noticeable degra-
dation in performance can be observed.

• Given Riak does not guarantee causal consistency, it is possible
to observe references to objects that are not available. This
is known to be true during failure conditions when primary
replicas are not available and both read and write operations
are handled with sloppy quorums. [3]

Given these limitations, we need a solution for providing an al-
ternative composition mechanism that does not degrade in perfor-
mance as size increases, but provides values at read time which ob-
serve the lattice properties of state-based CRDTs ensuring conflict-
free merges with later state.

3. Solution
We explore a solution to the limitations of composition by embed-
ding by proposing the following changes to the Riak data store:

• We extend the existing API as provided by Riak for interacting
with the Riak DT map, to support the specification during a
write of whether the object should be composed by embedding
or by reference.

• When performing a write operation of an object containing ref-
erences to other objects, we generate unique reference identi-
fiers for each referenced object. Using these unique identifiers,
we write the referencing objects first followed by the referenced
objects in a recursive manner.

• When performing a read operation of an object containing ref-
erences to other objects, we recursively attempt to retrieve the
referenced objects from the data store.

The above changes are sufficient for providing causal consis-
tency of objects when both the referencing and referenced objects
are located across the same set of replicas, however we can not
make that guarantee when attempting to provide equal distribution
and high availability of data through consistent hashing and sloppy
quorums, which is a core tenet of the Riak data store.

3.1 Sloppy quorums and disjoint replica sets
To support sloppy quorums, and the ability to compose objects by
reference that span a disjoint replica set, we also need to provide a
solution to handle objects that have been composed by reference
when the referenced objects are not available. In the event of a
referenced object becoming unavailable during a read operation, we
can leverage the type information stored in the Riak DT map about
composed objects to return the bottom value for the referenced
object’s type. This ensures that later read operations, where the
previous missing reference is now available, correctly merges with
the version where it was not.

4. Future work
In this section, we explore work which we believe will improve the
performance and viability of this solution.

4.1 Parallel retrieval
Providing a mechanism for parallel retrieval of referenced objects
in the map would help increase performance as the breadth of ref-
erenced objects increases, as we could launch jobs across disjoint
replica sets which run in parallel. We believe that the Riak Pipe
processing pipeline, which is used to support Riak’s scatter-gather
query mechanism would be appropriate for providing the substrate
for this improvement.

4.2 Garbage collection
We are still exploring providing a solution for garbage collection of
referenced objects. The major concerns of garbage collection arrive
from two cases:

• When deleting objects, we need to ensure a recursive removal
of all referenced objects. Given that the unique reference identi-
fiers are known by the referencing objects, scheduling these for
removal is not problematic. However, knowing how to properly
schedule these removals when referenced objects might incur a
concurrent update and removal is still unknown as this opera-
tion is not safe until the replicas are merged.

• When dealing with a partial failure, we need to ensure that any
objects that have been written before the failure are scheduled
for garbage collection. For example, when writing an object
with three references, we need to make sure that we schedule
both the referenced objects for garbage collection as well as the
references.

5. Conclusion
In this work, we discuss the challenges involved in implementing
this approach and the possible solutions. We explore the draw-
backs of composing these values by reference and the problems
of garbage collection when dealing with concurrent operations to
composed objects.

Acknowledgments
The research leading to these results has received funding from the
European Union Seventh Framework Programme (FP7/2007-2013)
under grant agreement no 609551.

References
[1] Basho Technologies, Inc. Riak source code repository. https://

github.com/basho/riak, .
[2] Basho Technologies, Inc. Riak DT source code repository. https:

//github.com/basho/riak_dt, .
[3] J. Blomstedt. Absolute consistency. http://lists.basho.com/

pipermail/riak-users_lists.basho.com/2012-January/
007157.html.

[4] Boundary. Incuriosity Killed the Infrastructure: Getting Ahead of Riak
Performance and Operations. http://boundary.com/blog/2012/
09/26/incuriosity-killed-the-infrastructur/.

[5] C. Hale and R. Kennedy. Riak and Scala at Yammer. http://vimeo.
com/21598799.

[6] W. Moss and T. Douglas. Building A Transaction Logs-based Protocol
On Riak. http://vimeo.com/53550624.

[7] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. A compre-
hensive study of Convergent and Commutative Replicated Data Types.
Rapport de recherche RR-7506, INRIA, Jan. 2011. URL http://hal.
inria.fr/inria-00555588.

A PUBLISHED PAPERS

A.3 Paulo Sérgio Almeida, Carlos Baquero, Ricardo Gonçalves,
Nuno Preguiça, and Victor Fonte. Scalable and Ac-
curate Causality Tracking for Eventually Consistent
Stores. In Proc. DAIS 14.

SyncFree Deliverable D.3.1(v0.1), November 17, 2014, Page 33

Scalable and Accurate Causality Tracking
for Eventually Consistent Stores

Paulo Sérgio Almeida1, Carlos Baquero1,
Ricardo Gonçalves1, Nuno Preguiça2, and Victor Fonte1

1 HASLab, INESC Tec & Universidade do Minho
{psa,cbm,tome,vff}@di.uminho.pt
2 CITI/DI, FCT, Universidade Nova de Lisboa

nuno.preguica@fct.unl.pt

Abstract. In cloud computing environments, data storage systems often rely on
optimistic replication to provide good performance and availability even in the
presence of failures or network partitions. In this scenario, it is important to be
able to accurately and efficiently identify updates executed concurrently. Current
approaches to causality tracking in optimistic replication have problems with con-
current updates: they either (1) do not scale, as they require replicas to maintain
information that grows linearly with the number of writes or unique clients; (2)
lose information about causality, either by removing entries from client-id based
version vectors or using server-id based version vectors, which cause false con-
flicts. We propose a new logical clock mechanism and a logical clock framework
that together support a traditional key-value store API, while capturing causal-
ity in an accurate and scalable way, avoiding false conflicts. It maintains concise
information per data replica, only linear on the number of replica servers, and
allows data replicas to be compared and merged linear with the number of replica
servers and versions.

1 Introduction

Amazon’s Dynamo system [5] was an important influence to a new generation of databa-
ses, such as Cassandra [10] and Riak [9], focusing on partition tolerance, write availabil-
ity and eventual consistency. The underlying rationale to these systems stems from the
observation that when faced with the three concurrent goals of consistency, availability
and partition-tolerance only two of those can be achievable in the same system [3,6].
Facing geo-replication operation environments where partitions cannot be ruled out,
consistency requirements are inevitably relaxed in order to achieve high availability.

These systems follow a design where the data store is always writable: replicas of
the same data item are allowed to temporarily diverge and to be repaired later on. A
simple repair approach followed in Cassandra, is to use wall-clock timestamps to know
which concurrent updates should prevail. This last writer wins (lww) policy may lead
to lost updates. An approach which avoids this, must be able to represent and maintain
causally concurrent updates until they can be reconciled.

Accurate tracking of concurrent data updates can be achieved by a careful use of
well established causality tracking mechanisms [11,14,20,19,2]. In particular, for data

storage systems, version vectors (vv) [14] enable the system to compare any pair of
replica versions and detect if they are equivalent, concurrent or if one makes the other
obsolete. However, as we will discuss in Section 3, vv lack the ability to accurately
represent concurrent values when used with server ids, or are not scalable when used
with client ids.

We present a new and simple causality tracking solution, Dotted Version Vectors
(briefly introduced in [16]), that overcomes these limitations allowing both scalable (us-
ing server ids) and fully accurate (representing same server concurrent writes) causality
tracking. It achieves this by explicitly separating a new write event identifier from its
causal past, which has the additional benefit of allowing causality checks between two
clocks in constant time (instead of linear with the size of version vectors).

Besides fully describing Dotted Version Vectors (dvv), in this paper we make two
novel contributions. First, we propose a new container (DVV Sets or dvvs) that effi-
ciently compacts a set of concurrent dvv’s in a single data structure, improving on two
dvv limitations: (1) dvvs representation is independent of the number of concurrent
values, instead of linear; (2) comparing and synchronizing two replica servers w.r.t. a
single key is linear with the number of concurrent values, instead of quadratic.

Our final contribution is a general framework that clearly defines a set of functions
that logical clocks need to implement to correctly track causality in eventually consis-
tent systems. We implement both dvv and dvvs using this framework.

The rest of this paper is organized as follows. Section 2 presents the system model
for the remaining paper. We survey and compare current mechanisms for causality
tracking in Section 3. In Section 4, we present our mechanism dvv, followed by its
compact version dvvs, in Section 5. We then propose in Section 6 a general frame-
work for logical clocks and its implementation with both dvv and dvvs. In Section 7 we
present the asymptotic complexities for both the current and proposed mechanisms, as
well as an evaluation of dvvs. Additional techniques are briefly discussed in Section 8.
We conclude in Section 9.

2 System Model and Data Store API

We consider a standard Dynamo-like key-value store interface that exposes two oper-
ations: get(key) and put(key,value,context). get returns a pair (value(s),context), i.e.,
a value or set of causally concurrent values, and an opaque context that encodes the
causal knowledge in the value(s). put submits a single value that supersedes all values
associated to the supplied context. This context is either empty if we are writing a new
value, or some opaque data structure returned to the client by a previous get, if we are
updating a value. This context encodes causal information, and its use in the API serves
to generate a happens-before [20] relation between a get and a subsequent put.

We assume a distributed system where nodes communicate by asynchronous mes-
sage passing, with no shared memory. The system is composed by possibly many (e.g.,
thousands) clients which make concurrent get and put requests to server nodes (in the
order of, e.g., hundreds). Each key is replicated in a typically small subset of the server
nodes (e.g., 3 nodes), which we call the replica nodes for that key. These different or-

ders of magnitude of clients, servers and replicas play an important role in the design
of a scalable causality tracking mechanism.

We assume: no global distributed coordination mechanism, only that nodes can per-
form internal concurrency control to obtain atomic blocks; no sessions or any form of
client-server affinity, so clients are free to read from a replica server node and then write
to a different one; no byzantine failures; server nodes have stable storage; nodes can fail
without warning and later recover with their last state in the stable storage.

As we do not aim to track causality between different keys, in the remainder we
will focus on operations over a single key, which we leave implicit; namely, all data
structures in servers that we will describe are per key. Techniques as in [13] can be
applied when considering groups of keys and could introduce additional savings; this
we leave for future work.

3 Current Approaches

To simplify comparisons between different mechanisms, we will introduce a simple
execution example between clients Mary and Peter, and a single replica node. In this
example, presented in Figure 1, Peter starts by writing a new object version v1, with
an empty context, which results in some server state A. He then reads server state A,
returning current version v1 and context ctxA. Meanwhile, Mary writes a new version
v2, with an empty context, resulting in some server state B. Since Mary wrote v2 without
reading state A, state B should contain both v1 and v2 as concurrent versions, if causality
is tracked. Finally, Peter updates version v1 with v3, using the previous context ctxA,
resulting in some state C. If causal relations are correctly represented, state C we should
only have v2 and v3, since v1 was superseded by v3 and v2 is concurrent with v3. We
now discuss how different causality tracking approaches address this example, which
are summarized in Table 1.

Last Writer Wins (lww) In systems that enforce a lww policy, such as Cassandra, con-
current updates are not represented in the stored state and only the last update prevails.
Under lww, our example would result in the loss of v2. Although some specific applica-
tion semantics are compatible with a lww policy, this simplistic approach is not adequate
for many other application semantics. In general, a correct tracking of concurrent up-
dates is essential to allow all updates to be considered for conflict resolution.

Causal Histories (ch) Causal Histories [20] are simply described by sets of unique
write identifiers. These identifiers can be generated with a unique identifier and a mono-
tonic counter. In our example, we used server identifiers r, but client identifiers could be
used as well. The crucial point is that identifiers have to be globally unique to correctly
represent causality. Let idn be the notation for the nth event of the entity represented by
id. The partial order of causality can be precisely tracked by comparing these sets under
set inclusion. Two ch are concurrent if neither includes the other: A ‖ B iff A 6⊆ B and
B 6⊆ A. ch correctly track causality relations, as can be seen in our example, but have a
major drawback: they grow linearly with the number of writes.

Mary

Peter

Replica

{} : v1

PUT

A

GET

ctxA : v1

{} : v2

PUT

B

ctxA : v3

PUT

C

Fig. 1: Example execution for one key: Peter writes a new value v1 (A), then reads from
Replica (ctxA). Next, Mary writes a new value v2 (B) and finally Peter updates v1 with
v3 (C).

lww ch vvclient vvserver dvv dvvs
A 17h00 : v1 {r1} : v1 {(p,1)} : v1 {(r,1)} : {v1} ((r,1),{}) : v1 {(r,1, [v1])}
ctxA {} {r1} {(p,1)} {(r,1)} {(r,1)} {(r,1)}
B 17h03 : v2 {r1} : v1 {(p,1)} : v1 {(r,2)} : ((r,1),{}) : v1 {(r,2, [v2,v1])}

{r2} : v2 {(m,1)} : v2 {v1,v2} ((r,2),{}) : v2
C 17h07 : v3 {r2} : v2 {(m,1)} : v2 {(r,3)} : ((r,2),{}) : v2 {(r,3, [v3,v2])}

{r1,r3} : v3 {(p,2)} : v3 {v1,v2,v3} ((r,3),{(r,1)}) : v3
Table 1: The table shows the replica (r) state after write from Peter (p) and Mary (m),
and the context returned by Peter’s read. We use the metadata : value(s) notation, ex-
cept for dvvs which has its own internal structure.

Version Vectors (vv) Version Vectors are an efficient representation of ch, provided
that the ch has no gaps in each id’s event sequence. A vv is a mapping from identifiers
to counters, and can be written as a set of pairs (id,counter); each pair represents a set
of ch events for that id: {idn | 0 < n ≤ counter}. In terms of partial order, A ≤ B iff
∀(i,ca) ∈ A · ∃(i,cb) ∈ B · ca ≤ cb. Again, A ‖ B iff A 6≤ B and B 6≤ A. Whether client or
server identifiers are used in vv has major consequences, as we’ll see next.

Version Vectors with Id-per-Client (vvclient) This approach uses vv with clients as
unique identifiers. An update is registered in a server by using the client identification
issued in a put. This provides enough information to accurately encode the concurrency
and causality in the system, since concurrent client writes are represented in the vvclient
with different ids. However, it sacrifices scalability, since vvclient will end up storing
the ids of all the clients that ever issued writes to that key. Systems like Dynamo try
to compensate this by pruning entries in vvclient at a specific threshold, but it typically
leads to false concurrency and further need for reconciliation. The higher the degree of
pruning, the higher is the degree of false concurrency in the system.

Version Vectors with Id-per-Server (vvserver) If causality is tracked with vvserver, i.e.,
using vv with server identifiers, it is possible to correctly detect concurrent updates
that are handled by different server nodes. However, if concurrent updates are handled
by the same server, there is no way to express the concurrent values — siblings —
separately. To avoid overwriting siblings and losing information (as in lww), a popu-
lar solution to this, is to group all siblings under the same vvserver, losing individual
causality information. This can easily lead to false concurrency: either a write’s context

causally dominates the server vvserver, in which case all siblings are deemed obsolete
and replaced by the new value; or this new value must be added to the current siblings,
even if some of them were in its causal past.

Using our example, we finish the execution with all three values {v1,v2,v3}, when
in fact v3 should have obsoleted v1, like the other causally correct mechanisms in Ta-
ble 2 (expect for lww).

With vvserver, false concurrency can arise whenever a client read-write cycle is in-
terleaved with another concurrent write on the same server. This can become especially
problematic under heavy load with many clients concurrently writing: under high la-
tency, if a read-write cycle cannot be completed without interleaving with another con-
current write, the set of siblings will keep on growing. This will make messages grow
larger, the server load heavier, resulting in a positive feedback loop, in what can be
called a sibling explosion.

4 Dotted Version Vectors

We now present an accurate mechanism that can be used as a substitute for classic
version vectors (vv) in eventually consistent stores, while still using only one Id per
replica node. The basic idea of Dotted Version Vectors (dvv) is to take a vv and add the
possibility of representing an individual causal event — dot — separate from the rest
of the contiguous events. The dot is kept separate from the causal past and it globally
and uniquely identifies a write. This allows representing concurrent writes, on the same
server, by having different dots.

In our example from Figure 1, we can see that state B is represented with a unique
dot for both v1 and v2, even-though they both were written with an equally empty
context. This distinction in their dots is what enables the final write by Peter to correctly
overwrite v1, since the context supersedes its dot (and dvv), while maintaining v2 which
has a newer dot than the context. In contrast, vvserver loses this distinction gained by
separating dots by grouping every sibling in one vv and thus cannot know that v1 is
outdated by v3.

4.1 Definition

A dvv consists in a pair (d,v), where v is a traditional vv and the dot d is a pair (i,n),
with i as a node identifier and n as an integer. The dot uniquely represents a write and its
associated version, while the vv represents the causal past (i.e. its context). The causal
events (or dots) represented by a dvv can be generated by a function toch that translates
logical clocks to causal histories (ch can be viewed as sets of dots):

toch(((i,n),v)) = {in}∪ toch(v),

toch(v) =
⋃

(i,n)∈v

{im | 1≤ m≤ n},

where in denotes the nth dot generated by node i, and toch(v) is the same function
but for traditional vv. With this definition, the ch {a1,b1,b2,c1,c2,c4} that cannot be
represented by vv, can now be represented by the dvv ((c,4),{(a,1),(b,2),(c,2)}).

4.2 Partial Order

The partial order on dvv can be defined in terms of inclusion of ch; i.e.:

X ≤ Y ⇐⇒ toch(X)⊆ toch(Y),

Given that each dot is generated as a globally unique event — using the notational
convenience v[i] = n, for (i,n) ∈ v and v[i] = 0 for any non mapped id — the partial
order on possible dvv values becomes:

((i,n),u)< ((j,m),v)⇐⇒ n≤ v[i] ∧ u≤ v,

where the traditional point-wise comparison of vv is used: u≤ v⇐⇒∀(i,n)∈u.n≤ v[i].
An important consequence of keeping the dot separate from the causal past is that, if

the dot in X is contained in the causal past of Y , it means that Y was generated causally
after X , thus Y also contains the causal past of X . This means that there is no need for the
comparison of the vv component and the order can be computed as an O(1) operation
(assuming access to a map data structure in effectively constant time), simply as:

((i,n),u)< ((j,m),v)⇐⇒ n≤ v[i].

5 Dotted Version Vector Sets

Dotted Version Vectors (dvv), as presented in the previous section, allow an accurate
representation of causality using server-based ids. Still, a dvv is kept for each concur-
rent version: {(dvv1,v1),(dvv2,v2), . . .}. We can go further in exploring the fact that
operations will mostly handle sets of dvv, and not single instances.

We propose now that the set of (dvv,version) for a given key in a replica node
is represented by a single instance of a container data type, a Dotted Version Vector
Set (dvvs), which describes causality for the whole set. dvvs factorizes out common
knowledge for the set of dvv described, and keeps only the strictly relevant information
in a single data structure. This results in not only a very succinct representation, but
also in reduced time complexity of operations: the concurrent values will be indexed
and ordered in the data structure, and traversal will be efficient.

5.1 From a Set of Clocks to a Clock for Sets

To obtain a logical clock for a set of versions, we will explore the fact that at each node,
the set of dvv as a whole can be represented with a compact vv. Formally this invariant
means that, for any set of dvv S, for each node id i, all dots for i in S form a contiguous
range up to some dot. Note that we can only assume to have this invariant, if we follow
some protocol rules enforced by our framework, described in detail in section 6.3.

Assuming this invariant, we obtain a logical clock for a set of (dvv,version) by per-
forming a two-step transformation of the sets of versions. In the first step, we compute
a single vv for the whole set — the top vector — by the pointwise maximum of the dots
and vv in the dvv’s; additionally, for each dvv in the set, we discard the vv component.
As an example, the following set:

{(((r,4),{(r,3),(s,5)}),v1),(((r,5),{(r,2),(s,3)}),v2),(((s,7),{(r,2),(s,6)}),v3)},

generates the top vector {(r,5),(s,7)} and is transformed to a set of (dot, version):

{((r,4),v1),((r,5),v2),((s,7),v3)}.

This first transformation has incurred in a loss of knowledge: the specific causal past
of each version. This knowledge is not, however, needed for our purposes. The insight
is that, to know whether to discard or not a pair (dot,version) (d,v) from some set when
comparing with another set of versions S, we do not need to know exactly which version
in S dominates d, but only that some version does; if version v is not present in S, but
its dot d is included in the causal information of the whole S (which is now represented
by the top vector), then we know that v was obsolete and can be removed.

In the second step, we use the knowledge that all dots for each server id, form
a contiguous sequence up to the corresponding top vector entry. Therefore, we can
associate a list of versions (siblings) to each entry in the top vector, where each dot is
implicitly derived by the corresponding version position in the list. In our example, the
whole set is then simply described as:

{(r,5, [v2,v1]),(s,7, [v3])},

where the head of each list corresponds to the more recently generated version at
the corresponding node. The first version has the dot corresponding to the maximum of
the top vector for that entry, the second version has the maximum minus one, and so on.

5.2 Definition

A dvvs is a set of triples (i,n, l), each containing a server id, an integer, and a list of
concurrent versions. It describes a set of versions and their dots, implicitly given by
the position in the list. It also describes only the knowledge about the collective causal
history, as given by the vv derived from the pairs (i,n).

6 Using dvv and dvvs in Distributed Key-Value Stores

In this section we show how to use logical clocks — in particular dvv and dvvs— in
modern distributed key-value stores, to accurate and efficiently track causality among
writes in each key. Our solution consists in a general workflow that a database must use
to serve get and put requests. Towards this, we define a kernel of operations over logical
clocks, on top of which the workflow is defined. We then instantiate these operations
over the logical clocks that we propose, first dvv and then dvvs.

We support both get and put operations, performing possibly several steps, as sketched
in Figure 2. Lets first define our kernel operations.

Writing Reading
Client

ReplicaA

ReplicaB

ReplicaC

PUT

discard event

sync

sync

GET sync join

Fig. 2: Generic execution paths for operations get and put.

Function sync The function sync takes two sets of clocks, each describing a set of
siblings, and returns the set of clocks for the siblings that remain after removing obso-
lete ones. It can have a general definition only in terms of the partial order on clocks,
regardless of their actual representation: Equation 1.

Function join The join function takes a set of clocks and returns a single clock that
describes the collective causal past of all siblings in the set received. An actual imple-
mentation of join is any function that corresponds to performing the union of all the
events (dots) in the ch corresponding to the set, i.e., that satisfies Equation 2.

Function discard The discard function takes a set of clocks S (representing siblings) and
a clock C (representing the context), and discards from S all siblings that are obsolete
because they are included in the context C. Similar to sync, discard has a simple general
definition only in terms of the partial order on clocks: Equation 3.

Function event The event function takes a set of clocks S (representing siblings) and a
clock C (representing the context) and a replica node identifier r; it returns a new clock
to represent a new version, given by a new unique event (dot) generated at r, and having
C in the causal past. An implementation must respect Equation 4.

sync(S1,S2) = {x ∈ S1 | @y ∈ S2.x < y}∪{x ∈ S2 | @y ∈ S1.x < y}. (1)

toch(join(S)) =
⋃
{toch(x) | x ∈ S}. (2)

discard(S,C) = {x ∈ S | x 6≤C}. (3)
toch(event(C,S,r)) = toch(C)∪{next(C,S,r)}, (4)

where next denotes the next new unique event (dot) generated with r, which can be
deterministically defined given C, S and r.

6.1 Serving a get

Functions sync and join are used to define the get operation: when a server receives a
get request, it may ask to a subset of replica nodes for their set of versions and clocks for
that key, to be then “merged” by applying sync pairwise; however, the server can skip
this phase if it deems it unnecessary for a successful response. Having the necessary

information ready, it is returned to the client both the values stripped from causality
information and the context as a result of applying join to the clocks. sync can also be
used at other times, such as anti-entropy synchronization between replica nodes.

6.2 Serving a put

When a put request is received, the server forwards the request to a replica node for
the given key, unless the server is itself a replica node. A non-replica node for the key
being written can coordinate a put request using vvclient for example, because it can
use the client Id to update the clock and then propagate the result to the replica nodes.
However, clocks using server Ids like vvserver, dvv and dvvs need the coordinating node
to generate an unique event in the clock, using its own Id. Not forwarding the request to
replica node, would mean that non-replica nodes Ids would be added to clocks, making
them linear with the total number of servers (e.g. hundreds) instead of only the replica
nodes (e.g. three).

When a replica node r, containing the set of clocks Sr for the given key, receives
a put request, it starts by removing obsolete versions from Sr, using function discard,
resulting in S′r; it also generates a new clock u for the new version with event; finally, u
is added to the set of non- obsolete versions S′r, resulting in S′′r .

The server can then save S′′r locally, propagate it to other replica nodes and success-
fully inform the client. The order of these three steps depends on the system’s durability
and replication parameters. Each replica node that receives S′′r , uses function sync to ap-
ply it against its own local versions.

For each key, the steps at the coordinator (discarding versions, generating a new one
and adding it to the non-obsolete set of versions) must be performed atomically when
serving a given put. This can be trivially obtained by local concurrency control, and does
not prevent full concurrency between local operations on different keys. For operations
over the same key, a replica can pipeline the steps of consecutive put for maximizing
throughput (note that some steps already need to be serialized, such as writing versions
to stable storage).

6.3 Maintaining Local Conciseness

As previously stated, both dvv and dvvs have an crucial invariant that servers must
maintain, in order to preserve their correctness and conciseness:

Invariant 1 (Local Clock Conciseness) Every key at any server has locally associated
with it a set of version(s) and clock(s), that collectively can be logically represented by
a contiguous set of causal events (e.g. represented as a vv).

To enforce this invariant, we made two design choices: (rule 1) a server cannot
respond to a get with a subset of the versions obtained locally and/or remotely, only
the entire set should be sent; (rule 2) a coordinator cannot replicate the new version to
remote nodes, without also sending all local concurrent versions (siblings).

Without the first rule, clients could update a key by reading and writing back a new
value with a context containing arbitrary gaps in its causal history. Neither dvv nor dvvs

would be expressive enough to support this, since dvv only supports one gap (between
the contiguous past and the dot) and dvvs does not support any.

Without the second rule, dvvs would clearly not work, since writes can create sib-
lings, which cannot be expressed separately with this clock. It could work with dvv,
however it would eventually result in some server not having a local concise represen-
tation for a key (e.g. the network lost a previous sibling), which in turn would make this
server unable to respond to get without contacting other servers (see rule 1); it would
degrade latency and in case of partitions, availability could also suffer.

6.4 Dotted Version Vectors

Functions sync and discard for dvv can be trivially implemented according to their gen-
eral definitions, by using the partial order for dvv, already defined in Section 4.2.

We will make use of some two functions: function ids returns the set of identifiers of
a pair from a vv, a dvv or a set of dvv; the maxdot function takes a dvv or set of dvv and
a server id and returns the maximum sequence number of the events from that server:

ids((i,_)) = {i},
ids(((i,_),v)) = {i}∪ ids(v),

ids(S) =
⋃

s∈S

ids(s).

maxdot(r,((i,n),v)) = max({n | i = r}∪{v[r]}),
maxdot(r,S) = max({0}∪{maxdot(r,s) | s ∈ S}).

Function join returns a simple vv, which is enough to accurately express the causal
information. Function event can be defined as simply generating a new dot and using
the context C, which is already a vv, for the causal past.

join(S) = {(i,maxdot(i,S)) | i ∈ ids(S)}.
event(C,S,r) = ((r,max(maxdot(r,S),C[r])+1),C).

6.5 Dotted Version Vector Sets

With dvvs, we need to make slight interface changes: functions now receive a single
dvvs, instead of a set of clocks; and event now inserts the newly generated version
directly in the dvvs.

For clarity and conciseness, we will assume R to be the complete set of replica
nodes ids, and any absent id i in a dvvs, is promoted implicitly to the element (i,0, []).
We will make use of the functions: first(n, l), that returns the first n elements of list l (or
the whole list if it has less than n elements, or an empty list for non-positive n); |l| for
the number of elements in l, [x | l] to append x at the head of list l; and function merge:

merge(n, l,n′, l′) =

{
first(n−n′+ |l′| , l), if n≥ n′,
first(n′−n+ |l| , l′), otherwise.

lww ch vvclient vvserver dvv dvvs
Space Õ(1) Õ(U) Õ(C×V) Õ(R+V) Õ(R×V) Õ(R+V)

Time

event − Õ(1) Õ(1) Õ(1) Õ(V) Õ(R)

join − Õ(U×V) Õ(C×V) Õ(1) Õ(R×V) Õ(R)

discard − Õ(U×V) Õ(C×V) Õ(R) Õ(V) Õ(R+V)

sync − Õ(U×V 2) Õ(C×V 2) Õ(R+V) Õ(V 2) Õ(R+V)

PUT Õ(1) Õ(Sw×U×V 2) Õ(Sw×C×V 2) Õ(Sw×(R+V)) Õ(Sw×V 2) Õ(Sw×(R+V))

GET Õ(1) Õ(Sr×U×V 2) Õ(Sr×C×V 2) Õ(Sr×(R+V)) Õ(R×V+Sr×V 2) Õ(Sr×(R+V))

Causally Correct 7 3 3 7 3 3

Table 2: Space and time complexity, for different causality tracking mechanisms. U:
updates; C: writing clients; R: replica servers; V : (concurrent) versions; Sr and Sw: number
of servers involved in a GET and PUT, respectively.

Function discard takes a dvvs S and a vv C, and discards values in S obsoleted by
C. Similarly, sync takes two dvvs and removes obsolete values. Function join simply
returns the top vector, discarding the lists. Function event is now adapted to not only
produce a new event, but also to insert the new value, explicitly passed as parameter,
in the dvvs. It returns a new dvvs that contains the new value v, represented by a new
event performed by r and, therefore, appended at the head of the list for r. The context
is only used to propagate causal information to the top vector, as we no longer keep it
per version.

sync(S,S′) = {(r,max(n,n′),merge(n, l,n′, l′)) | r ∈ R,(r,n, l) ∈ S,(r,n′, l′) ∈ S′},
join(C) = {(r,n) | (r,n, l) ∈C},

discard(S,C) = {(r,n,first(n−C(r), l)) | (r,n, l) ∈ S},
event(C,S,r,v) = {(i,n+1, [v | l]) | (i,n, l) ∈ S | i = r}∪

{(i,max(n,C(i)), l) | (i,n, l) ∈ S | i 6= r}

7 Complexity and Evaluation

Table 2 shows space and time complexities of each causality tracking mechanism, for
a single key. Lets consider U the number of updates (writes), C the number of writing
clients, R the number of replica servers, V the number of concurrent versions (siblings)
and Sw and Sr the number of replicas nodes involved in a put and get, respectively. Note
that U and C are generally several orders of magnitude larger than R and V . The com-
plexity measures presented assume effectively constant time in accessing or updating
maps and sets. We also assume ordered maps/sets that allow a pairwise traversal linear
on the number of entries.

lww is constant both in time and space, since it does not track causality and ignores
siblings. Space-wise, ch and vvclient do not scale well, because they grow linearly with
writes and clients, respectively. dvv scales well given that typically there is little con-

currency per key, but it still needs a dvv per sibling. From the considered clocks, dvvs
and vvserver have the best space complexity, but the latter is not causally accurate.

Following our framework (Section 6), the time complexities are3:

– put is Õ(discard + event +Sw× sync) and get is Õ(join+Sr× sync);
– event is effectively Õ(1) for ch, vvclient and vvserver; is linear with V for dvv, because

it has to check each value’s clock; and is Õ(R) for dvvs because it also merges the
context to the local clock;

– join is constant for vvserver, since there is already only one clock; for ch, vvclient and
dvv it amounts to merging all their clocks into one; for dvvs, join simply extracts
the top vector from the clock;

– discard is only linear with V in dvv, because it can check the partial order of two
clocks in constant time; as for ch and vvclient, they have to compare the context
to every version’s clock; vvserver and dvvs always compare the context to a single
clock, and in addition, dvvs has to traverse lists of versions;

– sync resembles discard, but instead of comparing a set of versions to a single con-
text, it compares two sets of versions. Thus, ch, vvclient and dvv complexities are
similar to discard, but quadratic with V instead of linear. Since vvserver and dvvs
have only one clock, the complexity of sync is linear on V .

7.1 Evaluation

We implemented both dvv and dvvs in Erlang, and integrated it with our fork of the
NoSQL Riak datastore4. To evaluate the causality tracking accuracy of dvvs, and its
ability to overcome the sibling explosion problem, we setup two equivalent 5 node
Riak clusters, one using dvvs and the other vvserver.

We then ran a script5 equivalent to the following: Peter (P) and Mary (M) write
and read 50 times each to the same key, with read-write cycles interleaved (P writes
then reads, next M writes then reads, in alternation). Figure 3 shows the growth in the
number of siblings with every new write. The cluster with vvserver had an explosion of
false concurrency: 100 concurrent versions after 100 writes. Every time a client wrote
with the its latest context, the clock in the server was already modified, thus generating
and adding a sibling. However, with dvvs, although each write still conflicted with the
latest write from the other client, it detected and removed siblings that were causally
older (all the siblings present at the last read by that client). Thus, the cluster with dvvs
had only two siblings after the same 100 writes: the last write from each client.

Finally, dvvs has already seen early adoption in the industry, namely in Riak, where
it is the default logical clock mechanism in the latest release. As expected, it overcame
the sibling explosion problem that was affecting real world Riak deployments, when
multiple clients wrote on the same key.

3 For simplicity of notation, we use the big O variant: Õ, that ignores logarithmic factors in the
size of integer counters and unique ids.

4 https://github.com/ricardobcl/Dotted-Version-Vectors
5 https://gist.github.com/ricardobcl/4992839

 20

 40

 60

 80

 100

 120

 140

 20 40 60 80 100

C
on

cu
rr

en
t V

er
si

on
s

Writes

Version Vectors
Dotted Version Vector Sets

Fig. 3: Results of running two interleaved clients with 50 writes each.

8 Related Work

The role of causality in distributed systems was introduced by Lamport [11], estab-
lishing the foundation for the subsequent mechanisms and theory [11,14,20,19,2,4]. In
Section 3 we discussed the problems of solutions commonly used in eventually consis-
tent stores. In this section, we discuss other related work.

Variability in the number of entities. The basic vector based mechanisms can be
generalized to deal with a variable number of nodes or replicas. The common strategy
is to map identifiers to counters and handle dynamism in the set of identifiers. Additions
depend on the generation of unique identifiers. Removals can require communication
with several other servers [7], or to a single server [15,1]. While dvv and dvvs avoid
identifier assignment to clients, these techniques could support changes in the set of
servers.

Exceptions on conflicts. Some systems just detect the concurrent PUT operations from
different clients and reject the update (e.g. version control systems such as CVS and
subversion) or keep the updates but do not allow further accesses until the conflict is
solved (e.g. original version of Coda [8]); in these cases, using version vectors (vv) with
one entry per server is sufficient. However, these solutions sacrifice write availability
which is a key “feature” of modern geo-replicated databases.

Compacting the representation. In general, using a format that is more compact than
the set of independent entities that can register concurrency, leads to lossy representa-
tion of causality [4]. Plausible clocks [21] condense event counting from multiple repli-
cas over the same vector entry, resulting in false concurrency. Several approaches for
removing entries that are not necessary have been proposed, some being safe but requir-
ing running consensus (e.g. Roam [18]), and others fast but unsafe (e.g. Dynamo [5])
potentially leading to causality errors.

Extensions and added expressiveness. In Depot [12], the vv associated with each up-
date only includes the entries that have changed since the previous update in the same
node. However, each node still needs to maintain vv that include entries for all clients
and servers; in a similar scenario, the same approach could be used as a complement to
our solution. Other systems explore the fact that they manage a large number of objects

to maintain less information for each object. WinFS [13] maintains a base vv for all
objects is the file system, and for each object it maintains only the difference for the
base in a concise vv. Cimbiosys [17] uses the same technique in a peer-to-peer system.
These systems, as they maintain only one entry per server, cannot generate two vv for
tagging concurrent updates submitted to the same server from different clients, as dis-
cussed in Section 3 with vvserver. WinFS includes a mechanism to deal with disrupted
synchronizations that allow to encode non sequential causal histories by registering ex-
ceptions to the events registered in vv; e.g. {a1,a2,b1,c1,c2,c4,c7} could be represented
by {(a,2),(b,1),(c,7)} plus exceptions {c3,c5,c6}. However, using dvv with its system
workflow, at most a single update event that is outside the vv is needed, and thus a single
dot per version is enough. dvvs goes further, by condensing all causal information in
a vv, while being able to keep multiple implicit dots. This ensures just enough expres-
siveness to allow any number of concurrent clients and still avoids the size complexity
of encoding a generic non sequential ch. Wang et. al. [22] have proposed a variant of
vv with O(1) comparison time (like dvv), but the vv entries must be kept ordered which
prevents constant time for other operations. Furthermore, it also incurs in the problems
associate with vvserver, which we solved with dvvs.

9 Closing Remarks

We have presented in detail Dotted Version Vectors, a novel solution for tracking causal-
ity among update events. The base idea is to add an extra isolated event over a causal
history. This is sufficiently expressive to capture all causality established among con-
current versions (siblings), while keeping its size linear with the number of replicas.

We then proposed a more compact representation — Dotted Version Vector Sets —
which allows for a single data structure to accurately represent causal information for a
set of siblings. Its space and time complexity is only linear with the number of replicas
plus siblings, better than all current mechanisms that accurately track causality.

Finally, we introduced a general workflow for requests to distributed data stores.
It abstracts and factors the essential operations that are necessary for causality tracking
mechanisms. We then implemented both our mechanisms using those kernel operations.

Acknowledgements. This research was partially supported by FCT/MCT projects
PEst-OE/EEI/UI0527/2014 and PTDC/EEI-SCR/1837/2012; by the European Union
Seventh Framework Programme (FP7/2007-2013) under grant agreement no 609551,
SyncFree project; by the ERDF - European Regional Development Fund through the
COMPETE Programme (operational programme for competitiveness) and by National
Funds through the FCT – Fundação para a Ciência e a Tecnologia (Portuguese Founda-
tion for Science and Technology) within project FCOMP-01-0124-FEDER-037281.

References

1. Almeida, P.S., Baquero, C., Fonte, V.: Interval tree clocks. In: Proceedings of the 12th In-
ternational Conference on Principles of Distributed Systems. pp. 259–274. OPODIS ’08,
Springer-Verlag, Berlin, Heidelberg (2008)

2. Birman, K.P., Joseph, T.A.: Reliable communication in the presence of failures. ACM Trans.
Comput. Syst. 5(1), 47–76 (Jan 1987)

3. Brewer, E.A.: Towards robust distributed systems (abstract). In: Proceedings of the nine-
teenth annual ACM symposium on Principles of distributed computing. pp. 7–. PODC ’00,
ACM, New York, NY, USA (2000)

4. Charron-Bost, B.: Concerning the size of logical clocks in distributed systems. Information
Processing Letters 39, 11–16 (1991)

5. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., Siva-
subramanian, S., Vosshall, P., Vogels, W.: Dynamo: amazon’s highly available key-value
store. In: Proceedings of twenty-first ACM SIGOPS SOSP. pp. 205–220. ACM (2007)

6. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent available
partition-tolerant web services. In: In ACM SIGACT News. p. 2002 (2002)

7. Golding, R.A.: A weak-consistency architecture for distributed information services. Com-
puting Systems 5, 5–4 (1992)

8. Kistler, J.J., Satyanarayanan, M.: Disconnected operation in the Coda file system. In: Thir-
teenth ACM Symposium on Operating Systems Principles. vol. 25, pp. 213–225. Asilomar
Conference Center, Pacific Grove, US (1991)

9. Klophaus, R.: Riak core: building distributed applications without shared state. In: ACM
SIGPLAN Commercial Users of Functional Programming. pp. 14:1–14:1. CUFP ’10, ACM,
New York, NY, USA (2010), http://doi.acm.org/10.1145/1900160.1900176

10. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system. SIGOPS
Oper. Syst. Rev. 44, 35–40 (April 2010)

11. Lamport, L.: Time, clocks and the ordering of events in a distributed system. Communica-
tions of the ACM 21(7), 558–565 (Jul 1978)

12. Mahajan, P., Setty, S., Lee, S., Clement, A., Alvisi, L., Dahlin, M., Walfish, M.: Depot: Cloud
storage with minimal trust. In: OSDI 2010 (Oct 2010)

13. Malkhi, D., Terry, D.B.: Concise version vectors in winfs. In: Fraigniaud, P. (ed.) DISC.
Lecture Notes in Computer Science, vol. 3724, pp. 339–353. Springer (2005)

14. Parker, D.S., Popek, G., Rudisin, G., Stoughton, A., Walker, B., Walton, E., Chow, J., Ed-
wards, D., Kiser, S., Kline, C.: Detection of mutual inconsistency in distributed systems.
Transactions on Software Engineering 9(3), 240–246 (1983)

15. Petersen, K., Spreitzer, M.J., Terry, D.B., Theimer, M.M., Demers, A.J.: Flexible update
propagation for weakly consistent replication. In: Sixteen ACM Symposium on Operating
Systems Principles. Saint Malo, France (Oct 1997)

16. Preguiça, N., Baquero, C., Almeida, P.S., Fonte, V., Gonçalves, R.: Brief announcement:
Efficient causality tracking in distributed storage systems with dotted version vectors. In:
Proceedings of the 2012 ACM symposium on PODC. pp. 335–336. ACM (2012)

17. Ramasubramanian, V., Rodeheffer, T.L., Terry, D.B., Walraed-Sullivan, M., Wobber, T., Mar-
shall, C.C., Vahdat, A.: Cimbiosys: a platform for content-based partial replication. In: Pro-
ceedings of the 6th USENIX symposium on NSDI. pp. 261–276. Berkeley, CA, USA (2009)

18. Ratner, D., Reiher, P.L., Popek, G.J.: Roam: A scalable replication system for mobility.
MONET 9(5), 537–544 (2004)

19. Raynal, M., Singhal, M.: Logical time: Capturing causality in distributed systems. IEEE
Computer 30, 49–56 (Feb 1996)

20. Schwarz, R., Mattern, F.: Detecting causal relationships in distributed computations: In
search of the holy grail. Distributed Computing 3(7), 149–174 (1994)

21. Torres-Rojas, F.J., Ahamad, M.: Plausible clocks: constant size logical clocks for distributed
systems. Distributed Computing 12(4), 179–196 (1999)

22. Wang, W., Amza, C.: On optimal concurrency control for optimistic replication. In: Proc.
ICDCS. pp. 317–326 (2009)

A PUBLISHED PAPERS

A.4 Paulo Sérgio Almeida, Ali Shoker, Carlos Baquero. Ef-
ficient State-based CRDTs by Decomposition. In Proc.
PaPEC 14.

SyncFree Deliverable D.3.1(v0.1), November 17, 2014, Page 49

Efficient State-based CRDTs by Decomposition

[Work in progress report]

Paulo Sérgio Almeida
HASLab, INESC TEC &
Universidade do Minho

Braga, Portugal
psa@di.uminho.pt

Ali Shoker
HASLab, INESC TEC &
Universidade do Minho

Braga, Portugal
shokerali@di.uminho.pt

Carlos Baquero
HASLab, INESC TEC &
Universidade do Minho

Braga, Portugal
cbm@di.uminho.pt

ABSTRACT
Eventual consistency is a relaxed consistency model used in
large-scale distributed systems that seek better availability
when consistency can be delayed. CRDTs are distributed
data types that make eventual consistency of a distributed
object possible and non ad-hoc. Specifically, state-based
CRDTs achieve this through shipping the entire replica state
that is, eventually, merged to other replicas ensuring conver-
gence. This imposes a large communication overhead when
the replica size or the number of replicas gets larger. In this
work, we introduce a decomposable version of state-based
CRDTs, called Delta State-based CRDTs (δ-CRDT). A
δ-CRDT is viewed as a join of multiple fine-grained CRDTs
of the same type, called deltas (δ). The deltas are produced
by applying δ-mutators, on a replica state, which are mod-
ified versions of the original CRDT mutators. This makes
it possible to ship small deltas (or batches) instead of ship-
ping the entire state. The challenges are to make the join
of deltas equivalent to the join of the entire object in clas-
sical state-based CRDTs, and to find a way to derive the
δ-mutators. We address this challenge in this work, and we
explore the minimal requirements that a communication al-
gorithm must offer according to the guarantees provided by
the underlying messaging middleware.

1. INTRODUCTION
Eventual consistency [12] has recently got the attention of

both research community and industry [5, 1, 11, 6] due to
the enormous growth of large-scale distributed systems, and
at the same time, the need to ensure availability for users
despite outages and partitioning. In fact, the practical ex-
perience of leading industry shows that daily server outages
and network partitioning in large-scale distributed systems
is a norm rather than an exception. Given that partitioning
cannot be avoided, the limitations explained by the CAP
theorem [7] requires some sacrifice in consistency (by delay-
ing it) for the sake of higher availability only when imme-
diate consistency is not a requirement; a like/unlike action

Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
PaPEC’14 April 13-16 2014, Amsterdam, Netherlands
Copyright 2014 ACM 978-1-4503-2716-9/14/04 ...$15.00
http://dx.doi.org/10.1145/2596631.259663.

in social networks is a concrete example. CRDTs [9, 10] are
formal methods to make eventual convergence of distributed
datatypes generic and easy. Although they are currently be-
ing used in industry [5], CRDTs are still not mature, and
many enhancements are still needed on both levels: design
and performance. This work addresses some design issues
to achieve better performance.

