
Project no. 609551
Project acronym: SyncFree
Project title: Large-scale computation without synchronisation

European Seventh Framework Programme
ICT call 10

Deliverable reference number and title: D.4.1
Programming principles and tools

Due date of deliverable: October 1, 2014
Actual submission date: 17th November 2014

Start date of project: October 1, 2013
Duration: 36 months
Organisation name of lead contractor
for this deliverable: UCL
Revision: 1
Dissemination level: PU

SyncFree Deliverable D.4.1(v1), 17th November 2014

CONTENTS

Contents
1 Executive summary 1

2 Milestones in the Deliverable 3

3 Contractors contributing to the Deliverable 4
3.1 UCLouvain . 4
3.2 Basho . 4
3.3 Koç . 4
3.4 KL . 4
3.5 Nova . 4
3.6 INRIA . 4

4 Programming model 5
4.1 Overview . 5
4.2 Deterministic dataflow programming . 6

4.2.1 Concurrent constraint programming 6
4.2.2 Deterministic dataflow model 7

4.3 Derflow: distributed deterministic dataflow in Erlang 8
4.3.1 Semantics of Derflow . 8
4.3.2 Distribution model . 10
4.3.3 Programming examples in Derflow 11

4.4 DerflowL : an extension of Derflow for CRDT programming 15
4.4.1 Generalization to lattice variables 15
4.4.2 Running applications at the replicas 17
4.4.3 Separation of layers . 17

4.5 The ad counter use case in DerflowL . 19
4.6 Installation and configuration of Derflow and DerflowL 20

4.6.1 Prerequisites . 20
4.6.2 Obtaining and Building Derflow 22
4.6.3 Testing and Program Execution 22

5 Specification 23
5.1 Overview . 23
5.2 Sequential specifications . 24

5.2.1 Adapting sequential specifications to concurrent settings 25
5.3 Concurrent specifications . 26

5.3.1 Axiomatic specifications . 28
5.3.2 Operational specifications . 29

5.4 Relating sequential and concurrent specifications 32
5.5 Assertions and invariants . 33
5.6 Future work . 34

6 Verification 35
6.1 Overview . 35
6.2 Describing CRDTs in TLA+ . 36
6.3 Describing applications in TLA+ . 38

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 2

CONTENTS

6.3.1 The Advertisement Counter application 38
6.3.2 The Virtual Wallet application 39

6.4 Verification using TLA+ model checking 41
6.5 Conclusions . 43
6.6 Future work . 43

7 Ensuring invariants with explicit consistency 44
7.1 Overview . 44
7.2 Formalization approach . 44
7.3 Illustrating example: a tournament application 45
7.4 Enforcing explicit concurrency . 46
7.5 Indigo middleware . 47
7.6 Fault tolerance . 48
7.7 Experimental evaluation . 49
7.8 Conclusions . 52

8 Papers and publications 53

A Derflow: Distributed Deterministic Dataflow Programming for Erlang 58

B Eventual Consistency and Deterministic Dataflow Programming 69

C Formal Specification and Verification of CRDTs 72

D Putting Consistency Back into Eventual Consistency 89

E Towards Verifying Eventually Consistent Applications 105

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 3

1 EXECUTIVE SUMMARY

1 Executive summary

The purpose of WP4 is to design the programming principles and tools that we need
to program large-scale applications based on CRDTs. This workpackage is done in tight
collaboration with WP1, WP2 and WP5. WP1 is documenting the use cases of large-scale
applications, which are formalized in WP4. WP2 is building the SyncFree reference plat-
form, called Antidote, and WP4 is building the programming models and tools for using
this platform. WP5 has also been responsible for building a benchmarking and testing
platform for use with the WP4 programming model. WP4 has made progress in three
tracks during the first year for building applications based on CRDTs: the programming
model, specification, and verification. We have also explored a possible integration of
these tracks based on explicit consistency.

In the second year of the project, we will explore connections between the tracks
and how to make them converge. The key concept in all tracks is the invariants that are
used both to specify eventually consistent applications and to enforce correct behavior
during execution. That is, the invariants cover both application intent and execution
behavior. The programming model track explores how a suitable programming model
can enforce invariants by using language properties. The specification track explores
the invariants themselves for eventually consistent applications, exploring how to relax
some and maintain others. The verification track checks invariants at various levels: for
CRDTs and applications, at development time and runtime.

Programming model The programming model track’s main goal is to provide the con-
cepts and software needed to write large-scale distributed applications based on the Syn-
cFree approach (see Section 4). The aim is to provide for both easy programmability and
scalability of applications that use as little synchronization as possible. Using CRDTs
has the potential to greatly simplify the writing of large-scale distributed applications,
because it reduces both the synchronization and nondeterminism inherent in distributed
computing. But there are two caveats: first, how to combine individual CRDTs while
keeping the good properties, and second, how to add synchronization where needed while
keeping the good properties elsewhere.

In the first year, we have addressed the first caveat. We designed and built a determin-
istic dataflow model called Derflow that is built on top of riak-core. We have generalized
this to a new model called DerflowL that uses CRDTs and allows programming pure
CRDT applications. It also enables running our code on the cluster, directly at the rep-
licas. We have started implementation of three application scenarios in this model to
explore our models expressiveness: specifically the ad counter, education platform, and
score ranking. As we implement these application scenarios, we will learn what, if any,
further extensions should be made to the model to support them.

In the second year, the major goal is to extend DerflowL to become a general frame-
work in the Antidote platform for computing with eventually consistent materialized
views that have strong convergence properties. We plan to make a clean interface between
DerflowL and Antidote, to reduce as much as possible the implementation dependencies
between the two. We plan to extend DerflowL with explicit causality and transactions. We
will also investigate non-monotonic operations, memory management, and nonfunctional
properties such as divergence monitoring and control.

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 1

1 EXECUTIVE SUMMARY

Specification The goal of the specification track is to specify large-scale distributed
programs that use eventual consistency and are typically based on CRDTs (see Section
5). Specification of eventually consistent programs using CRDTs is a largely unexplored
territory. We started this work by specifying single CRDTs and we then generalized this
to allow specifying eventually consistent programs. Our approach is to start from se-
quential specifications, which are already well understood, and adapt and relax them to
concurrent specifications. For concurrent specifications we explored axiomatic and op-
erational specification techniques. In order to explore the different kind of specifications
and their relation, we have written formal specifications in Isabelle/HOL for variations
of the wallet and ad counter use cases.

In the second year we will continue this work towards a formal development process
for eventually consistent applications. We will investigate how to simplify the writing
of specifications for eventually consistent programs. We will work on a language to
define whole systems and their interfaces and we will investigate the relationships with
the work on DerflowL . We also intend to work on tools for working with specifications,
for example to generate part of the implementation automatically from a specification
and to generate proof obligations from the specification and the system description.

Verification In the verification track, we have worked on verification of single CRDTs
and or high-level formal models of applications, using TLA+ and TLC (see Section
6). We have made low-level formal specifications in TLA+ for several state-based and
operation-based CRDTs, including convergence properties and invariants on the conver-
gent states. For applications, we worked on the wallet use case, the ad counter, the FMK
healthcare use case, and the score ranking (leaderboard) use case. So far we have used
model checking as a form of dynamic verification to verify invariants for small configur-
ations and catch invariant violations.

In the second year we intend to extend this to use static verification (rather than model
checking) of application properties, which has the potential to verify much stronger prop-
erties such as configurations with arbitrary numbers of replicas and programs of arbitrary
length. We intend to build a tool for dynamic execution exploration with multiple in-
stances of Riak.

Ensuring invariants with explicit consistency In addition to the above tracks, we have
explored an approach to reduce synchronization for large-scale distributed applications
that combines elements of specification and verification and applies them to the program-
ming model (see Section 7). The idea is to specify the application invariants and enforce
them explicitly during execution. We have built a prototype platform called Indigo that
realizes this approach, and showed its usefulness with a small application similar to the
education use case. Application invariants are specified in first-order logic and we use
a SAT solver to identify before execution potential conflicts between operations. These
conflicts are then handled during execution using a reservation mechanism. This two-
phase approach lets us use reservations during execution in exactly the right situations
and no more.

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 2

2 MILESTONES IN THE DELIVERABLE

2 Milestones in the Deliverable
Milestone S1 (M12) on CRDT consolidation in a static environment. This concerns work
packages WP1, WP2, WP3, WP4, WP5. Task 4.1 has contributed to this milestone by
focusing on the following goals, as stated in the description of work:

T4.1: Basic programming model (feasibility)
This task will define the basic programming model for building applications
with CRDTs. To achieve a simple and expressive model that supports pro-
gramming with composition and abstraction of CRDTs, causality determ-
ination of CRDT operations, and object purging, we will base the model
on a simple process calculus. Programmers do not have to know this cal-
culus, but its existence makes reasoning possible and ensures the absence
of unexpected behavior. The programming model will be accessible both
through APIs in existing languages (e.g., Java libraries, for direct industrial
usage) and through direct language support (e.g., extensions of the Mozart
system, which supports language extensibility and transparent distribution).
This two-pronged approach will ensure the general applicability of our re-
search results.

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 3

3 CONTRACTORS CONTRIBUTING TO THE DELIVERABLE

3 Contractors contributing to the Deliverable

3.1 UCLouvain
Peter Van Roy, Manuel Bravo, Zhongmiao Li.

3.2 Basho
Christopher Meiklejohn.

3.3 Koç
Serdar Tasiran, Burcu Kulacioglu Ozkan, Erdal Mutlu, Suha Orhun Mutluergil.

3.4 KL
Peter Zeller, Arnd Poetzsch-Heffter.

3.5 Nova
Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Nuno Preguiça.

3.6 INRIA
Mahsa Najafzadeh, Marc Shapiro.

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 4

4 PROGRAMMING MODEL

4 Programming model

4.1 Overview
Writing a distributed application is difficult because it introduces significant new non-
functional properties over a centralized application, namely geographic distribution and
partial failure. This leads to complex issues of fault tolerance, consistency, resource
management, latency, and throughput. Building applications based on CRDTs has the
potential to greatly simplify the management of these nonfunctional properties, because
they support applications that are by default deterministic and require no synchroniza-
tion. For an application built with CRDTs, the nondeterminism inherent in distributed
programming is not visible at the application level. This achieves both consistency and
fault tolerance without complicating the application code. However, these advantages
come with two strong caveats:

1. They hold for operations on single CRDTs. It is not clear how to write programs
that combine CRDTs to build abstractions while still keeping their good properties.

2. They hold for applications that require zero synchronization. In realistic applica-
tions, some synchronization is occasionally needed, so the model should keep the
good properties when no synchronization is used and give these properties up only
when absolutely necessary.

During the first year of SyncFree, we focused on the first caveat. We first designed and
implemented a deterministic dataflow model called Derflow in Erlang on top of riak core
[3], the same foundation as Antidote, the SyncFree reference platform built in WP2.
The Derflow library provides replication and fault tolerance for deterministic dataflow
programs using dataflow variables. It allows writing deterministic fault-tolerant programs
in Erlang. The semantic foundation of Derflow is concurrent constraint programming
(CCP), a process calculus for concurrent programming that uses logical properties to
define operational behavior.

In previous work we have used CCP to define a deterministic dataflow language,
namely a subset of the Oz language (see chapter 4 of [13]). We observe that the basic
data structures of Oz, namely logic variables bound with unification, are actually CRDTs
when implemented in a distributed setting. The update operation on logic variables is dis-
tributed rational tree unification, which in error-free programs satisfies the strong eventual
consistency property [6].

We then generalized Derflow in three ways to make it suitable for general CRDT pro-
gramming: first by replacing dataflow variables by general CRDTs, second by allowing
programs to run at the replicas, and third by separating the language layer from the per-
sistence layer. This extension is called DerflowL and it implements pure synchronization-
free CRDT programming. In the second year of SyncFree, we will integrate DerflowL

with Antidote and extend it for explicit causality, transactions, and various operations re-
lated to synchronization and non-monotonicity, according to the needs of our use cases.

Structure The following sections elaborate the approach given above:

• Section 4.2 gives a brief introduction to the CCP process calculus that underlies
our work and explains how we have modified and extended it for deterministic
dataflow programming.

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 5

4 PROGRAMMING MODEL

• Section 4.3 introduces Derflow, an implementation of the deterministic dataflow
model in Erlang on top of riak core. We give the Derflow API and illustrate its
abilities with programming examples.

• Section 4.4 introduces an extension to Derflow called DerflowL that provides prim-
itives for programming with CRDTs.

• Section 4.5 gives a nontrivial programming example, namely the ad counter from
WP1, to illustrate how DerflowL works.

• Section 4.6 explains how to install the Derflow and DerflowL software, which are
both available on GitHub under an open source license.

4.2 Deterministic dataflow programming

Deterministic dataflow is a form of concurrent functional programming that preserves
all the good properties traditionally part of functional programming, e.g., confluence and
referential transparency. Deterministic dataflow has two useful properties for concurrent
programming:

• It avoids race conditions by design.
• All higher-order programming patterns become concurrency patterns.

Deterministic dataflow programming is a subset of the Oz language, as explained in
chapter 4 of [13]. This subset has been implemented in Scala, giving the Ozma language
[4], and in Erlang, giving the Derflow library (explained in this report). The semantic
foundation of Derflow and DerflowL is concurrent constraint programming. We give a
brief introduction to the CCP process calculus and we explain how it is adapted for Der-
flow.

A1# A2# An&1# An#...#

σ#

Agents'

Constraint'store'

Figure 1: Agents observing a shared store in concurrent constraint programming

4.2.1 Concurrent constraint programming

Concurrent constraint programming (CCP) is a process calculus for concurrent program-
ming introduced by Vijay Saraswat in 1993 [9]. It is based on Michael Maher’s logic
semantics for concurrent programming, which introduces the key idea of using logical
conditions to define a program’s control flow [7]. In the core calculus of CCP, concurrent
processesAi (called agents) communicate through a shared constraint store σ (see Figure
1). The store consists of a conjunction of basic constraints: σ = ∧ici. The agents can do
two basic operations with respect to the store, called tell and ask. The tell(c) operation

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 6

4 PROGRAMMING MODEL

adds the constraint c to the store. The ask(c) operation causes the agent to wait until the
constraint c is logically entailed by the store. The syntax of core CCP is as follows:

Declarations D ::= p(x)← A | D,D
Agent A ::= true | tell(c) |∑1≤i≤n ask(ci)→ Ai | A ‖ A | ∃x.p(x) | p(x)

The operational semantics of core CCP is given as a transition system < A, σ > with a
set of agents A and a constraint store σ:

Tell < tell(c), σ >→ < true, c ∧ σ >
Ask <

∑
1≤i≤n ask(ci)→ Ai, σ >→ < Aj, σ > if σ |= cj (1 ≤ j ≤ n)

Composition < (A ‖ B), σ >→ < (A′ ‖ B), σ′ > if < A, σ >→< A′, σ′ >
< (A ‖ B), σ >→ < (A ‖ B′), σ′ > if < B, σ >→< B′, σ′ >

Unfold < p(x), σ >→ < A ‖ tell(∧ixi = yi), σ > if (p(y)← A) in D

Here xi and yi are variables, x means x1, ..., xn, and the constraint system is assumed
to have an equality operation. This syntax and operational semantics follows chapter 13
of the Handbook of Constraint Programming [8]. The full Oz language is based on an
extension of this core CCP calculus with additional concepts whose semantics is given in
chapter 13 of [13].

4.2.2 Deterministic dataflow model

We give the simple process calculus semantics of deterministic dataflow, using the core
CCP calculus of the previous section as the basis. We modify and extend it with three
design choices, of which the first two are:

• First, we restrict the nondeterministic choice
∑

1≤i≤n ask(ci) → Ai to one choice.
This guarantees that the resulting concurrent language is deterministic, i.e., by
design it cannot have race conditions.

• Second, we define the constraint system underlying σ as containing constraints c
of just two forms, namely x = y and x = a(y1, ..., yn), where x and y are variables
and a(y1, · · · , yn) is a record. This represents the standard record data structures
of the Erlang language.

S"

C1"

Cn"

...
"

Nondeterminis+c-
choice-done-here-

Figure 2: A simple client/server application

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 7

4 PROGRAMMING MODEL

It is very important to start with a base language that cannot express nondeterminism.
This is a crucial property since we will be computing with CRDTs, which have a de-
terministic property, namely strong eventual consistency (SEC). This is not a limitation
in practice since we will add a nondeterministic operation to the full language. Our ex-
perience shows that any realistic program will only need nondeterministic operations in
a very few places. For example, consider a client/server application (see Figure 2). A
single server can serve a large number of clients. In the simplest case, only one non-
deterministic operation is needed in this program, namely the point where the server
accepts commands from the next client. This point does a nondeterministic choice of
the next client to be served. The server and client programs can however be completely
deterministic.

To obtain our final deterministic dataflow language, we make a final design choice:

• Third, we add the ability to create closures, i.e., references to declarations p(x)←
A from within a program. We do this in a simple way: we annotate each declaration
with a constant value and we allow constraints to contain these constants. We
denote these new constants by Greek letters ξ. We also allow agents A to contain
declarations. Declarations and procedure calls then take the following forms:

Named declarations D ::= ξ : (p(x)← A) | D,D
Named unfold < x(x), σ >→< A ‖ tell(∧ixi = yi), σ >

if σ |= x = ξ and ξ : (p(y)← A) in D

In the following section we present the Derflow programming model, which implements
this semantics in Erlang using the riak-core library as a base. Derflow extends the pure
CCP semantics with a well-defined distribution behavior. In particular, it replicates
single-assignment variables to provide fault tolerance.

4.3 Derflow: distributed deterministic dataflow in Erlang
Erlang implements a message-passing execution model, which is inherently nondetermin-
istic. Nondeterminism drastically increases the difficulty to debug programs or verify
program behavior, especially in a distributed setting. We propose Derflow, a new execu-
tion model for Erlang that implements deterministic dataflow programming. It provides
concurrency yet eliminates all observable nondeterminism. Lazy execution and streams
are provided as useful programming techniques. Last but not least, nondeterminism can
be added when necessary.

Derflow is based on a highly available, scalable single-assignment data store that is
implemented on top of the riak core open source distributed systems framework.

4.3.1 Semantics of Derflow

Deterministic dataflow The deterministic dataflow model uses a single-assignment
data store, which is shared among all processes in the deterministic dataflow compu-
tation. It stores dataflow variables. Each dataflow variable is identified by a key and can
have three different states: unbound, bound to an Erlang term or bound to another data-
flow variable which is unbound, denoted as partially bound. When a dataflow variable is
bound, all dataflow variables that are bound to it will also be bound to its value.

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 8

4 PROGRAMMING MODEL

As the name ’single-assignment’ suggests, dataflow variables can be bound once, or
be bound several times to the same value only. When binding a dataflow variable that
is already bound to a different value, a program error is generated. Concurrency can be
added with Erlang primitive spawn.

The following operations are supported for dataflow variables:

• declare(): create a dataflow variable and return the key of the dataflow variable.
• bind(xi, vi): bind the dataflow variable xi to vi. vi can be an Erlang term that

represents a value, or can be another dataflow variable. In case xi is already bound
to vj while vi does not match vj , the execution of the deterministic program will
terminate. The bind operation corresponds to a tell in the concurrent constraint
calculus.

• bind(xi,m, f, args): bind the dataflow variable xi to the result of executing m:f(args)
with module m and function f in the module.

• read(xi): returns the term bound to xi. In case xi is unbound or partially bound,
the execution is suspended until the xi is bound. The read operation corresponds
to an ask in the concurrent constraint calculus.

Streams Streams are a useful technique that allows processes to communicate and syn-
chronize in concurrent programming. A stream is implemented as a list of dataflow
variables, with an unbound variable as the tail of the list. In terms of constraints, a
stream’s tail is represented by a variable x, the stream is extended by a tell of the con-
straint x = cons(y, x′) where x′ is the new tail, and the stream is read by an ask of the
constraint ∃y∃x′.x = cons(y, x′). Multiple processes can read a stream concurrently
without compromising determinism. Nevertheless, there can be only one producer for a
stream, in order to ensure determinism.

The following operations are supported for streams:

• extend(xi): extend the stream by creating a pointer to a new unbound tail, xi+1.
• produce(xi, vi): extend the stream by binding its tail xi to vi and creating a new

unbound tail, xi+1.
• produce(xi,m, f, args): extend the stream by binding its tail xi to the result of

executing m:f(args) with module m and function f in the module, and creating a
new unbound tail, xi+1.

• consume(xi): read the dataflow variable xi and returns a pair of the next element
in the list and the next tail. In terms of constraints, this waits until xi is bound to a
constraint of the form x = cons(y, x′), and returns y and x′.

Laziness Lazy execution delays the evaluation of an expression until the valued is
needed somewhere else in the program. It can potentially improve the performance of
programs by avoiding unnecessary computation. Moreover, it enables writing programs
that create infinite data structures since elements will only be created when it is needed.

We provide one operation to enable lazy execution:

• wait needed(xi): suspend the caller process until xi is needed, i.e. some process
is executing read(xi). Then the caller continues execution and can bind xi.

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 9

4 PROGRAMMING MODEL

Nondeterminism, when necessary Although deterministic dataflow is a powerful con-
current programming paradigm, not all programs can be written in a purely deterministic
manner. For example, a simple client-server application needs nondeterminism since the
server should handle requests from any client, but it can not know the order of requests
in advance.

The client-server program can be written by using the original Erlang message passing
primitive (A ! B). Besides that, we propose one primitive that also introduces nondetermin-
ism:

• is det(x): check whether a dataflow variable x is bound or not. This introduces
nondeterminism, as during different execution the result of this call can vary due
to process scheduling and network delay.

Failure handling Failures also introduce nondeterminism. Therefore, a deterministic
program can become nondeterministic if care is not taken to handle failures in a determ-
inistic manner.

We identify two kinds of possible failures and proposes methods for handling these
failures:

• Computing process failures: an Erlang process that uses dataflow variables failed.
If the failed process is written in a deterministic manner, it can be safely restarted
without introducing any accidental nondeterminism.

• Dataflow variable failures: a dataflow variable in the single-assignment store is
not reachable. It will block processes trying to access the failed dataflow variable
forever. Simply restarting the process does not guarantee progress. In case the
required dataflow variables were created by other processes (i.e. the restarted pro-
cess will not recreated these dataflow variables) and all processes storing them have
failed, the restarted process will be blocked immediately. This case can be handled
by using the Erlang primitives monitor/2 and link/1 for building custom supervi-
sion trees, in which a process will be re-executed if any of its created dataflow
variables have failed.

4.3.2 Distribution model

The distribution model of Derflow centers around Dynamo-style [11] partitioning and
replication of the single-assignment variable store. In this model, each variable is stored
on a set of replicas for a given partition, where its placement in a particular partition
is determined through consistent hashing and hash-space partitioning. This distribution
model is illustrated in Figure 3.

When declare, bind or read operations are performed, they are performed against a
quorum of the replicas for a given object – with a default replication factor of 3, this
gives the system the ability to tolerate 1 failure without sacrificing progress – therefore,
our system remains available as long as (N/2) + 1 nodes are online.

However, the system must still deal with partial writes – where a request fails be-
cause the request did not successfully complete at a majority of replicas but may have
completed at some. Given that all of our variables in the single-assignment store are im-
mutable, as long as our applications do not introduce any accidental nondeterminism, we
can reissue the request without sacrificing determinism.

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 10

4 PROGRAMMING MODEL

derflow
application

1
3

2

4
6

5

bind(X, 1)
read(X) read(Y)

bind(Y, 2)

Figure 3: Two replication groups, where a quorum of nodes are available for writes;
in thix example, variable X is partitioned into the first replica set, and variable Y is
partitioned into the second. The application sits outside the cluster and makes round trips
to the data store for each operation.

The Derflow paper (see appendix) goes into futher detail about how our distribution
model is both highly-available and fault-tolerant.

4.3.3 Programming examples in Derflow

In this section we describe some important programming patterns in Derflow.

Concurrency transparency Programs written in Derflow can be re-organized into a
series of independent processes performing parts of the computation without having to
worry about introducing accidental nondeterminism. This effectively allows programs
to add arbitrary concurrency to their programs – in the form of distribution or parallel
computation – without having to worry about data races or bugs due to nondeterministic
process inter-leavings.

One example is a sequential map function that receives a stream of inputs and applies
a function to each element resulting in an output stream of equal length. The code in
Derflow for a sequential map function is the following:

map(S1, M, F, S2) ->
case derflow:consume(S1) of
{ok, nil, _} ->
derflow:bind(S2, nil);

{ok, Value, Next} ->
{ok, NextOut} = derflow:produce(S2, M, F, Value),
map(Next, F, NextOut)

end.

Nevertheless, due to the concurrency transparency property, the programmer could
easily upgrade his sequential map to a concurrent implementation without introducing

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 11

4 PROGRAMMING MODEL

nondeterminism. The code in Derflow for the concurrent implementation of the map
function is the following:

concurrent_map(S1, M, F, S2) ->
case derflow:consume(S1) of
{ok, nil, _} ->
derflow:bind(S2, nil);

{ok, Value, Next} ->
{ok, NextOut} = derflow:extend(S2),
spawn(derflow, bind, [S2, M, F, Value]),
concurrent_map(Next, M, F, NextOut)

end.

In this case, the programmer explicitly specified (by using the primitive spawn(module,
function, args)) that the evaluation of the function F should be performed concurrently.
This allows the map function to read the next element from the input stream without
waiting for the function evaluation to complete. One possible application of this pattern
is parallelism: if processes are executed on separate cores then the concurrent map will
be faster than its sequential counterpart.

Concurrent deployment In concurrent deployment, we can further leverage concur-
rency transparency to concurrently and incrementally start new processes according to
need. There is no need to start all processes when initializing programs, instead only a
few processes will be started at first and they will launch new processes during runtime
according to need. The launched processes are executed concurrently and a process will
terminate when it finishes its computation, without affecting the execution of other pro-
cesses.

The following example is a pipeline that implements the Sieve of Eratosthenes. This
program receives a stream of integers and returns a stream with the integers that are
prime. At each iteration of the sieve, the stream of candidates is filtered by using the
latest prime found. Thus, one filter process is created per iteration. The output of a filter
is used as an input of the next filter. Filters are pipelined; therefore, as soon as a filter
outputs the first element of its output stream, the next filter can start its execution. The
code in Erlang using Derflow is the following:

sieve(S1, S2) ->
case derflow:consume(S1) of
{ok, nil, _} ->
derflow:bind(S2, nil);

{ok, Value, Next} ->
{ok, SN} = derflow:declare(),
F = fun(Y) -> Y rem Value =/= 0 end,
spawn(sieve, filter, [Next, F, SN]),
{ok, NextOut} = derflow:produce(S2, Value),
sieve(SN, NextOut)

end.

filter(S1, F, S2) ->
case derflow:consume(S1) of
{ok, nil, _} ->
derflow:bind(S2, nil);

{ok, Value, Next} ->
case F(Value) of

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 12

4 PROGRAMMING MODEL

false ->
filter(Next, F, S2);

true->
{ok, NextOut} = derflow:produce(S2, Value),
filter(Next, F, NextOut)

end
end.

Laziness The following examples show how the wait needed primitive can be used to
implement lazy functions. The example below shows a lazy version of a sorting algorithm
for a list of numbers.
insort(List, S) ->
case List of
[H|T] ->
{ok, OutS} = derflow:declare(),
insort(T, OutS),
spawn(getmin, insert, [H, OutS, S]);

[] ->
derflow:bind(S, nil)

end.

insert(X, In, Out) ->
ok = derflow:wait_needed(Out);
case derflow:consume(In) of
{ok, nil, _} ->
{ok, Next} = derflow:produce(Out, X),
derflow:bind(Next, nil);

{ok, V, SNext} ->
if X < V ->
{ok, Next} = derflow:produce(Out, X),
derflow:produce(Next, In);

true ->
{ok, Next} = derflow:produce(Out, V),
insert(X, SNext, Next)

end
end.

We achieve laziness in this computation by breaking down the computation into a
series of processes; each of which we immediately call wait needed on. By performing
this call, we suspend its execution until the result is required by another process; at this
point, we awaken the suspended process.

For instance, if only the smallest number of the sorted list is needed, we can simply
read the first element of the output list. When the input list is [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
both eager execution and lazy execution performs insertion ten times. However, when
the input is [10, 9, 8, 7, 6, 5, 4, 3, 2, 1], the eager version executes insertion for 54 times;
in contrast, the lazy version only executes insertion 19 times.

The second example combines lazy execution and eager execution. We implemented
a bounded-buffer that connects a producer and a consumer. Thus, the producer only
produces on demand when the consumer needs to consume. Nevertheless, the producer
is allowed to generate some elements in advance in order to be more efficient. The
Derflow implementation is the following:

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 13

4 PROGRAMMING MODEL

producer(Value, N, Output) ->
if (N > 0) ->
ok = derflow:wait_needed(Output),
{ok, Next} = derflow:produce(Output, Value),
producer(Value+1, N-1, Next);

true ->
derflow:bind(Output, nil)

end.

loop(S1, S2, End) ->
ok = derflow:wait_needed(S2),
{ok, S1Value, S1Next} = derflow:consume(S1),
{ok, S2Next} = derflow:produce(S2, S1Value),
case derflow:extend(End) of
{ok, nil} ->
ok;

{ok, EndNext} ->
loop(S1Next, S2Next, EndNext)

end.

buffer(S1, BUFFER_SIZE, S2) ->
End = drop_list(S1, BUFFER_SIZE),
loop(S1, S2, End).

drop_list(S, Size) ->
if Size == 0 ->
S;

true ->
{ok, Next} = derflow:extend(S),
drop_list(Next, Size-1)

end.

consumer(S2, Size, F, Output) ->
if Size == 0 ->
ok;

true ->
case derflow:consume(S2) of
{ok, nil, _} ->
derflow:bind(Output, nil);

{ok, Value, Next} ->
{ok, NextOut} = derflow:produce(Output, F(Value)),
consumer(Next, Size-1, F, NextOut)

end
end.

The above code has three main components:

• Consumer: Asks for items eagerly.
• Producer: Only produces items when it is needed. This is achieved by calling

wait needed for the next element after it has produced an item.
• Bounded buffer: Takes the output stream from the producer and the input stream

of the consumer, initially allocating the buffer size for the producer, and extending
the stream as values are consumed.

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 14

4 PROGRAMMING MODEL

Process supervision Since redundant computation does not change the result of Der-
flow programs – this follows from both the concurrency transparency and concurrent
deployment properties – programs that do not use the nondeterministic or lazy operat-
ors are idempotent. Given this, we can devise a simple supervisor which restarts failing
processes when a problem is detected.

supervisor(Dict) ->
receive
{'DOWN', Ref, process, _, _} ->
case dict:find(Ref, Dict) of
{ok, {Module, Function, Args}} ->
spawn_mon(self(), Module, Function, Args);

error ->
supervisor(Dict)

end;
{'SUPERVISE', PID, Information} ->
Ref = erlang:monitor(process, PID),
Dict2 = dict:store(Ref, Information, Dict),
supervisor(Dict2)

end.

The above supervisor receives SUPERVISE and DOWN message; the former enables
monitoring of a particular process; the latter is received when processes fail. In both
cases, the supervisor restarts the processes with the original arguments, similar to the
supervision strategies used by Erlang/OTP.

4.4 DerflowL : an extension of Derflow for CRDT programming

DerflowL extends the programming model in several ways. Specifically, it:

• Generalizes single-assignment variables to bounded join-semilattice variables.
• Provides the ability to run computations in the Derflow cluster at the replicas.
• Separates the persistence layer from the language semantics.

4.4.1 Generalization to lattice variables

DerflowL extends our programming model to state-based CRDTs, as described by Sha-
piro et al. in [22]. We start by generalizing our single-assignment model to a bounded
join-semilattice (referred to herein as lattices) with two possible states, unbound and
bound, as shown in Figure 4. When performing this generalization, we are able to repres-
ent our previously discussed bind semantics in a different way: we allow bind operations
to succeed when the value we are binding triggers an inflation of the lattice. We use the
top state of the lattice to represent the error state which is reached when we attempt to
rebind a variable to a different value.

As we begin to extend our model to a larger collection of state-based CRDTs, or
lattices, the size of possible states for each type grows as complexity of the data type
grows. While previously we have bound opaque values to each dataflow variable, when
operating with CRDTs we bind the internal state of the CRDT, which contains a query
function for determining its current value.

To explore how this complexity grows in size, examine the following:

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 15

4 PROGRAMMING MODEL

⊤

⊥

bound

unbound

Figure 4: Single-assignment variables generalized to a bounded join-semilattice.

• Last writer wins registers (LWW-Register) only track the current value and a timestamp
– the least upper bound, or join, of two registers always returns the latest timestamp
and value.

• Grow-only sets (G-Set) track only the number of elements added by each actor –
the least upper bound, or join, of two sets simply unions the products of the actors
and elements added.

• Remove-once sets (2P-Set) track two grow-only sets – the least upper bound oper-
ation of two sets simply performs the join operation across both sets.

• Observed-remove sets (OR-Set) provide the ability for arbitrary additions and re-
movals of elements – this requires uniquely tracking additions and removals per-
formed by each actor in two sets, unioning the sets on join.

The four types above are only a sampling of the CRDTs which have been written
about [22], each of which can also have different implementations while retaining similar
semantics. However, two things remain true:

• As updates are performed against a given CRDT, the internal state increases; this
is an inflationary update of the lattice.

• The query function for a given type will always return the current value of the
CRDT, of which observations over time are not necessarily monotonic (monotonic
for CRDTs such as the G-Set, but not for the 2P-Set or OR-Set).

In extending this model to CRDTs, we allow variables to rebind as long as the change
is always inflationary in relation to the lattice – to explore a similistic example: if xi is
initially bound to the grow-only set containing [a, b, c], we allow a subsequent bind to
[a, b, c, d], while ignoring a bind to [a, b].

Additionally, we supply a threshold read primitive, similar to the threhold read prim-
itive discussed by Kuper and Newton in [1]. This provides a blocking read operation

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 16

4 PROGRAMMING MODEL

until the lattice reaches a particular state, in which the threshold is returned regardless of
state. This supports ”deterministic by construction” applications. It is still unclear how
this operation will grow in usability as we move to more complicated CRDTs given the
growth in state as the complexity of CRDTs increases.

To support this new behavior, we extend our API like so: 1

• declare(ti): create a dataflow variable of a given type ti and return the key of the
dataflow variable.

• bind(xi, vi): bind the dataflow variable xi to vi. vi can be an Erlang term that
represents a value, or can be another dataflow variable. In the case that xi is already
bound to vj , we compute the join of both vi and vj and bind if the result of the join
is an inflation.

• read(xi): returns the value of xi once it has been bound (its value is different from
⊥); until this occurs, execution is suspended.

• read(xi, vi): returns the value of xi once the value bound to xi is an inflation of vi;
until this occurs, execution is suspended.

4.4.2 Running applications at the replicas

While the distribution model of Derflow is both fault-tolerant and highly-available, the
communication overhead for small programs is high. The reason for this is that each
Derflow operation requires a full round-trip to the single-assignment store.

As an optimization, we can move the computation of our applications to the server.
We provide two additional primitives register and execute for registering applications
with the cluster and executing them. With this change, we no longer distribute variables
across the partitions as shown in Figure 3, but rather entire programs. Each of these pro-
grams operate on their local state, and once have observed all updates in the system, it
is suffient to contact only one replica in the system for the result of the program. To in-
crease recency in a system where messages are constantly being delivered, more replicas
can be contacted and their states merged using the normal CRDT join operation. This is
an extension of the strong eventual consistency model discussed by Shapiro et al. in [22]
from data types to programs. The updated distribution model is illustrated in Figure 5.

4.4.3 Separation of layers

As previously discussed, both Derflow and DerflowL rely on a highly-available, distrib-
uted data store for storage of dataflow variables. In the default implementation, the per-
sistence layer used is the Erlang Term Storage (ETS) system, which provides ephemeral
term storage.

In order to keep Derflow and DerflowL as modular as possible, and to enable testing
of Derflow independently, and on top of both the SyncFree reference platform and Riak,
we have separated the persistence layer from the distribution and language layers.

Additionally, this allows us to tests the language semantics completely independently
of the persistence layer as well as support backend specific testing. As a first step towards

1It is important to note that when discussing inflations we are referring to inflations of internal state of
the CRDTs, and not necessarily the observed value – for instance, in a set where elements can be arbitrarily
added and removed, the internal state may grow, where the observed value may appear to shink.

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 17

4 PROGRAMMING MODEL

derflow
application

4
6

5

1

2

3

register(X)

execute(X)

7
8

9

Figure 5: Updated DerflowL distribution model where applications are pushed to the
replicas; each program is rewritten to operate over local state. execute contacts a quorum
of replicas for the result, which is merged.

this, we’ve implemented an Erlang QuickCheck model for our ETS backend, the only
backend we’ve currently implemented. This model could be easily extended for other
backends.

Here’s an example of how we verify invariants for read operations.

read(Id, Threshold) ->
derflow_ets:read(Id, Threshold, ?ETS).

read_pre(S) ->
has_variables(S).

read_pre(S, [Id, Threshold]) ->
is_read_valid(S, Id, Threshold).

read_args(#state{store=Store}) ->
Variables = dict:fetch_keys(Store),
?LET(Variable, elements(Variables),

begin
Threshold = threshold(Variable, Store),
[Variable, Threshold]

end).

read_post(#state{store=Store}, [Id, Threshold], {ok, V, _}) ->
case dict:find(Id, Store) of

{ok, #variable{value=Value}} ->

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 18

4 PROGRAMMING MODEL

Value == V;
_ ->

false
end.

