
Project no. 609551
Project acronym: SyncFree
Project title: Large-scale computation without synchronisation

European Seventh Framework Programme

ICT call 10

Deliverable reference number and title: D.3.2
Protocols for divergence control and QoD

Due date of deliverable: October 1, 2015
Actual submission date: September 29, 2015

Start date of project: October 1, 2013
Duration: 36 months
Name and organisation of lead editor
for this deliverable: INRIA
Revision: 0.1
Dissemination level: CO

SyncFree Deliverable D.3.2(v0.1), September 29, 2015



CONTENTS

Contents

1 Executive Summary 1

2 Milestones in the Deliverable 3
2.1 Status of Task 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Contractors Contributing to the Deliverable 5
3.1 KL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 INRIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 Louvain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.4 Nova . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.5 Basho . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Results 6
4.1 Quality-of-Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.1.1 Requirements in Use Cases . . . . . . . . . . . . . . . . . . . 6
4.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.1.3 Divergence Estimation: Deterministic Metrics . . . . . . . . 12
4.1.4 Divergence Control . . . . . . . . . . . . . . . . . . . . . . . 18
4.1.5 Divergence Estimation: Probabilistic Metrics . . . . . . . . . 21
4.1.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1.7 Evaluating Divergence Algorithms . . . . . . . . . . . . . . . 23
4.1.8 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.1 Enforcing Numeric Invariants . . . . . . . . . . . . . . . . . 29
4.2.2 Explicit Consistency . . . . . . . . . . . . . . . . . . . . . . 29
4.2.3 Explicit Consistency with Invariant-repair . . . . . . . . . . 33

4.3 Extensions to Works Previously Reported . . . . . . . . . . . . . . 37

5 Publications and presentations 40

A Estimating Probabilistic Divergence Metrics 45
A.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
A.2 System Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
A.3 Divergence Assessment . . . . . . . . . . . . . . . . . . . . . . . . . 45
A.4 Counters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

A.4.1 Direct Estimation . . . . . . . . . . . . . . . . . . . . . . . . 47
A.4.2 Probabilistic Estimation . . . . . . . . . . . . . . . . . . . . 47
A.4.3 Example: Poisson Distribution . . . . . . . . . . . . . . . . . 49

B Published papers 50
B.1 Paulo Sérgio Almeida, Ali Shoker, Carlos Baquero. Efficient State-

based CRDTs by Delta-Mutation. In Proc. NETYS 2015, 2015.
Springer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

B.2 Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues,
Nuno Preguiça, Mahsa Najafzadeh, Marc Shapiro. Putting Consis-
tency Back into Eventual Consistency. In Proc. EuroSys’15. . . . . 66

SyncFree Deliverable D.3.2(v0.1), September 29, 2015, Page 2



CONTENTS

B.3 Valter Balegas, Diogo Serra, Sérgio Duarte, Carla Ferreira, Rodrigo
Rodrigues, Marc Shapiro, Nuno Preguiça. Extending Eventually
Consistent Cloud Stores for Enforcing Numeric Invariants. In Proc.
SRDS’15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

B.4 Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues,
Nuno Preguiça, Mahsa Najafzadeh, Marc Shapiro. Towards Fast
Invariant Preservation in Geo-replicated Systems. SIGOPS Oper.
Syst. Rev. 49, 1 (January 2015), 121-125. ACM. . . . . . . . . . . . 90

B.5 Manuel Bravo, Paolo Romano, Lúıs Rodrigues, and Peter Van Roy.
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1 EXECUTIVE SUMMARY

1 Executive Summary

The SyncFree project aims to enable trustworthy large-scale distributed applications
in geo-replicated settings. The core concepts are replicated yet consistent data types
(CRDTs) which allow information dissemination and sharing without the need for
global synchronization.

Within the project, Work Package 3 (WP3) coordinates the work on extending
the safety, quality and security guarantees provided by a system that uses minimal
synchronisation. The goal of the second task, Divergence control and quality-of-data
is to research how to address the problems that arise from divergence among replicas,
i.e., the fact that at some given moment different replicas may have seen different
subsets of updates and have a different state. To address these problem, this task
is expected to provide Quality-of-Data (QoD) metrics such as an estimate of the
amount of divergence, bound the divergence of replicas, or provide mechanisms for
ensuring that global invariants are preserved in the presence of concurrent updates.

The specific requirements addressed in our work were driven mostly by the use
cases studied in WP1, but also from previous experience of the project partners,
both industrial and academic. We now briefly overview the results achieved during
the reporting period. Some of the works are not completed as WP 3.2 runs until
M30.

Quality-of-Data In a truly synchronization-free system, replicas can be mod-
ified without coordination. Thus, at any moment, the state of some replica might
not reflect all the updates that have been performed in the system.

In this period, we have proposed metrics for measuring the divergence of a given
replica using deterministic and probabilistic methods. We have further proposed
an API that application would use for accessing the collected information. We are
currently in the process of evaluating the proposed algorithms for estimating the
value of each metric using a simulator developed for this specific purpose. This
simulator allows to compare the value estimated with the actual value if all updates
were known, thus allowing to evaluate how close the proposed algorithms are able
to approach the reality.

For our simulations we are using anonymized logs of real use from Rovio and
from Moodle. We expect to conclude our work until M30, when task 3.2 ends.

Invariants Although a large number of application can work correctly under
weak consistency models, other applications need to maintain strong invariants that
cannot be enforced using such models.

In this period we have extended our work for maintaining generic invariants
expressed using any first-order logic. These extensions affected every step of the
approach, namely, the static analysis for detecting operations that can break invari-
ants and the reservation system used to enforce such invariants [4]. In a connected
work, jointly with WP4, a methodology for proving that a given reservation system
enforces invariants in a system was developed [14].

We have also started working on an approach to maintain invariants by repair-
ing conflicts [5]. Our approach is based on modifying operations beforehand for
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1 EXECUTIVE SUMMARY

guaranteeing that an invariant violation will not arise when operations are exe-
cuted concurrently by leveraging the automatic resolution rules of CRDTs. This
approach further reduces the need for coordination for some classes of invariants.

In this period we have also integrated our design for maintaining numeric in-
variants over a single object in Antidote and integrated these objects in Antidote’s
transactional model.

Extensions to Works Previously Reported During this period, as planned,
we have also start working on security (as part of Task 3.3). We have proposed an
initial algorithm for managing access control information and enforcing access con-
trol. This proposal addresses only a limited setting and will be extended in the
next period.

A number of works that started being developed in the context of Task 3.1
have continued during this period, some of them leading to publications. The most
relevant works, some of them being developed jointly with other Work Packages,
include improvements to: (i) the model of CRDTs with delta-mutations [1] for ef-
ficient synchronization; (ii) the model of conflict-free partially replicated data types
for partially caching large objects [12]; (iii) mechanisms for minimizing conflicts in
transactions over partitioned data [11]; and (iv) fundamental techniques for tracking
causality [13] and transferring information [26].

Basho has also been addressing the problems posed by CRDTs in terms of
efficiency, as identified in the context of the Riak database. One of the ideas being
explored is using delta-mutations. Some of the solutions being developed will also
be used in Antidote.
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2 MILESTONES IN THE DELIVERABLE

2 Milestones in the Deliverable

WP3, task 2 has the following milestone, shared with other work packages:

Mil. no Mil. name Date due Actual date Lead contractor
MS1 MS2 Extended guar-

antees and composi-
tion in a dynamic en-
vironment

M24 M24 INRIA

Task 3.2 has contributed to this milestone (and produced research to be included
in following milestones) by focusing on the following goals, as stated in the project
proposal:

This deliverable will report on the protocols for divergence control and
Qo.D. This deliverable includes protocols for decentralised invariant
preservation and divergence control. Synchronisation-freedom comes at
the price of divergence among replicas. While many applications can
work properly in this context, others require additional information,
e.g., Quality-of-Data (QoD) metrics such as an estimate of the amount
of divergence, or bounding the divergence, or ensuring global invari-
ants. Compared to previous work [8, 50, 122], extreme-scale replication
poses new challenges, both in the definition of divergence metrics and in
the scalability of the divergence measurement and control algorithms.
We will identify sub-classes of CRDTs according to the guarantees they
provide, and formally analyse the degree of synchronisation that these
sub-classes require. We will also explore the design space of CRDTs and
associated protocols for efficiently preserving global invariants, from us-
ing decentralised solution such as escrow, reservation, and exo-leasing
[74, 82], to solutions that use some synchronisation. The main challenge
is to push the limits of the efficiency of the implementation of CRDTs
and supporting systems for various classes of invariants, and the seam-
less integration of different solutions in the same platform. [month 18]

2.1 Status of Task 3.2

Task 3.2 is planned to run from M07 to M30. When making the plan of the project,
we anticipated that in the context of this task, the work on Quality-of-Data (QoD)
metrics would be complete before the work on invariants. Thus, we expected deliv-
erable 3.2, due on M18, to focus primarily on QoD, with invariants being reported
in deliverable 3.3 (Protocols for invariant preservation and security).

In the course of the project, we ended up being able to make progress on the work
related with invariants more quickly than on the QoD. One of the main problems
related with the work on QoD was the fact that we could only access real logs very
recently – e.g. Rovio logs have been made available in July only. There has been
several reasons for this delay, the most important of which the need to go through
legal departments to obtain the necessary authorizations to collect and annonymize
real user traces.
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2 MILESTONES IN THE DELIVERABLE

The delay of deliverable 3.2 to month 24 has not allowed to complete the work
on QoD. In this report, we present our proposals for QoD metrics, but we have still
not been able to test them against real logs. We expect that in this process, our
proposals will evolve. This work will be report in the following period.
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4 RESULTS

4 Results

This section presents the results obtained in WP3, during the reporting period. We
organize the results in three groups: Quality of data (§ 4.1), discussing the work on
providing information on divergence among replicas; Invariants (§ 4.2), detailing
how to enforce invariants while minimizing the required coordination; and Other
works (§ 4.3), describing extensions to works preciously reported.

4.1 Quality-of-Data

We now describe the work on providing information on divergence among replicas.
We start by overviewing the requirements in the use cases identified in WP1 and
related work. Later, we propose a set of deterministic and probabilistic divergence
metrics that can be used to address the previously identified requirements (and other
general cases). We finally, describe the simulation software we have developed for
evaluating our proposals and a plan to integrate selected metrics in Antidote.

4.1.1 Requirements in Use Cases

Our incentive behind measuring and controlling divergence is motivated by three
of the use cases offered by our industrial partners in Deliverable D.1.1: The Ad
Counting Service (from Rovio), the medical Centralized National Medications and
Drug Treatment System “FMK” (from Trifork), and the Music Festival App (also
from Trifork). We first overview the concrete use cases, describing their relevance
to the subject; and then we discuss other possible use cases.

4.1.1.1 Ad Counting Service In this service, a distributed Ad-Counter (AC)
is used to count the number of times an ad is impressed. For low latency and avail-
ability, this information is maintained in multiple data centers (DCs) and servers.
In general, each ad is shown in different markets or countries such that the sum of
impressions should not exceed a maximum number N . This could be seen as an
invariant that the system should not violate.

Since the system uses eventual-consistency (EC) to improve availability, it is
possible that an ad ends up being displayed more than N times. In this application,
availability and low latency is of foremost importance and exceeding N with a small
number of ads n is tolerated. Thus, controlling divergence by requiring coordination
among remote replicas, leading to high latency, should be avoided. Measuring the
divergence and estimating the number of times an ad has been impressed can help
keeping n small.

4.1.1.2 Centralized National Medications and Drug Treatment System
(FMK) In FMK system, a medical profile is shared among different health in-
stitutions (hospitals, health centers, pharmacies, etc.). The problem occurs when
a patient visits an institution that prescribes a drug for him and, within a short
period, another institution gives him another drug that may cause some conflicts
with the first one; this can take place if different institutions are not sufficiently
synchronized or when failures occur.
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4 RESULTS

A typical example is when a doctor prescribes a drug, the prescription should
be in the pharmacy system before the patient arrive at the pharmacy to pick up
the medicine. In practice, this at least takes a couple of minutes, and thus the
system can be engineered accordingly. However, in the presence of faults or network
partitions this no longer holds.

Therefore, it would be very useful to have an indication on how divergent the
different components are for a given patient. When a doctor sees a patient’s data,
it is interesting to know if the latest data from, for instance, a hospital is present.
In the case when data is delayed (which is frequent in this use-case) from the
(unbounded) set of peripheral client-systems, ideally, it would be interesting for all
relevant components to tell when they last synchronized data for a given patient.
The previous measurement are deterministic metrics that can be collected from the
system.

For the technical staff that maintains this system, an interesting metric would
be to have some information about the status of the synchronization process with
client-systems. In this case, having some aggregate measures of how many updates
the client has not seen and has not propagated would be important. To this end,
and to be able to provide some information during failure and partitions, it seems
that it would be necessary to rely on probabilistic divergence metrics.

4.1.1.3 Music Festival App The Music Festival App is a peer-to-peer software
that is used in public events and festivals where visitors can actively share their
experience (comments, recommendations, like/dislike) with others. Since Internet
may not be available for all visitors, this program uses all available networking
mechanisms, including WiFi and Bluetooth. This requires the application to work
in offline mode. The problem is that the results of segregated groups (e.g., those of
Bluetooth or WiFi) are not necessarily consistent, which can give biased results.

In this application, measuring divergence is challenging since the latency among
devices in offline mode is high. The reason is that people need to enable synchroniza-
tion in their apps and the information needs to be propagated and collected through
peer-to-peer interactions that occur spontaneously. A useful practical measurement
of measurement could be number of nodes synchronized within a period of time.
Relying on probabilistic metrics, in which a node estimates the divergence based
on a model of how other nodes behave might also be interesting.

As for divergence control, there should be no limits to the allowable divergence in
this application, but a notification or a warning is preferred if the centrally pushed
information is out of date.

4.1.1.4 Summary and discussion From the above use cases, it is clear that
providing deterministic divergence metrics based on time or number of operations
are useful is some cases. In general, deterministic metrics, that result from mea-
surements in (possibly multiple) nodes, can be useful for many applications and to
monitor and control the system.

These metrics also serve as the basis of probabilistic divergence estimation in
which a node estimates the evolution of remote nodes without contacting them.
These metrics are useful to minimize communication and provide information in
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4 RESULTS

the presence of failures and disconnections. Although these metrics are not exact,
they can help monitoring the behavior of a given system and aid in decision making.

The use cases studied do not recommend strictly controlling the divergence
relying on coordination among multiple replicas, since trading off availability and
increasing latency is not an option. However, it is known that a large number
of applications require maintaining global invariants that require controlling the
divergence among replicas. Our work on maintaining invariants is presented in
Section 4.2.

We note that divergence metrics may have different uses. First, this information
can be used for providing information to applications on the quality of data they are
accessing. The application is then responsible to use this information for providing
the best possible service to users. Second, this information can be used by users
that monitor and control a replicated systems to identify potential malfunction.
For example, if replica divergence deviates from historical values it is possible that
there might be some malfunction due to dome failure or unexpected load. Finally,
divergence information can be used internally by the system to automatically start
action in an autonomic way. We are currently only focusing on providing collecting
divergence information and bounding this divergence, with particular focus on guar-
anteeing that by bounding divergence it is possible to maintain global application
invariants.

4.1.2 Related Work

A number of works previously addressed the problem of providing information about
divergence and controlling this divergence. We now overview related works.

In systems that use eventual consistency, it may be interesting that some objects
are more up to date than others. Also, clients may perform operations on some
objects, while being disconnected from a server, which results in higher divergence
among replicas. In such systems, an interesting approach is to bound the divergence
between replicas, with regard to some property of the system.

There are two basic approaches in limiting divergence between replicas:

• Computing the divergence between replicas, through the use of metrics. The
divergence can then be bounded, by guaranteeing that the value for each
metric does not vary more than a certain threshold.

• Clients can obtain reservations that allow them to guarantee that certain
conditions will hold when all updates are merged. When connected, clients
ask for a reservation for a given object. They can then perform operations on
the object when disconnected with the guarantee that some constraints will
hold.