Conflict-free Replicated Data Types (CRDTs) [9, 10] are
formalized data types designed to ensure the convergence
of different replicas of a distributed CRDT object. Tradi-
tionally, two types of CRDTs were defined: operation-based
and state-based. In operation-based CRDTs [8, 10], once an
operation is invoked on a replica, a prepare phase returns a
payload message that comprises a derived operation of the
original one and possibly other meta-data. The message is
sent to other replicas that apply this message via the effect
phase which, in its turn, makes use of the received meta-
data to maintain the causal order of operations. To achieve
eventual consistency, this approach assumes a middleware
that provides causal delivery of operations and membership
management. In state-based CRDTs [2, 10], an invoked
operation is applied on the local object state that derives
a new state. Occasionally, the new state is sent to other
replicas that incorporate the received state with the local
state though a merge. A merge is designed in such a way
to achieve convergence from any two states, being commu-
tative, associative, and idempotent. In mathematical terms,
merge is defined as a join: a least upper bound over a join-
semilattice [2, 10].

State-based CRDTs are preferred to operation-based when
causal delivery is not guaranteed by the messaging mid-
dlware. However, the state-based approach has two main
weaknesses: (1) shipping updates becomes expensive when
the distributed object gets large, and (2) a sort of garbage
collection is often required. Some recent works [4, 3] ad-
dressed the problem of garbage collection; however, to the
best of our knowledge, no profound research dealt with re-
ducing the overhead of data shipping as we propose in this
work.

The communication overhead of shipping the entire state
in state-based CRDTs often grows with the replica state
size and the number of replicas. For instance, the state size
of a counter CRDT increases with the number of replicas,
whereas, in a grow-only Set, the state size grows as more
operations are invoked. Other CRDTs, like the OR-Set, im-
pose a similar overhead also (due to shipping the set and
its tombstones); although garbage collection can reduce this
overhead once used, this is only possible when the invoked

operations that cancel each others are close in time; e.g., an
add followed by remove of the same element must occur be-
fore the shipping time is due. These scalability issues limit
the use of state-based CRDTs to data-types with conserva-
tive payloads (e.g. few megabytes in Dynamo [6]). Recently,
calls in the industry started to show up asking for the pos-
sibility to consider larger state sizes (e.g., in RIAK [5]).

In this work, we rethink the way that state-based CRDTs
should be designed, having in mind the useless redundant
shipping of the entire state. Our idea is to decompose a
state-based CRDT in such a way to only ship recent up-
dates rather than the whole state. To achieve this goal, we
introduce Delta State-based CRDTs (δ-CRDT). A δ-CRDT
is roughly a union of multiple fine-grained δ-CRDTs of the
same type, which is built through multiple invocations of
δ-mutators which are then merged. A δ-mutator is a de-
rived version of a CRDT mutator that produces a δ which
only comprises the new changes that the original mutator in-
duced on the state. This way, we can retain the deltas, and
join these deltas together into batches, to be shipped later
instead of shipping the entire object. Once these batches of
deltas arrive at the receiving replica, they are joined with
its local state.

The challenge in our approach is to make sure that decom-
posing a CRDT into deltas and then joining them into an-
other replica state (after shipping) produces the same effect
as if the entire state had been shipped and merged. In par-
ticular, the challenge involves how to derive the δ-mutators
from the original CRDT mutators.

In this work, we discuss these challenges, and explore pos-
sible solutions. In addition, we discuss the benefits of this
approach given the guarantees provided by the messaging
middleware, and we propose the basic requirements a dis-
tributed algorithm must satisfy towards this goal.

Acknowledgments.
Project Norte-01-0124-FEDER-000058 is co-financed by

the North Portugal Regional Operational Program (ON.2 -
- O Novo Norte), under the National Strategic Reference
Framework (NSRF), through the European Regional Devel-
opment Fund (ERDF). Funding from the European Union
Seventh Framework Program (FP7/2007-2013) with grant
agreement 609551, SyncFree project.

2. REFERENCES
[1] P. Bailis and A. Ghodsi. Eventual consistency today:

Limitations, extensions, and beyond. Queue,
11(3):20:20–20:32, Mar. 2013.

[2] C. Baquero and F. Moura. Using structural
characteristics for autonomous operation. Operating
Systems Review, 33(4):90–96, 1999.

[3] A. Bieniusa, M. Zawirski, N. Preguiça, M. Shapiro,
C. Baquero, V. Balegas, and S. Duarte. An optimized
conflict-free replicated set. Rapp. Rech. RR-8083,
Institut National de la Recherche en Informatique et
Automatique (INRIA), Rocquencourt, France, Oct.
2012.

[4] S. Burckhardt, A. Gotsman, H. Yang, and
M. Zawirski. Replicated data types: specification,
verification, optimality. In S. Jagannathan and
P. Sewell, editors, POPL, pages 271–284. ACM, 2014.

[5] S. Cribbs and R. Brown. Data structures in Riak. In

Riak Conference (RICON), San Francisco, CA, USA,
oct 2012.

[6] G. DeCandia, D. Hastorun, M. Jampani,
G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: Amazon’s highly available key-value store.
In Symp. on Op. Sys. Principles (SOSP), volume 41 of
Operating Systems Review, pages 205–220, Stevenson,
Washington, USA, Oct. 2007. Assoc. for Computing
Machinery.

[7] S. Gilbert and N. Lynch. Brewer’s conjecture and the
feasibility of consistent, available, partition-tolerant
web services. SIGACT News, 33(2):51–59, 2002.

[8] M. Letia, N. Preguiça, and M. Shapiro. CRDTs:
Consistency without concurrency control. Rapp. Rech.
RR-6956, Institut National de la Recherche en
Informatique et Automatique (INRIA), Rocquencourt,
France, June 2009.

[9] M. Shapiro, N. Preguiça, C. Baquero, and
M. Zawirski. A comprehensive study of Convergent
and Commutative Replicated Data Types. Rapp.
Rech. 7506, Institut National de la Recherche en
Informatique et Automatique (INRIA), Rocquencourt,
France, Jan. 2011.

[10] M. Shapiro, N. Preguiça, C. Baquero, and
M. Zawirski. Conflict-free replicated data types. In
X. Défago, F. Petit, and V. Villain, editors, Int. Symp.
on Stabilization, Safety, and Security of Distributed
Systems (SSS), volume 6976 of Lecture Notes in
Comp. Sc., pages 386–400, Grenoble, France, Oct.
2011. Springer-Verlag.

[11] D. B. Terry, M. M. Theimer, K. Petersen, A. J.
Demers, M. J. Spreitzer, and C. H. Hauser. Managing
update conflicts in Bayou, a weakly connected
replicated storage system. In Symp. on Op. Sys.
Principles (SOSP), pages 172–182, Copper Mountain,
CO, USA, Dec. 1995. ACM SIGOPS, ACM Press.

[12] W. Vogels. Eventually consistent. ACM Queue,
6(6):14–19, Oct. 2008.

A PUBLISHED PAPERS

A.5 Nuno Preguiça, Marek Zawirski, Annette Bieniusa, Sérgio
Duarte, Valter Balegas, Carlos Baquero, Marc Shapiro.
SwiftCloud: Fault-Tolerant Geo-Replication Integrated
all the Way to the Client Machine. In Proc. W-PSDS
14 (SRDS 14).

SyncFree Deliverable D.3.1(v0.1), November 17, 2014, Page 52

SwiftCloud: Fault-Tolerant Geo-Replication Integrated all the Way to the Client
Machine

Nuno Preguiça†

joint work with:

Marek Zawirski∗, Annette Bieniusa‡, Sérgio Duarte†, Valter Balegas†, Carlos Baquero§, Marc Shapiro∗
∗Inria & UPMC-LIP6

†NOVA-LINCS/CITI/U. Nova de Lisboa
‡U. Kaiserslautern

§INESC Tec & U. Minho

Abstract—Client-side logic and storage are increasingly used
in web and mobile applications to improve response time and
availability. Current approaches tend to be ad-hoc and poorly
integrated with the server-side logic. We present a principled
approach to integrate client- and server-side storage. We
support both mergeable and strongly consistent transactions
that target either client or server replicas and provide access
to causally-consistent snapshots efficiently. In the presence of
infrastructure faults, a client-assisted failover solution allows
client execution to resume immediately and seamlessly access
consistent snapshots without waiting. We implement this ap-
proach in SwiftCloud, the first transactional system to bring
geo-replication all the way to the client machine.

Example applications show that our programming model is
useful across a range of application areas. Our experimental
evaluation shows that SwiftCloud provides better fault tol-
erance and at the same time can improve both latency and
throughput by up to an order of magnitude, compared to
classical geo-replication techniques.

I. INTRODUCTION

Cloud computing infrastructures support a wide range of
services, from social networks and games to collaborative
spaces and online shops. Cloud platforms improve avail-
ability and latency by geo-replicating data in several data
centers (DCs) across the world [1], [2], [3], [4], [5], [6].
Nevertheless, the closest DC is often still too far away for
an optimal user experience. For instance, round-trip times
to the closest Facebook DC range from several tens to
several hundreds of milliseconds, and several round trips
per operation are often necessary [7]. Furthermore, mobile
clients may be completely disconnected from any DC for an
unpredictable period of minutes, hours or days.

Caching data at client machines can improve latency and
availability for many applications, and even allow for a tem-
porary disconnection. While increasingly used, this approach
often leads to ad-hoc implementations that integrate poorly
with server-side storage and tend to degrade data consistency
guarantees. To address this issue, we present SwiftCloud, the
first system to bring geo-replication all the way to the client

machine and to propose a principled approach to access data
replicas at client machines and cloud servers.

Although extending geo-replication to the client machine
seems natural, it raises two big challenges. The first one
is to provide programming guarantees for applications run-
ning on client machines, at a reasonable cost at scale and
under churn. Recent DC-centric storage systems [5], [6],
[4] provide transactions, and combine support for causal
consistency with mergeable objects [8]. Extending these
guarantees to the clients is problematic for a number of
reasons: standard approaches to support causality in client
nodes require vector clocks entries proportional to the
number of replicas; seamless access to client and server
replicas require careful maintenance of object versions; fast
execution in the client requires asynchronous commit. We
developed protocols that efficiently address these issues
despite failures, by combining a set of novel techniques.

Client-side execution is not always beneficial. For in-
stance, computations that access a lot of data, such as
search or recommendations, or running strongly consistent
transactions, is best done in the DC. SwiftCloud supports
server-side execution, without breaking the guarantees of
client-side in-cache execution.

The second challenge is to maintain these guarantees
when the client-DC connection breaks. Upon reconnection,
possibly to a different DC, the outcome of the client’s in-
flight transactions is unknown, and state of the DC might
miss the causal dependencies of the client. Previous cloud
storage systems either retract consistency guarantees in
similar cases [5], [6], [9], or avoid the issue by waiting for
writes to finish at a quorum of servers [4], which incurs high
latency and may affect availability.

SwiftCloud provides a novel client-assisted failover pro-
tocol that preserves causality cheaply. The insight is that,
in addition to its own updates, a client observes a causally-
consistent view of stable (i.e., stored at multiple servers)
updates from other users. This approach ensures that a client
always observes his previous updates and that it can safely

!"#$%&'

()*
+,-.#/

()0
1,-23/4

()5
6#,%7'89

:3;2<#=-,

10
V 7
22

!"#!$%$&'

(#))*&

!"#!$%$&'

!"#!$%$&'

7
V 11
25

8
V 7
29

>3,;&

6
V* 7
23
5

?-,.$-2-/

4
V* 4
12
8

@#/4#/

8
V* 6
29
4

A;23/#

6
V* 7
24
3

Figure 1. SwiftCloud system structure.

reconnect to other DC, as it can replay its own updates and
other observed updates being stable, are already in other
DCs.

Experimental evaluation shows that under sufficient ac-
cess locality, SwiftCloud enjoys order-of-magnitude im-
provements in both response time and throughput over the
classical approach. This is because, not only reads (if they
hit in the cache), but also updates commit at the client side
without delay; servers only need to store and forward up-
dates asynchronously. Although our fault tolerance approach
delays propagation, the proportion of stale reads remains
under 1%.

In the remaining of this paper, we briefly overview the
key solutions developed in the context of SwiftCloud [10].

II. SYSTEM OVERVIEW

SwiftCloud is a data storage systems for cloud platforms
that spans both client nodes and data center servers (DCs),
as illustrated in Figure 1. The core of the system consists
of a set of data centers (DCs) that replicate every object.
At the periphery, applications running in client nodes access
the system through a local module called scout. A scout
caches a subset of the objects. If the appropriate objects
are in cache, responsiveness is improved and a client node
supports disconnected operation.

SwiftCloud provides a straightforward transactional key-
object API. An application executes transactions by interac-
tively executing sequences of reads and updates, concluded
by either a commit or rollback.

Our transactional model, Transactional Causal+ Consis-
tency, offers the following guarantees: every transaction
reads a causally consistent snapshot; updates of a transac-
tion are atomic (all-or-nothing) and isolated (no concurrent

transaction observes an intermediate state); and concurrently
committed updates do not conflict.

This transactional model allows different clients to ob-
serve the same set of concurrent updates applied in different
orders, which poses a risk of yielding different operation
outcomes on different replicas or at different times. We ad-
dress this problem by disallowing non-commutative (order-
dependent) concurrent updates. Practically, we enforce this
property with two different types of transactions: Mergeable
and Classical, non-mergeable transaction, akin to the model
of Walter [4] or Red-Blue [9]:

Mergeable transactions commute with each other and
with non-mergeable transactions, which allows to execute
them immediately in the cache, commit asynchronously in
the background, and remain available in failure scenarios.
Mergeable transaction are either read-only transaction or
update transactions that modify Conflict-free Replicated
Data Types (CRDT)[8], [11]. CRDTs encapsulate the logic
to merge concurrent updates deterministically, independently
of the order of execution of updates.

Classical transactions provide the traditional strongly-
consistent transaction model, in which non-commuting con-
current updates conflict (as determined by an oracle on pairs
of updates) and cannot both commit. These transactions
execute completely in the data centers.

III. ALGORITHMS FOR MERGEABLE TRANSACTIONS

We now present the key ideas of the algorithms for
executing mergeable transactions in a failure-free case. In
the next section we address the problems posed by failures.

An application issues a mergeable transaction iteratively
through the scout. Reads are served from the local scout;
on a cache miss, the scout fetches the data from the DC
it is connected to. Updates execute in a local copy. When
a mergeable transaction terminates, it is locally committed
and updates are applied to the scout cache. Updates are
also propagated to a data center (DC) for being globally
committed. The DC eventually propagates the effects of
transactions to other DCs and other scouts scouts as needed.

Atomicity and Isolation: For supporting atomicity and
isolation, a transaction reads from a database snapshot. Each
transaction is assigned a DC timestamp by the DC that
received it from the client. Each DC maintains a vector clock
with the summary of all transactions that have been executed
in that DC, which is updated whenever a transaction com-
pletes its execution in that DC. This vector has as n entries,
with n the number of DCs. Each scout maintains a vector
clock with the version of the objects in the local cache.

When a transaction starts in the client, the current version
of the cache is selected as the transaction snapshot. If the
transaction accesses an object that is not present in the cache,
the appropriate version is fetched from the DC - to this end,
DCs maintain recent versions of each object.

Read your writes: When a transaction commits in the
client, the local cache is updated. The following transactions
access a snapshot that includes these locally committed
transactions. To this end, each transaction executed in the
client is assigned a scout timestamp. The vector that sum-
marizes the transactions reflected in the local cache has n+1
entries, with the additional entry being used to summarize
locally submitted transactions. This approach guarantees
that a client always reads a state that reflects his previous
transactions.

Causality: The system ensures the invariant that every
node (DC or scout) maintains a causally-consistent set of
object versions. To this end, a transaction only executes in
a DC after its dependencies are satisfied - the dependencies
of a transaction, summarized in the transaction snapshot, are
propagated both from the client to the initial DC and from
one DC to other DCs.

When a scout caches some object, the DC it is connected
to becomes responsible of notifying it with updates to those
cached objects. SwiftCloud includes a notification subsystem
that guarantees that updates from a committed transaction
are propagated atomically and respecting causality. As a
result, the cache in the scout is also causally consistent.

IV. FAULT-TOLERANT SESSION AND DURABILITY

We discuss now how SwiftCloud handles network, DC
and client faults, focusing on client-side mergeable transac-
tions. When a scout loses communication with its current
DC, due to network or DC failure, the scout may need to
switch over to a different DC. The latter’s state is likely to be
different, and it might have not processed some transactions
observed or indirectly observed (via transitive causality) by
the scout. In this case, ensuring that the clients’ execution
satisfies the consistency model and the system remains live
is more complex. As we will see, this also creates problems
with durability and exactly-once execution.

A. Causal dependency issue

When a scout switches to a different DC, the state of the
new DC may be unsafe, because some of the scout’s causal
dependencies are missing. Some geo-replication systems
avoid creating dangling causal dependencies by making
synchronous writes to multiple data centers, at the cost of
high update latency [1]. Others remain asynchronous or rely
on a single DC, but after failover clients are either blocked
or they violate causal consistency [5], [6], [9]. The former
systems trade consistency for latency, the latter trade latency
for consistency or availability.

An alternative approach would be to store the dependen-
cies on the scout. However, since causal dependencies are
transitive, this might include a large part of the causal history
and a substantial part of the database.

Our approach is to make scouts co-responsible for the
recovery of missing session causal dependencies at the

new DC. Since, as explained earlier, a scout cannot keep
track of all transitive dependencies, we restrict the set of
dependencies. We define a transaction to be K-durable [12]
at a DC, if it is known to be durable in at least K DCs,
where K is a configurable threshold. Our protocols let a
scout observe only the union of: (i) its own updates, in order
to ensure the “read-your-writes” session guarantee [13], and
(ii) the K-durable updates made by other scouts, to ensure
other session guarantees, hence causal consistency. In other
words, the client depends only on updates that the scout
itself can send to the new DC, or on ones that are likely
to be found in a new DC. When failing over to a new
DC, the scout helps out by checking whether the new DC
has received its recent updates, and if not, by repeating the
commit protocol with the new DC.

SwiftCloud prefers to serve a slightly old but K-durable
version, instead of a more recent but more risky version.
Instead of the consistency and availability vs. latency trade-
off of previous systems, SwiftCloud trades availability for
staleness.

B. Durability and exactly-once execution issue

A scout sends each transaction to its DC to be globally-
committed. The DC assigns a DC timestamp to the trans-
action, and eventually transmits it to every replica. If the
scout does not receive an acknowledgment, it must retry the
global-commit, either with the same or with a different DC.
However, the outcome of the initial global-commit remains
unknown. If it happens that the global commit succeeded
with the first DC, and the second DC assigns a second DC
timestamp, the danger is that the transaction’s effects could
be applied twice under the two identities.

For some data types, this is not a problem, because their
updates are idempotent, for instance put(key,value) in
a last-writer-wins map. For other mergeable data types, how-
ever, this is not true: think of executing increment(10)
on a counter. Systems restricted to idempotent updates
can be much simpler [6], but in order to support general
mergeable objects with rich merge semantics, SwiftCloud
must ensure exactly-once execution.

Our approach separates the concerns of tracking causality
and of uniqueness, following by the insight of [14]. Recall
that a transaction has both a scout timestamp and a DC
timestamp. The scout timestamp identifies a transaction
uniquely, whereas the DC timestamp is used when a sum-
mary of a set of transactions is needed. Whenever a scout
globally-commits a transaction at a DC, and the DC does
not have a record of this transaction already, the DC assigns
it a new DC timestamp. This approach makes the system
available, but may assign several DC timestamp aliases for
the same transaction. All alias DC timestamps are equivalent
in the sense that, if updates of T ′ depend on T , then T ′

comes after T in the causality order, no matter what DC
timestamp T ′ uses to refer to T .

When a DC processes a commit record for an already-
known transaction with a different DC timestamp, it adds
the alias DC timestamp to its commit record on durable
storage.

To provide a reliable test whether a transaction is already
known, each DC maintains durably a map of the last scout
timestamp received from each scout. Thanks to causal con-
sistency, this value is monotonically non-decreasing. Thus,
a DC knows that a transaction being received for global-
commit from a scout has already been processed if the
recorded value for that scout is greater or equal to the scout
timestamp of the received transaction.

V. FINAL REMARKS

We overview the design of SwiftCloud, the first system
that brings geo-replication to the client machine, providing a
principled approach for using client and data center replicas.
SwiftCloud allows applications to run transactions in the
client machine, for common operations that access a limited
set of objects, or in the DC, for transactions that require
strong consistency or accessing a large number of objects.
Our evaluation of the system [10] shows that the latency
and throughput benefit can be huge when compared with
traditional cloud deployments for scenarios that exhibit good
locality, a property verified in real workloads [15].

SwiftCloud also proposes a novel client-assisted failover
mechanism that trades latency by a small increase in stale-
ness. Our evaluation shows that our approach helps reducing
latency while increasing stale reads by less than 1%.

ACKNOWLEDGMENT

This research was supported in part by EU FP7
project SyncFreee (grant agreement no 609551), ANR
project ConcoRDanT (ANR-10-BLAN 0208), by the
Google Europe Fellowship in Distributed Computing
awarded to Marek Zawirski, and by Portuguese FCT/MCT
projects PEst-OE/EEI/UI0527/2014 and PTDC/EEI-
SCR/1837/2012 and Phd scholarship awarded to Valter
Balegas (SFRH/BD/87540/2012).

REFERENCES

[1] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li,
A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan,
R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor,
R. Wang, and D. Woodford, “Spanner: Google’s globally-
distributed database,” in OSDI. Hollywood, CA, USA:
Usenix, Oct. 2012, pp. 251–264.

[2] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao,
and D. J. Abadi, “Calvin: fast distributed transactions for
partitioned database systems,” in SIGMOD, Scottsdale, AZ,
USA, May 2012, pp. 1–12.

[3] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin,
J. Larson, J.-M. Léon, Y. Li, A. Lloyd, and V. Yushprakh,
“Megastore: Providing scalable, highly available storage for
interactive services,” in CIDR, Asilomar, CA, USA, Jan.
2011, pp. 229–240.

[4] Y. Sovran, R. Power, M. K. Aguilera, and J. Li, “Transactional
storage for geo-replicated systems,” in SOSP. Cascais,
Portugal: Assoc. for Comp. Mach., Oct. 2011, pp. 385–400.

[5] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Ander-
sen, “Don’t settle for eventual: scalable causal consistency for
wide-area storage with COPS,” in SOSP. Cascais, Portugal:
Assoc. for Comp. Mach., Oct. 2011, pp. 401–416.

[6] ——, “Stronger semantics for low-latency geo-replicated
storage,” in NSDI, Lombard, IL, USA, Apr. 2013, pp.
313–328.

[7] M. P. Wittie, V. Pejovic, L. Deek, K. C. Almeroth, and
B. Y. Zhao, “Exploiting locality of interest in online social
networks.” Philadelphia, PA, USA: Assoc. for Comp.
Mach., Dec. 2010, pp. 25:1–25:12.

[8] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski,
“Conflict-free replicated data types,” in SSS, ser. LNCS,
X. Défago, F. Petit, and V. Villain, Eds., vol. 6976.
Grenoble, France: Springer Verlag, Oct. 2011, pp. 386–400.

[9] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça, and
R. Rodrigues, “Making geo-replicated systems fast as possi-
ble, consistent when necessary,” in OSDI, Hollywood, CA,
USA, Oct. 2012, pp. 265–278.

[10] M. Zawirski, A. Bieniusa, V. Balegas, S. Duarte, C. Baquero,
M. Shapiro, and N. Preguiça, “SwiftCloud: Fault-tolerant
geo-replication integrated all the way to the client machine,”
INRIA, Rapp. Rech. RR-8347, Aug. 2013.

[11] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski,
“Convergent and commutative replicated data types,” Bulletin
of the European Association for Theoretical Computer
Science (EATCS), no. 104, pp. 67–88, Jun. 2011.

[12] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, M. Dahlin,
and M. Walfish, “Depot: Cloud storage with minimal trust,”
TOCS, vol. 29, no. 4, pp. 12:1–12:38, Dec. 2011. [Online].
Available: http://doi.acm.org/10.1145/2063509.2063512

[13] D. B. Terry, A. J. Demers, K. Petersen, M. J. Spreitzer, M. M.
Theimer, and B. B. Welch, “Session guarantees for weakly
consistent replicated data,” in PDIS, Austin, Texas, USA, Sep.
1994, pp. 140–149.

[14] P. S. Almeida, C. Baquero, R. Gonçalves, N. M. Preguiça, and
V. Fonte, “Scalable and accurate causality tracking for even-
tually consistent stores,” in Proc. 14th Int. Conf. Distributed
Applications and Interoperable Systems (LNCS 8460), 2014,
pp. 67–81.

[15] F. Benevenuto, T. Rodrigues, M. Cha, and V. Almeida,
“Characterizing user behavior in online social networks,”
in Proceedings of the 9th ACM SIGCOMM conference on
Internet measurement conference, ser. IMC ’09, 2009, pp.
49–62.

A PUBLISHED PAPERS

A.6 Valter Balegas, Mahsa Najafzadeh, Sérgio Duarte, Carla
Ferreira, Rodrigo Rodrigues, Marc Shapiro, Nuno Preguiça.
The Case for Fast and Invariant-Preserving Geo-Replication.
In Proc. W-PSDS 14 (SRDS 14)

SyncFree Deliverable D.3.1(v0.1), November 17, 2014, Page 57

The Case for Fast and Invariant-Preserving
Geo-Replication

Valter Balegas, Sérgio Duarte,
Carla Ferreira, Rodrigo Rodrigues, Nuno Preguiça

CITI/FCT/Universidade Nova de Lisboa

Marc Shapiro
Mahsa Najafzadeh

INRIA / LIP6

Abstract—Cloud storage systems showcase a range of consis-
tency models, from weak to strong consistency. Weakly consis-
tent systems enable better performance, but cannot maintain
strong application invariants, which strong consistency trivially
supports. This paper takes the position that it is possible to
both achieve fast operation and maintain application invariants.
To that end, we propose the novel abstraction of invariant-
preserving CRDTs, which are replicated objects that provide
invariant-safe automatic merging of concurrent updates. The
key technique behind the implementation of these CRDTs is to
move replica coordination outside the critical path of operations
execution, to enable low normal case latency while retaining
the coordination necessary to enforce invariants. In this paper
we present ongoing work, where we show different invariant-
preserving CRDTs designs and evaluate the latency of operations
using a counter that never goes negative.

I. INTRODUCTION

To improve the user experience in services that operate on
a global scale, from social networks and multi-player online
games to e-commerce applications, the infrastructure that
supports those services often resorts to geo-replication [9], [7],
[17], [18], [16], [26], [8], i.e., maintains copies of application
data and logic in multiple data centers scattered across the
globe, providing improved scalability and lower latency. But
not always the advantages of geo-replication are exploited by
worldwide services, because, when services need to maintain
invariants over the data, they have to synchronize with remote
data centers in order to execute some operations, which
negatively impacts operations’ latency. In a geo-replicated
scenario, latency may amount to hundreds of milliseconds.

The impact of high latency in the user’s experience is well
known [22], [11] and has motivated the academia [7], [1], [9]
and industry [13], [5], [25] to use weaker consistency models
with low-latency operations at the trade of data consistency.

When running applications under such weaker consistency
models, applications in different data centers execute opera-
tions concurrently over the same set of data leading to tem-
porary divergence between replicas and potentially unintuitive
and undesirable user-perceived semantics.

This research is supported in part by European FP7 project 609 551

SyncFree (2013–2016) , Fundação para a Ciência e Tecnologia
SFRH/BD/87540/2012 and PEst-OE/EEI/UI0527/2014.

Good user-perceived semantics are trivially provided by
systems that use strong-consistency models, namely those that
serialize all updates, and therefore preclude that two operations
execute without seeing the effects of one another [8], [16]. Not
all operations require strong guarantees to execute, and some
systems provide both strong and weak consistency models for
different operations [26], [16].

In this paper, we claim that it is possible to achieve the best
of both worlds, i.e., that fast geo-replicated operations can
coexist with strong application invariants without impairing
the latency of operations. To this end, we propose novel
abstract data types called invariant-preserving CRDTs. These
are replicated objects that, like conventional CRDTs [23],
automatically merge concurrent updates, but, in addition, they
can maintain application invariants. Furthermore, we show
how these CRDTs can be efficiently implemented in a geo-
replicated setting by moving the replica coordination that is
needed for enforcing invariants outside the critical path of
operation execution.

In this paper, we discuss cloud consistency models(§II);
present the concept of InvCRDT (§III), abstract data types that
offer invariant-safe operations; discuss the implementation of
these ADTs (§IV); discuss invariants that span multiple objects
(§V-B); Present the practical benefits of InvCRDTs (§VI) and,
finally, we briefly review related work (§VII) and present our
conclusions (§VIII).

II. DECOMPOSING CONSISTENCY REQUIREMENTS

Recent cloud systems [8], [12], [26], [16] have adopted
strong consistency models to avoid concurrency anomalies.
These models rely on a serializable (or even linearizable)
execution order for operations to provide the illusion that a
single replica exists. They do so at the expense of lower
availability on failures and increased latency for operations
- a direct consequence of the CAP theorem [6], which states
that there is a trade-off between availability and consistency
in systems prone to partitioning.

We argue that enforcing strong consistency is not mandatory
for fulfilling the requirements of most applications. We use the
example of an e-commerce site to motivate such statement, by
identifying three central requirements of this application.

First, users of the application must not observe a past
version of any given data item after observing a more recent

one – e.g., after adding some item to her shopping cart, the
user does not want to observe a shopping cart where the item
is not present. A way to achieve this without per-operation
replica synchronization is to support causal consistency, as
found in several cloud systems [17], [18].

Second, when concurrent updates exist, data replicas cannot
be allowed to diverge permanently. This requires some form
of automatic reconciliation that deals with concurrent updates
identically in all sites, leading to a consistency model that has
been recently coined as causal+ consistency [17] or fork-join-
causal consistency [19]. For example, after two users add two
different items to a shopping cart, both items should be in the
reconciled version of the shopping cart.

Finally, the e-commerce application has crucial integrity
constraints that must be preserved despite concurrent updates
– e.g., the stock of a product should be greater or equal to
zero, thus avoiding that the store sells more items than what
it has in stock.

In current systems, invariants as the stock example are usu-
ally preserved by running such application (or operations that
can break the invariant [26], [16]) under a strong consistency
model. Instead, we propose to run such applications under
a consistency model that provides the following properties:
causal consistency; automatic reconciliation; and invariant
preservation. We call this consistency model causal+invariants
consistency.

It seems straightforward that enforcing invariants usually
requires some form of coordination among nodes of the system
– e.g., to ensure that a product stock does not go negative, it
is necessary that replicas coordinate so that the number of
successful sales do not exceed the number of items in stock.
However, unlike the solution adopted by strong consistency,
in many situations this coordination can be executed outside
of the critical execution path of operations. In the previous
example, the rights to use the available stock can be split
among the replicas, allowing a purchase to proceed without
further coordination provided replica where the operation is
submitted has enough rights [20], [21].

III. THE CASE FOR INVARIANT-PRESERVING CRDTS

Conflict-free replicated data-types (CRDT [23]) are data
types that leverage the commutativity of operations to auto-
matically merge concurrent updates in a sensible way. Several
CRDT specifications have been proposed for some of the
most commonly used data types, such as lists, sets, maps and
counters, allowing rapid integration in existing applications.
CRDTs provide convergence by design and, when combined
with a replication protocol that delivers operations in causal
order, they trivially provide causal+ consistency [17], [26].

A. The concept of InvCRDTs

In this paper, we propose the concept of invariant-preserving
CRDT (InvCRDT), a conflict-free data type that maintains a
given invariant even in the presence of concurrent operations –
the BoundedCounter [under submission] implements a counter
that cannot be negative.

Some CRDTs already maintain invariants internally by re-
pairing the state – e.g., in the graph CRDT [23], when one user
adds an arc between two nodes and other user concurrently
removes one of the nodes, the graph CRDT does not show
the arc. However, unlike these solutions, InvCRDTs maintain
invariants by explicitly disallowing the execution of operations
that would lead to the violation of an invariant. By having
immediate feedback that an operation cannot be executed, an
application can give that feedback to the users – e.g., in an
e-commerce application, an order will fail if some product
has no stock available, since the operation of decrementing
the stock of the product, aborts when implemented with a
BoundedCounter.

For achieving this functionality, a replica of an InvCRDT
includes both the state of the object and information about
the rights the replica holds. These rights allow the execution
of operations that potentially break invariants without coor-
dination while guaranteeing that the invariants will not be
broken. The union of the rights granted to each of the existing
replicas guarantees that the invariants defined will be preserved
despite any concurrent operation. The set of initial rights will
depend on the initial value of the object. For example, in a
BoundedCounter with initial value 10 and two replicas, each
replica has the rights to increment the counter at any moment
and the rights to execute five decrement operations.

The rights each replica holds are consumed or extended
when an operation is submitted locally – e.g., in the previous
example, a decrement will consume the rights to decrement
by one, and an increment will increase the local rights to
decrement by one. If enough rights exist locally, it is assured
that the execution of the operation in other replicas will
not break the defined invariant. If not enough rights exist
locally, the execution of the method aborts (in our Java-based
implementation, by throwing an exception) and it has no side-
effects in any replica. Optionally, when not enough rights
exist locally, the system may try to obtain additional rights by
transferring them from some other replica(s). In this case, the
method execution blocks until the necessary communication
with other replicas is done. In this case, the overhead of
operation execution will tend to be similar to the overhead
of providing strong consistency.

This model for InvCRDTs is general enough to allow
different implementations, as discussed in the next section.
An important property on InvCRDTs that must be highlighted
is that InvCRDTs do not eliminate the need of coordination
among replicas: they only allow the coordination to be exe-
cuted outside the critical path of execution of an application
request, through the exchange of rights. Next we discuss
the common invariants in applications and how they can be
addressed using InvCRDTs.

B. Using InvCRDTs in applications

There are many examples in the literature of applications
with integrity constraints that are good candidates for using
InvCRDTs.

Li et. al. [16] report that two invariants must be considered

in TPC-W. First, the stock of a product must be non-negative.
This can be addressed by the BoundedCounter previously
mentioned. Second, the system must guarantee that unique
identifiers are generated in a number of situations where
new data items are created. To address this requirement, the
space of possible identifiers could be partitioned among the
replicas (for example, using the replica identifier as a suffix).
InvCRDT versions of containers (e.g., set, maps) can be
created, where each replica maintains rights for assigning new
unique identifiers to elements added to the object. The authors
also report that similar invariants must be preserved for Rubis.

Cooper et. al. [7] discuss several applications, among them,
one that maintains an hierarchical namespace. Although they
do not explicitly discuss invariants, it is clear to see that
there are two important invariants that should be preserved:
no two objects have the same name; and no cycles exist in
the presence of renames. For the first invariant, we use rights
that preclude two replicas from generating identical names –
a replica must acquire rights to generate identifiers with some
prefix). Maintaining the second invariant is more complex and
requires obtaining the exclusive right to modify the path of
directories from the first common ancestor of the original and
destination names for supporting renames (section V-A). This
can be implemented by extending our graph CRDT [23] with
these rights.

Other applications have invariants on the cardinality of
containers (e.g., a meeting must have at least K members), on
the properties of elements present in containers (e.g., at least
one element of each gender), etc. These invariants can also be
preserved by having InvCRDT versions of those containers.

More recently, Bailis et al.[2] have studied OLTP systems
and summarized typical invariants that show up in applica-
tions. Some of them are instantiations of the ones described
above, while other require more elaborate mechanisms as
discussed in section IV.

IV. SUPPORTING INVCRDTS

We assume a typical cloud computing environment com-
posed by clients and data centres. Data centres run application
servers for handling client requests and a replicated storage
system to persist application data. The effects of client requests
are persisted by modifying the data stored in the system,
represented as InvCRDTs. Finally, a replication protocol that
delivers operations in causal order is used to achieve our
proposed causal+invariants consistency model.

One possible design would consist of managing the rights
associated with InvCRDTs through a centralized server. In this
case, each replica would obtain these rights by contacting such
central entity (as in [20], [21]). We propose an alternative
approach, where the rights associated with an InvCRDT are
maintained in a decentralized way, completely inside the
InvCRDT.

Our generic solution consists in modelling application data
as resources and by keeping the rights of each replica as a vec-
tor of (replicaId ⇒ value) entries for each resource type in all
InvCRDT replicas. Each operation is modelled as consuming

or creating resources. For example, in the BoundedCounter,
a single resource type exists, and a resource corresponds to
one unit in the counter; an increment creates one resource; a
decrement consumes one resource. In an InvCRDT that needs
to generate unique identifiers, the reserved resources are a
subset of the identifiers (e.g., a chunk of consecutive identifiers
or a subset of identifiers ended in the reserved suffix).

Operations that modify the rights vector – consume (sub-
tract), extend (add), transfer (atomically subtract from one
entry and add to another) – are commutative. Thus, they can
be supported in a convergent data-type style, where operations
only need to execute in causal order in the different replicas 1.
Consume and extend operations affect the rights of the replica
where the operations are initiated. The transfer operation must
be initiated in the replica from which the rights are to be
transferred from.

This execution model guarantees that in any given replica
i, the rights that are known to exist for replica i are a
conservative view when considering all operations that can
have been executed. The reason for this is that all operations
that decrement the rights of a given replica, consume and
transfer, are submitted locally, while a remote transfer that
is not yet known may increase the local rights. This property
guarantees the correctness of our approach.

V. DISCUSSION

A. InvCRDT data-types

In section III-A we briefly presented the design of the
BoundedCounter CRDT. We are studying other data-types that
can share the same philosophy of maintaining the state of
the object as well as the rights to execute operations. The
BoundedCounter is a fairly simple example to understand,
however the same idea can be applied to other data-types.

We give the intuition for a few other data-types and what
invariants they can preserve:

Tree Each node in a tree has a unique parent node. This
invariant can be broken by concurrently moving a node and
putting it under two different nodes. A possible solution to
prevent the violation of this invariant consists in associating
to each node a right to modify its subtree. When a replica
acquires rights over a node it automatically acquires the rights
to modify any descendent of that node. The replica that holds
rights over a portion of the tree may give permission to another
replica to modify some subtree, losing the permission itself to
modify any node under that subtree. This strategy enforces a
replica executing a rename operation to hold rights over the
origin and destination names, which prevents any concurrent
operation from creating a cycle.

Graph To implement a graph that is always consistent,
i.e.,an edge always connect to an existing node, without using
the automatic convergence mechanism of the graph CRDT,
we associate rights to each node, which have to be acquired
in order to remove it, or connect an edge. When a new node

1As with CRDTs, it is possible to design an equivalent solution based on
state propagation.

is created it has rights associated to the replica that created
the node. Preventing cycles in a graph is more complex than
in trees and we have not addressed that so far.

Map Two concurrent puts in a map may end up associating
different element to the same key. To prevent this situation,
we can associate rights to ranges of keys which have to be
acquired in order to execute a put operation. This guarantees
that two different replicas cannot execute a conflicting put
operation. The strategy of key domain partitioning can be used
to provide unique identifiers.

We aim to provide a library of InvCRDTs that support most
of the invariants that are common in applications, however
we are still investigating an easy way to provide them to
programmers.

B. Multi-object invariants

InvCRDTs enforce invariants in a single object. However,
application invariants can often span multiple objects – e.g.,
a user can only checkout a shopping cart if all items are in
stock.

Supporting these invariants requires enforcing some type
of operation grouping. Recently, weakly consistent storage
systems have provided support for some form of transactions
[18], [26]. We could build on this type of support to maintain
invariants over multiple objects – e.g., in the previous example,
a transaction would succeed only if the data centre where it
was submitted holds rights to consume all the necessary stock
units of each item.

Some other invariants establish relations that must be main-
tained among multiple objects – e.g., in a courseware appli-
cation, a student can only be part of a course student group
if he or she is enrolled in the course. This invariant can be
maintained either by repairing (e.g., if the students enrolment
in the course is cancelled, the membership in the course
student group is also cancelled) or avoiding the invariant
violation. If it seems clear that these types of invariants can
be preserved by restricting concurrent operations in multiple
objects (e.g., avoiding the concurrent creation of a group
and removal of a student involved). However, we are still
studying the best approach to represent them as InvCRDTs.
Additionally, it is also not obvious what is the best way to
define invariant repairing solutions in these cases. Addressing
these issues is also left as future work.

VI. PRELIMINARY EVALUATION

We conducted some preliminary experiments to evaluate the
latency of InvCRDT operations. We made an Erlang prototype
that extends Riak [5] with support for InvCRDTs. Basically the
prototype is a middleware component that is stacked between
the application server and the storage system. The middle-
ware’s main function is to exchange rights between replicas,
so that when operation are executed rights are available locally
and the operation succeed without contacting any remote data
center.

We implemented a micro-benchmark that simulates the
manipulation of items’ stock on purchases in an e-commerce

application: Decrement operations are submitted to a counter
in multiple data centers and the value of the counter cannot
go negative, regardless the operations propagation frequency
between data centers.

We implemented the BoundedCounter and the policies to
exchange rights between replicas. These exchange of rights
occur in the background and try to prevent rights from being
exhausted locally. When a replica runs out of rights and
executes a decrement, it tries to fetch the rights from a remote
data center, which potentially has high latency.

We compare the solution using InvCRDT (BCounter)
against an weak consistency (WeakC) solution that uses a con-
vergent counter and a solution that provides strong consistency
(StrongC) by executing all operations on the same data center.
Riak natively support these features: the convergent counter
is an implementation of the PN-Counter CRDT [23] and the
strong consistency solution uses a consensus algorithm based
on the Paxos algorithm [14].

We did not implemented true causality in our prototype,
instead the middleware provides key-linearizability, which
is sufficient because in the experiments all operations are
executed in a single-object. Key-linearizibility is necessary to
avoid concurrent requests to use the same rights within the
same data center.

A. Experimental Setup

Our experiments comprised 3 Amazon EC2 data centers
distributed across the globe. We installed a Riak data store
in each EC2 availability zone (US-East, US-West, EU). Each
Riak cluster is composed by three m1.large machines, with
2 vCPUs, producing 4 ECU2 units of computational power,
and with 7.5GB of memory available. We use Riak 2.0.0pre5
version.

a) Operations latency: Figure 1 details these results by
showing the CDF of latency for operation execution. As
expected, the results show that for StrongC, remote clients
experience high latency for operation execution. This latency
is close to the RTT latency between the client and the DC
holding the data. For StrongC, each step in the line consists
mostly of operations issued in different DCs.

Both BCounter and WeakC experience very low latency. In
a counter-intuitive way, the latency of BCounter is sometimes
even better than the latency of WeakC. This happens because
our middleware caches the counters, requiring only one access
to Riak for processing an update operation when compared
with two accesses in WeakC (one for reading the value of the
counter and another for updating the value if it is positive).

Figure 2 furthers details the behaviour of our middleware,
by presenting the latency of operations over time. The results
show that most operations take low latency, with a few peak
of high latency when a replica runs out of rights and needs to
ask for additional rights from other data centers. The number
of peaks is small because most of the time the pro-active

21 ECU corresponds is a relative metric used to compare instance types in
the AWS platform

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

C
um

ul
at

iv
e

O
cu

rr
en

ce
s

[%
]

Latency [ms]

BCounter
WeakC

StrongC

Fig. 1. CDF of latency with a single counter.

 0

 20

 40

 60

 80

 100

 120

 140

 0 200 400 600 800 1000 1200

La
te

nc
y

[m
s

]

Time [ms]

BCounter

Fig. 2. Latency measured over time.

mechanism for exchanging rights is able to provision a replica
with enough rights before all rights are used.

VII. RELATED WORK

A large number of cloud storage systems supporting geo-
replication have been developed in recent years. Some of these
systems [9], [17], [18], [1], [13] provide variants of eventual
consistency, where operations return immediately after being
executed in a single data center. This approach has the lowest
latency possible for end-users, but since the guarantees they
provide are so weak, a handful of other systems try to provide
better semantics for the user and still avoid cross data center
coordination, such as those that provide causal consistency
[17], [1], [10], [3]. We target to provide similar ordering
guarantees of messages but improve over these systems by

maintaining applications invariants that require some form of
coordination.

Systems that provide strong consistency[8] incur in coor-
dination overhead that increases latency of operations. Some
systems tried to combine the benefits of weak and strong
consistency models by supporting both models. In Walter [26]
and Gemini [16], transactions that can execute under weak
consistency run fast, without needing to coordinate with other
data centers.

More recently, Sieve [15] automates the decision between
executing some operation in weak or strong consistency. Bailis
et al. [2] have also studied when it is possible to avoid co-
ordination in database systems, while maintaining application
invariants. Our work is complimentary, by providing solutions
that can be used when coordination cannot be avoided.

Escrow transactions [20] have been proposed as a mech-
anism for enforcing numeric invariants while allowing con-
current execution of transactions. The key idea is to enforce
local invariants in each transaction that guarantee that the
global invariant is not broken. The original escrow model is
agnostic to the underlying storage system and in practice was
mainly used to support disconnected operations [24], [21] in
mobile computing environments, using a centralized solution
to handle reservations.

The demarcation protocol [4] is an alternative that has been
proposed to maintain invariants in distributed databases and
recently applied to optimize strong-consistency protocols [12].
Although the underlying protocol are similar to escrow-based
solutions, the demarcation protocol focus on maintaining in-
variants across different objects.

We aim to combine these different mechanism to provide
an unified framework that programmers can use to improve
the consistency of applications given the same assumptions as
in weak consistency systems.

VIII. CONCLUSION

This paper presents a weak consistency model, extended
with invariant preservation for supporting geo-replicated ser-
vices. For supporting the causal+invariants consistency model,
we propose a novel abstraction called invariant-preserving
CRDTs, which are replicated objects that provide both sensible
merge of concurrent updates and invariant preservation in
the presence of concurrent updates. We outline the design of
InvCRDTs that can be deployed on top of systems providing
causal+ consistency only. Our approach provides low latency
for most operations by moving the necessary coordination
among nodes outside of the critical path of operation exe-
cution.