Erlang QuickCheck takes a state-machine approach to testing stateful applications.
The QuickCheck model is responsible for modeling application state locally and for each
command, in this example read, a series of pre- and post-conditions are used to validate
that a randomly generated command should be executed, and that the resulting state after
the call is correct. Digging into the example above, each function here corresponds to
one aspect of the state-machine:

• read: Responsible for mapping the read operation in the model, to the persistence
layer specific call which performs the read operation.

• read pre: Responsible for validating a randomly generated read operation should
be performed or ignored; this will verify that it does not generate a read operations
with a threshold which is not valid during this execution.

• read args: Given the current state of our model, when generating a random read
operation, determine how to generate the argument list for the call. If the variable
is a lattice, generate the read with a threshold; otherwise, generate a read operation.

• read post: Verify that for each successful call to the persistence layer the result
returned from the call is correct.

4.5 The ad counter use case in DerflowL

To illustrate DerflowL we have selected the ad counter use case from WP1. This use
case shows well how a large number of nodes (mobile nodes and ad server nodes) can
coordinate their activities through shared CRDTs (see Figure 6). It is important to note
that this example does not need transactions or locks; all coordination is done through
shared CRDTs. The example runs using the current API of DerflowL (see code in Figure
7), but the code may change in the future since the API is work-in-progress and is rapidly
changing as we figure out the best ways to express computations.

Nowadays, mobile apps usually contain advertisements. Accurately counting the
number of impressions is crucial for an advertisement platform, as advertising companies
pay per impression. However, this is challenging to achieve in the mobile environment,
because it is a highly dynamic, error-prone, and large-scale environment. CRDT coun-
ters are a reasonable solution to this problem, as they can scale to extreme numbers of
concurrent clients. To illustrate this example we use the DerflowL API to write a simple
advertisement counter that consists of a server program and a client program. The server
program stores a list of ads in a grow-only set (G-Set), with each advertisement con-
taining its own grow-only counter (G-Counter) of impressions. Each server performs a
threshold read operation on the growing counter, and once a threshold of impressions has
been met, notifies the clients to stop displaying the ad.

We conclude this example with two remarks about the counters. First, splitting the in-
crement into separate read and bind operations is correct here, since grow-only counters
are implemented as lists of pairs of client identity and count value. Another possibility
would be to add an increment operation to the DerflowL API. Second, this implementa-
tion uses counters that suffer from the CAP theorem: counter values may skew in either

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 19

4 PROGRAMMING MODEL

C1C1 C2C2 C3C3

S1S1 S2S2

M1M1M1M1M1M1

view

increment

remove

M1M1M1M1M2M2
M1M1M1M1M3M3

view view

Figure 6: Example advertisement counter written in DerflowL . Mobile clients Mi talk
to a local Derflow client Ci to determine which advertisements to display. Clients issue
increment operations back to an ad server Si for each advertisement i they view, while
the server sends messages back to the clients when an advertisement has been displayed
the maximum number of allowed times.

direction in the event of failures. Fixing this problem requires a counter that correctly
collects increments but that does not provide sequencing of counter values, such as idem-
potent counters or Handoff Counters [10].

4.6 Installation and configuration of Derflow and DerflowL

Derflow and DerflowL are open source and available on GitHub at https://github.
com/SyncFree/derflow. Both Derflow and DerflowL share the same code base;
DerflowL provides additional language extensions to Derflow and leverages the existing
codebase. For the following sections, we will use Derflow to refer to the implementation,
which contains both the Derflow and DerflowL primitives.

The following section details how to obtain the Derflow source code, build, run, and
test the programming model.

4.6.1 Prerequisites

Prerequisites for obtaining and building Derflow are the following: git, any of the Erlang
R16 releases (we recommend R16B02, which is the runtime we have used to perform
tests), and a C compiler which can create executables.

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 20

https://github.com/SyncFree/derflow
https://github.com/SyncFree/derflow

4 PROGRAMMING MODEL

%% @doc Server functions for the advertisement counter. After 5 views,
%% disable the advertisement.
server(Ad, Clients) ->

lager:info("Server launched for ad: ˜p", [Ad]),
%% Wait until number of ad impressions reaches threshold.
{ok, _, _} = derflow:read(Ad, 5),
lager:info("Threshold reached; disable ad ˜p for all clients!", [Ad]),
lists:map(fun(Client) ->

%% Tell clients to remove the advertisement.
Client ! {remove_ad, Ad}

end, Clients),
io:format("Advertisement ˜p reached display limit!", [Ad]).

%% @doc Client process; standard recursive looping server.
client(Id, Ads) ->

lager:info("Client ˜p running; ads: ˜p˜n", [Id, Ads]),
receive

view_ad ->
%% Choose an advertisement to display and increment counter.
Ad = hd(Ads),
lager:info("Displaying ad: ˜p from client: ˜p˜n", [Ad, Id]),
%% Update ad by incrementing value.
{ok, Value, _} = derflow:read(Ad),
{ok, Updated} = riak_dt_gcounter:update(increment, Id, Value),
{ok, _} = derflow:bind(Ad, Updated),
client(Id, Ads);

{remove_ad, Ad} ->
lager:info("Removing ad: ˜p from client: ˜p˜n", [Ad, Id]),
client(Id, Ads -- [Ad])

end.

Figure 7: This code shows both the server and client processes, which are each composed
of a single function.

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 21

4 PROGRAMMING MODEL

4.6.2 Obtaining and Building Derflow

Obtaining and building Derflow is as easy as cloning the code from GitHub and compil-
ing using the provided make targets.
$ git clone git@github.com:SyncFree/derflow.git
$ cd derflow
$ make

Two additional development make targets are also provided which build stand alone
executable Erlang releases: make stage and make stagedevrel. Each of these targets
build a development release for local testing, with the latter providing six unique copies
of the development release to be used in cluster simulation.

4.6.3 Testing and Program Execution

In the process of developing Derflow, we also adapted the open source testing framework
for Riak, Riak Test, to assist in reproducible executions of our programs. Obtaining,
building, and configuring our test harness is extremely similar to the steps needed to
build Derflow itself.
$ cd $PATH_TO_DERFLOW/..
$ git clone git@github.com:basho/riak_test.git
$ cd riak_test
$ make

Once done, the provided riak test.config file must be moved to your home directory
(as .riak test.config), and the paths in the file updated to reflect paths on your local ma-
chine. When completed, the entire Derflow test suite can be executed using the following
commands:
$ cd ../derflow
$ make riak-test

The make riak-test target will configure a cluster of nodes, running on the local
machine, remotely load example Derflow applications, and ensure that they complete
with the correct result.

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 22

5 SPECIFICATION

5 Specification

5.1 Overview
A specification of a system is a set of properties that the system should satisfy [18]. The
properties can be described in various ways. Usually development starts with an informal
description of what the system is supposed to do. Then this specification is refined and
adjusted, until a working system is implemented. This process can be improved by us-
ing formal specifications and methods, which means that the specifications have to be
expressed in some formal language. Using a formal language enables the use of tools
to work with specifications, so problems can potentially be discovered earlier, before
the whole system is implemented and tested. Additionally a formal specification is a
prerequisite for verifying that a system is implemented correctly and it can be used to
(automatically) derive tests.

However, the lack of a global state makes it difficult to write specifications for eventu-
ally consistent applications. It is not possible to simply define invariants, post-conditions,
or other properties about a program in the same way as for sequential programs, espe-
cially if there is no central or primary database. In this section we discuss several ap-
proaches to specify applications with weak consistency guarantees. The remainder of
this Section is structured as follows:

• Section 5.2 discusses known techniques for formally specifying sequential applic-
ations.

• Section 5.3 introduces different ways to specify the concurrent behavior of applic-
ations.

• Section 5.4 shows how sequential and concurrent specifications can be related.
• Section 5.5 discusses the problems of formulating assertions and invariants in the

setting of eventually consistent distributed state.
• Section 5.6 gives the current status of our work related to specifications and ex-

plains how we plan to use specifications in our upcoming work, and what role
specifications play as part of the programming model.

Running example: Virtual wallet. As a running example we will use a simple virtual
wallet application, which is a simplified variation of a use case from WP1. Users of
the wallet can deposit money into the wallet and then use it to buy items, for example
additional items in a game. In order to buy an item, a user needs to have enough money
in his wallet and he must not have bought the same item already. Of course, users are
also provided with a function to check their current balance.

We formalize the operations provided by an application using an algebraic datatype.
The datatype has a constructor for every operation of the application and the constructor
has parameters for the input and output parameters of the operation. As a convention we
prefix output parameters with res . For the virtual wallet example, we have the following
operations:

call = Deposit(amount : int)
| BuyItem(item : string, cost : int, res success : bool)
| GetItems(res items : string set)
| GetBalance(res balance : int)

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 23

5 SPECIFICATION

5.2 Sequential specifications
For many applications it makes sense to start from a sequential specification. This is
especially true for applications, which are usually implemented using a central database
with serializability or a similar consistency model in mind. But also for other kinds of
applications it can help to start from a sequential specification, because it is much easier
to understand and it makes the main intention of each operation clear. Of course there
are also some applications, where distributed manipulation of data is a core concept,
for example version control systems. Then it is better to take a different approach to
specification.

We start this chapter by formalizing sequential specifications and then continue to
discuss how they can be adapted in concurrent specifications. We represent a sequential
execution by a sequence of calls. For our running example of the virtual wallet, such a
sequence could be:

sequentialExample ≡ [Deposit(50),

BuyItem(“Sword”, 35,True),

BuyItem(“Boots”, 20,False),

BuyItem(“Hat”, 10,True),

GetItems({“Sword”,“Hat”}),
GetBalance(5)]

First the player deposits 50 credits to his account. Then he buys a sword, tries to buy
some boots, but this operation fails because he has insufficient founds. So then he decides
to buy a hat, which is a bit cheaper. The player then checks his items and his balance and
finds it to be as expected.

We now want to formally specify for each such sequence of calls, whether it is al-
lowed or not. A specification could be just a predicate which takes a sequence of calls
and assigns it a true or false value. Often sequential specifications are given in a state-
based form, which describes how every call changes the state of the system, what the
valid result values are, and also what the possible initial states of the system are.

For our virtual wallet example the state consists of the balance and the set of bought
items:

state = (balance : int, items : string set)

The effects and result values of single calls are specified using a simple function,
which uses pattern matching to distinguish the different types of calls:

seqSpec : (call, state, state)→ bool

seqSpec(Deposit(a), s, s′) ≡ (s′ = s[balance := balance(s) + a])

seqSpec(BuyItem(i, c, T rue), s, s′) ≡ (balance(s) ≥ c ∧ i /∈ items(s)
∧ (s′ = s[balance := balance(s)− c, items := items(s) ∪ {i}]))

seqSpec(BuyItem(i, c, False), s, s′) ≡ (s = s′)

seqSpec(GetItems(is), s, s′) ≡ (s = s′ ∧ is = items(s))

seqSpec(GetBalance(b), s, s′) ≡ (s = s′ ∧ b = balance(s))

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 24

5 SPECIFICATION

The most interesting case in this example is the call to BuyItem, since it involves
a change of state and a result value. If the result value is true, then the item must be
bought successfully. That means that in the pre-state the balance was high enough to
be able to afford the item, and the same item was not bought already. Then in the post-
state the balance and the set of owned items must have been adjusted accordingly. When
the result value is false, we only specify that the state must be unchanged. Note that this
leaves some freedom for the implementation: Buying an item may fail even when the two
pre-conditions are met. Specifying that this should not happen too often can be denoted
separately when addressing the quality of service (QoS).

In general, a sequential state-based specification consists of two parts: A set of pos-
sible initial states and a specification of the calls. The specification of calls is a predicate,
which states whether a call is valid for given pre- and post-states.

sequentialSpec = (initialStates : state set,
callSpec : (call× state× state)→ bool)

We can then define when a given sequence c0, . . . , cn of calls is valid with respect
to a specification spec. To justify that a sequence is valid, there must be a sequence of
states, such that the first state is in the set of possible initial states defined in the spec, and
each state in the sequence of states must be linked to the next state in the sequence by the
respective call and its specification.

c0, . . . , cn |= spec ⇔ ∃s0, . . . , sn+1 : s0 ∈ initialStatesspec
∧ ∀0≤i≤n : callSpecspec(ci, si, si+1)

5.2.1 Adapting sequential specifications to concurrent settings

Classical concepts to adapt a sequential specification to a concurrent setting are sequen-
tial consistency [17] or linearizability [16]. In these notions, a concurrent execution must
behave equivalently to some sequential execution, where the sequential execution is sub-
ject to some additional constraints. This is quite a strong property to demand of concur-
rent system, and thus it usually inhibits some implementations with better nonfunctional
properties. Often the specification can be relaxed a bit in order to gain better performance
or higher availability in a distributed system. Still, the relaxed behavior should fulfill the
original intention of the system and not be completely different. Also it would be nice,
if we could keep the understandable sequential specification and just adapt and relax it at
certain points, to get a concurrent specification.

In the virtual wallet example we would like to allow the calls to GetItems and to
GetBalance to return slightly out of date values, as this would allow for a more efficient
implementation.

In order to formalize these ideas, we first need a notion of what precisely a concurrent
execution is, and how a concurrent specification can be formalized. This is what we
discuss in the next section. In Section 5.4 we then come back to the relation of sequential
and concurrent specifications.

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 25

5 SPECIFICATION

5.3 Concurrent specifications

A concurrent execution can be described as a set of sequential processes communicating
with each other. Depending on the architecture of the system, a sequential process can
be a session, a transaction, or a whole machine. Also the communication can have very
different forms depending on the system. Therefore, a general framework has to abstract
from those details in executions.

For modeling concurrent executions we use a notation very close to the one used by
Burckhardt, Gotsman, and Yang [14], which is based on more abstract relations between
operations. For every kind of system, these abstract executions then have to be mapped
to concrete executions.

A concurrent execution is described by an executionContext consisting of the follow-
ing components:

executionContext = (actions : int ⇀ call,

sessionOrder : (int× int) set,
visibilityOrder : (int× int) set,
arbitrationOrder : (int× int) set)

To simplify the notation of examples, we use integers to identify actions. The partial
function actions gives the call belonging to each action. In addition to these actions there
are three relations on the actions: sessionOrder, visibilityOrder, and arbitrationOrder.
In a valid executionContext we demand that all these relations are acyclic. Additional
constraints could be added to describe the consistency model of the used system (see
[14]).

The intuition behind the three relations is as follows: The session order captures the
idea of sequential processes. Within a process, the actions are usually ordered in a se-
quence. The visibility order captures the message passing between processes by stating
which actions have been made visible to other actions via messages. The arbitration or-
der, as the name suggests, is usually used to break up ties between concurrent operations.
For example this could be a lexical ordering on pairs of timestamps and replica identifi-
ers, i.e. the events are ordered by timestamps first and an order on replica identifiers is
used to break ties between identical timestamps.

Figure 8 shows an example execution of the virtual wallet example. The graph con-
sists of two time lines for two replicas R1 and R2. The different actions are denoted by
the numbered nodes and the arrows denote relations between actions. The specific para-
meters of a call are written next to the node. The dashed line denotes a visibility relation,
the plain lines denote visibility and session order relation. In the formal notation we can

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 26

5 SPECIFICATION

Figure 8: Concurrent execution in virtual wallet example

write this example as follows:

concurrentExample ≡ (

actions = [

1 7→ Deposit(50),

2 7→ BuyItem(“Boots”, 20,False),

3 7→ BuyItem(“Sword”, 35,True),

4 7→ BuyItem(“Hat”, 10,True),

5 7→ GetBalance(40),

6 7→ GetBalance(5)],

sessionOrder = {(1, 3), (3, 6), (2, 4), (4, 5)}+,
visibilityOrder = {(1, 2), (5, 6), (1, 3), (3, 6), (2, 4), (4, 5)}+,
arbitrationOrder = {(x, y) : x < y})

Here the notation + denotes the transitive closure of the relation, in general the frame-
work also allows a non-transitive visibility order. Note that the call to GetBalance in
action 5 returns a slightly stale value, because one call to BuyItem is not yet visible at the
second replica. We want to allow behavior like this to enable highly available and effi-
cient implementations. Although we relax the specification, we still want the system to
maintain some invariants and properties from the sequential specifications: The balance
should never fall below zero and the restriction that each item can only be bought once
should be considered. As it is not possible to enforce the uniqueness of bought items
without synchronization, we resolve conflicts after the fact. When we see that an item
has been bought twice by a customer, we only charge him once. In the unlikely case, that
the price differs for the two purchases, we choose the customer friendly alternative and
only charge for the lower price.

In the next two subsections, we now discuss how the informal description above can
be expressed in a formal way, suitable for verification and testing. We describe two differ-
ent techniques which we found suitable for the specification of concurrent applications:

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 27

5 SPECIFICATION

An axiomatic technique which describes the system in a more mathematical way, and an
operational, state-based technique, which is closer to the implementation and the used
architecture, and tries to describe the single steps of a system.

5.3.1 Axiomatic specifications

An axiomatic specification is simply a predicate, which checks whether a given execution
context is valid. So there is a lot of freedom in writing an axiomatic specification, it is
even possible to write down specifications for which no implementation exists. However,
there are some patterns which can be used in many specifications and we can collect these
patterns to simplify the specification.

The basis of a specification is usually a quantification over all actions in the context,
checking that for each action certain properties hold true. For our virtual wallet example,
this can be written as follows:

axiomaticSpec(ctxt) ≡ (∀a ∈ dom(actionsctxt) :

case actionsctxt(a) of
GetBalance(x)⇒ x ≥ 0 ∧ x = specBalance(ctxt, a)

| GetItems(is)⇒ is = specItems(ctxt, a)

| BuyItem(i, c,True)⇒ i /∈ specItems(ctxt, a)

| BuyItem(i, c,False)⇒ True
| Deposit(x)⇒ True)

For the verification we use two auxiliary functions: specBalance calculates the bal-
ance for a given execution context at the time of a given action, specItems similarly
calculates the set of bought items. Using those functions, we can specify that each call
to GetBalance should return the value as calculated by specBalance and that additionally
the returned value should not be negative.

The important part of the specification is in the two auxiliary functions. We first
describe specItems, the easier of the two functions. This function simply takes the union
of all bought items in all calls visible to the given action identifier aId:

specItem : (executionContext× int)→ string set
specItem(ctxt, aId) ≡ {i : ∃a, c : (a,BuyItem(i, c,True)) ∈ visibleCallsctxt(aId)}

By taking only the visible calls into account, we ensure that no synchronization is
necessary to implement the specification.

The calculation of the balance is more complicated, because it has to describe the
conflict resolution strategy for the case of concurrent buy-actions. The strategy is de-
scribed by three steps. First the set as of successful buy-actions is calculated. Then from
this the set asmin is computed, by only keeping the entry with the lowest cost for each
item. Finally the spendings are calculated by summing up the costs. The total balance of

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 28

5 SPECIFICATION

the account is then just the total deposits minus the total spendings.

specBalance : (executionContext× int)→ int

specBalance(ctxt, aId) ≡ (

let deposits = Σ(i,Deposit(x)) ∈ visibleCallsctxt(aId) : x

as =
⋃

(i,BuyItem(item′, cost′,True)) ∈ visibleCallsctxt(aId) : {(i, item′, cost′)}
asmin = {(i, item, cost) ∈ as : @(i′, item, cost′) ∈ buyActions : cost′ < cost}
spendings = Σ(i, item, cost) ∈ asmin : cost

in deposits− spendings)

Now we have a complete specification of the admissible execution contexts of the
example system. However, execution contexts use the visibility relation, which is not
observable from the point of view of a user or a client application. To handle this gap
between the definition and the actual system, we define an execution to be correct if there
is some visibility relation which explains the outcome of the execution. In the literature
this relation is called a visibility witness [15]. For most database systems used in prac-
tice the visibility relation is strongly related to the mechanism used for communication
between replicas. For example in many systems a message sent from one replica to an
other adds a new arc to the visibility relation.

5.3.2 Operational specifications

The axiomatic specifications described above are relatively abstract, which makes it hard
to relate them with a concrete implementation. In contrast to this, operational specific-
ations are closer to the implementation by describing the system in terms of states and
the effects which operations have on the state. This leads to more modular specifications
since each operation can be described solely by its interaction with the state, without
taking other operations into account. Furthermore, operational specifications are more
suitable for most tools. This is why we use operational specifications for our verification
work with TLA+ which we describe in Section 6.

However, a description of the state naturally requires to fix some aspects of the ar-
chitecture and thus mixes aspects of implementation and specification. In particular if
different replicas can have different states, this has to be reflected in the model. Ad-
ditionally there has to be a mechanism in the model to synchronize the states of the
different replicas. For example there are techniques based on transmitting commutative
downstream effects [22], also called shadow operations [19, 20] and there are techniques
based on merge functions on states [22].

In the following we only describe a technique based on downstream operations. Other
techniques can be modeled in a similar way. The basic idea of this technique is to split an
operation into two parts: The first part uses the current local state to calculate a message
which is sent to every replica. Then the second part is to process this message at every
replica. The processing of messages should be implemented such that the calculation
commutes with the processing of other messages. When the system maintains this rule
and messages are delivered exactly once, this ensures that two replicas which observed
the same set of operations also have equivalent states.

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 29

5 SPECIFICATION

We first describe the general framework for this architecture and then the concrete
parts required to describe the virtual wallet example. In the general framework the dis-
tributed state consists of two parts, namely the local state for each replica and a message
inbox for each replica:

distributedState = (localState : replica→ localState,
messages : replica→ message list)

On this state a system can perform two kinds of actions. It can process a call from an
external source to one replica, or a replica can process one of the internal, commutative
messages from its inbox:

action = Call(r : replica, c : call)

| ProcessMessage(r : replica, index : nat)

We describe the handling of these actions parameterized on two application-specific
functions: concSpec is a predicate describing the possible effects of a single call on the
distributed state and processMessage is a function, which processes an internal message
and calculates an effect on the local state of a replica. Although we model the inbox
as a list of messages, the order is not important as an action can process any message
from the inbox at any time. The effect of a call is described by a predicate to allow for
incomplete or nondeterministic specifications. In contrast to this processMessage is a
function and thus must yield a deterministic effect for every message. It would be hard
to model the aspect of processing messages as a predicate, because the principle of this
kind of architecture states, that the effect of different messages should commute. Now
if the effects would be nondeterministic, it would no longer make sense to demand that
f(g(s)) = g(f(s)) for two effects f and g.

Formally we define the transition relation for a single step and for several steps as
follows:

concSpec(r, c, s, s′)

step(Call(r, c), s, s′)

i < length(messages(s, r)) messages(s′, r) = removeAt(i,messages(s, r))
localState(s′, r) = processMessage(messages(s, r)i, localState(s, r))

∀r′ ∈ R : (localState(s′, r′) = localState(s, r′) ∧ messages(s′, r′) = messages(s, r′)
step(ProcessMessage(r, i), s, s′)

steps([], s)

step(a, s, s′) steps(as, s′)

steps(a · as, s)
Having defined the general framework for this particular architecture, we can now

give the specification for the virtual wallet by defining how the structure of the local
replica states and of the messages, and by giving a concrete concSpec predicate and a
processMessage function.

As one would expect, the local state only contains the current balance of the account
and a map of all bought items with the corresponding price:

localState = (balance : int, items : string ⇀ int)

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 30

5 SPECIFICATION

The internal messages used are very similar to the signature of the external calls.
There is one message for deposits and one message for buying items:

message = MsgDeposit(change : int)

| MsgBuyItem(item : string, cost : int)

The code in the concSpec predicate describes, how the downstream message is cal-
culated from the current state and the given parameters. This message is then used in
the helper function downStream, which simply applies the effect of the message locally
and sends the message to all other replicas. For a call to Deposit we simply produce an
equivalent downstream message. For calls to BuyItem we have to add some checks. The
balance of the account has to be high enough and the item must not be bought already.
Note that we only check these conditions on the local state, so here we allow some in-
consistencies. In particular the specification allows the balance to become negative. One
could add additional invariants as described in Section 5.5 to handle this problem. The
specification is also nondeterministic or incomplete, leaving the implementation a choice
about when to accept BuyItem requests.

concSpec : (replica× call× distributedState× distributedState)→ bool

concSpec(r,Deposit(a), s, s′) ≡ downStream(r,MsgDeposit(a), s, s′)

concSpec(r,BuyItem(i, c, suc), s, s′) ≡
(if suc then

balance(localState(s, r)) ≥ c

∧ items(localState(s, r))i = None
∧ downStream(r,MsgBuyItem(i, c), s, s′)

else s′ = s)

concSpec(r,GetItems(is), s, s′) ≡ (s′ = s ∧ is = dom(items(localState(s, r))))

concSpec(r,GetBalance(b), s, s′) ≡ (s′ = s ∧ b = balance(localState(s, r)))

downStream : (replica× message× distributedState× distributedState)→ bool

downStream(r,msg, s, s′) ≡ (

localState(s′, r) = processMessage(msg, localState(s, r))

∧ messages(s′, r) = messages(s, r)
∧ (∀r′.r′ 6= r −→ messages(s′, r′) = messages(s, r′) ·msg

∧ localState(s′, r′) = localState(s, r′)))

The processing of a Deposit message is straight forward. The balance is just changed
by the amount given in the message. Processing a BuyItem message is more involved
because conflicts have to be handled. In this specification we handle conflicts by checking
if the item was already bought previously. If the previous purchase was more expensive,
we refund the old price and subtract the cheaper price. If the previous purchase was

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 31

5 SPECIFICATION

cheaper, we do not change the state. And if there is no previous purchase, we just update
the balance and the map of items accordingly.

processMessage : (message× localState)→ localState
processMessage(MsgDeposit(x), s) = s[balance := balances+ x]

processMessage(MsgBuyItem(i, c), s) = (case items(s, i) of
None⇒ s[balance := balance(s)− c, items := items(s)[i 7→ c]]

| Somec′ ⇒ if c′ < c then s
else s[balance := balances− c′ + c, items := items(s)[i 7→ c]])

5.4 Relating sequential and concurrent specifications
In Section 5.2 we showed techniques for sequential specifications and in Section 5.3 we
have seen two kinds of concurrent specifications. The obvious question now is how these
two specifications are related. This question also arises in practice. Often the sequential
behavior is kind of clear, but the behavior in the case of concurrent updates is not. In this
case the question also is how to get from a sequential specification to a concurrent one.
In this section we list some known relations between the two.

Sequential consistency. Well known principles for defining the allowed behaviors of
concurrent data types are sequential consistency [17] or linearizability [16]. These prin-
ciples demand that each concurrent execution must be explainable by some sequential
ordering of events to which the sequential specification can be applied. The allowed se-
quential orderings are usually restricted by some rules. For example the ordering must
be consistent with the program order.

However, the notion of sequential consistency is usually too strong. For example
it would not allow the behavior in our virtual wallet example, where clients can see an
outdated view of their balance.

Sequential delayed consistency. One way to relax the above notion of sequential con-
sistency is to allow some staleness, meaning that each action must be explainable by some
sequential ordering of only a subset of previous actions. This is similar to the criterion
of update consistency [21] and more flexible than sequential consistency. In the virtual
wallet example it permits, that the queries return outdated values and that the same item
can be bought more than once in certain situations. There are two interesting variations
of this principle, which differ in how the subset of previous actions can be selected. One
variation is to always use the set of visible updates as the subset, i.e. updates which have
already been sent to the replica performing the action in question. In particular this im-
plies that no updates can be ignored forever, and thus our behavior of the virtual wallet
would not be valid, since it ignores purchases when a cheaper purchase of the same item
has happened in parallel. So an alternative is to allow the selection of a subset according
to an arbitrary algorithm. In the case of the virtual wallet example this algorithm would
be to take all the visible updates and then remove all purchases for which a cheaper
purchase exists.

The more flexible variant of this principle can cover many scenarios from the real
world, but not all reasonable concurrent behaviors are covered by it. For example con-

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 32

5 SPECIFICATION

sider a version control system like git. In such systems a merge conflict can never be
explained by a sequential ordering of actions. Merge conflicts can only happen when
there are concurrent updates to the same data. But even in a system like git, the behavior
should be somehow related to how a comparable sequential system would behave. This
leads us to the next principle.

Permutation equivalence. The principle of permutation equivalence is a consistency
criterion which only affects a subset of the possible concurrent executions: If all possible
sequentialized executions of a given concurrent execution result in equivalent states, then
the concurrent execution should result in the same state. For executions where a different
order of operations produces a different result, the principle of permutation equivalence
does not give any guidance. In the example of the version control system the principle
demands that concurrent changes to different files will behave as if they are done in
some sequential order. For the case of conflicting updates to the same file the order
of operations is important, and so the principle of permutation equivalence leaves it to
developer to choose a strategy to handle conflicts. Systems like git try to merge changes
automatically and if this is not possible it lets the user resolve the conflicts.

5.5 Assertions and invariants
Invariants and assertions can be viewed from two different perspectives, namely users
and developers. A user has certain requirements that she can express via invariants or
assertions. For example in the virtual wallet application a user expects the invariant, that
his balance is never negative. And if a user successfully buys an item, he asserts that the
item is in his inventory afterwards.

Developers have to write code which maintains the user expectations, but additionally
developers also use invariants and assertions to reason about the correctness of code. This
can be done explicitly by writing down the assertions, or just implicitly by thinking about
the code. Furthermore it can be done formally with dynamic or static checking supported
by a tool, or just informally.

For all cases matters get more difficult when the state is distributed, shared and only
eventually consistent. Invariants and assertions are based on states, so if there is no
central state the question is which state the assertions and invariants refer to.

One possibility to handle the distributed state with invariants is the notion of invariant
confluence (I-confluence) [23]. Intuitively, this notion requires that there is a merge
function on local states, such that merging two states again results in a state satisfying
the invariant, when the two states can be reached via sequences of invariant preserving
operations. A definition which is easier to handle is the notion of I-confluent global
states. We use this notion in our work on explicitly consistency, which we present in
Section 7. A global state S is defined to be I-confluent if the invariant holds for every
possible combination of merged local states Sr:

I-confluent(S)⇔ ∀R ⊆ Replias : Inv(
⊔

r∈R
Sr)

With this definition it is possible to define meaningful invariants referring to the global
state. However, this notion cannot be easily transferred to other kinds of assertions like
pre- and post-conditions of operations or assertions about intermediate states inside a

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 33

5 SPECIFICATION

method. Therefore in assertions we are currently restricted to refer to the local state or to
explicitly mention replicas as we did for the operational specifications in Section 5.3.2.

5.6 Future work
Our current work with respect to specifications was focused on specifying and verifying
replicated data types [24]. The techniques for specifying data types are strongly related
to the techniques for describing whole applications, since both have to tackle the same
problem of concurrent updates. With respect to the specification of applications, we have
specified some variations of use cases from WP1 to Isabelle. We plan to use these spe-
cifications as the basis for future work on verification, tools, and as examples to evaluate
the programming model. Formal specifications are especially important when it comes
to tool support, because the intent of code can in general not be extracted from source
code.

In an ideal world, programmers would just write down a specification of a program
and hit one button to compile it to executable code. In practice developers hardly write
down formal specifications, because it is hard to do so, the benefits are not worth it,
and there is a certain gap between specifications and implementations. In future work
we plan to improve on the first two points by developing tools and techniques, which
help programmers to write specification, and which make specifications more useful. For
example this can be tools for verification or for dynamic testing. Regarding the third
point, which is to close the gap between specifications and implementations, we think
that the approach of deterministic dataflow programming will make this gap narrower.
The deterministic aspect of the language makes it a lot easier to reason about the relation
between specification and implementation, since the number of possible executions on
the implementation side is reduced to a minimum and common patterns can be expressed
in the language in a more natural way. Today, programmers already use programming
patterns like monotonicity, immutability, and idempotence but with little support from a
programming language or framework. Often there are a lot of patterns used in the code,
but they are not explicitly visible. This makes it hard to build tools which work on code
written like this and to see the relation to a specification. In our future work we plan to
improve on this situation by bringing specification and implementation closer together.
In particular we want to investigate, how patterns in natural language descriptions map
to patterns in formal specifications and then how these map to patterns in the implement-
ation.

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 34

6 VERIFICATION

6 Verification

6.1 Overview

Verification research during the first year of SyncFree had as its focus verifying and en-
suring application-level properties for applications built using CRDTs. We believe this
to be the foremost priority, as the key research question being explored by the SyncFree
project is the determination of the extent to which CRDTs can enable the building of
practical systems. As such, much effort was dedicated to exploration of specifying (as
detailed in the previous section), verifying and enforcing properties desired at the applic-
ation level. Below, we provide overviews on these two lines of work: model-checking
based verification of applications, and ensuring application invariants using reservations
and escrow.

For specifying and verifying programs built on CRDTs, we focused on high-level
mathematical modeling and verification of our industrial case studies. We carried out
a formal modeling of the applications in our case studies, as well as the state- and
operation-based CRDTs they make use of, using the TLA+ specification language. This
approach had the significant benefit of decoupling the issues around programming lan-
guages and the CRDT and geo-replication platforms from the fundamental issue pur-
sued in this study – whether CRDT-based application designs can accomplish the desired
application-level properties, and whether one can determine application correctness and
carry out iterative design with adequate verification tool support. The joint experience of
industrial and academic partners (Trifork, Universidade Nova de Lisboa, and Koç Univer-
sity) is affirmative. Using the TLA+ language and the TLC model checker that supports
TLA+ specifications, we are able to precisely model state- and operation-based CRDTs,
applications that build on them, natural specifications regarding convergence and applic-
ation invariants. We are further able to detect violations of application invariants, explore
error traces, modify the applications and iterate the verification process. So far, this ef-
fort has concentrated on modeling applications that use transactions and CRDTs, but not
more elaborate mechanisms for ensuring invariants such as reservations and escrow, and
not more elaborate, more efficient replication mechanisms such as partial or adaptive
replication. Since the initial exploration of the verification and tooling issue has yiel-
ded encouraging results, we plan to investigate these more elaborate mechanisms, their
correctness and how they enable programmers to guarantee application-wide invariants.

As alluded to above, ensuring invariants for CRDT-based applications without sacri-
ficing availability and responsiveness, and avoiding synchronization when possible is a
challenging problem. Eventually consistent transactions may not be sufficient for applic-
ations such as e-wallets, where rather strong application-level invariants are desired. The
approach proposed can be viewed as an alternative consistency model, explicit consist-
ency, that strengthens eventual consistency with a guarantee to preserve specific invari-
ants defined by the applications. Given these application-specific invariants, we identify
which operations are potentially unsafe under concurrent execution by different replicas.
The programmer then has the options of avoiding invariant violations or restoring (“re-
pairing”) the invariant. If avoiding invariant violations is targeted, we provide techniqued
for allowing most of operations to still complete locally and remain responsive by relying
on a reservation system that moves replica coordination off the critical path of opera-
tion execution. If, instead, invariant repair is targeted, operations are allowed to execute

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 35

6 VERIFICATION

without restriction, and later repair operations restore invariants fixing the database state.
The product of this line of research is the Indigo system, a middleware that provides
explicit consistency on top of a causally-consistent data store. Indigo guarantees strong
application invariants while providing latency similar to an eventually consistent system.
This is explained further in Section 7 of this report.

In the rest of this section, we provide a more detailed account of the research along
the two lines outlined above.

6.2 Describing CRDTs in TLA+
To write high-level models for our industrial use cases, we used the TLA+ specification
language [29]. TLA+ is a formal language that enables description and reasoning about
distributed and concurrent systems. It is based on mathematical logic, set theory and
temporal logic. A system is described in TLA+ using quantified first-order formulae
and set theoretical constructs. Properties or the invariants are described in terms of first-
order and temporal logic formulae. By using the tools of TLA+, one can reason about
the system by either trying to prove that specified properties are satisfied by the formal
model (by using the proof manager TLAPS) or by trying to find a counter-example in the
model that violates a certain property (by using the model checker TLC). Since the TLA+
language is purely mathematical and is not based on any programming language, systems
can be described at the desired abstraction level in TLA+ separately from implementation
of the system in a particular programming language and on a particular platform. For
these reasons above, TLA+ is a widely known and used language in both academia ([25–
27]) and industry ([28]). We modelled and analysed CRDTs and industrial applications
using TLA+ for the very same reasons.

In our industrial use cases, both operation-based (op-based) and state-based (st-based)
CRDTs are utilized. Thanks to the modular structure of TLA+, we can define CRDTs as
a separate module and use them in the application specifications. In this section, we high-
light parts of the specification efforts for one st-based and one op-based CRDT in order
to highlight the simplicity and implementation-independence of TLA+ specifications.

An Op-based G-Counter: Following Shapiro et al. ([31]) we model an op-based
CRDT using four components: a payload, initialization, query and update operations.
We follow this definition to describe an op-based G-counter in TLA+:

1 GCounter == Nat
2 Message == [src: Replicas, op: {"inc"}]
3 MQueue == [Replicas -> Seq(Message)]
4
5 InitGC == 0
6 InitMQ == [r \in Replicas |-> << >>]
7
8 EvalGC(gc) == gc
9
10 IncGC(mq,gc,rep) ==
11 LET new_msg == [src |-> rep, op |-> "inc"]
12 IN <<gc+1,

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 36

6 VERIFICATION

13 [r \in Replicas |-> IF r = rep THEN mq[rep]
14 ELSE Append(new_msg, mq[r])]>>
15
16 ProcessMsg(mq,gc,rep) ==
17 IF mq[rep] = << >> THEN << >> ELSE
18 <<gc+1,[mq EXCEPT ! [rep] = Tail(mq[rep])] >>

A G-Counter keeps a natural number as the payload (line 1). In addition to the pay-
load, we model messages and input message queues of replicas. Message objects contain
two fields src and op (line 2). src field shows the source replica that sends the mes-
sage. op field is kept for the type of operation and increment is the only operation for the
G-Counter. MQueue keeps a sequence of messages for each replica.