4.1.2.1 Metrics Systems that use this approach, rely typically on three metrics
to measure divergence: one for the order of operations, one for the value of data,
and one for staleness [30, 24].

• Order of updates refers to the number of updates that were not applied to
a replica. The higher the value of this metric, the more updates from other
replicas may be seen out of order.
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• Value refers to the difference in the contents of an object between replicas,
or when compared to a constant. The higher the value, the largest can be
the difference from the observed value and the correct value computed after
merging all unreceived updates.

• Staleness refers to the maximum time a replica may be without being refreshed
with the latest value. In other words, it limits the staleness of data.

These metrics can be used only to provide information on divergence or in a
system that bounds the divergence. In this case, for each metric, an application
can specify the limits of divergence.

Bounding each metric must be performed with a specific algorithm. We note
that bounding these metrics to 0 makes the system guarantee strong consistency,
since no updates are lost, objects are always at their freshest value at all replicas, and
data is never stale, so clients always get a consistent view of the system. Reversely,
bounding them to infinity, grants full relaxed consistency.

4.1.2.2 Reservations Reservations are typically used in systems where clients
have a need to perform operations while disconnected from the server. Reservations
are (leased) locks for some operations on a given object that clients can obtain while
connected to the server [20, 21]. These reservations guarantee a priori that the
result of the operations made will be successful for the client who obtained them,
avoiding the need for conflict resolution.

Several types of reservations have been proposed in literature [20, 10, 21, 27],
each providing different guarantees:

• Escrow reservations provide the exclusive right to use a share of a partitionable
resource represented by a numerical data item (or fragmentable object [28]).

• Value-change reservations provide the exclusive right to modify the state of
an existing data item (i.e., a subset of columns in some row).

• Slot reservations provide the exclusive right to insert/remove/modify data
items that satisfy a given condition.

• Value-use reservations provide the right to use a given value for some data
item (despite its current value).

We now survey some systems that address the problem of Quality-of-Data.

4.1.2.3 Consistency Through Operation Restriction
The escrow transaction model [20] was first introduced for permitting updates

by long-lived transactions without forbidding simultaneous access by other users to
the same data items. The key idea is to split the resources associated with a data
item, allowing them to be used by concurrent transactions.

This model has been later used for allowing mobile clients to execute operations
during periods of disconnection [17], based on a client/server architecture. The idea
of escrow transactions has been later extended in systems that use a client/server
architecture [21] and peer-to-peer architecture [27].
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The demarcation protocol [10] is aimed at maintaining invariants in distributed
databases. Although its underlying protocols are similar to escrow-based approaches,
it focuses on maintaining invariants across different objects. Warranties [19] provide
time-limited assertions over the database state, which can improve latency of read
operations in cloud storages.

These works are closer to the problem of invariant maintenance than simply of
providing information about the Quality-of-Data.

4.1.2.4 Bounded divergence

TACT TACT is a middleware system that bounds the rate of inconsistent
accesses to an underlying data store [30]. TACT mediates read/write accesses to
the data store, based on consistency requirements, executing them locally if no con-
straints are violated, or waiting to contact other remote replicas for synchronization.
TACT relies on a basic data abstraction, a conit, and on a set of metrics. Conits
are used to specify consistency requirements, and the metrics are bounded in order
to achieve those requirements.

Each application defines the granularity of its conits and what metrics to bound
according to the applications’ semantics and their consistency needs. The defined
metrics are Numerical Error (NE), Order Error (OE), and Staleness. Numerical
error limits the total weight of writes that can be applied across all replicas before
being propagated to a given replica. Order error limits the number of tentative
writes (subject to reordering) that can be outstanding at any one replica, and
staleness places a real-time bound on the delay of write propagation among replicas.

Bounding all metrics to 0 guarantees strong consistency, while bounding to
infinity provides optimistic replication only. Bounding NE is achieved by pushing
updates to other replicas and OE by pulling updates from other replicas. The
decision on what to push or pull is based only on the state of the replica they
are running on. Staleness is bound using real-time vectors. Even if bounding
divergence might not be interesting in many of the use cases, the defined metrics
(and adaptations) can be used in our work.

Mobihoc Mobihoc is a middleware implemented to support the design of mul-
tiplayer distributed games for ad-hoc networks, and provides Vector-Field Consis-
tency (VFC) [24]. It has a client-server architecture where the node coordinates
write-locks, propagation of updates and VFC enforcement. VFC is an optimistic
consistency model that allows bounded divergence of the object replicas. VFC se-
lectively and dynamically strengthens or weakens replica consistency based on the
ongoing game state. Each object has a view of the system, and for that view, it
is a pivot object. The consistency degree is then stronger for objects in a certain
range, and grows weaker the “further” an object is from the pivot.

In VFC, consistency degrees are defined as a vector. These vectors have three
dimensions (as in TACT): time, that specifies the maximum time a replica can be
without being refreshed with the latest value; sequence, that specifies the maximum
number of lost replica updates; and value, which specifies the maximum relative dif-
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ference between replica contents, or against a constant. This vector is the maximum
divergence allowed for objects in that view.

In Mobihoc, each node keeps local replicas of all objects. The server has the
primary copy of objects. Reads are done locally without locking, writes need to
acquire locks to prevent loss of updates. Periodically, the server starts rounds.
Updates are piggybacked in round messages, and merged at the clients.

Epsilon Serializability Epsilon Serializability (ESR) [23] is a generalization
of Serializability (SR) in datatbases in which queries can view an inconsistent data
item that has been updated by concurrent consistent transactions. To prevent con-
flicts, upper and lower bounds are set on transactions so that application constraints
do not break. In particular, the approach sets a query limit for read consistency
(import-limit) and a limit for updates (export-limit) and then calculates lower/up-
per bounds for query inconsistency based on these limits (in a similar way to escrow
method). The consistency measure is the distance between current value of an item
and its initial value. In the context of our work, setting limits on reads and writes
means reduced availability or response time which is often not accepted nowadays.
However, as we discussed in the use cases, this might be a requirement for some
applications.

Wu et. al. [29] introduced a practical application to ESR in a systematic
approach to convert serializable designs to ESR designs. This is done through
identifying the non-SR conflicts (extension step), and then relaxing these conflicts
in ESR using controlled inconsistency (relaxation step). The idea is mainly to
identify the import-limit (i.e., the accepted Read fuzziness) and export-limit (i.e.,
accepted Write updates). The transaction that exceeds the fuzzinees bound is then
aborted. Nevertheless, this work only addressed centralizaed databases. Pu et.
al. [22] discussed how to define global constraints based on the aforementioned
limits in Homogeneous and Heterogeneous databases to maintain the entire DB
consistency. In Homogeneous DB, a transaction is divided into sub-transactions,
each is executed on a sub-DB. The constraint here is that the global fuzziness limits
(export or import), which is the sum of individual sub-transactions, must not be
exceeded otherwise the transaction aborts. Heterogeneous DBs are however more
challenging since every sub-database has its own consistency model where all are
controlled by a global coordinator. The distributed database we address here is
however homogeneous, as all replicas must follow the same consistency mode, often
the causal-consistency model. On the other hand, the divergence can be measured
in time delays, NB of operations, and also in fuzziness distance from the local value
to the global value. In our case, the global value is often unkown and must be
estimated.

Consistency rationing Consistency rationing [16] is a technique for adapting
the consistency requirements of applications at runtime. The goal of the system
is to reduce the total monetary cost of storage requests. The price of a particular
consistency level can be measured in terms of the number of service calls needed to
enforce it.

This system defines three data categories, with different consistency require-
ments. Category A, serializable, is the strongest and the most expensive, requiring
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additional services to assure data consistency. Category C provides session guar-
antees – read your writes – within a session, and is used if the savings compensate
the expected cost of inconsistency. The B category comprises data that can be
processed as C or A depending on the context.

Five policies are presented to adapt the consistency of data. The general policy
is based on conflict probability, which is determined by the transactions’ arrival
rate. The cost of inconsistency is obtained with the probability of having conflicting
updates. The time policy changes the consistency when a timestamp is reached.
The fixed threshold policy, allows setting a threshold which forces the system to
handle the record with strong consistency when the update exceeds that limit.
This allows the invariant to be broken if there is more than one update in different
servers exceeding the threshold. The demarcation policy prevents this by assigning
a portion of the value to each replica and allowing the replica to update it up to that
value without synchronization, like escrow techniques. If an update requires more
than that portion, then the operation must be executed with strong consistency
or request the portion from other replica. Finally, the dynamic policy for numeric
objects adjusts the threshold according to the probability of updates exceeding it.

The system architecture is composed by clients that communicate with the ap-
plication servers that run inside the cloud on top of Amazon’s Elastic Computing
Cloud (EC2). Application servers cache data and buffer updates before sending
them to the storage system. A statistical component gathers statistics about the
objects. Evaluation has shown a cost reduction and performance boost, with the
dynamic policy being the most effective in terms of cost and response time.

Probabilistically Bounded Staleness Eventual Consistency has become a
widely used consistency model in distributed systems, however the question remains
about how eventual is eventual consistency. Probabilistic Bounded Staleness (PBS)
[2] answers this question for Partial Quorums.

PBS presents three metrics: k-staleness, that bounds the staleness of versions
returned by read quorums; t-visibility, that bounds the time before a committed
version appears to readers; and (k,t)-staleness, a combination of both k and t-
staleness. These metrics are probabilistic, which means that they do not guarantee
that staleness is limited at some bounds, but instead provide staleness bounds with
varying degrees of certainty.

PBS computes the values of the metrics for a given configuration of the system,
allowing system designers to define the number of replicas in their system.

4.1.3 Divergence Estimation: Deterministic Metrics

Despite the fact the CRDTs are good at improving response time while eventually
ensuring convergence of replicas, it is sometimes required to assess, measure, or
control the divergence across replicas before converging as mentioned in the use-
case’s requirements before. Form the application perspective, it helps reducing the
discrepancy between replicas to improve users experience and bound divergence.
From the service perspective, it helps monitoring the system for better tuning,
taking actions on overloaded replicas, and improving load balancing considering
divergence measures. In this section, we discuss the deterministic metrics that help

SyncFree Deliverable D.3.2(v0.1), September 29, 2015, Page 12



4 RESULTS

monitoring the system as well as the means to measure divergence and control
it. In Section4.1.6 we discuss how these metrics could be integrated in a system,
considering that keeping information for all data items is not practical and would
impose an unacceptable overhead.

4.1.3.1 QoD: Time Based

Elapsed Time Since Last Sync This metrics keeps track of the time that
has elapsed since the last synchronization with each replica.

We propose the following API:

get_etsl_sync() : time VV of #Repl positions

get_etsl_sync(repl_id) : time

repl_id: value that identifies uniquely a replica.

time: seconds.

#Repl: Total number of replicas.

The required information is collected locally at each replica by keeping the
information of when the last synchronization with each replica has been performed.
This function provides information about potential staleness of the local replica
with respect to remote replicas (and vice-versa).

Elapsed Time Since Last Indirect Sync This metrics keeps track of the
time that a given replica has synchronized with other replicas, wither directly of
indirectly.

We propose the following API:

get_etsl_indirect_sync() : time VV of #Repl X #Repl positions

get_etsl_indirect_sync(repl_id) : time VV of #Repl position

repl_id: value that identifies uniquely a replica.

time: seconds.

#Repl: Total number of replicas.

This requires maintaining a matrix that is updated and propagated among repli-
cas during the synchronization process. This information allows to estimate the
potential staleness of the local replica with respect to remote replicas.

Elapsed Time Since Last Fail Attempt to Sync This metrics keeps track
of the elapsed time since the last failed attempt to synchronize with a each replica.

We propose the following API:

get_etsl_fail_sync() : time VV of #Repl positions

get_etsl_fail_sync(repl_id) : time

repl_id: value that identifies uniquely a replica.

time: seconds.

#Repl: Total number of replicas.

The required information is collected locally at each replica when a synchro-
nization process fails to execute. This information can be used in the process of
deciding when to start a new synchronization process.
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Elapsed Time For Last Sync This metrics keeps track of how long it took
for the local replica to synchronize the last time to a replica. A value is maintained
for each remote replica.

We propose the following API:

get_etfl_sync() : time VV of #Repl positions

get_etfl_sync(repl_id) : time

repl_id: value that identifies uniquely a replica.

time: seconds.

#Repl: Total number of replicas.

The required information is collected locally at each replica during the synchro-
nization process. This information can be used in the process of estimating how
long it will take to propagate local updates the remote replicas.

Elapsed Time Since Last Update This metric keeps track of the elapsed
time since the last update executed in each replica.

We propose the following API:

get_etsl_update() : time VV of #Repl positions

get_etsl_update(repl_id) : time

repl_id: value that identifies uniquely a replica.

time: seconds.

#Repl: Total number of replicas.

The required information is collected during the synchronization process by
registering the time of the last update for each replica, and propagating this infor-
mation among replicas. In Antidote, this information is already kept for causality
tracking. This information can be used to estimate how active a given object is.

A special case of this metric is the information for the local replica. This infor-
mation can be used, with metrics for last synchronization, to estimate the staleness
of remote replicas of each object with respect to local updates.

Elapsed Time For Last Local Update This metrics keeps track of how
long it took for the local replica to send the last update to a replica. A value is
kept for each remote replica.

We propose the following API:

get_etfl_update() : time VV of #Repl positions

get_etfl_update(repl_id) : time

repl_id: value that identifies uniquely a replica.

time: seconds.

#Repl: Total number of replicas.

The required information is computed locally at each replica during the syn-
chronization process. This information provides statistical information of how long
remote replica stay out-of-date with respect to local updates.

Statistics For each of the previous metrics, it would be possible to provide
statistical information, including average, minimum and maximum values over a
given time period.
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4.1.3.2 QoD: Operation Based

# of Confirmed Operations This metrics keeps track of the number of
acknowledgments received by each of the replicas to updates sent by this replica.

We propose the following API:

get_confirmed_operations() : #Repl x N

get_confirmed_operations(repl_id) : N

repl_id: value that identifies uniquely a replica.

#Repl: Total number of replicas.

The required information needs to be collected by is collected locally at each
replica by registering the needed information during the synchronization process.
This allows to measure how divergent remote replicas are due to local updates.

# of Received Operations This metrics keeps track of the number of unique
operations issued by each replica that have been received locally. This information
can be used to estimate the expected rate of each replica, if its value is maintained
for different time periods.

We propose the following API:

get_received_operation() : #Repl x N

get_received_operation(repl_id) : N

repl_id: value that identifies uniquely a replica.

#Repl: Total number of replicas.

The required information is collected locally at each replica.

# of Operations That Are Known to be Missing This metrics keeps
track of the number of known operations issued by each replica that are known to
be missing.

We propose the following API:

get_missing_operations() : #Repl x N

get_missing_operation(repl_id) : N

repl_id: value that identifies uniquely a replica.

#Repl: Total number of replicas.

The required information is collected locally at each replica by analyzing the
(missing) dependencies of received operations.

# of Local Mutations Since Last Synchronization This metrics keeps
track of the number of operations executed by the local replica, since the last
synchronization, with that replica.

We propose the following API:

get_unsynced_operations() : #Repl x N

get_unsynced_operation(repl_id) : N

repl_id: value that identifies uniquely a replica.

#Repl: Total number of replicas.

The required information is collected locally at each replica.
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4.1.3.3 QoD: Value Based

Delta Value This metrics keeps track of the deltas produced by each replica.
This information can be used to estimate the expected rate of each replica, if its
value is maintained for different time periods.

We propose the following API:

get_received_delta() : #Repl x Val

get_received_delta(repl_id) : Val

repl_id: value that identifies uniquely a replica.

#Repl: Total number of replicas.

The required information is collected locally at each replica.

Delta Since Last Synchronization This metrics keeps track of the delta of
the local replica since the last sync, with that replica.

We propose the following API:

get_unsynced_delta() : #Repl x Val

get_unsynced_delta(repl_id) : Val

repl_id: value that identifies uniquely a replica.

#Repl: Total number of replicas.