The next steps in our work are to build a library of CRDTs
that programmers can use to maintain application invariants as
well as providing a programming model that ease the use of
these data-types in applications. One possibility would be to
categorize invariants and have specific data-types to preserve
each of them with low-latency. We are also still studying how
to maintain invariants that span multiple objects and what
guarantees does the replication model must provide in order

to maintain them.
The preliminary evaluation showed that it is possible to

maintain invariants under weak consistency by relying on
a proactive rights exchange mechanism to transfer rights
between replicas.

REFERENCES

[1] S. Almeida, J. a. Leitão, and L. Rodrigues. Chainreaction: A causal+
consistent datastore based on chain replication. In Proceedings of the 8th
ACM European Conference on Computer Systems, EuroSys ’13, pages
85–98, New York, NY, USA, 2013. ACM.

[2] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M. Hellerstein,
and I. Stoica. Coordination-avoiding database systems. CoRR,
abs/1402.2237, 2014.

[3] P. Bailis, A. Ghodsi, J. M. Hellerstein, and I. Stoica. Bolt-on causal
consistency. In Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’13, pages 761–772,
New York, NY, USA, 2013. ACM.

[4] D. Barbará-Millá and H. Garcia-Molina. The demarcation protocol: A
technique for maintaining constraints in distributed database systems.
The VLDB Journal, 3(3):325–353, July 1994.

[5] Basho. Riak. http://basho.com/riak/, 2014. Accessed Jan/2014.
[6] E. A. Brewer. Towards robust distributed systems (abstract). In

Proceedings of the Nineteenth Annual ACM Symposium on Principles
of Distributed Computing, PODC ’00, pages 7–, New York, NY, USA,
2000. ACM.

[7] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bo-
hannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni. Pnuts:
Yahoo!’s hosted data serving platform. Proc. VLDB Endow., 1(2):1277–
1288, Aug. 2008.

[8] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Fur-
man, S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh,
S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura,
D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak,
C. Taylor, R. Wang, and D. Woodford. Spanner: Google’s globally-
distributed database. In Proceedings of the 10th USENIX Conference
on Operating Systems Design and Implementation, OSDI’12, pages 251–
264, Berkeley, CA, USA, 2012. USENIX Association.

[9] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
Amazon’s highly available key-value store. In Proceedings of Twenty-
first ACM SIGOPS Symposium on Operating Systems Principles, SOSP
’07, pages 205–220, New York, NY, USA, 2007. ACM.

[10] J. Du, S. Elnikety, A. Roy, and W. Zwaenepoel. Orbe: Scalable
causal consistency using dependency matrices and physical clocks. In
Proceedings of the 4th Annual Symposium on Cloud Computing, SOCC
’13, pages 11:1–11:14, New York, NY, USA, 2013. ACM.

[11] T. Hoff. Latency is everywhere and it costs you
sales - how to crush it. http://highscalability.com/
latency-everywhere-and-it-costs-you-sales-how-crush-it, 2009.

[12] T. Kraska, G. Pang, M. J. Franklin, S. Madden, and A. Fekete. Mdcc:
Multi-data center consistency. In Proceedings of the 8th ACM European
Conference on Computer Systems, EuroSys ’13, pages 113–126, New
York, NY, USA, 2013. ACM.

[13] A. Lakshman and P. Malik. Cassandra: A decentralized structured
storage system. SIGOPS Oper. Syst. Rev., 44(2):35–40, Apr. 2010.

[14] L. Lamport. The part-time parliament. ACM Trans. Comput. Syst.,
16(2):133–169, May 1998.

[15] C. Li, J. Leitão, A. Clement, N. Preguiça, R. Rodrigues, and V. Vafeiadis.
Automating the choice of consistency levels in replicated systems. In
2014 USENIX Annual Technical Conference (USENIX ATC 14), pages
281–292, Philadelphia, PA, June 2014. USENIX Association.

[16] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça, and R. Ro-
drigues. Making geo-replicated systems fast as possible, consistent
when necessary. In Proceedings of the 10th USENIX Conference on
Operating Systems Design and Implementation, OSDI’12, pages 265–
278, Berkeley, CA, USA, 2012. USENIX Association.

[17] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Don’t
settle for eventual: Scalable causal consistency for wide-area storage
with cops. In Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, SOSP ’11, pages 401–416, New York,
NY, USA, 2011. ACM.

[18] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Stronger
semantics for low-latency geo-replicated storage. In Proceedings of the
10th USENIX Conference on Networked Systems Design and Implemen-
tation, nsdi’13, pages 313–328, Berkeley, CA, USA, 2013. USENIX
Association.

[19] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, M. Dahlin, and
M. Walfish. Depot: Cloud storage with minimal trust. ACM Trans.
Comput. Syst., 29(4):12:1–12:38, Dec. 2011.

[20] P. E. O’Neil. The escrow transactional method. ACM Trans. Database
Syst., 11(4):405–430, Dec. 1986.

[21] N. Preguiça, J. L. Martins, M. Cunha, and H. Domingos. Reservations
for conflict avoidance in a mobile database system. In Proceedings of
the 1st International Conference on Mobile Systems, Applications and
Services, MobiSys ’03, pages 43–56, New York, NY, USA, 2003. ACM.

[22] E. Schurman and J. Brutlag. Performance related changes and their
user impact. Presented at velocity web performance and operations
conference, 2009.

[23] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. Conflict-
free replicated data types. In Proceedings of the 13th International
Conference on Stabilization, Safety, and Security of Distributed Systems,
SSS’11, pages 386–400, Berlin, Heidelberg, 2011. Springer-Verlag.

[24] L. Shrira, H. Tian, and D. Terry. Exo-leasing: Escrow synchronization
for mobile clients of commodity storage servers. In Proceedings of
the 9th ACM/IFIP/USENIX International Conference on Middleware,
Middleware ’08, pages 42–61, New York, NY, USA, 2008. Springer-
Verlag New York, Inc.

[25] S. Sivasubramanian. Amazon dynamodb: A seamlessly scalable non-
relational database service. In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’12, pages
729–730, New York, NY, USA, 2012. ACM.

[26] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional storage
for geo-replicated systems. In Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, SOSP ’11, pages 385–
400, New York, NY, USA, 2011. ACM.

B PAPERS UNDER SUBMISSION AND TECHNICAL REPORTS

B Papers under submission and technical reports

B.1 Carlos Baquero, Paulo Sérgio Almeia, Alcino Cunha,
Carla Ferreira. Composition of state-based CRDTs.
Internal techinal report

SyncFree Deliverable D.3.1(v0.1), November 17, 2014, Page 64

Composition of state-based CRDTs

Carlos Baquero, Paulo Srgio Almeida, Alcino Cunha, Carla Ferreira

October 21, 2014

1 Introduction

State-based CRDTs are rooted in mathematical structures called join-semilattices
(ore simply lattices, in this context). These order structures ensure that the
replicated states of the defined data types evolve and increase in a partial order
in a sufficiently defined way, so as to ensure that all concurrent evolutions can
be merged deterministically. In order to build, or understand the building prin-
ciples, of state-based CRDTs it is necessary to understand the basic building
blocks of the support lattices and how lattices can be composed.

2 From Sets to Lattices

In this context the most basic structure to define is a set of distinct values.
An example is the set of vowels that can defined by extension as vowels

.
=

{a, e, i, o, u}. Elements in a set have no specific order and they only need to be
distinguishable, i.e. by defining =.

Having a set we can define partial orders by defining a poset over a support
set and an order relation v. This relation can be any binary relation that is
reflexive, transitive and anti-symmetric. Given elements o, p, q in a set.

• (reflexive) o v o

• (transitive) o v p ∧ p v q ⇒ o v q

• (anti-symmetric) o v p ∧ p v o⇒ o = p

Since sets already define = it is possible to create posets transitively by enu-
merating the element pairs related by @. As an example, we can build a poset
with a total order on the set of vowels by defining 〈vowels, {(a, e), (e, i), (i, o), (o, u)}〉
In this example we ordered all elements and thus created a chain, with a @ e @
i @ o @ u, i.e. given any two elements o, p either o v p or p v o.

If some elements were left unordered we could have concurrent elements.

• (concurrent) o ‖ p ⇐⇒ ¬(o v p ∨ p v o)

1

In the extreme case we could have left all elements unordered and defined a
poset that depicted an antichain, where any two elements are always concurrent.
E.g. 〈vowels, {}〉. Having a poset we also have the properties of a set.

A : poset

A : set

For a given poset to be a join-semilattice there must be a least-upper-bound
for any subset of the support set. Given a pair of elements o, p, their least-
upper-bound can be derived by the result of a binary join operator, by o t p.
Since the binary join is commutative and associative it can be iterated over the
elements of any subset to derive the least-upper-bound of the subset. Some
properties of join are listed bellow.

• (idempotent) o t o = o

• (commutative) o t p = p t o

• (associative) o t (p t q) = (o t p) t q

And properties of least-upper-bounds.

• (upper-bound) o v o t p

• (least-upper-bound) o v q ∧ o v q ⇒ o v p t q

A general example of a poset with a join is obtained from any set by selecting
the order to be set inclusion and the join to be set union. In our running example
this would be the lattice defined by 〈vowels,⊆,∪〉. Another simple lattice can
be obtained by taking the maximum in a total order (or dually the minimum),
for naturals we can derive maxint

.
= 〈N,≤N,max〉.

Having a lattice we also have the properties of a poset.

A : lattice

A : poset

A chain (a special case of a poset) always derives a lattice.

A : chain

A : lattice

Notice that although some specific partial orders always derive lattices, as is
the case for chains, in general we can have partial orders that are not lattices.
An example is the prefix ordering on bit strings that can produce concurrent
elements, 010 ‖ 100, and is not a lattice.

We will see in latter sections that in some cases it is useful to have a special
element in the lattice that is the bottom element ⊥. Some properties are.

• (bottom) ⊥ v o

• (identity) ⊥ t o = o

2

The lattice formed by set inclusion has the empty set as bottom, 〈vowels,⊆
,∪, ∅〉. Not all lattices have a “natural” bottom, but it is always possible to
add an extra element as bottom to an existing lattice. We will address this con-
struction when talking about lattice composition by linear sums. As expected,
lattices with bottom also have the lattice properties.

A : lattice⊥
A : lattice

2.1 Primitive Lattices

We now introduce a small set of lattices, that will be later useful to construct
more complex structures by composition.

Singleton A single element, ⊥.

1 : lattice⊥

⊥ v ⊥ ⊥ t ⊥ = ⊥

Boolean Two elements B = {False,True} in a chain, join is logical ∨.

B : lattice⊥

False v True x t y = x ∨ y ⊥ = False

Naturals Natural numbers. We include the 0, thus N = {0, 1, . . .}.

N : lattice⊥

n v m = n ≤ m n t m = max(n,m) ⊥ = 0

3 Inflations make CRDTs

State-based CRDTs can be specified by selecting a given lattice to model the
state, and choosing an initial value in the lattice, usually the ⊥. Mutation
operations can only change the state by inflations and do not return values.
Query operations evaluate an arbitrary function on the state and return a value.

An inflation is an endo-function on the lattice type that picks a value x
among the set of valid lattice states a and produces a new value state such that:

• (inflation) x v f(x)

Inflations can be further classified as non-strict and strict inflations, where
a strict inflation is such that:

3

• (strict inflation) x @ f(x)

We can now classify inflations.

∀x ∈ a · x v f(x)

f : A
v−→ A

∀x ∈ a · x @ f(x)

f : A
@−→ A

f : A
@−→ A

f : A
v−→ A

A state that is only updated as a result of an inflation over its current value,
is immutable under joins with copies of past states.

Notice that an inflation is not the same as a monotonic function, x v y ⇒
f(x) v f(y). Example, the function f(x) = x

2 on positive reals is monotonic
and is not an inflation.

3.1 Primitive Inflations

Building on the primitive lattices introduced above we can build some inflations.

id(x) = x
id : A

v−→ A

True(x) = True
True : B

v−→ B

succ(x) = x + 1
succ : N

@−→ N

3.2 Sequential Composition

Inflations can be composed sequentially. As long as there is at least one strict
inflation in the composition, we are sure to also have a strict composition.

(f • g)(x) = f(g(x))

f : A
v−→ A g : A

v−→ A

f • g : A
v−→ A

f : A
v−→ A g : A

@−→ A

f • g : A
@−→ A

f : A
@−→ A g : A

v−→ A

f • g : A
@−→ A

4

4 Lattice Compositions

Since we are interested in creating lattices we consider a few composition tech-
niques that are known to derive lattices. While in some cases they build from
other lattices, in others they can derive lattices from simpler structures.

4.1 Product

The product ×, or pair construction, derives a lattice formed by pairs of other
lattices. It can be applied recursively and derive a composition from a sequence
of lattices, where operations are applied in point-wise order.

A : lattice B : lattice

A×B : lattice

(x1, y1) v (x2, y2) = x1 v x2 ∧ y1 v y2

(x1, y1) t (x2, y2) = (x1 t x2, y1 t y2)

The construction also extends to lattice⊥ when all sources are also lattice⊥.

A : lattice⊥ B : lattice⊥
A×B : lattice⊥

⊥ = (⊥,⊥)

As an example, the underlying lattice structure of a version vector among
three replica nodes is composable by N×N×N with ⊥ = (0, 0, 0).

Bellow are the properties of inflations over products. A strict inflation on
one of the components leads to an overall strict inflation.

(f × g)(x, y) = (f(x), g(y))

f : A
v−→ A g : B

v−→ B

f × g : A×B
v−→ A×B

f : A
v−→ A g : B

@−→ B

f × g : A×B
@−→ A×B

f : A
@−→ A g : B

v−→ B

f × g : A×B
@−→ A×B

4.2 Lexicographic Product

The � construct builds a lexicographic order from its source lattices. Compo-
nents to the left are more significant and unless they are equal they filter out
further comparisons to the right side.

A : lattice B : lattice⊥
A�B : lattice

A : lattice⊥ B : lattice⊥
A�B : lattice⊥

5

(x1, y1) v (x2, y2) = x1 v x2 ∨ (x1 = x2 ∧ y1 v y2)

(x1, y1) t (x2, y2) =

(x1, y1) if x2 @ x1

(x2, y2) if x1 @ x2

(x1, y1 t y2) if x1 = x2

(x1 t x2,⊥) otherwise

⊥ = (⊥,⊥)

In the join definition we can observe that the ⊥ value is used only when
the left components can have concurrent values. If the left component is a
chain, often the case in practical uses, then the right one can be a simple lattice
(without ⊥) and the fourth clause of the join definition is not used.

A : chain B : lattice

A�B : lattice

And, if the right component is also a chain the composition is a chain.

A : chain B : chain

A�B : chain

Properties of inflations.

(f � g)(x, y) = (f(x), g(y))

f : A
v−→ A g : B

v−→ B

f � g : A�B
v−→ A�B

f : A
v−→ A g : B

@−→ B

f � g : A�B
@−→ A�B

f : A
@−→ A g : B −→ B

f � g : A�B
@−→ A�B

Notice that if we apply a strict inflation to the left component, then the right
can be transformed by any (endo-)function even if non inflationary. In practice
this allows resetting the right component after strictly inflating the left.

4.3 Linear Sum

The next composition, linear sum ⊕, picks two lattices, left and right, and
creates a new lattice where any element from the left lattice is always lower
that any element in the right lattice. In the resulting set the elements are
tagged with a label that identifies from which source lattice they came form.
i.e. Left a means that element a came from the left lattice and is now named
Left a. Tagging also ensures that the sets supporting each lattice could have
had elements in common.

6

A : lattice B : lattice

A⊕B : lattice

A : lattice⊥ B : lattice

A⊕B : lattice⊥

Left x v Left y = x v y Left x t Left y = Left (x t y)
Right x v Right y = x v y Right x t Right y = Right (x t y)
Left x v Right y = True Left x t Right y = Right y
Right x v Left y = False Right x t Left y = Right x

⊥ = Left ⊥
A possible use of this construction is to add a ⊥ to a lattice that didn’t had

one. For instance 1 ⊕ R can add a special element, e.g. nil, that is ordered as
lower than any real number. The same construction can also be used to add
a top element > to a lattice, that can act as a tombstone that stops lattice
evolution. Notice that for any state x, x t > = >.

Properties of inflations.

(f ⊕ g)(Left x) = Left f(x)
(f ⊕ g)(Right x) = Right g(x)

f : A
v−→ A g : B

v−→ B

f ⊕ g : A⊕B
v−→ A⊕B

f : A
@−→ A g : B

@−→ B

f ⊕ g : A⊕B
@−→ A⊕B

4.4 Function and Map

A total function→ is obtained by combining a set with a lattice. This construc-
tion does keywise comparison and joins.

A : set B : lattice

A→ B : lattice

A : set B : lattice⊥
A→ B : lattice⊥

f v g = ∀x ∈ A · f(x) v g(x) (f t g)(x) = f(x) t g(x)

⊥(x) = ⊥
A map ↪→ can be obtained from a function by assigning a bottom to keys

that are not present in a given map, and then using the function definitions.
The linear sum construction is used to assign a distinguished bottom to any
lattice V in the co-domain.

K ↪→ V ∼= K → 1⊕ V

K : set V : lattice

K ↪→ V : lattice⊥

7

For example, we can define a map of vowels keys to integer counters vowels ↪→
N by using a total function vowels→ 1⊕N. Where the map state {a 7→ 3, i 7→ 5}
would be the same as the function state {a 7→ 3, e 7→ ⊥, i 7→ 5, o 7→ ⊥, u 7→ ⊥}.

We define some inflations over maps. The first inflation applies an inflation
to all values in the co-domain and thus inflates the map composition.

map(f)(m) = {(k, f(v)) | (k, v) ∈ m}

f : V
v−→ V

map(f) : (K ↪→ V)
v−→ (K ↪→ V)

The second inflation transforms the value on a given key, and if the key is
missing applies it to ⊥. This allows a strict inflation in the co-domain lattice to
imply a strict inflation in the composition.

applyk(f)(m) =

{
m{k 7→ f(v)} if (k, v) ∈ m

m{k 7→ f(⊥)} otherwise

f : V
v−→ V

applyk(f) : (K ↪→ V)
v−→ (K ↪→ V)

f : V
@−→ V

applyk(f) : (K ↪→ V)
@−→ (K ↪→ V)

4.5 Sets and Multisets

Given any set A it is possible to derive a lattice⊥ by using the set of all possible
subsets, the powerset P(A).

For example, P({x, y, z}) = {{}, {x}, {y}, {z}, {x, y}, {x, z}, {y, z}, {x, y, z}}.

A : set

P(A) : lattice⊥

P(A) ∼= A→ B

a v b = a ⊆ b a t b = a ∪ b ⊥ = {}
The powerset can also be represented by a function composition that maps

each set element to a boolean that states its presence in the subset.
This composition is very general since it can produce a lattice⊥ from any set.
A natural extension is to represent mutisets by mapping the domain set to

naturals, instead of booleans.

A : set

M(A) : lattice⊥

8

M(A) ∼= A→ N

a v b = a ⊆ b a t b = a ∪ b ⊥ = {}
The generic inflations defined for functions when used here show that adding

elements is inflationary. For sets represented by A→ B with a given state s we
can define how to add an element e.

add(e)(s) = applye(True)(s)

Likewise, when adding on multisets A → N one increments the element
count, having a strict inflation.

add(e)(s) = applye(succ)(s)

4.6 Antichain of Maximal Elements

Starting from a poset this construction produces a lattice⊥ by keeping an an-
tichain of maximal elements, given the base poset order. Upon join, all elements
that are concurrent are kept, but any element that is present together with a
higher element is removed.

A : poset

A(A) : lattice⊥

A(A) = {maximal(a) | a ∈ P(A)}

maximal(a) = {x ∈ a | @y ∈ a · x @ y}

a v b = ∀x ∈ a · ∃y ∈ b · x v y

a t b = maximal(a ∪ b)

⊥ = {}

5 Abridged Catalog

In order to exemplify the composition constructs we present a small set of exam-
ple CRDTs. Simple query functions are included and all mutators are inflations.

Notice that join does not need to be defined as it follows from the composition
rules that were introduced.

9

5.1 Positive Counter

This simple form of counter can only increase. Replica nodes must have access
to unique ids among a set I and can only increment its position in a map of
ids to integers. While increment mutators are parametrized by id i the query is
anonymous and simply inspects the state.

PCounter(I) = I ↪→ N

inci(a) = applyi(succ)(a)

value(a) =
∑
{v | (c, v) ∈ a}

Notice that if a given node does not yet have an entry in the map and
increments, then succ applies over ⊥, which for N was defined to be 0.

5.2 Positive and Negative Counter

This variation allows for both increments and decrements. A solution is to
pair two positive counters and consider the right side as negative. We use
the standard functions fst() and snd() to respectively access the left and right
elements of a pair.

PNCounter(I) = I ↪→ N× I ↪→ N

inci(a) = applyi(succ)(fst(a))

deci(a) = applyi(succ)(snd(a))

value(a) =
∑
{v | (c, v) ∈ fst(a)} −

∑
{v | (c, v) ∈ snd(a)}

An alternative way to obtain a similar result (the difference being that this
counter is non-negative but can lose decrements) is to use a lexicographic pair
and have the first element incremented when one needs to update the count on
the second element.

PNCCounter(I) = I ↪→ N�N

inci(a) = applyi(succ� succ)(a)

deci(a) = applyi(succ� pred)(a)

value(a) =
∑
{snd(v) | (c, v) ∈ a}

pred(x) = max(x− 1, 0)

10

5.3 Observed-remove Add-wins Set

An observed-remove set with add-wins semantics can be derived by creating
unique tokens whenever a new element is inserted, using for that a grow only
counter per replica, and canceling this tokens, by increasing a boolean to True,
upon removal. Only elements supported by non-canceled tokens are considered
to be in the set.

ORSet+(E, I) = E ↪→ I ↪→ N�B

adde,i(a) = applye(applyi(succ�False))(a)

rmve(a) = applye(map(id� True))(a)

membere(a) = ∃(e,m) ∈ a · ∃i, n · (n,False) ∈ m(i)

5.4 Observed-remove Remove-wins Set

An observed-remove set with remove-wins semantics is derived by a dual con-
struction to the previous one, while sharing the same state lattice. Removal
creates unique tokens, and additions need to cancel all remove tokens that are
visible in the state.

ORSet−(E, I) = E ↪→ I ↪→ N�B

rmve,i(a) = applye(applyi(succ�False))(a)

adde(a) = applye(map(id� True))(a)

membere(a) = ∃(e,m) ∈ a · @i, n · (n,False) ∈ m(i)

5.5 Multi-value Register

A non-optimized multi-value register can be derived by lexicographic coupling
of a version vector clock C with a payload value V . When a new value v is to
be assigned, a new clock, greater than all visible clocks in the state, is created
and coupled with the value. These pairs are kept in a antichain of maximal
elements. Thus, upon merge, concurrently assigned values will be collected, but
any subsequent assignment will again reduce the state to a single pair value.

11

MVReg(V, I) = A(C � V)

C = I ↪→ N

assignv,i(a) = {applyi(succ)(
⊔
{c | (c, v′) ∈ a})� v}

values(a) = {v | (c, v) ∈ a}

Notice that the value is never updated without creating a new clock. Thus,
lexicographic comparison (needed for the operation of the antichain join) is
always decided by the first component, and in practice V can be any opaque
payload without need to define a partial order on its values.

6 Closing Remarks

This report collects several composition techniques for lattices, adopts the notion
of inflation and how it applies to the specification of state based CRDTs over
lattices. Most of the lattice compositions are very standard techniques from
order theory [5]. An early version of this work was presented at Schloss Dagstuhl
under the title Composition of Lattices and CRDTs and the summary of the
presentation is available at [6]. Most of the CRDT constructions used here are
influenced by work in [8, 7, 2, 4, 3, 1].

References

[1] Carlos Baquero, Paulo Sérgio Almeida, and Ali Shoker. Making operation-
based CRDTs operation-based. In Proceedings of Distributed Applications
and Interoperable Systems: 14th IFIP WG 6.1 International Conference.
Springer, 2014.

[2] Annette Bieniusa, Marek Zawirski, Nuno Preguiça, Marc Shapiro, Carlos
Baquero, Valter Balegas, and Sérgio Duarte. Brief announcement: Semantics
of eventually consistent replicated sets. In Marcos K. Aguilera, editor, Int.
Symp. on Dist. Comp. (DISC), volume 7611 of Lecture Notes in Comp. Sc.,
pages 441–442, Salvador, Bahia, Brazil, October 2012. Springer-Verlag.

[3] Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek Za-
wirski. Replicated data types: specification, verification, optimality. In
Suresh Jagannathan and Peter Sewell, editors, POPL, pages 271–284. ACM,
2014.

12

[4] Neil Conway, William R Marczak, Peter Alvaro, Joseph M Hellerstein, and
David Maier. Logic and lattices for distributed programming. In Proceedings
of the Third ACM Symposium on Cloud Computing, page 1. ACM, 2012.

[5] Brian A. Davey and Hilary A. Priestley. Introduction to Lattices and Order
(2. ed.). Cambridge University Press, 2002.

[6] Bettina Kemme, André Schiper, G. Ramalingam, and Marc Shapiro.
Dagstuhl seminar review: Consistency in distributed systems. SIGACT
News, 45(1):67–89, March 2014.

[7] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. A com-
prehensive study of Convergent and Commutative Replicated Data Types.
Rapp. Rech. 7506, Institut National de la Recherche en Informatique et
Automatique (INRIA), Rocquencourt, France, January 2011.

[8] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski.
Conflict-free replicated data types. In Xavier Défago, Franck Petit, and
V. Villain, editors, Int. Symp. on Stabilization, Safety, and Security of Dis-
tributed Systems (SSS), volume 6976 of Lecture Notes in Comp. Sc., pages
386–400, Grenoble, France, October 2011. Springer-Verlag.

13

B PAPERS UNDER SUBMISSION AND TECHNICAL REPORTS

B.2 Iwan Briquemont, Manuel Bravo, Zhongmiao Li, and
Peter Van Roy. Conflict-free Partially Replicated Data
Types. Submitted to PPoPP 15.

SyncFree Deliverable D.3.1(v0.1), November 17, 2014, Page 78

Conflict-free Partially Replicated Data Types

Abstract
Designers of large user-oriented distributed applications, such as
social networks and mobile applications, have adopted measures to
improve the responsiveness of their applications. Latency is a ma-
jor concern as people are very sensitive to it. Geo-replication is a
commonly used mechanism to bring the data closer to the clients.
Nevertheless, reaching the closest datacenter can still be consid-
erably slow. Thus, in order to further reduce the access latency,
mobile and web applications may be forced to replicate data at the
client-side. Nevertheless, fully replicating large data structures may
still be a waste of resources, specially for thin-clients.

We propose a replication mechanism built upon conflict-free
replicated data types (CRDT) to seamlessly replicate parts of large
data structures. We define partial replication and give an approach
to keep the strong eventual consistency properties of CRDTs with
partial replicas. We integrate our mechanism into SwiftCloud, a
transactional system that brings geo-replication to the client. We
evaluate the solution with a content-sharing application. Our results
show improvements in bandwidth, memory, and latency usage over
both classical geo-replication and the existing SwiftCloud solution.

Categories and Subject Descriptors E.1 [Data Structures]: Dis-
tributed Data Structures

Keywords Partial replication; CRDTs

1. Introduction
Globally accessible web applications, such as social networks, aim
to provide low-latency access to their services. Thus, data local-
ity is a fundamental property of their systems. Geo-replication is
a common solution where the data is replicated in multiple data-
centers [9, 11, 12]. In this scenario, user requests are forwarded to
the closest datacenter. Therefore, the latency is reduced. Unfortu-
nately, the latency, even when accessing the closest datacenter, may
still be considerable. It has been proved that clients are sensitive to
even small increases of latency [10, 18].

Systems such as [17, 21] use caching techniques to yet reduce
latency even more. However, this can be challenging and expensive.
For instance, one could simply use the client caches for reading pur-
poses. Nevertheless, in order to keep some consistency guarantees
and freshness of the data, mechanisms, such as cache invalidation,
need to be used. Scaling these kinds of techniques is difficult and
directly affects the performance. Moreover, one could let clients ap-

[Copyright notice will appear here once ’preprint’ option is removed.]

ply write operations locally and eventually propagate them. How-
ever, this can cause conflicts between replicas and potential roll-
back situations.

The recently formalized CRDTs [19, 20] can serve to dimin-
ish the impact of some of the previously mentioned problems. Due
to CRDTs semantics, rollback situations can not occur. Moreover,
these data structures are conflict-free by default; therefore, no con-
flict resolution mechanisms need to be written by application de-
velopers. SwiftCloud [25], a geo-replicated storage system that en-
sures causal consistency, benefits from the CRDTs semantics. It
replicates CRDTs not only across datacenters, but it also replicates
them in clients. It allows read and write operations to be directly
executed in clients caches. In consequence, SwiftCloud reduces la-
tency, and enables off-line mode during disconnection periods.

The current specifications of CRDTs do not allow them to be
partitioned. Thus, a CRDT replica is assumed to contain the full
data structure. We believe CPRDTs can be effectively used to
address two relevant issues of current systems:

• CRDTs can easily become heavy data structures. For instance,
a CRDT that contains the posts of a user wall in a Facebook-
like application. In many cases, the user is simply interested
in the most relevant posts, according to some criterium. For
instance, one may only be interested in reading the top-ten
most voted posts of a Reddit-like application. Thus, replicating
the whole CRDT is a waste of resources, of both storage and
bandwidth. The former can be critical when thin devices, such
as smartphones, are considered as clients. These types of clients
have limited memory resources; therefore, it is convenient to
avoid storing unnecessary data. On the other hand, bandwidth
is one of the most costly resources offered by cloud providers
such as Amazon S3 [1], Google Cloud Storage (GCS) [3],
and Microsoft Azure [2]; therefore, it is beneficial to use it
efficiently.

• The full replication of CRDTs in clients arises security con-
cerns. By partitioning the CRDTs, applications could precisely
decide which data each client stores. This could keep malicious
clients from storing sensitive data.

In this paper, we propose a new set of CRDTs that allow par-
titioning. We call them “Conflict-free Partially Replicated Data
Structures” (hereafter CPRDTs). We study how partitions of the
same CRDT can interact among each other and still maintain its
consistency guarantees. Furthermore, we revise previously defined
CRDT specifications and propose new specifications that consider
partitioning.

The major contributions of this paper are the following:

• The definition of the new CPRDTs. This includes revisiting the
specifications of previously defined CRDTs.

• Extension of SwiftCloud to integrate CPRDTs.
• Extensive evaluation of the performance improvements of

CPRDTs in SwiftCloud. This includes the creation of a Reddit-
like [15, 16] application, called SwiftLinks, on top of Swift-
Cloud.

1 2014/9/13

The remainder of the paper is organized as follows: Section 2
introduces previous work that we consider relevant to understand
this paper; Section 3 presents a formal definition of the partitioned
CRDTs and the specifications of some of them; Section 4 dis-
cusses how CPRDTs could be practically used; Section 5 presents
an extensive evaluation of the SwiftCloud extension that includes
CPRDTs; Section 6 briefly describes preceding related work; fi-
nally, Section 7 discusses future work and concludes the paper.

2. Background
2.1 CRDTs
Conflict-free Replicated Data Types (CRDTs) are a set of concur-
rent data structures that allow replicas to be updated concurrently
and guarantee all replicas will eventually converge to the same state
[19, 20]. While traditional approaches require user interference
[21] or last-write-wins [24] to resolve possible conflicts, CRDTs
avoid conflicts by leveraging simple mathematical properties, i.e.
commutativity of operations and monotonicity of the state. Based
on this, there are two types of CRDTs, namely operation-based and
state-based, which differ in their propagation model.

Operation-based CRDTs require concurrent operations to be
commutative. Update operations are performed at one replica
which asynchronously propagates them to the rest. Causal deliv-
ery is usually required. Nevertheless, the order in which concurrent
updates are delivered does not affect the convergence of the repli-
cas. On the other hand, State-based CRDTs require its internal state
to grow monotonically. Replicas send their internal states to the rest
of replicas. Upon receiving a state, the replica has to merge it with
its local state.

For both kinds of CRDTs, replicas will converge to the same
state after they have seen the same set of operations.

2.2 SwiftCloud
SwiftCloud is a geo-replicated cloud storage system that stores
CRDTs and caches data at clients [25]. It consists of several data-
centers that fully replicate data. Clients communicate with the clos-
est data center and cache accessed data in local cache.

SwiftCloud supports causal+ mergeable transactions for CRDTs.
When a transaction only involves CRDTs, it is mergeable since
it can not have conflict with any other concurrent transactions.
Therefore, a transaction is firstly executed only in client cache,
unless there is a cache miss so the transaction has to fetch data
from the data center. After a transaction has committed, its effect is
only visible locally but not to datacenters and other clients. An up-
date transaction will be asynchronously propagated to a datacenter.
Eventually the transaction will be applied to all data centers and
will be visible to other clients.

Causality for each transaction is tracked by checking its start
timestamp and apply them in causal order. When clients start a
transaction, it assigns the transaction a vector clock that summa-
rizes its causal dependency. The transaction reads the largest ver-
sions of objects that are less than or equal to the start timestamp, in
order to read from a causally consistent snapshot. When a transac-
tion arrives at a data center, the data center first checks if it satisfies
the transaction’s dependencies. If yes, the data center will assign
the transaction a global transaction id and make it globally visible
after it is applied to all data centers.

3. Conflict-free Partially Replicated Data Types
In this section we present the Conflict-free Partially Replicated
Data Types (CPRDTs). These new data types are CRDTs that can
be partitioned. We believe that partitioning permits a more efficient
usage of resources such as memory and bandwidth. This may be
critical when thin clients, such as mobile devices or embedded

computers, cache the data structures. On the other hand, we believe
CPRDTs have other applications. For instance, CPRDTs can be
used to enforce fine-grained security policies. Furthermore, they
can also be used to provide a way to support data with multiple
fidelity requirements to accommodate resource-thin devices while
keeping consistency between the fidelity levels [23]. This can be
achieved by not replicating less important information on mobile
devices.

This poses new challenges: all operations are not enabled on
partial replicas, which means new preconditions must be added to
ensure correct usage. However, these conditions must not interfere
with the convergence of the replicas. Care must be taken as a partial
replica may change over time. A partial replica could change the
parts it keeps, by becoming interested in more parts. This has to be
carefully done without loosing data and still achieving convergence
between replicas.

3.1 Example of use
Let’s use an example to illustrate the advantages of CPRDTs:
the user wall of a social network. We can model a user’s wall
with an OR-set CRDT. In this example, there are four users that
interact: Alice, Bob, Charlie and an anonymous user. Bob is a
friend of Alice, while Charlie is a friend of Bob, but not of Alice.
Participating users may want to read or post something in Alice’s
wall. We make two assumptions:

• Users maintain a full replica of their wall.
• A user X that reads or posts in user’s Y wall replicates user’s

Y wall locally.

Each post contains a date, an author, a message and a privacy
setting. The privacy setting restricts who is allowed to read the
posts. We can assume there are three security levels: public, friends
of friends, and friends. Then, Alice and Bob can read all the posts of
Alice’s wall. Charlie can only read public and Bob’s posts. Finally,
any other user can only read public posts.

CPRDTs have two applications in this scenario: (i) limiting the
size of the wall to be replicated, which can lead to a better usage of
memory and bandwidth; and (ii) enforcing security policies.

We can assume that Alice has been using the social network for
a few years and there are a considerable number of posts on her
wall. It seems natural that a user should not have to replicate the
whole wall to simply read the latest posts. Nevertheless, this is what
presumably may occur in a fully-replicated scenario, where the data
structures cannot be partitioned and we still want to replicate data
in clients-side.

One solution is to manually split the data structure according to
some criteria (e.g. by date, author or privacy setting). However, de-
velopers should anticipate how users will use the application. While
possible in some cases, it makes the application more cumbersome
to write. Furthermore, it would be difficult to achieve optimal re-
sults since each client may behave differently.

On the other hand, CPRDTs abstract the partitioning from the
application. Thus, from the point of view of the programmer, there
will only be one logical data structure per wall. We strongly believe
this ease developers task. Moreover, this allows a more efficient and
fine-grained partitioning adapted to the needs of a particular client
in a specific point of time. For instance, Bob might want to look
at the posts that Alice and himself made during the last week. On
the other hand, Charlie may want to see all the posts of the last
two years. This two request will end up with completely different
parts of the same CRDT. Only with CPRDTs, optimal results can
be achieved.

The second application of CPRDTs is related to the enforcement
of security policies. Due to the security setting field of a post, we
want users to only replicate posts which they are allowed to see. For

2 2014/9/13

instance, an anonymous user should only replicate public posts. On
the other hand, Charlie can also replicate “friends of friends” posts.
This will keep malicious users from storing sensitive data locally.

3.2 Definitions
Before defining CPRDTs, we have to clarify some concepts that we
will use throughout the paper.

An object is a named instance of a CRDT or CPRDT in our
case. Each participating process replicates a set of objects. The
objects can be read using query operations and modified using
update operations. The query operations return the external state
of the object, that we call the data of the object. Nevertheless,
additional data, which we refer as metadata, is kept internally to
ensure convergence.

An update operation can have preconditions that capture its
safety requirements. In consequence, an operation is said to be
enabled at a replica, if it satisfies its preconditions. For instance,
the remove operation of a set is enabled only if the element to be
removed is present in the set.

Previous definitions fit into both CRDTs and CPRDTs. Nev-
ertheless, for CPRDTs, we further consider that a process might
replicate an object partially: it only has access to the part of the
data that is relevant for the client, and the process only keeps the
metadata required for that given part. Intuitively, this means that
only part of the data structure is replicated: some elements of a set,
a subgraph of a graph, or a slice of a sequence. The part replicated
is defined by the specifications of the CPRDT.

particle We define particles as the smallest meaningful elements
of a CPRDT. By meaningful we refer to the smallest element that
can be used for query and update operations. For instance, a particle
in a grow-only set would be any element that can be added or
looked up in the set. The set of all particles of a CPRDT is denoted
by ⇡. In many cases, such as unbound counters and sets, the set of
particles of a CRDT is infinite.

Apart from the definition of particles, we need to introduce three
functions to understand CPRDTs: shard, required, and affected.

shard Each replica of a CPRDT xi has associated a set of par-
ticles. The set of particles is defined by shard(xi), by analogy to
the databases concept. The replica only knows the state of the par-
ticles in shard(xi); therefore, it can only enable query and update
operations that require and affect those particles. Furthermore, the
CPRDT replica only needs to receive update operations that affect
the particles in shard(xi) in order to converge. For now, we as-
sume that shard(xi) is chosen when xi is created. We will relax
this assumption in Section 4.3.

There are two special cases: a full replica and a hollow replica.
When shard(xi) = ⇡ then we say that xi is a full replica, and
it is equivalent to a normal CRDT. On the other hand, when
shard(xi) = ?, then xi is a hollow replica (as named in [13]).
A hollow replica does not maintain any state. Nevertheless, it can
still handle updates, as explained in section 3.3.2.

required For an operation op with its arguments, required(op)
is the set of particles needed by op to be properly executed.
This means that, for replica xi, an operation is enabled only if
required(op) ✓ shard(xi). E.g. for the lookup operation of a set,
required(lookup(e)) = {e} where e is an element of the set. In
case e /2 shard(xi), the replica will not be able to know whether
e is in the set because it has not kept a state for it. This implies that
updates affecting e have not been necessarily seen by xi.

affected The function a↵ected(op) tells us the set of particles
that may have their state affected after executing an update opera-
tion.

3.3 Replication
As for the original CRDTs, we consider two equivalent replication
techniques: state-based and operation-based. Allowing partitioning
introduces changes in the way these replication techniques work.
Furthermore, concepts such as causal history and convergence have
to be revisited.

First, we need to define when two replicas are equivalent.

Definition 1 (Equivalence between replicas). xi and xj have
equivalent common abstract states if all query operations q, for
which required(q) ✓ (shard(xi) \ shard(xj)), return the same
values.

One requirement for replicas to converge is that they apply, di-
rectly or indirectly, the same update operations. We can informally
define the causal history of a replica (xi) as the applied update op-
erations (C(xi)). Later in the section, we will formally define it.

Now, we are ready to formally define convergence in the context
of CPRDTs:

Definition 2 (Eventual Convergence of Partial Replicas). Two par-
tial replicas xi and xj of an object x converge eventually if the
following conditions are met:

• Safety: 8i, j : C(xi) = C(xj) implies that the abstract states
of i and j are equivalent on their common particles.

• Liveness: 8i, j : f 2 C(xi) implies that, eventually, if
a↵ected(f) \ shard(xj) 6= ?, then f 2 C(xj).

3.3.1 State-based partial replication
This form of replication is interesting if the size of the state is
relatively small compared to the size and number of updates, as
only the state must be sent over the network. CPRDTs can optimize
this technique since only parts of the state need to be sent and
received.

We define the causal history of a replica for state-based replica-
tion as follows:

Definition 3 (Causal History on Partial Replicas - state-based). For
any replica xi of x:

• Initially, C(xi) = ?.
• Before executing update operation f ,

if a↵ected(f)\shard(xi) 6= ? then execute f and C(f(xi)) =
C(xi) [{f},
otherwise C(f(xi)) = C(xi).

• After executing merge against states xi, xj , C(xi•merge(xj)) =
C(xi) [{f 2 C(xj)| a↵ected(f) \ shard(xi) 6= ?
The merge method used by a replica must only merge the state

of its particles with the remote replica and ignore the others, so that
shard(xi) = shard(xi • merge(xj)).

To achieve convergence with state-based replication on partial
replicas, an additional condition is needed for an update to be
enabled at a replica. Since updates are indirectly replicated through
the state, an operation cannot be applied if it affects a particle that is
not in that replica’s shard, this would violate the liveness property
of convergence as that update might not be added to the causal
history of another replica when merging. Thus, an operation f is
disabled if a↵ected(f) * shard(xj).

Since the replicas only converge on their common parts, a
replica xi just needs to send to another, xj , the state of the in-
tersection of their shards (shard(xi) \ shard(xj)).

3.3.2 Operation-based partial replication
As with classic CRDTs, the update operations are divided into
two phases: prepare and downstream phase. The former is done

3 2014/9/13

at the source replica and does not have any side-effect. The latter is
applied at all replicas and it affects the state of the replica.

In contrast to CRDTs, CPRDTs only have to broadcast up-
dates to the replicas interested in the particles affected by the up-
date. Therefore, an update u is broadcasted to xi if a↵ected(u) \
shard(xi) 6= ?.

This poses an interesting situation. A CPRDT replica can com-
plete the first phase of the update operation without necessar-
ily complete the second phase. For instance, a replica xi, whose
shard(xi) are particles a and b, receives an update operation that
affects particle c. In this situation xi can complete the prepare
phase, broadcast the downstream operation to the interested repli-
cas, and discard it locally. We named this scenario as blind updates.
It is important to highlight that this cannot happen in state-based
replication. Hollow replicas, which have an empty shard, can only
do blind updates.

Definition 4 (Causal History on Partial Replicas - op-based). For
any replica xi of x:

• Initially, C(xi) = ?.
• After executing the downstream phase of operation f at replica

xi,
if a↵ected(f)\shard(xi) 6= ? then C(f(xi)) = C(xi)[{f},
otherwise C(f(xi)) = C(xi).

3.4 Specification
In this section, we extend the CRDT specification models.

3.4.1 Creation of a new partial replica
The creation of new replicas in CRDTs is rather straightforward.
The CRDT can simply be copied in its entirety. Nevertheless, in
the context of CPRDTs, we want to choose which particles to copy.

In order to solve this problem, we propose a new operation,
called fraction, that allows us to create new partial replicas from
a subset of a given replica. The subset we want to copy in the new
replica is defined by a set of particles. More formally, fraction can
be defined as follows:
xj = fraction(xi, Z), where Z is the set of particles we want to
take. The operations ensures that shard(xj) = shard(xi) \ Z.

Please notice that using a set of particle is the canonical form
to define the subset. In practice, it can be defined by using a more
high-level query language. For instance, an application could issue
a query in the form of “give me the first 10 elements of your sorted
set”, which can then be transformed into a set of particles. We
further discuss this in Section 4.1.

This operation is also useful to simplify the specifications of
state-based CRDTs: when merging two partial states, we only want
to merge the state of the common particles since the rest can be
ignored. However, putting this in the specification is cumbersome.

Instead, we assume that the merge operation merges the com-
plete payloads, regardless of their shard. We can then limit the
growth of the replica to its own shard as such: if replica xj receives
the payload of replica xi, xj should do:
xk = fraction(merge(xi, xj), shard(xj))
Thus shard(xk) = shard(xj) and, in consequence, the replica
does not grow. In practice the fraction operation can be applied be-
fore sending the payload to another replica (to save bandwidth),
but to keep the convergence property, the fraction taken from repli-
cas xi and sent to xj must have at least the particles shard(xi) \
shard(xj). Otherwise, xj may miss some updates.

3.4.2 Specification model
The specifications are similar to the CRDT specifications, with
some added notations. Each operation must define which particles
it involves (required particles and affected particles). Note that

the conditions given in section 3.2 (required(op) ✓ shard(xi),
and a↵ected(op) ✓ shard(op(xi)) for state-based replication),
regarding whether an operation is enabled or not, are not explicitly
included in the specification. Nevertheless, it must be enforced.

Specification 1 and Specification 2 show the template of specifi-
cations for state-based and operation-based CPRDTs respectively.