Initial values for G-Counter and message queues are assigned in lines 5,6. G-Counter’s
payload is initialized to zero and input message queue of each replica is initialized to the
empty sequence. The query action in the G-Counter contains only evaluation of the G-
counter – EvalGC returns the value of payload (line 8). The only state update action is
the increment operation (lines 10-14). IncGC takes three inputs mq, gc, rep that are
supposed to be a message queue, a G-counter and a replica, respectively. IncGC forms
new message named new msg. It returns a tuple of two elements. The first element is
the incremented value of the G-Counter gc and the second element contains the updated
version of the message queues mq so that new msg is appended to the message queue of
every replica except rep’s which stays unchanged.

These definitions complete the description of G-Counter. However, we define one
more helper operation for processing messages in the queue (lines 16-18). If the mes-
sage queue of rep is empty ProcessMsg returns an empty sequence. Otherwise, it
processes a message by removing it from the rep’s queue and incrementing gc by one.

State-based PN-Counter A st-based CRDT can be defined in terms of six components
([31]): payload, initial, query, update, compare and merge. We follow this definition to
describe a st-based G-counter in TLA+. We define this data structure in TLA+ as follows:

1 PNCounter == [p: [Replicas -> Nat],
2 n: [Replicas -> Nat]]
3
4 InitPN == [p |-> [r \in Replicas |-> 0],
5 n |-> [r \in Replicas |-> 0]]
6
7 EvalPNCounter(pnc) == SumAll(pnc.p) - SumAll(pnc.n)
8
9 IncrementPN(pnc,rep) == [pnc EXCEPT !.p[rep] = pnc[rep]+1]
10 DecrementPN(pnc,rep) == [pnc EXCEPT !.n[rep] = pnc[rep]+1]
11
12 ComparePN(pnc1,pnc2) ==
13 IF (\A r \in Replicas: pnc1.p[r] <= pnc2.p[r] /\ pnc1.n[r] <= pnc2.n[r])
14 THEN TRUE ELSE FALSE
15
16 MergePN(pnc1, pnc2) ==
17 [p |-> [r \in Replicas |-> Max(pnc1.p[r], pnc2.p[r])],

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 37

6 VERIFICATION

18 n|-> [r \in Replicas |-> Max(pnc1.n[r], pnc2.n[r])]]

p and n keep the positive and negative updates, respectively. In TLA+, p and n are
defined as maps from the Replicas set to the natural numbers (lines 1, 2). They can
be conceived as arrays indices of which are replicas. The initialization of a PN-Counter
is done by a predicate which assigns 0 to all elements in both fields (lines 4,5). The
query operation consists of evaluation of a PN-Counter. The value of a PN-Counter is
the difference between sum of all the elements in the positive part and the negative part
(line 7). The update operation has two operations: increment and decrement (lines 9, 10).
IncrementPN (DecrementPN) operation increments (decrements) value at the index
rep of the p (n) map of the PN-Counter. Comparison of two PN-Counters is based on
the underlying natural partial order defined on them (lines 12 − 14). Two PN-Counters
are merged by taking pairwise maximum of elements for all replicas in both p and n
maps (lines 16-18).

6.3 Describing applications in TLA+
We formalized the Leader Board, Advertisement Counter and Virtual Wallet industrial
use cases in TLA+. In this section, we give two examples of applications: Advertisement
Counter and Virtual Wallet. The first example utilizes the op-based G-Counter and the
second one utilizes the st-based PN-Counter.

6.3.1 The Advertisement Counter application

Formal Model

---------------- MODULE adCounterOp ------------------
1 EXTENDS Naturals, Sequences, TLC, GCounter
2 CONSTANTS Replicas, Ads, ...
3 VARIABLE adViews
4 --
5
6 State == [mq: [Ads->MQueue],
7 views: [Ads-> [Replicas-> GCounter]],
8]
9
10 TypeInv == adViews \in State
11
12 Init == ...
13
14 Increment(ad,rep) == ...
15 Process(ad,rep) == ...
16
17 Next == \E a \in Ads, r \in Replicas:
18 (Increment(a,r) \/ Process(a,r))
19
20 Spec == Init /\ [] [Next]_<<adViews>>
21 ===

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 38

6 VERIFICATION

In the first line, we give the external modules that are utilized inside AdCounter. All
modules are the built-in TLA+ modules except the GCounter. In the second line, we
introduce Replicas and Ads as the rigid variables which are initially fixed to some
value and can not be modified during the state transitions. The third line introduces the
flexible variable adViews which will be modified by the state transitions. TLA+ does
not put any type restriction on the flexible variables if there is no invariant defined on
them explicitly. Hence, we introduce the type invariant (line 10) that enforces AdViews
to be an element of State set. A state (lines 6−9) contains a message queue for every ad
(mq) and a G-Counter for every ad in each replica (views). The module contains Init
predicate (line 12) to initialize each field of AdViews to a default value by utilizing the
InitGC and InitMQ operations.

Lines 14 − 15 introduce two operators that change the state of the adViews vari-
able. Increment operation increments the value of the G-Counter in the replica rep
for advertisement ad by one. In addition, it appends a new message to the message
queues of the other replicas for advertisement ad by modifying adViews.mq[ad]
field. For those updates, IncGC operation provided by GCounter module is util-
ized. Process also takes the same parameters as Increment. This operation re-
moves a message from the message queue adViews.mq[ad][rep] for advertise-
ment ad in replica rep. To process the message, it increments its local G-Counter
adViews.views[ad][rep] by one. Process operation utilizes ProcessMsg
operation provided by the GCounter module for these updates. The next state predic-
ate (lines 17,18) states that the next state of the system is obtained by applying either
an Increment or a Process operation with arbitrary valid arguments. Next state
operation is non-deterministic, i.e., next state can be obtained by picking one of these
operations and its arguments arbitrarily.

Program specification predicate (line 20) states that initially the Init predicate holds
and the system takes a step every time by applying Next predicate on adViews vari-
able.

Invariants We introduced three invariants to hold in every state. First invariant to check
is the TypeInv defined in line 10 of adCounterOp module. Other invariants are:

• Convergence Eventual Consistency guarantees that each update is eventually de-
livered to each replica. Hence, after the updates finish and each replica processes
messages in its message queue, replicas must converge to the same state. Convergence
predicate states this constraint as a first-order formula.

• No Clicks Lost invariant states that total value of number of local increments,
processed messages and unprocessed messages in the input queue must be equal
for any two replicas.

6.3.2 The Virtual Wallet application

Formal Model

------------ MODULE walletv4 ------------
1 EXTENDS Naturals, Sequences, TLC, PNCounter
2 CONSTANTS Replicas, V1Cost, InitBal, Qtylim, ...
3 VARIABLES wallets

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 39

6 VERIFICATION

4 ---
5 Wallet == [balance: PNCounter,
6 v1cnt: PNCounter,
7 vecclc: [Replicas ->Nat]]
8
9 TypeInv == /\ wallets \in [Replicas->Seq(Wallet)]
10
11 Init == ...
12
13 BuyVoucherOne(rep,qty) ==
14 LET wr == Head(wallets[rep])
15 ...
16 IN /\ EvalPNCounter(wr.balance)+ InitBal >= qty*V1Cost
17
18 MergeLastStates(rep1,rep2) ==
19 LET wr1 == Head(wallets[rep1])
20 wr2 == Head(wallets[rep2])
21 ...
22 IN \E r \in Replicas: wr1.vecclc[r] < wr2.vecclc[r]
23 ...
24
25 Next == \E r1 \in Replicas, r2 \in Replicas, qty \in 1..Qtylim:
26 (BuyVoucherOne(r1,qty) \/ MergeLastStates(r1,r2))
27
28 Spec == Init /\ [] [Next]_<<wallets>>
29 ==

For simplicity, we assume that there is only one client that has the virtual wallet and there
is only one type of voucher that could be purchased. This module utilizes PNCounter
module (line 1). Replicas is the set of replicas, V1Cost is the cost of purchasing one
amount of voucher one,InitBal is the initial balance of the client and Qtylim is the
maximum amount of voucher one that can be bought at once (line 2).

The only flexible variable in this description is wallets. A type invariant on
wallets (line 9) checks wallets is a map from Replicas to a sequence of Wallet
objects. This invariant informally states that wallets keeps the history of the cli-
ent’s wallet for each replica. A member of Wallet contains three fields (lines 5 − 7):
balance is a PN-Counter keeping the changes in the client’s balance, v1cnt is a PN-
Counter keeping the available amount of voucher one in the wallet and vecclc is a ghost
map vector clock that is used for specifying some invariants among and inside replicas.

There are two operations that change the state of the wallets variable. BuyVoucherOne
operator (lines 13-17) has a precondition (line 16) stating that the client’s latest balance
must be enough for purchasing qty amount of voucher 1. If this condition is satisfied,
BuyVoucherOne operator decrements the balance PN-Counter of the client’s wal-
let at replica rep by qty×V1Cost amount utilizing PNCounter module’s decrement
operator, increments v1cnt PN-Counter of the client’s wallet at replica rep by qty
amount utilizing PNCounter module’s increment operator and increments value of the
wallets[rep].vecclc[rep] by one. Then, it appends the newly formed object

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 40

6 VERIFICATION

into wallets[rep] sequence.
MergeLastStates operator (lines 18 − 23) models the communication between

replicas. More specifically, it simulates the situation in which rep2 sends its entire state
to rep1 and rep1 merges its state with rep2. The precondition (line 22) informally
states that rep2must contain more recent information about at least one of the other rep-
licas than rep1. If this precondition is satisfied, a new Wallet is formed by merging
the balance and v1cnt fields of rep1 and rep2 by utilizing PNCounter module’s
mergePN operators and similarly merging the vector clocks. Then, this new wallet is ap-
pended into wallets[rep1] sequence. Next and Spec predicates are defined sim-
ilar to the Advertisement Counter module. Next predicate states that the next state can be
obtained non-deterministically by calling BuyVoucherOne or MergeLastStates
operators with arbitrary valid inputs.

Invariants We introduced five invariants to be checked in every state for the formal
virtual wallet specification. The first one is the TypeInv invariant (line 9). Apart from
that we introduced two invariants about CRDT properties and two application specific
invariants.

• Convergence We implicitly limit the number of BuyVoucherOne operations for
one replica by bounding the natural numbers by Natlim from above and defin-
ing elements of vector clocks as natural numbers. Then, local updates of rep-
lica rep must stop after Natlim number of BuyVoucherOne operations and
we expect last states of the wallets in two replicas two converge eventually in
Convergence.

• Monotonicity states that PN-Counters and vector clocks in each replica are non-
decreasing.

• Positive Balance states that the current balance of the client is always non-negative
in each replica.

• Conservation of Money states that amount of money spent for buying voucher
according to a replica must be equal to the change in balance.

6.4 Verification using TLA+ model checking

We analyzed both application specifications using the TLA+ model checker tool TLC [30].
The configuration settings we used to make models finite and the results of model check-
ing for each example are presented in this section.

Advertisement Counter Results We used the following configuration parameters in
order to make the set of states finite:

• Replicas = {r1,r2,r3},
• Ads = {ad1,ad2}, and
• Natlim = 2. We also restricted natural numbers to be set between 0 and 3×Natlim.

TLC generated 208283 distinct states and performed a search of depth 19. In 12 seconds
it verified that no state violates the provided 3 invariants.

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 41

6 VERIFICATION

Virtual Wallet Results We specified constants as: Replicas = {r1,r2,r3}, Qtylim
= 2, Natlim = 2, V1Cost = 1 and InitBal = 2. We also restricted natural
numbers to be set between 0 and Natlim. TLC generated 66649 distinct states and
performed a search of depth 16 in 12 seconds. TLC found an example violating the
posBalance invariant although BuyVoucherOne never allows balance to reduce into
negative amounts. The counter example found can be summarized as follows:

st1: [r1: [balance: 2,...], r2: [balance: 2,...], ...]
BuyVoucherOne(r1,2)
st2: [r1: [balance: 0,...], r2: [balance: 2,...], ...]
BuyVoucherOne(r2,2)
st3: [r1: [balance: 0,...], r2: [balance: 0,...], ...]
MergeLastStates(r1,r2)
st4: [r1: [balance: -2,...], r2: [balance: 0,...], ...]

Variant scenario 1: In addition to the existing model, we implemented two altern-
ative scenarios to analyze effects of CRDTs and atomic transactions for the wallet ap-
plication. In the first scenario, we replaced balance and v1cnt PN-Counters with
integers. We modified MergeLastStates operation so that merged state contains the
maximum of the balance fields of two replicas as the balanceand the maximum of
the v1cnt fields of two replicas as the v1cnt. For this scenario, posBalance was
not violated due to the merging policy but ConservationOfMoney is violated with
the following error trace:

st1: [r1: [balance: 2, v1cnt: 0], r2: [balance: 2, v1cnt: 0], ...]
BuyVoucherOne(r1,1)
st2: [r1: [balance: 1, v1cnt: 1], r2: [balance: 2, v1cnt: 0], ...]
BuyVoucherOne(r2,2)
st3: [r1: [balance: 1, v1cnt: 1], r2: [balance: 0, v1cnt: 2], ...]
MergeLastStates(rep1,rep2)
st4: [r1: [balance: 1, v1cnt: 2], r2: [balance: 0, v1cnt: 2], ...]

Variant scenario 2: In the second scenario, we analysed the effect of atomic updates.
Since MergeLastStates is the only operation providing communication among rep-
licas, we divided it into two decoupled merges to remove atomicity. In each step, Next
predicate was allowed to choose BuyVoucherOne, MergeBalance or MergeV1Cnt
operations non-deterministically. For this scenario, both posBalance and ConservationOfMoney
invariants were violated. TLC produced example for posBalance:

st1: [r1: [balance: 2,...], r2: [balance: 2,...], ...]
BuyVoucherOne(r1,2)
st2: [r1: [balance: 0,...], r2: [balance: 2,...], ...]
BuyVoucherOne(r2,2)
st3: [r1: [balance: 0,...], r2: [balance: 0,...], ...]
MergeBalance(r1,r2)
st4: [r1: [balance: -2,...], r2: [balance: 0,...], ...]

and for ConservationOfMoney:

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 42

6 VERIFICATION

st1: [r1: [balance: 2, v1cnt: 0], r2: [balance: 2, v1cnt: 0],...]
BuyVoucherOne(r1,1)
st2: [r1: [balance: 1, v1cnt: 1], r2: [balance: 2, v1cnt: 0],...]
MergeV1Cnt(r2,r1)
st3: [r1: [balance: 1, v1cnt: 1], r2: [balance: 1, v1cnt: 0],...]

6.5 Conclusions

Our experience with specifying our industrial use cases using TLA+ and verifying small
configurations using the TLC model checker has led us to believe that formal specifica-
tions that can be parsed and automatically analyzed are very valuable. They constitute
the next level of formal specification after the text-based specifications we have devised
in WP1 and are useful means for capturing mathematically the underpinnings of both the
applications and the operational semantics of the particular CRDTs they are built on.

Furthermore, TLA+ specifications at this level allow efficient exploration of the ap-
plication state space at a higher level of abstraction. This is because we do not model
actual, optimized and therefore complicated state spaces of CRDTs as would have been
the case had we taken CRDTs implemented in a programming language as the basis for
our formal model. In the next year of SyncFree, we will investigate the formal refine-
ment (correct implementation) relation between a high-level CRDT specification and a
lower-level implementation.

6.6 Future work

In the next year of SyncFree, we plan to pursue verification research along the following
lines:

• On the high-level modeling and verification using TLA+ front, we plan to pursue
static verification (rather than model checking) of application properties. While
more intensive in terms of human effort, this approach will have the conceptual
benefit of verifying properties for arbitrary configurations, i.e., number of replicas,
replicated objects, and arbitrary number of operations and transactions performed
during an execution. This will necessitate us to devise and verify global invari-
ants that hold in non-convergent states as well. We also plan to verify application
correctness when using explicit consistency, and partial and adaptive replication
policies. We intend to explore whether correct-by-construction application code
can be obtained from these verified TLA+-level descriptions.

• We have started the design of a dynamic behavior exploration tool for applicaitons
built on top of the execution platforms developed in SyncFree, using Riak. We are
working on building a tool that orchestrates multiple Riak instances running on a
single machine in order to systematically explore the states different replicas can
get into, and how this affects application-level properties.

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 43

7 ENSURING INVARIANTS WITH EXPLICIT CONSISTENCY

7 Ensuring invariants with explicit consistency

7.1 Overview

Applications built using CRDTs have the potential of allowing low latency replies to user
requests that are routed to a closeby datacenter. In return, they have to deal with concur-
rent operations executing without being aware of each other, which leads to potentially
unintuitive and undesirable user-perceived semantics.

As part of the SyncFree work, we have proposed and investigated explicit consistency
as an alternative consistency model, in which applications define the consistency rules
that the system must maintain as a set of invariants. Unlike other consistency models
where consistency is defined solely based on the enforced execution order for operations,
we define explicit consistency in terms of application properties or invariants that the
system must enforce. These invariants can encode not only rules over the database state
but also over state transitions. Furthermore, we show how we can enforce explicit con-
sistency for any type of invariant written in first-order logic, as is the case in our TLA+
descriptions for our industrial use cases. In most cases, we avoid any cross-datacenter
coordination to execute user operations, even for many of the critical operations that
potentially break invariants.

We investigated a methodology that, starting from the set of application invariants,
defines suitable invariant violation avoidance solutions specific to different types of in-
variants (or, alternatively, a set of invariant repair solutions that recover the service to
a desired state). These solutions are then deployed on top of a geo-replicated storage
system. First, based on static analysis, we infer which operations can be safely executed
without coordination. Second, for those operations that cannot be safely executed con-
currently, we provide the choice of addressing the problems that can occur by relying on
automatic repair or avoidance techniques. Our avoidance techniques combine and extend
solutions adopted in escrow and reservation-based systems. Such solutions minimize
coordination by moving the required coordination outside the critical path of operation
execution and by amortizing the cost of coordination over multiple requests. We addi-
tionally run an optimization process that minimizes the required coordination operations
based on the frequency of operation execution.

We present the design of Indigo, a middleware that enforces explicit consistency on
top of a geo-replicated key-value store. Our solution requires only properties that have
been shown to be efficient to implement, such as per-key linearizability for replicas in
each datacenter, causal consistency and transactions with weak semantics.

7.2 Formalization approach

In this section we define precisely the consistency guarantees that Indigo provides. To
explain these, we start by defining the system model, and then how explicit consistency
restricts the set of behaviors allowed by the model.

To illustrate the concepts, we use as running example the management of tournaments
in a distributed multi-player game. The game maintains information about players and
tournaments. Players can register and de-register from the game. Players compete in
tournaments, for which they can enroll and disenroll. A set of matches occurs for each
tournament. A tournament has a maximum capacity. In some cases – e.g., when there

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 44

7 ENSURING INVARIANTS WITH EXPLICIT CONSISTENCY

are not enough participants – a tournament can be canceled before it starts. Otherwise a
tournament’s lifecycle is creation, start, and end.

We consider a database composed of a set of objects in a typical cloud deployment,
where data is fully replicated in multiple datacenters, and partitioned inside each data-
center. For simplicity we assume that the goal of replication is performance, and not
fault tolerance. As such, we can assume that replicas do not fail. However, it would be
straightforward to handle faults by replacing each machine at a given datacenter with a
replica group running a protocol like Paxos [32].

Applications access and modify the database by issuing high-level operations. These
operations include a sequence of read and write operations enclosed in transactions. We
define a database snapshot as the value of the database after executing the writes of a
sequence of transactions in the initial database state. The state of a replica is the database
snapshot that results from executing all committed transactions received in the replica -
both local and remote. An application submits a transaction in a replica, with reads and
writes executing in a private copy of the replica state. The application may decide to
commit or abort the transaction. In the former case, writes are immediately applied in
the local replica and asynchronously propagated to remote replicas. In the latter case,
the transaction has no side-effect. The snapshot set of a database snapshot is the set of
transactions used for computing it. The happens-before relation defines a partial order
among transactions. We say a serialization is valid if it is a linear extension of this order.

Our approach allows transactions to execute concurrently. Each replica can execute
transactions according to a different valid serialization. We assume the system guarantees
state convergence, i.e., for a given set of transactions, all of its valid serializations lead
to the same database state. Different techniques can be used to this end, from a simple
last-writer-wins strategy to more complex approaches based on conflict-free replicated
data types (CRDTs) [33, 34].

We now define explicit consistency, a novel consistency semantics for replicated sys-
tems. The high level idea is to let programmers define the application-specific correctness
rules that should be met at all times. These rules are defined as invariants over the data-
base state.

7.3 Illustrating example: a tournament application
In our tournament application, one invariant states that the cardinality of the set of en-
rolled players in a tournament cannot exceed its capacity. Another invariant is that the
enrollment relation must bind players and tournaments that exist - this type of invariant is
known as referential integrity in databases. Even if invariants are checked when an oper-
ation is executed, in the presence of concurrent operations these invariants can be broken
– e.g., if two replicas concurrently enroll players to the same tournament, and the merge
function takes the union of the two sets of participants, the capacity of the tournament
can be exceeded.

Specifying restrictions over the state: To define explicit consistency, we use first-
order logic for specifying invariants as conditions over the state of database. For example,
for specifying that the enrollment relation must bind players and tournaments that exist,
we could define three predicates: player(P), tournament(T) and enrolled(P, T) to
specify that a player P exists, a tournament T exists and that player P is enrolled in tour-
nament T respectively. The condition would then be specified by the following formula:

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 45

7 ENSURING INVARIANTS WITH EXPLICIT CONSISTENCY

∀P, T, enrolled(P, T)⇒ player(P) ∧ tournament(T).
Specifying rules over state transitions: In addition to conditions over the current

state, we support some forms of temporal specifications by specifying restrictions over
state transitions. In our example, we can specify, for instance, that players cannot enroll
or drop from a tournament between the start and the end of the tournament.

Such temporal specification can be turned into an invariant defined over the state of
the database, by having the application store information that allows for such verification.
In our example, when a tournament starts the application can store the list of participants
for later checking against the list of enrollments. The rules that forbids enrollment/disen-
rollment of players can then be specified as ∀P, T, participant(P, T)⇔ enrolled(P, T),
with the new predicate participant(P, T) specifying that player P participates in active
tournament T .

The alternative to this approach would have been to use temporal logics that can spe-
cify rules over time [35, 36]. Such approaches would require more complex specification
for programmers and a more complex analysis. As our experience has shown that this
simpler approach was sufficient for specifying most common application invariants, we
have decided to rely on this approach.

Correctness conditions We can now formally define explicit consistency, starting
with the helper definition of an invariant I as a logical condition applied over the state of
the database.

For a given set of transactions we say that a linear order on these transactions is
a I-valid serialization of iff it is valid serialization and I holds in the state that results
from executing any prefix of the linear order. A system is correct, providing explicit
consistency, iff all serializations of its executions are I-valid serializations.

7.4 Enforcing explicit concurrency

Given the invariants expressed by the programmer, our approach for enforcing explicit
consistency has three steps: (i) detect the sets of operations that may lead to invariant
violation when executed concurrently (we call these sets I-offender sets); (ii) select an
efficient mechanism for handling I-offender sets; (iii) instrument the application code to
use the selected mechanism in a weakly consistent database system.

The first step consists of discovering I-offender sets. For this analysis, it is necessary
to model the effects of operations. This information should be provided by programmers,
in the form of annotations specifying how predicates are affected by each operation 2.
Using this information and the invariants, a static analysis process infers the minimal sets
of operation invocations that may lead to invariant violation when executed concurrently
(I-offender sets), and the reason for such violation. Conceptually, the analysis considers
all valid database states and, for each valid database state, all sets of operation invocations
that can execute in that state, and checks if executing all these sets in the same state
is valid or not. Obviously, exhaustively considering all database states and operation
sets would be impossible in practice, which required the use of the efficient verification
techniques..

The second step consists in deciding which approach will be used to handle I-offender
sets. The programmer must select from the two alternative approaches supported: invariant-

2This step could be automated using program analysis techniques, as done for example in [37, 38].

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 46

7 ENSURING INVARIANTS WITH EXPLICIT CONSISTENCY

repair, in which operations are allowed to execute concurrently and invariants are en-
forced by automatic conflict resolution rules; violation-avoidance, in which the system
restricts the concurrent execution of operations that can lead to invariant violation.

In the invariant-repair approach, the system automatically guarantees that invariants
hold when merging operations executed concurrently, by including the necessary code
for restoring invariants in the operations. This is achieved by relying on CRDTs, such as
sets, trees and graphs. For example, concurrent changes to a tree can lead to cycles that
can be broken using different repair strategies [39].

In the violation-avoidance approach, the system uses a set of techniques to control
when it is possible and impossible to execute an operation in a datacenter without co-
ordinating with others. For example, to guarantee that an enrollment can only bind a
player and a tournament that exist, enrollments can execute in any replica without co-
ordination by forbidding the deletion of players and tournaments. A datacenter can re-
serve the right to forbid the deletion for a subset of players and tournaments, which gives
it the ability to execute enrollments for those players and tournaments without coordinat-
ing with other datacenters. Our reservation mechanisms supports such functionality with
reservations tailored to the different types of invariants.

Third, the application code is instrumented to use the conflict-repair and conflict-
avoidance mechanisms selected by the programmer. This involves extending operations
to call the appropriate API functions defined in Indigo.

7.5 Indigo middleware

We have built a prototype of Indigo on top of a geo-replicated data store with the follow-
ing properties: (i) causal consistency; (ii) support for transactions that access a database
snapshot and merge concurrent updates using CRDTs [33]; (iii) linearizable execution of
operations for each object in each datacenter. It has been shown that all these properties
can be implemented efficiently in geo-replicated stores and at least two systems support
all these functionalities: SwiftCloud [40] and Walter [34]. Given that SwiftCloud has
a more extensive support for CRDTs, which are fundamental for invariant-repair, we
decided to build Indigo prototype on top of SwiftCloud.

Reservation objects are stored in the underlying storage system and they are replic-
ated in all datacenters. Reservation rights are assigned to datacenters individually, which
keeps the information small. As discussed in the previous section, the execution of op-
erations in reservation objects must be linearizable (to guarantee that two concurrent
transactions do not consume the same rights).

The execution of an operation in the replica where it is submitted has three phases:
i) the reservation rights needed for executing the operation are obtained - if not all rights
can be obtained, the operation fails; ii) the operation executes, reading and writing the
objects of the database; iii) the used rights are released. For escrow reservations, rights
consumed are not released; new rights are created in this phase. The side-effects of the
operation in the data and reservation objects are propagated and executed in other replicas
asynchronously and atomically.

Reservations guarantee that operations that can lead to invariant violation do not ex-
ecute concurrently. However, operations need to check if the preconditions for operation

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 47

7 ENSURING INVARIANTS WITH EXPLICIT CONSISTENCY

execution hold before execution3. In our tournament example, an operation to remove
a tournament cannot execute before removing all enrolled players. Reservations do not
guarantee that this is the case, but only that a remove tournament will not execute con-
currently with an enrollment.

An operation needs to access a database snapshot compatible with the used reser-
vation rights, i.e., a snapshot that reflects the updates executed before the replica has
acquired the rights being used. In our example, for removing a tournament it is necessary
to obtain the right that allows such operation. This precludes the execution of concur-
rent enroll operations for that tournament. After the tournament has been deleted, an
enroll operation can obtain a forbid right on tournament removal. For correctness, it is
necessary that the operation observes the tournament as deleted, which is achieved by
enforcing that updates of an operation are atomic and that the read snapshot is causally
consistent (obtaining the forbid right necessarily happens after revoking the allow right,
which happens after deleting the tournament). These properties are guaranteed in Indigo
directly by the underlying storage system.

Obtaining reservation rights The first and last phases of operation execution obtain
and free the rights needed for operation execution. Indigo provides API functions for
obtaining and releasing a list of rights. Indigo tries to obtain the necessary rights locally
using ordered locking to avoid deadlocks. If other datacenters need to be contacted for
obtaining some reservation rights, this process is executed before start obtaining rights
locally. Unlike the process for obtaining rights in the local datacenter, Indigo tries to
obtain the needed rights from remote datacenters in parallel for minimizing latency. This
approach is prone to deadlocks - if some remote right cannot be obtained, we use an
exponential backoff approach that frees all rights and tries to obtain them again after an
increasing amount of time.

When it is necessary to contact other datacenters to obtain some right, latency of oper-
ation execution is severely affected. In Indigo, reservation rights are obtained pro-actively
using the following strategy. Escrow lock rights are divided among datacenters, with a
datacenter asking for additional rights to the datacenter it believes has more rights (based
on local information). Multi-level lock and multi-level mask rights are pre-allocated to
allow executing the most common operations (based on the expected frequency of oper-
ations), with shared allow and forbid rights being shared among all datacenters. In the
tournament example, shared forbid for removing tournaments and players can be owned
in all datacenters, allowing the most frequent enroll to execute locally.

The middleware maintains a cache of reservation objects and allows concurrent op-
erations to use the same shared (allow or forbid) right. While some ongoing operation is
using a shared or exclusive right, the right cannot be revoked.

7.6 Fault tolerance

Indigo builds on the fault-tolerance of the underlying storage system. In a typical geo-
replicated store, data is replicated inside a datacenter using quorums or relying on a state-
machine replication algorithm. Thus, the failure of a machine inside a datacenter does

3This step could be automated by inferring preconditions from invariants and operation side-effects,
given that the programmer specifies the code for computing the value of predicates

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 48

7 ENSURING INVARIANTS WITH EXPLICIT CONSISTENCY

not lead to any data loss. If a datacenter (fails or) gets partitioned from other datacenters,
it is impossible to transfer rights from and to the partitioned datacenter. In each partition,
operations that only require rights available in the partition can execute normally. Opera-
tions requiring rights not available in the partition will fail. When the partition is repaired
(or the datacenter recovers with its state intact), normal operation is resumed.

In the event that a datacenter fails losing its internal state, the rights held by that
datacenter are lost. As reservation objects maintain the rights held by all replicas, the
procedure to recover the rights lost by the datacenter failure is greatly simplified - it is
only necessary to guarantee that recovery is executed only once with a state that reflects
all updates received from the failed datacenter.

7.7 Experimental evaluation
This section presents our experimental evaluation of Indigo. The main question our eval-
uation tries to answer is how does explicit consistency compares against causal consist-
ency and strong consistency in terms of latency and throughput with different workloads.
Additionally, we tried to answer the following questions:

• Can the algorithm for detecting I-offender sets be used with realistic applications?
• What is the impact of an increasing the amount of contention in objects and reser-

vations?
• What is the impact of using an increasing number of reservations in each operation?
• What is the behavior when coordination is necessary for obtaining reservations?

To evaluate Indigo, we used the two following applications.

Ad counter We provide, for the reader’s convenience, a brief overview of our ad
counter industrial use case. The ad counter application models the information main-
tained by a system that manages the displaying of ads in online applications. This in-
formation needs to be geo-replicated for allowing fast delivery of ads. For maximizing
revenue, an ad should be displayed exactly the number of times the advertiser is willing
to pay for, a requirement that we express as an application invariant. In a real system,
when a client application asks for a new ad to be impressed, some complex logic will
decide which ad should be impressed. In our application, an operation we only execute
a set of reads to counters followed by an operation to increment the number of times a
randomly selected ad has been displayed.

Advertisers will typically require ads to be impressed a minimum number of times in
some countries - e.g. ad A should be impressed 10.000 times, including 4.000 times in
US and 4.000 times in EU. This example is modeled by having the following additional
invariants for specifying the limits on the number of impressions (impressions in excess
in Europe and US can be accounted in nrImpressionsOther).

We modeled this application by having independent counters for each ad and region.
Invariants were defined with the limits stored in database objects. A single update op-
eration that increments the ad tally was defined - this operation updates the predicate
nrImpressions . Our analysis shows that the increment operation conflicts with itself for
any given counter, but increments on different counters are independent. Invariants can
be enforced by relying on escrow lock reservations for each ad.

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 49

7 ENSURING INVARIANTS WITH EXPLICIT CONSISTENCY

Our experiments used workloads with a mix of: a read only operation that returns the
value of a set of counters selected randomly; an operation that reads and increments a
randomly selected counter. Our default workload included only increment operations.

Tournament management This a version of the application for managing tournaments
described in section 7 (and used throughout the paper as our running example), extended
with read operations for browsing tournaments. The operations defined in this application
are similar to operations that one would find in other management applications such as
courseware management.

This application has a rich set of invariants, including uniqueness rules for assigning
ids; generic referential integrity rules for enrollments; and order relations for specifying
the capacity of each tournament. This leads to a reservation system that uses both escrow
lock and multi-level lock reservation objects. Three operations do not require any right
to execute - add player, add tournament and disenroll tournament - although the latter
access the escrow lock object associated with the capacity of the tournament. The other
update operations involve acquiring rights before they can execute.

In our experiments we have run a workload with 82% of read operations (a value
similar to the TPC-W shopping workload), 4% of update operations requiring no right
for executing, and 14% of update operations requiring rights (8% of the operations are
enrollment and disenrollments).

Performance of the Analysis We have implemented the algorithm for detecting I-
offender sets in Java, relying on the satisfiability modulo theory (SMT) solver Z3 [41]
for verifying invariants. The algorithm was able to find the existing I-offender sets in the
applications. The average running time of this process in a recent MacBook Pro laptop
was 19 ms for the ad counter applications and 2892 ms for the more complex tournament
application.

We have also modeled TPC-W - the invariants in this benchmark are a subset of those
of the tournament application. The average running time for detecting I-offender sets was
937 ms. These results show that the running time increases with the number of invariants
and operations, but that our algorithm can process realistic applications.

We compare Indigo against three alternative approaches:

Causal Consistency (Causal) As our system was built on top of the causally consistent
SwiftCloud system[40], we have used unmodified SwiftCloud as representative of
a system providing causal consistency. We note that this system cannot enforce in-
variants. This comparison allows us to measure the overhead introduced by Indigo.

Strong Consistency (Strong) We have emulated a strongly consistent system by run-
ning Indigo in a single DC and forwarding all operations to that DC. We note that
this approach allows more concurrency than a typical strong consistency system
as it allows updates on the same objects to proceed concurrently and be merged if
they do not violate invariants.

Red-Blue consistency (RedBlue) We have emulated a system with Red-Blue consist-
ency [20] by running Indigo in all DCs and having red operations (those that may
violate invariants and require reservations) execute in a master DC, while blue op-
erations execute in the closest DC respecting causal dependencies.

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 50

7 ENSURING INVARIANTS WITH EXPLICIT CONSISTENCY

Our experiments comprised 3 Amazon EC2 datacenters - US-East, US-West and EU
- with inter-datacenter latency presented in Table 1. In each DC, Indigo servers run in a
single m3.xlarge virtual machine with 4 vCPUs and 8 ECUs of computational power, and
15GB of memory available. Clients that issue transactions run in up to three m3.xlarge
machines. Where appropriate, we placed the master DC in US-East datacenter to minim-
ize the communication latency and have those configurations perform optimally.

RTT (ms) US-E US-W
US-West 81 -
EU 93 161

Table 1: RTT Latency among Datacenters in Amazon EC2

Latency and throughput We start by comparing the latency and throughput of In-
digo with alternative deployments for both applications. We have run the ad counter
application with 1000 ads and a single invariant for each ad. The limit on the number
of impressions was set sufficiently high to guarantee that the limit is not reached. The
workload included only update operations for incrementing the counter. This allows us
to measure the peak throughput when operations are able to obtain reservations in ad-
vance. The results show that Indigo achieves throughput and latency similar to a causally
consistent system. Strong and RedBlue results are similar, as all update operations are
red and execute in the master DC in both configurations.

Results show that Indigo achieves throughput and latency similar to a causally con-
sistent system. In this case, as most operations are read-only or can be classified as blue
and execute in the local datacenter, RedBlue throughput is only slightly worse than that
of Indigo. The results also show that Indigo exhibits lower latency than RedBlue for red
operations. These operations can execute in the local DC in Indigo, as they require either
no reservation or reservations that can be shared and are typically locally available.

Two other results deserve some discussion. Remove tournament requires canceling
shared forbid rights acquired by other DCs before being able to acquire the shared allow
right for removing the tournament, which explain the high latency. Sometimes latency
is extremely high (as shown by the line with the maximum value) - this is a result of the
asynchronous algorithms implemented and the approach for requesting remote DCs to
cancel their rights, which can fail when a right is being used. This could be improved by
running a more elaborate protocol based on Paxos. Add player has a surprisingly high
latency in all configurations. Analyzing the situation, we found out that the reason for
this lies in the fact that this operation manipulates very large objects used to maintain
indexes - all configurations have a fix overhead due to this manipulation.

The throughput of Indigo decreases when contention increases as several steps re-
quire executing operations sequentially. Our middleware introduces additional conten-
tion when accessing the cache. As the underlying storage system also implements lin-
earizability per-object, it is also possible to observe its throughput also decreases with
increased contention, although more slowly. The results also show that the peak through-
put with Indigo decreases while latency keeps constant. The reason for this is that for
escrow locks, each invariant has an associated reservation object - thus, when increasing
the number of invariants the number of updated objects also increases, with impact on
the operations that each datacenter needs to execute. To verify our explanation, we have

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 51

7 ENSURING INVARIANTS WITH EXPLICIT CONSISTENCY

run a workload with operations that access the same number of counters in the weak
consistency configuration - the presented results show the same pattern for decreased
throughput. When rights do not exist locally, Indigo cannot mask the latency imposed by
coordination - in this case, for obtaining additional rights from the remote datacenters.