4.1.3.4 Computing Deltas for Specific CRDTs We now present different
ways to compute the delta, or distance between two states, for different CRDTs.

Counters We first define the distance of an increment-only counter CRDT,
as defined by Shapiro et. al.[25]. In the op-based counter,the read operation rd
is defined by the eval clause which returns an integer n ∈ N. The state-based
increment-only counter is a bit more complex as it is composed of a map from node
ids to local counters. However, since a read operations rd in the eval clause also
returns the sum of all map entries, the returned value remains in N, and hence
the same distance function applies as in the op-based design. consequently, in this
metric space the distance is simply defined as follows:

distance : N×N −→ <
(x, y) −→ |x− y| (1)

Sets Many versions of sets are defined in CRDTs, e.g., G-set, write-wins OR-
Set, read-wins OR-set, etc. Despite the fact that these types have different seman-
tics, they share the same read operation which returns the non-deleted elements in
the set, lets call it elements operation. Since elements does not distinguish between
the categories of the elements, a generic distance that counts the elements present
in one set and not in the other can be defined as follows:

distance : Σ× Σ −→ <
(x, y) −→ card ((x \ y) ∪ (y \ x))

(2)

where x and y are two set states in Σ.
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Maps A multi set is a map from elements to the number of elements. Al-
though a multi-set can be viewed as a set, however, the difference is that multi-sets
differentiate between element types which can be considered in quality of data.
Consequently, the distance must consider different multi-set map keys too. Now,
suppose that the multi-set is composed of m different keys k and corresponding
values v, we start by using the absolute distance as follows:

distance : Nm ×Nm −→ <
(
(v11, v

2
1, · · · , vm1 ), (v12, v

2
2, · · · , vm2 )

)
−→

m∑

i=1

|vi1 − vi2|
(3)

Equation 3 gives the absolute change for the multi-set values which does not
consider the impact of the change. To get better quality of data, we need to give
higher significance to the values that caused more changes than others. There-
fore, two situations that can have a greater impact on the quality of data can be
considered:

(1) Vertical change: a big change that occurs on few keys quality of data.
(2) Horizontal change: a change that adds/removes new keys.
For (1), we can use the Euclidean distance that squares the individual differences

and thus gives higher significance for bigger differences (a different root can be used
instead of the square root, in general):

distance : Nm ×Nm −→ <

(
(v11, v

2
1, · · · , vm1 ), (v12, v

2
2, · · · , vm2 )

)
−→

√√√√
m∑

i=1

(vi1 − vi2)2
(4)

Regarding (2), we argue that the closer the value to zero, the higher is the impact
on the m-set. We can consider this issue by introducing a new weight function to
give more impact to the changes on the keys as their values become closer to zero:

weight : N×N −→ <

(v1, v2) −→
(v1 − v2)

min(v1, v2)

(5)

Now, we adjust Equation 4 accordingly to have a weighted distance:

distance : Nm ×Nm −→ <

(
(v11, v

2
1, · · · , vm1 ), (v12, v

2
2, · · · , vm2 )

)
−→

√√√√
m∑

i=1

wi × (vi1 − vi2)2
(6)

where wi = weight(vi1, v
i
2).

Now we summarize the distance functions of different CRDTs in Table 1.
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Data Type CRDTs State distance Auxiliary

Counter
GCounter

PNCounter
c ∈ N |ci − cj | none

Set

2PSet
AWORSet
RWORSet

G-Set

s ∈ P(V ) card ((x \ y) ∪ (y \ x)) card(s)

Map Multi-Set s = (k ↪→ v) ∈ P(V )×N
√∑m

i=1 w
i × (vi1 − vi2)2 wi =

(vi
1−vi

2)

min(vi
1,v

i
2)

Table 1: A summary of CRDT quality of data distance functions.

4.1.4 Divergence Control

In the previous section we introduced a number of metrics for providing information
related to divergence of replicas. Although an analysis of use cases suggests that
tightly controlling divergence is not interesting in most cases, we have studied how
to control divergence. In this section we discuss how to control divergence based
on the distance of replica states, or fuziness. Other works, such as TACT [30], have
also discussed how to bound the divergence for other types of metrics which could
be adapted for use in our system.

The fuzziness distance only compares a current CRDT state with the real state
that is supposed to be achieved if no more operations are executed on any node.
Of course, this is impossible on a single node while concurrent operations are being
executed on other nodes and, therefore, controlling reads and writes on the CRDTs
is required.

Control of divergence can be can be done by imposing some constraints on the
defined operations of a CRDTs. In principle, these constraints are required only for
read operations, however, we show in the following that such constraints are also
required for write operations to maintain liveness. An operation can import (or
accept) some fuzziness as input, called imported fuzziness, bounded by an ImpLimit,
and causes some fuzziness, called exported fuzziness that is bounded by ExpLimit.

4.1.4.1 Fuzziness of Reads Since Read operations are not mutating opera-
tions in CRDTs, they do not induce fuzziness on states, and thus the ExpLimit
is always zero. On the other hand, stale values are allowed in CRDTs and thus,
read operations can import some fuzziness. Currently, systems that use CRDTs
without quality control accept any fuzziness a (i.e., ImpLimit = +∞). Some ap-
plication however requires this fuzziness to be bounded by a finite value such that
0 < ImpLimit < +∞. Notice that ImpLimit 6= 0 otherwise the system must be in
sync and stale value are not accepted.

To ensure safety, an application can accept a read value as long as the ImpLimit
is not exceeded. If the system attempts to abort or suspend the read operation until
synchronization occurs and hopefully leading to a lower fuzziness that is within the
ImpLimit then liveness will be violated. This is clearly contradictory to the purpose
of AP systems (in the CAP theory context) and is therefore impractical. The only
remaining option is to limit the write operations so that a read always remains in
the allowed fuzziness range. We discuss this in the next section.
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4.1.4.2 Fuzziness of Writes On the other side, writes in CRDTs can import
and export fuzziness. Exporting fuzziness is intuitive for writes since they are
mutators by definition. However, importing fuzziness is usually not an option in
classical data models, e.g., serializability or epsilon serializability [23]. The reason is
that, the classical DB model does not allow for any inconsistency in the database,
and thus, the entire database must be in a consistent state once a transaction
commits or aborts. The subsequent transaction thus starts from a consistent state,
meaning that no fuzziness is imported. In eventual consistency models, e.g., BASE
or CRDTs, replicas are usually loosely coordinated aiming at better availability.
Consequently, concurrent writes are always allowed, given some constraints, e.g.,
write operations must commute in CRDTs. This means that ImpLimit = +∞
for any write operation an thus we do not discuss it any further. Notice that the
ImpLimit of a write operation has no impact on the ImpLimit of read (which is the
basic application constraint), to the contrary of the ExpLimit which is our focus,
next.

4.1.4.3 Bounds on write operations In general, 0 < ExpLimit < +∞.
Trivially, ExpLimit must not be zero, otherwise a write operation is no more a
mutator. In addition, it must not be unlimited since this violates the ImpLimit of
reads, and thus it reverts the system back to classical strong consistency models
(since the system will be forced to sync). As explained above, liveness is violated
if reads are executed on the premise of loose coordination. To maintain a high
availability, it is necessary to slightly trade the loose coordination for better quality
of reads. This can be ensured if the total fuzziness exported by concurrent writes
does not exceed the ImpLimit of a read. Formally, if ImpLimit is the import limit
of a read operation, and m writes are concurrently being executed on different
replicas, the total ExpLimit of writes is as follows:

m∑

i=1

ExpLimiti ≤ ImpLimit (7)

In principle, the individual ExpLimiti can be distributed over different replicas
following a certain policy, e.g., depending on the workload of a replica, and always
satisfying the constraint in Equation 7. Another option is to use a demarcation
protocol [10] so that replicas can dynamically change their limits. Discussing these
possibilities is orthogonal to our work, and thus we assume that the ExpLimit is
evenly divided among all operations on all replicas.

In many cases, the exported fuzziness of a write operation can be known in
CRDTs, e.g., an increment in counters. For this reason, it makes sense to define
the exported limit of a replica, rather than on an operation since multiple write
operations can execute on a single replica. Now we calculate the exported limit of
writes on a replica i, i.e., RepExpLimiti, among n replicas, as follows:

RepExpLimiti ≤
ImpLimit

n
(8)

where ImpLimit is the imported fuzziness limit allowed in an application.
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4.1.4.4 Respecting the Limits Now we discuss how the bounds defined in
Equations 7 and 8 can be maintained in practice. Consider a CRDT with state
s that is replicated over n replicas. Assume that s was in a consistent state on
all replicas at time t0. We require that at any instant t, a replica i retains the
imported and exported fuzziness, ImpFuzzi and ExpFuzzi, respectively. These
values represent the distance from the current state to the real state. For simplicity,
we assume that one type of read/write operations is being used, and we generalize
it in later sections.

A read operation r can always be executed as long as ImpFuzzri ≤ ImpLimit.
As mentioned above, this can always be maintained if the limits in Equation 7 are
not violated. On the other hand, a write operation w can be executed if Equation 9
below is not violated:

ExpFuzzi ≤ RepExpLimit (9)

If this can be guaranteed once a new write is executed, the local exported fuzzi-
ness on i is updated as follows:

ExpFuzzi := ExpFuzzi + ExpFuzzwi (10)

where ExpFuzzwi is the exported fuzziness of operation w on replica i.

On the other hand, if the RepExpLimiti is reached by replica i, it must stop
executing further write operations until coordinating with other replicas. Of course,
it is very limited to require global synchronization, however, periodic or on-demand
pair-wise coordination is possible. The basic information needed by replica i is to
make sure that all other replica are aware of its current state so that it can reset
its ExpFuzz. This information can be provided by the middleware, as in pure op-
based CRDTs [8], where the middleware always retains and disseminates the last
write operation wlast

i issued on replica i and also incorporated on all other (e.g.,
executed or merged), this is simply called a “stable” operation. This can be done
in a periodic fashion or by a call-back to the middleware once ExpFuzzi on replica
i reaches the RepExpLimiti. Suppose that the last stable operation was confirmed
to i at time tstable, and then replica i issued a write operation w at time tw > tstable.
By the instant that w gets confirmed to be stable, at tnow, replica i might have
already executed some write operations, during the period tnow − tw, as shown in
the time table:

tstable tw tnow

Now replica i can simply reset its ExpFuzzi as follows:

ExpFuzzi := ExpFuzznowi − distance(sw, sstable) (11)

One more observation is that since the exported fuzziness of a single write w
is known, then ExpFuzz and ImpFuzz, and the limits in general, can count the
number of operations instead of retaining the fuzziness, i.e., the distance.
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4.1.5 Divergence Estimation: Probabilistic Metrics

The metrics introduced in the previous section return deterministic values based
on value read. However, in a distributed system where replicas may evolve with-
out coordination, these metrics provide limited information (or require a control
mechanism that may restrict the execution of operations).

We now introduce probabilistic divergence metrics that provide divergence mea-
sures based on a estimated evolution of each replica. In appendix A we present a
simple model to estimate data evolution. More complex models based on forecast-
ing techniques could be used in practice (as those available in OpenForecast library
1).

Estimated # of Missing Operations per Replica This metrics estimates
the number of operations each replica has executed that have not been observed in
the local replica.

We propose the following API:

get_estimated_operations() : #Repl x N

get_estimated_operations(repl_id) : N

repl_id: value that identifies uniquely a replica.

#Repl: Total number of replicas.

Each replica collects information about the updates produced by each other
replica. This information is collected in each replica during the normal process of
synchronization, assuming the update propagation model used in Antidote. With
this information, it builds a model for forecasting future evolution.

Probability of staleness of each replica This metrics estimates how prob-
able is that a given replica has executed an update that is still not known locally.

We propose the following API:

get_estimated_stalenes() : #Repl x N

get_estimated_staleness(repl_id) : N

repl_id: value that identifies uniquely a replica.

#Repl: Total number of replicas.

As before, each replica collects information about the updates produced by
each other replica. With this information, it builds a model for forecasting future
evolution.

Estimated delta from each replica This metrics estimates the delta each
replica has produced that is still not know locally.

We propose the following API:

get_estimated_delta() : #Repl x Val

get_estimated_delta(repl_id) : Val

repl_id: value that identifies uniquely a replica.

#Repl: Total number of replicas.

As before, each replica collects information about the updates produced by
each other replica. With this information, it builds a model for forecasting future
evolution.

1http://www.stevengould.org/software/openforecast/index.shtml
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4.1.5.1 API The previous metrics provide low-level information that may be
difficult to use by application programmers. As such, we currently propose providing
the following operations for accessing probabilistic divergence metrics.

Estimated Value This function returns the estimated value of a given data
item.

get_estimated_value() : Val

This value can be computed from the estimated deltas for each replica.

Estimated Interval This operation returns, for a given confidence level, the
interval of values for a given data item centered around the estimated value.

get_estimated_interval(confidenceLevel) : Interval

confidenceLevel: value of the confidence level requested

The value of this function can be computed from the model that estimates the
evolution of data in remote replicas.

Chance of Invariant Violation This operation returns the probability that
a given operation op violates invariant inv at the current moment, assuming that
the operation could be propagated immediately to other replicas. For example, in
a counter, this could be used to obtain the probability that a decrement operation
would lead to a violation of an invariant that specifies that the counter must be
non-negative. We propose the following API:

invariant_violation_chance(op,inv) : Probability

op: operation to be execued

inv: invariant to be considered

The value of this function can be computed from the model that estimates the
evolution of data in remote replicas.

This function could be used jointly with the invariant preservation mechanisms
proposed in Section 4.2. Inn this case, whenever a local replica has not enough local
right to execute an operation, if the likelihood that the operation to execute will
violate the invariant, the operation could complete locally before coordinating with
other replicas.

This information could also be used as a complete alternative to the invariant
preservation mechanisms. For example, a client could require synchronizing with
other replicas before completing an operation when the chance of invariant violation
is high and proceed locally otherwise.

4.1.6 Discussion

In the previous section we have presented a set of metrics that can be used for
providing information about the freshness and divergence of each data item. We
have also briefly mentioned how a system could collect information for providing
the value of each metric. In our work, whenever possible, we have been favoring
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metrics that can be computed by using local information only. The rationale for
this is that it reduces the overhead for the synchronization process.

Still, maintaining the necessary information for each data item is costly. Thus,
we propose that the process of maintaining divergence information is started by
using an explicit call executed by clients. The information would continue to be
maintained during a given time period and would end automatically if the request
is not renewed. We propose the following API for this:

start_metric(target, aggregate, metric, duration)

stop_metric(target, aggregate, metric)

target: target objects

aggregate: individual or aggregate mode

metric: metric to be collected

duration: time for stopping collecting information

The parameter aggregate allows to specify if the information should be main-
tained for each data item individually or for a collection of data items individually.
For example, in the medical use case discussed in Section 4.1.1, it might be impor-
tant to have aggregate information about the divergence of all prescriptions instead
of individual information. This can be used to identify potential problems in the
replication process when the aggregated value deviates from historical data. In this
case, using individual information tens to be useless, as each person typically does
not have a common pattern.

4.1.7 Evaluating Divergence Algorithms

In the previous section we have presented a number of divergence metrics that
can be used to provide information about the divergence a client observes when
accessing the local replica.

As in a distributed system, no replica as the complete view of the system, we
have decided to evaluate the relevance and quality of our divergence metrics relying
on simulation and using real-life traces. In this section we describe the traces being
used.

4.1.7.1 Traces In this work package we are using real-life traces in the simula-
tions to measure system’s divergence. Using real-life traces allows us to reproduce
usage patterns more accurately than with random generators, since real life data
accurately characterizes peaks of utilization during certain periods of the day or
any other patterns specific to the domain of the service that we are studying.

We have been granted access to two sources of anonymized real-life data. The
first is the trace of client interactions with Rovio’s ad-service platform, a service
that is similar to the Ad-service use case that was proposed in WP1. The second
is the record of activity of users of a courseware platform, Moodle. The Moodle
data is from the Moodle system running at NOVA, which manages information for
a subset of the courses lectured at the university to the local students. We expect
that both sets of data can be representative of the normal usage of real life systems
and that they exhibit different patterns of users activity.