Specification 1 State-based object specification with Partial Repli-
cation

1: particle definition Informal definition of what is a particle
2: payload type
3: initial Initial value
4: query query(arguments) : returns
5: required particles Set of required particles
6: pre Precondition
7: let Evaluate synchronously, no side effects
8: update update(arguments) : returns
9: required particles Set of required particles

10: affected particles Set of particles on which there can be an
effect

11: pre Precondition
12: let Evaluate at source, synchronously
13: merge (value1, value2) : payload mergedV alues
14: Least Upper Bound merge of value1 and value2
15: shard(mergedV alues) = shard(value1) [

shard(value2) must be true
16: fraction (particles selection) : payload partialReplica
17: Copies the particles selection into partialReplica so that

shard(partialReplica) = selection \ shard(self) (self is
the replica on which fraction is applied to).

Specification 2 Op-based specification model with Partial Replica-
tion

1: particle definition Informal definition of what is a particle
2: query query(arguments) : returns
3: required particles Set of required particles
4: pre Precondition
5: let Evaluate synchronously, no side effects
6: update Global update(arguments) : returns
7: prepare (arguments) : intermediate value(s) to pass down-

stream
8: required particles Set of required particles to prepare

the update
9: pre Precondition

10: let 1st phase: synchronous, at source, no side effects
11: effect (arguments passed downstream)
12: required particles Set of required particles when ap-

plying the update
13: affected particles Set of particles which might be af-

fected when applying the update
14: pre Precondition against downstream state
15: let 2nd phase: asynchronous, side effects to down-

stream state
16: fraction (particles selection) : payload partialReplica
17: Copies the particles selection into partialReplica so that

shard(partialReplica) = selection \ shard(self) (self is
the replica on which fraction is applied to).

3.5 CPRDT examples
In this section we propose the specifications for some CPRDTs.
We mostly adapt the CRDT specifications proposed by Shapiro

4 2014/9/13

et al ([19, 20]). We also introduce a tree CPRDT. To the best of
our knowledge, a tree CRDT has never been formally specified
before. Due to space restrictions, we are forced to only present few
CPDRTs; nevertheless, more CPRDTs specifications can be found
in [7].

Grow-Only set Specification 3 gives a simple state-based grow
only set (which only support the add operation).

Specification 3 State-based Grow-Only Set (G-set) with Partial
Replication

1: particle definition A possible element of the set.
2: payload set A
3: initial ?
4: query lookup(element e) : boolean b
5: required particles {e}
6: let b = e 2 A
7: update add(element e)
8: required particles ?
9: affected particles {e}

10: A := A [{e}
11: merge (S, T) : payload U
12: let U.A = S.A [T.A
13: fraction (particles Z) : payload D
14: let D.A = A \ Z}

Observed-Removed set In the Specification 4, we show the CP-
DRT specification of an Observed-Removed set. It is an operation-
based specification that assumes causal delivery of its operations to
optimise the payload. A particle is defined as an element of the set.

Notice that the add operation can be a blind update: it does
not require any particle in the prepare phase, and it can thus be
prepared by a replica which does not have the element to be added
in its shard. The remove operation does require the particle of the
element it removes, as it needs to send the added (e, u) pairs it
observed to the other replicas.

Grow-only tree A state-based grow-only tree is specified in Spec-
ification 5. A node is defined by its path and its content in a re-
cursive way, which is noted as (parent, nodeContent), where
parent is defined similarly. The root is represented by empty: ().
For instance, a node (((), 1), 2) has content 2 and parent ((), 1).
This allows to make a grow-only tree that is very similar to a set,
with only the added precondition that the parent must exist when
adding a node. It also means that adding nodes which have the same
value and the same parent result in one node in the tree.

The particles for this tree are the nodes (with their parent, as
defined).

4. Practical usage
In this section, we explain how CPRDTs can be used in practice.
This takes us to discuss three things: (i) how shard can be practi-
cally defined, (ii) how replicas of CPRDTs are created and modified
through shard queries, and (iii) how the shard can be managed in
a real system. The last part of the section discusses a centralized
system model aim to simplify and ease the integration of CPRDTs.

4.1 Shard definition
In Section 3, we defined the shard of a replica as a set of particles.
This set can be infinite; therefore, all elements of the set are not
explicitly kept in practice as we only need to know whether a
particle is in the shard or not. A shard can be then defined as a range
of particles. For instance, on a set of integers, we can define it as
[0, 2] for particles {0, 1, 2}, or even (0, +1) for strictly positive

Specification 4 Op-based Observed-Remove Set (OR-set) with
Partial Replication

1: particle definition A possible element of the set.
2: payload set S
3: initial ?
4: query lookup(element e) : boolean b
5: required particles {e}
6: let b = 9u : (e, u) 2 S

7: update add(element e)
8: prepare (e) : ↵
9: let ↵ = unique()

10: effect (e,↵)
11: affected particles {e}
12: S := S [{e,↵}
13: update remove(element e)
14: prepare (e) : R
15: required particles {e}
16: pre lookup(e)
17: let R = {(e, u)|9u : (e, u) 2 S}
18: effect (R)
19: affected particles {e}
20: pre 8(e, u) 2 R : add(e, u) has been delivered
21: S := S \ R

22: fraction (particles Z) : payload D
23: let D.S = {(e, u) 2 S|e 2 Z}
24: add (payload U)
25: let S = S [U.S

Specification 5 State-based Grow-Only Tree (G-tree) with Partial
Replication.

1: particle definition A node of the tree.
2: payload set A
3: initial ?
4: query lookup(node n) : boolean b
5: required particles {n}
6: let b = n 2 A
7: update add(node (parent, content))
8: required particles {parent} (if parent is not the root)
9: affected particles {(parent, content)}

10: pre parent 2 A
11: A := A [{(parent, content)}
12: merge (S, T) : payload U
13: let U.A = S.A [T.A
14: fraction (particles Z) : payload D
15: let D.A = A \ Z}

integers. Similarly, it can be defined as all the particles that satisfy
a specific property. For example, only the odd integers.

4.2 Shard query
A shard query defines the set of particles that satisfy a particular
criterium. Thus, in practice, shard queries can be used for two
reasons: (i) creation of new CPRDTs from the returned set of
particles, and (ii) shrinking or lengthening of the shard set. The
latter is discussed in more detailed in 4.3.

Shard queries bridge the gap between the application semantics
and the function fraction, introduced in 3.4.1. Thus, it adds expres-
siveness to the usage of CPRDTs.

We identify two types of shard queries: state-independent and
state-dependent queries. The former only depends on the properties

5 2014/9/13

of the particles, and not in the state of CPRDT. In contrast, the latter
depends on the current version of the CPRDT. For instance, a state-
independent query over a set of integers could be “integers greater
than 0”. On the other hand, a state-dependent query could be “10
highest integers in the set”. The state-independent query does not
depend on the state of the CPRDT, and the result of the query will
always be the set (0, +1). Nevertheless, the state-dependent query
will have a different result depending on which elements have been
already added, and removed, on the version considered.

State-independent queries are easier to work with: they are
comparable. One could determine which query is more specific
without having to know the state of the CPDRT they apply to.
While with state-dependent queries, one can only compare queries
if they apply to the same version of the object. Nevertheless, we
believe both types are needed in order to make CPRDTs usable. In
4.4, we describe a system model that can simplify the integration
of both types of queries.

4.3 Dynamic shard set
Dynamic shard set refers to the capability of a partial replica to
modify, either shrink or lengthen, its shard set. We believe this
capability is very useful in practice. For instance, a client may
become interested on new parts. Having dynamic shard set, the
replica does not need to be re-created, only the missing state needs
to be grabbed.

Nevertheless, maintaining convergence in some scenarios can
become challenging. On one hand, a partial replica can easily
shrink its shard set without compromising convergence in the
operation-based scenario. The replica only needs to take into con-
sideration two things: (i) updates prepared locally have been al-
ready broadcasted, and (ii) the data to be dropped is replicated by
some other replica; therefore, data do not disappear. On the other
hand, lengthening a partial replica is more tricky. For instance, in an
operation-based scenario, the following situation can easily occur:

• A replica’s (xi) shard set is a, c.
• xi did not receive updates that affect b for a while.
• Suddenly, xi becomes interested in b and starts accepting up-

dates on b.
• Unfortunately, the replica will not converge since updates have

been missed.

In previous scenario, extra communication between replicas would
be needed in order to recover dropped updates. This is clearly not
easy to achieve.

In state-based replication, shrinking or lengthening the shard
set is simpler. On one hand, a replica only needs to broadcast its
state before shrinking its shard set. On the other hand, a replica
that wants to lengthen its shard set only needs to merge its current
state with the state of a replica that contains the new particles.

4.4 Centralised system model
We have not specified a system model up to now. We have only
said that processes storing objects propagate either states or opera-
tions to reach convergence. CPRDTs are not biased to any specific
system model. Nevertheless, assuming a centralised system model
considerable simplifies the management of the partial replicas.

A centralised system model assumes that there is a logically
centralised entity (authority) holding a full replica and distributing
the updates, or sharing the new states, of the other replicas, stored
in clients. The centralised entity does not need to be a unique server,
it can perfectly be a datacenter.

This model poses several advantages in comparison to an ad-
hoc architecture where no authority is assumed. Firstly, it makes
the model scalable, letting data structures to be replicated in clients

at will. Secondly, clients can discard their (partial) replicas at will
as long as their updates have been reliably sent to the authority.
Thirdly, a client can request any fraction to the authority in order
to either get a new partial replica, or to lengthen its own shard
set. Finally, the authority could store which particles each partial
replica has in his shard set. Thus, it could only propagate operations
to the interested replicas, saving bandwidth.

5. Evaluation
In this section, we report the results of our experimental evalua-
tion. This study aim at evaluating the benefits of CPRDTs in terms
of memory, bandwidth and latency. Efficient resources usage pos-
itively impacts the performance. In our study we compare three
approaches: (i) classic geo-replicated system where data is exclu-
sively stored in datacenters, (ii) SwiftCloud, and (iii) our modified
version of SwiftCloud that integrates CPRDTs.

SwiftLinks In order to compare the three systems, we imple-
mented a new application, namely SwiftLinks, on top of Swift-
Cloud. SwiftLinks is a vote-based content-sharing application
based on Reddit. In few words, the application allows users to
create forums where they can publish post. Then, users can vote
positively or negatively the posts. As a consequence, posts get
ranked according to the votes and some other criteria. In addition,
users can add comments to posts and to other comments. Users can
also vote comments, and consequently the comments get ranked.
For more information [15, 16].

There are three main types of data structures in SwiftLinks:
posts, comments and votes. We use an OR-Set to store all the posts
of a forum, i.e. each forum is represented by a OR-Set. We pro-
posed a novel CRDT, namely Remove-once Tree, to store the com-
ments of a post, which naturally form a tree-like structure. Finally,
votes, which represent the vote of a single user, are modelled with
LWW-Registers. Thus, each post and comment have associated a
set of votes.

Warm-up We used Reddit’s API to fetch data to warm up our
system. For each benchmark, we create 10000 posts over 20 forums
(so an average of 500 posts per forum). Each post has 20 comments
on average. Moreover, posts have an average of 170 votes, while
comments an average of 13 votes.

Workload Our workloads are composed by read and update oper-
ations. Read operations are executed over posts and comments. On
the other hand, there are three types of update operation: (i) new
post, (ii) new comment, and (iii) new vote.

For most of the experiments, 20% of the operation are updates
and 80% are read operations. Furthermore, 90% of the operations
are biased to previously accessed objects. This means that they are
likely to hit the cache. The rest (10%) is done on randomly selected
posts and comments.

5.1 Experimental setup
SwiftLinks was evaluated using three Amazon EC2 servers as dat-
acenters: one in Ireland and two in the USA (east and west coast).
The EC2 instances are equivalent to a single core 64-bit 2.8 GHz
Intel Xeon virtual processor (4 ECUs) with 7.5 GB of RAM. The
clients run in 15 PlanetLab nodes located near the DCs. These
nodes have heterogeneous configurations with varying processing
power and RAM. We set up five SwiftLinks users running concur-
rently per node. Each client performs an operation per second.

There are three main configurations for clients to run the appli-
cation: cloud, non-lazy, and lazy.

In the cloud configuration, operations are applied synchronously
at one datacenter and replicated asynchronously to the rest of dat-

6 2014/9/13

acenters. This simulates a typical geo-replication system. In this
case, the client does not cache any data.

The other two configurations adopt the SwiftCloud approach of
caching data on clients side. We limit the capacity of the cache in
our experiments, using 64MB as default size. If the cache size ex-
ceeds this limit, the least recently used object is dropped. This sim-
ulates memory restrictions on thin clients. In this configurations,
non-lazy and lazy, if the cache contains the required data, the oper-
ations are run locally at the clients, and propagated asynchronously
to the closest datacenter.

The difference between non-lazy and lazy is that the latter ben-
efits from the partial replication mechanism described in the paper.
This means that objects are fetched in parts as needed, so the cache
can hold only parts of an object. On the other hand, for the non-lazy
configuration, the objects are only fully replicated in clients side, as
the original SwiftCloud.

5.2 Latency
We evaluated the perceived latency for various operations with and
without partial object replication. Figure 1 shows the cumulative
distribution functions of different operations’ latency with a 64MB
cache size limit. These results are obtained after a warm-up phase
for the cache. This means that the cache is pre-filled with objects
that will be used by the operations present in the workload. For the
non-lazy and lazy mode, there are always a percentage of opera-
tions with a very reduced latency. We can conclude that it is the
percentage of operations that hit the cache.

Read operations Figure 1a shows that the non-lazy mode has
greater cache hit rate (35%) than the lazy mode. Nevertheless, the
hit rate is not optimal due to the limit in the cache size: the cache
cannot hold full replicas of all the forums and thus sometimes
need to fetch them again. Figure 2 shows the results of a similar
experiment but without any cache size limit. In that case, the cache
hit rate, for the non-lazy mode, is 90%, which corresponds to our
ratio of biased operations, and it confirms the previous results with
a social network application of the SwiftCloud paper [25]. On the
other hand, in lazy mode, the cache hit rate is lower, with only 20%
in both experiments (figures 1a and 2), because the cache only holds
partial replicas which gives it less chance of having all the parts
needed for hitting the cache in subsequent operations. However, it
has the advantage of a lower maximum latency: if an operation does
not hit the cache, it only needs to fetch some parts, instead of the
full object. In that scenario, it induces a delay similar to the cloud
solution, around 200 to 300 ms, while without lazy fetching, the
delay is increased to around 500 to 700 ms by having to replicate
a full object. This poses a trade-off between the cache hit rate and
the maximum latency. While fully replicating an object will provide
more cache hits, a cache miss is more costly.

For the latency of reading comments of a post, shown in Fig-
ure 1b, the situation is a bit different. Clients are less likely to read
the same comment tree multiple times; therefore, this affects the
cache hit ratio. As the figure shows, the hit ratio is less than 5% in
both lazy and non-lazy fetching. But again, lazy fetching has the ad-
vantage of reducing the impact of a cache miss as it only replicates
the comments required by the operation instead of the full comment
tree. In consequence, the lazy approach has a slightly better latency,
close to the cloud mode. The cloud mode performs better because
it does never need to fetch any data, which means the returned mes-
sages are considerable smaller. Notice that the difference between
non-lazy and lazy mode has been reduced in this experiment be-
cause the involved objects are smaller.

Update operations Caching modes (lazy and non-lazy) are more
beneficial with update operations. The reason is that update op-
erations are typically applied on objects, or parts of objects, that

 0

 20

 40

 60

 80

 100

 10 100 1000

C
um

ul
at

iv
e

O
cu

rre
nc

es
 [

%
]

Latency [ms]

Cloud
Lazy fetch
Non−lazy fetch

(a) Reads of pages of links

 0

 20

 40

 60

 80

 100

 10 100

C
um

ul
at

iv
e

O
cu

rre
nc

es
 [

%
]

Latency [ms]

Cloud
Lazy fetch

Non−lazy fetch

(b) Reads of comments of a link

 60
 65
 70
 75
 80
 85
 90
 95

 100

 1 10 100 1000

C
um

ul
at

iv
e

O
cu

rre
nc

es
 [

%
]

Latency [ms]

Cloud
Lazy fetch

Non−lazy fetch

(c) Updates: posting a link, comment-
ing, voting a link, and voting a com-
ment

Figure 1: Perceived latency of SwiftLinks at one site with medium
(64MB) cache size limit and a warmed up cache.

 0

 20

 40

 60

 80

 100

 10 100 1000

C
um

ul
at

iv
e

O
cu

rre
nc

es
 [

%
]

Latency [ms]

Cloud
Lazy fetch

Non−lazy fetch

Figure 2: Reads of pages of links with unlimited cache which is
already warmed up.

have already been read by the client. In addition, the update opera-
tions only use state-independent queries to fetch their missing part,
which substantially simplifies the comparison of partial objects in
the cache. Figure 1c proves experimentally our reasoning. While
the cloud mode has an almost constant latency for all operations of
a round-trip time, with caching modes, most of the operations (al-
most 90%) have no latency. Again, the lazy mode has the advantage
of reducing the latency when the cache is not hit, as it only needs to
fetch the part of the object that needs to be updated, instead of the
full object. Moreover, some updates can be done blindly, therefore,
they are completed locally.

In particular, Figure 3 shows the benefit of updates when posting
comments, which almost always only requires particles already
present in the cache. One can see that with lazy fetching, all the
operations have almost no latency, as they can be done completely
asynchronously. In contrast, in non-lazy mode, there can be a large
delay when the tree of comments is not in the cache, as it needs

7 2014/9/13

 80

 85

 90

 95

 100

 1 10 100 1000

C
um

ul
at

iv
e

O
cu

rre
nc

es
 [

%
]

Latency [ms]

Lazy fetch
Non−lazy fetch

Figure 3: Perceived latency of commenting on a post, at all sites,
with medium (64MB) cache size limit.

to be fetched from the store. As in previous scenarios, even if
an operation cannot be done completely locally in lazy mode, the
client only has to fetch part of the tree to complete the update.

5.3 Impact of cache size limit
In this section we look at how the application performance changes
with various cache size limits (16MB, 64MB, and 128MB).

5.3.1 Impact on latency
We have already proved that the non-lazy mode performs better
without cache limit when reading links. We run the same experi-
ments showed in Figure 1 setting the cache size limit to 16MB and
128MB. We do not show the plot due to space restrictions.

The experiments show that a smaller cache size limit has a big
latency impact on reading links and updates in non-lazy mode.
Nevertheless, its impact is considerable smaller in lazy mode. With
a small cache, the cache hit rate of non-lazy mode of reading links
becomes worse than in lazy mode. This is caused because only few
objects can fit in the cache at a given time; therefore, clients need
to fetch objects more frequently. This results in a lower fraction of
operations having no latency, about 5% against the 35% obtained
with a 64MB cache. There is also an impact for the lazy mode, but
it is considerable lower: it only drops to 13% from 20%. The same
is applies for update operations.

Reads of comments are almost not impacted by the cache size
limit: the operations have a low cache locality, so most operations
need to fetch an object from the datacenter.

With a 128MB cache size limit, the non-lazy mode has a large
portion of zero latency operations when reading links, as more link
sets can be kept in the cache. It however still performs worse than
Lazy fetch for operations that do not hit the cache. The latency of
update operations is also improved for the non-lazy mode with a
bigger cache, but the lazy mode still outperforms it for the same
reasons.

5.3.2 Impact on cache miss rate
The size limit imposed on the cache has an impact on the cache
hit rate. Figure 4 shows that the lazy mode is less impacted by the
cache size limit than the non-lazy mode. With the three cache limits,
the lazy mode registers a rather stable number of cache misses,
about 180. Nevertheless, this does not apply to the non-lazy mode,
where the number of caches misses increases as the cache size limit
is reduced. As in previous experiments, the number of cache misses
is always greater in the lazy mode. Nevertheless, we have already
proved that the latency in emphlazy mode, is always smaller in
average.

Figure 4: Number of cache misses with different cache size limits.

Figure 5: Number of objects kept in the cache during a benchmark
with or without lazy fetch. In lazy mode objects can be partial,
which in non-lazy mode all objects are full replicas.

5.3.3 Impact on number of objects in the cache
Another impact of the cache size limit is the number of objects that
can be kept in the cache. Notice that for partial replication, only
one object is counted even if multiple parts of it have been fetched
over time.

Figure 5 shows the difference between both modes: lazy and
non-lazy. In the lazy mode, many more objects can fit in the cache
at any moment, since only parts of the object are kept. 64MB is
enough to keep all the objects needed by the application, while in
the non-lazy mode, even 128MB is not enough. This leads us to
determine that the lazy mode makes a more intelligent use of the
cache, allowing more object to coexist at the same time.

5.4 Bandwidth usage
In order to measure the bandwidth usage, we measure the average
bandwidth usage of one client over one minute, with the cache
already warmed up. Figure 6 compares the lazy and the non-lazy
modes. As the figure shows, the lazy reduces significantly the
bandwidth used by a client.

5.5 Cache warm up
The results shown previously are taken with the cache warm. In
practice, this will not always be the case. The following experi-
ments compare both lazy and non-lazy modes latencies when the
cache is still cold, i.e. no objects are stores in the client side.

Figure 7 shows the latency of operations during the first 10
seconds of running the application, with a cold cache. In this case,
the lazy mode produces lower latencies as it does not need to
replicate the full object. The difference is more noticeable for links

8 2014/9/13

Figure 6: Average bandwidth usage to fetch objects with a 128MB
cache limit, with the cache already warmed up.

 0

 20

 40

 60

 80

 100

 10 100 1000

C
um

ul
at

iv
e

O
cu

rre
nc

es
 [

%
]

Latency [ms]

Lazy fetch
Non−lazy fetch

(a) Reads of pages of links

 0

 20

 40

 60

 80

 100

 1 10 100

C
um

ul
at

iv
e

O
cu

rre
nc

es
 [

%
]

Latency [ms]

Lazy fetch
Non−lazy fetch

(b) Reads of comments of a link

Figure 7: Perceived latency of SwiftLinks at one site during cache
warm up.

reading operations, as shown in Figure 7a, as the set of links are
large objects. But even for smaller objects, such as comment trees,
the lazy mode outperforms the non-lazy one (Figure 7b). It is
important to notice that the cache size limit is not impacting these
experiments, since after 10 seconds, the cache does not get full.

5.6 Discussion
We have seen that lazy fetching has advantages over full replication
of objects. It puts a upper bound on the latency of operations by
limiting the size that is fetched from the store.

Blind update operations gain the additional benefit of being
applied locally even if the object is not in the cache.

It also limits the memory usage of the cache, which allows more
objects to be kept locally even with a small cache size limit. This
is useful for memory-thin devices, and to work on very large data
structures with a low memory usage.

Partial replication also allows to reduce the bandwidth usage of
the application by a factor of 8, which can be especially valuable
on mobile wireless connections, such as EDGE or 3G.

The last advantage is a lower cost of filling the cache when
starting the application. When the cache is empty all operations
induce a cache miss, which is especially costly if a large object has
to be fetched. Lazy fetching limits this issue by only replicating the
parts of the object that are actually needed.

Unfortunately, lazy fetching has one main drawback, it limits
the cache hit rate, as an object is not fully replicated right away,
and non-replicated parts may be needed by subsequent operations.
Therefore, the lazy mode should be used when the cost of a cache
miss with full replication outweighs the cost of reduced number of
cache hits. Nevertheless, a trade-off is possible between the two:
instead of only fetching the parts needed by the operations, we
could fetch more parts of the object in order to improve the cache

hit rate. This would however increase bandwidth and cache size
utilisation. Latency could be kept low by doing this additional fetch
asynchronously, when the user is not doing any operation.

6. Related work
Optimizing memory and bandwidth usage for CRDTs Band-
width and space usage of CRDTs is a concern in the research com-
munity. Burckhardt et al. [8] formally calculate the space require-
ments for different replicated data types, such a state-based counter
and a state-based set.

On the other hand, Bieniusa et al. proposed an optimization for
CRDT sets that can avoid the use of tombstone by using vector
clock to capture causal history [6]. Thus, the state kept by the
CRDT is considerably reduce.

Finally, Almeida et al. proposed Delta-state conflict-free repli-
cated data types [4] that allows state-based CRDT to only propagate
partial states that represent recent local update instead of the whole
state. While this approach improves bandwidth usage, it does not
reduce the storage space for CRDTs.

Partial replication There exists several prior works for partial
replication. They primarily differ in the granularity of partial repli-
cation and replication criteria.

PRACTI [5] allows clients to select a subset of objects to repli-
cate. Clients only receive updates on objects of their selected sub-
set. However, clients are forced to keep some metadata about ob-
jects that they are not interested.

Polyjuz [22] stores objects consisting of a set of fields. Clients
can decide which fields of each object to replicate. Each subset of
fields is denoted as fidelity level. Clients can select different fidelity
levels according to the space or network limitations of the device
where the objects are replicated. Polyjuz transparently handles the
replication of an object in different fidelity levels.

In Cimbiosys [14], objects are grouped into collection. Users
can use filter expressions to only replicate objects that satisfy some
criteria. For example, a user can group his emails in a collection and
choose only to replicate emails from his university in his phone.
While in the first two systems, users choose the object or fields to
replicate based on their name or type, in Cimbiosys user can define
replication criteria based on the value of some properties of objects.

7. Conclusion and future work
We have introduced and formalized a new set of CRDTs called
Conflict-free Partially Replicated Data Types, an extension of
CRDTs which allows replicas to hold parts of data structures. We
have explained how state-based and operation-based replication
mechanisms should be adapted to support partial replicas. We have
also shown how to specify CPRDTs by building upon previous
work. Moreover, we have given examples of CPRDTs such as a
state-based grow-only set and a grow-only tree.

In order to evaluate our solution, we have integrated CPRDT
into SwiftCloud, a geo-replicated storage system that replicates
CRDTs on client-side in order to reduce latency. We have also
implemented a Reddit-like application, called SwiftLinks, on top
of the modified version of SwiftCloud. In our evaluation, we have
compared three scenarios: geo-replicated storage system without
caching on client-side, SwiftCloud with CRDTs and SwiftCloud
with CPRDTs.

Our extensive evaluation has shown that CPRDTs can improve
the bandwidth and memory usage of replicas by only replicating
elements needed by clients, specially in the presence of large data
structures. The experimental study has also shown that CPRDTs
reduce the latency in average in comparison to the full replication
scenario. However, CPRDTs have a negative impact on the cache

9 2014/9/13

hit rate, which has to be weighted against the upper bound on the
latency it provides. This is planned to be addressed in the future.

We plan to extend this work in several directions. Firstly, we
want to evaluate CPRDTs in different scenarios. This would imply
implementing different kind of applications on top. This would
help us to get an even better view of its benefits and drawbacks.
Secondly, as we already mentioned in the introduction of the paper,
partial replication can be used as a security mechanism to avoid
replicating sensitive data by restricting access with finely grained
rules. We believe is an interesting way of exploiting CPRDTs.
Finally, we want to study how predictive caching techniques could
still improve bandwidth usage and consequently reduce latency
even more.

Acknowledgments
We thank Marek Zawirsky for his help integrating CPRDTs into
SwiftCloud. This work was partially funded by the XXXX project
in the European Seventh Framework Programme (FP7/2007-2013)
under Grant Agreement no XXXX and by the XXXX under Grant
Agreement 2012-0030.

References
[1] Amazon S3. http://aws.amazon.com/s3.

[2] Windows Azure. http://www.microsoft.com/windowsazure.

[3] Google cloud storage. http://cloud.google.com/storage.

[4] P. S. Almeida, A. Shoker, and C. Baquero. Efficient state-based crdts
by decomposition. In Proceedings of the First Workshop on Principles
and Practice of Eventual Consistency, PaPEC ’14, pages 3:1–3:2, New
York, NY, USA, 2014. ACM. ISBN 978-1-4503-2716-9. . URL
http://doi.acm.org/10.1145/2596631.2596634.

[5] N. Belaramani, M. Dahlin, L. Gao, A. Nayate, A. Venkatara-
mani, P. Yalagandula, and J. Zheng. Practi replication. In
Proceedings of the 3rd Conference on Networked Systems
Design & Implementation - Volume 3, NSDI’06, pages 5–
5, Berkeley, CA, USA, 2006. USENIX Association. URL
http://dl.acm.org/citation.cfm?id=1267680.1267685.

[6] A. Bieniusa, M. Zawirski, N. Preguiça, M. Shapiro, C. Baquero,
V. Balegas, and S. Duarte. An optimized conflict-free replicated set.
ArXiv e-prints, Oct. 2012.

[7] I. Briquemont. Optimising client-side geo-replication with partially
replicated data structures, Sept. 2014.

[8] S. Burckhardt, A. Gotsman, H. Yang, and M. Zawirski. Replicated
data types: Specification, verification, optimality. In 41st Symposium
on Principles of Programming Languages (POPL). ACM SIGPLAN,
January 2014.

[9] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J.
Furman, S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild,
W. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik,
D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito,
M. Szymaniak, C. Taylor, R. Wang, and D. Woodford. Spanner:
Google’s globally distributed database. ACM Trans. Com-
put. Syst., 31(3):8:1–8:22, Aug. 2013. ISSN 0734-2071. . URL
http://doi.acm.org/10.1145/2491245.

[10] C. Jay, M. Glencross, and R. Hubbold. Modeling the effects of delayed
haptic and visual feedback in a collaborative virtual environment.
ACM Trans. Comput.-Hum. Interact., 14(2), Aug. 2007. ISSN 1073-
0516. . URL http://doi.acm.org/10.1145/1275511.1275514.

[11] A. Lakshman and P. Malik. Cassandra: A decentral-
ized structured storage system. SIGOPS Oper. Syst. Rev.,
44(2):35–40, Apr. 2010. ISSN 0163-5980. . URL
http://doi.acm.org/10.1145/1773912.1773922.

[12] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Don’t
settle for eventual: Scalable causal consistency for wide-area storage
with cops. In Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles, SOSP ’11, pages 401–416, New

York, NY, USA, 2011. ACM. ISBN 978-1-4503-0977-6. . URL
http://doi.acm.org/10.1145/2043556.2043593.

[13] D. Navalho, S. Duarte, N. Preguiça, and M. Shapiro. Incremen-
tal stream processing using computational conflict-free replicated
data types. In Proceedings of the 3rd International Workshop
on Cloud Data and Platforms, CloudDP ’13, pages 31–36, New
York, NY, USA, 2013. ACM. ISBN 978-1-4503-2075-7. . URL
http://doi.acm.org/10.1145/2460756.2460762.

[14] V. Ramasubramanian, T. L. Rodeheffer, D. B. Terry, M. Walraed-
Sullivan, T. Wobber, C. C. Marshall, and A. Vahdat. Cim-
biosys: A platform for content-based partial replication. In
Proceedings of the 6th USENIX Symposium on Networked
Systems Design and Implementation, NSDI’09, pages 261–
276, Berkeley, CA, USA, 2009. USENIX Association. URL
http://dl.acm.org/citation.cfm?id=1558977.1558995.

[15] reddit inc. About reddit. http://www.reddit.com/about/, .
Accessed: 2014-06-02.

[16] reddit inc. reddit source code.
https://github.com/reddit/reddit, . Accessed: 2014-04-08.

[17] M. Satyanarayanan, J. Kistler, P. Kumar, M. Okasaki, E. Siegel, and
D. Steere. Coda: a highly available file system for a distributed
workstation environment. IEEE Transactions on Computers, 39(4):
447459, Apr 1990. ISSN 00189340. .

[18] E. Schurman and J. Brutlag. The user and business impact of server
delays, additional bytes, and http chunking in web search. In Velocity
Web Performance and Operations Conference, June 2009.

[19] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. A com-
prehensive study of Convergent and Commutative Replicated Data
Types. Rapport de recherche RR-7506, INRIA, Jan. 2011. URL
http://hal.inria.fr/inria-00555588.

[20] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. Conflict-
free replicated data types. In X. Dfago, F. Petit, and V. Villain, ed-
itors, Stabilization, Safety, and Security of Distributed Systems, vol-
ume 6976 of Lecture Notes in Computer Science, pages 386–400.
Springer Berlin Heidelberg, 2011. ISBN 978-3-642-24549-7. . URL
http://dx.doi.org/10.1007/978-3-642-24550-3 29.

[21] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer,
and C. H. Hauser. Managing update conflicts in Bayou, a weakly
connected replicated storage system, volume 29. ACM, 1995. URL
http://dl.acm.org/citation.cfm?id=224070.

[22] K. Veeraraghavan, V. Ramasubramanian, T. L. Rodeheffer, D. B.
Terry, and T. Wobber. Fidelity-aware replication for mobile devices.
In Proceedings of the 7th International Conference on Mobile Sys-
tems, Applications, and Services, MobiSys ’09, pages 83–94, New
York, NY, USA, 2009. ACM. ISBN 978-1-60558-566-6. . URL
http://doi.acm.org/10.1145/1555816.1555826.

[23] K. Veeraraghavan, V. Ramasubramanian, T. L. Rodeheffer, D. B.
Terry, and T. Wobber. Fidelity-aware replication for mobile devices.
In Mobisys 2009: Proceedings of the 7th international conference on
Mobile systems, applications, and services. Association for Comput-
ing Machinery, Inc., June 2009.

[24] W. Vogels. Eventually consistent. Commun. ACM,
52(1):40–44, Jan. 2009. ISSN 0001-0782. . URL
http://doi.acm.org/10.1145/1435417.1435432.

[25] M. Zawirski, A. Bieniusa, V. Balegas, S. Duarte, C. Baquero,
M. Shapiro, and N. M. Preguiça. Swiftcloud: Fault-tolerant geo-
replication integrated all the way to the client machine. CoRR,
abs/1310.3107, 2013.

10 2014/9/13

B PAPERS UNDER SUBMISSION AND TECHNICAL REPORTS

B.3 Marek Zawirski, Nuno Preguiça, Annette Bieniusa, Sérgio
Duarte, Valter Balegas, Carlos Baquero, Marc Shapiro.
Write Fast, Read in the Past: Causal Consistency for
Client-side Applications. Submitted EuroSys 15.

SyncFree Deliverable D.3.1(v0.1), November 17, 2014, Page 89

Write Fast, Read in the Past: Causal
Consistency for Client-side Applications

EuroSys 2015 Paper #174 Total length: 14 pages

Abstract
Client-side (e.g., mobile or in-browser) apps need local ac-
cess to shared cloud data, but current technologies either
do not provide fault-tolerant consistency guarantees, or do
not scale to high numbers of unreliable and resource-poor
clients, or both. Addressing this issue, we describe the Brie
distributed object database, which supports high numbers of
client-side partial replicas. Brie offers fast reads and writes
from a causally-consistent client-side cache. It is scalable,
thanks to small and bounded metadata, and available, toler-
ating faults and intermittent connectivity by switching be-
tween data centres. The price to pay is a modest amount of
staleness. This paper present the Brie algorithms, design, and
experimental evaluation, which shows that client-side apps
enjoy the same guarantees as a cloud data store, at a small
cost.

1. Introduction
Client-side applications, such as in-browser and mobile
apps, are poorly supported by the current technology for
sharing mutable data over the wide-area. Existing client-side
systems either make only limited consistency guarantees, or
do not scale to large numbers of client devices, or both. App
developers may resort to implementing their own ad-hoc
application-level cache, in order to avoid slow, costly and
sometimes unavailable round-trips to a data centre, but they
cannot solve system issues such as fault tolerance or ses-
sion guarantees [36]. Recent application frameworks such as
Google Drive Realtime API [14], TouchDevelop [12] or Mo-
bius [15] support client-side access at a small scale, but do
not provide system-wide consistency and/or fault tolerance
guarantees. Algorithms for geo-replication [5, 6, 19, 25, 26]
or for managing database replicas on clients [10, 28] ensure
some of the right properties, but were not designed to sup-
port high numbers of client replicas.

Our thesis is that the system should be responsible for
ensuring correct and scalable database access to client-side
applications. It should address the (somewhat conflicting)
requirements of consistency, availability, and convergence
[27], at least as well as geo-replication systems. Concurrent
updates (which are unavoidable if updates are to be always
available) should not be lost, nor cause the database to di-
verge permanently. Under these requirements, the strongest

possible consistency model is causal consistency where con-
current updates to objects converge [25, 27].

Supporting thousands or millions of client-side replicas
challenges classical assumptions. To track causality pre-
cisely, per client, creates unacceptably fat metadata; but
the more compact server-side metadata management has
fault-tolerance issues. Full replication at high numbers of
resource-poor devices would be unacceptable [10]; but par-
tial replication of data and metadata could cause anomalous
message delivery or unavailability. It is not possible to as-
sume, like many previous systems, that fault tolerance or
consistency is solved by locating the application is located
inside the data centre (DC), or has a sticky session to a sin-
gle DC [7, 36].

This work addresses these challenges. We present the al-
gorithms, design, and evaluation of Brie, the first distributed
object store designed for a high number of replicas. It effi-
ciently ensures consistent, available, and convergent access
to client nodes, tolerating failures. To enable both small
metadata and fault tolerance, Brie uses a flexible client-
server topology, and decouples reads from writes. The client
writes fast into the local cache, and reads in the past (also
fast) data that is consistent, but occasionally stale. The novel
aspects of our approach include:

Cloud-backed support for partial replicas (§3) A DC
serves a consistent view of the database to the client, which
the client merges with its own updates. In some failure sit-
uations, a client may connect to a DC that happens to be
inconsistent with its previous DC. Because it does not have
a full replica, the client cannot fix the issue on its own. We
leverage “reading in the past” to avoid this situation in the
common case, and provide control over the inherent trade-
off between staleness and unavailability. A client observes a
remote update only if it is stored in some number K ≥ 1 of
DCs [28]. The higher the value of K, the more likely that a
K-stable version is in both DCs, but the higher the staleness.

Protocols with decoupled, bounded metadata (§4)
Thanks to funnelling communication through DCs and to
“reading in the past,” our metadata design decouples track-
ing causality, which uses small vectors assigned in the back-
ground by DCs, from unique identification, based on client-
assigned scalar timestamps. This ensures that the size of

1 2014/10/11

DC#

DC#

DC# C#

C#

C#

C#

C#

C#
notification

A"
P"
I"

C# C#

C#

A"
P"
I"

A"
P"
I"

App#

App#

App#

geo-replication

transfer
fail-over!

Figure 1. System components (Application processes,
Clients, Data Centres), and their interfaces.

metadata is small and bounded. Furthermore, a DC can
prune its log independently of clients, ensuring safety by
storing a local summary of delivered updates.

We implement Brie and demonstrate experimentally that
our design reaches its objective, at a modest staleness cost.
We evaluate Brie in Amazon EC2, against a port of Walt-
Social [35] and against YCSB [16]. When data is cached,
response time is two orders of magnitude lower than for
server-based protocols with similar availability guarantees.
With three DC servers, the system can accommodate thou-
sands of client replicas. Metadata size does not depend on
the number of clients, the number of failures, or the size of
the database, and increases only slightly with the number of
DCs: on average, 15 bytes of metadata overhead per update,
compared to kilobytes for previous algorithms with similar
safety guarantees. Throughput is comparable to server-side
replication, and improved for high locality workloads. When
a DC fails, its clients switch to a new DC in under 1000 ms,
and remain consistent. Under normal conditions, 2-stability
causes fewer than 1% stale reads.

2. Problem overview
We consider support for a variety of client-side applications,
sharing a database of objects that the client can read and
update. We aim to scale to thousands of clients, spanning
the whole internet, and to a database of arbitrary size.

Fig. 1 illustrates our system model. A cloud infrastructure
connects a small set (say, tens) of geo-replicated data cen-
tres, and a large set (thousands) of clients. A DC has abun-
dant computational, storage and network resources. Simi-
larly to Sovran et al. [35], we abstract a DC as a powerful
sequential process that hosts a full replica of the database.1

DCs communicate in a peer-to-peer way. A DC may fail and
recover with its persistent memory intact.

Clients do not communicate directly, but only via DCs.
Normally, a client connects to a single DC; in case of failure
or roaming, to zero or more. A client may fail and recover
(e.g., disconnection during a flight) or permanently (e.g.,
destroyed phone) without prior warning. We consider only
non-byzantine failures.

1 We refer to prior work for the somewhat orthogonal issues of parallelism
and fault-tolerance within a DC [5, 19, 25, 26].

Client-side apps require high availability and respon-
siveness, i.e., to be able to read and update data quickly and
at all times. This can be achieved by replicating data locally,
and by synchronising updates in the background. However,
a client has limited resources; therefore, it hosts a cache that
contains only the small subset of the database of current in-
terest to the local app. It should not have to receive messages
relative to objects that it does not currently replicate [32]. Fi-
nally, control messages and piggy-backed metadata should
have small and bounded size.

Since a client replica is only partial, there cannot be a
guarantee of complete availability. The best we can expect is
partial availability, whereby an operation returns without
remote communication if the requested data is cached; and
after retrieving the data from a remote node (DC) otherwise.
If the data is not there and the network is down, the operation
may be unavailable, i.e., it either blocks or returns an error.

2.1 Consistency with convergence

Application programmers wish to observe a consistent view
of the global database. However, with availability as a re-
quirement, consistency options are limited [21, 27].

Causal consistency The strongest available and convergent
model is causal consistency [3, 27].

Informally, under causal consistency, every process ob-
serves a monotonically non-decreasing set of updates that
includes its own updates, in an order that respects the
causality between operations.2 Specifically, if an applica-
tion process reads x, and later reads y, and if the state of
x causally-depends on some update u to y, then the state of y
that it reads will include update u. When the application re-
quests y, we say there is a causal gap if the local replica has
not yet received u. The system must detect such a gap, and
wait until u is delivered before returning y, or avoid it in the
first place. Otherwise, reads with a causal gap expose both
application programmers and users to anomalies [25, 26].

We consider a transactional variant of causal consistency
to support multi-object operations: all the reads of a causal
transaction come from a same database snapshot, and either
all its updates are visible as a group, or none is [8, 25, 26].

Convergence Another requirement is convergence, which
consists of two properties: (i) At-least-once delivery (live-
ness): an update that is delivered (i.e., is visible by the app) at
some node, is delivered to all (interested) nodes after a finite
number of message exchanges; (ii) Confluence (safety): two
nodes that delivered the same set of updates read the same
value.

Causal consistency is not sufficient to guarantee conflu-
ence, as two replicas might receive the same updates in
different orders. Therefore, we rely on CRDTs, high-level

2 This subsumes the well-known session guarantees [13].

2 2014/10/11

data types that guarantee confluence and have rich semantics
[13, 34]. An update on a high-level object is not just an as-
signment, but is a high-level method associated with the ob-
ject’s type. For instance, a Set object supports add(element)
and remove(element); a Counter supports increment() and
decrement().

CRDTs include primitive last-writer-wins register
(LWW) and multi-value register (MVR) [1, 18, 22], but
also higher level types such as Sets, Lists, Maps, Graphs,
Counters, etc. [2, 33–35]. The implementation of high-level
objects is eased by adequate support from the system.
For instance, an object’s value may be defined not just by
the last update, but also depend on earlier updates; causal
consistency is helpful, by ensuring that they are not lost or
delivered out of order. As high-level updates are often not
idempotent (consider for instance increment()), safety also
demands at-most-once delivery.

Although each of these requirements may seem familiar
or simple in isolation, the combination with scalability to
high numbers of nodes and database size is a novel chal-
lenge.

2.2 Metadata design

Metadata serves to identify updates and to ensure correct-
ness. Metadata is piggy-backed on update messages, increas-
ing the cost of communication.

One common metadata design assigns each update a
timestamp as soon as it is generated on some originating
node. The causality data structures tend to grow “fat.” For
instance, dependency lists [25] grow with the number of up-
dates [19, 26, §3.3], whereas version vectors [10, 28] grow
with the number of clients. (Indeed, our experiments here-
after show that their size becomes unreasonable). We call
this the Client-Assigned, Safe but Fat approach.

An alternative delegates timestamping to a small number
of DC servers [5, 19, 26]. This enables the use of small vec-
tors, at the cost of losing some parallelism. However, this is
not fault tolerant if the client does not reside in a DC. For
instance, it may violate at-most-once delivery. Consider a
client transmitting update u to be timestamped by DC1. If
it does not receive an acknowledgement, it retries, say with
DC2 (fail-over). This may result in u receiving two distinct
timestamps, and being delivered twice. Duplicate delivery
violates safety for many confluent types, or otherwise com-
plicates their implementation considerably [4, 13, 26]. We
call this the Server-Assigned, Lean but Unsafe approach.

Clearly, neither “fat” nor “unsafe” is satisfactory.

2.3 Causal consistency with partial replication is hard

Since a partial replica receives only a subset of the updates,
and hence of metadata, it could miss some causal depen-
dencies [10]. Consider the following example: Alice posts a

photo on her wall (update a). Bob sees the photo and men-
tions in a message to Charles (update b), who in turn men-
tions it to David (update c). When David looks at Alice’s
wall, he expects to observe update a and view the photo.
However, if David’s machine does not cache Charles’ inbox,
it cannot observe the causal chain a → b → c and might
incorrectly deliver c without a. Metadata design should pro-
tect from such causal gaps, caused by transitive dependency
over absent objects.

Failures complicate the picture even more. Suppose
David sees Alice’s photo, and posts a comment to Alice’s
wall (update d). Now a failure occurs, and David’s machine
fails over to a new DC. Unfortunately, the new DC has not
yet received Bob’s update b, on which comment d causally
depends. Therefore, it cannot deliver the comment, i.e., ful-
fill convergence, without violating causal consistency. David
cannot read new objects from the DC for the same reason.3

Finally, a DC logs an individual update for only a limited
amount of time, but clients may be unavailable for unlimited
periods. Suppose that David’s comment d is accepted by
the DC, but David’s machine disconnects before receiving
the acknowledgement. Much later, after d has been executed
and purged away, David’s machine comes back, only to retry
d. This could violate at-most-once delivery; some previous
systems avoid this with fat version vectors [10, 28].