A big impact in latency is only experienced when it is necessary to revoke shared
forbid rights in all replicas before acquiring the needed shared allow right. The positive
consequence of this approach is that enroll operations requiring the shared forbid right
that was shared by all replicas execute with latency close to zero. The maximum latency
line in enroll operation shows the maximum latency experienced when a replica acquires
a shared forbid right from a replica already holding such right.

Conclusions from Experiments The results show that the modified applications have
performance similar to weak consistency for most operations, while being able to en-
force application invariants. Some rare operations that require intricate rights transfers
exhibit high latency. As future work, we intend to improve the algorithms for exchanging
reservation rights on those situations.

7.8 Conclusions
We investigated an application-centric consistency model for geo-replicated services -
explicit consistency - where programmers specify the consistency rules that the system
must maintain as a set of invariants. We described a methodology that helps program-
mers decide which invariant-repair and violation-avoidance techniques to use to enforce
explicit consistency, extending existing applications. We also present the design of In-
digo, a middleware that can enforce explicit consistency on top of a causally consistent
store. The results show that the modified applications have performance similar to weak
consistency for most operations, while being able to enforce application invariants. Some
rare operations that require intricate rights transfers exhibit high latency. As future work,
we intend to improve the algorithms for exchanging reservation rights on those situations.

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 52

8 PAPERS AND PUBLICATIONS

8 Papers and publications
• Manuel Bravo, Zhongmiao Li, Peter Van Roy, and Christopher Meiklejohn. Der-

flow: Distributed Deterministic Dataflow Programming for Erlang, 13th ACM
SIGPLAN Erlang Workshop, Gothenburg, Sweden, Sep. 5, 2014.

• Christopher Meiklejohn. Eventual Consistency and Deterministic Dataflow Pro-
gramming, 8th Workshop on Large-Scale Distributed Systems and Middleware
(LADIS ’14), Cambridge, UK, Oct. 23-24, 2014.

• Peter Zeller, Annette Bieniusa and Arnd Poetzsch-Heffter. Formal Specification
and Verification of CRDTs, Formal Techniques for Distributed Objects, FORTE
2014, Berlin, Germany, June 3-5, 2014.

• Valter Balegas, Mahsa Najafzadeh, Sérgio Duarte, Carla Ferreira, Marc Shapiro,
Rodrigo Rodrigues, and Nuno Preguiça. Putting Consistency Back into Eventual
Consistency. Submitted to EuroSys 2015.

• Burcu Kulahcioglu Ozkan, Erdal Mutlu and Serdar Tasiran. Towards Verifying
Eventually Consistent Applications, Workshop on the Principles and Practice of
Eventual Consistency, PaPEC ’14. Amsterdam, The Netherlands, April 13, 2014.

We apologize for the last publication, authored by Koç University researchers, which
fails to acknowledge SyncFree funding. This is Prof. Tasiran’s group’s first EU project
involvement and he and his students were unaware of this requirement. They will be sure
to acknowledge SyncFree funding in upcoming publications.

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 53

REFERENCES

References
[1] Kuper, Lindsey, and Ryan R. Newton. LVars: lattice-based data structures for de-

terministic parallelism. Proceedings of the 2nd ACM SIGPLAN workshop on Func-
tional high-performance computing. ACM, 2013.

[2] Dean, Jeffrey, and Sanjay Ghemawat. MapReduce: simplified data processing on
large clusters. Communications of the ACM 51.1 (2008): 107-113.

[3] Rusty Klophaus. Riak Core: building distributed applications without shared state.
In ACM SIGPLAN Commercial Users of Functional Programming (CUFP ’10),
New York, NY, USA, , Article 14 , 1 pages.

[4] Sébastien Doeraene and Peter Van Roy. A New Concurrency Model for Scala Based
on a Deterministic Dataflow Core. Fourth Annual Scala Workshop, Montpellier,
France, July 1-2, 2013.

[5] Seif Haridi, Peter Van Roy, Per Brand, and Christian Schulte. Programming Lan-
guages for Distributed Applications. Journal of New Generation Computing, May
1998, Vol. 16, No. 3, pp. 223-261.

[6] Seif Haridi, Peter Van Roy, Per Brand, Michael Mehl, Ralf Scheidhauer, and Gert
Smolka. Efficient Logic Variables for Distributed Computing. ACM Transactions
on Programming Languages and Systems (TOPLAS), May 1999, pp. 569-626.

[7] Michael Maher. Logic Semantics for a Class of Committed-choice Programs. In
International Conference on Logic Programming (ICLP 87), Melbourne, Australia,
May 1987, pp. 856-876.

[8] F. Rossi, P. van Beek, T. Walsh (eds.). Handbook of Constraint Programming, El-
sevier, 2006.

[9] Vijay A. Saraswat. Concurrent Constraint Programming, MIT Press, 1993.

[10] Paulo Sérgio Almeida and Carlos Baquero. Scalable Eventually Consistent Coun-
ters over Unreliable Networks. arXiv:1307.3207 [cs.DC], July 2013.

[11] DeCandia, Giuseppe, et al. Dynamo: Amazon’s highly available key-value store.
ACM SIGOPS Operating Systems Review. Vol. 41. No. 6. ACM, 2007.

[12] Peter Van Roy, Seif Haridi, Per Brand, Gert Smolka, Michael Mehl, and Ralf
Scheidhauer. Mobile Objects in Distributed Oz. ACM Transactions on Program-
ming Languages and Systems (TOPLAS), Sep. 1997, pp. 804-851.

[13] Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer
Programming, MIT Press, 2004.

[14] Sebastian Burckhardt, Alexey Gotsman, and Hongseok Yang. Understanding even-
tual consistency. Technical Report MSR-TR-2013-39, March 2013. This document
is work in progress. Feel free to cite, but note that we will update the contents

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 54

REFERENCES

without warning (the first page contains a timestamp), and that we are likely go-
ing to publish the content in some future venue, at which point we will update this
paragraph.

[15] Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek Zawirski.
Replicated data types: specification, verification, optimality. In Suresh Jagannathan
and Peter Sewell, editors, POPL, pages 271–284. ACM, 2014.

[16] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condition
for concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, July
1990.

[17] Leslie Lamport. How to make a multiprocessor computer that correctly executes
multiprocess programs. Computers, IEEE Transactions on, 100(9):690–691, 1979.

[18] Axel van Lamsweerde. Formal specification: a roadmap. In Proceedings of the
Conference on the Future of Software Engineering, pages 147–159. ACM, 2000.

[19] Cheng Li, João Leitão, Allen Clement, Nuno M. Preguiça, Rodrigo Rodrigues, and
Viktor Vafeiadis. Automating the choice of consistency levels in replicated systems.
In Garth Gibson and Nickolai Zeldovich, editors, 2014 USENIX Annual Technical
Conference, USENIX ATC ’14, Philadelphia, PA, USA, June 19-20, 2014., pages
281–292. USENIX Association, 2014.

[20] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno M. Preguiça, and
Rodrigo Rodrigues. Making geo-replicated systems fast as possible, consistent
when necessary. In Chandu Thekkath and Amin Vahdat, editors, 10th USENIX
Symposium on Operating Systems Design and Implementation, OSDI 2012, Holly-
wood, CA, USA, October 8-10, 2012, pages 265–278. USENIX Association, 2012.

[21] Matthieu Perrin, Achour Mostéfaoui, and Claude Jard. Brief announcement: Up-
date consistency in partitionable systems. In Distributed Computing - 28th Interna-
tional Symposium, DISC 2014, Austin, TX, USA, October 12-15, 2014. Proceedings,
page 546, 2014.

[22] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. A compre-
hensive study of Convergent and Commutative Replicated Data Types. Rapport de
recherche RR-7506, INRIA, January 2011.

[23] Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M. Hellerstein,
and Ion Stoica. Coordination-avoiding database systems. CoRR, abs/1402.2237,
2014.

[24] Peter Zeller, Annette Bieniusa, and Arnd Poetzsch-Heffter. Formal specification and
verification of crdts. In Erika Ábrahám and Catuscia Palamidessi, editors, Formal
Techniques for Distributed Objects, Components, and Systems - 34th IFIP WG 6.1
International Conference, FORTE 2014, Held as Part of the 9th International Fed-
erated Conference on Distributed Computing Techniques, DisCoTec 2014, Berlin,
Germany, June 3-5, 2014. Proceedings, volume 8461 of Lecture Notes in Computer
Science, pages 33–48. Springer, 2014.

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 55

REFERENCES

[25] Martı́n Abadi, Leslie Lamport, and Stephan Merz. A tla solution to the rpc-memory
specification problem. In Manfred Broy, Stephan Merz, and Katharina Spies, ed-
itors, Formal Systems Specification, volume 1169 of Lecture Notes in Computer
Science, pages 21–66. Springer Berlin Heidelberg, 1996.

[26] Tianxiang Lu, Stephan Merz, Christoph Weidenbach, et al. Model checking the
pastry routing protocol. In 10th International Workshop Automated Verification of
Critical Systems, pages 19–21, 2010.

[27] Stephan Merz, Martin Wirsing, and Júlia Zappe. A spatio-temporal logic for the
specification and refinement of mobile systems. In Fundamental Approaches to
Software Engineering, pages 87–101. Springer, 2003.

[28] Chris Newcombe. Why amazon chose tla + . In Yamine Ait Ameur and Klaus-
Dieter Schewe, editors, Abstract State Machines, Alloy, B, TLA, VDM, and Z,
volume 8477 of Lecture Notes in Computer Science, pages 25–39. Springer Ber-
lin Heidelberg, 2014.

[29] Leslie Lamport. Specifying systems. Addison-Wesley Reading, 2002.

[30] Yuan Yu, Panagiotis Manolios and Leslie Lamport. Model checking TLA+ spe-
cifications. In Correct Hardware Design and Verification Methods, pages 54–66,
Springer, 1999.

[31] Marc Shapiro, Nuno Preguiça, Carlos Baquero, Marek Zawirski, et al. A compre-
hensive study of convergent and commutative replicated data types. 2011.

[32] Jim Gray and Leslie Lamport. Consensus on transaction commit. In ACM Trans.
Database Syst., Volume 31, pages 133–160, ACM, New York, NY, USA, March
2006.

[33] Marc Shapiro, Nuno Preguiça, Carlos Baquero and Marek Zawirski. Conflict-free
replicated data types. In Proceedings of the 13th International Conference on Sta-
bilization, Safety, and Security of Distributed Systems, pages 386–400, Springer-
Verlag, 2011.

[34] Yair Sovran, Russell Power, Marcos K. Aguilera and Jinyang Li. Transactional
Storage for Geo-replicated Systems. In Proceedings of the Twenty-Third ACM Sym-
posium on Operating Systems Principles (SOSP ’11), pages 385–400, ACM, 2011.

[35] Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on
Foundations of Computer Science (FOCS ’77), pages 46–57, IEEE, 1977.

[36] Leslie Lamport. The temporal logic of actions. In ACM Trans. Program. Lang.
Syst., Volume 16, pages 872–923, ACM, May 1994.

[37] Cheng Li, J. Leitão, Allen Clement, Nuno Preguiça, Rodrigo Rodrigues and Viktor
Vafeiadis. Automating the choice of consistency levels in replicated systems. In
Proceedings of the 2014 USENIX Conference on USENIX Annual Technical Con-
ference (USENIX ATC’14), pages 281–292, USENIX Association, 2014.

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 56

REFERENCES

[38] Sudip Roy, Lucja Kot, Nate Foster, Johannes Gehrke, Hossein Hojjat and Christoph
Koch. Writes that fall in the forest and make no sound: semantics-based adaptive
data consistency. In CoRR ’14, 2014.

[39] Stéphane Martin, Mehdi Ahmed-Nacer and Pascal Urso. Abstract unordered and
ordered trees CRDT. In CoRR ’12, 2012.

[40] Marek Zawirski, Annette Bieniusa, Valter Balegas, Sérgio Duarte, Carlos Baquero,
Marc Shapiro and Nuno M. Preguiça SwiftCloud: fault-tolerant geo-replication
integrated all the way to the client machine. In CoRR ’13, 2013.

[41] Leonardo De Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In Tools
and Algorithms for the Construction and Analysis of Systems (TACAS ’08), pages
337–340, Springer, 2008.

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 57

A DERFLOW: DISTRIBUTED DETERMINISTIC DATAFLOW PROGRAMMING
FOR ERLANG

A Derflow: Distributed Deterministic Dataflow Program-
ming for Erlang

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 58

Derflow: Distributed Deterministic Dataflow
Programming for Erlang

Manuel Bravo
Université catholique de Louvain

angel.bravo@uclouvain.be

Zhongmiao Li
Université catholique de Louvain
zhongmiao.li@uclouvain.be

Peter Van Roy
Université catholique de Louvain
peter.vanroy@uclouvain.be

Christopher Meiklejohn
Basho Technologies, Inc.
cmeiklejohn@basho.com

Abstract
Erlang implements a message-passing execution model in which
concurrent processes send each other messages asynchronously.
This model is inherently non-deterministic: a process can receive
messages sent by any process which knows its process identifier,
leading to an exponential number of possible executions based
on the number messages received. Concurrent programs in non-
deterministic languages are notoriously hard to prove correct and
have led to well-known disasters.

Furthermore, Erlang natively provides distribution and process
clustering. This enables processes to asynchronously communicate
between different virtual machines across the network, which in-
creases the potential non-determinism.

We propose a new execution model for Erlang, “Determinis-
tic Dataflow Programming”, based on a highly available, scalable
single-assignment data store implemented on top of the riak core
distributed systems framework. This execution model provides
concurrent communication between Erlang processes, yet has no
observable non-determinism. Given the same input values, a deter-
ministic dataflow program will always return the same output val-
ues, or never return; liveness under failures is sacrificed to ensure
safety. Our proposal provides a distributed deterministic dataflow
solution that operates transparently over distributed Erlang, provid-
ing the ability to have highly-available, fault-tolerant, deterministic
computations.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming

Keywords Dynamo; Erlang; Riak

1. Introduction
Erlang implements a message-passing execution model in which
concurrent processes send each other asynchronous messages. This

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Erlang ’14, September 5, 2014, Gothenburg, Sweden.
Copyright c© 2014 ACM 978-1-4503-3038-1/14/09. . . $15.00.
http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/2633448.2633451

model is inherently non-deterministic, in that a process can receive
messages sent by any process which knows its process identifier,
leading to an exponential number of possible executions based on
the number of messages received. Concurrent programs in non-
deterministic languages, are notoriously hard to prove correct, and
have lead to many well-known disasters. [15]

When reasoning about the correctness of our programs, we treat
every message received by a process as a ‘choice’. A series of these
‘choices’ define one execution of a program. Given this, to prove
a program is correct requires proving that each of these executions
are correct; that is, for each execution all possible inputs are able
to be processed resulting in termination. While there is work un-
derway on making this approach more viable [2], we believe that
limiting the ability to write non-deterministic code provides a rea-
sonable alternative to exhaustively checking our applications for
correctness.

In addition, Erlang natively provides distribution and clustering
as part of the runtime environment. This provides the ability to
have processes asynchronously communicate across the network
between different instances of the virtual machine. When using
asynchronous communication across the network, one can provide
even fewer guarantees regarding message delivery and reordering
[18]. Erlang, in an effort to solve both of these problems, uses
programming patterns and libraries (e.g. OTP) that are designed
to reduce the number of choices and to maintain invariants for the
remaining choices.

We propose a new execution model for Erlang, namely de-
terministic dataflow programming. This execution model pro-
vides concurrency, while also eliminating all observable non-
determinism. Given the same input values, a program written in
deterministic dataflow style will always return the same output val-
ues, or never return. These input values can be data streams as well,
which is a natural generalization of functional programming to the
concurrent setting. Our proposed solution provides a distributed
deterministic dataflow solution which operates transparently over
distributed Erlang, providing the ability to have highly-available,
fault-tolerant, deterministic computations.

The major contributions of this paper are the following:

• Prototype implementation of a deterministic dataflow extension
to Erlang called Derflow, with examples of its usage for com-
mon computations.

• Transparent distribution of computations, through the usage
of the Dynamo-inspired [6] distributed systems framework,
riak core. [3].

The remainder of this paper is organized as follows: Section 2
introduces background material related to distributed dataflow pro-
gramming and the riak core distribution model; Section 3 de-
scribes the semantics of Derflow; Section 4 discusses the imple-
mentation challenges; Section 5 discusses a few application of Der-
flow; then, Section 6 discusses integration with non-determinism;
finally, Section 7 discusses future work and concludes the paper.

2. Background
The following subsections provide background on Dynamo, the
riak core library, and deterministic dataflow programming.

2.1 Dynamo
Consistent hashing, hash-space partitioning and a configurable
data replication factor are the concepts critical for understanding
riak core’s implementation of the Dynamo mode. We discuss in
Section 4.2 how Derflow is built on top of riak core.

2.1.1 Consistent Hashing
The Amazon Dynamo paper describes a key-value based storage
system made up of a cluster of nodes, where every node in the
cluster stores some subset of the total data. To distribute this data, a
consistent hashing algorithm applied to the data’s key is then used
to determine a token in the hash-space for where this data should
be distributed.

2.1.2 Hash-Space Partitioning
The entirety of the hash space is then evenly divided between the
nodes. Each even portion of the hash space is called a partition, and
each partition is managed by a virtual node. Each physical node in
the cluster hosts a number of virtual nodes, one for each partition
assigned to that physical node. The hash resulting from running
a key through the consistent hashing algorithm determines which
partition is responsible for storing the data associated with that key.

2.1.3 Replication Factor
Dynamo replicates data on consecutive partitions. The replication
factorN determines the number of replicas. When a key is mapped
to a particular partition in the hash-space, the (N − 1) consecutive
partitions are used to store replicas of the data. This collection of
partitions is called the preference list or primaries.

2.1.4 Dynamic Cluster Membership
As the cluster grows and shrinks, partitions are redistributed to
nodes, minimizing the amount of partitions that have to move be-
tween nodes to cut down on data transfer between nodes. This is
a property of the consistent hashing algorithm described in sec-
tion 2.1.1.

2.2 Deterministic dataflow programming
Deterministic dataflow was first proposed by Gilles Kahn in 1974,
in a programming model that is now known as Kahn networks [12].
In 1977, a lazy version of this same model was proposed by Kahn
and David MacQueen [13]. However, up until recently this model
has never become part of mainstream concurrent programming.
This may be due to either the model’s inability to express non-
determinism or the simultaneous invention of two other models
for handling concurrent programming: the actor model (message
passing) and monitors (shared state) [9, 10].

However, deterministic dataflow is now becoming a more im-
portant model in mainstream programming due to the increas-
ing prominence of parallel computing, both in distributed com-
puting and in multicore processors. Recent examples include the
Oz deterministic dataflow execution model [19], the Akka library
for concurrent and distributed programming in Scala [1, 20], and
Ozma, which is a Scala language extension that adds deterministic
dataflow [7].

3. Semantics of Derflow
This section presents the semantics of Derflow in four subsections.
First, we focus on the primitive semantics which support deter-
ministic dataflow; then, we introduce data streams, a programming
technique that enriches deterministic dataflow. Then, we discuss a
lazy execution extension. Finally, we discuss issues of failure han-
dling.

3.1 Deterministic dataflow
The deterministic dataflow model uses a single-assignment store.
This store is shared through all the processes that participate
in the deterministic dataflow program. We represent the single-
assignment store as:
σ = {x1, . . . , xn}
where xi represents a variable declared in σ. The stored vari-

ables are called dataflow variables. Dataflow variables are assigned
to dataflow values. A dataflow value is either an Erlang term or a
previously declared dataflow variable.

Contrary to Erlang variables, a dataflow variable is allowed to
be unbound. Thus, the possible states of a dataflow variable are the
following: unbound, bound to a term, partially bound. The former
is the initial state of a dataflow variable after is created. After
the initial state, the dataflow variable can be either assigned to an
Erlang term or to another dataflow variable. If the dataflow variable
is assigned to another dataflow variable, we say that the variable is
partially bound if the second dataflow variable is unbound. Figure 1
diagrams the states that a dataflow variable can visit.

Therefore, the following single-assignment dataflow store is
consistent with the previous definitions:
σ = {x1 = x2, x2 = ∅, x3 = 5, x4 = [a, b, c], . . . , xn = 9}
where x1 is bound to another dataflow variable (x2), therefore,

partially bound; x2 is unbound and x3; x4 and xn are bound to
terms.

During the rest of the section, we use the following notation to
specify the state of a dataflow variable:

• xi = ∅: Variable xi is unbound.
• xi = xm: Variable xi is partially bound; therefore, it is as-

signed to another dataflow variable (xm). This also implies that
xm is unbound.

• xi = vi: Variable xi is bound to a term (vi).

Unbound

Partially
bound

Bound

xi = xj

xi = term
xj = term

Figure 1. Dataflow variable state diagram from xi perspective

• if xi does not appear assigned to anything, it means it is not
relevant to which kind of value is assigned.

Each dataflow variable has to keep some extra information in
order to implement the primitive operations on which deterministic
dataflow relies. A dataflow variable is composed as follows:
xi = {value, bound variables, waiting processes}
where value is either empty or a dataflow value, bound variables

is a set of dataflow variables that are partially bound to xi, and wait-
ing processes is a set of processes waiting for xi to be bound. The
set of waiting processes is used by the read and the bind primitive
operations later described.

The deterministic dataflow model is an extension of the func-
tional programming model with concurrency, dataflow variables
and synchronization on them. The model then guarantees that un-
der a particular input, a deterministic dataflow program will always
produce the same result. It is well known that determinism is a de-
sired property that simplifies the development of applications.

We now look at which primitives are required to transform
a functional program into a deterministic dataflow program. The
following primitives we aim to provide are: declare(), bind(x, v)
and read(x).
declare() creates a new dataflow variable into the single-

assignment store. The operation returns the identifier of the newly
created dataflow variable. More precisely, this operation can be
expressed as follows:

• Before: σ = {x1, . . . , xn}
• xn+1 = declare()

create a unique dataflow variable xn+1

store xn+1 into σ
• After: σ = {x1, . . . , xn+1 = ∅}

bind(xi, vi) binds the dataflow variable xi to the value vi. More
precisely, this operation can be expressed as follows:

• Before: σ = {x1, . . . , xi = ∅, . . . , xn}
• bind(xi, vi)

∀p ∈ xi.waiting processes, notify p

∀x ∈ xi.bound variables, bind(x, vi)

xi.value = vi

• After: σ = {x1, . . . , xi = vi, . . . , xn}

In case the program binds xi to another dataflow variable
(bind(xi, xw)), xi become equivalent to xw. Thus, xi will be bound
to the same term than xw when xw becomes bound (in case it was
not bound when bind(xi, xw) was issued). Binding xi with the
same value for several times introduces no side effect, i.e. it is
idempotent. On the other hand, if xi was already bound to the
term vw and vi do not match vw, the execution of the deterministic
dataflow program terminates due to a programming error.

read(xi) returns the term bound to xi. More precisely, this
operation can be expressed as follows:

• Before: σ = {x1, . . . , xi, . . . , xn}
• vi = read(xi)

if xi.value == (xm ∨∅)

− xi.waiting processes ∪ {self()}
− wait until xi is bound

vi = xi.value

• After: σ = {x1, . . . , xi = vi, . . . , xn}

Finally, Derflow uses the Erlang spawn primitive to add concur-
rency to the deterministic dataflow model, a fundamental feature
of the deterministic dataflow model. Furthermore, useful proper-
ties such as transparent concurrency are added. Section 5 shows
why transparency concurrency is a desirable property and how pro-
grammer can use it.

3.2 Streams
Streams are a useful technique which allow threads, or processes,
to communicate and synchronize in concurrent programming. A
stream is represented here as a list of dataflow variables, with
an unbound dataflow variable as the final element of the list. For
instance, a stream variable can be expressed as the following:
si = x1 | . . . | xn−1 | xn, xn = ∅
where x1, . . . , xn−1 are dataflow variables either bound or

partially bound, and xn is an unbound dataflow variable.
In order to add streams to Derflow, we extended the metadata

kept by a dataflow variable with a new parameter called next. This
new parameter stores the id of the dataflow variable that represents
the successor element in the stream. Thus, a dataflow variable is
now composed as follows:
xi = {value, bound variables, waiting processes, next}
There are two basic operations applicable to a stream: pro-

duce(x, v) and consume(x).
produce(xn, vn) extends the stream by binding the tail xn to vn

and creating a new tail xn+1. It returns the new tail. More precisely,
this operation can be expressed as follows:

• Before: σ = {x1, . . . , xn = ∅}
• xn+1 = produce(xn, vn)

bind(xn, vn)

xn+1 = declare()

xn.next = xn+1

• After: σ = {x1, . . . , xn = vn, xn+1 = ∅}
consume(xi) reads the element of the stream represented by xi.

It returns the read value (vi) and the identifier of the next element in
the stream (xi+1). More precisely, this operation can be expressed
as follows:

• Before: σ = {x1, . . . , xi = vi ∨ xm ∨∅, xi+1, . . . , xn}
• {vi, xi+1} = consume(xi)

vi = read(xi)

xi+1 = xi.next

• After: σ = {x1, . . . , xi = vi, xi+1, . . . , xn}
Different processes can read from the stream simultaneously.

This do not compromise determinism. Nevertheless, the number of
producers is restricted to one in order to keep determinism.

3.3 Laziness
Lazy, non-strict evaluation, or demand-driven execution, delays the
evaluation of an expression until the value is needed somewhere
else in the program. Lazy execution can improve the performance
of programs by avoiding unnecessary computation. Lazy execution
also enables the possibility of creating potentially infinite data
structures, e.g. infinite lists and infinite trees, since each element
will only be created when it is needed by the program.

The intuition of lazy evaluation is simple: a process that wants
to assign a lazy variable to a value will be suspended until the value
is needed by other process.

The only primitive we need to add is wait needed(x). This
operation suspends the caller process until the dataflow variable

x is needed. As a consequence of this new primitive, the metadata
kept by the dataflow variable has to be extended once more. A new
parameter called lazy is added to the metadata. lazy is the set of
the processes that called wait needed(x) for the variable x. The
dataflow variable is now composed as follows:
xi = {value, bound variables, waiting processes, next, lazy}
More precisely, the wait needed(x) primitive can be expressed

as follows:

• Before: σ = {x1, . . . , xi = ∅, . . . , xn}
• wait needed(xi)

if xi.waiting processes == ∅
− xi.lazy ∪ {self()}
− wait until a read(xi) is issued

• After: σ = {x1, . . . , xi, . . . , xn}
In case xi was already bound, wait needed(x) returns immedi-

ately.
Furthermore, the primitive read(x) has to be changed to notify

the processes that called wait needed(x) . More precisely, the new
read(x) primitive can be expressed as follows:

• Before: σ = {x1, . . . , xi, . . . , xn}
• vi = read(xi)

∀p ∈ xi.lazy, notify p

if xi.value == (xm ∨∅)

− xi.waiting processes ∪ {self()}
− wait until xi is bound

vi = xi.value

• After: σ = {x1, . . . , xi = vi, . . . , xn}
3.4 Failure handling
Failures introduce non-determinism. Therefore, a deterministic
program can easily become non-deterministic if care is not taken
to handle failures in a deterministic manner.

One simple approach to ensure determinism in the presence of
failures is to force processes to wait forever if a dataflow variable
is either unbound or not reachable. Obviously, this approach does
not ensure progress. Consider the following example:

• Process p0 is supposed to bind a dataflow variable, however
fails before completing its task.

• Processes p1 . . . pn are waiting on p0 to bind.
• Processes p1 . . . pn wait forever, resulting in non-termination.

However, determinism and dataflow variables provide a very
useful property for failure handling: redundant computation will
not affect the correctness of a deterministic dataflow program. We
propose a failure handling model where failed processes or tem-
porarily unreachable processes, can be restarted while still provid-
ing the guarantees of the deterministic programming model.

We classify the failures into two groups:

• Computing process failure:
Failure of an individual Erlang process which uses a value in the
single-assignment store. Given other processes may be waiting
for the result of this processes computation, this can cause the
program to block forever.

• Dataflow variable failure:
A dataflow variable stored in the single-assignment store is not
reachable. This means that computing processes issuing opera-
tions on the unreachable variable will block until the dataflow

variable becomes accesible again. This may never happen and
the computing process would block forever.

3.4.1 Computing process failure handling
Computing process failures are rather straightforward to handle;
execution can continue by re-executing the failing process with-
out having to worry about duplicate processing introducing non-
determinism.

Consider the following example:

• Process p0 reads a dataflow variable, x1.
• Process p0 performs a computation based on the value of x1,

and binds the result of computation to x2.

Two possible failure conditions can occur:

• If the output variable never binds, process p0 can be restarted
and will allow the program to continue executing deterministi-
cally.

• If the output variable binds, restarting process p0 has no effect,
given the single-assignment nature of variables.

Derflow does not provide any primitive for handling this com-
putation, as the Erlang primitives are sufficient to handle these fail-
ures. Section 5.4 provides an example on how to successfully han-
dle computing process failures.

3.4.2 Dataflow variable failure handling
Dataflow variable failures are more difficult to handle, given that
re-execution of a blocked or failed process does not guarantee
progress.

Consider the following example:

• Process p0 attempts to compute value for dataflow variable x1
and fails.

• Process p1 blocks on x1 to be bound by p0, which will not
complete successfully.

The re-execution of blocked process p1 will result in the process
immediately blocking again. Therefore we must provide a way to
identify dependencies between processes and dataflow variables in
order to provide a deterministic restart strategy which guarantees
progress. A common strategy to ensure progress in this situation
is to restart the process that declared the failed dataflow variable.
In addition, all the processes depending on the restarted process
should also be restarted.

We can use the Erlang primitives monitor/2 and link/1 to build
custom supervision trees which will guarantee a proper restart strat-
egy which will ensure progress. Nevertheless, we still need to pro-
vide a way of monitoring and killing dataflow variables of the
single-assignment store. To facilitate this, we extend our model
with two additional primitives: monitor(x) and kill(x). These prim-
itives are inspired by the failure model of Collet [4].

To support these two primitives, we extend dataflow variables
as follows:

• We extend dataflow variables allowing them to bind to a non-
usable value, represented by >. A read or bind operation on a
non-usable dataflow variable blocks the caller process forever.

• We extend dataflow variables allowing them to track pro-
cesses which have placed monitors on them. These monitors
are tracked to support the kill primitive.

Below is the updated definition of dataflow variables:
xi = {value, bound variables, waiting processes, next, lazy,

monitors}

The call monitor(xi) sets a monitor to the dataflow variable xi
and returns a stream (initially, an unbound dataflow variable y)
that will contain the reachability states that the dataflow variable
xi visits on the node that did the monitor call. The new metadata
monitors is a set that contains all the identifiers of the processes
monitoring the dataflow variable.

If the reachability state of xi changes on a node, the new
state is inserted at the end of each monitor stream that was cre-
ated on that node. A dataflow variable can visit three reachability
states: perm fail, temp fail and normal. perm fail means that the
dataflow variable is permanently unreachable. temp fail means that
the dataflow variable is temporarily unreachable but it may become
reachable again. Finally, normal means that the dataflow variable is
reachable. A dataflow variable can only visit the reachability state
normal after visiting temp fail. Figure 2 diagrams the reachability
states that a dataflow variable can visit.

More precisely, the execution of monitor(xi) can be defined as
follows:

• Before: σ = {x1, . . . , xi, . . . , xn}
• y = monitor(xi)

xi.monitors ∪ {self()}
y = declare()

• After: σ = {x1, . . . , xi, . . . , xn, y}
kill(xi) sets the dataflow variable xi to non-usable. It is a syn-

chronous operation; therefore, the caller will block until the op-
eration is completed. All processes monitoring a killed dataflow
variable must be notified. This implies that if there are reachabil-
ity problems the operation may never return. More precisely, the
execution of this operation can be defined as follows:

• Before: σ = {x1, . . . , xi, . . . , xn}
• kill(xi)

xi.value = >
∀p ∈ xi.monitors, notify p

• After: σ = {x1, . . . , xi = >, . . . , xn}

4. Implementation
The following section discusses the implementation of Derflow.

4.1 Derflow API
Derflow currently provides the following functions:

Deterministic dataflow
• {ok, Id::term()} = declare():

Creates a new unbound dataflow variable in the store. It returns
the id of the newly created variable.

• ok = bind(Id, Value):
Binds the dataflow variable Id to Value. Value can either be an
Erlang term or any other dataflow variable.

normaltemp_failure

perm_failure

Figure 2. Dataflow variable reachability state diagram.

• ok = bind(Id, Mod, Fun, Args):
Binds the dataflow variable Id to the result of evaluating
Mod:Fun(Args).

• {ok, Value::term()} = read(Id):
Returns the value bound to the dataflow variable Id. If the
variable represented by Id is not bound, the caller blocks until
it is bound.

Streams

• {ok, NextId::term()} = produce(Id, Value):
Binds the variable Id to Value. It returns the pair composed by
the atom ok and the variable NextId that represents the id of the
next element of the stream.

• {ok, NextId::term()} = produce(Id, Mod, Fun, Args):
Binds the variable Id to the result of evaluating Mod:Fun(Args).
It returns the pair composed by the atom ok and the variable
NextId that represents the id of the next element of the stream.

• {ok, Value::term(), NextId::term()} = consume(Id):
Returns the value bound to the dataflow variable Id and the id
of the next element in the stream. If the variable represented by
Id is not bound, the caller blocks until it is bound.

• {ok, NextId::term()} = extend(Id):
Declares the variable that follows the variable Id in the stream.
It returns the id of the next element of the stream. This function
is useful for achieving concurrency in some cases (e.g. The
Sieve of Eratosthenes).

Laziness

• ok = wait needed(Id):
Used for adding laziness to the execution. The caller blocks
until the variable represented by Id is needed when attempting
to read the value.

Dataflow variable failure handling

• {ok, IdStream::term()} = monitor(Id):
Registers the caller as monitor of the dataflow variable Id.
Returns the head of a stream that will contain the states that
the dataflow variable Id visits, from the caller process view.

• ok = kill(Id):
Set the dataflow variable represented by Id to non-usable.

4.2 Distribution
Derflow is implemented as an Erlang library, which relies on a
single-assignment store. This store needs to be accessible by all the
processes that participate in the execution of the Derflow program.

4.2.1 Partition strategies
In a single system, the design of such a store is simpler as the mem-
ory is accessible and shared by all the communicating processes.
Nevertheless, in a distributed fashion, the implementation becomes
tricky and keeping consistency guarantees and high grade of scala-
bility is challenging.

We considered three approaches:

• Each dataflow variable has a ’home process’, where it was
initially created. Therefore, binding the variable always sends
a message to the ’home process’, which then broadcasts the
binding to all the instances.

• Each instance of a dataflow variable knows all the other in-
stances. There are no ’home processes’. Therefore, after bind-
ing the local instance, the operation is directly broadcast to the
other instances.

• Each computing node has a partition of the single-assignment
store. All processes on a given computing node will reference
the local partition. Binding a variable sends the operation to the
local partition, which will then send it to the partition replicas.

We chose the third approach. In the first two approaches, every
process that knows about a particular dataflow variable creates a
new instance; therefore, it will eventually participate in the corre-
sponding bind operation. In some cases, the number of instances
can be large. This would result in poor performance. Nevertheless,
in the third approach, each computing node is responsible for a par-
tition of the single-assignment store; therefore no matter how many
processes know about a particular dataflow variable, the binding
operation would always be sent to the responsible and to the corre-
sponding replicas.

4.2.2 Design considerations
When choosing to implement our distributed single-assignment
store, we examined two possible choices: riak core and mnesia
[8].
mnesia provides a native Erlang implementation of a relational

database management system, which supports atomic transactions
and the ability to distribute tables across nodes through replication.
However, we look at two specific problems with mnesia:

• Problems arise in the presence of network partitions [11] where
the mnesia nodes on either side of the network partition are
able to make progress independently. Currently, no mechanisms
exist for reconciling the changes made to the database when
nodes reconnect, nor reasoning about concurrent or causally in-
fluenced operations. While the functionality for reasoning about
concurrent events is not necessary for the implementation of the
single-assignment store, Section 7 discusses a generalization of
our single-assignment variables to conflict-free replicated data
types, or CRDTs [17], where causality is desired.

• mnesia performs replication to all nodes which share a table
of data. This requires writing a custom distribution layer for
distributing the data if we want to have it partitioned to ensure
even load distribution given dynamic membership and node
failures.

Given the background discussed in Section 2.1, riak core pro-
vides solutions to both of these problems:

• riak core provides a dotted version vector [16] and vector
clock facility as a causality tracking mechanism which can
be used to reason about concurrent operations. In addition,
riak core provides mechanisms, such as active anti-entropy
and handoff, which allow us to reason about divergences be-
tween replicas.

• riak core’s distribution layer provides minimal reshuffling of
data, and predictable hashing through hash-space partitioning,
consistent hashing, and a virtual node abstraction.

4.2.3 Implementation on riak core
In implementing the partitioned single-assignment store on
riak core, we made the following design decisions:

• Data is partitioned across a series of nodes, using the hash-
space partitioning and consistent hashing techniques described
in Section 2.1.1 and Section 2.1.2.

• When declaring new dataflow variables, we write the variable
into the replica set for that variable, requiring that the write be
acknowledged by a strict quorum to ensure fault-tolerance of
the variable as described in Section 2.1.3.