Rovio is responsible for providing the anonymized data for the Ad-service. The
business logic is obfuscated and only the pattern of accesses to the underlying

SyncFree Deliverable D.3.2(v0.1), September 29, 2015, Page 23



4 RESULTS

storage is preserved. The data from Moodle is anonymized at NOVA and hides the
identitiy of the users and the contents they share.

Log Processing: We have implemented a tool to process generic logs. The
platform accepts any log structured as a single operation per line, with attributes
separated by a delimiter. The tool is capable of opening a number of log files and
generate a stream of data to be consumed over an iterator. We support filtering the
log by its attributes. This is useful, for example, to stream the list of operations
generated by a subset of the users. The tool can also generate modified logs with
operations ordered by some attributes. For instance, the timestamp, in the case
that the multiple files of the log do not contain contiguous data. Currently, we are
adding support to process compressed data, to be capable of handling the size of
the Rovio logs (approximately 210GB after decompression) without consuming too
much disk space.

Data Set Details:

Moodle Each log file stores all operations of the application for a single course, during
a period of time. We chose a few courses that have a large user base and
show activity during the whole semester to take some initial measurements.
We observed that the operations are sparse over time, for which reason we
are now considering the logs of multiple courses of a specific degree, or even
multiple degrees to reproduce the load of the complete platform. On the
initial sample of logs that we have taken (only four), 93% of operations are
read only. Up to the time of writing of this report we have not analyzed the
distribution of accesses over the different resources stored in the platform.

Rovio The logs that we currently have detail the number of times a given adver-
tisement is read or updated in the storage layer. We have four full days of
logs of the the system in production. However, we know that the system uses
a caching layer on top of the storage that is absorbing reads and batching
writes, therefore we need to know the ration of cache hits/misses or we need
more detailed information to understand the real access pattern to keys. We
expect to receive that information soon. We plotted the number of opera-
tions for each key, over a period of 70 minutes. Figure 4.1.7.1 shows that a
only a small fraction of operations receive updates and that their popularity
is similar to a power law distribution. Unfortunately, we cannot make any
conclusions without understanding the effects of the caching layer.

4.1.7.2 Simulator To allow the project team to better understand the factors
that affect state divergence across replicas, and to enable us to validate heuristics
that enable local replicas to predict divergence values, we have designed and im-
plemented a discrete time event-based simulator for geo-replicated systems. In the
following we discuss the requirements of the simulator, followed by a discussion on
the main aspects of its design and implementation.
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Figure 1: Number of operations per key for the Rovio traces.

Requirements: We aim at designing a simulator which has the following main
properties:

Modular The simulator should be modular, namely by separating essential as-
pects of (complex) geo-replicated systems, such as network and communica-
tion among nodes, replication protocols employed, application logic, client
logic, as well as essential aspects related with the experimental environment,
such as experiment control, and reporting of results. Each of these main as-
pects should be materialised by modules with clearly defined interfaces that
should enable the inter-operation of different implementations of these mod-
ules.

Extensible Each main module of the simulator should be extensible, enabling a
user to easily extend the functionality of each of these modules and execute
experiments that leverage on those extensions. For instance, the module that
is responsible for materialising the network behaviour in a simulation should
be easy to extend with additional behaviours such as considering message
losses among nodes.

Configurable Experimental properties such as aspects or parameters related with
application logic, replication strategies, and execution environment should be
easy to be configured in experiments, without forcing the user to change such
aspects programatically.

Model the main entities of Geo-Replicated Systems The simulator should
capture the main entities of geo-replicated systems, such as data centers,
servers, clients, replication protocols, applications, operations, state, and so
on. The simulator should also provide fundamental mechanisms to model
these entities as to simplify the design and execution of experiments by users.
Having simple modulations of these entities as part of the main package of the
simulator will simplify its use for fast prototyping and validation of solutions
devised by the research team.

Models the Inherent Complexity of Geo-Replicated Environments Geo-Replicated
environments are inherently complex, potentially being composed of servers,
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scattered across multiple data centers, with clients that execute operation over
these different sites. Latency across machines is different data centers vary, as
well as the communication latency between clients and data centers. Further-
more, network partitions that make it impossible for multiple components of
the system to exchange information might occur in a transient or permanent
way. Finally, components of a geo-replicated system might fail permanently
(e.g, servers, clients, or data centers). All of these complexities should be
captured by the simulator, enabling a user to easily trigger such conditions in
their experiments and observe the effects of these conditions.

Explicitly Deals with State Divergence The main motivation for designing and
implementing the simulator was to enable the research team to measure diver-
gence between replicas under different operational loads (number of clients,
workloads, environmental conditions), as well as to enable measuring the ef-
fectiveness of proposed solutions by the project consortium to address the
inherent challenges of replica divergence in geo-replicated systems that lever-
age weak consistency. Due to this, the simulator must be able to explicitly
deal and measure divergence across replicas, and expose these values to re-
searchers executing experiments on the simulator.

Capable of Replaying Real Application Traces or Produce Artificial Traces
The simulator should enable researchers to conduct experiments where geo-
replicated systems are subject to operations issued by different clients that
connect to different servers accordingly to real world traces, as to better cap-
ture the reality of systems. To this end, we should integrate in the simulator
the ability to reply traces provided academic and industry partners of the
project. Furthermore, to stress particularly challenging conditions for a sys-
tem, we should also provide mechanisms that allow the simulator to generate
an artificial, but controlled, load over the system.

Design and Implementation Details: We have implemented our simulator
by extending and modifying the PeerSim simulator [15], a simulator which has been
widely used for modelling and evaluating large-scale peer-to-peer systems written
in the Java language. The original simulator supported two modes of operation (i.e,
had two distinct simulation engines), one based on logical cycles, where all nodes
in the system advance through the execution of synchronous computational steps
(and where message exchange across different nodes is assumed to be instantaneous)
and a second one based on discrete time event delivery, where simulations progress
through several discrete time steps, where events can be triggered or exchanged
among nodes in the system. In this simulation engine, one can easily model the
communication latency by delaying the processing of communication events on the
receiver node. Due to the fact that we need to capture communication latency
in our experiments, as this is a key factor for divergence across replicas, we have
designed our simulator by modifying the discrete time event simulation engine of
the original PeerSim.

Similar to the original simulator, we model each node in a system as a stack of
protocols, where each protocol is an instance of a class which provides some function-
ality. These modules include a transport module, which captures network aspects of
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a geo-replicated systems, such as communication latency and network partitions; a
replication module which materializes the logic of a geo-replicated replication proto-
col, in particular models the exchange of information across multiple replicas; and a
application module that captures the main logic of the application being simulated.
Contrary to the original simulator, which assumed that all nodes in the simulation
had the same configuration (i.e, where modeled through the same stack of pro-
tocols), we have changed the core of the simulation to allow the existence of two
different type of nodes, servers and clients. While the simulator allows the user to
specify the set of protocols that define each type of node, the main differences that
we expect is that in most cases, client nodes will not have a replication protocol in
their stack, and that the application logic for clients and servers is different (how-
ever, as discussed further ahead these aspects can be configured in the simulator
through manipulation of textual configuration files).

To simplify the initial implementation of the simulator, we have modeled each
data center as being composed of a single server which contains copies of all data
objects. In other words, we currently assume that each data center (individually)
resorts to a strong consistency replication protocols that exposes a semantic of
one copy serializability, while resorting to a weak consistency replication strategy
across data centers. This simplification in the implementation of the simulator will
be address as future work.

We have implemented templates for fundamental strategies used in the design
of (weak consistency) replication protocols whose goal is to guide users that want to
model and implement their own replication protocols in the simulation to conduct
experiments. These three strategies are: i) a reactive strategy where each data
center forwards each operation received locally from clients to other data centers
as soon as it processes it; ii) a periodic strategy where each data center aggregates
operations received from clients for a configurable amount of time, and then prop-
agate this batch of operations to the remaining data centers; and iii) an hybrid
strategy that allows the combination of the reactive and periodic strategies in a
single protocol. We not that there are many replication protocols that fall outside
of these templates, and stress that the main goal of these are to guide users in the
prototyping of replication protocols.

Another relevant aspect of the simulator is the support for replaying real ap-
plication operation traces or generate artificial (albeit parameterised) application
workloads. To this end we have modified the core of the (original) simulator to
add a component which is responsible for managing the actions of clients in the
system. This component has a well defined interface which is used by the simulator
core to interact with it, and the concrete implementation used (which is dependent
on the application being simulated) can be defined in a configuration file, without
requiring any additional programatic effort from the programmer besides writing a
Java class which implements the interface of this module.

4.1.7.3 Moodle Use-Case Moodle is an online course management tool also
called virtual classroom. it contains different modules used to provide information
and to interact with the students while off-class. There exist to main roles teachers
and students. While the teacher usually does the writing operations in the course
in the modules to take online exercises and message board the student also becomes
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a writer.

Data Structures A course has the following structures, and except for Mem-
bers, there is no size bound in them. However Members has the restriction of
ensuring that at least one User with the role of teacher is in the set.

Object DT Element Parent Bound
Courses Set Course - Dim(Courses) > 0
Calendars Set Calendar Course -
Assignments Set Assignment Course -
Modules Set Module Course -
Members Set Member Course ∃ Members.role == staff
Forums Set Forum Course -
Discussions Set Discussion Forum -
Posts Set Post Discussion -
Blogs Set Blog Course -
Directories Set Directory Course -
Files Set File Directory -
Quizes Set Quiz Course -
QuizAttempts Set QuizAttempt Course QuizAttemps.quizId ⊆ Quizes
Resources Set Resource Course -
Pages Set Page Course -
Urls Set Url Course -
Users Set User - -

Operations The system provides CRUD operations (add, update, view, delete)
for most data types, as well as other functionalities contained in a virtual course
logic, like grading system, quiz taking, role assignation or forum subscription.

4.1.8 Future Work

In the next period we plan to complete the evaluation of the proposed divergence
metrics using the developed simulator.

Additionally, we plan to implement in Antidote the most relevant divergence
metrics presented in this document, or some other that might be proposed in the
future. The degree of relevance will be defined according to the results obtained
in our evaluation and feedback from members of the project. The implementation
of the divergence metrics seems straightforward for some of the metrics (e.g. for
deterministic time-based metrics, the protocols implemented for replication already
propagate all the necessary information), while for others some changes to Antidote
will be necessary.

We will also evalue the possibility of designing a generic system for providing
divergence information relying on ESL’s WOMBAT, which allows to monitor the
activity in each node. Preliminary discussions with ESL seem to show that it is
possible to intercept operation execution, thus allowing to obtain the necessary
information for divergence without the need to modify the system being monitored.
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4.2 Invariants

Systems that adopt weak consistency models have to deal with concurrent oper-
ations not seeing the effects of each other. If CRDTs can be used to guarantee
eventual convergence in these cases, they cannot be used to guarantee that ap-
plication invariants are enforced, which can lead to non-intuitive and undesirable
semantics.

To address this problem, we continued our research on how to to maintain appli-
cation invariants while minimizing coordination. The first work addresses numeric
invariants, which accounts for an important class of application invariants. The
second is more general and can efficiently address generic application invariants by
moving coordination outside of the normal flow of operation execution. Finally,
we are developing an approach that allows to enforce some invariants without any
coordination, by applying the ideas of CRDTs over a set of objects that can be
modified independently.

4.2.1 Enforcing Numeric Invariants

Our first work focused on enforcing numeric invariants [6] in the presence of concur-
rent updates to counter objects and it has been reported in the previous period. In
our previous work, we showed that fast geo-replicated operations on counters can
coexist with strong invariants. To this end, we proposed a novel abstract data type
called Bounded Counter. This replicated object, like conventional CRDTs, allows
for operations to execute locally, automatically merges concurrent updates, and, in
contrast to previous counter CRDTs, also enforces numeric invariants while avoid-
ing any coordination in most cases. This work has been accepted for publication
recently [6].

In this period, we integrated the Bounded Counter in Antidote. Unlike our ini-
tial work, where each Bounded Counter is accessed and modified independently, in
Antidote, a Bounded Counter can be accessed in the context of a transaction. This
allows to extend the transaction model of Antidote, Transactional Causal+ Con-
sistency, to provide much strong guarantees by enforcing invariant in some objects.
Additionally, by relying on transactions that can fail in the site where they are sub-
mitted, this allows to combine multiple Bounded Counters to provide guarantees
that was difficult to provide previously – e.g. to define multiple invariants over the
same data item. We are currently in the process of formalizing this transactional
model, which we expect to complete soon.

4.2.2 Explicit Consistency

Our second work proposes a general approach for maintaining applications invari-
ants, based on explicit consistency [4]. Again, in the previous report we had already
reported an initial version of this work.

Explicit consistency is a novel consistency semantics for replicated systems. The
high level idea is to let programmers define the application-specific correctness rules
that should be met at all times. These rules are defined as invariants over the
database state.
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Given the invariants expressed by the programmer, we propose a methodology
for enforcing explicit consistency that has three steps: (i) detect the sets of op-
erations that may lead to invariant violation when executed concurrently (we call
these sets I-offender sets); (ii) select an efficient mechanism for handling I-offender
sets ; (iii) instrument the application code to use the selected mechanism in a weakly
consistent database system.

In this period, we have made several improvements to the language used to
specify invariants, to the static analysis process used to infer the sets of operations,
I-offender sets , that may lead to an invariant violation and to the reservation system
used to enforce invariants. These improvements are described in more detail in
Balegas et. al. [4]. In this report, we only describe the complete set of reservations
included in our proposal.

To illustrate the concepts, we use the example of an application that manages
tournaments in a distributed multi-player game. The game maintains information
about players and tournaments. Players can register and de-register from the game.
Players compete in tournaments, for which they can enroll and disenroll. A set of
matches occurs for each tournament. Each tournament has a maximum capacity.
In some cases, e.g., when there are not enough participants, a tournament can be
canceled before it starts. Otherwise a tournament’s life cycle is creation, start, and
end.

4.2.2.1 Reservations We have also made important extensions to the tech-
niques used to avoid the execution of operations that can lead to invariant violation.
Our reservation system is now comprised of the following techniques.

UID generator: A very common invariant is uniqueness of identifiers [18]. This
problem can be easily solved, without coordination, by statically splitting the space
of identifiers per replica. Indigo provides this service by appending a replica-specific
suffix to a locally-unique identifier.

Multi-level lock reservation: The multi-level lock reservation (or simply
multi-level lock) is our base mechanism to restrict the concurrent execution of op-
erations that can break invariants. A multi-level lock can provide the following
rights: (i) shared forbid, giving the shared right to forbid some action to occur;
(ii) shared allow, giving the shared right to allow some action to occur; (iii) exclusive
allow, giving the exclusive right to execute some action.

When a replica holds one of the above rights, no other replica holds rights of a
different type. For instance, if a replica holds a shared forbid, no other replica has
any form of allow. We now show how to use this knowledge to control the execution
of I-offender sets .

In the tournament example, {enrollTournament(P, T ), removePlayer(P )} is an
I-offender set . To avoid the violation of invariants, we can associate an appropri-
ate multi-level lock to each of the operations, for specific values of the parame-
ters. For example, we can have a multi-level lock associated with removePlayer(P ),
for each value of P . For executing removePlayer(P ), it is necessary to obtain
the right shared allow on the reservation for removePlayer(P ). For executing
enrollTournament(P, T ), it is necessary to obtain the shared forbid right on the
reservation for removePlayer(P ). This guarantees that enrolling some player will
not execute concurrently with deleting the same player. However, concurrent en-
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rolls or concurrent removes are allowed. In particular, if all replicas hold the shared
forbid right on removing players, the most frequent enroll operation can execute in
any replica, without coordination with other replicas.

The exclusive allow right, in turn, is necessary when an operation is incompatible
with itself, i.e., when executing concurrently the same operation may lead to an
invariant violation.