3. The Brie approach
We now describe a design that addresses the above chal-
lenges, first in the failure-free case, and next, how we support
DC failure.

3.1 Causal consistency at full DC replicas

Ensuring causal consistency at fully-replicated DCs is a
well-known problem [3, 19, 25, 26]. Our design is a hybrid
between state-based (storing and transmitting a whole ob-
ject states, called checkpoint) and log-based (sending and
transmitting operations incrementally) [10, 30]. Hereafter,
we focus on the log-based angle, and discuss checkpoints
only where relevant.

A database version, noted U , is any subset of updates,
ordered by causality. A version maps object identifiers to
values (via the read API), by applying the relevant subse-
quence of the log. We say that a version U has a causal
gap, or is inconsistent if it is not causally-closed, i.e., if
∃u, u′ : u → u′ ∧ u 6∈ U ∧ u′ ∈ U . As we illustrate shortly,
reading from an inconsistent version should be avoided, be-
cause, otherwise, subsequent accesses might violate causal-
ity. On the other hand, waiting for the gap to be filled would
increase latency and decrease availability. To side-step this

3 Note that David can still perform updates, but they cannot be delivered.
From David’s perspective, writes remain available. However, the system as
a whole does not converge.

3 2014/10/11

x.add(1) x.add(3)

V1 V2

y.add(2) y.add(1)

U1

(a) Initial state

x.add(1) x.add(3)

V1 V2

y.add(2) y.add(1)

x.add(4)

UC

read x
{1,3}

(b) Continuation from 2(a) to risky state

x.add(1)
x.add(3)

V1 V2

y.add(2) y.add(1)

x.add(4)
read x

{1}

UC

(c) Read-in-the-past: continuation from 2(a) to conservative state

Figure 2. Example evolution of states for two DCs, and a
client. x and y are Sets; box = update; arrow = causal depen-
dence (an optional text indicates the source of dependency);
dashed box = named database version/state.

conundrum, we adopt the approach of “reading in the past”
[3, 25]. Thus, a DC exposes a gapless but possibly delayed
state, noted V .

To illustrate, consider the example of Fig. 2(a). Objects
x and y are of type Set. DC 1 is in state U1 that includes
version V1 ⊆ U1, and DC 2 in a later state V2. Versions
V1 with value [x 7→ {1}, y 7→ {1}] and V2 with value
[x 7→ {1, 3}, y 7→ {1, 2}] are both gapless. However, version
U1, with value [x 7→ {1, 3}, y 7→ {1}] has a gap, missing
update y.add(2). When a client requests to read x at DC 1

in state U1, the DC could return the most recent version,
x = {1, 3}. However, if the application later requests y,
to return a safe value of y requires to wait for the missing
update from DC 2. By “reading in the past” instead, the same
replica exposes the older but gapless version V1, reading
x = {1}. Then, the second read will be satisfied immediately
with y = {1}. Once the missing update is received from
DC 2, DC 1 may advance from version V1 to V2.

A gapless algorithm maintains a causally-consistent,
monotonically non-decreasing progression of replica states
[3]. Given an update u, let us note u.deps its set of causal
predecessors, called its dependency set. If a full replica, in
some consistent state V , receives u, and its dependencies are
satisfied, i.e., u.deps ⊆ V , then it applies u. The new state is
V ′ = V ⊕ {u}, where we note by ⊕ a log merge operator
that filters out duplicates, further discussed in 4.1. State V ′

is consistent, and monotonicity is respected, since V ⊆ V ′.
If the dependencies are not met, the replica buffers u until

the causal gap is filled.

3.2 Causal consistency at partial client replicas

As a client replica contains only part of the database and
its metadata, this complicates consistency [10]. To avoid the
complexity, we leverage the DC’s full replicas to manage
gapless versions for the clients.

Given some interest set of objects the client is interested
in, its initial state consists of the projection of a DC state
onto the interest set. This is a causally-consistent state, as
shown in the previous section.

Client state can change either because of an update gen-
erated by the client itself, called an internal update, or be-
cause of one received from a DC, called external. An in-
ternal update obviously maintains causal consistency. If an
external update arrives, without gaps, from the same DC as
the previous one, it also also maintains causal consistency.

More formally, consider some recent DC state, which we
will call the base version of the client, noted VDC . The
interest set of client C is noted O ⊆ x, y, The client
state, noted VC , is restricted to these objects. It consists
of two parts. One is the projection of base version VDC

onto its interest set, noted VDC |O. The other is the log of
internal updates, noted UC . The client state is their merge
VC = VDC |O ⊕ UC |O. On cache miss, the client adds the
missing object to its interest set, and fetches the object from
base version VDC , thereby extending the projection.

Base version VDC is a monotonically non-decreasing
causal version (it might be slightly behind the actual cur-
rent state of the DC due to propagation delays). By induc-
tion, internal updates can causally depend, only on internal
updates, or on updates taken from the base version. There-
fore, a hypothetical full version VDC⊕UC would be causally
consistent. Its projection is equivalent to the client state:
(VDC ⊕ UC)|O = VDC |O ⊕ UC |O = VC .

This approach ensures partial availability. If a version is
in the cache, it is guaranteed causally consistent, although
possibly slightly stale. If it misses in the cache, the DC
returns a consistent version immediately. Furthermore, the
client replica can write fast, because it does not wait to com-
mit updates, but transfers them to its DC in the background.

Convergence is ensured, because the client’s base version
is maintained up to date by the DC, in the background.

3.3 Failing over: the issue with transitive causal
dependency

The approach described so far assumes that a client connects
to a single DC. In fact, a client can switch to a new DC
at any time, in particular in response to a failure. Although
each DC’s state is consistent, an update that is delivered to
one is not necessarily delivered in the other (because geo-
replication is asynchronous, to ensure DC availability and
for performance [9]), which may create a causal gap in the
client.

4 2014/10/11

To illustrate the problem, return to the example of
Fig. 2(a). Consider two DCs: DC 1 is in (consistent) state
V1, and DC 2 in (consistent) state V2; DC 1 does not include
two recent updates of V2. ClientC, connected to DC 2, repli-
cates object x only; its state is V2|{x}. Suppose that the client
reads the Set x = {1, 3}, and performs update u = add(4),
transitioning to the state shown in Fig. 2(b).

If this client now fails over to DC 1, and the two DCs
cannot communicate, the system is not live:
(1) Reads are not available: DC 1 cannot satisfy a request

for y, since the version read by the client is newer than
the DC 1 version, V2 6⊆ V1.

(2) Updates cannot be delivered (divergence): DC 1 cannot
deliver u, due to a missing dependency: u.deps 6⊆ V1.

Therefore, DC 1 must reject the client to avoid creating the
gap in state V1 ⊕ UC .

3.3.1 Conservative read: possibly stale, but safe

To avoid such gaps that cannot be satisfied, the insight is to
depend on updates that are likely to be present in the fail-
over DC, called K-stable updates.

A version V is K-stable if every one of its updates is
replicated in at leastK DCs, i.e., |{i ∈ DC | V ⊆ Vi}| ≥ K,
where K ≥ 1 is a threshold configured w.r.t. failures model.
To this effect, our system maintains a consistent K-stable
version V K

i ⊆ Vi, which contains the updates for which
DC i has received acknowledgements from at least K − 1
distinct other DCs.

A client’s base version must be K-stable, i.e., VC =
V K
i |O ⊕ UC |O, to support failover. In this way, the client

depends, either on external updates that are likely to be
found in any DC (V K

i), or internal ones, which the client
can always transfer to the new DC (UC).

To illustrate, let us return to Fig. 2(a), and consider the
conservative progression to Fig. 2(c), assuming K = 2. The
client’s read of x returns the 2-stable version {1}, avoiding
the dangerous dependency via an update on y. If DC 2 is
unavailable, the client can fail over to DC 1, reading y and
propagating its update remain both live.

By the same arguments as in §3.2, a DC version V K
i is

causally consistent and monotonically non-decreasing, and
hence the client’s version as well. Note that a client observes
his internal updates immediately, even if not K-stable.

Parameter K can be adjusted dynamically. Decreasing it
has immediate effect without impacting correctness. Increas-
ing K has effect only for future updates, in order to not vio-
late montonicity.

3.3.2 Causal consistency and partial replication:
discussion

The source of the problem is an indirect causal dependency
on an update that the two replicas do not both know about

(y.add(2) in our example). As this is an inherent issue, we
conjecture a general impossibility result, stating that gen-
uine partial replication, causal consistency, partial availabil-
ity and timely at-least-once delivery (convergence) are in-
compatible. Accordingly, some requirements must be re-
laxed.

Note that in many previous systems, this impossibility
translates to a trade-off between consistency and availability
on the one hand, and performance on the other [17, 25, 35]
By “reading in the past,” we displace this to a trade-off
between freshness and availability, controlled by adjusting
K. A higherK increases availability, but updates take longer
to be delivered;4 in the limit, K = N ensures complete
availability, but no client can transfer a new update when
some DC is unavailable.A lower K improves freshness, but
increases the probability that a client will not be able to fail
over, and that it will block until its original DC recovers.
In the limit, K = 1 is identical to the basic protocol from
§3.2, and is similar to previous blocking session-guarantee
protocols [36].
K = 2 is a good compromise for deplyoments with three

or more DCs that covers common scenarios of a DC failure
or disconnection [17, 23]. Our evaluation withK = 2 shows
that it incurs a negligible staleness.

Network partitions Client failover between DCs is safe
and generally live, except when the original set of K DCs
were partitioned away from both other DCs and the client,
shortly after they delivered a version to the client. In this
case, the client blocks. To side-step this unavoidable possi-
bility, we provide an unsafe API to read inconsistent data.

When a set of fewer thanK DCs is partitioned from other
DCs, the clients that connect to them do not deliver their up-
dates until the partition heals. To improve liveness in this
scenario, Brie supports two heuristics: (i) a partitioned DC
announces its “isolated” status, automatically recommend-
ing clients to use another DC, and (ii) clients who cannot
reach another DC that satisfies their dependencies can use
the isolated DCs with K temporarily lowered, risking un-
availability if another DC fails.

4. Implementation
We now describe a metadata and concrete protocols imple-
menting the abstract design.

4.1 Timestamps, vectors and log merge

The Brie approach requires metadata: (1) to uniquely iden-
tify an update; (2) to encode its causal dependencies; (3) to
identify and compare versions; (4) and to identify all the up-
dates of a transaction. We now propose a new type of meta-
data, which fulfils the requirements and has a low cost. It

4 The increased number of concurrent updates that this causes is not a
problem, thanks to confluent types.

5 2014/10/11

combines the strengths of the two approaches outlined in
Section 2.3 and is both lean and safe.

A timestamp is a pair (i, k) ∈ (DC ∪ C) × N, where
i identifies the node that assigned the timestamp (either a
DC or a client) and k is a sequence number. The metadata
assigned to some update u combines both: (i) a single client-
assigned timestamp u.tC that uniquely identifies the update,
and (ii) a set of zero or more DC-assigned timestamps
u.TDC . Before being delivered to a DC, the update has no DC
timestamp; it has one thereafter; it may have more than one
in case of delivery to multiple DCs (on failover, §3.3.1). The
updates in a transaction all have the same timestamp(s), to
ensure all-or-nothing delivery [35]. Our approach provides
the flexibility to refer to an update via any of its timestamps,
which is handy during failover.

We represent a version or a dependency as a version
vector [29]. A vector is a partial map from node ID to
integer, e.g., VV = [DC 1 7→ 1,DC 2 7→ 2], which we
interpret as a set of timestamps. For example, when VV
is used as a dependency for some update u, it means that
u causally depends on {(DC 1, 1), (DC 2, 1), (DC 2, 2)}. In
Brie protocols, every vector has at most one client entry,
and multiple DC entries; thus, its size is bounded by the
number of DCs, limiting network overhead. In contrast to a
dependence graph, a vector compactly represents transitive
dependencies and can be evaluated locally by any node.

Formally, the timestamps represented by a vector VV are
given by a function T :

T (VV) = {(i, k) ∈ dom(VV)× N | k ≤ VV (i)}

Similarly, the version decoding function V of vector VV on
a state U (defined for states U that cover all timestamps of
VV) selects every update in state U that matches the vector:

V(VV , U) = {u ∈ U | (u.TDC ∪ {u.tC}) ∩ T (VV) 6= ∅}

For the purpose of the decoding function V , a given up-
date can be referred equivalently through any of its times-
tamps. Moreover, V is stable with growing state U .

The log merge operator U1 ⊕ U2, which eliminates du-
plicates, is defined using client timestamps. Two updates
u1 ∈ U1, u2 ∈ U2 are identical if u1.tC = u2.tC . The merge
operator merges their DC timestamps into u ∈ U1⊕U2, such
that u.TDC = u1.TDC ∪ u2.TDC .

4.2 Protocols

We now describe the protocols of Brie by following the
lifetime of an update, and with reference to the names in
Fig. 1.

State A DC replica maintains its state UDC in durable stor-
age. The state respects causality and atomicity for each in-
dividual object, but due to internal concurrency, this may

not be true across objects. Therefore, the DC also has
a vector VVDC that identifies a safe, monotonically non-
decreasing causal version in the local state, which we note
VDC = V(VVDC , UDC).

A client replica stores the commit log of its own updates
UC , and the projection of the base version from the DC, re-
stricted to its interest set O, VDC |O, as described previously
in §3.2. It also stores a copy of vector VVDC that describes
the base version.

Client-side execution When the application starts a trans-
action τ at client C, the client replica initialises it with an
empty buffer of updates τ.U = ∅ and a snapshot vector
of the current base version τ.depsVV = VVDC ; the base
version can be updated concurrently with the transaction ex-
ecution. A read in transaction τ is answered from the version
identified by the snapshot vector, merged with recent inter-
nal updates, τ.V = V(τ.depsVV , VDC |O)⊕UC |O⊕τ.U . If
the requested object is not in the client’s interest set, o 6∈ O,
the clients extends its interest set, and returns the value once
the DC updates the base version projection.

When the application issues internal update u, it is ap-
pended to the transaction buffer τ.U ← τ.U ⊕ {u}, and in-
cluded in any later read. The transaction commits locally at
the client and never fails [26].5 If the transaction made up-
date u ∈ τ.U , the client replica commits it locally as fol-
lows: (1) assign it client timestamp u.tC = (C, k), where
k counts the number of updates at the client; (2) assign it a
dependency vector initialised with the transaction snapshot
vector u.depsVV = τ.depsVV ; (3) append it to the com-
mit log of local updates on stable storage UC ← UC ⊕ {u}.
This terminates the transaction; the client is now free to start
a new one, which will observe the committed updates.

Transfer protocol: Client to DC The transfer protocol
transmits committed updates from a client to its current DC,
in the background. It repeatedly picks the first unacknowl-
edged committed update u from the log. If any of u’s internal
dependencies has recently been assigned a DC timestamp, it
merges this timestamp into the dependency vector. Then, the
client sends a copy of u to its current DC. The client ex-
pects to receive an acknowledgement from the DC, contain-
ing the timestamp T that the DC assigned to update u. If so,
the client records the DC timestamp(s) in the original update
record u.TDC ← T .

It may now iterate with the next update in the log.

A transfer request may fail for three reasons:

(a) Timeout: the DC is suspected unavailable; the client con-
nects to another DC (failover) and repeats the protocol.

5 To simplify the notation, and without loss of generality, we assume
hereafter that a transaction performs at most one update. This is easily
extended to multiple updates, by assigning the same timestamp to all the
updates of the same transaction, ensuring the all-or-nothing property [35].

6 2014/10/11

(b) The DC reports a missing internal dependency, i.e., it
has not received some update of the client, as a result
of a previous failover. The client recovers by marking
as unacknowledged all internal updates starting from the
oldest missing dependency, and restarting the transfer
protocol from that point.

(c) The DC reports a missing external dependency; this is
also an effect of failover. In this case, the client tries yet
another DC. The approach from §3.3.1 avoids repeated
failures.

Upon receiving update u, the DC verifies if it dependen-
cies are satisfied, i.e., if T (u.depsVV) ⊆ T (VVDC). (If
this check fails, it reports an error to the client, indicating
either case (b) or (c)). If the DC has not received this up-
date previously, i.e., ∀u′ ∈ UDC : u′.tC 6= u.tC , the DC
does the following: (1) Assign it a DC timestamp u.TDC ←
{(DC ,VVDC (DC) + 1))}, (2) store it in its durable state
UDC ⊕ {u}, (3) make the update visible in the DC version
VDC , by incorporating its timestamp(s) into VVDC . This
last step makes u available to the geo-replication and notifi-
cation protocols, described hereafter. If the update has been
received before, the DC looks up its previously-assigned DC
timestamps, u.TDC . In either case, the DC acknowledges the
transfer to the client with the DC timestamp(s). Note that
steps (1)–(2) can be parallelised between transfer requests
received from different client replicas.

Geo-replication protocol: DC to DC The geo-replication
protocol consists of a uniform reliable broadcast across DCs.
An update enters the geo-replication protocol when a DC ac-
cepts a fresh update during the transfer protocol. The accept-
ing DC broadcasts it to all other DCs. A DC that receives a
broadcast message containing u does the following: (1) If
the dependencies of u are not met, i.e., if T (u.depsVV) 6⊆
T (VVDC), buffer it until they are; and (2) incorporate u into
durable state UDC ⊕ {u} (if u is not fresh, the duplicate-
resilient log merge safely unions all timestamps), and incor-
porate its timestamp(s) into the DC version vector VVDC .
This last step makes it available to the notification protocol.
The K-stable version V K

DC is computed similarly.

Notification protocol: DC to Client A DC maintains a
best-effort notification session, over a FIFO channel, to each
of its connected clients. The soft state of a session includes
a copy of the client’s interest set O and the last known base
version vector used by the client, VVDC

′. The DC accepts
a new session only if its own state is consistent with the
base version of the client, i.e., if T (VVDC

′) ⊆ T (VVDC).
Otherwise, the DC would cause a causal gap with the client’s
state; in this case, the client is redirected to another DC (see
§3.3.1).

The DC sends over each channel a causal stream of up-
date notifications.6 Notifications are batched according to ei-
ther time or to rate [10]. A notification packet consists of a
new base version vector VVDC , and a sequence of log of
all the updates U∆ to the objects of the interest set, between
the client’s previous base vector VVDC

′ and the new one.
Formally, U∆ = {u ∈ UDC |O | u.TDC ∩ (T (VVDC) \
T (VVDC

′)) 6= ∅}. The client applies the newly-received
updates to its local state, described by the old base ver-
sion: VDC |O ← VDC |O ⊕ U∆, and assumes the new vec-
tor VVDC . If any of received updates is a duplicate w.r.t. to
the old version or to a local update, the log merge operator
handles it safely.

When the client detects a broken channel, it reinitiates the
session, possibly on a new DC.

The interest set can change dynamically. When an object
is evicted from the cache, the notifications are lazily unsub-
scribed to save resources. When it is extended with object
o, the DC responds with the current version of o, which in-
cludes all updates to o up to the base version vector. To avoid
races, a notification includes a hash of the interest set, which
the client checks.

4.3 Object checkpoints and log pruning

Update logs contribute to substantial storage and, to smaller
extent, network costs. To avoid unbounded growth, pruning
protocol prediocially replaces the prefix of a log and by a
checkpoint. In the common case, a checkpoint is more com-
pact than the corresponding log of updates; for instance, a
log containing one thousand increments to a Counter object
and their timestamps, can be replaced by a checkpoint con-
taining just the number 1000 and a version vector.

4.3.1 Log pruning in the DC

The log at a DC provides (a) unique timestamp identifica-
tion of each update, which serves to filter out duplicates by⊕
operator, as explained earlier, and (b) the capability to com-
pute different versions, for application processes reading at
different causal times. Update u is expendable once all of
its duplicates have been filtered out, and once u has been
delivered to all interested application processes. However,
evaluating expendability precisely would require access to
the client replica states.

In practice, we need to prune aggressively, but still avoid
the above issues, as we explain next.

In order to reduce the risk of pruning a version not yet
delivered to an interested application (which could force it
to restart an ongoing transaction), we prune only a delayed
version VV ∆

i , where ∆ is a real-time delay [25, 26].
To avoid duplicates, we extend our DC local metadata as

follows. DC i maintains an at-most-once guard Gi, which

6 Alternatively, the client can ask for invalidations instead, trading respon-
siveness for lower bandwidth utilization and higher DC throughput.

7 2014/10/11

YCSB [16] SocialApp [35]
Type of objects LWW Map Set, Counter, Register
Object payload 10× 100 bytes variable

Read txns
read fields read wall (80%)

(A: 50% / B: 95%) see friends (8%)

Update txns
update field message (5%)

(A: 50% / B:5%) post status (5%)
add friend (2%)

Objects / txn 1 (non-txnal) 2–5
Database size 50,000 objects 400,000 objects

Object popularity uniform / zipfian uniform
Session locality 40% (low) / 80% (high)

Table 1. Characteristics of applications/workloads.

records the sequence number of each client’s last pruned up-
date Gi : C → N. Whenever the DC receives a transfer
request for update u with timestamp (C, k) = u.tC and can-
not find it in its log, it checks the at-most-once guard en-
try whether u is contained in the checkpoint. If the update
was already pruned away (Gi(C) ≥ k), the update is ig-
nored; the DC discarded information about the exact set of
update’s DC timestamps in this case; therefore, in transfer
reply, they are overapproximated by vector VV ∆

i . Similarly,
on a client cache miss, the DC sends object state that con-
sists of the most recent checkpoint of the object together the
client’s guard entry, so that the client can merge it with his
updates safely. Note that a guard is local to and shared at a
DC. It is never fully transmitted.

4.3.2 Pruning the client’s log

Managing the log at a client is comparatively simpler. A
client logs his own updates UC , which may include updates
to object that is currently out of his interest set. This enables
the client to read its own updates, and to propagate them
lazily to a DC when connected. An update u can be discarded
as soon as it appears inK-stable base version V K

i , i.e., when
the client becomes dependent on the presence of u at a DC.

5. Evaluation
We implement Brie and evaluate it experimentally, in com-
parison to other protocols. In particular, we show that Brie
provides: (i) fast response, under 1 ms for both reads and
writes to cached objects (§5.3); (ii) scalability of throughput
with the number of DCs, and small metadata size, linear in
the number of DCs (§5.4); (iii) fault-tolerance w.r.t. client
churn (§5.5) and DC failures (§5.6); and (iv) modest stale-
ness cost, under 3% of stale reads (§5.7).

5.1 Implementation and applications

Brie and the benchmark applications are implemented in
Java. Brie uses a library of CRDT types, BerkeleyDB for
durable storage (turned off in the present experiments), and

Kryo for data marshalling. A client cache has a fixed size
and uses an LRU eviction policy.

Our client API resembles modern object stores, such as
Riak 2.0, Redis, or COPS [2, 25, 31]:
begin_transaction () read (object) : value
commit_transaction () update(object, method(args . . .))

Along the lines of previous studies of weak consistency
[5, 6, 26, 35], we use two different benchmarks, YCSB and
SocialApp, summarized in Table 1.

YCSB [16] serves as a kind of micro-benchmark, with
simple requirements, measuring baseline costs and specific
system properties in isolation. It has a simple key-field-value
object model, implemented as a LWW Map type, using a
default payload size of ten fields of 100 bytes each. YCSB
issues single-object reads and writes. We use two of the
standard YCSB workloads: update-heavy Workload A, and
read-dominated Workload B. The object access pattern can
be set to either uniform or Zipfian. YCSB does not rely on
transactional semantics or high-level data types.

SocialApp is a social network application modelled
closely after WaltSocial [35]. It employs high-level data
types such as Sets, for friends and posts, LWW Register for
profile information, Counter for counting profile visits, and
inter-object references. SocialApp accesses multiple objects
in a causal transaction to ensure that operations such as read-
ing a wall page and profile information behave consistently.
The SocialApp workload is read-dominated, but the ostensi-
bly read-only operation of visiting a wall actually increments
the wall visit counter. The access distribution is uniform.

In order to model the locality behaviour of a client, both
YCSB and SocialApp are augmented with a facility to con-
trol locality, mimicking social network access patterns [11].
Within a client session, the application draws draws uni-
formly from a pool of session-specific objects with either
40% (low locality) or 80% (high locality) probability. Ob-
jects not drawn from this local pool are drawn from the
global (uniform or zipfian) distribution described above. The
size of the pool is smaller than the size of cache.

5.2 Experimental setup

We run three DCs in geographically distributed Ama-
zon EC2 availability zones (Europe, Virginia, and Oregon),
and a pool of distributed clients. Round-Trip Times (RTTs)
between nodes are as follows:

Oregon DC Virginia DC Europe DC
nearby clients 60–80 ms 60–80 ms 60–80 ms

Europe DC 177 ms 80 ms
Virginia DC 60 ms

Each DC runs on a single m3.m EC2 instance, equivalent
to a single core 64-bit 2.0 GHz Intel Xeon virtual processor
(2 ECUs) with 3.75 GB of RAM, and OpenJDK7 on Linux
3.2. Objects are pruned at random intervals between 60–
120 s, to avoid bursts of pruning activity. We deploy 500–

8 2014/10/11

Server replicas only Brie w/client replicas

0
R

T
T

1
R

T
T

2
R

T
T

locality potential

locality potential

0
R

T
T

1
R

T
T

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

Low
 locality

H
igh locality

0 50 100 150 200 250 0 50 100 150 200 250
operation response time [ms]

C
D

F
 fo

r
al

l s
es

si
on

s

read

update

Figure 3. Response time for YCSB operations (workload
A, zipfian object popularity) under different system and
workload locality configurations.

2,500 clients on a separate pool of 90 m3.m EC2 instances.
Clients load DCs uniformly and use the closest DC by de-
fault, with a client-DC RTT ranging in 60–80 ms.

For comparison, we provide three protocol modes based
on the Brie implementation: (i) Brie mode (default) with
client cache replicas of 256 objects, and refreshed with
notifications at a rate ≤1 s by default; (ii) Safe But Fat
metadata mode with cache, but with client-assigned meta-
data (similarly to PRACTI, or to Depot without cryptog-
raphy), (iii) server-side replication mode without client
caches. In this mode, an update incurs two RTTs to a DC,
modelling the cost of a synchronous writes to a quorum of
servers to ensure fault-tolerance comparable to Brie.

5.3 Response time and throughput

We run several experiments to compare Brie’s client-side
caching, with server-only geo-replication.

Fig. 3 shows response times for YCSB, comparing server-
only (left side) with client replication (right side), under low
(top) and high locality (bottom). Recall that in server-only
replication, a read incurs a RTT to the DC, whereas an up-
date incurs 2 RTTs. We expect Brie to provide much faster
response, at least for cached data. Indeed, the figure shows
that a significant fraction of operations respond immediately
in Brie mode, and this fraction tracks the locality of the
workload (marked “locality potential” on the figure), within
a±7.5 percentage-point margin, attributable to caching arte-
facts. The remaining operations require one round-trip to the
DC, indicated as 1 RTT. As our measurements for SocialApp
show the same message, we do not report them here. These
results demonstrate that the consistency guarantees and the
rich programming interface of Brie do not affect responsive-
ness of read and update caching.

In terms of throughput, client-side replication is a mixed
blessing: it lets client replicas absorb read requests that
would otherwise reach the DC, but also puts extra load of
maintaining client replicas on DCs. In another experiment
(not plotted), we saturate the system to determine its max-

YCSB A (50% updates) YCSB B (5% updates)

1

10

100

1000

1

10

100

1000

zipfian distrib.
uniform

 distrib.

1250 2500 5000 5000 10000 20000
throughput [txn/s]

re
sp

on
se

 ti
m

e
[m

s]

server replicas only, 70th percentile of response time (exp. local)
client replicas, 70th percentile of response time (exp. local)
server replicas only, 95th percentile of respone time (remote)
client replicas, 95th percentile of respone time (remote)

Figure 4. Throughput vs. response time for different system
configurations running variants of YCSB.

imum throughput. Brie’s client-side replication consistently
improving throughput for high-locality workloads, by 7% up
to 128%. It is especially beneficial to read-heavy workloads.
In contrast, low-locality workloads show no clear trend; de-
pending on the workload, throughput either increases by up
to 38%, or decrease by up to 11% with Brie.

Our next experiment studies how response times vary
with server load and with the staleness settings. The results
show that, as expected, cached objects respond immediately
and are always available, but the responsiveness of cache
misses depends on server load. For this study, Fig. 4 plots
throughput vs. response time, for YCSB A (left side) and B
(right side), both for the Zipfian (top) and uniform (bottom)
distributions. Each point represents the aggregated through-
put and latency for a given transaction incoming rate, which
we increase until reaching the saturation point.

The curves report two percentiles of response time: the
lower (70 th percentile) line represents the response time for
requests that hit in the cache (the session locality level is
80%), whereas the higher (95 th percentile) line represents
misses, i.e., requests served by a DC.

As expected, the lower (cached) percentile consistently
outperforms the server-side baseline, for all workloads and
transaction rates. A separate analysis, not reported in detail
here, reveals that a saturated DC slows down its rate of
notifications, increasing staleness, but this does not impact
response time, as desired. In contrast, the higher percentile
follows the trend of server-side replication response time,
increasing remote access time.

Varying the target notification rate (not plotted) between
500 ms and 1000 ms, reveals the same trend: response time
is not affected by the increased staleness. At a lower refresh
rate, notification batches are less frequent but larger. This
increases throughput for the update-heavy Workload A (up
to tens of percent points), but has no effect on the throughput

9 2014/10/11

●
●

● ●

● ● ●
●

● ● ● ● ●● ● ● ● ●
/ limit

●

● ●

●

●

●

●
●

●
●

●

●
●

● ●
●

●

●

/ limit

● ● ●
● ●

● ● ● ● ●

● ●
● ● ●●

● ● ● ●

YCSB A, uniform YCSB B, uniform SocialApp

0

5000

10000

15000

20000

25000

500 1500 2500 500 1500 2500 500 1500 2500
#client replicas

m
ax

. t
hr

ou
gh

pu
t [

tx
n/

s] ●●

●●

refresh rate 1s
refresh rate 10s

3 DC replicas
1 DC replica

Figure 5. Maximum system throughput for a variable num-
ber of client and server (DC) replicas.

YCSB A, uniform YCSB B, uniform SocialApp w/stats

max. notification data max. notification data max. notification data

10

100

1K

10K

100K

500 1500 2500500 1500 2500500 1500 2500
#client replicas

no
tif

ic
at

io
n

m
et

ad
at

a
[B

]

Brie metadata
Safe But Fat metadata (Depot*)

1 DC replica
3 DC replicas

Figure 6. Size of metadata in notification message for a
variable number of replicas, mean and standard error. Nor-
malised to a notification of 10 updates.

of read-heavy Workload B. However, we expect the impact
of refresh rate to be amplified for workloads with lower rate
of notification updates.

5.4 Scalability

Next, we measure how well Brie scales with increasing num-
bers of DC and of client replicas. Of course, performance is
expected to increase with more DCs, but most importantly,
the size of metadata should be small, should increase only
marginally with the number of DCs, and should not depend
on the number of clients. Our results support these expecta-
tions.

In this experiment, we run execute Brie with a variable
number of client (500–2500) and server (1–3) replicas. We
report only on the uniform object distribution, because under
the Zipfian distribution different numbers of clients skew the
load differently, making any comparison meaningless. To
control staleness, we run Brie with two different notification
rates (every 1 s and every 10 s).

Fig. 5 shows the maximum system throughput on the
Y axis, increasing the number of replicas along the X axis.
The thin lines are for a single DC, the bold ones for three
DCs. Solid lines represent the fast notification rate, dashed

lines the slow one. The figure shows, left to right, YCSB
Workload A, YCSB Workload B, and SocialApp.

The capacity of a single DC in our hardware configu-
ration peaks at 2,000 active client replicas for YCSB, and
2,500 for SocialApp.

As to be expected, additional DC replicas increase the
system capacity for operations that can be performed at
only one replica such as read operations or sending noti-
fication messages. Whereas a single Brie DC supports at
most 2,000 clients. With three DCs Brie supports at least
2,500 clients for all workloads. Unfortunately, as we ran out
of resources for client machines at this point, we cannot re-
port an upper bound.

For some fixed number of DCs, adding client replicas
increases the aggregated system throughput, until a point
where the cost of maintaining client replicas up to date
saturates the DCs, and further clients do not absorb enough
reads to overcome these costs. Note that the lower refresh
rate can reduce the load at a DC by 5 to 15%.

In the same experiment, Fig. 6 presents the distribution
of metadata size notification messages. (Notifications are
the most common and the most costly messages sent over
the network.) We plot the size of metadata (in bytes) on
the Y axis, varying the number of clients along the X axis.
Left to right, the same workloads as in the previous figure.
Thin lines are for one DC, thick lines for three DCs. A solid
line represents Brie “Lean and Safe” metadata, and dotted
lines the classical “Safe But Fat” approach. Note that our
Safe-but-Fat implementation includes the optimisation of
sending vector deltas rather than the full vector [28]. Vertical
bars represent standard error. As notifications are batched,
we normalise metadata size to a message carrying exactly
10 updates, corresponding to under approx. 1 KB of data.

This plot confirms that the Brie metadata is small and
constant, at 100–150 bytes/notification (10–15 bytes per up-
date); data plus metadata together fit inside a single standard
network packet. It is independent both from the number of
client replicas and from the workload. Increasing the number
of DC replicas from one to three causes a negligible increase
in metadata size, of under 10 bytes.

In contrast, the classical metadata grows linearly with the
number of clients and exhibits higher variability. Its size
reaches approx. 1 KB for 1,000 clients in all workloads,
and 10 KB for 2,500 clients. Clearly, metadata being up to
10× larger than the actual data this represents a substantial
overhead.

5.5 Tolerating client churn

We now turn to fault tolerance. In the next experiment, we
evaluate Brie under client churn, by periodically disconnect-
ing client replicas and replacing them with a new set of ac-
tive clients. At any point in time, there are 500 active clients
and a variable number of disconnected clients, up to 5000.

10 2014/10/11

YCSB − all objects SocialApp − stats counters

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

1K

10K

100K

1M

10M

100M

0 1000 2000 3000 4000 0 1000 2000 3000 4000
#unavailable client replicas

st
or

ag
e

oc
cu

p.
 [B

]

●

Brie
(Brie's at−most−once guard only)
Lean But Unsafe approach w/o at−most−once guarantees

Figure 7. Storage occupation at a single DC in reaction to
client churn for Brie and Lean-but-Unsafe alternative.

Fig. 7 illustrates the storage occupation of a DC for rep-
resentative workloads. We compare Brie’s log pruning pro-
tocol to a protocol without at-most-once delivery guarantees
(Lean But Unsafe).

Brie storage size is approximately constant. This is safe
thanks to the at-most-once guard table per DC. Although
the size of the guard (bottom curve) grows with the number
of clients, it requires orders of less storage than the actual
database itself.

A protocol without at-most-once delivery guarantees can
use Lean-but-Unsafe metadata, without Brie’s at-most-once
guard. However this requires more complexity in each ob-
ject’s implementation, to protect itself from duplicates. This
increases the size of objects, impacting both storage and net-
work costs. As is visible in the figure, the cost depends on
the object type: none for idempotent YCSB’s LWW-Map,
which is naturally idempotent, vs. linear in the number of
clients for SocialApp’s Counter objects.

5.6 Tolerating DC failures

This experiment studies the behaviour of Brie when a DC
disconnects. The scatterplot in Fig. 8 shows the response
time of a SocialApp client application as the client switches
between DCs. Starting with a cold cache, response times
quickly drops to near zero for transactions hitting in the
cache, and to around 110 ms for misses. Some 33 s into the
experiment, the current DC disconnects, and the client is
diverted to another DC in a different continent. Thanks to
K-stability the fail-over succeeds, and the client continues
with the new DC. Its response time pattern reflects the higher
RTT to the new DC. At 64 s, the client switches back the
initial DC, and performance smoothly recovers to the initial
pattern.

5.7 Staleness cost

The price to pay for our read-in-the-past approach is an in-
crease in staleness, which our next experiment measures. A
read is considered stale if a version more recent (but not K-
stable) than the one it returns exists at the current DC of a
client that performed the read. A transaction is stale if any
of its reads is stale. In the experiments so far, we observed a

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 10 20 30 40 50 60 70 80

re
sp

on
se

 ti
m

e
[m

s]

time [s]

/ transient DC failure /

Figure 8. Response time for a client that hands over be-
tween DCs during a 30 s failure of a DC.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 0 5000 10000 15000 20000 25000

st
al

e
re

ad
s

[%
]

#users in SocialApp

transactions
individual reads

Figure 9. K-stability staleness overhead.

negligible number of stale reads. The reason is that the win-
dow of vulnerability (the time it takes for an update to be-
come K-stable) is approximately the RTT to the closest DC.
For this experiment, we artificially increase the probability
of staleness by various means. We run the SocialApp bench-
mark with 1000 clients in Europe connected to the Ireland
DC and replicated in the Oregon DC.

Fig. 9 shows that stale reads and stale transactions remain
under 1% and 2.5% respectively. This shows that even under
high contention, accessing a slightly stale snapshot has very
little impact on the data read by transactions.

6. Related work
We now discuss a number of systems that support consis-
tent, available and convergent data access, at different scales.
In particular, Table 2 presents the approach to metadata of
causally consistent systems. Each row groups some systems
that share a similar metadata approach. The columns indi-
cate: (i) Which replicas assign timestamps; (ii) the guar-
anteed (worst-case) size of metadata summarising a depen-
dency or a version; (iii) whether it ensures at-most-once de-
livery; (iv) whether it supports general confluent types.

Client-side replication PRACTI is a seminal work on
causal consistency under partial replication [10]. PRACTI
uses Safe-but-Fat client-assigned metadata and an ingenious
log-exchange protocol that supports an arbitrary communi-
cation topology. While such a full generality has advantages,
it is not viable for large-scale client-side app deployments
backed by the cloud: (i) Its fat metadata approach (version
vectors sized as the number of clients) is prohibitively ex-
pensive (see Fig. 6), and (ii) any replica can easily make an-
other unavailable, because of the indirect dependence issue
discussed in §3.3.2.

11 2014/10/11

Representative system Timestamp assignment
Summary metadata At-most-once

Support for confluent types
max. size, O(#entries) delivery

PRACTI [10], Depot [28], COPS [25] client/any replica #replicas ≈ 1 000 000 yes weak (COPS) / medium (rest)
Eiger [26], Orbe [19], Bolt-on [6] DC server (shard) #servers ≈ 100–1 000 no weak

Walter [35], ChainReaction [5] DC (full replica) #DCs ≈ 5–10 no weak

Brie
DC (full replica) #DCs ≈ 5–10 no

strong
client replica + 1 client entry yes

Table 2. Analytical comparison of different classes of metadata used by causally consistent systems.

Our design is strongly inspired by Depot, a (fork-join)
causally consistent system that provides a reliable storage
on top of untrusted cloud [28]. Depot tolerates Byzantine
clients, which our current implementation does not address.
Their assumption of Byzantine cloud behaviour requires fat
metadata to support direct client-to-client communication.
Furthermore, Depot is at at odds with genuine partial repli-
cation. It requires every replica to process the metadata of
every update, and puts the burden of computing a K-stable
version on the client. In the case of extensive DC partitions,
it floods all updates to the client. In contrast, Brie relies on
DCs to provide K-stable and consistent versions, and uses
lean metadata. In the event of failure, Brie provides the flex-
ibility to decreaseK dynamically rather than to flood clients.

Both Practi and Depot systems use Safe-but-Fat meta-
data. They support only LWW Registers, but extension to
other confluent types appears feasible.

Recent web and mobile application frameworks, such as
TouchDevelop [12], Google Drive Realtime API [14], or
Mobius [15] support replication for in-browser or mobile
applications. These systems are designed for small objects
[14], database that fits on a mobile device [12], or a database
of independent objects [15]. It is unknown if/how they sup-
port multiple DCs and fault tolerance. This is in contrast with
Brie’s support for large consistent database, and fault toler-
ance. TouchDevelop provides a form of object composition,
and offers integration with strong consistency [12]. We are
looking into ways of adapting similar mechanisms.

Server-side replication A number of geo-replicated sys-
tems offer available causally consistent data access inside
a DC with excellent scale-out by sharding [5, 6, 19, 25, 26].

Table 2 shows that server-side systems use variety of
types of metadata. COPS assigns metadata directly at
database clients, and uses explicit dependencies (a graph)
[25]. Later publications show that this approach is costly
[19, 26]. Consequently, later systems assign metadata at par-
tition replicas [19, 26], or on a designated node in the DC
[5, 35]. The location of assignment directly impacts the size
of causality metadata. In most systems, it varies with the
number of reads, with the number of dependencies, and with
the stability conditions in the system. When fewer nodes as-
sign metadata, it tends to be smaller (as in Brie), but this may
limit throughput.

Previous designs are not directly applicable to client-side
replication, because: (i) their protocols do not tolerate client
or server failures; (ii) as they assume that data is updated by
overwriting, implementing high-level confluent data types
is complex and costly (see Fig. 7); (iii) the size of their
metadata can grow uncontrollably.

Du et al. [20] make use of full stability, a special kase of
K-stability, to remove the need for dependency metadata in
messages, thereby improving throughput.

Integration with strong consistency Some operations or
objects of application may require stronger consistency,
which requires synchronous protocols [21]. For instance, we
observe that our social network application port would ben-
efit from strongly consistent support for user registration or
a password change. Prior work demonstrates that combin-
ing strong and weak consistency is possible on shared data
[24, 35]. We speculate that these techniques are applicable
to Brie, grounded on preliminary experience.

Theoretical limits Mahajan et al. [27] prove that causal
consistency is the strongest achievable model in an available,
convergent, full replication system. We conjecture that these
properties are not simultaneously achievable under partial
replication, and demonstrate how to weaken one of the live-
ness properties. Bailis et al. [7] give an argument for a sim-
ilar result for a client switching server replicas, but do not
take into account the capabilities of a client replica.

7. Conclusion
We presented the design of Brie, the first system that offers
client-side apps a local access to partial database replica with
the guarantees of geo-replicated systems.

Our experiments confirm that Brie is able to provide im-
mediate and consistent response on reads and updates on
local objects, and maintain the throughput of a server-side
replication system, or better. The novel form of metadata al-
lows the system to scale to thousands of clients with con-
stant size objects and metadata, independent of the number
of available and unavailable clients. Our fault-tolerant pro-
tocols handle failures nearly transparently.

Many of these properties are due to a common principle
demonstrated by Brie design: client buffering and controlled
staleness can absorb the cost of scalability, availability, and
consistency. Staleness cost is moderate and well separated.

12 2014/10/11

References
[1] Riak, 2010. http://basho.com/riak/.
[2] Introducing Riak 2.0: Data types, strong consistency, full-

text search, and much more, Oct. 2013. http://basho.com/
introducing-riak-2-0/.

[3] M. Ahamad, J. E. Burns, P. W. Hutto, et al. Causal memory. In
Proc. 5th Int. Workshop on Distributed Algorithms, pp. 9–30,
Delphi, Greece, Oct. 1991.

[4] P. S. Almeida and C. Baquero. Scalable eventually consistent
counters over unreliable networks. Number 1307.3207, July
2013.

[5] S. Almeida, J. Leitão, and L. Rodrigues. ChainReaction: a
causal+ consistent datastore based on Chain Replication. In
Euro. Conf. on Comp. Sys. (EuroSys), Apr. 2013.

[6] P. Bailis, A. Ghodsi, J. M. Hellerstein, et al. Bolt-on causal
consistency. In Int. Conf. on the Mgt. of Data (SIGMOD), pp.
761–772, New York, NY, USA, 2013.

[7] P. Bailis, A. Davidson, A. Fekete, et al. Highly Available
Transactions: Virtues and limitations. In Int. Conf. on Very
Large Data Bases (VLDB), Riva del Garda, Trento, Italy,
2014.

[8] P. Bailis, A. Fekete, A. Ghodsi, et al. Scalable atomic visibility
with RAMP transactions. In ACM SIGMOD Conference,
2014.

[9] P. Bailis, A. Fekete, M. J. Franklin, et al. Coordination avoid-
ance in database systems. In Int. Conf. on Very Large Data
Bases (VLDB), Kohala Coast, Hawaii, 2015. To appear.

[10] N. Belaramani, M. Dahlin, L. Gao, et al. PRACTI replication.
In Networked Sys. Design and Implem. (NSDI), pp. 59–72,
San Jose, CA, USA, May 2006.

[11] F. Benevenuto, T. Rodrigues, M. Cha, et al. Characterizing
user behavior in online social networks. In Internet Measure-
ment Conference (IMC), 2009.

[12] S. Burckhardt. Bringing TouchDevelop to the cloud. Inside
Microsoft Research Blog, Oct. 2013. http://blogs.technet.
com/b/inside_microsoft_research/archive/2013/10/28/
bringing-touchdevelop-to-the-cloud.aspx.

[13] S. Burckhardt, A. Gotsman, H. Yang, et al. Replicated data
types: Specification, verification, optimality. In Symp. on
Principles of Prog. Lang. (POPL), pp. 271–284, San Diego,
CA, USA, Jan. 2014.

[14] B. Cairns. Build collaborative apps with Google Drive
Realtime API. Google Apps Developers Blog, Mar.
2013. http://googleappsdeveloper.blogspot.com/2013/
03/build-collaborative-apps-with-google.html.

[15] B.-G. Chun, C. Curino, R. Sears, et al. Mobius: Unified
messaging and data serving for mobile apps. In Int. Conf.
on Mobile Sys., Apps. and Services (MobiSys), pp. 141–154,
New York, NY, USA, 2012.