• As dataflow variables become bound, we rely again on a strict
quorum to acknowledge the write, and notify all processes
waiting for the value that the variable has been bound. Given
that n/2 − 1 nodes might not accept the write or be available,
we ensure that an active anit-entropy mechanism exists to notify
any processes on the node which did not receive the update
which might be waiting when the bound value is replicated.

• If a strict quorum is not available because of a network partition,
operations on dataflow variables do not make progress until the
partition has healed.

In the event of ownership transfer, during dynamic membership
changes within the cluster, we perform the following:

• Each replica’s portion of single-assignment store is transferred
over to the target replica. As this occurs, each dataflow variable,
if bound, notifies all waiting processes on the target replica
allowing any processes which were waiting during the partition
to proceed.

• As each variable is transferred over, monitors are removed
locally and reapplied for each dataflow variable on the target
vnode, given the processes which are waiting.

• Given that the process notification of a bound variable opera-
tion is idempotent, duplicate notifications to the same process
produces no result.

5. Examples
In this section we describe some use cases for Derflow.

5.1 Concurrency transparency
In Derflow, any function that uses dataflow variables can be run
in a different process while keeping the final result same. Thus,
programmers can transparently add concurrency to their programs
(either parallelism or distribution) in a secure way without thinking
about data races and possible bugs.

One such example is a map function, that receives a stream of
inputs and applies a function to each element resulting an output
stream of equal length. The code in Derflow for a sequential map
function is the following:

map(S1, M, F, S2) ->
case derflow:consume(S1) of
{ok, nil, _} ->
derflow:bind(S2, nil);

{ok, Value, Next} ->
{ok, NextOut} = derflow:produce(S2, M, F, Value),
map(Next, F, NextOut)

end.

Nevertheless, due to the concurrency transparency property, the
programmer could easily upgrade his sequential map to a concur-
rent implementation without compromising determinism. The code
in Derflow for the concurrent implementation of the map function
is the following:

concurrent_map(S1, M, F, S2) ->
case derflow:consume(S1) of
{ok, nil, _} ->
derflow:bind(S2, nil);

{ok, Value, Next} ->
{ok, NextOut} = derflow:extend(S2),
spawn(derflow, bind, [S2, M, F, Value]),
concurrent_map(Next, F, NextOut)

end.

In this case, the programmer explicitly specified (by using the
primitive spawn(module, function, args)) that the evaluation of the

function F is done asynchronously. Therefore, the map function can
read the next element from the input stream without waiting for
the function to be evaluated. The concurrent map, when leveraging
parallel execution, will be faster than its sequential counterpart.

5.2 Concurrent deployment
In concurrent deployment, we could further leverage concurrency
transparency to concurrently and incrementally start new processes
according to need. There is no need to start all processes when
initializing programs, instead only a few processes will be started at
first and they will launch new processes during runtime according
to need. The launched processes are executed concurrently and will
terminate when it finishes its computation, without affecting the
execution of other processes.

The following example is a pipeline that implements the Sieve
of Eratosthenes. This program receives a stream of integers and
returns a stream with the integers that are prime. At each iteration
of the sieve, the stream of candidates is filtered by using the latest
prime found. Thus, one filter process is created per iteration. The
output of a filter is used as an input of the next filter. Filters are
pipelined; therefore, as soon as a filter outputs the first element of
its output stream, the next filter can start its execution. The code in
Erlang using Derflow is the following:

sieve(S1, S2) ->
case derflow:consume(S1) of
{ok, nil, _} ->
derflow:bind(S2, nil);

{ok, Value, Next} ->
{ok, SN} = derflow:declare(),
F = fun(Y) -> Y rem Value =/= 0 end,
spawn(sieve, filter, [Next, F, SN]),
{ok, NextOut} = derflow:produce(S2, Value),
sieve(SN, NextOut)

end.

filter(S1, F, S2) ->
case derflow:consume(S1) of
{ok, nil, _} ->
derflow:bind(S2, nil);

{ok, Value, Next} ->
case F(Value) of
false ->
filter(Next, F, S2);

true->
{ok, NextOut} = derflow:produce(S2, Value),
filter(Next, F, NextOut)

end
end.

5.3 Laziness
The following examples show how the wait needed primitive can
be used to implement lazy functions.

The first example implements a lazy version of a sorting algo-
rithm that sorts a list of numbers in ascending order. The Derflow
implementation is the following:

insort(List, S) ->
case List of
[H|T] ->
{ok, OutS} = derflow:declare(),
insort(T, OutS),
spawn(getmin, insert, [H, OutS, S]);

[] ->
derflow:bind(S, nil)

end.

insert(X, In, Out) ->
ok = derflow:wait_needed(Out);

case derflow:consume(In) of
{ok, nil, _} ->
{ok, Next} = derflow:produce(Out, X),
derflow:bind(Next, nil);

{ok, V, SNext} ->
if X < V ->
{ok, Next} = derflow:produce(Out, X),
derflow:produce(Next, In);

true ->
{ok, Next} = derflow:produce(Out,V),
insert(X, SNext, Next)

end
end.

The primitives that contributes to the laziness of this program are
spawn on the fourth line of insort and the wait needed function call
in the first line of the insert function. The spawn operation creates
a process when an insertion should be executed. The wait needed
causes the created process to suspend until the result is needed by
some other process. When only partial results are needed for the
sorting algorithm, the lazy implementation can have a performance
gain over the eager version.

For instance, if only the smallest number of the sorted list is
needed, we can simply read the first element of the output list.
When the input list is [1,2,3,4,5,6,7,8,9,10], both eager execution
and lazy execution performs insertion ten times. However, when the
input is [10,9,8,7,6,5,4,3,2,1], the eager version executes insertion
for 54 times; in contrast, the lazy version only executes insertion
19 times.

The second example combines lazy execution and eager exe-
cution. We implemented a bounded-buffer that connects a producer
and a consumer. Thus, the producer only produces on demand when
the consumer needs to consume. Nevertheless, the producer is al-
lowed to generate some elements in advance in order to be more
efficient. The Derflow implementation is the following:

producer(Value, N, Output) ->
if (N > 0) ->
ok = derflow:wait_needed(Output),
{ok, Next} = derflow:produce(Output, Value),
producer(Value+1, N-1, Next);

true ->
derflow:bind(Output, nil)

end.

loop(S1, S2, End) ->
ok = derflow:wait_needed(S2),
{ok, S1Value, S1Next} = derflow:consume(S1),
{ok, S2Next} = derflow:produce(S2, S1Value),
case derflow:extend(End) of
{ok, nil} ->
ok;

{ok, EndNext} ->
loop(S1Next, S2Next, EndNext)

end.

buffer(S1, BUFFER_SIZE, S2) ->
End = drop_list(S1, BUFFER_SIZE),
loop(S1, S2, End).

drop_list(S, Size) ->
if Size == 0 ->
S;

true ->
{ok, Next} = derflow:extend(S),
drop_list(Next, Size-1)

end.

consumer(S2, Size, F, Output) ->
if Size == 0 ->

ok;
true ->
case derflow:consume(S2) of
{ok, nil, _} ->
derflow:bind(Output, nil);

{ok, Value, Next} ->
{ok, NextOut} = derflow:produce(Output, F(Value)),
consumer(Next, Size-1, F, NextOut)

end
end.

The above code has three main components:

• The producer that only produces items when it is needed. This
is achieved by calling wait needed for the next element after it
has produced an item.

• The bounded buffer: It takes the output stream of the producer
and the input stream of the consumer. It firstly asks for a number
of items (BUFFER SIZE) to the producer by extending the
producer’s stream (drop list), then it keeps checking if the
consumer asks for items. In case the consumer has asked, the
bounded buffer copies an element from the producer’s stream
to the consumer’s stream and extend the producer’s stream by
one more element.

• The consumer that asks for items eagerly.

5.4 MapReduce-style example
We implement a simple framework that can concurrently launch
tasks from multiple clients, similar to MapReduce [5]. It combines
the use of dataflow variables, concurrency transparency, concurrent
deployment, and non-determinism.

In the example, clients send a MapReduce-style task to a proxy
through send task. The proxy appends received tasks to a stream
and keeps waiting for tasks. The job tracker checks the task stream,
spawns mappers and reducers concurrently for incoming tasks and
continues checking for tasks.

send_task(Proxy, Map, Reduce, Input, Output) ->
Proxy ! {Map, Reduce, Input, Output}.

jobproxy(TaskStream) ->
receive
Task ->
{ok, Next} = derflow:produce(TaskStream, Task),
jobproxy(Next)

end.

jobtracker(Superv, Tasks) ->
case derflow:consume(Tasks) of
{ok, nil, _} ->
io:format("All job finished!~n");

{ok, Value, Next} ->
{MapTask, ReduceTask, In, Out} = Value,
{Mod, MapFun} = MapTask,
{Mod2, RedFun} = ReduceTask,
MapOut = spawn_map(Superv, In, Mod, MapFun, []),
spawn_mon(Superv, Mod2, RedFun, [MapOut, Out]),
jobtracker(Next)

end.

spawn_map(Superv, Inputs, Mod, Fun, Outputs) ->
case Inputs of
[H|T] ->
{ok, S} = derflow:declare(),
spawn_mon(Superv, Mod, Fun, [H, S]),
spawnmap(T, Mod, Fun, lists:append(Outputs,[S]));

[] ->
Outputs

end.

spawn_mon(Superv, Mod, Fun, Args) ->
Pid = spawn(Module, Function, Args),
Superv ! {’SUPERVISE’, Pid, Mod, Fun, Args}.

The implementation of the proxy embodies non-determinism,
as tasks may be received in different orders due to the process
scheduler or network congestion.

However, since the proxy can not predict the arriving order
of tasks, it is impossible to write the program in a deterministic
way. In fact, this level of non-determinism only affects the order
that tasks are launched. Since each task is executed in parallel
without interaction between each other, users can not perceive non-
determinism.

The job tracker also exemplifies several concepts we proposed.
Firstly, the job tracker starts a job when it receives a new task in-
crementally and does not need to wait for all tasks before it starts
any, which is concurrent deployment. Secondly, in each job, map-
pers and reducers are launched concurrently. This exploits the con-
currency transparency property. Each mapper has its own output
stream. The reducer reads from the mappers output streams sequen-
tially. Thus, it uses the dataflow variables to synchronize the con-
current execution.

In addition, the example handles computing processes failures.
The first argument (Superv), of the jobtracker function, is the pro-
cess id of a supervisor process. Thus, all new dataflow processes
created in jobtracker (using the function spawn mon) are super-
vised by it.

According to the semantics of Derflow, redundant computation
does not affect the correctness of the program. Therefore, determin-
istic dataflow functions are idempotent. Considering this property,
we implemented a simple supervisor that restarts the failing deter-
ministic dataflow processes when a problem is detected. The code
is the following:

supervisor(Dict) ->
receive
{’DOWN’, Ref, process, _, _} ->
case dict:find(Ref, Dict) of
{ok, {Module, Function, Args}} ->
spawn_mon(self(), Module, Function, Args);

error ->
supervisor(Dict)

end;
{’SUPERVISE’, PID, Information} ->
Ref = erlang:monitor(process, PID),
Dict2 = dict:store(Ref, Information, Dict),
supervisor(Dict2)

end.

The above supervisor receives supervise and down messages.
The former is a monitoring request; therefore, the supervisor sim-
ply uses the Erlang monitor primitive to set the monitor. The latter
is received when a monitored process does not exist, it is not reach-
able or it has died. The supervisor behaves the same in all situations
by re-executing the deterministic dataflow process. The supervisor
uses dict to store the information regarding the monitored processes
such as the function executed by the process and its arguments.

Nevertheless, the shown supervisor is only one example. More
sophisticated supervisors can be implemented. For instance, the
supervisor could behave differently for temporary failures. Then,
it can decide to wait longer before restarting the computation. In
some cases, it is not efficient to restart the execution.

6. Integration with non-determinism
Deterministic dataflow is a powerful concurrent programming
model that eliminates all race conditions by design. However, it is
clear that practical applications sometimes need non-determinism.
In most cases, the non-determinism is only needed in a small part

of the program. But the need cannot be reduced to zero. For ex-
ample, a simple client-server application needs non-determinism
since the server must accept requests from any client. There is only
one point of non-deterministic choice, at the server, but it cannot
be eliminated. So our deterministic model must cohabit in a simple
way with non-deterministic execution. In this section, we show to
integrate our model with non-deterministic execution.

6.1 is det primitive
Derflow provides one primitive which allows us to support non-
deterministic execution: is det(x). This operation checks whether
a dataflow variable (x) is bound or not, which introduces non-
determinism due to different process scheduling or network delays
in each program execution.

is det(x) primitive is useful for stream management. For in-
stance, in a producer-consumer application, where the producer is
faster than the consumer, the latter might be interested in only con-
suming the latest element produced until that point. Thus, it would
like to skip some of the produced elements.

More precisely, is det can be described as follows:

• Before: σ = {x1, . . . , xi, . . . , xn}
• bool = is det(xi)

bool = xi.value == vi

• After: σ = {x1, . . . , xi, . . . , xn}
Accordingly, the Derflow API is extended as follows:

• {ok, Value::boolean()} = is det(Id):
Returns true if the dataflow variable Id is bound, false other-
wise.

A good example of the use of is det(x) is a live-streaming video
displayer. The displayer always tries to display the latest frame sent
and skip the intermediate ones. A simplified version of this program
can be written in Derflow as follows:

skip(Input, Output) ->
case derflow:consume(Input) of
{ok, nil, _} ->
derflow:bind(Output, nil);

{ok, _, Next} ->
{ok, Bound} = derflow:is_det(Next),
if
Bound ->
skip(Next, Output);

true ->
derflow:produce(Output, {ok, Input})

end
end.

display(Input) ->
{ok, Output} = derflow:declare(),
skip(Input, Output),
case derflow:consume(Output) of
{ok, Value, Next} ->
display_frame(Value),
display(Next)

end.

The skip function traverses the input stream and returns the
latest frame until that point. The display function displays the frame
returned by skip.

6.2 Integration with Erlang
One of the main limitations of the deterministic dataflow model
is that only one process can write into a stream; therefore, a simple
client-server application cannot be implemented. By using commu-
nication channels, this limitation can be overcome.

The following example shows how to do this by taking advan-
tage of the message-passing primitives of Erlang. The example im-
plements a monitoring system. It is composed of a centralized com-
ponent that receives messages from multiple sensor entities placed
elsewhere. In this example, we monitor the number of failures per
datacenter in a geo-replicated application. There is one sensor per
datacenter that sends a failure message to the central component
(through a proxy) each time a computer is down. The centralized
component registers the failures to eventually analyze the statistics.
The proxy is the component that uses the Erlang communication
channels. It receives spontaneous messages from the sensors and
serializes them by appending them to an associated stream.

observer_proxy(S) ->
receive
{Msg, From} ->
{ok, Next} = derflow:produce(S, {Msg, From}),
observer_proxy(Next)

end.

sensor(Proxy, Identifier) ->
Random = random:uniform(),
Milliseconds = round(timer:seconds(Random)),
timer:sleep(Milliseconds),
Proxy ! {computer_down, Identifier},
sensor(Proxy, Identifier).

dcs_observer(Input, Output, State) ->
case derflow:consume(Input) of
{ok, {computer_down, Identifier}, NextInput} ->
State2 = register(Identifier, State),
{ok, NextOut} = derflow:produce(Output, State2),
dcs_observer(NextInput, NextOut, State2);

{ok, _, NextInput} ->
% Ignore
dcs_observer(NextInput, Output, State)

end.
end.

The above application is mainly composed by three functions:

• observer proxy that continuously waits for messages. If a mes-
sage is received, it immediately appends it to the associated
stream. It intentionally waits forever if no messages are sent.

• sensor that sends a message to the observer proxy every time a
computer fails. The computer failure is modeled by a random
wait.

• dcs observer that registers the failures by reading the stream
associated to the observer proxy.

7. Conclusions and future work
In this paper, we have proposed Derflow, a deterministic dataflow
extension for Erlang. Derflow relies on a robust, highly available
and scalable single-assignment store built using riak core, a dis-
tributed systems framework. We have shown examples of its usage
and explained how it can be integrated with non-deterministic com-
putations.

The following paragraphs outline a series of planned extensions
to Derflow that will provide a more expressive and complete com-
putational model for large-scale distributed applications.

Generalizing to semilattices Given that our dataflow variables
can be seen as simple semilattices with two states: bound and un-
bound, we would like to extend them to more expressive semilat-
tices used to build CRDTs. This is very similar to the approach
taken by LVars [14] to provide deterministic parallel programming.
Our work expands on this work by providing this deterministic par-
allelism across computing nodes, in a fault-tolerant manner.

Similarly to LVars, we would also like to provide a threshold
read primitive over these datatypes, which would cause an applica-
tion to block and synchronize on a value until a particular threshold
is passed. However, we are still uncertain what difficulties arise
when introducing distribution into this model, given the various
failure conditions that can be experienced over computer networks.
Furthermore, some CRDTs composed by multiple semi-lattices do
not behave monotonically. This may restrict the use of threshold
reads.

Extending the Erlang syntax and runtime system Our current
model is implemented with a set of library functions. Compiler
and run-time modifications can be done to provide a simple syntax
for deterministic dataflow programs and to provide simpler ways
to control non-determinism in programs. These extensions would
provide a much more compelling computational model for the user.

Acknowledgments
We thank Nicholas Rutherford and Sean Cribbs for comments that
helped to improve the paper. This work was partially funded by the
SyncFree project in the European Seventh Framework Programme
(FP7/2007-2013) under Grant Agreement no 609551 and by the
Erasmus Mundus Joint Doctorate Programme under Grant Agree-
ment 2012-0030.

References
[1] Akka: Building powerful concurrent and distributed applications more

easily, 2014. URL http://akka.io/.

[2] P. Abdulla, S. Aronis, B. Jonsson, and K. Sagonas. Optimal dynamic
partial order reduction. In Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
’14, pages 373–384, New York, NY, USA, 2014. ACM. ISBN 978-1-
4503-2544-8. . URL http://doi.acm.org/10.1145/2535838.
2535845.

[3] Basho Technologies Inc. Riak core source code repository. http:
//github.com/basho/riak_core.

[4] R. Collet. The Limits of Network Transparency in a Distributed Pro-
gramming Language. PhD thesis, Université catholique de Louvain,
Louvain-la-Neuve, Belgium, Dec. 2007.

[5] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on
large clusters. In Proceedings of the 6th Conference on Symposium on
Opearting Systems Design & Implementation - Volume 6, OSDI’04,
pages 10–10, Berkeley, CA, USA, 2004. USENIX Association. URL
http://dl.acm.org/citation.cfm?id=1251254.1251264.

[6] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Laksh-
man, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dy-
namo: Amazon’s highly available key-value store. In Proceedings of
Twenty-first ACM SIGOPS Symposium on Operating Systems Princi-
ples, SOSP ’07, pages 205–220, New York, NY, USA, 2007. ACM.
ISBN 978-1-59593-591-5. . URL http://doi.acm.org/10.1145/
1294261.1294281.

[7] S. Doeraene and P. Van Roy. A new concurrency model for Scala based
on a declarative dataflow core. In Proceedings of the 4th Workshop
on Scala, SCALA ’13, pages 4:1–4:10, New York, NY, USA, 2013.
ACM. ISBN 978-1-4503-2064-1. . URL http://doi.acm.org/
10.1145/2489837.2489841.

[8] Ericsson AB. mnesia - a distributed telecommunications dbms. http:
//www.erlang.org/doc/man/mnesia.html.

[9] C. Hewitt, P. Bishop, and R. Steiger. A universal modular actor for-
malism for artificial intelligence. In Proceedings of the 3rd Inter-
national Joint Conference on Artificial Intelligence, IJCAI’73, pages
235–245, San Francisco, CA, USA, 1973. Morgan Kaufmann Publish-
ers Inc. URL http://dl.acm.org/citation.cfm?id=1624775.
1624804.

[10] C. A. R. Hoare. Monitors: An operating system structuring concept.
Commun. ACM, 17(10):549–557, Oct. 1974. ISSN 0001-0782. . URL
http://doi.acm.org/10.1145/355620.361161.

[11] Joel Reymont. [erlang-questions] is there an elephant in the room?
mnesia network partition. http://erlang.org/pipermail/
erlang-questions/2008-November/039537.html.

[12] G. Kahn. The semantics of a simple language for parallel program-
ming. In In Information Processing’74: Proceedings of the IFIP
Congress, volume 74, pages 471–475, 1974.

[13] G. Kahn and D. MacQueen. Coroutines and networks of parallel
processes. In Proc. of the IFIP Congress, volume 77, pages 994–998,
1977.

[14] L. Kuper and R. R. Newton. Lvars: Lattice-based data structures
for deterministic parallelism. In Proceedings of the 2Nd ACM SIG-
PLAN Workshop on Functional High-performance Computing, FHPC
’13, pages 71–84, New York, NY, USA, 2013. ACM. ISBN 978-1-
4503-2381-9. . URL http://doi.acm.org/10.1145/2502323.
2502326.

[15] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes: A
comprehensive study on real world concurrency bug characteristics.
In Proceedings of the 13th International Conference on Architec-
tural Support for Programming Languages and Operating Systems,
ASPLOS XIII, pages 329–339, New York, NY, USA, 2008. ACM.
ISBN 978-1-59593-958-6. . URL http://doi.acm.org/10.1145/
1346281.1346323.

[16] N. M. Preguiça, C. Baquero, P. S. Almeida, V. Fonte, and
R. Gonçalves. Dotted version vectors: Logical clocks for optimistic
replication. CoRR, abs/1011.5808, 2010.

[17] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. Conflict-
free replicated data types. In X. Défago, F. Petit, and V. Villain, ed-
itors, Stabilization, Safety, and Security of Distributed Systems, vol-
ume 6976 of Lecture Notes in Computer Science, pages 386–400.
Springer Berlin Heidelberg, 2011. ISBN 978-3-642-24549-7. . URL
http://dx.doi.org/10.1007/978-3-642-24550-3_29.

[18] H. Svensson and L.-A. Fredlund. Programming distributed erlang ap-
plications: Pitfalls and recipes. In Proceedings of the 2007 SIGPLAN
Workshop on ERLANG Workshop, ERLANG ’07, pages 37–42, New
York, NY, USA, 2007. ACM. ISBN 978-1-59593-675-2. . URL
http://doi.acm.org/10.1145/1292520.1292527.

[19] P. Van Roy and S. Haridi. Concepts, techniques, and models of
computer programming. MIT press, 2004.

[20] D. Wyatt. Akka concurrency: Building reliable software in a multi-
core world. Artima, 2013.

B EVENTUAL CONSISTENCY AND DETERMINISTIC DATAFLOW
PROGRAMMING

B Eventual Consistency and Deterministic Dataflow Pro-
gramming

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 69

Eventual Consistency and Deterministic Dataflow Programming
A Case Study of Integrating Derflow with the Riak Data Store

Christopher Meiklejohn
Basho Technologies, Inc.
cmeiklejohn@basho.com

Abstract
Even with the upcoming 2.0 release, queryability of Riak [1], an
open source distributed database from Basho Technologies, re-
mains an area for improvement. As of this release, Riak provides
three main mechanisms for executing queries across values stored
in the database: secondary indexing (2i), a MapReduce-like [5]
framework, and Yokozuna. However, all three have significant
drawbacks in terms of scalability and flexibility.

Secondary indexing offers the ability to tag objects as they are
written into the database with key-value pairs that can be used as
the basis for queries. However, the entire set of tags needs to be
specified every time the object is written, and tags are restricted to
range and equalities over strings and integers. In addition, there is
no mechanism for providing ad-hoc conjunctions or disjunctions.

Riak’s MapReduce-like framework, provided through an ap-
plication called riak pipe, provides the ability to do on-demand,
scatter-gather queries, but requires re-evaluation of the whole in-
put set even though there may be no changes for a phase, causing
increased cluster load.

Finally, Yokozuna provides an abstraction over distributed Solr,
but relies on a glue layer on top of Riak to interface with a JVM
running on each node, executing Solr queries across the cluster. As
of writing, it is still unclear how far this mechanism can be scaled,
and what penalty exists at scale when moving data between the Java
Virtual Machine and the Erlang runtime system.

Given these drawbacks, we have identified a series of desirable
properties for a future query mechanism for Riak. Specifically,
these are:

• The ability for a user to submit a computation to the Riak clus-
ter, and have it performed in a highly-available, fault-tolerant
manner across the entire cluster.

• An execution mechanism that can re-use and incrementally
update partial results, thereby alleviating the need to re-execute
the entire query across the cluster on repeated executions.

• A query mechanism that reduces harvest while maintaining
yield [3] during failure conditions.

Recently, there has been a series of research efforts surrounding
the use of bounded-join semilattices, a generalization of state-based
conflict-free replicated data types (CRDTs) [9], as data structures
in new programming models to provide deterministic execution in
distributed scenarios. Two examples of this are LVars [8], provid-
ing deterministic execution across multiple threads in Haskell, and
Bloom [4], which provides deterministic execution across multi-
ple instances of the Ruby virtual machine. In both these cases,
properties of the bounded-join semilattice, combined with mono-
tone functions, assist in ensuring determinism, specifically han-
dling cases of repeated updates and out-of-order updates.

More recently, as part of the SyncFree project in the European
Seventh Framework Programme of which Basho is a participant,
there has been further addition to these distributed deterministic
programming models named Derflow [10]. Derflow provides a
similar programming model, but is built using the Erlang-based,
Dynamo-inspired [6], distributed systems toolkit, riak core. [2]

We explore the process of developing the reference implemen-
tation of Derflow while simultaneously integrating the reference
implementation with Riak to provide a new prototype query mech-
anism. We expose the ability for users to submit deterministic com-
putations to the Riak data store, which are executed as values are
written, providing the user the ability to retrieve the computed re-
sults through a query API, similar to a materialized view mecha-
nism as exposed by other commercial databases, such as CouchDB.
[7]

Our integration exploits the following properties of Riak and
Derflow:

• Computations and their results are partitioned and replicated
along with their input data in the data store. This allows us to
provide highly-available results, which sacrifice harvest during
failure conditions. 1

• The partial results of computations can be combined determin-
istically, given the merge properties of state-based conflict-free
replicated data types.

The main contribution of this talk is an experience report from
the Basho engineering team that details the following:

• Assisting in the design and development of the Derflow library
on top of riak core.

• Adapting the research concept and reference implementation of
Derflow into Riak.

• Contributing changes made to Derflow for use inside of Riak
back to the reference implementation of Derflow.

Acknowledgments
This work was partially funded by the SyncFree project in the
European Seventh Framework Programme (FP7/2007-2013) under
Grant Agreement no 609551.

References
[1] Basho Technologies Inc. Riak source code repository. http://

github.com/basho/riak, .
[2] Basho Technologies Inc. Riak core source code repository. http:

//github.com/basho/riak_core, .

1 Specifically, as input values to the computation become unavailable, the
computations that resulted in those inputs also become unavailable.

1 2014/7/10

[3] E. A. Brewer. Lessons from giant-scale services. IEEE Internet
Computing, 5(4):46–55, July 2001. ISSN 1089-7801. . URL http:
//dx.doi.org/10.1109/4236.939450.

[4] N. Conway, W. Marczak, P. Alvaro, J. M. Hellerstein, and D. Maier.
Logic and lattices for distributed programming. Technical Report
UCB/EECS-2012-167, EECS Department, University of California,
Berkeley, Jun 2012. URL http://www.eecs.berkeley.edu/
Pubs/TechRpts/2012/EECS-2012-167.html.

[5] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on
large clusters. Commun. ACM, 51(1):107–113, Jan. 2008. ISSN 0001-
0782. . URL http://doi.acm.org/10.1145/1327452.1327492.

[6] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Laksh-
man, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dy-
namo: Amazon’s highly available key-value store. In Proceedings of
Twenty-first ACM SIGOPS Symposium on Operating Systems Princi-
ples, SOSP ’07, pages 205–220, New York, NY, USA, 2007. ACM.
ISBN 978-1-59593-591-5. . URL http://doi.acm.org/10.1145/

1294261.1294281.
[7] B. Holt. Writing and Querying MapReduce Views in CouchDB.

O’Reilly Media, Inc., 1st edition, 2011. ISBN 1449303129,
9781449303129.

[8] L. Kuper and R. R. Newton. Lvars: Lattice-based data structures
for deterministic parallelism. In Proceedings of the 2Nd ACM SIG-
PLAN Workshop on Functional High-performance Computing, FHPC
’13, pages 71–84, New York, NY, USA, 2013. ACM. ISBN 978-1-
4503-2381-9. . URL http://doi.acm.org/10.1145/2502323.
2502326.

[9] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. A com-
prehensive study of Convergent and Commutative Replicated Data
Types. Rapport de recherche RR-7506, INRIA, Jan. 2011. URL
http://hal.inria.fr/inria-00555588.

[10] SyncFree. Derflow source code repository. http://github.com/
syncfree/derflow.

2 2014/7/10

C FORMAL SPECIFICATION AND VERIFICATION OF CRDTS

C Formal Specification and Verification of CRDTs

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 72

Formal Specification and Verification of CRDTs

Peter Zeller, Annette Bieniusa, and Arnd Poetzsch-Heffter

University of Kaiserslautern, Germany
{p zeller,bieniusa,poetzsch}@cs.uni-kl.de

Abstract. Convergent Replicated Data Types (CRDTs) can be used as
basic building blocks for storing and managing replicated data in a dis-
tributed system. They provide high availability and performance, and
they guarantee eventual consistency. In this paper, we develop a formal
framework for the analysis and verification of CRDTs. We investigate and
compare the three currently used specification techniques for CRDTs and
formalize them based on an abstract model for managing replicated data
in distributed systems. We show how CRDT implementations can be ex-
pressed in our framework and present a general strategy for verifying
CRDTs. Finally, we report on our experiences in using the framework
for the verification of important existing CRDT implementations. The
framework and the proofs were developed within the interactive theorem
prover Isabelle/HOL.

Keywords: CRDT, formal verification, eventual consistency

1 Introduction

Global computing systems and worldwide applications often require data repli-
cation, that is, the data is not only stored at one computing node, but at several
nodes. There are a number of reasons for replication. To realize reliable services,
high availability and fault-tolerance might be important. A centralized storage
system might not provide enough throughput for allowing millions of users to
access the data. Furthermore, systems often serve clients from different regions
in the world; Geo-replication helps to keep the latency low. Last but not least,
mobile clients might not be connected all the time, but should provide certain
offline functionality using a local store that is synchronized with the global state
when the connection is reestablished.

The CAP theorem[6] tells us that distributed systems cannot guarantee high
availability, partition tolerance, and strong consistency at the same time. In
this paper, we investigate techniques that aim at high availability and parti-
tion tolerance by providing a weaker form of consistency, called eventual consis-
tency [14,15,11,5].

In an eventually consistent system, the different replicas do not have to pro-
vide the same view of the data at all times. Operations manipulating the data
are first applied to a subset of the replicas. At some suitable later point in time,
the updates are communicated to the other replicas. Only after all updates are

2 P. Zeller, A. Bieniusa, A. Poetzsch-Heffter

delivered to all replicas the data has to be consistent again. This means in par-
ticular that the replicas have to be able to merge concurrent updates into a
consistent view. It usually depends on the application how a merge operation
should behave. The idea of replicated data types is to package a behavior given
by operations and a way to handle concurrent updates, so that they can be
reused in many situations.

Convergent replicated data types (CRDTs)[12] are a special class of repli-
cated data types where concurrent updates are handled by merging the resulting
states. The basic setting is that there is a number of replicas of the data type.
Operations are executed on a single replica and the different replicas concep-
tually exchange their whole states with each other according to some protocol.
The state of a replica is also called the payload. To guarantee convergence, there
needs to be a partial order on the payloads and a merge operation computing
the least upper bound, such that the payloads form a semilattice. All opera-
tions which change the payload have to increase the payload with respect to the
partial order. This setup ensures that replicas which have seen the same set of
updates also have the same state and thus return the same value. This property
is called Strong Eventual Consistency (SEC)[13].

A simple example of a CRDT is a counter. A counter provides update op-
erations to increment or decrement the value and a query function to read the
value. It is usually implemented by keeping the number of increments and the
number of decrements for each replica in a map from replica-IDs to positive inte-
gers. Each replica only increments its own increment- and decrement-counts and
states are merged by taking the component-wise maximum. It is easy to prove
that this computes a least upper bound. The value of the counter can be deter-
mined by summing up all increment counts in the map and subtracting the sum
of the decrement counts. Separating increment- and decrement-counts ensures,
that the updates are increasing operations. Having a count for every replica
instead of a single counter ensures that no updates are lost due to concurrent
writes.

Contributions. In general, CRDT implementations can be quite sophisticated
and complex, in particular in the way they handle concurrent updates. Therefore
it is important to provide high-level behavioral specifications for the users and
techniques to verify CRDT implementations w.r.t. their specifications. Towards
this challenge, the paper makes the following contributions:

– A framework in Isabelle/HOL [10] that supports the formal verification of
CRDTs. The framework in particular provides a system model that is para-
metric w.r.t. the CRDT to be analyzed and support for verification.

– We analyzed, clarified, and formalized different specification and abstract
implementation techniques for CRDTs (Sections 3, 4 and 6).

– We successfully verified a number of CRDTs described in the literature with
our framework.

We present the system model in Section 2; describe our specification technique
in Section 3, the implementation technique in Section 4 and the verification as-

Formal Specification and Verification of CRDTs 3

System state:
version :: replicaId→ N
payloadHistory :: (version× payload) set
systemState :: (replicaId→ payload)× (replicaId→ version)× payloadHistory

Operations and traces:
Operation := Update(replicaId, args) | Merge(replicaId, version, payload)
Trace := Trace; Operation | []

Operational semantics:

sinit = (λr. initcrdt, λr. v0, ∅)
s

[]−→ s

s
as−→ s′ s′

a−→ s′′

s
as;a−−→ s′′

(update)
v′ = vs(r)(r+=1) pl′ = updatecrdt(a, r, pls(r))

(pls,vs,ph)
Update(r,a)−−−−−−−→ (pls(r := pl′), vs(r := v′), ph ∪ {(v′, pl′)})

(merge)
(v, pl) ∈ ph v′ = vs(r) t v pl′ = mergecrdt(pls(r), pl)

(pls,vs,ph)
Merge(r,v,pl)−−−−−−−−→ (pls(r := pl′), vs(r := v′), ph ∪ {(v′, pl′)})

Table 1. System Model

pects in Section 5. In Section 6 we discuss an alternative specification technique.
Finally, we consider related work, summarize the results, and give an outlook on
future work in Sections 7 and 8

2 System model

We developed a formal system model that supports an arbitrary but fixed num-
ber of replicas and is parametric in the CRDT to be analyzed, i.e., it can be
instantiated with different CRDTs. A CRDT is parameterized by four type pa-
rameters and described by four components:

– pl, the type of the payload (i.e. the state at each replica)
– ua, the type for the update arguments (a sum type of all update operations)
– qa, the type for the query arguments (a sum type of all query operations)
– r, the sum type for the possible return values of the queries

– init :: pl , the initial payload for all replicas
– update :: ua⇒ replicaId⇒ pl⇒ pl , the function expressing how an update

operation modifies the payload at a given replica, where replicaId denotes
the node on which the update is performed first

– merge :: pl⇒ pl⇒ pl , the function merging payloads

4 P. Zeller, A. Bieniusa, A. Poetzsch-Heffter

– query :: qa ⇒ pl ⇒ r , the function expressing the results of querying a
payload

Given a CRDT (initcrdt, updatecrdt,mergecrdt, querycrdt), the system model

describes the labeled transition relation s
tr−→ s′ expressing that executing trace

tr in state s leads to state s′ (cf. Table 1) where a trace is a sequence of operations
and an operation is either the application of an update or a merge (queries need
not be considered, as they do not modify the state). The state of the system
consists of three components:

– For each replica r, its current payload.
– For each replica r, its current version vector[8]. The version vector or short

version is a mapping from replica-IDs to natural numbers. If the version of r
has m as entry for key k, the payload of r has merged the first m operations
applied to replica k into its payload.

– The set of all version-payload pairs that have been seen during execution so
far. This set is called the payload history and is used to make sure that a
merge operation can only be applied to version-payload pairs that appeared
earlier in the execution.

Initially, the payload of each replica is initcrdt, the version vector of each
replica is the all-zero vector, and the payload history is the empty set. There are
two kind of transition steps:

– An update operation Update(r , a) applies an update function of the CRDT
(determined by the arguments a) to the current payload of r and modifies
the state accordingly; in particular, the rth component of the version vector
of r is incremented by one.

– A merge operation Merge(r, v, pl) is executed as follows: The new version
v′ is calculated by taking the least upper bound of the old version vector
vs(r) and the merged version vector v. Similarly, the new payload pl′ is the
least upper bound operation on payloads, which is specific to the respective
CRDT, and implemented by the mergecrdt function.

Discussion. The system model focuses on simple operational behavior. Other
aspects, such as timestamps, were intentionally left out because they would
make the system model more complicated than needed for most CRDTs. Only
a few CRDTs like the Last-Writer-Wins-Register depend on timestamps. Also,
often timestamps are only used to provide some total order on operations, and
lexicographic ordering of the version vectors also suffices to provide such an
order.

3 Specification

In this section we present and formalize a technique for specifying the behavior
of CRDTs based on the system model presented in the previous section.