Multi-level locks are a form of lock that can be used to restrict the concurrent
execution of operations in any I-offender sets . It would be possible to enforce any
application invariants using only multi-level locks. However, in some cases it is
possible to provide additional concurrency while enforcing invariants, by using the
following reservations.

Multi-level mask reservation: For invariants of the form P1∨P2∨. . .∨Pn, the
concurrent execution of any pair of operations that makes two different predicates
false may lead to an invariant violation if all other predicates were originally false.
In our analysis, each of these pairs is an I-offender set .

Using simple multi-level locks for every pair of operations is too restrictive, as
getting a shared allow on one operation would prevent the execution of all oper-
ations that could make any of the other predicates false. The reason why this is
overly pessimistic is that, in this case, for executing an operation that makes some
predicate false it suffices to guarantee that some other predicate remains true, which
can be done by only forbidding the operations that make it false.

To allow for this, Indigo includes a multi-level mask reservation that can be seen
as a vector of multi-level locks. For the invariant P1 ∨ P2 ∨ . . . ∨ Pn, a multi-level
mask with n entries is created, with entry i used to control operations that may
make Pi false.

When a replica obtains a shared allow right in one entry, it must obtain a shared
forbid right in some other entry. For example, an operation that may make Pi false
needs to obtain the shared allow right on the ith entry and a shared forbid right on
an entry j for which the predicate is true. At runtime, to find an entry to forbid,
it is only necessary to evaluate the current value of the predicate associated with
each entry that can be locked.

Escrow reservation: For numeric invariants of the form x ≥ k, we include an
escrow reservation for allowing some decrements to execute without coordination
[20]. Given an initial value for x = x0, there are initially x0 − k rights to execute
decrements. These rights can be split dynamically among replicas. For executing
x.decrement(n), the operation must acquire and consume n rights to decrement x
in the replica it is submitted. If not enough rights exist in the replica, the system
will try to obtain additional rights from other replicas. If this is not possible, the
operation will fail. Executing x.increment(n) creates n rights to decrement n,
initially assigned to the replica in which the operation that executes the increment
is submitted.

A similar approach is used for invariants of the form x ≤ k, with increments
consuming rights and decrements creating new rights. For invariants of the form
x+y+ . . .+z ≥ k, a single escrow reservation is used, with decrements to any of the
involved variables consuming rights and increments creating rights. If a variable x
is involved in more than one invariant, several escrow reservations will be affected
by a single increment/decrement operation on x.
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The variant called escrow reservation for conditions checks a count of elements
against some condition; for instance, the number of participants in a tournament
in the invariant nrP layers(T ) < k. In this case, if the same user is enrolled
twice concurrently, two rights are consumed, although the number of participants
increases by only one. This is conservative, but “leaks” rights. However, if the same
user is disenrolled twice concurrently, then the number of users increases by only
one; creating two rights might later let the invariant be violated.

Our escrow reservation for conditions addresses this problem using the following
approach (considering invariant c ≥ k). A decrement operation requires rights, just
as a normal escrow reservation. However, an increment operation does not create
rights immediately, but instead tags the reservation to be reevaluated. One of the
replicas, marked as the primary for the reservation, is entrusted with recreating
rights. To do so, it evaluates the distance between the current state and the thresh-
old, taking into account the aggregate number of outstanding rights. More precisely,
given the current value for c = c1 and the number k1 of outstanding rights (i.e.,
rights assigned to a replica and still not used, as known by the primary replica),
c1−k−k1 rights are created and assigned initially to the primary replica. This can
be done either when the reservation is marked for reevaluation, or when new rights
are needed.

Partition lock reservation: For some invariants, it is desirable to have the
ability to reserve part of a partitionable resource. For example, consider the invari-
ant that forbids two tournaments to overlap in time. Two operations that schedule
different tournaments will break the invariant if the time periods overlap. Using a
multi-level lock, it would be necessary to obtain an exclusive allow for executing
any operation to schedule a new tournament.

However, no invariant violation arises if the time periods of concurrent opera-
tions do not overlap. To address this case, we provide a partition lock that allows
a replica to obtain an exclusive lock on an interval of real values.2 Replicas can
obtain locks on multiple intervals, given that no two intervals reserved by different
replicas overlap.

In our example, time would be mapped to a real number. To execute the
operation that schedules a tournament, a replica would have to obtain a lock on an
interval that includes the time from the start to the end of the tournament.

Using Reservations Our static analysis outputs I-offender sets and the cor-
responding invariant violated. A programmer, electing to use the conflict avoidance
approach, must select the type of reservation to be used to avoid invariant viola-
tions. Figure 2 presents a default mapping between types of invariants and the
corresponding reservations. Conservatively, it is always possible to resort to multi-
level locks to enforce any invariant, at the expense of admissible concurrency, as
discussed earlier. In the context of WP4, it has been shown how to prove that a
system that uses a reservation system consisting only of multi-level locks preserves
a given invariant [14].

After deciding which reservations will be used, each operation is extended to
acquire the appropriate rights before executing its code, and to release appropriate

2 Partition locks are a simplified version of partitionable objects [28] and slot reservations [21].
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Invariant type Formula (example) Reservation

Numeric x < K Escrow(x)

Referential p(x)⇒ q(x) Multi-level lock

Disjunction p1 ∨ . . . ∨ pn Multi-level mask

Overlapping t(s1, e1) ∧ t(s2, e2)⇒ Partition lock
s1 ≥ e2 ∨ e1 ≤ s2

Default — Multi-level lock

Table 2: Default mapping from invariants to reservations.

rights afterwards. For escrow locks, an operation that consumes rights will acquire
rights before its execution (and these rights will not be released when the operation
ends). Conversely, an operation that creates rights will create these rights after
its execution. For multi-level masks, the programmer must provide the code that
verifies the values of the predicate associated with each element of the disjunction.

4.2.2.2 Indigo System Our Indigo prototype of was extended to support the
new reservations. The details of the implementation are described in Balegas et.
al. [4]. The evaluation in a geo-replicated environment shows that the proposed
approach can enforce application invariants while most operations complete in the
local data center, thus providing a much lower latency than solutions requiring
coordination among replicas.

4.2.3 Explicit Consistency with Invariant-repair

The results of our evaluation of Indigo show that most operation can execute lo-
cally. However, in some cases, the execution of some operations requires obtaining
reservations from remote site. This leads to high latency, with operation execution
taking even longer than in strong consistency settings, and lower availability as
fault may make it impossible to obtain the necessary reservations.

To address this problem, we have been exploring two alternative techniques
for enforcing invariants [5]. We now present such techniques in the context of an
example application.

4.2.3.1 Example Application We will use as an example application, a tour-
nament micro-service that can be used to support most common competition online
games. In this application, players participate in tournaments and compete against
each other in matches.

A tournament has three phases: an enrollment phase where players can enroll in
the tournament, an active phase where there can be no modifications to the partic-
ipants of the tournament and a finished phase, when the tournament is concluded
and a winner is elected, based on the number of points achieved in each match. A
tournament cannot be removed after it starts and has a minimum and a maximum
number of participants. A tournament has a leader that can start or remove the
tournament, the leadership role can be shared with other players. A player can
deposit and spend credit anytime to buy items that are used in the game to get
advantage over the adversary. Items have limited availability.
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Example 1: A Matter of Ordering While a tournament does not start,
players can enroll and disenroll, but the tournament can only start after a minimum
number of players have enrolled in the tournament. When a partial ordering of
execution is allowed, this constitutes a problem for invariant preservation: a leader
of the tournament can start the tournament because he observer, in the local replica,
that there is a minimum number of players enrolled, however, concurrently, at a
remote replica, a player might disenroll from the tournament, dropping the number
of players below minimum. Under serial execution this does not occur because
one of the operations will fail, i.e., either the player cannot disenroll from the
tournament, because it starts before, or the tournament cannot start because it does
not have enough players. Despite the fact that serialization ensures the applications
invariants, programmers need to check that the preconditions of the operations are
met before modifying the state of the database.

Under partial ordering execution, the operations must also check the pre-conditions
of the operations before taking any action locally, but that does not preclude a con-
current operation from interfering with this one. It might occur that a concurrent
remote operation also satisfies its local dependencies but is conflicting with the
current operation, and, when both operations are delivered in the same replica, an
invariant violation occurs.

Different strategies to repair the invariant violation are possible: we can apply
a repair function that makes none of the operations take effect; or the player is
not disenrolled from the tournament and the tournament can start, or the player is
disenrolled from the tournament and the tournament is canceled. The first solution
does not provide a good user experience, because both users will see their actions
retracted. The other two repair functions provide a semantic equivalent to the
serializable execution, i.e. operations appear to have executed one after the other.
However, there is an important caveat with this conflict resolution: more operations
might depend on the operation being repaired, for instance, a player might have
participated a match after the tournament had started and if we chose to cancel the
tournament, in theory, that game could not have occurred usar este caso no explicit
concurrency. In this case it is easy to stop invariant violation from contaminating
other operations. We can chose to remove the player from the tournament, in
which case no other operation is affected by this convergence policy because no
other operation in the workload depends on the player not being enrolled in the
tournament to be able to execute 1.

In general, it might be necessary to analyze conflict res- olution strategies in
order to prevent the generation of new conflicts. We intend to study static analysis
to evaluate the quality of repair strategies.

Example 2: When Ordering is not Enough In some situations, invariant
violations are not easily repaired. Consider that two players concurrently bought
the last unit of an item in the application. For this conflict we cannot apply a repair
function that produces a state equivalent to one operation executing after the other,
because one of the requests would have different effects, i.e. the operation would fail
because there are no available resources left. This situation occurs when operations
are not commutative, which means that we cannot arbitrate an ordering for their
execution without producing different effects. This is different from the previous
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example because, in the first case, despite arbitrating the execution ordering of the
pair of operations, the effects of both operations are preserved.

In fact, a serial execution is what makes most sense in the real life, as it would
be impossible to duplicate resources. We could think of a service that allows items
to be sold in parallel and therefore overselling, but we cannot take more items then
physically available.

If this invariant is important for the application, we have no option then to
use a strong coordination mechanism to ensure that no user buys more resources
then available. However, some invariants, or lets say, application properties, are
desirable properties and not essential for correctness, in which case more solutions
are possible. To not be unfair with any player, the applications could allow the
item to be sold twice which is equivalent to the semantics of eventual consistency.
Or, remove the item from one of the player’s inventory and give back some credit.
In this case, she might have used the item already and that would create more
conflicts. The developer can still make this choice, as long as she is able to repair
any operation that used the resource. The last alternative is to create new items to
compensate for the advantage that were given to both players.

Our conclusion is that some operations naturally require a coordinated execu-
tion, but one can make an alternative version of the same algorithm that does not
require serialization and apply a compensation when things go wrong. This is how
online stores deal with exhausted stocks, or ATMs handle withdrawals that cannot
read the actual balance of an account, do in practice.

4.2.3.2 Invariant-aware Convergence Rules Consider that we repair the
invariant violation of example 1 by keeping the player in the tournament. we pursue
a repair strategy that does not impair the availability of the system, therefore we
avoid strategies that assume a central authority or require coordination to ensure
that the invariant is repaired.

The algorithm we propose is based on the convergence rules used in CRDTs[25].
CRDTs can ensure add-/remove- wins policies when concurrent add and remove
operations execute over the same data-type. This means that we can select the
outcome of a concurrent add/remove operation of the same element to a set. In the
example, the begin operation checks that the set of participants in the tournament
has the minimum number of players and then changes the value of some flag to
true, meaning that the tournament has started. The concurrent disenroll operation
removes one element from the participants set, making its size smaller then the
minimum and when both operations are propagated to the same replica we end in
a state with a set of participants that is smaller than the required for the value of
the flag being true.

The solution for this problem is quite easy. Considering that the set of partic-
ipants uses a add-wins strategy for handling conflicting adds and removes. This
allows to ensure that that the size of the tournament does not decrease with any
concurrent remove, because we can cancel the effect of the remove with an add.
In order to do that, when starting the tournament, we just add again, to the set
of participants, all the players that belong to the set of player in the moment the
tournament starts. This enforces that any concurrent remove will take no effect,
because the merge strategy of the set preserves the concurrent adds, therefore the
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size of the set does not decrease. Adding all the elements to the set again can
be done in an efficient way, to avoid processing overheads when the tournament is
large.

The benefit of this strategy is that it does not require any additional mechanism
to detect conflicts, as the execution of the operations automatically enforces the pre-
conditions for the operation hold when its delivered to any replica. This strategy
additionally requires identifying the pre-conditions of operations, instrument the
code with the extra updates and check for compatibility between operations, i.e.,
that the different convergence rules are compatible with the invariants. We recognize
that it might not be possible to handle all conflicts with this strategy, but it is
promising.

4.2.3.3 Compensating Conflicts In the second example, we describe the case
where the invariant violation cannot be repaired, thus the system must handle it as
part of an exception of the workload. To handle those situations we want to apply
some action that compensates for the occurrence. In the previous example, the
solutions consist in doing nothing, remove the item from one player’s item list, or
create new resources. However, two things have to be taken into consideration when
writing compensations: does the compensation conflict with any other invariant?
what happens if two different replicas compensate the same action? To answer the
first question we can consider a compensating action as part of the workload and
use the same tools to detect the conflicts of the application. Applying compensating
actions is trivial when the operations are idempotent, because they can execute at
multiple machines without producing further outputs. The problem with applying
the compensating actions is that if when the operation is non-idempotent, in which
case, multiple executions of the same operation produce cumulative effects. For
instance, if the compensation was to create new resources, it could create more
resources than desired.

The simplest way to implement the compensation mechanism is to use a central
authority that would guarantee that the compensating action only occurred once, or
use a consensus algorithm. However, this requires coordination which is what we are
trying to avoid at all costs. The alternatively is to make compensations idempotent.
To enable that, replicas need to maintain the log of the operation they applied,
the information of what compensations they applied to solve each conflict and the
compensating operations must be deterministic and independent of the current state
of the database. If every replica keeps this information, they can independently
identify what remote replicas have applied the compensation and cancel the effect
of multiple repairs. The downside of the approach is that replicas cannot compress
the log until all replicas have received the conflicting updates, but we can assume
that partitions, when they occur, do not last forever. The damage of compressing
the log before a replica acknowledges a conflict is measurable and the developer can
decide to move forward after some time, to avoid the log size to increase. The result
would be that the unreachable nodes could have compensated for the same conflict
and the effects will accumulate. Another property of compensating transactions is
that they may not have to be executed immediately, i.e., the system can delegate
applying the fix to the future, which can be convenient in some cases.
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4.2.3.4 Future Work We are currently focusing on implementing these ap-
proaches. This work is being developed in context of both WP3 and WP4, with
algorithm and protocol development being part of WP3 and language aspects being
part of WP4.

Preliminary results with the development of our first approach E.1 show that
this approach can address the problem of operations with high latency at the cost
of increasing the latency in all other operations. Although this increase is small, we
are currently studying how to avoid this effect.

4.3 Extensions to Works Previously Reported

During this period, as planned, we have also started working on security (as part of
Task 3.3). We have proposed a first initial algorithm for managing access control
information and enforcing access control. This proposal addresses only a limited
setting and will be extended in the next period. This work will be reported in the
following period.

A number of works that started being developed in the context of Task 3.1 have
continued during this period, some of them leading to publications. We now briefly
overview the most relevant work, some of them being developed jointly with other
Work Packages.

4.3.0.5 Delta State-based CRDTs Delta State-based CRDTs provide an ef-
ficient mechanism for synchronizing state-based CRDTs, by propagating only deltas
among replicas. A Delta State-based CRDTs (δ-CRDT) is composed by: a state
that is a join-semilattice that results from the join of multiple fine-grained states,
i.e., deltas, generated by what we call δ-mutators; these are new versions of the
datatype mutators that return the effect of these mutators on the state. In this
way, deltas can be retained in a buffer to be shipped individually (or joined in
groups) instead of shipping the entire object. The changes to the local state are
then incorporated at other replicas by joining the shipped deltas with their own
states.

In this period we continued developing this work [1] and a reference implemen-
tation in C++ that is publicly available 3.