[16] B. F. Cooper, A. Silberstein, E. Tam, et al. Benchmarking
cloud serving systems with YCSB. In Symp. on Cloud Com-
puting, pp. 143–154, Indianapolis, IN, USA, 2010.

[17] J. C. Corbett, J. Dean, M. Epstein, et al. Spanner: Google’s
globally-distributed database. In Symp. on Op. Sys. Design
and Implementation (OSDI), pp. 251–264, Hollywood, CA,
USA, Oct. 2012.

[18] G. DeCandia, D. Hastorun, M. Jampani, et al. Dynamo: Ama-
zon’s highly available key-value store. In Symp. on Op. Sys.
Principles (SOSP), volume 41 of Operating Systems Review,
pp. 205–220, Stevenson, Washington, USA, Oct. 2007.

[19] J. Du, S. Elnikety, A. Roy, et al. Orbe: Scalable causal
consistency using dependency matrices and physical clocks.
In Symp. on Cloud Computing, pp. 11:1–11:14, Santa Clara,
CA, USA, Oct. 2013.

[20] J. Du, C. Iorgulescu, A. Roy, et al. Closing the performance
gap between causal consistency and eventual consistency. In
Workshop on Principles and Practice of Eventual Consistency
(PaPEC), Amsterdam, Netherland, 2014.

[21] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasi-
bility of consistent, available, partition-tolerant web services.
SIGACT News, 33(2):51–59, 2002. ISSN 0163-5700.

[22] P. R. Johnson and R. H. Thomas. The maintenance of du-
plicate databases. Internet Request for Comments RFC 677,
Information Sciences Institute, Jan. 1976.

[23] A. Kansal, B. Urgaonkar, and S. Govindan. Using dark fiber
to displace diesel generators. In Hot Topics in Operating
Systems, Santa Ana Pueblo, NM, USA, 2013.

[24] C. Li, D. Porto, A. Clement, et al. Making geo-replicated
systems fast as possible, consistent when necessary. In Symp.
on Op. Sys. Design and Implementation (OSDI), pp. 265–278,
Hollywood, CA, USA, Oct. 2012.

[25] W. Lloyd, M. J. Freedman, M. Kaminsky, et al. Don’t settle
for eventual: scalable causal consistency for wide-area storage
with COPS. In Symp. on Op. Sys. Principles (SOSP), pp. 401–
416, Cascais, Portugal, Oct. 2011.

[26] W. Lloyd, M. J. Freedman, M. Kaminsky, et al. Stronger se-
mantics for low-latency geo-replicated storage. In Networked
Sys. Design and Implem. (NSDI), pp. 313–328, Lombard, IL,
USA, Apr. 2013.

[27] P. Mahajan, L. Alvisi, and M. Dahlin. Consistency, avail-
ability, and convergence. Technical Report UTCS TR-11-22,
Dept. of Comp. Sc., The U. of Texas at Austin, Austin, TX,
USA, 2011.

[28] P. Mahajan, S. Setty, S. Lee, et al. Depot: Cloud storage
with minimal trust. Trans. on Computer Systems, 29(4):12:1–
12:38, Dec. 2011.

[29] J. Parker, D.S., G. J. Popek, G. Rudisin, et al. Detection of
mutual inconsistency in distributed systems. IEEE Trans. on
Soft. Engin., SE-9(3):240–247, May 1983.

[30] K. Petersen, M. J. Spreitzer, D. B. Terry, et al. Flexible update
propagation for weakly consistent replication. In Symp. on
Op. Sys. Principles (SOSP), pp. 288–301, Saint Malo, Oct.
1997.

[31] Redis. Redis is an open source, BSD licensed, advanced key-
value store. http://redis.io, May 2014.

[32] N. Schiper, P. Sutra, and F. Pedone. P-Store: Genuine partial
replication in wide area networks. In Symp. on Reliable Dist.
Sys. (SRDS), pp. 214–224, New Dehli, India, Oct. 2010.

[33] M. Shapiro, N. Preguiça, C. Baquero, et al. A comprehen-
sive study of Convergent and Commutative Replicated Data
Types. Number 7506, Rocquencourt, France, Jan. 2011.

13 2014/10/11

[34] M. Shapiro, N. Preguiça, C. Baquero, et al. Conflict-free
replicated data types. In Int. Symp. on Stabilization, Safety,
and Security of Distributed Systems (SSS), volume 6976 of
Lecture Notes in Comp. Sc., pp. 386–400, Grenoble, France,
Oct. 2011.

[35] Y. Sovran, R. Power, M. K. Aguilera, et al. Transactional
storage for geo-replicated systems. In Symp. on Op. Sys.
Principles (SOSP), pp. 385–400, Cascais, Portugal, Oct. 2011.

[36] D. B. Terry, A. J. Demers, K. Petersen, et al. Session guar-
antees for weakly consistent replicated data. In Int. Conf. on
Para. and Dist. Info. Sys. (PDIS), pp. 140–149, Austin, Texas,
USA, Sept. 1994.

14 2014/10/11

B PAPERS UNDER SUBMISSION AND TECHNICAL REPORTS

B.4 Valter Balegas, Mahsa Najafzadeh, Sérgio Duarte, Carla
Ferreira, Rodrigo Rodrigues, Marc Shapiro, Nuno Preguiça.
Extending Eventually Consistent Cloud Stores for En-
forcing Numeric Invariants. Internal technical report.

SyncFree Deliverable D.3.1(v0.1), November 17, 2014, Page 104

Extending Eventually Consistent Cloud Stores for
Enforcing Numeric Invariants

(Research paper / primary author is a student)

Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Nuno Preguiça
CITI/FCT/Universidade Nova de Lisboa

Marc Shapiro, Mahsa Najafzadeh
INRIA / LIP6

ABSTRACT
Geo-replication based on eventually consistent data stores is a widely
used mechanism for improving the user experience in Internet ser-
vices. Furthermore, recent work on commutative data types al-
lows for these storage systems to provide seamless reconciliation
for special purpose data types, such as counters. However, impor-
tant limitations of eventual consistency still need to be addressed
by the applications themselves, namely maintaining numeric in-
variants across all replicas.

In this paper, we present a solution to support numeric invariants
in geo-replicated databases under eventual consistency guarantees,
and discuss alternative middleware designs to extend existing cloud
stores with support for the enforcement of numeric invariants. Our
approach borrows ideas from escrow transactions, but through sev-
eral novel concepts, we are able to make them decentralized, fault-
tolerant and fast. The solution is supported by a new CRDT, the
bounded counter, that maintains the necessary information for en-
forcing numeric invariants in eventual consistent data stores, and a
middleware that can be layered on top of existing systems, enrich-
ing them with numeric invariants. We used Riak, a production data
store, as the use case to test the feasibility of our solution.

Our evaluation shows that our designs can enforce numeric in-
variants with lower latency and higher scalability that existing solu-
tions than rely on some form of strong consistency and successfully
reduces the tension between consistency and availability.

1 Introduction
Scalable storage systems with a simple interface providing an ex-
tended version of a key/value store have emerged as the platform of
choice for providing online services that operate on a global scale,
such as Facebook, Amazon, or Yahoo! [9, 11, 15].

In this context, a common technique for improving the user ex-
perience is geo-replication [9, 11, 16, 18, 19, 26], i.e., maintaining
copies of application data and logic in multiple data centers scat-
tered across the globe. This decreases the latency for handling user

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

requests by routing them to nearby data centers, but at the expense
of resorting to weaker data consistency guarantees, which avoid
costly replica coordination for executing operations. When exe-
cuting under such weaker consistency models, applications have to
deal with concurrent operations executing without being aware of
each other, which implies that a merge strategy is required for rec-
onciling concurrent updates. A common approach is to rely on a
last-writer-wins strategy [15, 18, 19], but this strategy is not appro-
priate in all situations. A prominent example is the proper handling
of counters, which are not only increasingly part of the interface of
widely used storage systems [2, 3], but also a useful abstraction for
implementing features such as like buttons, votes and ad and page
views. In the case of counters, using a last-writer-wins strategy
would lead to lost updates, and therefore breaking the intended se-
mantics. To address this limitation, various systems added support
for counters with a merge strategy specific to this data type. In par-
ticular, Cassandra now supports counters [2], DynamoDB has na-
tive support for atomic counters, and Riak (an open-source NoSQL
storage system used by 25% of the Furtune 50 [1]) recently intro-
duced support for conflict-free data types (CRDT) [23], including
counters [3] and sets.

Even though these approaches provide a principled handling of
concurrent updates to counter objects, they fall short on support-
ing the enforcement of crucial invariants or database integrity con-
straints, which are often required for maintaining correct opera-
tion [16]. To give a real-world example, our collaboration with a
large game development company, whose games were downloaded
over a billion times, led us to understand that they require a precise
limit on the number of times an ad is impressed [private commu-
nication]. However, since their systems are built on top of Riak,
which only supports weakly consistent counters, they are not able
to directly enforce that condition. This is because counter updates
can occur concurrently, and therefore it is not possible to detect if
the limit is exceeded before the operation concludes.

Maintaining this type of invariants would be trivial in systems
that offer strong consistency guarantees, namely those that serial-
ize all updates, and therefore preclude that two operations execute
without seeing the effects of one another [10, 16]. The problem
with these systems is that they require coordination among replicas,
leading to an increased latency, which, in a geo-replicated scenario,
may amount to hundreds of milliseconds, with the consequent im-
pact on application usability [12, 22].

In this paper we show that it is possible to achieve the best of
both worlds, i.e., that fast geo-replicated operations on counters
can coexist with strong invariants. To this end, we propose a novel
abstract data type called a Bounded Counter. This replicated ob-

ject, like conventional CRDTs [23], allows for operations to be
executed locally, automatically merges concurrent updates, and, in
contrast to previous CRDTs, also enforces numeric invariants while
avoiding any coordination in most cases. Implementing Bounded
Counter in fast and portable way required overcoming a series of
challenges, which form the main technical contributions of this
work.

First, we extend some of the ideas behind escrow transactions
[20], which partition the difference between the current value of
a counter and the limit to be enforced among existing replicas,
who can locally execute operations that do not exceed their al-
located part. Unlike previous solutions that include some central
authority [20, 21, 24] and are often based on synchronous interac-
tions between nodes, our approach is completely decentralized and
asynchronous, relying on maintaining the necessary information
for enforcing the invariant in a new CRDT – the Bounded Counter
CRDT. This allows for replicas to synchronize peer-to-peer and
asynchronously, thus minimizing the deployment requirements and
avoiding situations where the temporary unreachability of the mas-
ter data center can prevent operations from making progress

Second, we present two middleware designs for extending ex-
isting cloud stores with support for enforcing numeric invariants
using the Bounded Counter CRDT. While the first design is imple-
mented using only a client-side library, the second includes server
side components deployed in a distributed hash table. Both designs
require only that the underlying cloud store executes operations se-
quentially in each replica (not necessarily by the same order across
replicas) and that it provides a reconciliation mechanism that allows
for merging concurrent updates. This makes our solutions generic
and portable, but raise significant challenges in terms of their de-
sign, mostly for achieving performance comparable with accessing
directly to the underlying cloud store. We discuss how to deploy
our middleware designs on eventually consistent cloud stores and
present and evaluate two prototypes that run on top of Riak.

The evaluation of our prototypes shows that: 1. when compared
to using weak consistency, our approach exhibits similar latency,
while guaranteeing that invariants are not broken; 2. when com-
pared to using a strong consistency model, our approach can en-
force invariants without incurring in long latency for coordination
among replicas; 3. the client library design performs well under
low contention, but does not scale when contention on the same
counter is large. 4. the server based middleware design scales well
horizontally, providing higher throughput than weak consistency by
relying in a set of techniques to minimize the number of operations
executed in the underlying storage system.

The remaining of the paper is organized as follows: Section 2
presents the proposed model; Section 3 introduces the Bounded
Counter CRDT; Section 4 discusses general requirements for us-
ing Bounded Counters and Section 5 presents two middleware de-
signs that extend Riak with numeric invariant preservation; Section
6 discuss extensions to the proposed solution and Section 7 evalu-
ates our prototypes; Section 8 discusses related work; and Section
9 concludes the paper with some final remarks.

2 System Overview

In this section we present an overview of the solution proposed in
this paper for providing bounded counters to application servers
running in geo-replicated settings.

% Regular data operations
get(key): object | fail
put(key, object): ok | fail

% Bounded Counters operations
create(key, type, bound): ok | error
read(key): integer | error
inc(key, delta, flag): ok | fail | retry
dec(key, delta, flag): ok | fail | retry

Figure 1: System API.

2.1 Assumptions
We assume a typical geo-replicated scenario, with copies of appli-
cation data and logic maintained in multiple data centers scattered
across the globe. End clients contact the closest data center for ex-
ecuting application operations in the application server running in
that data center. The execution of this application logic leads to
issuing a sequence of operations on the data storage system, where
application data resides.

The design of Bounded Counter only requires very weak as-
sumptions for its correctness to hold. In particular, we consider
that system processes (or nodes) are connected by an asynchronous
network (i.e., subject to arbitrary delays, including partitions). We
assume a finite set Π = p0, p1, . . . , pn−1 of processes who may fail
by crashing. A crashed process may remain crashed forever, or may
recover with its persistent memory intact. A non-crashed process
is said to be correct.

Bounded Counters can by layered on top of any weakly consis-
tent storage system, with the only requirement that each replica se-
rializes all operations that it receives, though different replicas can
serialize the operations in a different order. Furthermore, the un-
derlying storage system must provide a reconciliation mechanism
that allows for merging concurrent updates.

For simplicity, our presentation considers a single data object
replicated in all processes of Π, with ri representing the replica of
the object at process pi. The model trivially generalizes to the case
where multiple data objects exist – in such case, for each object o,
there is a set Πo of the processes that replicate o. For each object
o, we need to consider only the set Πo. The main challenge in
this case is how to handle invariants involving the sum of various
counters. We discuss how to solve this in Section 6.

2.2 System API
Our middleware system is built on top of a key-value store. Figure
1 summarizes the programming interface of the system, with the
usual get and put operations for accessing regular data, and addi-
tional operation for creating a new Bounded Counter, reading its
current state, and incrementing or decrementing its value. As any
other data, bounded counters are identified in all operations by an
application-defined opaque key. Our goal is to ensure that these
counters are able to maintain a numeric invariant, while also allow-
ing operations to execute by contacting a single single (local) data
center.

The create operation creates a new bounded counter. The type ar-
gument specifies if it is an upper- or a lower- bounded counter, and
the bound argument provides the global invariant limit to be main-
tained – e.g., create(“X”, upper, 1000) creates a bounded counter
that maintains the invariant that the value must be smaller or equal
to 1000. The counter is initialized to the value of the bound.

The read operation returns the current value of the given counter.
Since the returned value is computed based on local information

with respect to the underlying data store, it may not be globally
accurate. To update a counter, the application submits inc or dec
operations. These operations execute on the local replica and, if
they succeed, it is guaranteed that the numeric global invariant of
the counter is preserved and its value remains within the allowed
bounds. Conversely, inc and dec operations fail when the global
invariant forbids the local execution of the offending operation. In
such cases, the runtime provides a hint to the application regarding
the possibility of sucessfully executing the operation if other repli-
cas are contacted. These operations also include a flag that allows
applications to request that the system contacts other replicas to try
to successfully execute the operation before reporting a failure.

2.3 Consistency Guarantees
The proposed solution provides an extended eventual consistency
model that guarantees invariant preservation for counters.

In particular, the eventual consistency guarantee means that the
outcome of each operation reflects the effects of only a subset of the
operations that all clients have previously invoked – these are the
operations that have already been executed by the replica that the
client has contacted. However, for each operation that successfully
returns at a client, there is a point in time after which its effect
becomes visible to every operation that is invoked after that time,
i.e., operations are eventually executed by all replicas.

In terms of the invariant preservation guarantee, this means pre-
cisely that the bounds on the counter value are never violated, nei-
ther locally nor globally. By locally, this means that the bounds
must be obeyed when taking into account the subset of the opera-
tions reflected by an operation that client invokes. In other words,
the subset of operations seen by the replica where each operation
executes must obey the following equation:

lower bound ≤ initial value +∑ inc−∑dec≤ upper bound.

By globally, this means that, at any instant in the execution of the
system, when considering the union of all the operations that have
been executed at all sites, the same bound must hold.

Note that the notion of causality is orthogonal to our design and
guarantees, in the sense that if the underlying storage system that
we build upon offered causal consistency, then we would also pro-
vide numeric invariant-preserving causal consistency.

2.4 Solution Overview
To implement the API defined in the previous subsection, our solu-
tion borrows ideas from the escrow transactional model [20]. The
key idea of this model is to consider that the difference between the
value of a counter and its bound can be seen as a set of rights to
execute operations. For example, in a counter, n, with initial value
n = 40 and invariant n ≥ 10, there are 30 (40− 10) rights to exe-
cute decrement operations. Executing dec(5) consumes 5 of these
rights. Executing inc(5) creates 5 rights. These rights can be split
among the replicas of the counter – e.g. if there are 3 replicas, each
replica can be assigned 10 rights. If the rights needed to execute
some operation exist in the local replica, the operation can execute
safely locally, knowing that the global invariant will not be broken
– in the previous example, if the decrements of each replica are less
or equal to 10, it follows immediately that the total decrements are
at most 30 and the invariant still holds. If not enough rights exist,
then either the operation fails or additional rights must be obtained
from other replicas.

Our solution encompasses two components that work together to
achieve the goal of our system: a novel data structure, the Bounded
Counter CRDT, to maintain the necessary information for locally

verifying whether it is safe to execute an operation or not; and a
middleware layer to store and update instances of this data struc-
ture in the underlying eventually consistent cloud store. The first
component is detailed in section 3, while alternative designs to the
second part are detailed in section 4.

3 Design of Bounded Counter CRDT
This section discusses the design of Bounded Counter, a CRDT that
enforces numeric invariants without requiring coordination during
most operation executions. Instead, coordination is normally exe-
cuted outside of the normal execution flow of an operation.

3.1 CRDT basics
Conflict-free replicated data types (CRDTs) [23] are a class of dis-
tributed data types that allow replicas to be modified without co-
ordination while guaranteeing that replicas converge to the same
correct value after all updates are propagated and executed in all
replicas.

Two types of CRDTs have been defined: operation-based CRDTs,
where modifications are propagated as operations (or patches) and
executed on every replica; and state-based CRDTs, where modifi-
cations are propagated as states, and merged with the state of every
replica.

In the design of CRDTs, a client of the object may invoke an
operation at some replica of its choice, which is called the source
replica of the operation. Operations are split into queries and up-
dates. A query reads the state of the object and executes entirely at
the source. In turn, an update is split into two functions: a prepare
and a downstream function (similarly to the generator and shadow
operations in RedBlue consistency [16]). The prepare function has
no side-effects and executes only at the source replica. Its goal is
to identify the changes that must be performed based on the current
CRDT state, which are encapsulated in the downstream function.
This function applies the identified changes to the CRDT state. At
the source replica, the prepare and downstream functions execute
atomically in isolation with respect to other operations.

Given this basic design, the operation and state-based designs
can be distinguished as follows. In the operation-based mode, the
downstream function is propagated and eventually executed in all
replicas, whereas in the state-based mode, the downstream only ex-
ecutes at the source replica, and its replication in implicitly achieved
through pairwise replica synchronization: replica ri incorporates
the effects of all operations executed by some other replica r j by
merging its state with the state of the remote replica (by executing
the merge function).

It has been proven that a sufficient condition for guaranteeing
the convergence of an operation-based CRDT is that all replicas
execute all operations and that all operations commute [23].

To define similar conditions for state-based CRDTs, we need to
introduce some definitions. A join semi-lattice (or just semi-lattice)
is a partial order≤ equipped with a least upper bound (LUB) t for
all pairs: m = xt y is a Least Upper Bound of {x,y} under ≤ iff
x≤ m∧ y≤ m∧∀m′,x≤ m′∧ y≤ m′⇒ m≤ m′.

Given these definitions, a sufficient condition for guaranteeing
that all replicas of a state-based CRDT converge is that the object
conforms the properties of a monotonic semi-lattice object [23], in
which: (i) The set S of possible states forms a semi-lattice ordered
by ≤. (ii) The result of merging state s with remote state s′ is the
result of computing the LUB of the two states in the semi-lattice
of state, i.e., merge(s,s′) = st s′. (iii) State is monotonically non-
decreasing across updates, i.e., for any update u, s≤ u(s).

As a large number of cloud stores synchronize their replicas
by propagating the state of the database objects, it was natural to
design Bounded Counter as a state-based CRDT. However, when
compared with state-based synchronization, the biggest benefit of
operation-based synchronization is that the communication cost for
synchronizing the state when one operation is executed might be
smaller – depending on the size of the operation and the object
state. In our case, as the state of a Bounded Counter is O(n2)
(where n is the number of data centers), and additionally support-
ing operation-based synchronization involved no relevant complex-
ity, we decided to bring together both synchronization models and
design Bounded Counter as a mixed state- and operation-based
CRDT.

For an object in the mixed state- and object-based model to con-
verge, the sufficient conditions encompass not only both the con-
ditions for the state- and the operation-based models, but are also
augmented with the requisite of idempotence of operations. Even
though the formalization of the mixed model and of these sufficient
conditions is outside of the scope of this paper, we provide an intu-
ition for the reason why these conditions are sufficient. When con-
sidering the semi-lattice formed by the possible states of a CRDT,
executing a new operation does an inflation by moving the current
state of a replica to a new state higher in the semi-lattice. Thus,
each node of the semi-lattice corresponds to a state that reflects
the execution of a set of operations. In the state-based model, the
merging of states reflecting concurrent operations can be done in
any order, with the state resulting from all merges being the single
LUB of all states. For achieving the same state when executing
operations, concurrent operations need to commute, to guarantee
that the same state is achieved independently of the execution or-
der. Finally, idempotence for operation execution is necessary as
executing an operation to a state that already reflects that operation
must have no side-effects – this follows immediately from the fact
that the LUB of two values where one of the values is greater than
the other is the greatest value.

3.2 Bounded Counter CRDT
Next, we detail the design of a Bounded Counter for maintaining
the invariant larger or equal to K. The pseudocode for this design
is presented in Figure 2.

Bounded Counter state. The Bounded Counter must maintain
the necessary information to verify whether it is safe to locally ex-
ecute operations or not. As our approach is inspired in the escrow
transactional model [20], as discussed in section 2.4, this informa-
tion consists of the rights that each replica holds.

To maintain this information in a way that makes it simple to
merge the state of two replicas, each replica maintains two data
structures: R, with information about the available rights; and U ,
with the used rights. Given that n replicas exist, R is a matrix of n
lines by n columns, with one line and one column for each replica;
U is a vector with n lines, i.e., one entry for each replica.

The line for replica ri maintains the following information: R[i][i]
records the increments executed at source replica ri, which define
an equal number of rights initially assigned to replica ri; R[i][j]
records the rights transfered from replica ri to replica r j; U [i] records
the successful decrements executed at source replica ri, which con-
sume an equal number of rights.

Operations. When a counter is created, we assume that the ini-
tial value of the counter is equal to the minimum value allowed by

payload integer[n][n] R, integer[n] U , integer min
initial [[0,0,...,0], ..., [0,0,...,0]], [0,0,...,0], K

query value () : integer v
let v = min+ ∑

i∈Ids
R[i][i]− ∑

i∈Ids
U [i]

query localRights () : integer v
let id = repId() %Id of the local replica
let v = R[id][id]+ ∑

i6=id
R[i][id]− ∑

i 6=id
R[id][i]−U [id]

update increment (integer n)
prepare (n)

let id = repId()
let nv := R[id][id]+n

effect (id,nv)
let R[id][id] := max(R[id][id],nv)

update decrement (integer n)
pre localRights()≥ n
prepare (n)

let id = repId()
let nu :=U [id]+n

effect (id,nu)
let U [id] := max(U [id],nu)

update transfer (integer n, replicaId to): boolean b
pre localRights()≥ n
prepare (n)

let from = repId()
let nv := R[from][to]+n

effect (from, to,nv)
let R[from][to] := max(R[from][to],nv)

update merge (X,Y): payload Z
let Z.P[i][j] = max(X .P[i][j],Y.P[i][j]), ∀i, j ∈ Ids
let Z.U [i] = max(X .R[i],Y.R[i]), ∀i ∈ Ids

Figure 2: Bounded Counter CRDT for maintaining the invari-
ant larger or equal to K.

the invariant, K. Thus, no rights are assigned to any replica and
both R and U are initialized with all entries being equal to 0. To
overcome the limiting assumption of the initial value being K, we
can immediately execute increment operations in the freshly cre-
ated Bounded Counter. Figure 3 shows an example of the state of
a Bounded Counter for maintaining the invariant larger or equal to
10, with initial value 40. This initial value led to the creation of 30
rights assigned to replica r0 – this value is recorded in R[0][0].

The increment prepare function records the identifier of the source
replica and the new value for the sum of increments of that replica.
The downstream function just updates the respective entry of the
R matrix with the new value. The use of max in the downstream
function trivially guarantees both the commutativity and idempo-
tence of the operation, which is required for convergence. In the
example of Figure 3, the value of R[1][1] is 1, which is the result of
incrementing by 1 the counter in replica r1.

For decrementing the counter, it is necessary to verify if the
source replica rid has enough rights to execute the operation. This
is achieved by computing the local rights (localRights) by adding to
the increment operations executed in the local replica, R[id][id], the
rights transferred from other replicas to the source replica, R[i][id],∀i 6=
id, and subtracting the rights transferred by the source replica to
other replicas, R[id][i],∀i 6= id.

The decrement operation fails if not enough local rights exist –

!"# $"# $"#
"# $# "#
"# "# "#

%"#
%$#
%&#

%"######%$######%&#!"
'#
(#
&#

#"

Figure 3: Example of the state of Bounded Counter for main-
taining the invariant larger or equal to 10.

we discuss later how this failure can be handled. Otherwise, the
prepare records the identifier of the source replica and the new
value for the sum of decrement operations of that replica. The
downstream operation just updates the respective entry of the R
matrix with the new value. In the example of Figure 3, the values
of U reflect the execution of 5, 4 and 2 decrements in replicas r0,
r1 and r2, respectively.

The operation to retrieve the current value consists of adding
to the minimum value, K, the sum of the increment operations,
recorded in R[i][i],∀i, and subtracting the sum of the decrement op-
erations, recorded in U [i],∀i. In the example of Figure 3, the current
value is 30 (obtained from 10+(30+1)− (5+4+2)).

One replica, ri, may transfer to another replica, r j, rights to ex-
ecute decrements. This is achieved by recording that information
in the R matrix, namely by updating the entry R[i][j] – as in incre-
ment and decrement, the prepare operation records the necessary
information and the downstream updates the data. In the example
of Figure 3, transfers of 10 rights from r0 to each of r1 and r2 are
recorded in the values of R[0][1] and R[0][2]

Replica synchronization. Our choice of a mixed operation
and state-based design implies that replicas can be updated both by
executing downstream functions or by synchronizing its state with
other replicas, by using the merge operation. This dual synchro-
nization model allows the system to use the most appropriate syn-
chronization mechanism at each moment. For example, for keeping
replicas closely synchronized, replicas may be updated by propa-
gating downstream operations using some best-effort communica-
tion mechanism. However, when a fault is detected, or when a
replica becomes partitioned for a while, the replica state is syn-
chronized from other replica by doing state-based synchronization,
which is more efficient when replicas have diverged significantly.

Correctness. For showing the correctness of Bounded Counter,
it is necessary to show that all replicas of Bounded Counter eventu-
ally converge to the same state and that the execution of concurrent
operations will not break the invariant. We now informally show
that these properties are satisfied.

For showing that replicas eventually converge to the same state,
we can show that the specification satisfies the requirements for the
mixed state- and operation-based CRDTs. Regarding the operation-
based part, it is necessary to guarantee that concurrent downstream
functions commute and are idempotent. The use of max when up-
dating the elements of R (in increment and merge) or U (in decre-
ment) trivially guarantees both commutativity and idempotence, as
the maximum value will be stored after applying all operations in
any order. The use of max even allows for optimizing operation
propagation, as only the latest operation that modifies some ele-
ment needs to be propagated.

Regarding state, it is necessary to prove that the specification

is a monotonic semi-lattice object. As the elements of R and U
are monotonically increasing (since operations never decrement the
value of these variables), the semi-lattice properties are immedi-
ately satisfied – two states, s0,s1, are related by a partial order re-
lation, s0 ≤ s1, whenever all values of R and U in s1 are greater
or equal to the corresponding values in s0 (i.e., ∀i, j,R0[i][j] ≤
R1[i][j]∧U0[i]≤U1[i]).

To guarantee that the invariant is not broken, it is necessary to
guarantee that a replica does not execute an operation (decrement
or transfer) without holding enough rights to do it. As operations
verify if the local replica holds enough rights before execution, it
is necessary to prove that if a replica believe it has N rights, it
owns at least N rights. The operations guarantee that line i of R
and U is only updated by operations with source replica ri. As the
downstream function executes immediately at replica ri, replica ri
necessarily has the most recent value for line i of both R and U . As
rights of replica ri are consumed by decrement operations, recorded
in U [i], and transfer operations, recorded in R[i][j], it follows im-
mediately that replica ri knows of all rights it has consumed. Thus,
when computing the local rights, the value computed locally is al-
ways conservative (as replica ri may not know yet of some transfer
to ri executed by some other replica). This guarantees that the in-
variant is not broken when operations execute locally in a single
replica.

Extensions. It is possible to define a Bounded Counter that en-
forces an invariant of the form smaller or equal to K by using a sim-
ilar approach, where rights represent the possibility of executing
increment operations instead of decrement operations. The specifi-
cation would be similar to the one presented in Figure 2, with the
necessary adaptations to the different meaning of the rights.

A Bounded Counter that can maintain an invariant of the form
larger or equal to K0 and smaller or equal to K1 can be created by
combining the information of two Bounded Counters, one for each
invariant, and updating both on each operation.

3.3 Transferring Rights
For being able to guarantee the local execution of an operation that
may violate an invariant in a given replica, it is necessary that the
replica has enough rights. Given that it is impossible to anticipate
the rights needed by each operation, it is necessary to provide a
mechanism for exchanging rights between replicas. Our Bounded
Counter provides the transfer operation for this purpose.

The are two possible strategies for executing this operation: it
can be used to exchange rights proactively, to maintain a similar
level (or an expected distribution) of rights among replicas; or on-
demand, by fetching rights whenever they are necessary at some
replica.

In our prototype, we have implemented both strategies for ex-
changing rights. However, the use of on-demand transfers is op-
tional and controlled by the programmer: these can be activated by
setting the flag parameter in the decrement operation, as shown in
the system API presented in Figure 1. When the flag is set, and
if the local replica ri does not hold enough rights to guarantee the
execution of a decrement operation, the system tries to obtain ad-
ditional rights from other replicas. To this end, replica ri contacts
some other replica r j to request the execution of a transfer oper-
ation at r j. If the transfer operation executes successfully, replica
ri also synchronizes with replica r j. When enough rights are gath-
ered by replica ri, the decrement operation executes locally. If not
enough rights can be gathered, an error is reported to the appli-

cation – either fail, if, according to the local state, there are not
enough rights in all replicas to execute the operation; or retry, oth-
erwise.

For deciding which replica to contact, we can leverage the state
of Bounded Counter. Although the information about rights of
other replicas is not precise, by targeting the replicas that are be-
lieved to have more available rights, we expect a high probability
of having a successful transfer.

A property of the way transfer is implemented is that it does
not require any strong synchronization between the replica asking
for rights and the one providing the rights. Thus, the request for
a transfer and synchronization of the information about transferred
values can be done completely asynchronously, which simplifies
the system design.

4 Middleware Requirements
Next, we discuss how to layer Bounded Counter on top of an ex-
isting storage system. In our design, we can achieve this while
only requiring two properties from the underlying cloud store. The
first is to be able to execute operations in isolation at each replica.
The second requirement is to support a replication model with no
lost updates, either by relying on the execution of all operations in
all replicas, or by synchronizing replicas through the execution of
a merge procedure. We analyze each requirement independently
next.

4.1 Isolation for operation execution
Our design requires, both at the source replica (which executes pre-
pare and downstream functions) and at downstream replicas (which
execute the downstream function), that operations execute atomi-
cally under strong isolation. This means that a function can never
observe an intermediate state of other functions, i.e., it either sees
all the effects of another function or none at all. A possible way
to achieve this is to execute operations sequentially at each replica
(even if they execute in a different order at different replicas).

Some storage systems provide an API that allows applications to
define arbitrary operations that execute in isolation in the replicas
– e.g., Gemini [16] and Bayou [27]. Such systems satisfy immedi-
ately the isolation requirement.

Other systems provide a conditional write operation where a write
fails depending on some condition that is evaluated when the write
executes – e.g., PNUTS [9], Walter [26], DynamoDB [11] and
Riak [8]. This functionality can be used to provide the isolation
requirement necessary for the Bounded Counter by reading the
counter object and writing a modified version only if the counter
has not been modified since it has been read.

4.2 Replication with no lost updates
A large number of cloud storage systems provide replication so-
lutions with no lost updates. In systems that propagate operations
among replicas (e.g., Gemini, Bayou) this is immediate – in such
systems, we could deploy Bounded Counters by executing the down-
stream function in all replicas.

In systems that propagate the state of objects among replicas,
some of them support only a last writer wins policy that can lead to
lost updates – e.g., Cassandra [15]. For such systems, it is not possi-
ble to easily deploy Bounded Counters. However, most cloud stores
provide support for merging concurrent updates, either by expos-
ing the concurrent versions to the applications – e.g. Dynamo [11],
Riak [8] – or by automatically applying application-defined merge

!"#$%

&'%(%
!"#$%

&'%)%

!"#$%

&'%*%

+,
,%

'-
".
/0
%-"
1% !"#$%&#

#
&'()#

Figure 4: Client-based middleware for deploying Bounded
Counters.

procedures when concurrent updates are detected – e.g. COPS [18].
In such systems, deploying Bounded Counter is immediate, since it
allows the merge operation defined for the Bounded Counter CRDT
to be used for merging concurrent versions.

5 Extending Riak with Bounded Counters
We now discuss how we have extended the Riak cloud database to
include Bounded Counters using a middleware solution. We start
with an overview of the functionalities of Riak that are relevant for
the deployment of Bounded Counters and then discuss two alter-
native designs for the deployment. We conclude this subsection
by discussing how the proposed solutions could be used with other
cloud stores.

5.1 Overview of Riak 2.0
Riak is a key/value store inspired in Dynamo [11], built on top of a
distributed hash table (DHT). It provides an API supporting a read
and a write operation. A write associates a new value with a key,
and a read returns the value(s) associated with the key.

Riak supports geo-replication in its Enterprise Edition by de-
ploying a Riak DHT in each of the data centers. Data centers
are kept synchronized using two mechanisms: (1) a continuous
synchronization mechanism that propagates entries (i.e., key/value
pairs) modified in one data center to the other data centers; (2) a pe-
riodic synchronization mechanism that synchronizes all entries of
one data center with some other data center 1. Riak handles concur-
rent updates by keeping multiple versions and exposing concurrent
writes in read operations (similarly to how write/write conflicts are
handled in a single data center).

The latest version of Riak introduces a conditional writing mode
where a write fails if a concurrent update has been executed. This
operation mode, dubbed strong consistency, is currently implemented
using a primary/backup solution and works only in a single data
center. Riak also includes native support for storing CRDTs, dubbed
Riak data types. We have not relied on this mechanism for deploy-
ing Bounded Counter, as Bounded Counter would require modfy-
ing Riak to combine its data types with conditional writes, which
was not supported in the version we were using. Thus, we have
implemented our solution as a middleware layer between the client
application and the Riak database.

5.2 Alternative 1: Client-based middleware
Our first design is based on a client-side middleware, as depicted
in Figure 4. Supporting operations on Bounded Counters is fairly
1The periodic synchronization mechanism relies on computing
Merkle trees for computing a delta between the state of the two
sites efficiently.

!"#$%

&'%(%

)*
*%

'+
",
-.
%+"
/%

!"#$%&# 0'%1#2,3%

'(#$%&#
&'%4%

&'%5%
)*+,&-.*#
&/,0#

Figure 5: Server-based middleware for deploying Bounded
Counters.

simple, given the functionality provided by Riak.
The state of a Bounded Counter CRDT is stored as an opaque

object in the Riak database. Rights for executing operations in a
Bounded Counter are associated with each data center, i.e., each
data center is considered as a single replica for a Bounded Counter.
An increment (resp. decrement) executes in the client library by
first reading the current value of the counter (executing a get opera-
tion in Riak), then executing the increment (resp. decrement) oper-
ation in the Bounded Counter CRDT and writing the new value of
the counter back into the database using conditional writing. If the
operation in the CRDT fails, the client can try to obtain additional
rights by requesting the execution of a transfer operation from an-
other data center. If the operation in the CRDT succeeds but the
conditional write fails, the operation must be re-executed until it
succeeds.

Given that updates are serialized in each data center through the
conditional writing mechanism, concurrent updates to the same
Bounded Counter can only appear due to geo-replication. If this
is the case, then concurrent versions can be merged by the client
library when reading the counter.

Any solution that propagates the updated values among data cen-
ters could be used for geo-replication, since the only requirement
is that the solution detects and exposes concurrent versions. As the
current version of Riak does not support multi-data center replica-
tion for objects that use strong consistency, we had to implement a
custom synchronization mechanism for Bounded Counters (while
other objects rely on normal Riak replication). This custom syn-
chronization mechanism forwards counters to other data centers
periodically. When a counter is received in the remote data center,
its value is merged with the local version. Thus, when using this
custom synchronization mechanism, we do not rely on the fact that
Riak exposes the versions of concurrent updates, as in each data
center all updates are serialized and remote updates are merged be-
fore writing the new state to Riak.

This deployment strategy has an important limitation: the condi-
tional writing mechanism for serializing operation execution works
well under low load, but leads to an increased number of failed
writes when the load increases. To address this issue, we present a
deployment strategy based on a server-based middleware.

5.3 Alternative 2: Server-based middleware
Our server-based middleware for deploying Bounded Counters ad-
dresses the above mentioned limitation of the client-based solution
by serializing in the middleware all operations executed in each
data center for each counter. To this end, the middleware is built
combining a client library and a server-based middleware deployed
using a DHT – our prototype uses the riak_core DHT [13]. The

DHT is deployed in the same nodes used by the Riak database, as
depicted in Figure 5. Each DHT node is responsible for handling
all requests for a subset of the counters, i.e., the client library calls
the DHT node when executing Bounded Counter operations. For
operations on regular objects, the client library calls directly Riak
(without contacting DHT nodes).

When an application wants to execute an operation in a counter,
the operation is sent to the DHT node responsible for that counter.
The DHT node executes the operation running the steps described
in the previous deployment strategy (it reads the counter from Riak,
executes the operation in the CRDT and writes back the new value
using conditional write). As a single node executes all operations
for each counter, no concurrent writes will typically exist and con-
ditional writes will tend to succeed.

When a new nodes enters the DHT or some node fails, the DHT
is automatically reconfigured. During these reconfiguration peri-
ods, it is possible that two nodes process two different messages
concurrently. To guarantee correctness in this case, our middle-
ware uses conditional writes when writing the modified Bounded
Counter CRDT back to the Riak database. Thus, if two nodes con-
currently try to update the same Bounded Counter CRDT, one of
the operations fails.

As in the previous design, our middleware could use the built-
in geo-replication synchronization solutions available in Riak pro-
vided they worked with conditional writes. Since in the version
we were using this was not the case, we had to implement a cus-
tom replication mechanism as in the previous design. For Bounded
Counters, each DHT node periodically propagates entries to the
DHT nodes in other data centers – with this approach, each syn-
chronization can include the effects of a sequence of operations,
thus reducing the communication overhead. For other objects, we
rely on normal built-in Riak multi-data center replication. As in
the previous version, our design does not need to rely on the fact
that Riak exposes concurrent udpates, as concurrent updates may
occur only across data centers and the synchronization mechanism
automatically merges the local and remote state of counters.

Optimizations. Our prototype includes a number of optimiza-
tion to improve its efficiency. The first optimization is to cache
Bounded Counter CRDTs. This allows us to reduce the number of
Riak operations necessary for processing each update on a Bounded
Counter from two to one – only the write is necessary.

Under high contention in a Bounded Counter, the simple ap-
proach described is not very efficient, as one operation must com-
plete before the next operation starts being processed. As pro-
cessing an update requires writing the modified Bounded Counter
CRDT back in the Riak database, which involves contacting remote
nodes, each operation can take a few miliseconds to complete. To
improve throughput, while a remote write to Riak is being done, the
operations that were received are executed in the local copy of the
Bounded Counter CRDT. If the operation fails when it is executed
in the CRDT, the result is immediately returned to the client. Other-
wise, no result is immediately returned and the operation becomes
pending. When the previous write to the Riak database completes,
the local version of the Bounded Counter CRDT is written in the
Riak database – this version includes the effects of all pending op-
erations. If the conditional write succeeds, all pending operations
complete by returning success to the clients. Otherwise, clients are
notified of the failure.

6 Extensions

In this section we discuss extensions to our middleware designs.

6.1 Supporting Other Cloud Stores
As discussed in Section 4, Bounded Counter CRDTs can be imme-
diately used in a system that provides isolation for update execution
and that supports replication with no lost updates. Our middleware
designs, with custom synchronization among data centers, enable
waiving the second requirement as discussed before. Thus, our
middleware design could be used by any other cloud database that
provides isolation for executing update operations on counters. For
example, we could easily replace Riak by DynamoDB [11], which
also supports conditional writes.

For cloud databases that do not support conditional writes (or
that use another approach to serialize operation execution), our
server based middleware design would also work, provided that
the middleware DHT guarantees that operations for a given key are
executed in sequence, even in the case of failures.

We now present an alternative design for guaranteeing that a sin-
gle DHT node executes operations. The main idea is to nominate
a DHT node as responsible for handling requests for each counter,
and record this information in the Bounded Counter CRDT in the
cloud store. When a DHT node receives an operation for some
Bounded Counter, it tries to nominate itself as the the node respon-
sible for executing operations on that counter. TBC isto não é nada
trivial

6.2 Supporting Other Invariants

Multiple numeric invariants. In some cases, it might be in-
teresting to have a counter involved in more than one numeric in-
variant – e.g. we may want to have x ≥ 0∧ y ≥ 0∧ x+ y ≥ K. In
such cases, the invariant x+y≥K can be maintained by a Bounded
Counter that represents the value of x+y. When updating the value
of x (or y), it is necessary to update both the Bounded Counter for
x and for x+ y, with an operation succeeding if both execute with
success. For maintaining invariants, this needs to be done atom-
ically but not in isolation, i.e., either both Bounded Counters are
updated or none, but an application might observe a state where
only one of the Bounded Counters has been updated.

Without considering failures, this allows for a simple implemen-
tation where if one Bounded Counter operation fails, the operation
in the other Bounded Counter is compensated [?] by executing
the inverse operation. When considering failures, it is necessary to
include some transactional mechanism for guaranteeing that either
both updates execute or none – recently, eventual consistent cloud
databases started to support such features [18, 19].

Other invariants. A number of other invariants can be encoded
as numeric invariants, as it has been discussed by Barbará-Milla
and Garcia-Molina [7]. We now show how to adapt the proposed
ideas and extend them to be able to enforce other invariants when
using Bounded Counters.

An invariant that establishes a limit on the number of objects that
satisfy some given condition can be implemented using a Bounded
Counter with the appropriate limit – e.g., for guaranteeing that at
least one object satisfies some condition, we would have a Bounded
Counter with an invariant larger or equal to one; for guaranteeing
that at most one object satisfies some condition, we would have a

Bounded Counter with an invariant smaller or equal to one. Adding
a new object that satisfies the condition can proceed without any
rights, while removing the object would require the origin replica
to hold rights to decrement the counter.

Referential integrity can be enforced by using a counter to count
the number of references that exist. For removing the referenced
object, the reference count must be zero and a dynamic invariant of
smaller or equal to zero must be enforced. Adding such dynamic
invariant can be implemented by removing all rights to execute in-
crements.

7 Evaluation
We have implemented our middleware designs for extending Riak
with support for numeric invariants and evaluated experimentally
the prototypes. This evaluation tries to address the following main
questions. (i) What is the performance of the proposed middleware
designs when compared with alternative solutions? (ii) What is the
horizontal scalability of the proposed middleware designs?

In our prototypes, clients execute operations on regular objects
directly on Riak, using the Riak client library. Thus, our mid-
dleware has no impact on such operations. Given this, our ex-
periments focus on the performance of Bounded Counters, using
micro-benchmarks with different workloads. These benchmarks
use counters with the invariant greater or equal to zero, which
model the exhaustion of a budget for ad impressions or a product
stock, for example.

7.1 Alternative solutions
In our experiments, we have compared the following solutions:

Weakly Consistent Counters (WeakC) This solution leverages Riak’s
native counters operating under weak consistency. Before is-
suing a decrement operation, clients read the current counter
value and issue a decrement only if the current value is pos-
itive. While this approach is expected to be fast due to local
DC execution, concurrent decrements have a chance to drive
the counter past zero, into negative ground. The severity
of the non-negativity invariant violation will depend on the
level of concurrency, which depends strongly on the inter-
DC synchronization frequency. In that regard, this solution
uses the Riak’s built-in continuous synchronization mode to
try to minimize concurrency.

Bounded Counters - server-side middleware (BCsrv) This is our
server-based middleware, as described in Section 5.3.