Formal Specification and Verification of CRDTs 5

A specification should tell users the result value of any query operation,
when a trace of operations performed in the system is given. A trace gives
a total order on the operations performed in the system, but for operations
performed independently on different replicas this order does not influence the
result. Therefore, we would like to abstract from this total order. Furthermore,
the traces include explicit merge operations, but from a user’s perspective this
merge operations are implicit. Thus, it should not be important, how updates
were delivered to a replica. The result of an operation should only depend on
those operations that are visible when the operation is about to be performed.
Hence, the trace can be actually deconstructed into a partially ordered set of
update operations, where the partial order is the visibility relation, which we
denote by ≺ in the following.

The specification technique that we formalize here supports the sketched
abstractions and explains the result of an operation only depending on the visible
update history. It follows the ideas from Bouajjani et al.[4], and Burckhardt et
al.[5], but is specifically tailored to CRDTs, allowing for some simplifications.
In the case of CRDTs, the visibility relation is a partial order. All operations
at one replica are ordered by time and a merge makes all operations, which are
visible to the source of the merge, visible at the destination of the merge.

Formalization. In our formalization we represent the visibility relation using
version vectors. The advantage of this is that they are easy to handle in the
operational semantics and also when working with Isabelle/HOL. The properties
of a partial order like transitivity and antisymmetry are already given by the
structure and do not have to be specified additionally. The version vector at each
replica can be directly derived from a given trace. It also uniquely identifies every
operation, and we can encode the whole history of updates with the visibility
relation as a set of update operations, represented by (version, replicaId , args)
triples. We call this structure the update history and denote it by H in the
following. The visibility relation ≺ on update operations is simply derived from
the order on the version vectors.

A specification is formalized as a function spec, which takes the update his-
tory visible at a given replica and the arguments of a query and returns the
result of the query. A specification is valid if for every reachable state and all
queries a, the specification yields the same result as the application of the query
to the current state:

∀tr,pls,vs,a,r. sinit tr−→ (pls, vs,) ⇒ spec(H(tr, vs(r)), a) = querycrdt(a, pls(r))

Here, the term H(tr, vs(r)) calculates the update history from the trace tr
while only taking the operations before the version vs(r) into account.

Examples. Table 2 shows specifications for several CRDTs from the literature[12].
The Counter is a data type providing an update-operation to increment or
decrement the value of the Counter and a query-operation Get() which returns
the current value of the counter. The argument to the update is a single in-
teger value. We specify the return value of a Get() operation on a counter by

6 P. Zeller, A. Bieniusa, A. Poetzsch-Heffter

Counter: spec(H,Get()) =
∑

e∈H. args(e)

Grow-Set: spec(H,Contains(x)) = ∃e∈H.args(e) = Add(x)

Two-Phase-Set: spec(H,Contains(x)) = ∃e∈H.args(e) = Add(x)∧
¬(∃e ∈ H. args(e) = Remove(x))

Two-Phase-Set
(guarded remove):

spec(H,Contains(x)) = ∃e∈H.args(e) = Add(x)∧
¬(∃e∈H.args(e) = Remove(x) ∧ (∃f∈H.args(f) = Add(x) ∧ f ≺ e))

Observed-
Remove-Set:

spec(H,Contains(x)) = ∃a∈H.args(a) = Add(x)∧
¬(∃r∈H.a ≺ r ∧ args(r) = Remove(x))

Multi-Value-
Register:

spec(H,Get()) = {x | ∃e∈H.args(e) = Set(x) ∧ ¬(∃f∈H.e ≺ f)}

Table 2. Specifications of CRDTs

taking all update operations e from the update history H and then summing
up their update arguments. The Grow-Set is a set which only allows adding
elements. An element is in the set, when there exists an operation adding the
element. The Two-Phase-Set also allows to remove elements from the set, with
the limitation that an element cannot be added again once it was removed. An
element is in the set, if there is an operation adding the element and no oper-
ation removing it. This specification allows removing an element before it was
added to the set, which might not be desired. The Two-Phase-Set with the
guarded remove operation, ignores remove operations, when the respective
element is not yet in the set. For this data type, an element is in the set, when
there exists an operation adding the element, and there is no operation which
removes the element and which happened after an add operation of the same ele-
ment. The Observed-Remove-Set is a set, where an element can be added and
removed arbitrarily often. A remove operation only affects the add operations
which have been observed, i.e. which happened before the remove operation. We
specify that the query Contains(x) returns true, if and only if there exists an
update operation a adding x to the set and there exists no update operation r
which happened after a and removes x from the set. The final example is the
Multi-Value-Register. It has a Set(x) operation to set the register to a single
value. The Get() query returns a set containing the values of the last concurrent
Set operations. More precisely, it returns all values x so that there exists an
operation Set(x), for which no later update operation exists.

Properties and Discussion. It is not possible to describe non-converging data
types with this technique. Since the specified return value of a query only depends
on the visible update history and the arguments, two replicas which have seen
the same set of updates will also return the same result.

One problem with this specification technique is that in general a specification
can reference all operations from the past. The state of a replica is basically
determined by the complete update history, which can be quite large and not

Formal Specification and Verification of CRDTs 7

very abstract. Therefore it is hard to reason about the effects of operations when
programming with the data types or when verifying properties about systems
using them, where one usually wants to reason about the effect of a single method
in a modular way.

Also, the example of the Two-Phase-Set with a guarded remove operation
shows that small changes to the behavior of one update operation can make
the whole specification more complex. We would like such a change to only
affect the specification of the remove operation. Thus, the question is whether
we can specify CRDTs avoiding these problems. We present and discuss an
alternative specification technique in Section 6. It is also possible to use abstract
implementations as a form of specification, as detailed in the next section.

4 Implementations

To implement a CRDT in our framework one has to define the type of the payload
and the four fields of the CRDT record (initcrdt, updatecrdt,mergecrdt, querycrdt)
as defined in the system model. Technically, the implementation can be any
Isabelle function with a matching type.

To keep the examples short, we introduced a uid-function, which generates
a new unique identifier. This can easily be implemented in our system model by
adding a counter to the payload of the data type. A unique identifier can then
be obtained by taking a pair (replicaId, counter) and incrementing the counter.
It is also possible to use the version vector as a unique identifier for an update
operation, which can make the verification easier, as the payload is then directly
related to the update history.

Abstract
Counter:

s :: (id× int)set = {}
update(x, r, s) = s ∪ {(uid(), x)}
merge(s, s′) = s ∪ s′
query(Get(), s) =

∑
(id,x)∈s x

Optimized
Counter:

s :: (replicaId→ int)× (replicaId→ int) = (λr. 0, λr. 0)
update(x, r, (p, n)) = if x ≥ 0 then (p(r := p(r) + x), n)

else (p, n(r := n(r)− x))
merge((p, n), (p′, n′)) = (λr. max(p(r), p′(r)), λr. max(n(r), n′(r)))
query(Get(), (p, n)) =

∑
r p(r)−

∑
r n(r)

Table 3. Abstract and optimized implementation of a Counter CRDT

Table 3 shows two implementations of the Counter CRDT. The first im-
plementation is an abstract one, in which the payload is a set of all update
arguments tagged with a unique identifier. The query can then be answered
by summing up all the update arguments in the set. This implementation is
very inefficient, but easy to understand. The second implementation is closer

8 P. Zeller, A. Bieniusa, A. Poetzsch-Heffter

to Counter implementations found in real systems. Here, the payload consists
of two mappings from replicaIds to integers. The first map (p) sums up all the
positive update operations per replica and the second map (n) sums up all the
negative ones. While this is still one of the easier CRDTs, it is not trivial to see,
that the optimized implementation is valid with respect to its specification. We
will come back to this example in Section 5 and show how the correctness can
be proven using our framework.

Grow-Set: s ::′ a set = {}
update(Add(x), r, s) = s ∪ {x}
merge(s, s′) = s ∪ s′
query(Contains(x), s) = x ∈ s

Two-Phase-Set: s ::′ a⇒ {init = 0, in = 1, out = 2} = (λx. init)
update(Add(x), r, s) = (if s(x) = init then s(x := in) else s)
update(Rem(x), r, s) = s(x := out)
merge(s, s′) = (λx. max(s(x), s′(x)))
query(Contains(x), s) = (s(x) = in)

Two-Phase-Set
(guarded remove):

Same as above, but with different remove operation:
update(Rem(x), r, s) = (if s(x) = in then s(x := out) else s)

Observed-
Remove-Set:

s.e :: (id×′ a)set = {}, s.t :: id set = {}
update(Add(x), r, s) = s(e := s.e ∪ {(uid(), x)})
update(Rem(x), r, s) = s(t := s.t ∪ {id|∃x.(id, x) ∈ s.e})
merge(s, s′) = (e = s.e ∪ s′.e, t = s.t ∪ s′.t)
query(Contains(x), s) = ∃id.(x, id) ∈ s.e ∧ id /∈ s.t

Multi-Value-
Register:

s.e :: (id×′ a)set = {}, s.t :: id set = {}
update(Set(x), r, s) = s(e := {(uid(), x)},

t := s.t ∪ {id|∃x.(id, x) ∈ s.e})
merge(s, s′) = (e = s.e ∪ s′.e, t = s.t ∪ s′.t)
query(Get(), s) = {x|∃id.(x, id) ∈ s.e ∧ id /∈ s.t}

Table 4. State-based specifications of CRDTs

Table 4 shows abstract implementations of the other CRDTs introduced in
Section 3. The Grow-Set can be implemented using a normal set where the
merge is simply the union of two sets. The payload of the Two-Phase-Set can
be described by assigning one out of three possible states to each element. In
a new, empty set all elements are in the init state. Once an element is added,
it goes to the in state, and when it is removed it goes to the out state. The
merge simply takes the maximum state for each element with respect to the
order init < in < out. The last two CRDTs in Table 4 have a very similar
implementation. This is not very surprising, as the Set operation of the register
is basically an operation, that first removes all elements from the set and then
adds a single new element. In both cases the payload consists of a set of elements

Formal Specification and Verification of CRDTs 9

tagged with an unique identifier and a set of tombstones, that contains all unique
identifiers of the removed elements. The unique identifier makes sure, that the
remove operation only affects previous add-operations, as it is demanded by the
specification.

Relation to Specifications. All CRDT implementations can be specified by the
specification technique described in Section 3, when the merge operation com-
putes a least upper bound with respect to a semilattice and the update operations
are increasing with respect to the order on the semilattice. This is possible, as
the state can be reconstructed from a given update history, when the implemen-
tation is known. Because the merge operation of a CRDT computes a least upper
bound, it is straight-forward to extend it to a merge function, which merges a
set of payloads. Then a function to calculate the state can be defined recursively
in terms of previous versions: If there is an update at the top of the history,
apply the update operation to the merge of all previous versions. If there is no
update operation at the top, just take the merge of all previous versions. This
terminates, when the set of all previous versions only consists of the initial state.

The converse is also true: each specification given in this form describes
a CRDT. A specification can be turned into an inefficient implementation by
storing the visible update history in the payload of the data type. The update
history is just a growing set which can be merged using the union of sets, thus
forming a semilattice.

5 Verification

In our work on verification of CRDTs we considered two properties. The first
property is the convergence of a CRDT, meaning that two replicas, which have
received the same set of updates, should return the same results for any given
query. This property is common to all CRDTs and does not require any further
specification. The second property is the behavior of a CRDT, i.e. we want to
prove, that a specification as presented in Section 3 is valid for a given imple-
mentation. As we discussed earlier, this is a strictly stronger property, but it
requires a specification for each data type.

Section 5.1 covers the verification of the convergence property, in Section 5.2
we present a technique for verifying the behavior, and in Section 5.3 we evaluate
our experience in using Isabelle/HOL for the verification of CRDTs with the
presented techniques.

5.1 Verification of Convergence

The convergence property can be verified by proving that the payload of the
CRDT forms a semilattice, such that the merge-operation computes a least upper
bound and the update-operations increase the payload with respect to the order
on the semilattice.[12]

10 P. Zeller, A. Bieniusa, A. Poetzsch-Heffter

(refl) Inv(H, pl)⇒ pl ≤crdt pl

(trans) Inv(H1, pl1) ∧ Inv(H2, pl2) ∧ Inv(H3, pl3)∧
pl1 ≤crdt pl2 ∧ pl2 ≤crdt pl3 ⇒ pl1 ≤crdt pl3

(antisym) Inv(H1, pl1) ∧ Inv(H2, pl2) ∧ pl1 ≤crdt pl2 ≤crdt pl1⇒ pl1 = pl2

(commute) Inv(H1, pl1) ∧ Inv(H2, pl2)⇒ mergecrdt(pl1, pl2) = mergecrdt(pl2, pl1)

(upper bound) Inv(H1, pl1) ∧ Inv(H2, pl2)⇒ pl1 ≤crdt mergecrdt(pl1, pl2)

(least upper bound) Inv(H1, pl1) ∧ Inv(H2, pl2) ∧ Inv(H3, pl3)∧
pl1 ≤crdt pl3 ∧ pl2 ≤crdt pl3 ⇒ mergecrdt(pl1, pl2) ≤ pl3

(monotonic updates) Inv(H, pl)⇒ pl ≤crdt updatecrdt(args, r, pl)

Table 5. Verifying convergence of CRDTs

However, only very simple data types form a semilattice in the classical math-
ematical sense. Often the semilattice properties only hold for a subset of the
payloads. For some states which are theoretically representable by the payload
type, but are never reached in an actual execution, the semilattice properties
sometimes do not hold. In theory it could even be the case that there are two
reachable states for which the merge operation does not yield the correct result,
but where the two states can never be reached in the same execution. However,
for the examples we considered it was always sufficient to restrict the payload
to exclude some of the unreachable states. Technically, this was done by giving
an invariant Inv over the update history H and the payload pl. The same type
of invariant will also be used for the verification of behavioral properties in the
next section. In the examples we considered, it was not necessary to use the
update history H in the invariant. An overview of the sufficient conditions for
convergence, which we used, is given in Table 5. The order on the payloads is
denoted by ≤crdt.

In order to verify these conditions for the Counter CRDT, we have to define
the order on the payloads. Here we can simply compare the mappings for each
replicaId: (p, n) ≤ (p′, n′) ↔ ∀r p(r) ≤ p′(r) ∧ n(r) ≤ n′(r). An invariant is
not required for this example and the proof of the semilattice conditions can be
done mainly automatically by Isabelle/HOL. In fact, for all the easier examples,
it was possible to do the majority of the proofs with the automated methods
provided by Isabelle/HOL (sledgehammer, auto, . . .).

5.2 Verification of Behavior

For the verification of behavioral properties we have developed a small frame-
work, which simplifies the verification and provides two general strategies for
verifying a CRDT. The first strategy basically is an induction over the traces.
The idea of the second strategy is to show that a CRDT behaves equivalently to

Formal Specification and Verification of CRDTs 11

The invariant must hold initially:

Inv({}, initialcrdt)
Merges must preserve the invariant:

∀H1,H2,pl1,pl2 valid(H1) ∧ valid(H2) ∧ Inv(H1, pl1) ∧ Inv(H2, pl2)
∧ consistent(H1, H2)⇒ Inv(H1 ∪H2,mergecrdt(pl1, pl2))

Updates must preserve the invariant:

∀H,pl,r,v,args valid(H) ∧ Inv(H, pl) ∧ v = supv(H)
⇒ Inv(H ∪ {(v(r := v(r) + 1), r, args)}, updatecrdt(args, r, pl))

The invariant must imply the specification:

∀H,pl,qa valid(H) ∧ Inv(H, pl)⇒ querycrdt(qa, pl) = spec(H, qa)

Table 6. Verifying behavior of CRDTs

another CRDT which has already been verified. In this paper we only present
the first strategy.

When using this strategy, one has to provide an invariant between the pay-
loads and the visible update history. It then has to be shown that the invariant
implies the specification, that the invariant holds for the initial payload with
the empty update history, and that the invariant is maintained by update- and
merge-operations. Table 6 shows the four subgoals.

For both operations our framework provides basic properties about valid
update histories (predicate valid), which hold for all CRDTs. Because we
used version vectors for representing the visibility relation, it is not necessary
to specify the partial order properties of the relation, but instead it is necessary
to specify constraints for the version vectors. The most important property is
that the updates on one replica form a total order where the local component of
the version vector is always increased by one and the other components increase
monotonically. Other properties describe the causality between version vectors
in more detail and can be found in [16].

In the case of an update operation one has to show that the invariant is
maintained when adding a new update to the top of the update history, meaning
that all other updates are visible to the new update. In a real execution this is
usually not the case, but the framework can still do this abstraction step, because
updates which are not visible do not influence the new update.

In the case of a merge operation one can assume that the invariant holds for
two compatible update histories with two corresponding payloads, and then has
to show that the invariant also holds for the union of the two update histories
with the merged payload. Two update histories are compatible, when for each
replica, the sequence of updates on that replica in one update history is a prefix
of the sequence of updates in the other update history.

To verify the counter example we used the following invariant: Inv(H, (p, n))↔
∀r p(r) =

∑{x|∃v (v, r, x) ∈ H∧x ≥ 0}∧n(r) =
∑{−x|∃v (v, r, x) ∈ H∧x < 0}.

12 P. Zeller, A. Bieniusa, A. Poetzsch-Heffter

For proving, that a merge-operation preserves the invariant, we have to use the
property of compatible histories. From this property we get, that for any replica
r, we either have {x|∃v (v, r, x) ∈ H ∧ x ≥ 0} ⊆ {x|∃v (v, r, x) ∈ H ′ ∧ x ≥ 0}
or the other way around. This combined with the fact, that all elements are
positive, ensures that calculating the maximum yields the correct result. The
other parts of the verification, namely update-operations, the initial state and
the connection between the invariant and the specification, are rather trivial
on paper, whereas in Isabelle the latter requires some work in transforming the
sums.

5.3 Evaluation

We used the interactive theorem prover Isabelle/HOL[10] for the verification
of several important CRDTs. To this end, we manually translated the pseudo-
code implementations from the literature[12,2] into Isabelle functions, and then
verified those implementations. The verified CRDTs are the Increment-Only-
Counter, PN-Counter, Grow-Set, Two-Phase-Set, a simple and an optimized OR-
Set implementation, and a Multi-Value-Register. The theory files are available
on GitHub1.

For the simple data types, the semilattice properties were mostly automat-
ically proved by Isabelle/HOL. For the more complicated data types, like the
optimized OR-Set or the similarly implemented MV-register, a suitable invari-
ant had to be found and verified first, which required more manual work in the
proofs.

Verifying the behavior of the data types was a more difficult task. Finding a
suitable invariant has to be done manually, and the invariant has to be chosen
such that it is easy to work with it in Isabelle/HOL. Proving that the invariant
is maintained also requires many manual steps, as it usually requires some data
transformations which can not be handled automatically by Isabelle/HOL.

We found two small problems, while verifying the CRDTs mentioned above:

– When trying to verify an implementation of the OR-set based on figure 2 in
[3], we found a small problem in our translation of this implementation to
Isabelle. In the original description the remove-operation computes the set R
of entries to be removed with the formula R = {(e, n)|∃n : (e, n) ∈ E}. When
this expression is translated to Isabelle code in a direct way, one obtains an
equation like R = {(e, n). ∃n.(e, n) ∈ E}. Then R will always contain all
possible entries, because in Isabelle e and n are new variables, and e does
not reference the parameter of the function as intended. This problem can be
easily fixed, and was not a real issue in the original description, but rather a
mistake made in the translation to Isabelle, which happened because of the
different semantics of the pseudo-code used in the original description and
Isabelle.

1 https://github.com/SyncFree/isabelle_crdt_verification

Formal Specification and Verification of CRDTs 13

– We discovered another small problem with the MV-Register presented in
specification 10 from [12]. This MV-register is slightly different from the
one described in the previous sections, as its assign operation allows to
assign multiple values to the register in one step. The problem is in the
assign function. When the assigned list of elements is empty, the payload
will also be empty after the operation. This is a problem, because all in-
formation about the current version is lost. It thus violates the requirement
that updates monotonically increase the payload and it can lead to incon-
sistent replicas. As an example consider the following sequence of opera-

tions executed on replica 1: {(⊥, [0, 0])} Assign({a})−−−−−−−−→ {(a, [1, 0])} Assign({b})−−−−−−−→
{(b, [2, 0])} Assign({})−−−−−−−→ {} Assign({c})−−−−−−−→ {(c, [1, 0])}. Furthermore assume that
replica 2 first merges the payload {(b, [2, 0])} and then the payload {(c, [1, 0])}.
Then all updates have been delivered to both replicas, but the payload of
replica 1 is {(c, [1, 0])} and the payload of replica 2 is {(b, [2, 0])}. This prob-
lem can be easily fixed by disallowing the assignment of an empty set or by
storing the current version in an extra field of the payload.

6 Alternative Specifications

We have already seen two specification techniques: specifications based on the
complete update history, and abstract implementations, which are a kind of
state-based specifications. Another specification technique was sketched in [1].
In this section we discuss and formalize the technique.

The technique is a state-based one, and uses the notation of pre- and post-
conditions to specify the effect of operations on the state. Using the technique of
pre- and post-conditions, a sequential specification can be given as a set of Hoare-
triples. The Hoare-triple {P}op{Q} requires that Q should hold after operation
op whenever P was true before executing the operation.

For example, the increment operation of a counter can be specified by the
triple {val() = i} inc(x) {val() = i + x} and similarly a set is specified using
triples like {true} add(e) {contains(e)}. Such a sequential specification is ap-
plicable to replicated data types if there is no interaction with other replicas
between the pre- and post-condition.

In such cases, the replicated counter and the Observed-Remove-Set behave
exactly as their corresponding sequential data type. For the Two-Phase-Set this
is not true, since an add-operation does not guarantee that the element is in
the set afterwards. There are examples like the Multi-Value-Register, where no
corresponding and meaningful sequential data type exists, but for replicated
data types which try to mimic sequential data types, it is a desirable property
to maintain the sequential semantics in time spans where there are no concurrent
operations, i.e. where the visibility relation describes a sequence.

In [1] those sequential specifications are combined with concurrent specifi-
cations, that describe the effect of executing operations concurrently. The con-
current specification is written in a similar style as the sequential specification.

14 P. Zeller, A. Bieniusa, A. Poetzsch-Heffter

Instead of only a single operation it considers several operations of the following
form executed in parallel: {P}op1 ‖ op2 ‖ · · · ‖ opn{Q}. The informal meaning
is that if P holds in a state s, then executing all operations on s independently
and then merging the resulting states should yield a state where Q holds.

Formally, we define a triple {P}op1 ‖ op2 ‖ · · · ‖ opn{Q} to be valid, if the
following condition is met:

∀tr,pls,vs,ph,pls′,vs′,ph′,r1,...,rn,op1,opn
: sinit

tr−→ (pls, vs, ph)

∧ (pls, vs, ph)
Update(r1,op1);...;Update(rn,opn)−−−−−−−−−−−−−−−−−−−−−→ (pls′, vs′, ph′)

∧ ∀i∈{1,...,n} pls(ri) = pls(r1)

∧ P (pls(r1))⇒ Q(mergecrdt(pls′(r1), . . . , pls′(rn)))

If we reach a state (pls, vs, ph) where the payload on the replicas r1 to rn
are equal and satisfy the pre-condition P , then executing each operation opi on
replica ri yields a state (pls′, vs′, ph′) where the post-condition Q holds for the
merged payload of replicas r1 to rn.

Obviously, one can only specify a subset of all possible executions using
this specification techniques. The advantages of this technique is that it is more
modular and thus better composable than the technique introduced in Section 3,
and that it is easier to see the sequential semantics of the data type. Also,
there is the principle of permutation equivalence[1], which can be applied to this
technique very easily, and is a good design guideline for designing new CRDTs.

7 Related Work

Burckhardt et al.[5] worked on verifying the behavioral properties of CRDTs.
Their techniques are very similar to ours, but they have not used a tool to check
their proofs. Their formal system model is more general than ours, as it supports
timestamps and visibility relations which are not partial orders.

Bouajjani et al.[4] present a specification technique which is based on the
history of updates with the visibility relation. They obtain a more flexible sys-
tem model by allowing the partial order to be completely different for different
operations. This allows them to cover a wide selection of optimistic replication
systems, in particular ones that use speculative execution. In contrast to our
work, they use an algorithmic approach to reduce the verification problem to
model-checking and reachability.

The only other work we are aware of which uses a theorem prover to ver-
ify CRDTs is by Christopher Meiklejohn. Using the interactive theorem prover
Coq, the semilattice properties of the increase-only-counter and the PN-counter
CRDTs[9] are verified. Unlike our work, the behavioral properties of CRDTs are
not considered and the verification is not based on a formal system model.

Formal Specification and Verification of CRDTs 15

8 Conclusion and Future work

In this paper, we have presented a formal framework for the analysis and verifi-
cation of CRDTs. As the case studies have shown, it is feasible to verify CRDTs
with Isabelle/HOL. The problem found in the MV-register during verification
shows that it is easy to miss some corner case when designing a CRDT. The ver-
ified CRDTs were given in pseudo-code and then translated to Isabelle, which is
a very high level language. Real implementations of the same CRDTs will prob-
ably be more complex, and thus the chance of introducing bugs might be even
higher. But also the amount of work required for verifying a real implementation
is higher.

It is an open question if more research into the automated verification and
testing of CRDTs is required. This depends on how applications will use CRDTs
in the future. For sequential data types, it is often sufficient to have lists, sets,
and maps for managing data, as can be seen in commonly used data formats like
XML or JSON. In the case of CRDTs, more data types are required, because
different applications require different conflict resolution behavior. This could
be very application specific. For example, an application could require a set
where add-operations win over remove-operations, but when a remove-operation
is performed by an administrator of the system, then that operation should win.
If every application needs its own CRDTs, then automatic tools to auto-generate
correct code might be a good idea.

In future work, we want to extend the specification techniques presented
in this paper for reasoning about applications using CRDTs. Such large-scale
distributed applications are usually long-running and should be stable, but are
difficult to maintain. It is therefore of special interest to have a stable and correct
code base.

Acknowledgement. This research is supported in part by European FP7 project
609 551 SyncFree

References

1. Annette Bieniusa, Marek Zawirski, Nuno M. Preguiça, Marc Shapiro, Carlos Ba-
quero, Valter Balegas, and Sérgio Duarte. Brief announcement: Semantics of even-
tually consistent replicated sets. In Marcos K. Aguilera, editor, DISC, volume 7611
of Lecture Notes in Computer Science, pages 441–442. Springer, 2012.

2. Annette Bieniusa, Marek Zawirski, Nuno M. Preguiça, Marc Shapiro, Carlos Ba-
quero, Valter Balegas, and Sérgio Duarte. An optimized conflict-free replicated
set. CoRR, abs/1210.3368, 2012.

3. Annette Bieniusa, Marek Zawirski, Nuno M. Preguiça, Marc Shapiro, Carlos Ba-
quero, Valter Balegas, and Sérgio Duarte. An optimized conflict-free replicated
set. CoRR, abs/1210.3368, 2012.

4. Ahmed Bouajjani, Constantin Enea, and Jad Hamza. Verifying eventual con-
sistency of optimistic replication systems. In Jagannathan and Sewell [7], pages
285–296.

16 P. Zeller, A. Bieniusa, A. Poetzsch-Heffter

5. Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek Zawirski.
Replicated data types: specification, verification, optimality. In Jagannathan and
Sewell [7], pages 271–284.

6. Seth Gilbert and Nancy A. Lynch. Brewer’s conjecture and the feasibility of consis-
tent, available, partition-tolerant web services. SIGACT News, 33(2):51–59, 2002.

7. Suresh Jagannathan and Peter Sewell, editors. The 41st Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’14, San
Diego, CA, USA, January 20-21, 2014. ACM, 2014.

8. Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558–565, July 1978.

9. Christopher Meiklejohn. Distributed data structures with Coq. http://

christophermeiklejohn.com/coq/2013/06/11/distributed-data-structures.

html, June 2013.
10. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A

Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.
11. Yasushi Saito and Marc Shapiro. Optimistic replication. ACM Comput. Surv.,

37(1):42–81, 2005.
12. Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. A compre-

hensive study of Convergent and Commutative Replicated Data Types. Rapport
de recherche RR-7506, INRIA, January 2011.

13. Marc Shapiro, Nuno M. Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-
free replicated data types. In Xavier Défago, Franck Petit, and Vincent Villain,
editors, SSS, volume 6976 of Lecture Notes in Computer Science, pages 386–400.
Springer, 2011.

14. Douglas B. Terry, Marvin Theimer, Karin Petersen, Alan J. Demers, Mike Spre-
itzer, and Carl Hauser. Managing update conflicts in bayou, a weakly connected
replicated storage system. In SOSP, pages 172–183, 1995.

15. Werner Vogels. Eventually consistent. ACM Queue, 6(6):14–19, 2008.
16. Peter Zeller. Specification and Verification of Convergent Replicated Data Types.

Master’s thesis, TU Kaiserslautern, Germany, 2013.

D PUTTING CONSISTENCY BACK INTO EVENTUAL CONSISTENCY

D Putting Consistency Back into Eventual Consistency

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 89

Putting Consistency Back into Eventual Consistency

Valter Balegas
CITI/FCT/Universidade Nova de

Lisboa

Sérgio Duarte
CITI/FCT/Universidade Nova de

Lisboa

Rodrigo Rodrigues
CITI/FCT/Universidade Nova de

Lisboa

Carla Ferreira
CITI/FCT/Universidade Nova de

Lisboa

Nuno Preguiça
CITI/FCT/Universidade Nova de

Lisboa

Marc Shapiro
INRIA / LIP6

Mahsa Najafzadeh
INRIA / LIP6

∗

Abstract
Geo-replicated storage systems are at the core of current In-
ternet services. The designers of the replication protocols
for these systems have to choose between either support-
ing low latency, eventually consistent operations, or support-
ing strong consistency for ensuring application correctness.
We propose an alternative consistency model, explicit con-
sistency, that strengthens eventual consistency with a guar-
antee to preserve specific invariants defined by the applica-
tions. Given these application-specific invariants, a system
that supports explicit consistency must identify which oper-
ations are unsafe under concurrent execution, and help pro-
grammers to select either violation-avoidance or invariant-
repair techniques. We show how to achieve the former while
allowing most of operations to complete locally, by relying
on a reservation system that moves replica coordination off
the critical path of operation execution. The latter, in turn, al-
low operations to execute without restriction, and restore in-

∗ This research is supported in part by European FP7 project 609 551

SyncFree (2013—2016) , Fundação para a Ciência e Tecnologia
SFRH/BD/87540/2012 and PEst-OE/EEI/UI0527/2014.

[Copyright notice will appear here once ’preprint’ option is removed.]

variants by applying a repair operation to the database state.
We present the design and evaluation of Indigo, a middle-
ware that provides Explicit Consistency on top of a causally-
consistent data store. Indigo guarantees strong application
invariants while providing latency similar to an eventually
consistent system.

1. Introduction
To improve the user experience in services that operate on a
global scale, from social networks and multi-player online
games to e-commerce applications, the infrastructure that
supports these services often resorts to geo-replication [8, 9,
11, 21, 23, 24, 37], i.e., maintains copies of application data
and logic in multiple datacenters scattered across the globe.
This ensures low latency, by routing requests to the clos-
est datacenter, but only when the request does not require
cross-datacenter synchronization. Executing update opera-
tions without cross-datacenter synchronization is normally
achieved through weak consistency. The downside of weak
consistency models is that applications have to deal with
concurrent operations not seeing the effects of each other,
which can lead to non-intuitive and undesirable semantics.

Semantic anomalies do not occur in systems that offer
strong consistency guarantees, namely those that serialize
all updates [9, 21, 39]. However, these consistency mod-
els require coordination among replicas, which increases la-
tency and decreases availability. A promising alternative is
to try to combine the strengths of both approaches by sup-
porting both weak and strong consistency for different op-
erations [21, 37, 39]. However, operations requiring strong
consistency still incur in high latency. Additionally, these

1 2014/11/8

systems make it harder to design applications, as operations
need to be correctly classified to guarantee the correctness
of the application.

In this paper, we propose explicit consistency as an alter-
native consistency model, in which applications define the
consistency rules that the system must maintain as a set of
invariants. Unlike models defined in terms of execution or-
ders, explicit consistency is defined in terms of application
properties: the system is free to reorder the execution of op-
erations at different replicas, provided that application in-
variants are maintained.

In addition to proposing explicit consistency, we show
that it is possible to implement it while mostly avoid cross-
datacenter coordination, even for critical operations that po-
tentially break invariants. To this end, we propose a method-
ology that, starting from the set of application invariants
helps in the deployment of a modified version of the applica-
tion that includes a set of techniques for precluding invariant
violation under concurrency (or, alternatively, use a set of
invariant repair actions that recover the service to a desired
state). The methodology we propose is composed of the fol-
lowing three steps.

First, based on static analysis, we infer which opera-
tions can be safely executed without coordination. Second,
for the remaining operations, we provide the programmer
with a choice of automatic repair [34] or avoidance tech-
niques. The latter extend escrow and reservation approaches
[14, 29, 31, 35], in which a replica reserves the permission
to execute a number of operations without coordinating with
other replicas. This way we amortize the cost of coordina-
tion over multiple requests and move it outside the critical
path. Third, after the potentially conflicting operations are
identified and the strategy to handle them is chosen, the ap-
plication code is instrumented with the appropriate calls to
our middleware library.

Finally, we present the design of Indigo, a middleware
for explicit consistency built on top of a geo-replicated key-
value store. Indigo requires the underlying store to provide
only properties that have been shown to be efficient to im-
plement, namely per-key linearizability for replicas in each
datacenter, causal consistency, and transactions with weak
semantics [1, 23, 24].

In summary, this paper makes the following contribu-
tions:

• We propose explicit consistency as a new consistency
model for application correctness, centered on the appli-
cation behavior instead of the the order of the execution
of operations;
• A methodology that, starting with an application and a set

of associated invariants, derives an efficient reservation
system to enforce explicit consistency;
• Indigo, a middleware system ensuring explicit consis-

tency on top of a weakly consistent geo-replicated key-
value store.

The remaining of the paper is organized as follows: Sec-
tion 2 introduces explicit consistency; Section 3 gives an
overview on the proposed approach to enforce explicit con-
sistency; Section 4 details the analysis for detecting unsafe
concurrent operations and Section 5 details the techniques
for handling these operations; Section 6 discusses the imple-
mentation of Indigo and Section 7 presents an evaluation of
the system; related work is discussed in Section 8 and Sec-
tion 9 concludes the paper with some final remarks.

2. Explicit Consistency
In this section we define precisely the consistency guarantees
that Indigo provides. To explain these, we start by defining
the system model, and then how explicit consistency restricts
the set of behaviors allowed by the model.

To illustrate the concepts, we use as running example the
management of tournaments in a distributed multi-player
game. The game maintains information about players and
tournaments. Players can register and de-register from the
game. Players compete in tournaments, for which they can
enroll and disenroll. A set of matches occurs for each tourna-
ment. A tournament has a maximum capacity. In some cases
– e.g., when there are not enough participants – a tournament
can be canceled before it starts. Otherwise a tournament’s
lifecycle is creation, start, and end.

2.1 System model and definitions
We consider a database composed of a set of objects in a typ-
ical cloud deployment, where data is fully replicated in mul-
tiple datacenters, and partitioned inside each datacenter. For
simplicity we assume that the goal of replication is perfor-
mance, and not fault tolerance. As such, we can assume that
replicas do not fail. However, it would be straightforward to
handle faults by replacing each machine at a given datacen-
ter with a replica group running a protocol like Paxos [16].

Applications access and modify the database by issuing
high-level operations. These operations include a sequence
of read and write operations enclosed in transactions.

We define a database snapshot, Sn, as the value of the
database after executing the writes of a sequence of trans-
actions t1, . . . , tn in the initial database state, Sinit, i.e.,
Sn = tn(. . . (t1(Sinit))), with ti(S) the state after applying
the write operations of ti to S. The state of a replica is the
database snapshot that results from executing all committed
transactions received in the replica - both local and remote.
An application submits a transaction in a replica, with reads
and writes executing in a private copy of the replica state.
The application may decide to commit or abort the transac-
tion. In the former case, writes are immediately applied in
the local replica and asynchronously propagated to remote
replicas. In the latter case, the transaction has no side-effect.

The snapshot set T (S) of a database snapshot S is the
set of transactions used for computing S - e.g. T (Sn) =
{t1, . . . , tn}. We say a transaction ti+1 executing in a

2 2014/11/8

database snapshot Si happened-before tj+1 executing in Sj ,
ti+1 ≺ tj+1, iff T (Si) (T (Sj). Two transactions ti+1 and
tj+1 are concurrent, ti ‖ tj , iff ti+1 6≺ tj+1 ∧ tj+1 6≺ ti+1

[20].
Happens-before relation defines a partial order among

transactions, O = (T,≺). We say Oi = (T,<) is a valid
serialization of O = (T,≺) if Oi is a linear extension of O,
i.e., < is a total order compatible with ≺.

Our approach allows transactions to execute concurrently.
Each replica can execute transactions according to a dif-
ferent valid serialization. We assume the system guarantees
state convergence, i.e., for a given set of transactions T , all
valid serializations of (T,≺) lead to the same database state.
Different techniques can be used to this end, from a simple
last-writer-wins strategy to more complex approaches based
on conflict-free replicated data types (CRDTs) [34, 37].

2.2 Explicit consistency
We now define explicit consistency, a novel consistency se-
mantics for replicated systems. The high level idea is to
let programmers define the application-specific correctness
rules that should be met at all times. These rules are defined
as invariants over the database state.

In our tournament application, one invariant states that
the cardinality of the set of enrolled players in a tournament
cannot exceed its capacity. Another invariant is that the en-
rollment relation must bind players and tournaments that ex-
ist - this type of invariant is known as referential integrity
in databases. Even if invariants are checked when an oper-
ation is executed, in the presence of concurrent operations
these invariants can be broken – e.g., if two replicas concur-
rently enroll players to the same tournament, and the merge
function takes the union of the two sets of participants, the
capacity of the tournament can be exceeded.