4.3.0.6 Conflict-free Partially Replicated Data Types A Conflict-free Par-
tially Replicated Data Structure (CPRDTs) is a CRDT that can be partitioned in
multiple particles. We define particles as the smallest meaningful elements of a
CPRDT. By meaningful we refer to the smallest element that can be used for query
and update operations. For instance, a particle in a grow-only set would be any
element that can be added or looked up in the set.

In this period we have continued developing this work that has been recently
accepted for publication [12].

4.3.0.7 Mechanisms for Efficient Transactions

3https://github.com/CBaquero/delta-enabled-crdts
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Minimizing Conflicts in Transactions Over Partitioned Data A key
characteristic of distributed transactional protocols that impacts the performance
of transactional cloud data stores is the abort rate, which is affected by the de-
gree of concurrency, and naturally, by the workload characteristics. However, the
concurrency control mechanism may also play a fundamental role in reducing or
increasing the likelihood of conflicts.

We define the vulnerability window as the time window defined between trans-
action’s starting point and its serialization point. Two transactions whose vulner-
ability windows overlap may potentially cause one of the transactions to abort.
In protocols that use clocks, as the algorithms being developed in the context of
Antidote, the vulnerability window depends on how the protocol handles time.

In this work we propose a novel technique that aims at reducing the vulnerability
window of transactions. Our technique uses an hybrid clock implementation. The
idea is to use the physical part of the hybrid clock to set the starting time of
the transaction; therefore, moving the starting point forward in time as much as
possible. On the other hand, our technique proposes to use the logical part of
the hybrid clock in order to serialize transactions at the earliest possible point in
time. The combination of these two techniques has the potential of reducing the
vulnerability window; and in consequence, the abort rate.

An initial report on this work as been presented in Bravo et. al. [11]. We expect
to be able to apply the ideas presented in the protocols used in Antidote.

Concise Server-Wide Causality Management In the past we developed
a number of technique for tracking causality in cloud stores, notably Dotted Version
Vectors. Our previous approach, although improving on the state of the art, still
incur in a non-negligible metadata overhead per key, which also keeps growing
with time, proportional with the node churn rate. Another challenge is deleting
keys while respecting causality: while the values can be deleted, per-key metadata
cannot be permanently removed without coordination.

In this work [13] we propose a new causality management framework for even-
tually consistent data stores, that leverages node logical clocks (Bitmapped Version
Vectors) and a new key logical clock (Dotted Causal Container) to provide advan-
tages on multiple fronts: 1) a new efficient and lightweight anti-entropy mechanism;
2) greatly reduced per-key causality metadata size; 3) accurate key deletes without
permanent metadata.

4.3.0.8 Generic Exactly-once Quantity Transfer We have proposed a generic
algorithm for exactly-once transfer of a “quantity” from one node to another on an
unreliable network and without any form of global synchronization [26]. Our ap-
proach copes with message duplication, loss, or reordering. This allows preserving a
global property (the sum of quantities remains unchanged) without requiring global
linearizability and only through using pairwise interactions between nodes, therefore
allowing partitions in the system.

This technique can be used in CRDT used for maintaining invariants, such as
the Bounded Counter, which need to transfer rights among replicas.
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4.3.0.9 Efficient Support of Large CRDTs in Riak The deployment of
CRDTs in Riak 2.0, and their use in multiple production scenario has led to unan-
ticipated usage, such as clients storing huge number of elements inside sets. This
has led to performance problems, as any operation on a set would need to access a
complete replica of the set. Additionally, when a set is modified and needs to be
propagated over the network to update remote replicas, the full replica needs to be
transmitted.

Basho has been addressing this problems by redesigning the support for CRDTs
inside Riak. In this work, described by Russell 4, the ideas previously proposed in
Delta State-based CRDTs are being explored.

4https://gist.github.com/russelldb/1dc3fde55f856833b18e
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5 Publications and presentations

The work performed in the context of WP3 and in collaboration with other work
packages has led to several papers. The following papers have been published during
this period:

• [1] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. Efficient State-
based CRDTs by Delta-Mutation. In Proceedings NETYS 2015, Lecture
Notes on Comptuer Science. Springer, 2015.

• [4] Valter Balegas, Sérgio Duarte, Carlos Ferreira, Rodrigo Rdorigues, Nuno
Preguiça, Mahsa Najafzadeh, and Marc Shapiro. Putting the Consistency
back into Eventual Consistency. In Proceedings of the sixth conference on
Computer systems, EuroSys ’15. ACM, 2015.

• [6] Valter Balegas, Diogo Serra, Sérgio Duarte, Carla Ferreira, Marc Shapiro,
Rodrigo Rodrigues, and Nuno Preguiça. Extending Eventually Consistent
Cloud Databases for Enforcing Numeric Invariants. In Proc. of the Sympo-
sium on Reliable Distributed Systems (SRDS’15), Set 2015.

• [3] Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Nuno
Preguiça, Mahsa Najafzadeh, and Marc Shapiro. Towards Fast Invariant
Preservation in Geo-replicated Systems. SIGOPS Oper. Syst. Rev., 49(1):121–
125, January 2015.

• [11] Manuel Bravo, Paolo Romano, Lúıs Rodrigues, and Peter Van Roy. Re-
ducing the Vulnerability Window in Distributed Transaction Protocols. In
Proceedings of the Workshop on Principles and Practice of Consistency for
Distributed Data, PaPoC ’15. ACM, 2015.

• [13] Ricardo Gonçalves, Paulo Sérgio Almeida, Carlos Baquero Moreno, and
Vitor Fonte. Concise Server-Wide Causality Management for Eventually Con-
sistent Data Stores. In Proceedings of the 15th International Conference on
Distributed Applications and Interoperable Systems (DAIS’15), volume 9038
of Lecture Notes on Comptuer Science, Berlin, Germany, 2015. Springer,
Springer.

• [26] Ali Shoker, Paulo Sérgio Almeida, and Carlos Baquero. Exactly-Once
Quantity Transfer. In Proc. of the Workshop on Planetary Scale Distributed
Systems 2015 (part of SRDSW), Sep 2015.

The following papers have been accepted and will be published during the next
period:

• [12] Iwan Briquemont, Manuel Bravo, Zhongmiao Li, and Peter Van Roy.
Conflict-free Partially Replicated Data Types. In Proceedings of the 7th
IEEE International Conference on Cloud Computing Technology and Science
(CloudCom 2015). IEEE, Nov 2015.

The following paper are under submission or being prepared for submission.
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• [9] Carlos Baquero and Nuno Preguiça. Why logical clocks are easy. Submit-
ted to ACM Queue, 2015.

• [7] Carlos Baquero, Paulo Sérgio Almeida, Alcino Cunha, and Carla Ferreira.
Composition of State-based CRDTs. Technical report, U. Minho, 2015.

Besides presentation of accepted papers, the following works have been presented
without formal proceedings.

• Valter Balegas, Nuno Preguiça, Rodrigo Rodrigues, Sérgio Duarte, Carla Fer-
reira. The Quest For Coordination Free Cloud Storage Systems. Poster ac-
cepted for presentation at SOSP’15.

• [5] Valter Balegas, Nuno Preguiça, Rodrigo Rodrigues, Sérgio Duarte, and
Carla Ferreira. Designing concurrency-aware geo-replicated storage systems.
Presented at the Workshop on Planetary Scale Distributed Systems 2015,
2015.

• Carla Ferreira. Putting the Consistency back into Eventual Consistency. Pre-
sented at FRIDA 2015, 2015.

SyncFree Deliverable D.3.2(v0.1), September 29, 2015, Page 41



REFERENCES

References

[1] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. Efficient State-based
CRDTs by Delta-Mutation. In Proceedings NETYS 2015, Lecture Notes on
Comptuer Science. Springer, 2015.

[2] Peter Bailis, Shivaram Venkataraman, Michael J. Franklin, Joseph M. Heller-
stein, and Ion Stoica. Probabilistically bounded staleness for practical partial
quorums. Proc. VLDB Endow., 5(8):776–787, April 2012.

[3] Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Nuno
Preguiça, Mahsa Najafzadeh, and Marc Shapiro. Towards Fast Invariant
Preservation in Geo-replicated Systems. SIGOPS Oper. Syst. Rev., 49(1):121–
125, January 2015.

[4] Valter Balegas, Sérgio Duarte, Carlos Ferreira, Rodrigo Rdorigues, Nuno
Preguiça, Mahsa Najafzadeh, and Marc Shapiro. Putting the Consistency back
into Eventual Consistency. In Proceedings of the sixth conference on Computer
systems, EuroSys ’15. ACM, 2015.

[5] Valter Balegas, Nuno Preguiça, Rodrigo Rodrigues, Sérgio Duarte, and Carla
Ferreira. Designing concurrency-aware geo-replicated storage systems. Pre-
sented at the Workshop on Planetary Scale Distributed Systems 2015, 2015.

[6] Valter Balegas, Diogo Serra, Sérgio Duarte, Carla Ferreira, Marc Shapiro, Ro-
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A Estimating Probabilistic Divergence Metrics

A.1 System Model

Consider a replicated system of n replicas distributed over m groups (say DCs).
Replicas rik and ril within group gi communicate with each other every period T t

kl.
We use the notation rk to refer to a replica regardless of any grouping. Groups
can also communicate with each others through group leaders. A leader acts as
a synchronization portal between its own group replicas and other groups. Two
leaders li and lj (or simply groups gi and gj) communicate with each other, less
frequently, on every period T t

ij. Leaders can be chosen using any existing voting
method, and it is orthogonal to this work.

A replica can host one or more CRDTs. (We use the term “replica” in this paper
to represent the datatype copy itself, otherwise else mentioned.) A replica is thus
allowed to update its local state with a loose coordination with other replicas, which
leads to temporary divergence. Conflicts between diverging replicas are eventually
resolved as soon as replicas coordinate. We assume that this conflict resolution is
a black box, and we are only interested in the rate of updates on the replicated
datatype. The rate of updates of a replica rik (resp., group gi) is RT

ik (resp., RT
i )

during a period T .

A.2 System Topology

To improve scalability, geo-replicated systems are often composed of few groups,
e.g., Data centers (DCs), comprising plenty of replicas. In this topology, intra-
group coordination is more frequent than inter-group on. Since it is not practical
for every single replica to coordinate with all other system replicas, we assume that
each group has a leader than can coordinate, on behalf of his group, with other
group leaders. In this design, a leader is in charge of pushing/pulling the updates
across groups. Group members are informed about the progress of remote replicas
(in other groups) through their leader. As shown in Figure. . . , leaders can be seen
as an additional virtual group, but often with looser coordination.

A.3 Divergence Assessment

As mentioned above, replicas are allowed to diverge between synchronization peri-
ods. That said, it is crucial for many applications to assess the progress (mainly
updates) of the CRDT state until coordination occurs in the next period, e.g., in
order to avoid violations or make convenient actions. To do this, a replica ri can
retain a vector Vi of the update rates all other replicas. On each coordination period

T t
i with another replica rj, the joint rate R

T t
ij

ij is updated. Many tradeoffs exist for
maintaining the rate’s vector V ; we discuss three of them in what follows:
Vector Size. Assume that the size of V is an order of n (the number of repli-
cas). As the number of replicas gets large, maintaining V becomes costly as the
transmission and space overheads will grow. In addition, each replica will be co-
ordinating wit all other replicas which is not practical. On the opposite side, if V
only retains the rates of groups (an order of m); then the aggregated rate of changes
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by remote groups would be high; put together with the low coordination frequency
across groups, this will significantly reduce the accuracy of estimating the evolution
of remote replicas, and consequently lead to violations. The alternative tradeoff
is to retain the rate of neighboring replicas, i.e., those within the same group, in
addition to those of the leaders of remote groups. This will be a more scalable
solution that has an acceptable level of freshness needed for estimation. (TODO:
it is good to experiment this tradeoff).

Driven by the above discussion, we require the vector of rates to concatenate
two vectors, i.e., V = Vr|Vg, where Vr retains the rates on intra-group replicas and
Vg retains those of groups. In the following, we address V as a single vector as long
as discriminating Vr and Vg is indifferent.

Coordination Rate. A second tradeoff that can impact the divergence of the
system is the coordination rate. A frequently coordinated system is costly and hard
to maintain in the presence of partitions. On the contrary, very loosely coordi-
nated system can often lead to breaking the prospective invariants of the system.
Distributed the replicas over groups with different coordination periods partially
resolves this problem as it imposes a more frequent coordination for nearby replicas
than remote ones. A question arises here is how to tune the coordination periods
and whether they shall be static or dynamic? In the following section, we try to
give a solution based on statically chosen coordination periods and also how to
efficiently choose dynamic coordination periods among groups and also individual
replicas.

Checking for Violations. One more tradeoff is how greedy the system would be
in checking for violations. One option is to check for violations before each update
is executed. An update is successful if it does not lead to violations, otherwise
an action must be made (e.g., stop, require coordination now, use escrow, etc.).
The other option is using this checking only when it is likely that violations will
occur (with some probability); this allows to skip violation checking as long as the
state of the CRDT is far from invariant breaking. An example is when a counter
CRDT (e.g., an Ad) is quite large to be consumed upon many decrements before
coordination. The third option is to dynamically change the coordination periods,
based on the rates in V , in such a way to avoid violations. In this way, replicas can
blindly execute their local updates without checking for other replicas progress. A
replica is only required to require coordination if its own local rate of updates in
the current coordination period is much higher than that of previous periods. The
solution we provide in this work is based on this final option. (TODO: We plan to
consider the other options in the future.).

Since different CRDT datatypes diverge in different ways, we address each
datatype aside. We give a more emphasis on the “counter” datatype that has
many use cases in practice. Furthermore, it is easy to get inspired by this approach
on counters to assess the divergence of “maps”, set sizes, etc.
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A.4 Counters

A counter has two main update operations: an increment and decrement. For sim-
plicity, we only consider a counter c > 0 and a single decrementing operation: dec
(e.g., Ads use-case). It is straightforward to apply the same techniques (described
next) on increments too. A replica ci of a counter c can be decremented d times
if this does not break the invariants of the counter, i.e., c 6< 0. To ensure this, at
any time, a replica must test whether d decrements would lead to violation or not.
If the replica has an exact value c of the counter, it can avoid violations by simply
asserting c − d < 0. However, since an exact value c is not possible to compute in
practice, a replica can compute an estimate c̄ of it instead. Since a local counter
value ci is always accurate, thus this replica can estimate

c̄ = ci −
∑

j 6=i

d̄j (12)

where d̄j is the estimated number of decrements on replica j. The challenge
is now how to compute this estimate. Let tpij and tnij be the previous and next
coordination time, respectively, between replicas i and j. Let cti be the local counter
value of any replica i at time tpij < t < tnij. Replica i can estimate the number of

decrements d̄j on another replica j in three ways: direct, probabilistic, or optimistic.

A.4.1 Direct Estimation

The direct estimation of d̄j at replica i is a simple but inaccurate method that
depends on the previous rate value of Vi[j] and the duration since the previous
coordination:

d̄j = (t− tp)Vi[j] (13)

The above method is straightforward and cheap; however, it is only applicable
if the rates are merely constant over time. Since this is not very realistic in many
applications, it is good to include a variation error for this estimate. We follow the
probabilistic approach to calculate this error.

A.4.2 Probabilistic Estimation

In this approach, we assume that the number of decrements, i.e., the rate, follows
a probability distribution D. Then we try to estimate an interval in which the
estimated number of decrements lie with a high probability, and we need to find
the probability that a number of potential local decrements can lead to violation.

A.4.2.1 Confidence Intervals A frequently used method is to find the confi-
dence interval considering high confidence percentages, e.g., 95% and 99%, in which
the “mean” value µi would lie. Such interval often satisfies is or approximated by
the Z- or t-distributions (regardless of D). The estimated interval of decrements is
then as follows:

d̄i = [ďi, d̂i] =

[
µi ± τ

σi√
ki

]
(14)
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Table 3: The values of τ as confidence varies.
Confidence percentage 95% 99% 99.9%

τ v Z-dist 1.96 2.58 3.39
τ v t-dist

where µi and σi are the mean and the variance of the probability distribution Di

on replica i, and τ (see Table 3) is the Z- or t-score corresponding to the confidence
percentage required (more details to come next). In addition, ki represents the
number of coordinations replica i made with the local replica. Eq. 14 is used
to compute the confidence interval in one time slot according to the rates. For
instance, if the rates are calculates per seconds, then this estimate would be for
only one second ahead. But how could we calculate this for longer periods?