Strongly Consistent Counters (StrongC) This solution leverages
Riak’s strong consistency using a single DC to store and
manage counters, and having clients in all data centers. A
counter is updated by (1) reading its value; (2) updating the
counter state; and (3) writing back the new state using a con-
ditional write (that fails if the counter has been modified
since it has been read). Executing this logic in clients that
do not run in the DC where data resides leads to a high abort
rate, as the conditional write will often fail due to concurrent
updates (from the DC where data resides). To address this
problem, we use a middleware layer to serialize the execution
of this logic in the DC that holds the data, as in our server-
side middleware. Thus, clients propagate inc/dec operations
to the middleware, possibly over a wide area network. As
a result, the steps for executing inc/dec operations become

local to the data center holding the counter data. This solu-
tion improves overall fairness, increasing the success rate of
remote clients.

In this section we do not show detailed results for our client-
based middleware, as our evaluation showed that when contention
increases, the abort rate for operations increases very fast. The
same effect occurs for a strong consistency solution that does not
use a middleware to serialize the execution of updates. As our tests
stress scenarios with significant contention, the performance of this
systems degrades very quickly, showing that these solutions should
only be used in deployments with low contention.

7.2 Experimental Setup
Our experiments comprised 3 Amazon EC2 data centers distributed
across the globe. The latency between each data center is shown in
Table 1. We installed a Riak data store in each EC2 availability
zone (US-East, US-West, EU).

Each Riak ring is composed by three m1.large machines, with 2
vCPUs, producing 4 ECU2 units of computational power, and with
7.5GB of memory available. We use Riak 2.0.0pre5 version.

We make use of Riak core 1.4.3 as the basis for the middleware
used in BCsrv and StrongC. The DHT in the middleware is config-
ured to ensure the physical mapping of DHT keys to physical nodes
matches that of the Riak data store.

In StrongC data is stored in a single DC (US East). We selected
this DC to store data to minimize latency from remote clients. In
other solutions, data is fully geo-replicated in all data centers. Clients
execute in 3 m1.large machines in each DC and connect to the
Riak/middleware running in the same DC, with the exception of
StrongC that connects to the middleware running in US-East.

RTT (ms) US-E US-W EU
US-East - 80 96
US-West 83 - 163
EU 93 161 -

Table 1: RTT Latency between Data Centers in Amazon EC2.

7.3 Single Counter
We start our evaluation with a micro-benchmark that uses a single
counter. The counter is initialized to a large value and clients con-
currently issue operations to decrement the value of the counter,
while maintaining the invariant that the counter must remain larger
or equal to zero. This experiment intends to measure the overhead
of the different solutions and how they scale in a scenario of high
contention.

Throughput vs. latency. Figure 6 presents the throughput vs.
latency graph when using a single counter. Results show that our
server-based middleware design performs better than the strong
consistency solution in both latency and throughput. When com-
pared with a solution that uses weak consistency, the scalability of
our solution is worse. The reason for this is that in our solution (and
in StrongC) a single node handles all requests in the middleware
and acts as the primary of the Riak’s conditional writing mecha-
nism used. The throughput of our middleware is about three times
better than the throughput of the strongly consistent solution, since
21 ECU corresponds is a relative metric used to compare instance
types in the AWS platform

 0

 100

 200

 300

 400

 500

 0 500 1000 1500 2000

La
te

nc
y

[m
s

]

Throughput [decrements/s]

BCsrv
StrongC
WeakC

Figure 6: Throughput vs. latency with a single counter.

 0

 20

 40

 60

 80

 100

 120

WeakC StrongC BCsrv

La
te

nc
y

[m
s

]

Decrement Counter Latency

EU
US-EAST
US-WEST

Figure 7: Median latency with a single counter, per region of
clients.

we execute operation is three DCs instead of one DC for strong
consistency.

Latency under low load. Figure 7 presents the median la-
tency experienced by clients in different regions when load is low
(5 threads in each client machine with a think time of 100 ms be-
tween two consecutive requests). As expected, the results show
that for StrongC, remote clients experience high latency for oper-
ation execution. This latency is close to the RTT latency between
the client and the DC holding the data.

Both BCsrv and WeakC experience very low latency. In a counter-
intuitive way, the latency of BCsrv is sometimes even better than
the latency of WeakC. This happens because our middleware caches
the counters, requiring only one access to Riak for processing an
update operation when compared with two accesses in WeakC (one
for reading the value of the counter and another for updating the
value if it is positive).

Figure 8 details these results by showing the CDF of latency for
operation execution. The results allow to show that for BCsrv and
WeakC only a few percent of operations experience high latency.
For StrongC, each step in the line consists mostly of operations
issued in different DCs.

Figure 9 furthers details the behavior of our middleware, by pre-
senting the latency of operations over time. The results show that
most operations take low latency, with a few peak of high latency
when a replica runs out of rights and needs to ask for additional
rights from other data centers. The number of peaks is small be-
cause most of the time the pro-active mechanism for exchanging

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

C
um

ul
at

iv
e

O
cu

rr
en

ce
s

[%
]

Latency [ms]

BCsrv
WeakC

StrongC

Figure 8: CDF of latency with a single counter.

 0

 20

 40

 60

 80

 100

 120

 140

 0 200 400 600 800 1000 1200

La
te

nc
y

[m
s

]

Time [ms]

BCsrv

Figure 9: Latency measured over time.

rights is able to provision a replica with enough rights before all
rights are used.

Invariant Preservation. We have also evaluated the severity
of the risk of invariant violation. To this end, we have computed
how may decrements in excess were executed with success in the
different solutions. Figure 10 presents the obtained results. As ex-
pected, both BCsrv and StrongC do not break the invariant, but in
the WeakC the invariant has been broken. The number of operations
executed in excess increases as the number of clients increase. This
is expected as when reaching a value close to zero, clients execut-
ing concurrently will all read that the limit has not been reached,
but when all decrements execute, the limit is exceeded – e.g. if N
clients concurrently read that the value of a counter is 1 and they
all concurrently decrement the counter, the final value will exceed
the limit by N−1. This problem is made worse by geo-replication,
as updates from a remote data center may take hundreds of mil-
liseconds before being integrated, thus increasing the error on the
local view of the counter. This shows that a system based on weak
consistency cannot maintain strict invariants and that the problem
gets worse as the load of the system increases.

7.4 Multiple Counters
To evaluate how the different solutions behave when data is dis-
tributed in all servers, we have run an experiment with 100 coun-
ters. Increasing the number of counters contributes to spreading the
load among servers, but due to different reasons in different solu-
tions. For those that use conditional writes (BCsrv and StrongC),

 0

 50

 100

 150

 200

 250

 0 50 100 150 200

In
va

ria
nt

 v
io

la
tio

n

Num. Threads

BCsrv
StrongC
WeakC

Figure 10: Decrements executed in excess, violating invariant.

 0

 50

 100

 150

 200

 0 500 1000 1500 2000 2500 3000 3500

La
te

nc
y

[m
s

]

Throughput [decrements/s]

BCsrv
StrongC
WeakC

Figure 11: Throughput vs. latency with multiple counters.

each server machine will hold a relatively even subset of the pri-
maries used by the primary-backup replication scheme in Riak.
For WeakC, using a larger number of counters helps in achieving a
more even load among all servers, since it uses preference lists for
choosing which nodes to be included in quorums, and this helps
populating these lists more evenly.

Figure 11 presents the throughput vs. latency graph when us-
ing multiple counters. When comparing these results with a sin-
gle counter versus multiple counters, we can observe that our mid-
dleware scales better than weak consistency when the number of
counters increases, leading to an even better throughput. This is
because with a single counter, weak consistency already achieved
some load balancing through the use of quorums, which allow for
some flexibility in the choice of server nodes used in quorums for
each operation. In contrast, with a single counter, the primary node
for that counter represented a bottleneck in our design. As such,
increasing the number of counters allows for spreading the load
across nodes, which is more relevant in our case since it overcomes
the more prominent bottleneck.

Achieving a better throughput than with weak consistency is
only possible due to the techniques implemented in the middleware
to minimize the number of operations executed in the underlying
storage system.

8 Related work
A large number of cloud storage systems supporting geo-replication
have been developed in recent years. Some of these systems [4, 8,

11, 15, 18, 19, 25] provide variants of eventual consistency, where
operations return immediately after being executed in a single data
center. This approach is very popular, as it allows low latency for
end-users, by having data centers in multiple locations scattered
across the globe and executing users’ operations in the closest data
center. Different variants of eventual consistency address differ-
ent requirements, such as: reading a causally consistent view of
the database [4, 18]; supporting a restricted form of transactions
where a set of updates are made visible atomically [19]; support-
ing application-specific or type-specific reconciliation with no lost
updates [8, 11, 18, 25, 26], etc. Our solution supports a comple-
mentary requirement – having counters that do not break a numeric
invariant.

Although these systems can support a large range of applica-
tions, some applications require strong consistency (at least for a
subset of its operations) in order to ensure correctness. Several
systems support strong consistency. Spanner [10] provides strong
consistency for the complete database, at the cost of incurring in
the necessary coordination overhead for all updates. Transaction
chains [29] support transaction serializability with latency propor-
tional to the latency to the first replica accessed. Other systems,
such as Walter [26] and Gemini [16], support both weak and strong
consistency (snapshot isolation in Walter), which allows operations
that can execute under weak consistency to run fast. PNUTS [9],
DynamoDB [25] and Riak [8] also combine weak consistency with
some form of per-object strong consistency relying on conditional
writes – where a write fails if a concurrent write exists. Megastore
[6] also combines strong consistency inside a partition with weak
consistency accross partitions. Our work allows for maintaining the
correctness of applications with numeric invariants, while allowing
(most) operations to execute in a single replica (data center). Thus,
it can be seen as an extension of some form of eventual consistency
with numeric invariant preservation. Although it does not provide a
general strong consistency model, it also does not incur in the over-
head of such systems when it is only needed to maintain numeric
invariants.

Bailis et al. [5] have studied when it is possible to avoid coor-
dination in database systems, while maintaining application invari-
ants. Our work is complimentary, by providing a solution for main-
taining numeric invariants when coordination cannot be avoided. In
such cases, (many) operations can still be executed without coor-
dination because coordination has been moved outside the critical
path of operation execution, by obtaining the necessary rights be-
fore start executing operations.

Our solution is inspired in escrow transactions [20]. This ap-
proach, initially proposed for increasing the concurrency of trans-
action in a single database has been used for supporting discon-
nected operation in mobile computing environments either relying
on centralized [21, 28] or peer-to-peer [24] protocols for escrow
distribution. We build upon the ideas of these systems and combine
them with convergent data-types [23] to provide a decentralized
solution that enforces both automatic convergence and invariant-
preservation with no central authority. Additionally, we proposed,
implemented and evaluated two middleware designs for integrating
such solution with existing eventual consistent cloud stores.

Warranties [17] provide time-limited assertions over the state of
the database and have been used for improving latency of read oper-
ations in cloud storages. While the goal of warranties is to support
linearisability efficiently, our goal is to permit concurrent updates
while enforcing invariants.

The demarcation protocol [7] has been proposed to maintain in-
variants in distributed databases. Although the underlying proto-

cols are similar to escrow-based solutions, the demarcation proto-
col focus on maintaining invariants across different objects. MDCC [14]
has recently proposed a variant of this protocol for enforcing data
invariants in quorum systems. In section 6 we also discussed how
to support other invariants with out approach, but other ideas from
these paper could also be integrated with our work.

9 Final remarks
This paper proposes two middleware designs for extending even-
tually consistent cloud stores with the enforcement of numeric in-
variants. Our designs allow most operations to complete within a
single data center by moving the necessary coordination outside of
the critical path of operation execution, combining the benefits of
eventual consistency – low latency, high availability – with those of
strong consistency – easily enforcing global invariants. The result-
ing consistency model addresses the requirements of a large num-
ber of applications – e.g., Li et. al. [16] have shown that numeric
invariants are one of the main sources that require web applications
to resort to strong consistency models.

Our solution, inspired in escrow transactions, relies on a new
CRDT [23], Bounded Counter, which maintains the necessary in-
formation to know when it is safe to execute operations locally.
This CRDT can be used in any system that satisfies very weak
assumptions – all updates are serialized in each replica (but can
execute in different orders in different replicas) and the system in-
cludes a mechanism to merge concurrent updates. We propose two
middleware designs for using Bounded Counter in existing cloud
stores. The evaluation shows that our client-based middleware does
not scale when contention is high. Our server-based middleware is
scalable and exhibits latency comparable to solutions with weak
consistency where invariants can be compromised, to a degree that
increases with the load of the system.

As future work, we intend to address other invariants, and also
include inter-object invariants.

References
[1] http://gigaom.com/2013/02/21/basho-technologies-takes-

aim-at-more-enterprises-with-upgrades/.

[2] Cassandra counters. http://wiki.apache.org/cassandra/Counters.

[3] Counters in riak 1.4. http://basho.com/counters-in-riak-1-4/.

[4] ALMEIDA, S., LEITÃO, J. A., AND RODRIGUES, L. Chain-
reaction: A causal+ consistent datastore based on chain repli-
cation. In Proceedings of the 8th ACM European Conference
on Computer Systems (New York, NY, USA, 2013), EuroSys
’13, ACM, pp. 85–98.

[5] BAILIS, P., FEKETE, A., FRANKLIN, M. J., GHODSI, A.,
HELLERSTEIN, J. M., AND STOICA, I. Coordination-
avoiding database systems. CoRR abs/1402.2237 (2014).

[6] BAKER, J., BOND, C., CORBETT, J. C., FURMAN, J. J.,
KHORLIN, A., LARSON, J., LEON, J.-M., LI, Y., LLOYD,
A., AND YUSHPRAKH, V. Megastore: Providing scalable,
highly available storage for interactive services. In CIDR
2011, Fifth Biennial Conference on Innovative Data Systems
Research (2011), pp. 223–234.

[7] BARBARÁ-MILLÁ, D., AND GARCIA-MOLINA, H. The de-
marcation protocol: A technique for maintaining constraints
in distributed database systems. The VLDB Journal 3, 3 (July
1994), 325–353.

[8] BASHO. Riak. http://basho.com/riak/, 2014. Accessed
Jan/2014.

[9] COOPER, B. F., RAMAKRISHNAN, R., SRIVASTAVA, U.,
SILBERSTEIN, A., BOHANNON, P., JACOBSEN, H.-A.,
PUZ, N., WEAVER, D., AND YERNENI, R. Pnuts: Yahoo!’s
hosted data serving platform. Proc. VLDB Endow. 1, 2 (Aug.
2008), 1277–1288.

[10] CORBETT, J. C., DEAN, J., EPSTEIN, M., FIKES, A.,
FROST, C., FURMAN, J. J., GHEMAWAT, S., GUBAREV, A.,
HEISER, C., HOCHSCHILD, P., HSIEH, W., KANTHAK, S.,
KOGAN, E., LI, H., LLOYD, A., MELNIK, S., MWAURA,
D., NAGLE, D., QUINLAN, S., RAO, R., ROLIG, L.,
SAITO, Y., SZYMANIAK, M., TAYLOR, C., WANG, R., AND
WOODFORD, D. Spanner: Google’s globally-distributed
database. In Proceedings of the 10th USENIX Conference
on Operating Systems Design and Implementation (Berkeley,
CA, USA, 2012), OSDI’12, USENIX Association, pp. 251–
264.

[11] DECANDIA, G., HASTORUN, D., JAMPANI, M., KAKU-
LAPATI, G., LAKSHMAN, A., PILCHIN, A., SIVASUBRA-
MANIAN, S., VOSSHALL, P., AND VOGELS, W. Dynamo:
Amazon’s highly available key-value store. In Proceedings of
Twenty-first ACM SIGOPS Symposium on Operating Systems
Principles (New York, NY, USA, 2007), SOSP ’07, ACM,
pp. 205–220.

[12] HOFF, T. Latency is everywhere and it costs you
sales - how to crush it. http://highscalability.com/
latency-everywhere-and-it-costs-you-sales-how-crush-it.

[13] KLOPHAUS, R. Riak core: Building distributed applications
without shared state. In ACM SIGPLAN Commercial Users
of Functional Programming (New York, NY, USA, 2010),
CUFP ’10, ACM, pp. 14:1–14:1.

[14] KRASKA, T., PANG, G., FRANKLIN, M. J., MADDEN, S.,
AND FEKETE, A. Mdcc: Multi-data center consistency. In
Proceedings of the 8th ACM European Conference on Com-
puter Systems (New York, NY, USA, 2013), EuroSys ’13,
ACM, pp. 113–126.

[15] LAKSHMAN, A., AND MALIK, P. Cassandra: A decentral-
ized structured storage system. SIGOPS Oper. Syst. Rev. 44,
2 (Apr. 2010), 35–40.

[16] LI, C., PORTO, D., CLEMENT, A., GEHRKE, J., PREGUIÇA,
N., AND RODRIGUES, R. Making geo-replicated systems
fast as possible, consistent when necessary. In Proceedings of
the 10th USENIX Conference on Operating Systems Design
and Implementation (Berkeley, CA, USA, 2012), OSDI’12,
USENIX Association, pp. 265–278.

[17] LIU, J., MAGRINO, T., ARDEN, O., GEORGE, M. D., AND
MYERS, A. C. Warranties for faster strong consistency. In
Proceedings of the 11th USENIX Conference on Networked
Systems Design and Implementation (Berkeley, CA, USA,
2014), nsdi’14, USENIX Association.

[18] LLOYD, W., FREEDMAN, M. J., KAMINSKY, M., AND AN-
DERSEN, D. G. Don’t settle for eventual: Scalable causal
consistency for wide-area storage with cops. In Proceedings
of the Twenty-Third ACM Symposium on Operating Systems
Principles (New York, NY, USA, 2011), SOSP ’11, ACM,
pp. 401–416.

[19] LLOYD, W., FREEDMAN, M. J., KAMINSKY, M., AND AN-
DERSEN, D. G. Stronger semantics for low-latency geo-
replicated storage. In Proceedings of the 10th USENIX Con-
ference on Networked Systems Design and Implementation
(Berkeley, CA, USA, 2013), nsdi’13, USENIX Association,
pp. 313–328.

[20] O’NEIL, P. E. The escrow transactional method. ACM Trans.
Database Syst. 11, 4 (Dec. 1986), 405–430.

[21] PREGUIÇA, N., MARTINS, J. L., CUNHA, M., AND
DOMINGOS, H. Reservations for conflict avoidance in a mo-
bile database system. In Proceedings of the 1st International
Conference on Mobile Systems, Applications and Services
(New York, NY, USA, 2003), MobiSys ’03, ACM, pp. 43–
56.

[22] SCHURMAN, E., AND BRUTLAG, J. Performance related-
changes and their user impact. Presented at velocity web per-
formance and operations conference, 2009.

[23] SHAPIRO, M., PREGUIÇA, N., BAQUERO, C., AND ZA-
WIRSKI, M. Conflict-free replicated data types. In Proceed-
ings of the 13th International Conference on Stabilization,
Safety, and Security of Distributed Systems (Berlin, Heidel-
berg, 2011), SSS’11, Springer-Verlag, pp. 386–400.

[24] SHRIRA, L., TIAN, H., AND TERRY, D. Exo-leasing: Es-
crow synchronization for mobile clients of commodity stor-
age servers. In Proceedings of the 9th ACM/IFIP/USENIX
International Conference on Middleware (New York, NY,
USA, 2008), Middleware ’08, Springer-Verlag New York,
Inc., pp. 42–61.

[25] SIVASUBRAMANIAN, S. Amazon dynamodb: A seamlessly
scalable non-relational database service. In Proceedings of
the 2012 ACM SIGMOD International Conference on Man-
agement of Data (New York, NY, USA, 2012), SIGMOD ’12,
ACM, pp. 729–730.

[26] SOVRAN, Y., POWER, R., AGUILERA, M. K., AND LI, J.
Transactional storage for geo-replicated systems. In Pro-
ceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles (New York, NY, USA, 2011), SOSP ’11,
ACM, pp. 385–400.

[27] TERRY, D. B., THEIMER, M. M., PETERSEN, K., DEMERS,
A. J., SPREITZER, M. J., AND HAUSER, C. H. Manag-
ing update conflicts in bayou, a weakly connected replicated
storage system. In Proceedings of the Fifteenth ACM Sympo-
sium on Operating Systems Principles (New York, NY, USA,
1995), SOSP ’95, ACM, pp. 172–182.

[28] WALBORN, G. D., AND CHRYSANTHIS, P. K. Supporting
semantics-based transaction processing in mobile database
applications. In Proceedings of the 14TH Symposium on Re-
liable Distributed Systems (Washington, DC, USA, 1995),
SRDS ’95, IEEE Computer Society, pp. 31–.

[29] ZHANG, Y., POWER, R., ZHOU, S., SOVRAN, Y., AGUIL-
ERA, M. K., AND LI, J. Transaction chains: Achieving se-
rializability with low latency in geo-distributed storage sys-
tems. In Proceedings of the Twenty-Fourth ACM Sympo-
sium on Operating Systems Principles (New York, NY, USA,
2013), SOSP ’13, ACM, pp. 276–291.

B PAPERS UNDER SUBMISSION AND TECHNICAL REPORTS

B.5 Valter Balegas, Mahsa Najafzadeh, Sérgio Duarte, Carla
Ferreira, Rodrigo Rodrigues, Marc Shapiro, Nuno Preguiça.
Putting Consistency Back into Eventual Consistency.
Submitted to EuroSys’15.

SyncFree Deliverable D.3.1(v0.1), November 17, 2014, Page 117

Putting Consistency Back into Eventual Consistency

submission #51 - 15 pages

Abstract
Geo-replicated storage systems are at the core of current In-
ternet services. The designers of the replication protocols
for these systems have to choose between either support-
ing low latency, eventually consistent operations, or support-
ing strong consistency for ensuring application correctness.
We propose an alternative consistency model, explicit con-
sistency, that strengthens eventual consistency with a guar-
antee to preserve specific invariants defined by the applica-
tions. Given these application-specific invariants, a system
that supports explicit consistency must identify which oper-
ations are unsafe under concurrent execution, and help pro-
grammers to select either violation-avoidance or invariant-
repair techniques. We show how to achieve the former while
allowing most of operations to complete locally, by relying
on a reservation system that moves replica coordination off
the critical path of operation execution. The latter, in turn, al-
low operations to execute without restriction, and restore in-
variants by applying a repair operation to the database state.
We present the design and evaluation of Indigo, a middle-
ware that provides Explicit Consistency on top of a causally-
consistent data store. Indigo guarantees strong application
invariants while providing latency similar to an eventually
consistent system.

1. Introduction
To improve the user experience in services that operate on a
global scale, from social networks and multi-player online
games to e-commerce applications, the infrastructure that
supports these services often resorts to geo-replication [8, 9,
11, 22, 24, 25, 38], i.e., maintains copies of application data
and logic in multiple datacenters scattered across the globe.
This ensures low latency, by routing requests to the clos-
est datacenter, but only when the request does not require
cross-datacenter synchronization. Executing update opera-

[Copyright notice will appear here once ’preprint’ option is removed.]

tions without cross-datacenter synchronization is normally
achieved through weak consistency. The downside of weak
consistency models is that applications have to deal with
concurrent operations not seeing the effects of each other,
which can lead to non-intuitive and undesirable semantics.

Semantic anomalies do not occur in systems that offer
strong consistency guarantees, namely those that serialize
all updates [9, 22, 40]. However, these consistency mod-
els require coordination among replicas, which increases la-
tency and decreases availability. A promising alternative is
to try to combine the strengths of both approaches by sup-
porting both weak and strong consistency for different op-
erations [22, 38, 40]. However, operations requiring strong
consistency still incur in high latency. Additionally, these
systems make it harder to design applications, as operations
need to be correctly classified to guarantee the correctness
of the application.

In this paper, we propose explicit consistency as an alter-
native consistency model, in which applications define the
consistency rules that the system must maintain as a set of
invariants. Unlike models defined in terms of execution or-
ders, explicit consistency is defined in terms of application
properties: the system is free to reorder the execution of op-
erations at different replicas, provided that application in-
variants are maintained.

In addition to proposing explicit consistency, we show
that it is possible to implement it while mostly avoid cross-
datacenter coordination, even for critical operations that po-
tentially break invariants. To this end, we propose a method-
ology that, starting from the set of application invariants
helps in the deployment of a modified version of the applica-
tion that includes a set of techniques for precluding invariant
violation under concurrency (or, alternatively, use a set of
invariant repair actions that recover the service to a desired
state). The methodology we propose is composed of the fol-
lowing three steps.

First, based on static analysis, we infer which opera-
tions can be safely executed without coordination. Second,
for the remaining operations, we provide the programmer
with a choice of automatic repair [35] or avoidance tech-
niques. The latter extend escrow and reservation approaches
[14, 30, 32, 36], in which a replica reserves the permission
to execute a number of operations without coordinating with
other replicas. This way we amortize the cost of coordina-

1 2014/10/11

tion over multiple requests and move it outside the critical
path. Third, after the potentially conflicting operations are
identified and the strategy to handle them is chosen, the ap-
plication code is instrumented with the appropriate calls to
our middleware library.

Finally, we present the design of Indigo, a middleware
for explicit consistency built on top of a geo-replicated key-
value store. Indigo requires the underlying store to provide
only properties that have been shown to be efficient to im-
plement, namely per-key linearizability for replicas in each
datacenter, causal consistency, and transactions with weak
semantics [1, 24, 25].

In summary, this paper makes the following contribu-
tions:

• We propose explicit consistency as a new consistency
model for application correctness, centered on the appli-
cation behavior instead of the the order of the execution
of operations;
• A methodology that, starting with an application and a set

of associated invariants, derives an efficient reservation
system to enforce explicit consistency;
• Indigo, a middleware system ensuring explicit consis-

tency on top of a weakly consistent geo-replicated key-
value store.

The remaining of the paper is organized as follows: Sec-
tion 2 introduces explicit consistency; Section 3 gives an
overview on the proposed approach to enforce explicit con-
sistency; Section 4 details the analysis for detecting unsafe
concurrent operations and Section 5 details the techniques
for handling these operations; Section 6 discusses the imple-
mentation of Indigo and Section 7 presents an evaluation of
the system; related work is discussed in Section 8 and Sec-
tion 9 concludes the paper with some final remarks.

2. Explicit Consistency
In this section we define precisely the consistency guarantees
that Indigo provides. To explain these, we start by defining
the system model, and then how explicit consistency restricts
the set of behaviors allowed by the model.

To illustrate the concepts, we use as running example the
management of tournaments in a distributed multi-player
game. The game maintains information about players and
tournaments. Players can register and de-register from the
game. Players compete in tournaments, for which they can
enroll and disenroll. A set of matches occurs for each tourna-
ment. A tournament has a maximum capacity. In some cases
– e.g., when there are not enough participants – a tournament
can be canceled before it starts. Otherwise a tournament’s
lifecycle is creation, start, and end.

2.1 System model and definitions
We consider a database composed of a set of objects in a typ-
ical cloud deployment, where data is fully replicated in mul-

tiple datacenters, and partitioned inside each datacenter. For
simplicity we assume that the goal of replication is perfor-
mance, and not fault tolerance. As such, we can assume that
replicas do not fail. However, it would be straightforward to
handle faults by replacing each machine at a given datacen-
ter with a replica group running a protocol like Paxos [16].

Applications access and modify the database by issuing
high-level operations. These operations include a sequence
of read and write operations enclosed in transactions.

We define a database snapshot, Sn, as the value of the
database after executing the writes of a sequence of trans-
actions t1, . . . , tn in the initial database state, Sinit, i.e.,
Sn = tn(. . . (t1(Sinit))), with ti(S) the state after applying
the write operations of ti to S. The state of a replica is the
database snapshot that results from executing all committed
transactions received in the replica - both local and remote.
An application submits a transaction in a replica, with reads
and writes executing in a private copy of the replica state.
The application may decide to commit or abort the transac-
tion. In the former case, writes are immediately applied in
the local replica and asynchronously propagated to remote
replicas. In the latter case, the transaction has no side-effect.

The snapshot set T (S) of a database snapshot S is the
set of transactions used for computing S - e.g. T (Sn) =
{t1, . . . , tn}. We say a transaction ti+1 executing in a
database snapshot Si happened-before tj+1 executing in Sj ,
ti+1 ≺ tj+1, iff T (Si) (T (Sj). Two transactions ti+1 and
tj+1 are concurrent, ti ‖ tj , iff ti+1 6≺ tj+1 ∧ tj+1 6≺ ti+1

[21].
Happens-before relation defines a partial order among

transactions, O = (T,≺). We say Oi = (T,<) is a valid
serialization of O = (T,≺) if Oi is a linear extension of O,
i.e., < is a total order compatible with ≺.

Our approach allows transactions to execute concurrently.
Each replica can execute transactions according to a dif-
ferent valid serialization. We assume the system guarantees
state convergence, i.e., for a given set of transactions T , all
valid serializations of (T,≺) lead to the same database state.
Different techniques can be used to this end, from a simple
last-writer-wins strategy to more complex approaches based
on conflict-free replicated data types (CRDTs) [35, 38].

2.2 Explicit consistency
We now define explicit consistency, a novel consistency se-
mantics for replicated systems. The high level idea is to
let programmers define the application-specific correctness
rules that should be met at all times. These rules are defined
as invariants over the database state.

In our tournament application, one invariant states that
the cardinality of the set of enrolled players in a tournament
cannot exceed its capacity. Another invariant is that the en-
rollment relation must bind players and tournaments that ex-
ist - this type of invariant is known as referential integrity
in databases. Even if invariants are checked when an oper-
ation is executed, in the presence of concurrent operations

2 2014/10/11

these invariants can be broken – e.g., if two replicas concur-
rently enroll players to the same tournament, and the merge
function takes the union of the two sets of participants, the
capacity of the tournament can be exceeded.

Specifying restrictions over the state: To define explicit
consistency, we use first-order logic for specifying invari-
ants as conditions over the state of database. For example,
for specifying that the enrollment relation must bind play-
ers and tournaments that exist, we could define three pred-
icates: player(P), tournament(T) and enrolled(P, T) to
specify that a player P exists, a tournament T exists and
that player P is enrolled in tournament T respectively. The
condition would then be specified by the following formula:
∀P, T, enrolled(P, T)⇒ player(P) ∧ tournament(T).

Specifying rules over state transitions: In addition to
conditions over the current state, we support some forms of
temporal specifications by specifying restrictions over state
transitions. In our example, we can specify, for instance, that
players cannot enroll or drop from a tournament between the
start and the end of the tournament.

Such temporal specification can be turned into an invari-
ant defined over the state of the database, by having the
application store information that allows for such verifica-
tion. In our example, when a tournament starts the appli-
cation can store the list of participants for later checking
against the list of enrollments. The rules that forbids en-
rollment/disenrollment of players can then be specified as
∀P, T, participant(P, T) ⇔ enrolled(P, T), with the new
predicate participant(P, T) specifying that player P par-
ticipates in active tournament T .

The alternative to this approach would have been to use
temporal logics that can specify rules over time [21, 31].
Such approaches would require more complex specification
for programmers and a more complex analysis. As our ex-
perience has shown that this simpler approach was sufficient
for specifying most common application invariants, we have
decided to rely on this approach.

Correctness conditions We can now formally define ex-
plicit consistency, starting with the helper definition of an
invariant I as a logical condition applied over the state of
the database. We say that I holds in state S iff I(S) = true.

Definition 2.1 (I-valid serialization). For a given set of
transactions T , we say that Oi = (T,<) is a I-valid seri-
alization of O = (T,≺) iff Oi is a valid serialization of O
and I holds in the state that results from executing any prefix
of Oi.

A system is correct, providing explicit consistency, iff all
serializations of O = (T,≺) are I-valid serializations.

3. Overview
Given the invariants expressed by the programmer, our ap-
proach for enforcing explicit consistency has three steps:
(i) detect the sets of operations that may lead to invariant

violation when executed concurrently (we call these sets I-
offender sets); (ii) select an efficient mechanism for handling
I-offender sets; (iii) instrument the application code to use
the selected mechanism in a weakly consistent database sys-
tem.

The first step consists of discovering I-offender sets. For
this analysis, it is necessary to model the effects of opera-
tions. This information should be provided by programmers,
in the form of annotations specifying how predicates are af-
fected by each operation 1. Using this information and the
invariants, a static analysis process infers the minimal sets
of operation invocations that may lead to invariant viola-
tion when executed concurrently (I-offender sets), and the
reason for such violation. Conceptually, the analysis con-
siders all valid database states and, for each valid database
state, all sets of operation invocations that can execute in
that state, and checks if executing all these sets in the same
state is valid or not. Obviously, exhaustively considering all
database states and operation sets would be impossible in
practice, which required the use of the efficient verification
techniques detailed in section 4.

The second step consists in deciding which approach
will be used to handle I-offender sets. The programmer
must select from the two alternative approaches supported:
invariant-repair, in which operations are allowed to exe-
cute concurrently and invariants are enforced by automatic
conflict resolution rules; violation-avoidance, in which the
system restricts the concurrent execution of operations that
can lead to invariant violation.

In the invariant-repair approach, the system automati-
cally guarantees that invariants hold when merging opera-
tions executed concurrently, by including the necessary code
for restoring invariants in the operations. This is achieved by
relying on CRDTs, such as sets, trees and graphs. For exam-
ple, concurrent changes to a tree can lead to cycles that can
be broken using different repair strategies [28].

In the violation-avoidance approach, the system uses a set
of techniques to control when it is possible and impossible
to execute an operation in a datacenter without coordinating
with others. For example, to guarantee that an enrollment
can only bind a player and a tournament that exist, enroll-
ments can execute in any replica without coordination by
forbidding the deletion of players and tournaments. A data-
center can reserve the right to forbid the deletion for a subset
of players and tournaments, which gives it the ability to exe-
cute enrollments for those players and tournaments without
coordinating with other datacenters. Our reservation mecha-
nisms supports such functionality with reservations tailored
to the different types of invariants, as detailed in section 5.

Third, the application code is instrumented to use the
conflict-repair and conflict-avoidance mechanisms selected

1 This step could be automated using program analysis techniques, as done
for example in [23, 34].

3 2014/10/11

by the programmer. This involves extending operations to
call the appropriate API functions defined in Indigo.

4. Detecting I-offender sets
The language for specifying application invariants is first-
order logic formulas containing user-defined predicates and
numeric functions. More formally, we assume the invariant
is an universally quantified formula in prenex normal form2

∀x1, · · · , xn, ϕ(x1, · · · , xn).

First-order logic formulas can express a wide variety of
consistency constraints, as we exemplify in Section 4.1.

We have already seen that an invariant can use predicates,
such as player(P) or enrolled(P, T). Numeric restrictions
can be expressed through the use of functions. For example,
function nrPlayers(T) that returns the number of players in
tournament T , can be used to express that tournaments must
have at most five players enrolled: ∀T,nrPlayers(T) ≤ 5.
Invariants can be combined to define the global invariant of
an application. For instance, we can have:
I = ∀P, T, enrolled(P, T)⇒ player(P) ∧ tournament(T)

∧
nrPlayers(T) ≤ 5

The programmer does not need to provide an interpretation
for the predicates and functions used in the invariant - she
just has to write the application invariant and the effects of
each operation over the terms of the invariant.

Defining operation postconditions To express the ef-
fects of operations we use its side-effects, or postconditions,
stating what properties are ensured after execution of the
operation. Moreover, we take the postcondition to be the
conjunction of all side-effects. There are two types of side-
effect clauses: predicate clauses, which describe a truth as-
signment for a predicate (stating whether the predicate is
true or false after execution of the operation); and function
clauses, which define the relation between the initial and fi-
nal function values. For example, operation remPlayer(P),
which removes player P , has a postcondition with predicate
clause ¬player(P), stating that predicate player is false for
player P . Operation enroll(P, T), which enrolls player P
into tournament T , has a postcondition with two clauses,
enrolled(P, T) ∧ nrPlayers(T) = nrPlayers(T) + 1. The
second clause can be interpreted as a variable assignment,
where nrPlayers(T) is increased by one.

The syntax for postconditions is given by the grammar:
post ::= clause1 ∧ clause2 ∧ · · · ∧ clausek
clause ::= pclause | fclause
pclause ::= p(o1, o2, · · · , on) | ¬p(o1, o2, · · · , on)
fclause ::= f(o1, o2, · · · , on) = exp⊕ exp
exp ::= n | f(o1, o2, · · · , on)
⊕ ::= + | − | ∗

where p and f are predicates and functions respectively, over
objects o1, o2, · · · , on.

2 Formula ∀x, ϕ(x) is in prenex normal form if clause ϕ is quantifier-free.
Every first-order logic formula has an equivalent prenex normal form.

Although we imposed that a postcondition is a conjunc-
tion, it is possible to deal with operations that have alterna-
tive side-effects, by splitting the alternatives between mul-
tiple dummy operations. For example, an operation ϕ with
postcondition ϕ1 ∨ ϕ2 could be replaced by operations op1
and op2 with postconditions ϕ1 and ϕ2, respectively.

The fact that postconditions are conjunctions of simple
expressions and that predicates and functions are uninter-
preted (no interpretation is given), imposes limits on the
properties that can be expressed in this setting. For example,
it not possible to express reachability properties and other
properties over recursive data structures. Nevertheless, the
next section shows it is possible to express a wide variety of
database consistency properties.

Existential quantifiers So far, the invariants have been
formulated as universally quantified formulas. However,
some properties require existential quantifiers. For exam-
ple, to state that tournaments must have at least one player
enrolled: ∀T, tournament(T) ⇒ (∃P, enrolled(P, T)). In
practice the existential quantifier can be replaced by a func-
tion, using a technique called skolemization. For this ex-
ample at hand, we may use function nrPlayers as such:
∀T, tournament(T)⇒ nrPlayers(T) ≥ 1.

4.1 Expressing Application Invariants
The intrinsic complexity of general invariants makes it dif-
ficult to build a comprehensive invariant model. We decided
to use a simple model for defining invariants and predicates
that still can express significant classes of invariants. This
models allows programmers to express invariants in a rather
straightforward way, as we exemplify for the following types
of invariants.

Uniqueness The uniqueness constraint can be used to
express different correctness properties required by appli-
cations - e.g. uniqueness of identifiers within a collection.
This invariant can be defined using a function that counts the
number of elements with a given identifier. For example, the
formula ∀P, player(P) ⇒ nrPlayerId(P) = 1, states that
P must have a unique player identifier. A different example
of an uniqueness constraint is the existence of a single leader
in a collection: ∀T, tournament(T)⇒ nrLeaders(T) = 1.

Numeric constraints Numeric constraints refer to nu-
meric properties of the application and set lower or upper-
bounds to data values (equality and inequality are special
cases). Usually these constraints control the use or ac-
cess to a limited resource, such as the limited capacity of
a tournament exemplified before. Ensuring that a player
does not overspend its (virtual) budget can be expressed as:
∀P, player(P) ⇒ budget(P) ≥ 0. Ensuring experienced
players cannot participate in beginner’s tournaments can
be expressed as: ∀T, P, enrolled(P, T) ∧ beginners(T) ⇒
score(P) ≤ 30.

4 2014/10/11

Integrity constraints This type of constraints describes
relationships between different objects, known as foreign
keys constraints in databases, such as the fact that the enroll-
ment must refer to existing players and tournaments, as ex-
emplified in the beginning of this section. If the tournament
application had a score table for players, another integrity
constraint would be that every table entry must belong to an
existing player: ∀P, hasScore(P)⇒ player(P).

4.2 Determining I-offender sets
To detect the sets of concurrent operation invocations that
may lead to an invariant violation, we perform a static analy-
sis of the operation’s postconditions against invariants. Start-
ing from a valid state, where the invariant is true, if the
preconditions hold, the sequential execution of operations
always preserve the invariant. However, concurrently exe-
cuting operations in different replicas may cause a conflict,
leading to an invariant violation.

We start by intuitively explaining the process of detect-
ing I-offender sets. The process starts by checking opera-
tions with opposing postconditions (e.g. p(x) and ¬p(x)).
Take operations addPlayer(P) with effect player(P) and
remPlayer(P) with effect ¬player(P). If these two opera-
tions are concurrently executed it is unclear whether player
P exists or not in the database. This is an implicit invariant
and can be usually addressed choosing a resolution policy
(as add-wins).

The process continues by considering, for each invariant,
the effects of concurrent executions of multiple operations
that affect the invariant: first pairs, then triples, and so forth
until all operations are considered or a conflict arises.

To illustrate this process, we use our tournament appli-
cation and the invariant I presented in the beginning of
section 4. For simplicity of presentation, we consider each
of the conditions defined in invariant I independently. The
first invariant is a numeric restrictions: ∀T,nrPlayers(T) ≤
5. In this case, we have to take into account operation
enroll(P, T) that affects function nrPlayers and determine
if concurrent executions of enroll(P, T) may break the in-
variant. For that, we substitute in invariant I the operation’s
effects over function nrPlayers . Under the assumption that
nrPlayers(T) < 5, the weakest precondition ensuring the
invariant is not locally broken, we substitute and check
whether this results in a valid formula (notation I{f} de-
scribes the application of formula f in invariant I):

I {nrPlayers(T)← nrPlayers(T) + 1}
{nrPlayers(T)← nrPlayers(T) + 1}

nrPlayers(T) ≤ 5 {nrPlayers(T)← nrPlayers(T) + 1}
{nrPlayers(T)← nrPlayers(T) + 1}

nrPlayers(T) + 1 ≤ 5 {nrPlayers(T)← nrPlayers(T) + 1}
nrPlayers(T) + 1 + 1 ≤ 5

The assumption nrPlayers(T) < 5 does not ensure the re-
sulting inequality. So, it can be concluded that concurrent
executions of operation enroll(P, T) can lead to an invariant
violation. For this operation, ensuring locally the (weakest)

preconditions does not ensure the invariant will hold glob-
ally.

The second invariant of I is ∀P, T, enrolled(P, T) ⇒
player(P). In this case we need to detect whether enroll(P, T)
and remPlayer(P) lead to an invariant violation. To this
end, we substitute the effects of these operations in the in-
variant and check whether the resulting formula is valid.

I {enrolled(P, T)← true} {player(P)← false}
true ⇒ false ∧ Tournament(T)

false

As the resulting formula is not valid, a set of I-offenders is
identified: {enroll , remPlayer(P)}.

We now systematically present the algorithm used to de-
tected I-offender sets.

Lemma 4.1 (Conflicting operations). Operations op1, op2,
· · · , opn conflict with respect to invariant I iff, assuming that
I is initially true and preconditions of opi are initially true
(1 ≤ i ≤ n), the result of substituting the postconditions
into the invariant is not a valid formula.

Algorithm 1 statically determines the minimal subsets of
conflicting (or unsafe) operations. The core of the algorithm
is function conflict(I, s) which determines whether the set
of operations s break invariant I . This function uses the
satisfiability modulo theory (SMT) solver Z3 [10] to verify
the validity of the logical formulas used in Definition 4.1.
The function checks first if the operations in s have opposing
postconditions (as addPlayer and remPlayer). If that check
fails, the next step is to submit to the solver a formula
obtained by substituting all operations post-conditions in the
invariant, and determine its validity.

Algorithm 1 has an initial loop (line 4) to determine
which non-idempotent operations cause conflicts over nu-
meric restrictions. The main loop (line 10) iteratively checks
if adding a new operation into every possible subset of non-
conflicting operations raises a conflict. Each step of the iter-
ation increases the numbers of operations in the subset con-
sidered. It starts by determining which pairs of operations
conflict. If a conflict is detected, it adds a new operation into
the set of unsafe operations. Otherwise, in the next step, it
checks whether joining another operation raises any conflict,
and so forth. Although not expressed in the algorithm, the
operation to be added should affect predicates still not in-
stantiated in the invariant (line 10). The overall complexity
of the algorithm is exponential on the number of operations,
but this could be improved. Each I-offender set determined
by the algorithm can be seen as an assignment to the pred-
icates in the invariant that results in a non-valid (invariant)
formula. Therefore, we could adapt an (efficient) algorithm
for satisfiability module theories, as the ones overviewed
in [29].

5. Handling I-offender sets
The previous step identifies I-offender sets. These sets are
reported to the programmer that decides how each situation

5 2014/10/11

Algorithm 1 Algorithm for detecting unsafe operations.
Require: I : invariant; O : operations.

1: C←∅ {subsets of unsafe operations}
2: N←∅ {set of non-idempotent unsafe operations}
3: S←∅ {subsets of non-conflicting operations}
4: for op ∈ O do
5: if conflict(I, {op}) then
6: N ← N ∪ {{op}}
7: S ← S ∪ {{op}}
8: i← 1
9: for s ∈ S and #s = i and i < #O do

10: for op ∈ O − s and s ∪ {op} 6∈ C do
11: if conflict(I, s ∪ {op}) then
12: C ← C ∪ {s ∪ {op}}
13: else
14: S ← S ∪ {s ∪ {op}}
15: i← i+ 1
16: return C ∪N

should be addressed. We now discuss the techniques that are
available to the programmer in Indigo.

5.1 Invariant repairing
The first approach that can be used is to allow operations
to execute concurrently and repair invariant violation after
operations are executed. Indigo has limited support for this
approach, which can only address invariants defined in the
context of a single database object (which can be as complex
as a tree or a graph). To this end, Indigo provides a library of
objects that repair invariants automatically with techniques
proposed in literature - e.g. sets, maps, graphs, trees with
different conflict resolution policies [28, 35].

The programmer still has the opportunity to extend these
objects for supporting additional invariants - e.g. it is possi-
ble to extend a general set to implement a set with limited
capacity n by modifying queries to consider that only n el-
ements exist selected deterministically from all elements in
the underlying set [27].

5.2 Invariant-violation avoidance
The alternative approach is to avoid the concurrent execu-
tion of operations that would lead to an invariant violation
when combining their effects. Indigo provides a set of basic
techniques for achieving this.