Specifying restrictions over the state: To define explicit
consistency, we use first-order logic for specifying invari-
ants as conditions over the state of database. For example,
for specifying that the enrollment relation must bind play-
ers and tournaments that exist, we could define three pred-
icates: player(P), tournament(T) and enrolled(P, T) to
specify that a player P exists, a tournament T exists and
that player P is enrolled in tournament T respectively. The
condition would then be specified by the following formula:
∀P, T, enrolled(P, T)⇒ player(P) ∧ tournament(T).

Specifying rules over state transitions: In addition to
conditions over the current state, we support some forms of
temporal specifications by specifying restrictions over state
transitions. In our example, we can specify, for instance, that
players cannot enroll or drop from a tournament between the
start and the end of the tournament.

Such temporal specification can be turned into an invari-
ant defined over the state of the database, by having the
application store information that allows for such verifica-
tion. In our example, when a tournament starts the appli-
cation can store the list of participants for later checking

against the list of enrollments. The rules that forbids en-
rollment/disenrollment of players can then be specified as
∀P, T, participant(P, T) ⇔ enrolled(P, T), with the new
predicate participant(P, T) specifying that player P par-
ticipates in active tournament T .

The alternative to this approach would have been to use
temporal logics that can specify rules over time [20, 30].
Such approaches would require more complex specification
for programmers and a more complex analysis. As our ex-
perience has shown that this simpler approach was sufficient
for specifying most common application invariants, we have
decided to rely on this approach.

Correctness conditions We can now formally define ex-
plicit consistency, starting with the helper definition of an
invariant I as a logical condition applied over the state of
the database. We say that I holds in state S iff I(S) = true.

Definition 2.1 (I-valid serialization). For a given set of
transactions T , we say that Oi = (T,<) is a I-valid seri-
alization of O = (T,≺) iff Oi is a valid serialization of O
and I holds in the state that results from executing any prefix
of Oi.

A system is correct, providing explicit consistency, iff all
serializations of O = (T,≺) are I-valid serializations.

3. Overview
Given the invariants expressed by the programmer, our ap-
proach for enforcing explicit consistency has three steps:
(i) detect the sets of operations that may lead to invariant
violation when executed concurrently (we call these sets I-
offender sets); (ii) select an efficient mechanism for handling
I-offender sets; (iii) instrument the application code to use
the selected mechanism in a weakly consistent database sys-
tem.

The first step consists of discovering I-offender sets. For
this analysis, it is necessary to model the effects of opera-
tions. This information should be provided by programmers,
in the form of annotations specifying how predicates are af-
fected by each operation 1. Using this information and the
invariants, a static analysis process infers the minimal sets
of operation invocations that may lead to invariant viola-
tion when executed concurrently (I-offender sets), and the
reason for such violation. Conceptually, the analysis con-
siders all valid database states and, for each valid database
state, all sets of operation invocations that can execute in
that state, and checks if executing all these sets in the same
state is valid or not. Obviously, exhaustively considering all
database states and operation sets would be impossible in
practice, which required the use of the efficient verification
techniques detailed in section 4.

The second step consists in deciding which approach
will be used to handle I-offender sets. The programmer

1 This step could be automated using program analysis techniques, as done
for example in [22, 33].

3 2014/11/8

must select from the two alternative approaches supported:
invariant-repair, in which operations are allowed to exe-
cute concurrently and invariants are enforced by automatic
conflict resolution rules; violation-avoidance, in which the
system restricts the concurrent execution of operations that
can lead to invariant violation.

In the invariant-repair approach, the system automati-
cally guarantees that invariants hold when merging opera-
tions executed concurrently, by including the necessary code
for restoring invariants in the operations. This is achieved by
relying on CRDTs, such as sets, trees and graphs. For exam-
ple, concurrent changes to a tree can lead to cycles that can
be broken using different repair strategies [27].

In the violation-avoidance approach, the system uses a set
of techniques to control when it is possible and impossible
to execute an operation in a datacenter without coordinating
with others. For example, to guarantee that an enrollment
can only bind a player and a tournament that exist, enroll-
ments can execute in any replica without coordination by
forbidding the deletion of players and tournaments. A data-
center can reserve the right to forbid the deletion for a subset
of players and tournaments, which gives it the ability to exe-
cute enrollments for those players and tournaments without
coordinating with other datacenters. Our reservation mecha-
nisms supports such functionality with reservations tailored
to the different types of invariants, as detailed in section 5.

Third, the application code is instrumented to use the
conflict-repair and conflict-avoidance mechanisms selected
by the programmer. This involves extending operations to
call the appropriate API functions defined in Indigo.

4. Detecting I-offender sets
The language for specifying application invariants is first-
order logic formulas containing user-defined predicates and
numeric functions. More formally, we assume the invariant
is an universally quantified formula in prenex normal form2

∀x1, · · · , xn, ϕ(x1, · · · , xn).

First-order logic formulas can express a wide variety of
consistency constraints, as we exemplify in Section 4.1.

We have already seen that an invariant can use predicates,
such as player(P) or enrolled(P, T). Numeric restrictions
can be expressed through the use of functions. For example,
function nrPlayers(T) that returns the number of players in
tournament T , can be used to express that tournaments must
have at most five players enrolled: ∀T,nrPlayers(T) ≤ 5.
Invariants can be combined to define the global invariant of
an application. For instance, we can have:
I = ∀P, T, enrolled(P, T)⇒ player(P) ∧ tournament(T)

∧
nrPlayers(T) ≤ 5

The programmer does not need to provide an interpretation
for the predicates and functions used in the invariant - she

2 Formula ∀x, ϕ(x) is in prenex normal form if clause ϕ is quantifier-free.
Every first-order logic formula has an equivalent prenex normal form.

just has to write the application invariant and the effects of
each operation over the terms of the invariant.

Defining operation postconditions To express the ef-
fects of operations we use its side-effects, or postconditions,
stating what properties are ensured after execution of the
operation. Moreover, we take the postcondition to be the
conjunction of all side-effects. There are two types of side-
effect clauses: predicate clauses, which describe a truth as-
signment for a predicate (stating whether the predicate is
true or false after execution of the operation); and function
clauses, which define the relation between the initial and fi-
nal function values. For example, operation remPlayer(P),
which removes player P , has a postcondition with predicate
clause ¬player(P), stating that predicate player is false for
player P . Operation enroll(P, T), which enrolls player P
into tournament T , has a postcondition with two clauses,
enrolled(P, T) ∧ nrPlayers(T) = nrPlayers(T) + 1. The
second clause can be interpreted as a variable assignment,
where nrPlayers(T) is increased by one.

The syntax for postconditions is given by the grammar:
post ::= clause1 ∧ clause2 ∧ · · · ∧ clausek
clause ::= pclause | fclause
pclause ::= p(o1, o2, · · · , on) | ¬p(o1, o2, · · · , on)
fclause ::= f(o1, o2, · · · , on) = exp⊕ exp
exp ::= n | f(o1, o2, · · · , on)
⊕ ::= + | − | ∗

where p and f are predicates and functions respectively, over
objects o1, o2, · · · , on.

Although we imposed that a postcondition is a conjunc-
tion, it is possible to deal with operations that have alterna-
tive side-effects, by splitting the alternatives between mul-
tiple dummy operations. For example, an operation ϕ with
postcondition ϕ1 ∨ ϕ2 could be replaced by operations op1
and op2 with postconditions ϕ1 and ϕ2, respectively.

The fact that postconditions are conjunctions of simple
expressions and that predicates and functions are uninter-
preted (no interpretation is given), imposes limits on the
properties that can be expressed in this setting. For example,
it not possible to express reachability properties and other
properties over recursive data structures. Nevertheless, the
next section shows it is possible to express a wide variety of
database consistency properties.

Existential quantifiers So far, the invariants have been
formulated as universally quantified formulas. However,
some properties require existential quantifiers. For exam-
ple, to state that tournaments must have at least one player
enrolled: ∀T, tournament(T) ⇒ (∃P, enrolled(P, T)). In
practice the existential quantifier can be replaced by a func-
tion, using a technique called skolemization. For this ex-
ample at hand, we may use function nrPlayers as such:
∀T, tournament(T)⇒ nrPlayers(T) ≥ 1.

4 2014/11/8

4.1 Expressing Application Invariants
The intrinsic complexity of general invariants makes it dif-
ficult to build a comprehensive invariant model. We decided
to use a simple model for defining invariants and predicates
that still can express significant classes of invariants. This
models allows programmers to express invariants in a rather
straightforward way, as we exemplify for the following types
of invariants.

Uniqueness The uniqueness constraint can be used to
express different correctness properties required by appli-
cations - e.g. uniqueness of identifiers within a collection.
This invariant can be defined using a function that counts the
number of elements with a given identifier. For example, the
formula ∀P, player(P) ⇒ nrPlayerId(P) = 1, states that
P must have a unique player identifier. A different example
of an uniqueness constraint is the existence of a single leader
in a collection: ∀T, tournament(T)⇒ nrLeaders(T) = 1.

Numeric constraints Numeric constraints refer to nu-
meric properties of the application and set lower or upper-
bounds to data values (equality and inequality are special
cases). Usually these constraints control the use or ac-
cess to a limited resource, such as the limited capacity of
a tournament exemplified before. Ensuring that a player
does not overspend its (virtual) budget can be expressed as:
∀P, player(P) ⇒ budget(P) ≥ 0. Ensuring experienced
players cannot participate in beginner’s tournaments can
be expressed as: ∀T, P, enrolled(P, T) ∧ beginners(T) ⇒
score(P) ≤ 30.

Integrity constraints This type of constraints describes
relationships between different objects, known as foreign
keys constraints in databases, such as the fact that the enroll-
ment must refer to existing players and tournaments, as ex-
emplified in the beginning of this section. If the tournament
application had a score table for players, another integrity
constraint would be that every table entry must belong to an
existing player: ∀P, hasScore(P)⇒ player(P).

4.2 Determining I-offender sets
To detect the sets of concurrent operation invocations that
may lead to an invariant violation, we perform a static analy-
sis of the operation’s postconditions against invariants. Start-
ing from a valid state, where the invariant is true, if the
preconditions hold, the sequential execution of operations
always preserve the invariant. However, concurrently exe-
cuting operations in different replicas may cause a conflict,
leading to an invariant violation.

We start by intuitively explaining the process of detect-
ing I-offender sets. The process starts by checking opera-
tions with opposing postconditions (e.g. p(x) and ¬p(x)).
Take operations addPlayer(P) with effect player(P) and
remPlayer(P) with effect ¬player(P). If these two opera-
tions are concurrently executed it is unclear whether player
P exists or not in the database. This is an implicit invariant

and can be usually addressed choosing a resolution policy
(as add-wins).

The process continues by considering, for each invariant,
the effects of concurrent executions of multiple operations
that affect the invariant: first pairs, then triples, and so forth
until all operations are considered or a conflict arises.

To illustrate this process, we use our tournament appli-
cation and the invariant I presented in the beginning of
section 4. For simplicity of presentation, we consider each
of the conditions defined in invariant I independently. The
first invariant is a numeric restrictions: ∀T,nrPlayers(T) ≤
5. In this case, we have to take into account operation
enroll(P, T) that affects function nrPlayers and determine
if concurrent executions of enroll(P, T) may break the in-
variant. For that, we substitute in invariant I the operation’s
effects over function nrPlayers . Under the assumption that
nrPlayers(T) < 5, the weakest precondition ensuring the
invariant is not locally broken, we substitute and check
whether this results in a valid formula (notation I{f} de-
scribes the application of formula f in invariant I):

I {nrPlayers(T)← nrPlayers(T) + 1}
{nrPlayers(T)← nrPlayers(T) + 1}

nrPlayers(T) ≤ 5 {nrPlayers(T)← nrPlayers(T) + 1}
{nrPlayers(T)← nrPlayers(T) + 1}

nrPlayers(T) + 1 ≤ 5 {nrPlayers(T)← nrPlayers(T) + 1}
nrPlayers(T) + 1 + 1 ≤ 5

The assumption nrPlayers(T) < 5 does not ensure the re-
sulting inequality. So, it can be concluded that concurrent
executions of operation enroll(P, T) can lead to an invariant
violation. For this operation, ensuring locally the (weakest)
preconditions does not ensure the invariant will hold glob-
ally.

The second invariant of I is ∀P, T, enrolled(P, T) ⇒
player(P). In this case we need to detect whether enroll(P, T)
and remPlayer(P) lead to an invariant violation. To this
end, we substitute the effects of these operations in the in-
variant and check whether the resulting formula is valid.

I {enrolled(P, T)← true} {player(P)← false}
true ⇒ false ∧ Tournament(T)

false

As the resulting formula is not valid, a set of I-offenders is
identified: {enroll , remPlayer(P)}.

We now systematically present the algorithm used to de-
tected I-offender sets.

Lemma 4.1 (Conflicting operations). Operations op1, op2,
· · · , opn conflict with respect to invariant I iff, assuming that
I is initially true and preconditions of opi are initially true
(1 ≤ i ≤ n), the result of substituting the postconditions
into the invariant is not a valid formula.

Algorithm 1 statically determines the minimal subsets of
conflicting (or unsafe) operations. The core of the algorithm
is function conflict(I, s) which determines whether the set
of operations s break invariant I . This function uses the
satisfiability modulo theory (SMT) solver Z3 [10] to verify

5 2014/11/8

Algorithm 1 Algorithm for detecting unsafe operations.
Require: I : invariant; O : operations.

1: C←∅ {subsets of unsafe operations}
2: N←∅ {set of non-idempotent unsafe operations}
3: S←∅ {subsets of non-conflicting operations}
4: for op ∈ O do
5: if conflict(I, {op}) then
6: N ← N ∪ {{op}}
7: S ← S ∪ {{op}}
8: i← 1
9: for s ∈ S and #s = i and i < #O do

10: for op ∈ O − s and s ∪ {op} 6∈ C do
11: if conflict(I, s ∪ {op}) then
12: C ← C ∪ {s ∪ {op}}
13: else
14: S ← S ∪ {s ∪ {op}}
15: i← i+ 1
16: return C ∪N

the validity of the logical formulas used in Definition 4.1.
The function checks first if the operations in s have opposing
postconditions (as addPlayer and remPlayer). If that check
fails, the next step is to submit to the solver a formula
obtained by substituting all operations post-conditions in the
invariant, and determine its validity.

Algorithm 1 has an initial loop (line 4) to determine
which non-idempotent operations cause conflicts over nu-
meric restrictions. The main loop (line 10) iteratively checks
if adding a new operation into every possible subset of non-
conflicting operations raises a conflict. Each step of the iter-
ation increases the numbers of operations in the subset con-
sidered. It starts by determining which pairs of operations
conflict. If a conflict is detected, it adds a new operation into
the set of unsafe operations. Otherwise, in the next step, it
checks whether joining another operation raises any conflict,
and so forth. Although not expressed in the algorithm, the
operation to be added should affect predicates still not in-
stantiated in the invariant (line 10). The overall complexity
of the algorithm is exponential on the number of operations,
but this could be improved. Each I-offender set determined
by the algorithm can be seen as an assignment to the pred-
icates in the invariant that results in a non-valid (invariant)
formula. Therefore, we could adapt an (efficient) algorithm
for satisfiability module theories, as the ones overviewed
in [28].

5. Handling I-offender sets
The previous step identifies I-offender sets. These sets are
reported to the programmer that decides how each situation
should be addressed. We now discuss the techniques that are
available to the programmer in Indigo.

5.1 Invariant repairing
The first approach that can be used is to allow operations
to execute concurrently and repair invariant violation after

operations are executed. Indigo has limited support for this
approach, which can only address invariants defined in the
context of a single database object (which can be as complex
as a tree or a graph). To this end, Indigo provides a library of
objects that repair invariants automatically with techniques
proposed in literature - e.g. sets, maps, graphs, trees with
different conflict resolution policies [27, 34].

The programmer still has the opportunity to extend these
objects for supporting additional invariants - e.g. it is possi-
ble to extend a general set to implement a set with limited
capacity n by modifying queries to consider that only n el-
ements exist selected deterministically from all elements in
the underlying set [26].

5.2 Invariant-violation avoidance
The alternative approach is to avoid the concurrent execu-
tion of operations that would lead to an invariant violation
when combining their effects. Indigo provides a set of basic
techniques for achieving this.

5.2.1 Reservations
We now discuss the high-level semantics of techniques used
to restrict concurrent execution of updates - implementation
in weakly consistent stores is addressed in the next section.

UID generator: One important source of potential invari-
ant violations come from the concurrent creation of the same
identifier in situations where these identifiers must be unique
- e.g. identifier of objects in sets [3, 21]. This problem can be
easily solved by splitting the space of identifiers that can be
created in each replica. Indigo provides a service that gen-
erates unique identifiers by appending to a locally generated
identifier a replica-specific suffix. Applications must use this
service to generate unique identifiers that are used in opera-
tions.

Escrow reservation: For numeric invariants of the form
x ≥ k, we include an escrow reservation for allowing decre-
ments to be executed without coordination. Given an initial
value for x = x0, there are initially x0 − k rights to exe-
cute decrements. These rights can be split by different repli-
cas. For executing x.decrement(n), the operation must ac-
quire and consume n rights to decrement x in the replica
it is submitted. If not enough rights exist in the replica, the
system will try to obtain additional rights from other repli-
cas. If this is not possible, the operation will fail. Executing
x.increment(n) creates n rights to decrement n initially as-
signed to the replica in which the operation that executes the
increment is submitted.

A similar approach is used for invariants of the form x ≤
k, with increments consuming rights and decrements creat-
ing new rights. For invariants of the form x+y+. . .+z ≥ k,
a single escrow reservation is used, with decrements to any
of the involved variables consuming rights and increments
creating rights. If a variable x is involved in more than one
invariant, several escrow reservations will be affected by a
single increment/decrement operation on x.

6 2014/11/8

Multi-level lock reservation: When the invariant in risk
is not numeric, we use a multi-level lock reservation (or
simply multi-level lock) to restrict the concurrent execution
of operations that can break invariants. A multi-level lock
can provide the following rights: (i) shared forbid, giving
the shared right to forbid some action to occur; (ii) shared
allow, giving the shared right to allow some action to occur;
(iii) exclusive allow, giving the exclusive right to execute
some action.

When a replica holds some right, it knows no other replica
holds rights of a different type - e.g. if a replica holds a
shared forbid, it knows no replica has any form of allow. We
now show how to use this knowledge to control the execution
of I-offender sets.

In the tournament example, {enroll(P, T), remPlayer(P)}
is an I-offender set. We can associate a multi-level lock to
one of the operations, for specific values of the parame-
ters. For example, we can have a multi-level lock associated
with remPlayer(P), for each value of P . For executing
remPlayer(P), it is necessary to obtain the right shared
allow on the reservation for remPlayer(P). For execut-
ing enroll(P, T), it is necessary to obtain the right shared
forbid on the reservation for remPlayer(P). This guaran-
tees that enrolling some player will not execute concurrently
with deleting the player, but concurrent enrolls or concur-
rent deletes can occur. If all replicas hold the shared forbid
right on removing players, the most frequent enroll opera-
tion can execute in any replica without coordination with
other replicas.

The exclusive allow right is necessary when an operation
is incompatible with itself, i.e., when executing concurrently
the same operation may lead to an invariant violation.

Multi-level mask reservation: For invariants of the form
P1 ∨ P2 ∨ . . . ∨ Pn, the concurrent execution of any pair
of operations that makes two different predicates false may
lead to an invariant violation if all other predicates were
originally false. In our analysis, each of these pairs is an I-
offender set.

Using simple multi-level locks for each pair of operations
is too restrictive, as getting a shared allow on one opera-
tion would prevent the execution of the other operation in all
pairs. In this case, for executing one operation is suffices to
guarantee that a single other operation is forbidden (assum-
ing that the predicate associated with the forbidden operation
is true).

To this end, Indigo includes a multi-level mask reserva-
tion that maintains the same rights as multi-level lock re-
garding a set of K operations. With multi-level mask, when
obtaining a shared allow right for some operation, it is nec-
essary to obtain (if it does not exist already) a shared forbid
right on some other operation. These operations are executed
atomically by our system.

5.2.2 Using Reservations
Our analysis outputs I-offender sets and the invariant that
can be broken if operations execute concurrently. For each
I-offender set, the programmer must select the type of reser-
vation to be used - based on the invariant type that can be
broken, a suggested reservation type is generated.

Even when using the same type of reservations for each I-
offender set, it is possible to prevent the concurrent execution
of I-offender sets using different sets of reservations - we
call this a reservation system. For example, consider our
tournament example with the following two I-offender sets:

{enroll(P, T), remPlayer(P)}
{enroll(P, T), remTournament(P)}

Given these I-offender sets, two different reservation sys-
tems can be used. The first system includes a single multi-
level lock associated with enroll(P, T), with enroll(P, T)
having to obtain a shared allow right to execute, while both
remPlayer(P) and remTournament(T) would have to
obtain the shared forbid right to execute. The second system
includes two multi-level lock associated with remPlayer(P)
and remTournament(T), with enroll having to obtain the
shared forbid right in both to execute.

Indigo runs a simple optimization process to decide
which reservation system to use. As generating all possible
systems may take too long, this process starts by generat-
ing a small number of systems using the following heuristic
algorithm: (i) select a random I-offender set; (ii) decide the
reservation to control the concurrent execution of operations
in the set, and associate the reservation with the operation: if
a reservation already exists for some of the operations, use
the same reservation; otherwise, generate a new reservation
from the type previously selected by the user; (iii) select the
remaining I-offender set, if any, that has more operations
controlled by existing reservations and repeat the previous
step.

For each generated reservations system, Indigo computes
the expected frequency of reservation operations needed us-
ing as input the expected frequency of operations. The opti-
mization process tries to minimize this expected frequency
of reservation operations.

After deciding which reservation system will be used,
each operation is extended to acquire and release the nec-
essary rights before and after executing the code of the op-
eration. For escrow locks, an operation that consumes rights
will acquire rights before its execution and these rights will
not be released in the end. Conversely, an operation that cre-
ates rights will create these rights after its execution.

6. Implementation
In this section, we discuss the implementation of Indigo as
a middleware running on top of a causally consistent store.
We first explain the implementation of reservations and how
they are used to enforce explicit consistency. We conclude by

7 2014/11/8

explaining how Indigo is implemented on top of an existing
geo-replicated store.

6.1 Reservations
Indigo maintains information about reservations as objects
stored in the underlying causally consistent storage system.
For each type of reservation, a specific object class exists.
Each reservation instance maintains information about the
rights assigned to each of the replicas - in Indigo, each
datacenter is considered a single replica, as explained later.

The escrow lock object maintains the rights currently as-
signed to each replica. The following operations can be sub-
mitted to modify the state of the object: escrow consume de-
pletes rights assigned to the local replica; escrow generate
generates new rights in the local replica; escrow transfer
transfers rights from the local replica to some given replica.
For example, for an invariant x ≥ K, escrow consume
must be used by an operation that decrements x and es-
crow generate by operations that increment x.

When an operation executes in the replica where it is sub-
mitted, if insufficient rights are assigned to the local replica,
the operation fails and has no side-effects. Otherwise, the
state of the replica is updated accordingly and the side-
effects are asynchronously propagated to the other replicas,
using the normal replication mechanisms of the underly-
ing storage system. As operations only deplete rights of the
replica where they are submitted, it is guaranteed that every
replica has a conservative view of the rights assigned to it
- all operations that have consumed rights are known, but
any operations that transferred new rights from some other
replica may still have to be received. Given that the execu-
tion of operations is linearizable in a replica, this approach
guarantees the correctness of the system in the presence of
any number of concurrent updates in different replicas and
asynchronous replication, as no replica will ever consume
more rights than those assigned to it.

The multi-level lock object maintains which right (exclu-
sive allow, shared allow, shared forbid) is assigned to each
replica, if any. Rights are obtained for executing operations
with some given parameters - e.g. in the tournament exam-
ple, for removing player P the replica needs a shadow al-
low right for player P . Thus, a multi-level lock object man-
ages the rights for the different parameters independently - a
replica can have a given right for a specific value of the pa-
rameters or a subset of the parameter values. For simplicity,
in our description, we assume that a single parameter exists.

The following operations can be submitted to modify the
state of the multi-level lock object: mll giveRight gives a
right to some other replica - a replica with a shared right
can give the same right to some other replica; a replica that
is the only one with some right can change the right type
and give it to itself or to some other replica; mll freeRight
revokes a right assigned to the local replica. As a replica can
have been given rights by multiple concurrent mll giveRight
operations executed in different replicas, mll freeRight in-

ternally encodes which mll giveRight operations are being
revoked. This is necessary to guarantee that all replicas con-
verge to the same state.

As with escrow lock objects, each replica has a conser-
vative view of the rights assigned to it, as all operations that
revoke the local rights are always executed initially in the
local replica. Additionally, assuming causal consistency, if
the local replica shows that it is the only replica with some
right, that information is correct system-wide. This condition
holds despite concurrent operations and asynchronous prop-
agation of updates, as any mll giveRight executed in some
replica is always propagated before a mll freeRight in that
replica. Thus, if the local replica shows that no other replica
holds any right that is because no mll giveRight has been
executed (without being revoked).

The multi-level mask object maintains the information
needed for a multi-level mask reservation by combining sev-
eral multi-level lock objects. The operation mlm giveRight
allows to give rights for one of the specified multi-level
locks.

6.2 Indigo middleware
We have built a prototype of Indigo on top of a geo-
replicated data store with the following properties: (i) causal
consistency; (ii) support for transactions that access a database
snapshot and merge concurrent updates using CRDTs [34];
(iii) linearizable execution of operations for each object in
each datacenter. It has been shown that all these properties
can be implemented efficiently in geo-replicated stores and
at least two systems support all these functionalities: Swift-
Cloud [42] and Walter [37]. Given that SwiftCloud has a
more extensive support for CRDTs, which are fundamental
for invariant-repair, we decided to build Indigo prototype on
top of SwiftCloud.

Reservation objects are stored in the underlying storage
system and they are replicated in all datacenters. Reservation
rights are assigned to datacenters individually, which keeps
the information small. As discussed in the previous section,
the execution of operations in reservation objects must be
linearizable (to guarantee that two concurrent transactions
do not consume the same rights).

The execution of an operation in the replica where it is
submitted has three phases: i) the reservation rights needed
for executing the operation are obtained - if not all rights
can be obtained, the operation fails; ii) the operation exe-
cutes, reading and writing the objects of the database; iii) the
used rights are released. For escrow reservations, rights con-
sumed are not released; new rights are created in this phase.
The side-effects of the operation in the data and reservation
objects are propagated and executed in other replicas asyn-
chronously and atomically.

Reservations guarantee that operations that can lead to in-
variant violation do not execute concurrently. However, op-
erations need to check if the preconditions for operation ex-

8 2014/11/8

ecution hold before execution3. In our tournament example,
an operation to remove a tournament cannot execute before
removing all enrolled players. Reservations do not guarantee
that this is the case, but only that a remove tournament will
not execute concurrently with an enrollment.

An operation needs to access a database snapshot com-
patible with the used reservation rights, i.e., a snapshot that
reflects the updates executed before the replica has acquired
the rights being used. In our example, for removing a tour-
nament it is necessary to obtain the right that allows such
operation. This precludes the execution of concurrent en-
roll operations for that tournament. After the tournament
has been deleted, an enroll operation can obtain a forbid
right on tournament removal. For correctness, it is neces-
sary that the operation observes the tournament as deleted,
which is achieved by enforcing that updates of an operation
are atomic and that the read snapshot is causally consistent
(obtaining the forbid right necessarily happens after revok-
ing the allow right, which happens after deleting the tourna-
ment). These properties are guaranteed in Indigo directly by
the underlying storage system.

Obtaining reservation rights The first and last phases
of operation execution obtain and free the rights needed for
operation execution. Indigo provides API functions for ob-
taining and releasing a list of rights. Indigo tries to obtain the
necessary rights locally using ordered locking to avoid dead-
locks. If other datacenters need to be contacted for obtain-
ing some reservation rights, this process is executed before
start obtaining rights locally. Unlike the process for obtain-
ing rights in the local datacenter, Indigo tries to obtain the
needed rights from remote datacenters in parallel for min-
imizing latency. This approach is prone to deadlocks - if
some remote right cannot be obtained, we use an exponen-
tial backoff approach that frees all rights and tries to obtain
them again after an increasing amount of time.

When it is necessary to contact other datacenters to ob-
tain some right, latency of operation execution is severely af-
fected. In Indigo, reservation rights are obtained pro-actively
using the following strategy. Escrow lock rights are divided
among datacenters, with a datacenter asking for additional
rights to the datacenter it believes has more rights (based
on local information). Multi-level lock and multi-level mask
rights are pre-allocated to allow executing the most common
operations (based on the expected frequency of operations),
with shared allow and forbid rights being shared among all
datacenters. In the tournament example, shared forbid for
removing tournaments and players can be owned in all data-
centers, allowing the most frequent enroll to execute locally.

The middleware maintains a cache of reservation objects
and allows concurrent operations to use the same shared

3 This step could be automated by inferring preconditions from invariants
and operation side-effects, given that the programmer specifies the code for
computing the value of predicates

(allow or forbid) right. While some ongoing operation is
using a shared or exclusive right, the right cannot be revoked.

6.3 Fault-tolerance
Indigo builds on the fault-tolerance of the underlying stor-
age system. In a typical geo-replicated store, data is repli-
cated inside a datacenter using quorums or relying on a state-
machine replication algorithm. Thus, the failure of a ma-
chine inside a datacenter does not lead to any data loss.

If a datacenter (fails or) gets partitioned from other dat-
acenters, it is impossible to transfer rights from and to the
partitioned datacenter. In each partition, operations that only
require rights available in the partition can execute normally.
Operations requiring rights not available in the partition will
fail. When the partition is repaired (or the datacenter recov-
ers with its state intact), normal operation is resumed.

In the event that a datacenter fails losing its internal state,
the rights held by that datacenter are lost. As reservation
objects maintain the rights held by all replicas, the procedure
to recover the rights lost by the datacenter failure is greatly
simplified - it is only necessary to guarantee that recovery
is executed only once with a state that reflects all updates
received from the failed datacenter.

7. Evaluation
This section presents an evaluation of Indigo. The main
question our evaluation tries to answer is how does explicit
consistency compares against causal consistency and strong
consistency in terms of latency and throughput with different
workloads. Additionally, we try to answer the following
questions:

• Can the algorithm for detecting I-offender sets be used
with realistic applications?
• What is the impact of an increasing the amount of con-

tention in objects and reservations?
• What is the impact of using an increasing number of

reservations in each operation?
• What is the behavior when coordination is necessary for

obtaining reservations?

7.1 Applications
To evaluate Indigo, we used the two following applications.

Ad counter The ad counter application models the infor-
mation maintained by a system that manages ad impressions
in online applications. This information needs to be geo-
replicated for allowing fast delivery of ads. For maximizing
revenue, an ad should be impressed exactly the number of
times the advertiser is willing to pay for. This invariant can
be easily expressed as nrImpressions(Ai) ≤ Ki, with Ki

the maximum number of times ad Ai should be impressed
and the predicate nrImpressions(Ai) returning the number
of times it has been impressed. In a real system, when a client
application asks for a new ad to be impressed, some complex
logic will decide which ad should be impressed.

9 2014/11/8

Advertisers will typically require ads to be impressed a
minimum number of times in some countries - e.g. ad A
should be impressed 10.000 times, including 4.000 times in
US and 4.000 times in EU. This example is modeled by hav-
ing the following additional invariants for specifying the lim-
its on the number of impressions (impressions in excess in
Europe and US can be accounted in nrImpressionsOther):

nrImpressionsEU (A) ≤ 4000
nrImpressionsUS(A) ≤ 4000

nrImpressionsOther(A) ≤ 2000

We modeled this application by having independent
counters for each ad and region. Invariants were defined
with the limits stored in database objects:

nrImpressions((region, ad)) ≤ targetImpressions((region, ad))

A single update operation that increments the ad tally was
defined - this operation updates the predicate nrImpressions .
Our analysis shows that the increment operation conflicts
with itself for any given counter, but increments on differ-
ent counters are independent. Invariants can be enforced by
relying on escrow lock reservations for each ad.

Our experiments used workloads with a mix of: a read
only operation that returns the value of a set of counters
selected randomly; an operation that reads and increments
a randomly selected counter. Our default workload included
only increment operations.

Tournament management This a version of the ap-
plication for managing tournaments described in section 2
(and used throughout the paper as our running example), ex-
tended with read operations for browsing tournaments. The
operations defined in this application are similar to opera-
tions that one would find in other management applications
such as courseware management.

As detailed throughout the paper, this application has a
rich set of invariants, including uniqueness rules for assign-
ing ids; generic referential integrity rules for enrollments;
and order relations for specifying the capacity of each tour-
nament. This leads to a reservation system that uses both
escrow lock and multi-level lock reservation objects. Three
operations do not require any right to execute - add player,
add tournament and disenroll tournament - although the lat-
ter access the escrow lock object associated with the capac-
ity of the tournament. The other update operations involve
acquiring rights before they can execute.

In our experiments we have run a workload with 82%
of read operations (a value similar to the TPC-W shopping
workload), 4% of update operations requiring no right for
executing, and 14% of update operations requiring rights
(8% of the operations are enrollment and disenrollments).

7.1.1 Performance of the Analysis
We have implemented the algorithm described in Section 4
for detecting I-offender sets in Java, relying on the satisfi-
ability modulo theory (SMT) solver Z3 [10] for verifying
invariants. The algorithm was able to find the existing I-

offender sets in the applications. The average running time
of this process in a recent MacBook Pro laptop was 19 ms
for the ad counter applications and 2892 ms for the more
complex tournament application.

We have also modeled TPC-W - the invariants in this
benchmark are a subset of those of the tournament applica-
tion. The average running time for detecting I-offender sets
was 937 ms. These results show that the running time in-
creases with the number of invariants and operations, but that
our algorithm can process realistic applications.

7.2 Experimental Setup
We compare Indigo against three alternative approaches:

Causal Consistency (Causal) As our system was built on
top of causally consistent SwiftCloud system[42], we
have used unmodified SwiftCloud as representative of a
system providing causal consistency. We note that this
system cannot enforce invariants. This comparison al-
lows us to measure the overhead introduced by Indigo.

Strong Consistency (Strong) We have emulated a strongly
consistent system by running Indigo in a single DC and
forwarding all operations to that DC. We note that this
approach allows more concurrency than a typical strong
consistency system as it allows updates on the same ob-
jects to proceed concurrently and be merged if they do
not violate invariants.

Red-Blue consistency (RedBlue) We have emulated a sys-
tem with Red-Blue consistency [21] by running Indigo in
all DCs and having red operations (those that may vio-
late invariants and require reservations) execute in a mas-
ter DC, while blue operations execute in the closest DC
respecting causal dependencies.

Our experiments comprised 3 Amazon EC2 datacenters
- US-East, US-West and EU - with inter-datacenter latency
presented in Table 1. In each DC, Indigo servers run in a
single m3.xlarge virtual machine with 4 vCPUs and 8 ECUs
of computational power, and 15GB of memory available.
Clients that issue transactions run in up to three m3.xlarge
machines. Where appropriate, we placed the master DC in
US-East datacenter to minimize the communication latency
and have those configurations perform optimally.

RTT (ms) US-E US-W
US-West 81 -
EU 93 161

Table 1. RTT Latency among Datacenters in Amazon EC2

7.3 Latency and throughput
We start by comparing the latency and throughput of Indigo
with alternative deployments for both applications.

We have run the ad counter application with 1000 ads
and a single invariant for each ad. The limit on the number
of impressions was set sufficiently high to guarantee that
the limit is not reached. The workload included only update
operations for incrementing the counter. This allows us to

10 2014/11/8

 0

 20

 40

 60

 80

 100

 120

 140

 0 200 400 600 800 1000 1200 1400 1600

L
a

te
n

cy
 [

m
s]

Throughput [TP/s]

Indigo
Causal

Red-Blue
Strong

Figure 1. Peak throughput (ad
counter application).

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 50 100 150 200 250 300 350 400 450 500

L
a
te

n
cy

 [
m

s]

Throughput [TP/s]

Indigo
Causal

Red-Blue
Strong

Figure 2. Peak throughput (tourna-
ment application).

 0

 300

 600

 900

 1200

 1500

 1800

VIEW_STATUS

ENROLL_TOURNAMENT

DISENROLL_TOURNAMENT

DO_MATCH

REM_TOURNAMENT

ADD_PLAYER

L
a

te
n

c
y
 [

m
s
]

Indigo
Red-Blue

Strong

Figure 3. Average latency per op.
type - Indigo (tournament app.).

measure the peak throughput when operations are able to
obtain reservations in advance. The results are presented
in Figure 1, and show that Indigo achieves throughput and
latency similar to a causally consistent system. Strong and
RedBlue results are similar, as all update operations are red
and execute in the master DC in both configurations.

Figure 2 presents the results when running the tournament
application with the default workload. As before, results
show that Indigo achieves throughput and latency similar to
a causally consistent system. In this case, as most operations
are read-only or can be classified as blue and execute in the
local datacenter, RedBlue throughput is only slightly worse
than that of Indigo.

Figure 3 details these results presenting latency per oper-
ation type (for selected operations) in a run with throughput
close to the peak value. The results show that Indigo exhibits
lower latency than RedBlue for red operations. These oper-
ation can execute in the local DC in Indigo, as they require
either no reservation or reservations that can be shared and
are typically locally available.