In fact, we can benefit from the fact that the rate of decrements of counters is
independent across time slots (e.g., the number of decrements of a slot does not
impact the number of decrements of the next one). Given this, calculating the
interval on t − tp time slots can be seen as computing the interval of the sum of
t− tp independent distributions. Since the interesting statistical rules say that the
mean µ and variance σ2 of the sum of independent distributions add, then we get
the confidence interval of the number of decrements during (t− tp) as follows:

d̄ti = [ďti, d̂
t
i] =

[
µi(t− tp)± τ

√
(t− tp)

σi√
ki

]
(15)

It is clear that Eq. 15 depends on t− tp. Since tp is fixed, then as t gets larger
more decrements are expected and also more error is expected (the second part
of the equation). This is reasonable since as the coordination time increases (and
equivalently the coordination period), the estimation error would escalate due to
potential variation in the decrementing rate on remote replicas. Eq. 15 depends
also on ki which is the number of coordinations occurred so far. Notice that as ki
increases the estimation error decreases. This is referred to the increasing confidence
gained by using µi (which is often the mean of V [i] of the ki previous coordination
periods).

Back to Eq. 12, we now introduce the confidence interval of the counter at any
time t:

c̄ti = [čti, ĉ
t
i] =

[
cti −

∑

j 6=i

d̂tj, c
t
i −
∑

j 6=i

ďtj

]
(16)

A.4.2.2 Detecting Violations In this section, we show how to compute the
probability of a violation to occur upon d decrements. Upon d decrements executed
by the local replica i, a violation occurs if the counter value becomes negative, i.e.,
c − d < 0. But, c = ci − d̄, where d̄ is the estimated decrements on all groups.
Therefore, in general, the probability of a violation to happen upon d decrements
is:

P (c− d < 0) = P (ci − d̄− d < 0) = P (d̄ > ci − d) = 1− P (d̄ ≤ ci − d)
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Given that d̄ follows the probability distribution D, it is easy to find this com-
mutative probability.

Another option to check for violation is possible in case we have a pre-defined
probability as revealed in Table 3. This is useful if the estimated counter value c̄ti is
already computed. For instance of it is accepted to check violation with probability
97.5%, then we can use τ = 1.96 and assert that

ĉti − d 6< 0. (17)

A.4.2.3 Non-Greedy Checking The above violation checking and interval
estimations are very demanding to computation resources as computing the prob-
abilities must be done on each attempt to decrement locally. A more practical way
is to follow a non-greedy way in which we can check the possibility of violations
only once, just after entering a new coordination period. This can be simply done
by fixing t and using Tn instead. This can be viewed as an escrow over the current
coordination period Tn − tp.

This approach can be used with confidence as long as the probability of violat-
ing the invariants is close to zero, i.e., the counter is far from zero. However, as
the probability of violations start to increase, it can be useful to degrade the coor-
dination frequency (e.g., an exponential back-off) in favor of non-greedy checking.
This would mean that as the counter value approaches to zero, the coordination
periods will get smaller, and consequently replicas must coordinate faster. This can
sometimes be undesirable. A more smart solution is to compute the coordination
periods using a probabilistic back-off scheme.

A.4.3 Example: Poisson Distribution

More details to come, but briefly. If D is the Poisson distribution, which is often
used for similar situations, then µi = σi = V [i]/ki.

An interesting feature in Poisson is also that the sum of independent Poisson
distribution follows Poisson of the sum of their means, i.e., P (λ1, λ2, . . . , λn) =
P (λ1 + λ2 + · · ·+ λn).

Thus µj 6=i =
∑

j 6=i µj and λj 6=i =
∑

j 6=i λj. Then the sum of estimated decre-
ments on all other replicas becomes:

d̄tj 6=i = [ďtj 6=i, d̂
t
j 6=i] =

[
µj 6=i(t− tp)± τ

√
(t− tp)

σj 6=i√
kj 6=i

]
(18)

where kj 6=i can be computed as the median or mean of all ks.

And Eq. 16 becomes:

c̄ti = [čti, ĉ
t
i] =

[
cti − d̂tj 6=i, c

t
i − ďtj 6=i

]
(19)
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Efficient State-based CRDTs by Delta-Mutation

Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero
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Abstract. CRDTs are distributed data types that make eventual con-
sistency of a distributed object possible and non ad-hoc. Specifically,
state-based CRDTs ensure convergence through disseminating the en-
tire state, that may be large, and merging it to other replicas; whereas
operation-based CRDTs disseminate operations (i.e., small states) as-
suming an exactly-once reliable dissemination layer. We introduce Delta
State Conflict-Free Replicated Datatypes (δ-CRDT) that can achieve the
best of both worlds: small messages with an incremental nature, dis-
seminated over unreliable communication channels. This is achieved by
defining δ-mutators to return a delta-state, typically with a much smaller
size than the full state, that is joined to both: local and remote states.
We introduce the δ-CRDT framework, and we explain it through estab-
lishing a correspondence to current state-based CRDTs. In addition, we
present an anti-entropy algorithm that ensures causal consistency, and
two δ-CRDT specifications of well-known replicated datatypes.

Keywords: Replicated data types; state-based CRDT; delta mutation.

1 Introduction

Eventual consistency (EC) is a relaxed consistency model that is often adopted
by large-scale distributed systems [11,24,13] where availability must be main-
tained, despite outages and partitioning, whereas delayed consistency is accept-
able. A typical approach in EC systems is to allow replicas of a distributed
object to temporarily diverge, provided that they can eventually be reconciled
into a common state. To avoid application-specific reconciliation methods, costly
and error-prone, Conflict-Free Replicated Data Types (CRDTs) [22,23] were in-
troduced, allowing the design of self-contained distributed data types that are
always available and eventually converge when all operations are reflected at all
replicas. Though CRDTs are being deployed in practice [11], more work is still
required to improve their design and performance.

CRDTs support two complementary designs: operation-based (or op-based)
and state-based. In op-based designs [17,23], the execution of an operation is

? This work is co-financed by the North Portugal Regional Operational Programme
(ON.2, O Novo Norte), under the National Strategic Reference Framework (NSRF),
through the European Regional Development Fund (ERDF), within project NORTE-
07-0124-FEDER-000058; and by EU FP7 SyncFree project (609551).



done in two phases: prepare and effect. The former is performed only on the
local replica and looks at the operation and current state to produce a message
that aims to represent the operation, which is then shipped to all replicas. Once
received, the representation of the operation is applied remotely using effect.
On the other hand, in a state-based design [4,23] an operation is only executed
on the local replica state. A replica periodically propagates its local changes to
other replicas through shipping its entire state. A received state is incorporated
with the local state via a merge function (designed as a least upper bound over
a join-semilattice [4,23]) that deterministically reconciles both states.

Op-based CRDTs have more advantages as they can allow for simpler im-
plementations, concise replica state, and smaller messages; however, they are
subject to some limitations: First, they assume a message dissemination layer
that guarantees reliable exactly-once causal broadcast (required to ensure idem-
potence); these guarantees are hard to maintain since large logs must be retained
to prevent duplication even if TCP is used [15]. Second, membership manage-
ment is a hard task in op-based systems especially once the number of nodes
gets larger or due to churn problems, since all nodes must be coordinated by the
middleware. Third, the op-based approach requires operations to be executed
individually (even when batched) on all nodes.

The alternative is to use state-based systems which are deprived from these
limitations. However, a major drawback in current state-based CRDTs is the
communication overhead of shipping the entire state, which can get very large in
size. For instance, the state size of a counter CRDT (a vector of integer counters,
one per replica) increases with the number of replicas; whereas in a grow-only
Set, the state size depends on the set size, that grows as more operations are
invoked. This communication overhead limits the use of state-based CRDTs to
data-types with small state size (e.g., counters are reasonable while sets are not).
Recently, there has been a demand for CRDTs with large state sizes (e.g., in
RIAK DT Maps [6] that can compose multiple CRDTs).

In this paper, we rethink the way state-based CRDTs should be designed,
having in mind the problematic shipping of the entire state. Our aim is to ship a
representation of the effect of recent update operations on the state, rather than
the whole state, while preserving the idempotent nature of join. This ensures
convergence over unreliable communication (on the contrary to op-based). To
achieve this, we introduce Delta State-based CRDTs (δ-CRDT): a state is a join-
semilattice that results from the join of multiple fine-grained states, i.e., deltas,
generated by what we call δ-mutators which are new versions of the datatype
mutators that return the effect of these mutators on the state. Thus, deltas can be
temporarily retained in a buffer to be shipped individually (or joined in groups)
instead of shipping the entire object. The local changes are then incorporated
at other replicas by joining the shipped deltas with their own states.

The use of “deltas” (i.e., incremental states) may look intuitive in state dis-
semination; however, this is not the case for state-based CRDTs. The reason is
that once a node receives an entire state, merging it locally is simple since there
is no need to care about causality, as both states are self-contained (including



meta-data). The challenge in δ-CRDT is that individual deltas are now “state
fragments” and must be causally merged to maintain the correct semantics. This
raises the following questions: is merging deltas semantically equivalent to merg-
ing entire states in CRDTs? If not, what are the sufficient conditions to make this
true in general? And under what constraints causal consistency is maintained?
This paper answers these questions and presents corresponding solutions.

We address the challenge of designing a new δ-CRDT that conserves the
correctness properties and semantics of an existing CRDT by establishing a
relation between the novel δ-mutators with the original CRDT mutators. We
then show how to ensure causal consistency using deltas through introducing
the concept of delta-interval and the causal delta-merging condition. Based on
these, we then present an anti-entropy algorithm for δ-CRDT, where sending
and then joining delta-intervals into another replica state produces the same
effect as if the entire state had been shipped and joined.

As the area of CRDTs is relatively new, we illustrate our approach by ex-
plaining a simple counter δ-CRDT specification; then we introduce a challeng-
ing non-trivial specification for a widely used datatype: Optimized Add-Wins
Observed-Remove Sets [5]; and finally we present a novel design for an Opti-
mized Multi-Value Register with meta-data reduction. In addition, we make a
basic δ-CRDT C++ library available online [2] for various CRDTs: GSet, 2PSet,
GCounter, PNCounter, AWORSet, RWORSet, MVRegister, LWWSet, etc. Our
experience shows that a δ-CRDT version can be devised for most CRDTs, how-
ever, this requires some design effort that varies with the complexity of different
CRDTs. This is referred to the ad-hoc way CRDTs are designed in general (which
is also required for δ-CRDTs). To the best of our knowledge, no model has been
introduced so far to make designing CRDTs generic rather than type-specific.

2 System Model

Consider a distributed system with nodes containing local memory, with no
shared memory between them. Any node can send messages to any other node.
The network is asynchronous; there is no global clock, no bound on the time
a message takes to arrive, and no bounds are set on relative processing speeds.
The network is unreliable: messages can be lost, duplicated or reordered (but
are not corrupted). Some messages will, however, eventually get through: if a
node sends infinitely many messages to another node, infinitely many of these
will be delivered. In particular, this means that there can be arbitrarily long
partitions, but these will eventually heal. Nodes have access to durable storage;
they can crash but will eventually recover with the content of the durable storage
just before crash the occurred. Durable state is written atomically at each state
transition. Each node has access to its globally unique identifier in a set I.



3 A Background of State-based CRDTs

Conflict-Free Replicated Data Types [22,23] (CRDTs) are distributed datatypes
that allow different replicas of a distributed CRDT instance to diverge and
ensures that, eventually, all replicas converge to the same state. State-based
CRDTs achieve this through propagating updates of the local state by dissem-
inating the entire state across replicas. The received states are then merged to
remote states, leading to convergence (i.e., consistent states on all replicas).

A state-based CRDT consists of a triple (S,M,Q), where S is a join-semi-
lattice [12], Q is a set of query functions (which return some result without
modifying the state), and M is a set of mutators that perform updates; a mutator
m ∈ M takes a state X ∈ S as input and returns a new state X ′ = m(X). A
join-semilattice is a set with a partial order v and a binary join operation t
that returns the least upper bound (LUB) of two elements in S; a join is designed
to be commutative, associative, and idempotent. Mutators are defined in such a
way to be inflations, i.e., for any mutator m and state X, the following holds:

X v m(X)

In this way, for each replica there is a monotonic sequence of states, defined under
the lattice partial order, where each subsequent state subsumes the previous state
when joined elsewhere.

Both query and mutator operations are always available since they are per-
formed using the local state without requiring inter-replica communication; how-
ever, as mutators are concurrently applied at distinct replicas, replica states will
likely diverge. Eventual convergence is then obtained using an anti-entropy pro-
tocol that periodically ships the entire local state to other replicas. Each replica
merges the received state with its local state using the join operation in S.
Given the mathematical properties of join, if mutators stop being issued, all
replicas eventually converge to the same state. i.e. the least upper-bound of all
states involved. State-based CRDTs are interesting as they demand little guar-
antees from the dissemination layer, working under message loss, duplication,
reordering, and temporary network partitioning, without impacting availability
and eventual convergence.

Σ = I ↪→ N

σ0
i = {}

inci(m) = m{i 7→ m(i) + 1}
valuei(m) =

∑

i∈I
m(i)

m tm′ = {(i,max(m(i),m′(i))) | i ∈ I}

Fig. 1: State-based Counter CRDT;
replica i.

Example. Fig. 1 represents a
state-based increment-only counter.
The CRDT state Σ is a map from
replica identifiers to positive integers.
Initially, σ0

i is an empty map (as-
suming that unmapped keys implic-
itly map to zero, and only non zero
mappings are stored). A single muta-
tor, i.e., inc, is defined that increments
the value of the local replica i (return-
ing the updated map). The query op-
eration value returns the counter value



by adding the integers in the map entries. The join of two states is the point-wise
maximum of the maps.

Weaknesses. The main weakness of state-based CRDTs is the cost of dis-
semination of updates, as the full state is sent. In this simple example of counters,
even though increments only update the value corresponding to the local replica
i, the whole map will always be sent in messages though the other map values
remained intact (since no messages have been received and merged).

It would be interesting to only ship the recent modification incurred on
the state. This is, however, not possible with the current model of state-based
CRDTs as mutators always return a full state. Approaches which simply ship
operations (e.g., an “increment n” message), like in operation-based CRDTs,
require reliable communication (e.g., because increment is not idempotent). In
contrast, our approach allows producing and encoding recent mutations in an in-
cremental way, while keeping the advantages of the state-based approach, namely
the idempotent, associative, and commutative properties of join.

4 Delta-state CRDTs

We introduce Delta-State Conflict-Free Replicated Data Types, or δ-CRDT for
short, as a new kind of state-based CRDTs, in which delta-mutators are defined
to return a delta-state: a value in the same join-semilattice which represents the
updates induced by the mutator on the current state.

Definition 1 (Delta-mutator). A delta-mutator mδ is a function, correspond-
ing to an update operation, which takes a state X in a join-semilattice S as
parameter and returns a delta-mutation mδ(X), also in S.

Definition 2 (Delta-group). A delta-group is inductively defined as either a
delta-mutation or a join of several delta-groups.

Definition 3 (δ-CRDT). A δ-CRDT consists of a triple (S,Mδ, Q), where
S is a join-semilattice, M δ is a set of delta-mutators, and Q a set of query
functions, where the state transition at each replica is given by either joining the
current state X ∈ S with a delta-mutation:

X ′ = X tmδ(X),

or joining the current state with some received delta-group D:

X ′ = X tD.

In a δ-CRDT, the effect of applying a mutation, represented by a delta-
mutation δ = mδ(X), is decoupled from the resulting state X ′ = X t δ, which
allows shipping this δ rather than the entire resulting state X ′. All state transi-
tions in a δ-CRDT, even upon applying mutations locally, are the result of some
join with the current state. Unlike standard CRDT mutators, delta-mutators do



not need to be inflations in order to inflate a state; this is however ensured by
joining their output, i.e., deltas, into the current state.