5.2.1 Reservations
We now discuss the high-level semantics of techniques used
to restrict concurrent execution of updates - implementation
in weakly consistent stores is addressed in the next section.

UID generator: One important source of potential invari-
ant violations come from the concurrent creation of the same
identifier in situations where these identifiers must be unique
- e.g. identifier of objects in sets [3, 22]. This problem can be
easily solved by splitting the space of identifiers that can be
created in each replica. Indigo provides a service that gen-

erates unique identifiers by appending to a locally generated
identifier a replica-specific suffix. Applications must use this
service to generate unique identifiers that are used in opera-
tions.

Escrow reservation: For numeric invariants of the form
x ≥ k, we include an escrow reservation for allowing decre-
ments to be executed without coordination. Given an initial
value for x = x0, there are initially x0 − k rights to exe-
cute decrements. These rights can be split by different repli-
cas. For executing x.decrement(n), the operation must ac-
quire and consume n rights to decrement x in the replica
it is submitted. If not enough rights exist in the replica, the
system will try to obtain additional rights from other repli-
cas. If this is not possible, the operation will fail. Executing
x.increment(n) creates n rights to decrement n initially as-
signed to the replica in which the operation that executes the
increment is submitted.

A similar approach is used for invariants of the form x ≤
k, with increments consuming rights and decrements creat-
ing new rights. For invariants of the form x+y+. . .+z ≥ k,
a single escrow reservation is used, with decrements to any
of the involved variables consuming rights and increments
creating rights. If a variable x is involved in more than one
invariant, several escrow reservations will be affected by a
single increment/decrement operation on x.

Multi-level lock reservation: When the invariant in risk
is not numeric, we use a multi-level lock reservation (or
simply multi-level lock) to restrict the concurrent execution
of operations that can break invariants. A multi-level lock
can provide the following rights: (i) shared forbid, giving
the shared right to forbid some action to occur; (ii) shared
allow, giving the shared right to allow some action to occur;
(iii) exclusive allow, giving the exclusive right to execute
some action.

When a replica holds some right, it knows no other replica
holds rights of a different type - e.g. if a replica holds a
shared forbid, it knows no replica has any form of allow. We
now show how to use this knowledge to control the execution
of I-offender sets.

In the tournament example, {enroll(P, T), remPlayer(P)}
is an I-offender set. We can associate a multi-level lock to
one of the operations, for specific values of the parame-
ters. For example, we can have a multi-level lock associated
with remPlayer(P), for each value of P . For executing
remPlayer(P), it is necessary to obtain the right shared
allow on the reservation for remPlayer(P). For execut-
ing enroll(P, T), it is necessary to obtain the right shared
forbid on the reservation for remPlayer(P). This guaran-
tees that enrolling some player will not execute concurrently
with deleting the player, but concurrent enrolls or concur-
rent deletes can occur. If all replicas hold the shared forbid
right on removing players, the most frequent enroll opera-
tion can execute in any replica without coordination with
other replicas.

6 2014/10/11

The exclusive allow right is necessary when an operation
is incompatible with itself, i.e., when executing concurrently
the same operation may lead to an invariant violation.

Multi-level mask reservation: For invariants of the form
P1 ∨ P2 ∨ . . . ∨ Pn, the concurrent execution of any pair
of operations that makes two different predicates false may
lead to an invariant violation if all other predicates were
originally false. In our analysis, each of these pairs is an I-
offender set.

Using simple multi-level locks for each pair of operations
is too restrictive, as getting a shared allow on one opera-
tion would prevent the execution of the other operation in all
pairs. In this case, for executing one operation is suffices to
guarantee that a single other operation is forbidden (assum-
ing that the predicate associated with the forbidden operation
is true).

To this end, Indigo includes a multi-level mask reserva-
tion that maintains the same rights as multi-level lock re-
garding a set of K operations. With multi-level mask, when
obtaining a shared allow right for some operation, it is nec-
essary to obtain (if it does not exist already) a shared forbid
right on some other operation. These operations are executed
atomically by our system.

5.2.2 Using Reservations
Our analysis outputs I-offender sets and the invariant that
can be broken if operations execute concurrently. For each
I-offender set, the programmer must select the type of reser-
vation to be used - based on the invariant type that can be
broken, a suggested reservation type is generated.

Even when using the same type of reservations for each I-
offender set, it is possible to prevent the concurrent execution
of I-offender sets using different sets of reservations - we
call this a reservation system. For example, consider our
tournament example with the following two I-offender sets:

{enroll(P, T), remPlayer(P)}
{enroll(P, T), remTournament(P)}

Given these I-offender sets, two different reservation sys-
tems can be used. The first system includes a single multi-
level lock associated with enroll(P, T), with enroll(P, T)
having to obtain a shared allow right to execute, while both
remPlayer(P) and remTournament(T) would have to
obtain the shared forbid right to execute. The second system
includes two multi-level lock associated with remPlayer(P)
and remTournament(T), with enroll having to obtain the
shared forbid right in both to execute.

Indigo runs a simple optimization process to decide
which reservation system to use. As generating all possible
systems may take too long, this process starts by generating
a small number of systems using the following heuristic al-
gorithm: (i) select a random I-offender set; (ii) decide the
reservation to control the concurrent execution of operations
in the set, and associate the reservation with the operation: if
a reservation already exists for some of the operations, use
the same reservation; otherwise, generate a new reservation

from the type previously selected by the user; (iii) select the
remaining I-offender set, if any, that has more operations
controlled by existing reservations and repeat the previous
step.

For each generated reservations system, Indigo computes
the expected frequency of reservation operations needed us-
ing as input the expected frequency of operations. The opti-
mization process tries to minimize this expected frequency
of reservation operations.

After deciding which reservation system will be used,
each operation is extended to acquire and release the nec-
essary rights before and after executing the code of the op-
eration. For escrow locks, an operation that consumes rights
will acquire rights before its execution and these rights will
not be released in the end. Conversely, an operation that cre-
ates rights will create these rights after its execution.

6. Implementation
In this section, we discuss the implementation of Indigo as
a middleware running on top of a causally consistent store.
We first explain the implementation of reservations and how
they are used to enforce explicit consistency. We conclude by
explaining how Indigo is implemented on top of an existing
geo-replicated store.

6.1 Reservations
Indigo maintains information about reservations as objects
stored in the underlying causally consistent storage system.
For each type of reservation, a specific object class exists.
Each reservation instance maintains information about the
rights assigned to each of the replicas - in Indigo, each
datacenter is considered a single replica, as explained later.

The escrow lock object maintains the rights currently as-
signed to each replica. The following operations can be sub-
mitted to modify the state of the object: escrow consume de-
pletes rights assigned to the local replica; escrow generate
generates new rights in the local replica; escrow transfer
transfers rights from the local replica to some given replica.
For example, for an invariant x ≥ K, escrow consume
must be used by an operation that decrements x and es-
crow generate by operations that increment x.

When an operation executes in the replica where it is sub-
mitted, if insufficient rights are assigned to the local replica,
the operation fails and has no side-effects. Otherwise, the
state of the replica is updated accordingly and the side-
effects are asynchronously propagated to the other replicas,
using the normal replication mechanisms of the underly-
ing storage system. As operations only deplete rights of the
replica where they are submitted, it is guaranteed that every
replica has a conservative view of the rights assigned to it
- all operations that have consumed rights are known, but
any operations that transferred new rights from some other
replica may still have to be received. Given that the execu-
tion of operations is linearizable in a replica, this approach

7 2014/10/11

guarantees the correctness of the system in the presence of
any number of concurrent updates in different replicas and
asynchronous replication, as no replica will ever consume
more rights than those assigned to it.

The multi-level lock object maintains which right (exclu-
sive allow, shared allow, shared forbid) is assigned to each
replica, if any. Rights are obtained for executing operations
with some given parameters - e.g. in the tournament exam-
ple, for removing player P the replica needs a shadow al-
low right for player P . Thus, a multi-level lock object man-
ages the rights for the different parameters independently - a
replica can have a given right for a specific value of the pa-
rameters or a subset of the parameter values. For simplicity,
in our description, we assume that a single parameter exists.

The following operations can be submitted to modify the
state of the multi-level lock object: mll giveRight gives a
right to some other replica - a replica with a shared right
can give the same right to some other replica; a replica that
is the only one with some right can change the right type
and give it to itself or to some other replica; mll freeRight
revokes a right assigned to the local replica. As a replica can
have been given rights by multiple concurrent mll giveRight
operations executed in different replicas, mll freeRight in-
ternally encodes which mll giveRight operations are being
revoked. This is necessary to guarantee that all replicas con-
verge to the same state.

As with escrow lock objects, each replica has a conser-
vative view of the rights assigned to it, as all operations that
revoke the local rights are always executed initially in the
local replica. Additionally, assuming causal consistency, if
the local replica shows that it is the only replica with some
right, that information is correct system-wide. This condition
holds despite concurrent operations and asynchronous prop-
agation of updates, as any mll giveRight executed in some
replica is always propagated before a mll freeRight in that
replica. Thus, if the local replica shows that no other replica
holds any right that is because no mll giveRight has been
executed (without being revoked).

The multi-level mask object maintains the information
needed for a multi-level mask reservation by combining sev-
eral multi-level lock objects. The operation mlm giveRight
allows to give rights for one of the specified multi-level
locks.

6.2 Indigo middleware
We have built a prototype of Indigo on top of a geo-
replicated data store with the following properties: (i) causal
consistency; (ii) support for transactions that access a database
snapshot and merge concurrent updates using CRDTs [35];
(iii) linearizable execution of operations for each object in
each datacenter. It has been shown that all these properties
can be implemented efficiently in geo-replicated stores and
at least two systems support all these functionalities: Swift-
Cloud [43] and Walter [38]. Given that SwiftCloud has a
more extensive support for CRDTs, which are fundamental

for invariant-repair, we decided to build Indigo prototype on
top of SwiftCloud.

Reservation objects are stored in the underlying storage
system and they are replicated in all datacenters. Reservation
rights are assigned to datacenters individually, which keeps
the information small. As discussed in the previous section,
the execution of operations in reservation objects must be
linearizable (to guarantee that two concurrent transactions
do not consume the same rights).

The execution of an operation in the replica where it is
submitted has three phases: i) the reservation rights needed
for executing the operation are obtained - if not all rights
can be obtained, the operation fails; ii) the operation exe-
cutes, reading and writing the objects of the database; iii) the
used rights are released. For escrow reservations, rights con-
sumed are not released; new rights are created in this phase.
The side-effects of the operation in the data and reservation
objects are propagated and executed in other replicas asyn-
chronously and atomically.

Reservations guarantee that operations that can lead to in-
variant violation do not execute concurrently. However, op-
erations need to check if the preconditions for operation ex-
ecution hold before execution3. In our tournament example,
an operation to remove a tournament cannot execute before
removing all enrolled players. Reservations do not guarantee
that this is the case, but only that a remove tournament will
not execute concurrently with an enrollment.

An operation needs to access a database snapshot com-
patible with the used reservation rights, i.e., a snapshot that
reflects the updates executed before the replica has acquired
the rights being used. In our example, for removing a tour-
nament it is necessary to obtain the right that allows such
operation. This precludes the execution of concurrent en-
roll operations for that tournament. After the tournament
has been deleted, an enroll operation can obtain a forbid
right on tournament removal. For correctness, it is neces-
sary that the operation observes the tournament as deleted,
which is achieved by enforcing that updates of an operation
are atomic and that the read snapshot is causally consistent
(obtaining the forbid right necessarily happens after revok-
ing the allow right, which happens after deleting the tourna-
ment). These properties are guaranteed in Indigo directly by
the underlying storage system.

Obtaining reservation rights The first and last phases
of operation execution obtain and free the rights needed for
operation execution. Indigo provides API functions for ob-
taining and releasing a list of rights. Indigo tries to obtain the
necessary rights locally using ordered locking to avoid dead-
locks. If other datacenters need to be contacted for obtain-
ing some reservation rights, this process is executed before
start obtaining rights locally. Unlike the process for obtain-

3 This step could be automated by inferring preconditions from invariants
and operation side-effects, given that the programmer specifies the code for
computing the value of predicates

8 2014/10/11

ing rights in the local datacenter, Indigo tries to obtain the
needed rights from remote datacenters in parallel for min-
imizing latency. This approach is prone to deadlocks - if
some remote right cannot be obtained, we use an exponen-
tial backoff approach that frees all rights and tries to obtain
them again after an increasing amount of time.

When it is necessary to contact other datacenters to ob-
tain some right, latency of operation execution is severely af-
fected. In Indigo, reservation rights are obtained pro-actively
using the following strategy. Escrow lock rights are divided
among datacenters, with a datacenter asking for additional
rights to the datacenter it believes has more rights (based
on local information). Multi-level lock and multi-level mask
rights are pre-allocated to allow executing the most common
operations (based on the expected frequency of operations),
with shared allow and forbid rights being shared among all
datacenters. In the tournament example, shared forbid for
removing tournaments and players can be owned in all data-
centers, allowing the most frequent enroll to execute locally.

The middleware maintains a cache of reservation objects
and allows concurrent operations to use the same shared
(allow or forbid) right. While some ongoing operation is
using a shared or exclusive right, the right cannot be revoked.

6.3 Fault-tolerance
Indigo builds on the fault-tolerance of the underlying stor-
age system. In a typical geo-replicated store, data is repli-
cated inside a datacenter using quorums or relying on a state-
machine replication algorithm. Thus, the failure of a ma-
chine inside a datacenter does not lead to any data loss.

If a datacenter (fails or) gets partitioned from other dat-
acenters, it is impossible to transfer rights from and to the
partitioned datacenter. In each partition, operations that only
require rights available in the partition can execute normally.
Operations requiring rights not available in the partition will
fail. When the partition is repaired (or the datacenter recov-
ers with its state intact), normal operation is resumed.

In the event that a datacenter fails losing its internal state,
the rights held by that datacenter are lost. As reservation
objects maintain the rights held by all replicas, the procedure
to recover the rights lost by the datacenter failure is greatly
simplified - it is only necessary to guarantee that recovery
is executed only once with a state that reflects all updates
received from the failed datacenter.

7. Evaluation
This section presents an evaluation of Indigo. The main
question our evaluation tries to answer is how does explicit
consistency compares against causal consistency and strong
consistency in terms of latency and throughput with different
workloads. Additionally, we try to answer the following
questions:

• Can the algorithm for detecting I-offender sets be used
with realistic applications?

• What is the impact of an increasing the amount of con-
tention in objects and reservations?
• What is the impact of using an increasing number of

reservations in each operation?
• What is the behavior when coordination is necessary for

obtaining reservations?

7.1 Applications
To evaluate Indigo, we used the two following applications.

Ad counter The ad counter application models the infor-
mation maintained by a system that manages ad impressions
in online applications. This information needs to be geo-
replicated for allowing fast delivery of ads. For maximizing
revenue, an ad should be impressed exactly the number of
times the advertiser is willing to pay for. This invariant can
be easily expressed as nrImpressions(Ai) ≤ Ki, with Ki

the maximum number of times ad Ai should be impressed
and the predicate nrImpressions(Ai) returning the number
of times it has been impressed. In a real system, when a client
application asks for a new ad to be impressed, some complex
logic will decide which ad should be impressed.

Advertisers will typically require ads to be impressed a
minimum number of times in some countries - e.g. ad A
should be impressed 10.000 times, including 4.000 times in
US and 4.000 times in EU. This example is modeled by hav-
ing the following additional invariants for specifying the lim-
its on the number of impressions (impressions in excess in
Europe and US can be accounted in nrImpressionsOther):

nrImpressionsEU (A) ≤ 4000
nrImpressionsUS(A) ≤ 4000

nrImpressionsOther(A) ≤ 2000

We modeled this application by having independent
counters for each ad and region. Invariants were defined
with the limits stored in database objects:

nrImpressions((region, ad)) ≤ targetImpressions((region, ad))

A single update operation that increments the ad tally was
defined - this operation updates the predicate nrImpressions .
Our analysis shows that the increment operation conflicts
with itself for any given counter, but increments on differ-
ent counters are independent. Invariants can be enforced by
relying on escrow lock reservations for each ad.

Our experiments used workloads with a mix of: a read
only operation that returns the value of a set of counters
selected randomly; an operation that reads and increments
a randomly selected counter. Our default workload included
only increment operations.

Tournament management This a version of the ap-
plication for managing tournaments described in section 2
(and used throughout the paper as our running example), ex-
tended with read operations for browsing tournaments. The
operations defined in this application are similar to opera-
tions that one would find in other management applications
such as courseware management.

9 2014/10/11

As detailed throughout the paper, this application has a
rich set of invariants, including uniqueness rules for assign-
ing ids; generic referential integrity rules for enrollments;
and order relations for specifying the capacity of each tour-
nament. This leads to a reservation system that uses both
escrow lock and multi-level lock reservation objects. Three
operations do not require any right to execute - add player,
add tournament and disenroll tournament - although the lat-
ter access the escrow lock object associated with the capac-
ity of the tournament. The other update operations involve
acquiring rights before they can execute.

In our experiments we have run a workload with 82%
of read operations (a value similar to the TPC-W shopping
workload), 4% of update operations requiring no right for
executing, and 14% of update operations requiring rights
(8% of the operations are enrollment and disenrollments).

7.1.1 Performance of the Analysis
We have implemented the algorithm described in Section 4
for detecting I-offender sets in Java, relying on the satisfi-
ability modulo theory (SMT) solver Z3 [10] for verifying
invariants. The algorithm was able to find the existing I-
offender sets in the applications. The average running time
of this process in a recent MacBook Pro laptop was 19 ms
for the ad counter applications and 2892 ms for the more
complex tournament application.

We have also modeled TPC-W - the invariants in this
benchmark are a subset of those of the tournament applica-
tion. The average running time for detecting I-offender sets
was 937 ms. These results show that the running time in-
creases with the number of invariants and operations, but that
our algorithm can process realistic applications.

7.2 Experimental Setup
We compare Indigo against three alternative approaches:

Causal Consistency (Causal) As our system was built on
top of causally consistent SwiftCloud system[43], we
have used unmodified SwiftCloud as representative of a
system providing causal consistency. We note that this
system cannot enforce invariants. This comparison al-
lows us to measure the overhead introduced by Indigo.

Strong Consistency (Strong) We have emulated a strongly
consistent system by running Indigo in a single DC and
forwarding all operations to that DC. We note that this
approach allows more concurrency than a typical strong
consistency system as it allows updates on the same ob-
jects to proceed concurrently and be merged if they do
not violate invariants.

Red-Blue consistency (RedBlue) We have emulated a sys-
tem with Red-Blue consistency [22] by running Indigo in
all DCs and having red operations (those that may vio-
late invariants and require reservations) execute in a mas-
ter DC, while blue operations execute in the closest DC
respecting causal dependencies.

Our experiments comprised 3 Amazon EC2 datacenters
- US-East, US-West and EU - with inter-datacenter latency
presented in Table 1. In each DC, Indigo servers run in a
single m3.xlarge virtual machine with 4 vCPUs and 8 ECUs
of computational power, and 15GB of memory available.
Clients that issue transactions run in up to three m3.xlarge
machines. Where appropriate, we placed the master DC in
US-East datacenter to minimize the communication latency
and have those configurations perform optimally.

RTT (ms) US-E US-W
US-West 81 -
EU 93 161

Table 1. RTT Latency among Datacenters in Amazon EC2

7.3 Latency and throughput
We start by comparing the latency and throughput of Indigo
with alternative deployments for both applications.

We have run the ad counter application with 1000 ads
and a single invariant for each ad. The limit on the number
of impressions was set sufficiently high to guarantee that
the limit is not reached. The workload included only update
operations for incrementing the counter. This allows us to
measure the peak throughput when operations are able to
obtain reservations in advance. The results are presented
in Figure 1, and show that Indigo achieves throughput and
latency similar to a causally consistent system. Strong and
RedBlue results are similar, as all update operations are red
and execute in the master DC in both configurations.

Figure 2 presents the results when running the tournament
application with the default workload. As before, results
show that Indigo achieves throughput and latency similar to
a causally consistent system. In this case, as most operations
are read-only or can be classified as blue and execute in the
local datacenter, RedBlue throughput is only slightly worse
than that of Indigo.

Figure 3 details these results presenting latency per oper-
ation type (for selected operations) in a run with throughput
close to the peak value. The results show that Indigo exhibits
lower latency than RedBlue for red operations. These oper-
ation can execute in the local DC in Indigo, as they require
either no reservation or reservations that can be shared and
are typically locally available.

Two other results deserve some discussion. Remove tour-
nament requires canceling shared forbid rights acquired by
other DCs before being able to acquire the shared allow
right for removing the tournament, which explain the high
latency. Sometimes latency is extremely high (as shown by
the line with the maximum value) - this is a result of the
asynchronous algorithms implemented and the approach for
requesting remote DCs to cancel their rights, which can fail
when a right is being used. This could be improved by run-
ning a more elaborate protocol based on Paxos. Add player
has a surprisingly high latency in all configurations. Analyz-
ing the situation, we found out that the reason for this lies

10 2014/10/11

 0

 20

 40

 60

 80

 100

 120

 140

 0 200 400 600 800 1000 1200 1400 1600

L
a

te
n

cy
 [

m
s]

Throughput [TP/s]

Indigo
Causal

Red-Blue
Strong

Figure 1. Peak throughput (ad
counter application).

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 50 100 150 200 250 300 350 400 450 500

L
a
te

n
cy

 [
m

s]

Throughput [TP/s]

Indigo
Causal

Red-Blue
Strong

Figure 2. Peak throughput (tourna-
ment application).

 0

 300

 600

 900

 1200

 1500

 1800

VIEW_STATUS

ENROLL_TOURNAMENT

DISENROLL_TOURNAMENT

DO_MATCH

REM_TOURNAMENT

ADD_PLAYER

L
a

te
n

c
y
 [

m
s
]

Indigo
Red-Blue

Strong

Figure 3. Average latency per op.
type - Indigo (tournament app.).

in the fact that this operation manipulates very large objects
used to maintain indexes - all configurations have a fix over-
head due to this manipulation.

7.4 Micro-benchmarks
Next, we examine the impact of key parameters.

Increasing contention Figure 4 shows the throughput
of the system with increasing contention in the ad counter
application, by varying the number of counters in the experi-
ment. As expected, the throughput of Indigo decreases when
contention increases as several steps require executing op-
erations sequentially. Our middleware introduces additional
contention when accessing the cache. As the underlying stor-
age system also implements linearizability per-object, it is
also possible to observe its throughput also decreases with
increased contention, although more slowly.

Increasing number of invariants Figure 5 presents the
results of ad counter application with an increasing number
of invariants - from one to three. In this case, the results show
that the peak throughput with Indigo decreases while latency
keeps constant. The reason for this is that for escrow locks,
each invariant has an associated reservation object - thus,
when increasing the number of invariants the number of up-
dated objects also increases, with impact on the operations
that each datacenter needs to execute. To verify our expla-
nation, we have run a workload with operations that access
the same number of counters in the weak consistency con-
figuration - the presented results show the same pattern for
decreased throughput.

Behaviour when transferring reservations Figure 6
shows the latency of individual operations executed in US-
W datacenter in the ad counter application for a workload
where increments reach the invariant limit for multiple coun-
ters. When rights do not exist locally, Indigo cannot mask the
latency imposed by coordination - in this case, for obtaining
additional rights from the remote datacenters.

In Figure 3 we have shown the impact of obtaining a
multi-level lock shared right that requires revoking rights
present in all other replicas. We have discussed this problem
and a possible solution in section 7.3. Nevertheless, it is
important to note that such big impact in latency is only

experienced when it is necessary to revoke shared forbid
rights in all replicas before acquiring the needed shared
allow right. The positive consequence of this approach is
that enroll operations requiring the shared forbid right that
was shared by all replicas execute with latency close to
zero. The maximum latency line in enroll operation shows
the maximum latency experienced when a replica acquires a
shared forbid right from a replica already holding such right.

8. Related work
Geo-replicated storage systems Many cloud storage sys-
tems supporting geo-replication emerged in recent years.
Some [1, 11, 20, 24, 25] offer variants of eventual consis-
tency, where operations return right after being executed in
a single datacenter, usually the closest one to the end-user to
improve response times. These variants target different re-
quirements, such as: reading a causally consistent view of
the database (causal consistency) [1, 2, 13, 24]; supporting
limited transactions where a set of updates are made visible
atomically [4, 25]; supporting application-specific or type-
specific reconciliation with no lost updates [6, 11, 24, 38],
etc. Indigo is built on top of a geo-replicated store support-
ing causal consistency, a restricted form of transactions and
automatic reconciliation; it extends those properties by en-
forcing application invariants.

Eventual consistency is insufficient for some applications
that require (some operations to execute under) strong con-
sistency for correctness. Spanner [9] provides strong consis-
tency for the whole database, at the cost of incurring coor-
dination overhead for all updates. Transaction chains [44]
support transaction serializability with latency proportional
to the latency to the first replica accessed. MDCC [19] and
Replicated Commit [26] propose optimized approaches for
executing transactions but still incur in intra-datacenter la-
tency for committing transactions.

Some systems tried to combine the benefits of weak and
strong consistency models by supporting both. In Walter
[38] and Gemini [22], transactions that can execute under
weak consistency run fast, without needing to coordinate
with other datacenters. Bayou [39] and Pileus [40] allow op-
erations to read data with different consistency levels, from
strong to eventual consistency. PNUTS [8] and DynamoDB

11 2014/10/11

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1 10 100 1000 10000T
h

ro
u

g
h

p
u

t
[

T
P

/S
e

co
n

d
]

Keys

Indigo
Causal

Figure 4. Peak throughput with in-
creasing contention (ad counter ap-
plication).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 500 1000 1500 2000 2500 3000

L
a

te
n

cy
 [

m
s]

Throughput [TP/s]

Indigo R5-W1
Indigo R5-W2
Indigo R5-W3
Weak R5-W1
Weak R5-W2
Weak R5-W3

Figure 5. Peak throughput with an
increasing number of invariants (ad
counter application).

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120 140 160 180

L
a

te
n

cy
 [

m
s]

Time [seconds]

US-WEST

Figure 6. Latency of individual op-
erations of US-W datacenter (ad
counter application).

[37] also combine weak consistency with per-object strong
consistency relying on conditional writes, where a write fails
in the presence of concurrent writes. Indigo enforces ex-
plicit consistency rules, exploring application semantics to
let (most) operations execute in a single datacenter.

Exploring application semantics Several works have
explored the semantics of applications (and data types)
for improving concurrent execution. Semantic types [15]
have been used for building non serializable schedules that
preserve consistency in distributed databases. Conflict-free
replicated data types [35] explore commutativity for en-
abling the automatic merge of concurrent updates, which
Walter [38], Gemini [22] and SwiftCloud [43] use as the ba-
sis for providing eventual consistency. Indigo goes further
by exploring application semantics to enforce application
invariants that can span multiple objects.

Escrow transactions [30] offer a mechanism for enforc-
ing numeric invariants under concurrent execution of trans-
actions. By enforcing local invariants in each transaction,
they can guarantee that a global invariant is not broken.
This idea can be applied to other data types, and it has
been explored for supporting disconnected operation in mo-
bile computing [32, 36, 41]. The demarcation protocol [5] is
aimed at maintaining invariants in distributed databases. Al-
though its underlying protocols are similar to escrow-based
approaches, it focuses on maintaining invariants across dif-
ferent objects. Warranties [14] provide time-limited asser-
tions over the database state, which can improve latency of
read operations in cloud storages.

Indigo builds on these works, but it is the first to pro-
vide an approach that, starting from application invariants
expressed in first-order logic leads to the deployment of
the appropriate techniques for enforcing such invariants in
a geo-replicated weakly consistent data store.

Other related work Bailis et al. [3] studied the possi-
bility of avoiding coordination in database systems and still
maintain application invariants. Our work complements that,
addressing the cases that cannot entirely avoid coordination,
yet allow operations to execute immediately by obtaining the
required reservations in bulk and anticipation.

Others have tried to reduce the need for coordination by
bounding the degree of divergence among replicas. Epsilon-

serializability [33] and TACT [42] use deterministic algo-
rithms for bounding the amount of divergence observed by
an application using different metrics - numerical error, or-
der error and staleness. Consistency rationing [18] uses a sta-
tistical model to predict the evolution of replicas state and al-
lows applications to switch from weak to strong consistency
on the likelihood of invariant violation. In contrast to these
works, Indigo focuses on enforcing invariants efficiently.

The static analysis of code is a standard technique used
extensively for various purposes [7, 12, 17], including in a
context similar to ours. Sieve [23] combines static and dy-
namic analysis to infer which operations should use strong
consistency and which operations should use weak consis-
tency in a Red-Blue system [22]. In [34], the authors present
an analysis algorithm that describes the semantics of transac-
tions. These works are complementary to ours, and the pro-
posed techniques could be used to automatically infer ap-
plication side-effects. The latter work also proposes an algo-
rithm to allow replicas to execute transactions independently
by defining conditions that must be met in each replica.
Whenever an operation cannot commit locally, a new set
of conditions is computed and installed in all replicas using
two-phase commit. In Indigo, replicas can exchange rights
peer-to-peer.

9. Conclusions
This paper proposes an application-centric consistency model
for geo-replicated services - explicit consistency - where
programmers specify the consistency rules that the system
must maintain as a set of invariants. We describe a method-
ology that helps programmers decide which invariant-repair
and violation-avoidance techniques to use to enforce explicit
consistency, extending existing applications. We also present
the design of Indigo, a middleware that can enforce explicit
consistency on top of a causally consistent store. The results
show that the modified applications have performance sim-
ilar to weak consistency for most operations, while being
able to enforce application invariants. Some rare operations
that require intricate rights transfers exhibit high latency.
As future work, we intend to improve the algorithms for
exchanging reservation rights on those situations.

12 2014/10/11

References
[1] S. Almeida, J. Leitão, and L. Rodrigues. Chainreaction: A

causal+ consistent datastore based on chain replication. In
Proceedings of the 8th ACM European Conference on Com-
puter Systems, EuroSys ’13, pages 85–98, New York, NY,
USA, 2013. ACM. ISBN 978-1-4503-1994-2. . URL http:
//doi.acm.org/10.1145/2465351.2465361.

[2] P. Bailis, A. Ghodsi, J. M. Hellerstein, and I. Stoica. Bolt-on
causal consistency. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, SIGMOD
’13, pages 761–772, New York, NY, USA, 2013. ACM. ISBN
978-1-4503-2037-5. . URL http://doi.acm.org/10.
1145/2463676.2465279.

[3] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M. Heller-
stein, and I. Stoica. Coordination-avoiding database systems.
CoRR, abs/1402.2237, 2014.

[4] P. Bailis, A. Fekete, A. Ghodsi, J. M. Hellerstein, and I. Stoica.
Scalable atomic visibility with RAMP transactions. In ACM
SIGMOD Conference, 2014.

[5] D. Barbará-Millá and H. Garcia-Molina. The demarcation
protocol: A technique for maintaining constraints in dis-
tributed database systems. The VLDB Journal, 3(3):325–353,
July 1994. ISSN 1066-8888. . URL http://dx.doi.
org/10.1007/BF01232643.

[6] Basho. Riak. http://basho.com/riak/, 2014. Ac-
cessed Oct/2014.

[7] E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach,
M. Moskal, T. Santen, W. Schulte, and S. Tobies. VCC: A
practical system for verifying concurrent C. In Theorem Prov-
ing in Higher Order Logics, pages 23–42. Springer, 2009.

[8] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein,
P. Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yer-
neni. Pnuts: Yahoo!’s hosted data serving platform. Proc.
VLDB Endow., 1(2):1277–1288, Aug. 2008. ISSN 2150-
8097. URL http://dl.acm.org/citation.cfm?
id=1454159.1454167.

[9] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J.
Furman, S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild,
W. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik,
D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito,
M. Szymaniak, C. Taylor, R. Wang, and D. Woodford. Span-
ner: Google’s globally-distributed database. In Proceedings
of the 10th USENIX Conference on Operating Systems De-
sign and Implementation, OSDI’12, pages 251–264, Berke-
ley, CA, USA, 2012. USENIX Association. ISBN 978-1-
931971-96-6. URL http://dl.acm.org/citation.
cfm?id=2387880.2387905.

[10] L. De Moura and N. Bjørner. Z3: An efficient SMT solver.
In Tools and Algorithms for the Construction and Analysis of
Systems, TACAS ’08, pages 337–340. Springer, 2008.

[11] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: Amazon’s highly available key-
value store. In Proceedings of Twenty-first ACM SIGOPS
Symposium on Operating Systems Principles, SOSP ’07,
pages 205–220, New York, NY, USA, 2007. ACM. ISBN

978-1-59593-591-5. . URL http://doi.acm.org/10.
1145/1294261.1294281.

[12] D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe.
Extended static checking. Technical Report 159, Compaq
Systems Research Center, 12 1998.

[13] J. Du, S. Elnikety, A. Roy, and W. Zwaenepoel. Orbe: Scalable
causal consistency using dependency matrices and physical
clocks. In Proceedings of the 4th Annual Symposium on Cloud
Computing, SOCC ’13, pages 11:1–11:14, New York, NY,
USA, 2013. ACM. ISBN 978-1-4503-2428-1. . URL http:
//doi.acm.org/10.1145/2523616.2523628.

[14] ed Liu, T. Magrino, O. Arden, M. D. George, and A. C. Myers.
Warranties for faster strong consistency. In Proceedings of the
11th USENIX Conference on Networked Systems Design and
Implementation, nsdi’14, Berkeley, CA, USA, 2014. USENIX
Association.

[15] H. Garcia-Molina. Using semantic knowledge for transaction
processing in a distributed database. ACM Trans. Database
Syst., 8(2):186–213, June 1983. ISSN 0362-5915. . URL
http://doi.acm.org/10.1145/319983.319985.

[16] J. Gray and L. Lamport. Consensus on transaction commit.
ACM Trans. Database Syst., 31(1):133–160, Mar. 2006. ISSN
0362-5915. . URL http://doi.acm.org/10.1145/
1132863.1132867.

[17] B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx,
and F. Piessens. Verifast: A powerful, sound, predictable, fast
verifier for c and java. In NASA Formal Methods, pages 41–55.
Springer, 2011.

[18] T. Kraska, M. Hentschel, G. Alonso, and D. Kossmann. Con-
sistency rationing in the cloud: Pay only when it matters.
Proc. VLDB Endow., 2(1):253–264, Aug. 2009. ISSN 2150-
8097. URL http://dl.acm.org/citation.cfm?
id=1687627.1687657.

[19] T. Kraska, G. Pang, M. J. Franklin, S. Madden, and A. Fekete.
Mdcc: Multi-data center consistency. In Proceedings of the
8th ACM European Conference on Computer Systems, Eu-
roSys ’13, pages 113–126, New York, NY, USA, 2013. ACM.
ISBN 978-1-4503-1994-2. . URL http://doi.acm.
org/10.1145/2465351.2465363.

[20] A. Lakshman and P. Malik. Cassandra: A decentralized struc-
tured storage system. SIGOPS Oper. Syst. Rev., 44(2):35–40,
Apr. 2010. ISSN 0163-5980. . URL http://doi.acm.
org/10.1145/1773912.1773922.

[21] L. Lamport. The temporal logic of actions. ACM Trans.
Program. Lang. Syst., 16(3):872–923, May 1994. ISSN
0164-0925. . URL http://doi.acm.org/10.1145/
177492.177726.

[22] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça, and
R. Rodrigues. Making geo-replicated systems fast as pos-
sible, consistent when necessary. In Proceedings of the
10th USENIX Conference on Operating Systems Design and
Implementation, OSDI’12, pages 265–278, Berkeley, CA,
USA, 2012. USENIX Association. ISBN 978-1-931971-96-
6. URL http://dl.acm.org/citation.cfm?id=
2387880.2387906.

13 2014/10/11

[23] C. Li, J. Leitão, A. Clement, N. Preguiça, R. Rodrigues, and
V. Vafeiadis. Automating the choice of consistency levels in
replicated systems. In Proceedings of the 2014 USENIX Con-
ference on USENIX Annual Technical Conference, USENIX
ATC’14, pages 281–292, Berkeley, CA, USA, 2014. USENIX
Association. ISBN 978-1-931971-10-2. URL http://dl.
acm.org/citation.cfm?id=2643634.2643664.

[24] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. An-
dersen. Don’t settle for eventual: Scalable causal consis-
tency for wide-area storage with cops. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Princi-
ples, SOSP ’11, pages 401–416, New York, NY, USA, 2011.
ACM. ISBN 978-1-4503-0977-6. . URL http://doi.
acm.org/10.1145/2043556.2043593.

[25] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. An-
dersen. Stronger semantics for low-latency geo-replicated
storage. In Proceedings of the 10th USENIX Conference
on Networked Systems Design and Implementation, nsdi’13,
pages 313–328, Berkeley, CA, USA, 2013. USENIX Asso-
ciation. URL http://dl.acm.org/citation.cfm?
id=2482626.2482657.

[26] H. Mahmoud, F. Nawab, A. Pucher, D. Agrawal, and
A. El Abbadi. Low-latency multi-datacenter databases us-
ing replicated commit. Proc. VLDB Endow., 6(9):661–672,
July 2013. ISSN 2150-8097. URL http://dl.acm.org/
citation.cfm?id=2536360.2536366.

[27] S. Martin, M. Ahmed-Nacer, and P. Urso. Controlled conflict
resolution for replicated document. In Collaborative Com-
puting: Networking, Applications and Worksharing (Collabo-
rateCom), 2012 8th International Conference on, pages 471–
480, Oct 2012.

[28] S. Martin, M. Ahmed-Nacer, and P. Urso. Abstract unordered
and ordered trees crdt. CoRR, abs/1201.1784, 2012.

[29] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT
and SAT modulo theories: From an abstract davis–putnam–
logemann–loveland procedure to DPLL(T). Journal of the
ACM (JACM), 53(6):937–977, 2006.

[30] P. E. O’Neil. The escrow transactional method. ACM Trans.
Database Syst., 11(4):405–430, Dec. 1986. ISSN 0362-5915.
. URL http://doi.acm.org/10.1145/7239.7265.

[31] A. Pnueli. The temporal logic of programs. In Foundations of
Computer Science, 1977., 18th Annual Symposium on, FOCS,
pages 46–57. IEEE, 1977.

[32] N. Preguiça, J. L. Martins, M. Cunha, and H. Domingos.
Reservations for conflict avoidance in a mobile database
system. In Proceedings of the 1st International Confer-
ence on Mobile Systems, Applications and Services, Mo-
biSys ’03, pages 43–56, New York, NY, USA, 2003. ACM.
. URL http://doi.acm.org/10.1145/1066116.
1189038.

[33] K. Ramamritham and C. Pu. A formal characterization of
epsilon serializability. IEEE Trans. on Knowl. and Data
Eng., 7(6):997–1007, Dec. 1995. ISSN 1041-4347. . URL
http://dx.doi.org/10.1109/69.476504.

[34] S. Roy, L. Kot, N. Foster, J. Gehrke, H. Hojjat, and C. Koch.
Writes that fall in the forest and make no sound: Semantics-

based adaptive data consistency. CoRR, abs/1403.2307, 2014.
URL http://arxiv.org/abs/1403.2307.

[35] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski.
Conflict-free replicated data types. In Proceedings of the 13th
International Conference on Stabilization, Safety, and Secu-
rity of Distributed Systems, SSS’11, pages 386–400, Berlin,
Heidelberg, 2011. Springer-Verlag. ISBN 978-3-642-24549-
7. URL http://dl.acm.org/citation.cfm?id=
2050613.2050642.

[36] L. Shrira, H. Tian, and D. Terry. Exo-leasing: Escrow syn-
chronization for mobile clients of commodity storage servers.
In Proceedings of the 9th ACM/IFIP/USENIX International
Conference on Middleware, Middleware ’08, pages 42–61,
New York, NY, USA, 2008. Springer-Verlag New York,
Inc. ISBN 3-540-89855-7. URL http://dl.acm.org/
citation.cfm?id=1496950.1496954.

[37] S. Sivasubramanian. Amazon dynamodb: A seamlessly scal-
able non-relational database service. In Proceedings of the
2012 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’12, pages 729–730, New York, NY,
USA, 2012. ACM. ISBN 978-1-4503-1247-9. . URL http:
//doi.acm.org/10.1145/2213836.2213945.

[38] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transac-
tional storage for geo-replicated systems. In Proceedings
of the Twenty-Third ACM Symposium on Operating Systems
Principles, SOSP ’11, pages 385–400, New York, NY, USA,
2011. ACM. ISBN 978-1-4503-0977-6. . URL http:
//doi.acm.org/10.1145/2043556.2043592.

[39] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J.
Spreitzer, and C. H. Hauser. Managing update conflicts in
bayou, a weakly connected replicated storage system. In
Proceedings of the Fifteenth ACM Symposium on Operating
Systems Principles, SOSP ’95, pages 172–182, New York,
NY, USA, 1995. ACM. ISBN 0-89791-715-4. . URL
http://doi.acm.org/10.1145/224056.224070.

[40] D. B. Terry, V. Prabhakaran, R. Kotla, M. Balakrishnan, M. K.
Aguilera, and H. Abu-Libdeh. Consistency-based service
level agreements for cloud storage. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Prin-
ciples, SOSP ’13, pages 309–324, New York, NY, USA, 2013.
ACM. ISBN 978-1-4503-2388-8. . URL http://doi.
acm.org/10.1145/2517349.2522731.

[41] G. D. Walborn and P. K. Chrysanthis. Supporting semantics-
based transaction processing in mobile database applications.
In Proceedings of the 14TH Symposium on Reliable Dis-
tributed Systems, SRDS ’95, pages 31–, Washington, DC,
USA, 1995. IEEE Computer Society. ISBN 0-8186-7153-
X. URL http://dl.acm.org/citation.cfm?id=
829520.830874.

[42] H. Yu and A. Vahdat. Design and evaluation of a con-
tinuous consistency model for replicated services. In Pro-
ceedings of the 4th Conference on Symposium on Operat-
ing System Design & Implementation - Volume 4, OSDI’00,
pages 21–21, Berkeley, CA, USA, 2000. USENIX Asso-
ciation. URL http://dl.acm.org/citation.cfm?
id=1251229.1251250.

14 2014/10/11

[43] M. Zawirski, A. Bieniusa, V. Balegas, S. Duarte, C. Baquero,
M. Shapiro, and N. M. Preguiça. Swiftcloud: Fault-tolerant
geo-replication integrated all the way to the client machine.
CoRR, abs/1310.3107, 2013.

[44] Y. Zhang, R. Power, S. Zhou, Y. Sovran, M. K. Aguilera, and
J. Li. Transaction chains: Achieving serializability with low
latency in geo-distributed storage systems. In Proceedings
of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, SOSP ’13, pages 276–291, New York, NY, USA,
2013. ACM. ISBN 978-1-4503-2388-8. . URL http:
//doi.acm.org/10.1145/2517349.2522729.

15 2014/10/11

	Executive summary
	Milestones in the Deliverable
	Contractors contributing to the Deliverable
	KL
	INRIA
	Louvain
	Nova
	Basho

	Results
	Composition
	Map CRDT
	General composition
	Decomposing CRDTs (for storage)
	Related work
	Summary

	Transactions and Replication
	Foundations for efficient replication
	Transactional Causal+ Consistency
	Related work
	Summary

	Invariants
	Middleware for enforcing numeric invariants
	Explicit consistency
	Related work
	Summary

	Final remarks

	Papers and Publications
	Published papers
	Russell Brown, Sean Cribbs, Sam Elliot, Christopher Meiklejohn. Riak DT Map: A Composable, Convergent Replicated Dictionary. In Proc. PaPEC 14.
	Christopher Meiklejohn. On The Composability of the Riak DT Map: Expanding From Embedded To Multi-Key Structures. In Proc. PaPEC 14.
	Paulo Sérgio Almeida, Carlos Baquero, Ricardo Gonçalves, Nuno Preguiça, and Victor Fonte. Scalable and Accurate Causality Tracking for Eventually Consistent Stores. In Proc. DAIS 14.
	Paulo Sérgio Almeida, Ali Shoker, Carlos Baquero. Efficient State-based CRDTs by Decomposition. In Proc. PaPEC 14.
	Nuno Preguiça, Marek Zawirski, Annette Bieniusa, Sérgio Duarte, Valter Balegas, Carlos Baquero, Marc Shapiro. SwiftCloud: Fault-Tolerant Geo-Replication Integrated all the Way to the Client Machine. In Proc. W-PSDS 14 (SRDS 14).
	Valter Balegas, Mahsa Najafzadeh, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Marc Shapiro, Nuno Preguiça. The Case for Fast and Invariant-Preserving Geo-Replication. In Proc. W-PSDS 14 (SRDS 14)

	Papers under submission and technical reports
	Carlos Baquero, Paulo Sérgio Almeia, Alcino Cunha, Carla Ferreira. Composition of state-based CRDTs. Internal techinal report
	Iwan Briquemont, Manuel Bravo, Zhongmiao Li, and Peter Van Roy. Conflict-free Partially Replicated Data Types. Submitted to PPoPP 15.
	Marek Zawirski, Nuno Preguiça, Annette Bieniusa, Sérgio Duarte, Valter Balegas, Carlos Baquero, Marc Shapiro. Write Fast, Read in the Past: Causal Consistency for Client-side Applications. Submitted EuroSys 15.
	Valter Balegas, Mahsa Najafzadeh, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Marc Shapiro, Nuno Preguiça. Extending Eventually Consistent Cloud Stores for Enforcing Numeric Invariants. Internal technical report.
	Valter Balegas, Mahsa Najafzadeh, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Marc Shapiro, Nuno Preguiça. Putting Consistency Back into Eventual Consistency. Submitted to EuroSys’15.