Two other results deserve some discussion. Remove tour-
nament requires canceling shared forbid rights acquired by
other DCs before being able to acquire the shared allow
right for removing the tournament, which explain the high
latency. Sometimes latency is extremely high (as shown by
the line with the maximum value) - this is a result of the
asynchronous algorithms implemented and the approach for
requesting remote DCs to cancel their rights, which can fail
when a right is being used. This could be improved by run-
ning a more elaborate protocol based on Paxos. Add player
has a surprisingly high latency in all configurations. Analyz-
ing the situation, we found out that the reason for this lies
in the fact that this operation manipulates very large objects
used to maintain indexes - all configurations have a fix over-
head due to this manipulation.

7.4 Micro-benchmarks
Next, we examine the impact of key parameters.

Increasing contention Figure 4 shows the throughput
of the system with increasing contention in the ad counter
application, by varying the number of counters in the experi-
ment. As expected, the throughput of Indigo decreases when

contention increases as several steps require executing op-
erations sequentially. Our middleware introduces additional
contention when accessing the cache. As the underlying stor-
age system also implements linearizability per-object, it is
also possible to observe its throughput also decreases with
increased contention, although more slowly.

Increasing number of invariants Figure 5 presents the
results of ad counter application with an increasing number
of invariants - from one to three. In this case, the results show
that the peak throughput with Indigo decreases while latency
keeps constant. The reason for this is that for escrow locks,
each invariant has an associated reservation object - thus,
when increasing the number of invariants the number of up-
dated objects also increases, with impact on the operations
that each datacenter needs to execute. To verify our expla-
nation, we have run a workload with operations that access
the same number of counters in the weak consistency con-
figuration - the presented results show the same pattern for
decreased throughput.

Behaviour when transferring reservations Figure 6
shows the latency of individual operations executed in US-
W datacenter in the ad counter application for a workload
where increments reach the invariant limit for multiple coun-
ters. When rights do not exist locally, Indigo cannot mask the
latency imposed by coordination - in this case, for obtaining
additional rights from the remote datacenters.

In Figure 3 we have shown the impact of obtaining a
multi-level lock shared right that requires revoking rights
present in all other replicas. We have discussed this problem
and a possible solution in section 7.3. Nevertheless, it is
important to note that such big impact in latency is only
experienced when it is necessary to revoke shared forbid
rights in all replicas before acquiring the needed shared
allow right. The positive consequence of this approach is
that enroll operations requiring the shared forbid right that
was shared by all replicas execute with latency close to
zero. The maximum latency line in enroll operation shows
the maximum latency experienced when a replica acquires a
shared forbid right from a replica already holding such right.

11 2014/11/8

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1 10 100 1000 10000T
h

ro
u

g
h

p
u

t
[

T
P

/S
e

co
n

d
]

Keys

Indigo
Causal

Figure 4. Peak throughput with in-
creasing contention (ad counter ap-
plication).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 500 1000 1500 2000 2500 3000

L
a

te
n

cy
 [

m
s]

Throughput [TP/s]

Indigo R5-W1
Indigo R5-W2
Indigo R5-W3
Weak R5-W1
Weak R5-W2
Weak R5-W3

Figure 5. Peak throughput with an
increasing number of invariants (ad
counter application).

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120 140 160 180

L
a

te
n

cy
 [

m
s]

Time [seconds]

US-WEST

Figure 6. Latency of individual op-
erations of US-W datacenter (ad
counter application).

8. Related work
Geo-replicated storage systems Many cloud storage sys-
tems supporting geo-replication emerged in recent years.
Some [1, 11, 19, 23, 24] offer variants of eventual consis-
tency, where operations return right after being executed in
a single datacenter, usually the closest one to the end-user to
improve response times. These variants target different re-
quirements, such as: reading a causally consistent view of
the database (causal consistency) [1, 2, 13, 23]; supporting
limited transactions where a set of updates are made visible
atomically [4, 24]; supporting application-specific or type-
specific reconciliation with no lost updates [6, 11, 23, 37],
etc. Indigo is built on top of a geo-replicated store support-
ing causal consistency, a restricted form of transactions and
automatic reconciliation; it extends those properties by en-
forcing application invariants.

Eventual consistency is insufficient for some applications
that require (some operations to execute under) strong con-
sistency for correctness. Spanner [9] provides strong consis-
tency for the whole database, at the cost of incurring coor-
dination overhead for all updates. Transaction chains [43]
support transaction serializability with latency proportional
to the latency to the first replica accessed. MDCC [18] and
Replicated Commit [25] propose optimized approaches for
executing transactions but still incur in intra-datacenter la-
tency for committing transactions.

Some systems tried to combine the benefits of weak and
strong consistency models by supporting both. In Walter
[37] and Gemini [21], transactions that can execute under
weak consistency run fast, without needing to coordinate
with other datacenters. Bayou [38] and Pileus [39] allow op-
erations to read data with different consistency levels, from
strong to eventual consistency. PNUTS [8] and DynamoDB
[36] also combine weak consistency with per-object strong
consistency relying on conditional writes, where a write fails
in the presence of concurrent writes. Indigo enforces ex-
plicit consistency rules, exploring application semantics to
let (most) operations execute in a single datacenter.

Exploring application semantics Several works have
explored the semantics of applications (and data types)
for improving concurrent execution. Semantic types [15]
have been used for building non serializable schedules that

preserve consistency in distributed databases. Conflict-free
replicated data types [34] explore commutativity for en-
abling the automatic merge of concurrent updates, which
Walter [37], Gemini [21] and SwiftCloud [42] use as the ba-
sis for providing eventual consistency. Indigo goes further
by exploring application semantics to enforce application
invariants that can span multiple objects.

Escrow transactions [29] offer a mechanism for enforc-
ing numeric invariants under concurrent execution of trans-
actions. By enforcing local invariants in each transaction,
they can guarantee that a global invariant is not broken.
This idea can be applied to other data types, and it has
been explored for supporting disconnected operation in mo-
bile computing [31, 35, 40]. The demarcation protocol [5] is
aimed at maintaining invariants in distributed databases. Al-
though its underlying protocols are similar to escrow-based
approaches, it focuses on maintaining invariants across dif-
ferent objects. Warranties [14] provide time-limited asser-
tions over the database state, which can improve latency of
read operations in cloud storages.

Indigo builds on these works, but it is the first to pro-
vide an approach that, starting from application invariants
expressed in first-order logic leads to the deployment of
the appropriate techniques for enforcing such invariants in
a geo-replicated weakly consistent data store.

Other related work Bailis et al. [3] studied the possi-
bility of avoiding coordination in database systems and still
maintain application invariants. Our work complements that,
addressing the cases that cannot entirely avoid coordination,
yet allow operations to execute immediately by obtaining the
required reservations in bulk and anticipation.

Others have tried to reduce the need for coordination by
bounding the degree of divergence among replicas. Epsilon-
serializability [32] and TACT [41] use deterministic algo-
rithms for bounding the amount of divergence observed by
an application using different metrics - numerical error, or-
der error and staleness. Consistency rationing [17] uses a sta-
tistical model to predict the evolution of replicas state and al-
lows applications to switch from weak to strong consistency
on the likelihood of invariant violation. In contrast to these
works, Indigo focuses on enforcing invariants efficiently.

12 2014/11/8

The static analysis of code is a standard technique used
extensively for various purposes [7, 12?], including in a
context similar to ours. Sieve [22] combines static and dy-
namic analysis to infer which operations should use strong
consistency and which operations should use weak consis-
tency in a Red-Blue system [21]. In [33], the authors present
an analysis algorithm that describes the semantics of transac-
tions. These works are complementary to ours, and the pro-
posed techniques could be used to automatically infer ap-
plication side-effects. The latter work also proposes an algo-
rithm to allow replicas to execute transactions independently
by defining conditions that must be met in each replica.
Whenever an operation cannot commit locally, a new set
of conditions is computed and installed in all replicas using
two-phase commit. In Indigo, replicas can exchange rights
peer-to-peer.

9. Conclusions
This paper proposes an application-centric consistency model
for geo-replicated services - explicit consistency - where
programmers specify the consistency rules that the system
must maintain as a set of invariants. We describe a method-
ology that helps programmers decide which invariant-repair
and violation-avoidance techniques to use to enforce explicit
consistency, extending existing applications. We also present
the design of Indigo, a middleware that can enforce explicit
consistency on top of a causally consistent store. The results
show that the modified applications have performance sim-
ilar to weak consistency for most operations, while being
able to enforce application invariants. Some rare operations
that require intricate rights transfers exhibit high latency.
As future work, we intend to improve the algorithms for
exchanging reservation rights on those situations.

References
[1] S. Almeida, J. a. Leitão, and L. Rodrigues. Chainreaction:

A causal+ consistent datastore based on chain replication. In
Proceedings of the 8th ACM European Conference on Com-
puter Systems, EuroSys ’13, pages 85–98, New York, NY,
USA, 2013. ACM. ISBN 978-1-4503-1994-2. . URL http:
//doi.acm.org/10.1145/2465351.2465361.

[2] P. Bailis, A. Ghodsi, J. M. Hellerstein, and I. Stoica. Bolt-on
causal consistency. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, SIGMOD
’13, pages 761–772, New York, NY, USA, 2013. ACM. ISBN
978-1-4503-2037-5. . URL http://doi.acm.org/10.
1145/2463676.2465279.

[3] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M. Heller-
stein, and I. Stoica. Coordination-avoiding database systems.
CoRR, abs/1402.2237, 2014.

[4] P. Bailis, A. Fekete, A. Ghodsi, J. M. Hellerstein, and I. Stoica.
Scalable atomic visibility with RAMP transactions. In ACM
SIGMOD Conference, 2014.

[5] D. Barbará-Millá and H. Garcia-Molina. The demarcation
protocol: A technique for maintaining constraints in dis-

tributed database systems. The VLDB Journal, 3(3):325–353,
July 1994. ISSN 1066-8888. . URL http://dx.doi.
org/10.1007/BF01232643.

[6] Basho. Riak. http://basho.com/riak/, 2014. Ac-
cessed Oct/2014.

[7] E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach,
M. Moskal, T. Santen, W. Schulte, and S. Tobies. VCC: A
practical system for verifying concurrent C. In Theorem Prov-
ing in Higher Order Logics, pages 23–42. Springer, 2009.

[8] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein,
P. Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yer-
neni. Pnuts: Yahoo!’s hosted data serving platform. Proc.
VLDB Endow., 1(2):1277–1288, Aug. 2008. ISSN 2150-
8097. URL http://dl.acm.org/citation.cfm?
id=1454159.1454167.

[9] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J.
Furman, S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild,
W. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik,
D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito,
M. Szymaniak, C. Taylor, R. Wang, and D. Woodford. Span-
ner: Google’s globally-distributed database. In Proceedings
of the 10th USENIX Conference on Operating Systems De-
sign and Implementation, OSDI’12, pages 251–264, Berke-
ley, CA, USA, 2012. USENIX Association. ISBN 978-1-
931971-96-6. URL http://dl.acm.org/citation.
cfm?id=2387880.2387905.

[10] L. De Moura and N. Bjørner. Z3: An efficient SMT solver.
In Tools and Algorithms for the Construction and Analysis of
Systems, TACAS ’08, pages 337–340. Springer, 2008.

[11] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: Amazon’s highly available key-
value store. In Proceedings of Twenty-first ACM SIGOPS
Symposium on Operating Systems Principles, SOSP ’07,
pages 205–220, New York, NY, USA, 2007. ACM. ISBN
978-1-59593-591-5. . URL http://doi.acm.org/10.
1145/1294261.1294281.

[12] D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe.
Extended static checking. Technical Report 159, Compaq
Systems Research Center, 12 1998.

[13] J. Du, S. Elnikety, A. Roy, and W. Zwaenepoel. Orbe: Scalable
causal consistency using dependency matrices and physical
clocks. In Proceedings of the 4th Annual Symposium on Cloud
Computing, SOCC ’13, pages 11:1–11:14, New York, NY,
USA, 2013. ACM. ISBN 978-1-4503-2428-1. . URL http:
//doi.acm.org/10.1145/2523616.2523628.

[14] ed Liu, T. Magrino, O. Arden, M. D. George, and A. C. Myers.
Warranties for faster strong consistency. In Proceedings of the
11th USENIX Conference on Networked Systems Design and
Implementation, nsdi’14, Berkeley, CA, USA, 2014. USENIX
Association.

[15] H. Garcia-Molina. Using semantic knowledge for transaction
processing in a distributed database. ACM Trans. Database
Syst., 8(2):186–213, June 1983. ISSN 0362-5915. . URL
http://doi.acm.org/10.1145/319983.319985.

13 2014/11/8

[16] J. Gray and L. Lamport. Consensus on transaction commit.
ACM Trans. Database Syst., 31(1):133–160, Mar. 2006. ISSN
0362-5915. . URL http://doi.acm.org/10.1145/
1132863.1132867.

[17] T. Kraska, M. Hentschel, G. Alonso, and D. Kossmann. Con-
sistency rationing in the cloud: Pay only when it matters.
Proc. VLDB Endow., 2(1):253–264, Aug. 2009. ISSN 2150-
8097. URL http://dl.acm.org/citation.cfm?
id=1687627.1687657.

[18] T. Kraska, G. Pang, M. J. Franklin, S. Madden, and A. Fekete.
Mdcc: Multi-data center consistency. In Proceedings of the
8th ACM European Conference on Computer Systems, Eu-
roSys ’13, pages 113–126, New York, NY, USA, 2013. ACM.
ISBN 978-1-4503-1994-2. . URL http://doi.acm.
org/10.1145/2465351.2465363.

[19] A. Lakshman and P. Malik. Cassandra: A decentralized struc-
tured storage system. SIGOPS Oper. Syst. Rev., 44(2):35–40,
Apr. 2010. ISSN 0163-5980. . URL http://doi.acm.
org/10.1145/1773912.1773922.

[20] L. Lamport. The temporal logic of actions. ACM Trans.
Program. Lang. Syst., 16(3):872–923, May 1994. ISSN
0164-0925. . URL http://doi.acm.org/10.1145/
177492.177726.

[21] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça, and
R. Rodrigues. Making geo-replicated systems fast as pos-
sible, consistent when necessary. In Proceedings of the
10th USENIX Conference on Operating Systems Design and
Implementation, OSDI’12, pages 265–278, Berkeley, CA,
USA, 2012. USENIX Association. ISBN 978-1-931971-96-
6. URL http://dl.acm.org/citation.cfm?id=
2387880.2387906.

[22] C. Li, J. Leitão, A. Clement, N. Preguiça, R. Rodrigues, and
V. Vafeiadis. Automating the choice of consistency levels in
replicated systems. In Proceedings of the 2014 USENIX Con-
ference on USENIX Annual Technical Conference, USENIX
ATC’14, pages 281–292, Berkeley, CA, USA, 2014. USENIX
Association. ISBN 978-1-931971-10-2. URL http://dl.
acm.org/citation.cfm?id=2643634.2643664.

[23] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. An-
dersen. Don’t settle for eventual: Scalable causal consis-
tency for wide-area storage with cops. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Princi-
ples, SOSP ’11, pages 401–416, New York, NY, USA, 2011.
ACM. ISBN 978-1-4503-0977-6. . URL http://doi.
acm.org/10.1145/2043556.2043593.

[24] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. An-
dersen. Stronger semantics for low-latency geo-replicated
storage. In Proceedings of the 10th USENIX Conference
on Networked Systems Design and Implementation, nsdi’13,
pages 313–328, Berkeley, CA, USA, 2013. USENIX Asso-
ciation. URL http://dl.acm.org/citation.cfm?
id=2482626.2482657.

[25] H. Mahmoud, F. Nawab, A. Pucher, D. Agrawal, and
A. El Abbadi. Low-latency multi-datacenter databases us-
ing replicated commit. Proc. VLDB Endow., 6(9):661–672,
July 2013. ISSN 2150-8097. URL http://dl.acm.org/
citation.cfm?id=2536360.2536366.

[26] S. Martin, M. Ahmed-Nacer, and P. Urso. Controlled conflict
resolution for replicated document. In Collaborative Com-
puting: Networking, Applications and Worksharing (Collabo-
rateCom), 2012 8th International Conference on, pages 471–
480, Oct 2012.

[27] S. Martin, M. Ahmed-Nacer, and P. Urso. Abstract unordered
and ordered trees crdt. CoRR, abs/1201.1784, 2012.

[28] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT
and SAT modulo theories: From an abstract davis–putnam–
logemann–loveland procedure to DPLL(T). Journal of the
ACM (JACM), 53(6):937–977, 2006.

[29] P. E. O’Neil. The escrow transactional method. ACM Trans.
Database Syst., 11(4):405–430, Dec. 1986. ISSN 0362-5915.
. URL http://doi.acm.org/10.1145/7239.7265.

[30] A. Pnueli. The temporal logic of programs. In Foundations of
Computer Science, 1977., 18th Annual Symposium on, FOCS,
pages 46–57. IEEE, 1977.

[31] N. Preguiça, J. L. Martins, M. Cunha, and H. Domingos.
Reservations for conflict avoidance in a mobile database
system. In Proceedings of the 1st International Confer-
ence on Mobile Systems, Applications and Services, Mo-
biSys ’03, pages 43–56, New York, NY, USA, 2003. ACM.
. URL http://doi.acm.org/10.1145/1066116.
1189038.

[32] K. Ramamritham and C. Pu. A formal characterization of
epsilon serializability. IEEE Trans. on Knowl. and Data
Eng., 7(6):997–1007, Dec. 1995. ISSN 1041-4347. . URL
http://dx.doi.org/10.1109/69.476504.

[33] S. Roy, L. Kot, N. Foster, J. Gehrke, H. Hojjat, and C. Koch.
Writes that fall in the forest and make no sound: Semantics-
based adaptive data consistency. CoRR, abs/1403.2307, 2014.
URL http://arxiv.org/abs/1403.2307.

[34] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski.
Conflict-free replicated data types. In Proceedings of the 13th
International Conference on Stabilization, Safety, and Secu-
rity of Distributed Systems, SSS’11, pages 386–400, Berlin,
Heidelberg, 2011. Springer-Verlag. ISBN 978-3-642-24549-
7. URL http://dl.acm.org/citation.cfm?id=
2050613.2050642.

[35] L. Shrira, H. Tian, and D. Terry. Exo-leasing: Escrow syn-
chronization for mobile clients of commodity storage servers.
In Proceedings of the 9th ACM/IFIP/USENIX International
Conference on Middleware, Middleware ’08, pages 42–61,
New York, NY, USA, 2008. Springer-Verlag New York,
Inc. ISBN 3-540-89855-7. URL http://dl.acm.org/
citation.cfm?id=1496950.1496954.

[36] S. Sivasubramanian. Amazon dynamodb: A seamlessly scal-
able non-relational database service. In Proceedings of the
2012 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’12, pages 729–730, New York, NY,
USA, 2012. ACM. ISBN 978-1-4503-1247-9. . URL http:
//doi.acm.org/10.1145/2213836.2213945.

[37] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transac-
tional storage for geo-replicated systems. In Proceedings
of the Twenty-Third ACM Symposium on Operating Systems
Principles, SOSP ’11, pages 385–400, New York, NY, USA,

14 2014/11/8

2011. ACM. ISBN 978-1-4503-0977-6. . URL http:
//doi.acm.org/10.1145/2043556.2043592.

[38] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J.
Spreitzer, and C. H. Hauser. Managing update conflicts in
bayou, a weakly connected replicated storage system. In
Proceedings of the Fifteenth ACM Symposium on Operating
Systems Principles, SOSP ’95, pages 172–182, New York,
NY, USA, 1995. ACM. ISBN 0-89791-715-4. . URL
http://doi.acm.org/10.1145/224056.224070.

[39] D. B. Terry, V. Prabhakaran, R. Kotla, M. Balakrishnan, M. K.
Aguilera, and H. Abu-Libdeh. Consistency-based service
level agreements for cloud storage. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Prin-
ciples, SOSP ’13, pages 309–324, New York, NY, USA, 2013.
ACM. ISBN 978-1-4503-2388-8. . URL http://doi.
acm.org/10.1145/2517349.2522731.

[40] G. D. Walborn and P. K. Chrysanthis. Supporting semantics-
based transaction processing in mobile database applications.
In Proceedings of the 14TH Symposium on Reliable Dis-
tributed Systems, SRDS ’95, pages 31–, Washington, DC,
USA, 1995. IEEE Computer Society. ISBN 0-8186-7153-
X. URL http://dl.acm.org/citation.cfm?id=
829520.830874.

[41] H. Yu and A. Vahdat. Design and evaluation of a con-
tinuous consistency model for replicated services. In Pro-
ceedings of the 4th Conference on Symposium on Operat-
ing System Design & Implementation - Volume 4, OSDI’00,
pages 21–21, Berkeley, CA, USA, 2000. USENIX Asso-
ciation. URL http://dl.acm.org/citation.cfm?
id=1251229.1251250.

[42] M. Zawirski, A. Bieniusa, V. Balegas, S. Duarte, C. Baquero,
M. Shapiro, and N. M. Preguiça. Swiftcloud: Fault-tolerant
geo-replication integrated all the way to the client machine.
CoRR, abs/1310.3107, 2013.

[43] Y. Zhang, R. Power, S. Zhou, Y. Sovran, M. K. Aguilera, and
J. Li. Transaction chains: Achieving serializability with low
latency in geo-distributed storage systems. In Proceedings
of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, SOSP ’13, pages 276–291, New York, NY, USA,
2013. ACM. ISBN 978-1-4503-2388-8.

15 2014/11/8

E TOWARDS VERIFYING EVENTUALLY CONSISTENT APPLICATIONS

E Towards Verifying Eventually Consistent Applications

SyncFree Deliverable D.4.1(v1), 17th November 2014, Page 105

Towards Verifying Eventually Consistent Applications

Burcu Kulahcioglu Ozkan Erdal Mutlu Serdar Tasiran
Koç University

{bkulahcioglu,ermutlu,stasiran}@ku.edu.tr

1. Introduction
Modern cloud and distributed systems depend heavily on
replication of large-scale databases to guarantee properties
like high availability, scalability and fault tolerance. These
replicas are maintained in geographically distant locations
to be able to serve clients from different regions without
any loss of performance. Ideally, these systems require to
achieve immediate availability while preserving strong con-
sistency in the presence of network partitions. But unfor-
tunately, the CAP theorem [1] proves that it is impossible
to have all these properties together in a distributed sys-
tem. For this reason, architects of current distributed sys-
tems frequently omit strong consistency guarantees in favor
of weaker forms of consistency, commonly called eventual
consistency[2].

The basic guarantee that eventual consistency model pro-
vides, is that: “if all update requests stop, after a period of
time all replicas of the database will converge to be logi-
cally equivalent”[3]. Today “eventual consistency” became
a common term for proposed different forms of weak con-
sistency models [4–7]. Each of these work proposes consis-
tency models that provides different weak guarantees and
features. With the absence of a uniform specification formal-
ism on the eventual consistency guarantees, the development
and usage of eventually consistent systems became very
challenging for the programmers. There are different solu-
tions proposed for making weak consistency model more
programmer-friendly. While solutions like [7, 8] try to de-
fine new replicated data types for programming weak con-
sistency, other solutions [4, 9] try to solve the same problem
by defining new programming languages and programming
models. These solutions try to solve the programmability is-
sues by hiding some of the non-determinism exposed by the
eventual consistency models. The main sources of the non-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PAPEC’14, April 13-16, 2014, Amsterdam, Netherlands.
Copyright c© 2014 ACM 978-1-4503-2716-9/14/04. . . $15.00.
http://dx.doi.org/10.1145/2596631.2596638

determinism in such systems are the asynchronous message
passing and the weak guarantees. Depending on the guar-
antees given by the weak consistency models, there can be
inconsistencies among replicas. These different sources of
non-determinism make the problem more challenging than
shared-memory concurrent programs and general message-
passing programs. In the presence of such different sources
of non-determinism, it is important to provide good debug-
ging and verification tool support to the programmers.

In this proposal, we aim to investigate application level
specifications and develop verification techniques (both
static and dynamic) for applications running on eventually
consistent systems and using replicated data types.

2. Motivation
Due to relaxed guarantees of eventual consistency, appli-
cations running on such systems allow for a wider set of
program behaviors than a traditional application running on
strong consistency. Depending on the nondeterminism in-
duced by consistency level, an operation can/cannot see the
updates of its own session, may read and operate on stale
data or may receive concurrent updates in different order-
ings. Thus, application programmers should take into ac-
count different possible execution scenarios that can happen
in eventually consistent systems.

Consider a business-to-business e-commerce application
which allows its clients (stores) to view catalogs of prod-
ucts and place orders. The application can be accessed us-
ing computers or mobile devices and it is built on top of an
eventually consistent system. In addition to high availability,
supporting eventual consistency enables store employees to
place orders even if his device is in offline mode. The ap-
plication aims to guarantee that: (i) If the product is out of
stock, the client will be informed and no shipping will be
processed (ii) The budget of a client is updated after each
shipment (iii) If an order is cancelled, neither shipment nor
budget update is performed. (iv) Every order submitted to
the system is eventually processed (v) The quantity of a
product in stock is always non-negative. (vi) The budget of
a client is always non-negative.

Writing specification (i.e. invariants, assertions etc.) for
applications running on eventually consistent distributed
systems is non-trival. An application such as the one ex-

plained above, will contain different implementation levels
(i.e client-side, server-side) which will make it challenging
to write specifications. Figure 1 shows a general model for
the application interactions between different implementa-
tion layers. Depending on the specification of the applica-
tion, different properties can be checked on different im-
plementation levels and on different variables. For instance,
properties related to single client can be checked with local
variables on client level whereas application wide proper-
ties have to be defined over the eventual global variables on
database or server level.

Figure 1. Different implementation layers in an application
for eventually consistent systems

Using the specification language provided by the state-of-
the-art programs verification tools, we can attempt to write
application specifications as follows (assuming each client
and order has unique ids):

(i) If the product is out of stock, the client will be informed
and no shipping will be processed. This can be stated as
a post-condition to processOrder:
(ensures checkStock(o.qty) ≤ 0 =⇒
clientInformed[o] && !orderShipped[o])

(ii) The budget of a client is updated after each shipment.
This can be stated as a post-condition to makeShipment:
(ensures orderShipped[o] =⇒ clientBudget[o.client]
== (old(clientBudget[o.client])− o.totalCost))

(iii) If an order is cancelled, neither shipment nor budget
update is performed. As a post-condition to cancelOrder:
(ensures orderCancelled[o] =⇒ (clientBudget[o.client]
== old(clientBudget[o.client]))&&!orderShipped[o])

(iv) Every order submitted to the system is eventually pro-
cessed. (Note that the following statement cannot express
eventuality.)
(invariant ∀Order o; o.id =⇒ processed[o])

(v) The quantity of a product in stock is always non-
negative.
(invariant ∀ Product p; stockQty[p] ≥ 0)

(vi) The budget of a client is always non-negative.
(invariant ∀ Client c; clientBudget[c] ≥ 0)

However, these specifications are not expressive enough
to state the necessary information on the properties that an

eventually consistent application must satisfy. It is not clear
in these specifications whether they are stated on the replica-
local state or eventual global state. For instance, some appli-
cations may keep some data in the client layer (see Figure 1)
and its operations can specify restrictions on client state. On
the other side, some specifications must hold on to the even-
tual global state reached in the server layer. Similarly, an
application may have seperate invariants for local and global
states, that need to hold in specific cases. Besides, it might
be helpful for a specification to make use of some ghost vari-
ables that does not exist in the programmer’s code but appear
in the program annotations. As given in the specifications (ii)
and (iii), the interpretation of old(variable) indicating the
value of a data object before an operation is also not clear
in the eventually consistent setting. Another point is that the
requirements specifying a liveness property of eventual pro-
cessing such as (iv) cannot be represented in such program
verification specification languages. A spefication language
of a verification tool for eventually consistent systems needs
to be extended so that it is capable of stating expressions
vital for eventually consistent applications.

While developing such an eventually consistent applica-
tion, the programmer should consider many non-trivial cases
that may arise from the eventual transmission of the updates.
For instance, he should define how the system behaves (i)
when a client who has not received the shipment information
yet, cancels an order or (ii) when a store employee makes an
order in offline mode and the order is duplicated by another
employee or (iii) two concurrent orders processed success-
fully in the replicas they are submitted to, but their sum ex-
ceeds the number of available products in stock. Some se-
quence of operations might require the use of (eventually
consistent) transactions to provide isolation and atomicity.
Furthermore, there might be critical operations (such as up-
dating the store budget) that might need stronger guarantees
(main copy for updating some replicated data objects or pro-
viding stronger consistency levels for some specific opera-
tions, etc.).

The nondeterminism in eventual consistency models
makes it harder to reason whether a program behaves as
intended. Moreover, eventual consistency is a novel concept
and programmers are not used to think in this relaxed seman-
tics. Therefore, there is a need for verification of application-
level guarantees of such programs.

3. Our Approach
The example system in Section 2, shows that there are many
questions to consider in the design of an eventually consis-
tent application and hence a wide range of properties that an
application must satisfy. Yet, the concept of eventual consis-
tency is too broad and it is not explicit how to specify these
properties.

Based on this example system and the discussion of its
specifications, we aim to investigate (i) how to state these ap-

plication specifications(including assertions, invariants, and
temporal specifications) and how to interpret their seman-
tics (ii) how we can build static and dynamic techniques for
verifying given application specifications.

We plan to represent the eventual consistency model
presented in [13] in a formal specification written using
a programming-language-like formalism (such as PlusCal
(+CAL) [14], TLA+ [15], Boogie [16], VCC’s input lan-
guage of annotated C [20], or Spec# [18]). This formal rep-
resentation will then set a common basis for the development
of dynamic and static tools for the eventually consistent ap-
plications.

Dynamic verification tools aim to verify the correctness
of a program under test with respect to its specifications by
exploring the execution space and observing its behaviors.
Different than testing, dynamic verification techniques em-
ploy efficient model checking algorithms over the possible
execution space. There are different approaches proposed to
systematically [10, 11] or randomly [12] explore this execu-
tion space efficiently.

In this proposal, we aim to build a dynamic verification
tool for characterizing and exploring possible behaviors of
programs written for eventually consistent systems using
replicated data types. We plan to build our dynamic verifi-
cation technique upon a formal mathematical representation
of the formalization and specifications defined for eventually
consistent systems and replicated data types in [13]. With
such a mathematical representation, we can make the as-
sumption of having a correct implementation of the eventu-
ally consistent system and replicate data types. Than, we will
employ a systematical testing algorithm (i.e. CHESS [10])
for exploring all possible execution order of an input pro-
gram.

Static verification tools analyze the source code of the
program without compiling or executing it. The state-of-the-
art powerful verification tools [17–20], use deductive meth-
ods that take a program together with its specification, gen-
erate verification conditions (in the form of first order logi-
cal statements) and prove given specifications using theorem
provers.

Our proposal to build a static verification tool for even-
tually consistent applications will base on constructing a
mechanism on top of an existing tool (which is unaware
of eventual consistency) so that it can reason on and detect
problems in eventually consistent programs with replicated
data types. This requires to encode the semantics of the sys-
tem (formalized by a mathematical language) so that the ab-
stracted system models all possible executions with respect
to the system’s consistency guarantees. Then, the tool will
verify whether a user program satisfies the necessary specifi-
cations considering all possible concurrent operations. This
approach is successfully applied for the transactional sys-
tems running under relaxed semantics such as snapshot iso-
lation [21].

References
[1] Brewer, E. A.: Towards robust distributed systems. In: Proc.

PODC ’00. ACM, New York, USA. (2000)

[2] Terry, D., Theimer, M., Petersen, K., Demers, A., Spreitzer,
M., Hauser, C.: Managing update conflicts in bayou, a weakly
connected replicated storage system. SIGOPS Oper. Syst. Rev.
29. (1995)

[3] Kawell Jr., L., Beckhardt, S., Halvorsen, T., Ozzie, R., Greif,
I.: Replicated document management in a group communication
system. In: Proc. the 1988 ACM Conference on Computer-
supported Cooperative Work: 395. (1988)

[4] Conway, N., Marczak, W.R., Alvaro, P., Hellerstein, J.M.,
Maier, D.: Logic and lattices for distributed programming. In:
Proc. SoCC’12. ACM, NY, USA (2012)

[5] Decandia, G., Hastorun, D., Jampani, M., Kakulapati, G.,
Lakshman, A., Pilchin, A., Sivasubramanian, S., Vosshall, P.,
Vogels, W.: Dynamo: amazons highly available key-value store.
In: Symposium on Operating Systems Principles. (2007)

[6] Lloyd, W., Freedman, M. J., Kaminsky, M. and Andersen, D.
G.: Don’t settle for eventual: scalable causal consistency for
wide-area storage with COPS. In: Proc. SOSP ’11. ACM, New
York, NY, USA. (2011)

[7] Shapiro, M., Preguia, N., Baquero, C., Zawirski, M.: Conflict-
free replicated data types. In: Proc. SSS’11. Springer-Verlag,
Berlin, Heidelberg. (2011)

[8] Burckhardt, S., Fhndrich, M., Leijen, D., and Wood, B. P.:
Cloud types for eventual consistency. In: Proc. ECOOP’12.
Springer-Verlag, Berlin, Heidelberg. (2012)

[9] Alvaro, P., Conway, N., Hellerstein, J., Marczak, W.: Consis-
tency analysis in Bloom: a CALM and collected approach. In
CIDR’11. Asilomar, CA, USA.(2011)

[10] Musuvathi, M., Qadeer, S., and Ball, T.: CHESS: A System-
atic Testing Tool for Concurrent Software. Tech. Rep. MSR-TR-
2007-149, (2007).

[11] Godefroid, P.: Model Checking for Programming Languages
Using VeriSoft. In: Proc. POPL ’97, ACM, New York, USA.
(1997)

[12] Burckhardt, S., Kothari, P., Musuvathi, M., Nagarakatte, S.:
A randomized scheduler with probabilistic guarantees of finding
bugs. ASPLOS XV, ACM (2010)

[13] Burckhardt, S., Gotsman, A., Yang, H.: Understanding
Eventual Consistency. Tech. Rep. MSR-TR-2013-39. (2013)

[14] L. Lamport. The +cal algorithm language. In Network
Computing and Applications, 2006. NCA 2006. Fifth IEEE
International Symposium on, pages 5–5, July 2006. .

[15] Leslie Lamport. Tla in pictures. IEEE Trans. Software Eng.,
21(9):768–775, 1995.

[16] Barnett, M., Chang, B.E., DeLine, R., Jacobs, B., Leino,
K.R.M. Boogie: A Modular Reusable Verifier for Object-
Oriented Programs. In Formal Methods for Components and
Objects, 4th International Symposium, FMCO (2005)

[17] Flanagan, C., Leino, K.R.M., Lillibridge, M., Nelson, G.,
Saxe, J.B., Stata, R.: Extended static checking for Java. In: PLDI
02, New York, NY, USA, ACM Press. (2002)

[18] Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# pro-
gramming system: an overview. In: Proceedings of the 2004
international conference on Construction and Analysis of Safe,
Secure, and Interoperable Smart Devices. CASSIS04, Berlin,
Heidelberg, Springer-Verlag. (2005)

[19] Fahndrich, M.: Static verification for code contracts. In:
Proceedings of the 17th international conference on Static
analysis. SAS10, Berlin, Heidelberg, Springer-Verlag. (2010)

[20] Dahlweid, M., Moskal, M., Santen, T., Tobies, S., Schulte,
W.: Vcc: Contract-based modular verification of concurrent C.
In: ICSECompanion 2009. (2009)

[21] Kuru, I., Kulahcioglu Ozkan, B., Mutluergil, S.O., Tasiran,
S., Elmas, T., Cohen, E.: Verifying Programs under Snapshot
Isolation and Similar Relaxed Consistency Models In: 9th ACM
SIGPLAN Workshop on Transactional Computing. (2014)

	Executive summary
	Milestones in the Deliverable
	Contractors contributing to the Deliverable
	UCLouvain
	Basho
	Koç
	KL
	Nova
	INRIA

	Programming model
	Overview
	Deterministic dataflow programming
	Concurrent constraint programming
	Deterministic dataflow model

	Derflow: distributed deterministic dataflow in Erlang
	Semantics of Derflow
	Distribution model
	Programming examples in Derflow

	DerflowL : an extension of Derflow for CRDT programming
	Generalization to lattice variables
	Running applications at the replicas
	Separation of layers

	The ad counter use case in DerflowL
	Installation and configuration of Derflow and DerflowL
	Prerequisites
	Obtaining and Building Derflow
	Testing and Program Execution

	Specification
	Overview
	Sequential specifications
	Adapting sequential specifications to concurrent settings

	Concurrent specifications
	Axiomatic specifications
	Operational specifications

	Relating sequential and concurrent specifications
	Assertions and invariants
	Future work

	Verification
	Overview
	Describing CRDTs in TLA+
	Describing applications in TLA+
	The Advertisement Counter application
	The Virtual Wallet application

	Verification using TLA+ model checking
	Conclusions
	Future work

	Ensuring invariants with explicit consistency
	Overview
	Formalization approach
	Illustrating example: a tournament application
	Enforcing explicit concurrency
	Indigo middleware
	Fault tolerance
	Experimental evaluation
	Conclusions

	Papers and publications
	Derflow: Distributed Deterministic Dataflow Programming for Erlang
	Eventual Consistency and Deterministic Dataflow Programming
	Formal Specification and Verification of CRDTs
	Putting Consistency Back into Eventual Consistency
	Towards Verifying Eventually Consistent Applications