In principle, a delta could be shipped immediately to remote replicas once ap-
plied locally. For efficiency reasons, multiple deltas returned by applying several
delta-mutators can be joined locally into a delta-group and retained in a buffer.
The delta-group can then be shipped to remote replicas to be joined with their
local states. Received delta-groups can optionally be joined into their buffered
delta-group, allowing transitive propagation of deltas. A full state can be seen
as a special (extreme) case of a delta-group.

If the causal order of operations is not important and the intended aim is
merely eventual convergence of states, then delta-groups can be shipped using
an unreliable dissemination layer that may drop, reorder, or duplicate messages.
Delta-groups can always be re-transmitted and re-joined, possibly out of order,
or can simply be subsumed by a less frequent sending of the full state, e.g. for
performance reasons or when doing state transfers to new members. Due to space
limits, we only address causal consistency in this paper, while information about
state convergence can be found in the associated technical report [1].

4.1 Delta-state decomposition of standard CRDTs

A δ-CRDT (S,Mδ, Q) is a delta-state decomposition of a state-based CRDT
(S,M,Q), if for every mutator m ∈M , we have a corresponding mutator mδ ∈
Mδ such that, for every state X ∈ S:

m(X) = X tmδ(X)

This equation states that applying a delta-mutator and joining into the cur-
rent state should produce the same state transition as applying the corresponding
mutator of the standard CRDT.

Given an existing state-based CRDT (which is always a trivial decomposition
of itself, i.e., m(X) = X tm(X), as mutators are inflations), it will be useful
to find a non-trivial decomposition such that delta-states returned by delta-
mutators in Mδ are smaller than the resulting state:

size(mδ(X))� size(m(X))

4.2 Example: δ-CRDT Counter
Σ = I ↪→ N

σ0
i = {}

incδi (m) = {i 7→ m(i) + 1}
valuei(m) =

∑

i∈I
m(i)

m tm′ = {(i,max(m(i),m′(i))) | i ∈ I}

Fig. 2: A δ-CRDT counter; replica i.

Fig. 2 depicts a δ-CRDT specification
of a counter datatype that is a delta-
state decomposition of the state-based
counter in Fig. 1. The state, join and
value query operation remain as be-
fore. Only the mutator incδ is newly
defined, which increments the map en-
try corresponding to the local replica



and only returns that entry, instead of the full map as inc in the state-based
CRDT counter does. This maintains the original semantics of the counter while
allowing the smaller deltas returned by the delta-mutator to be sent, instead
of the full map. As before, the received payload (whether one or more deltas)
might not include entries for all keys in I, which are assumed to have zero val-
ues. The decomposition is easy to understand in this example since the equation
inci(X) = X t incδi (X) holds as m{i 7→ m(i)+1} = mt{i 7→ m(i)+1}. In other
words, the single value for key i in the delta, corresponding to the local replica
identifier, will overwrite the corresponding one in m since the former maps to a
higher value (i.e., using max). Here it can be noticed that: (1) a delta is just a
state, that can be joined possibly several times without requiring exactly-once
delivery, and without being a representation of the “increment” operation (as in
operation-based CRDTs), which is itself non-idempotent; (2) joining deltas into
a delta-group and disseminating delta-groups at a lower rate than the operation
rate reduces data communication overhead, since multiple increments from a
given source can be collapsed into a single state counter.

5 Causal Consistency

Traditional state-based CRDTs converge using joins of the full state, which im-
plicitly ensures per-object causal consistency [8]: each state of some replica of an
object reflects the causal past of operations on the object (either applied locally,
or applied at other replicas and transitively joined).

Therefore, it is desirable to have δ-CRDTs offer the same causal-consistency
guarantees that standard state-based CRDTs offer. This raises the question
about how can delta propagation and merging of δ-CRDT be constrained (and
expressed in an anti-entropy algorithm) in such a manner to give the same re-
sults as if a standard state-based CRDT was used. Towards this objective, it is
useful to define a particular kind of delta-group, which we call a delta-interval :

Definition 4 (Delta-interval). Given a replica i progressing along the states
X0
i , X

1
i , . . ., by joining delta dki (either local delta-mutation or received delta-

group) into Xk
i to obtain Xk+1

i , a delta-interval ∆a,b
i is a delta-group resulting

from joining deltas dai , . . . , d
b−1
i :

∆a,b
i =

⊔
{dki | a ≤ k < b}

The use of delta-intervals in anti-entropy algorithms will be a key ingredient
towards achieving causal consistency. We now define a restricted kind of anti-
entropy algorithm for δ-CRDTs.

Definition 5 (Delta-interval-based anti-entropy algorithm). A given anti-
entropy algorithm for δ-CRDTs is delta-interval-based, if all deltas sent to other
replicas are delta-intervals.

Moreover, to achieve causal consistency the next condition must satisfied:



Definition 6 (Causal delta-merging condition). A delta-interval based anti-
entropy algorithm is said to satisfy the causal delta-merging condition if the al-
gorithm only joins ∆a,b

j from replica j into state Xi of replica i that satisfy:

Xi w Xa
j .

This means that a delta-interval is only joined into states that at least reflect
(i.e., subsume) the state into which the first delta in the interval was previously
joined. The causal delta-merging condition is important since any delta-interval
based anti-entropy algorithm of a δ-CRDT that satisfies it, can be used to obtain
the same outcome of standard CRDTs; this is formally stated in Proposition 1.

Proposition 1. (CRDT and δ-CRDT correspondence) Let (S,M,Q) be a stan-
dard state-based CRDT and (S,Mδ, Q) a corresponding delta-state decomposi-
tion. Any δ-CRDT state reachable by an execution Eδ over (S,Mδ, Q), by a
delta-interval based anti-entropy algorithm Aδ satisfying the causal delta-merging
condition, is equal to a state resulting from an execution E over (S,M,Q), hav-
ing the corresponding data-type operations, by an anti-entropy algorithm A for
state-based CRDTs.

Proof. Please see the associated technical report [1].

Corollary 1. (δ-CRDT causal consistency) Any δ-CRDT in which states are
propagated and joined using a delta-interval-based anti-entropy algorithm satis-
fying the causal delta-merging condition ensures causal consistency.

Proof. From Proposition 1 and causal consistency of state-based CRDTs.

5.1 Anti-Entropy Algorithm for Causal Consistency

Algorithm 1 is a delta-interval based anti-entropy algorithm which enforces the
causal delta-merging condition. It can be used whenever the causal consistency
guarantees of standard state-based CRDTs are needed. For simplicity, it excludes
some optimizations that are important, but easy to derive, in practice. The
algorithm distinguishes neighbor nodes, and only sends them delta-intervals that
are joined at the receiving node, obeying the delta-merging condition.

Each node i keeps a contiguous sequence of deltas dli, . . . , d
u
i in a map D from

integers to deltas, with l = min(dom(D)) and u = max(dom(D)). The sequence
numbers of deltas are obtained from the counter ci that is incremented when
a delta (whether a delta-mutation or delta-interval received) is joined with the
current state. Each node i keeps an acknowledgments map A that stores, for
each neighbor j, the largest index b for all delta-intervals ∆a,b

i acknowledged by

j (after j receives ∆a,b
i from i and joins it into Xj).

Node i sends a delta-interval d = ∆a,b
i with a (delta, d, b) message; the re-

ceiving node j, after joining ∆a,b
i into its replica state, replies with an acknowl-

edgment message (ack, b); if an ack from j was successfully received by node i,



1 inputs:
2 ni ∈ P(I), set of neighbors
3 durable state:
4 Xi ∈ S, CRDT state; initially

Xi = ⊥
5 ci ∈ N, sequence number; initially

ci = 0

6 volatile state:
7 Di ∈ N ↪→ S, sequence of deltas;

initially Di = {}
8 Ai ∈ I ↪→ N, acknowledges map;

initially Ai = {}
9 on receivej,i(delta, d, n)

10 if d 6v Xi then
11 X ′

i = Xi t d
12 D′

i = Di{ci 7→ d}
13 c′i = ci + 1

14 sendi,j(ack, n)

15 on receivej,i(ack, n)
16 A′

i = Ai{j 7→ max(Ai(j), n)}

17 on operationi(m
δ)

18 d = mδ(Xi)
19 X ′

i = Xi t d
20 D′

i = Di{ci 7→ d}
21 c′i = ci + 1

22 periodically // ship delta-interval or
state

23 j = random(ni)
24 if Di = {} ∨ min(dom(Di)) > Ai(j)

then
25 d = Xi
26 else
27 d =

⊔{Di(l) | Ai(j) ≤ l < ci}
28 if Ai(j) < ci then
29 sendi,j(delta, d, ci)

30 periodically // garbage collect deltas
31 l = min{n | ( , n) ∈ Ai}
32 D′

i = {(n, d) ∈ Di | n ≥ l}

Algorithm 1: Anti-entropy algorithm ensuring causal consistency of δ-CRDT.

it updates the entry of j in the acknowledgment map, using the max function.
This handles possible old duplicates and messages arriving out of order.

Like the δ-CRDT state, the counter ci is also kept in a durable storage. This
is essential to avoid conflicts after potential crash and recovery incidents. Other-
wise, there would be the danger of receiving some delayed ack, for a delta-interval
sent before crashing, causing the node to skip sending some deltas generated af-
ter recovery, thus violating the delta-merging condition.

The algorithm for node i periodically picks a random neighbor j. In principle,
i sends the join of all deltas starting from the latest delta acked by j and forward.
Exceptionally, i sends the entire state in two cases: (1) if the sequence of deltas
Di is empty, or (2) if j is expecting from i a delta that was already removed from
Di (e.g., after a crash and recovery, when both deltas and the ack map, being
volatile state, are lost); i tracks this in Ai(j). To garbage collect old deltas, the
algorithm periodically removes the deltas that have been acked by all neighbors.

Proposition 2. Algorithm 1 produces the same reachable states as a standard
algorithm over a CRDT for which the δ-CRDT is a decomposition.

Proof. Please see the associated technical report [1].

6 δ-CRDTs for Add-Wins OR-Sets

An Add-wins Observed-Remove Set (OR-set) is a well-known CRDT datatype
that offers the same sequential semantics of a sequential set and adopts a specific



Σ = P(I×N× E)× P(I×N)

σ
0
i = ({}, {})

addδi (e, (s, t)) = ({(i, n+ 1, e)}, {})
with n = max({k | (i, k, ) ∈ s})

rmvδi (e, (s, t)) = ({}, {(j, n) | (j, n, e) ∈ s})
elementsi((s, t)) = {e | (j, n, e) ∈ s ∧ (j, n) 6∈ t}
(s, t) t (s

′
, t

′
) = (s ∪ s′, t ∪ t′)

(a) With Tombstones

Σ = P(I×N× E)× P(I×N)

σ
0
i = ({}, {})

addδi (e, (s, c)) = ({(i, n+ 1, e)}, {(i, n+ 1)})
with n = max({k | (i, k) ∈ c})

rmvδi (e, (s, c)) = ({}, {(j, n) | (j, n, e) ∈ s})
elementsi((s, c)) = {e | (j, n, e) ∈ s}
(s, c) t (s

′
, c

′
) = ((s ∩ s′) ∪ {(i, n, e) ∈ s | (i, n) 6∈ c′}
∪{(i, n, e) ∈ s′ | (i, n) 6∈ c}, c ∪ c′)

(b) Without Tombstones (optimized)

Fig. 3: Add-wins observed-remove δ-CRDT set, replica i.

resolution semantics for operations that concurrently add and remove the same
element. Add-wins means that an add prevails over a concurrent remove. Remove
operations, however, only affect elements added by causally preceding adds. The
purpose of these δ-CRDT OR-set versions is to design δ-mutators that return
small deltas to be lightly disseminated, as discussed above, instead of shipping
the entire state as in classical CRDTs [22,23,5].

6.1 Add-wins OR-Set with tombstones

Fig. 3a depicts a simple, but inefficient, δ-CRDT implementation of a state-based
add-wins OR-Set. The state Σ consists of a set of tagged elements and a set of
tags, acting as tombstones. Globally unique tags of the form I × N are used
and ensured by pairing a replica identifier in I with a monotonically increasing
natural counter. Once an element e ∈ E is added to the set, the delta-mutator
addδ creates a globally unique tag by incrementing the highest tag present in
its local state and that was created by replica i itself (max returns 0 if no tag
is present). This tag is paired with value e and stored as a new unique triple in
s. Since an “add” wins any concurrent “remove”, removing an element e should
only be tombstoned if it was preceded by an add operation (i.e., the element is
in s), otherwise it has no effect. Consequently, the delta-mutator rmvδ retains in
the tombstone set all tags associated to element e, being removed from the local
state. This is essential to prevent a removed element to reappear once the local
state is merged with another replica state that still have that element (i.e., it
has not been removed yet remotely as replicas are loosely coupled). The function
elements returns only the elements that are added but not yet tombstoned. Join
t simply unions the respective sets that are, therefore, both grow-only.

6.2 Optimized Add-wins OR-Set

A more efficient design is presented in Fig. 3b allowing also the set of tagged
elements (i.e., tombstone set above) to shrink as elements are removed. This



design offers the same semantics and have a similar state structure to the former;
however, it has a different behavior. Now, elements returns all the elements in
the tagged set s, without consulting t as before. Added and removed items are
now tagged in the causal context set c. Although, the set c and t look similar
in structure, they have a different behavior (we call it c instead of t to remove
this confusion): a tombstone set t simply stores all removed elements tags, while
c retains only the causal information needed to add/remove an element. For
presentation simplicity, c in Fig. 3b simply retains all removed elements tags;
however, after compression, c will be very concise and look different from t; this
is explained in the next section.

Adding an element creates a unique tag by resorting to the causal context c
(instead of s). The tag is paired with the element and added to s (as before).
The difference is that the new tag is also added to the causal context set c.
The delta-mutator rmvδ is the same as before, adding all tags associated to the
element being removed to c. The desired semantics are maintained by the novel
join operation t. To join two states, their causal contexts c are simply unioned;
whereas, the new element set s only preserves: (1) the triples present in both
sets (therefore, not removed in either), and also (2) any triple present in one of
the sets and whose tag is not present in the causal context of the other state.

Causal Context Compression In practice, the causal context c can be effi-
ciently compressed without any loss of information. When using an anti-entropy
algorithm that provides causal consistency, e.g., Algorithm 1, then for each
replica state Xi = (si, ci) and replica id j ∈ I, we have a contiguous sequence:

1 ≤ n ≤ max({k | (j, k) ∈ ci})⇒ (j, n) ∈ ci.

Thus, the causal context can always be encoded as a compact version vector [21]
I ↪→ N that keeps the maximum sequence number for each replica. Even under
non-causal anti-entropy, compression is still possible by keeping a version vector
that encodes the offset of the contiguous sequence of tags from each replica,
together with a set for the non-contiguous tags. As anti-entropy proceeds, each
tag is eventually encoded in the vector, and thus the set remains typically small.
Compression is less likely for the causal context of delta-groups in transit or
buffered to be sent, but those contexts are only transient and smaller than those
in the actual replica states. Moreover, the same techniques that encode contigu-
ous sequences of tags can also be used for transient context compression [19].

7 Optimized Multi-value Register δ-CRDT

Multi-Value Registers (MVR) are popular constructions in which a read opera-
tion returns the set of values concurrently written, but not causally overwritten;
these values are then reduced to a single value by applications [13]. Until now,
these types have been implemented by assigning a version vector to each writ-
ten value [22,8]. In Figure 4, we show that the optimization that was developed



Σ = P(I×N× V )× P(I×N)

σ
0
i = ({}, {})

wrδi (v, (s, c)) = ({(i, n+ 1, v)}, {(i, n+ 1)} ∪ {(j,m) | (j,m, ) ∈ s}) with n = max({k | (i, k) ∈ c})
rdi((s, c)) = {v | (j, n, v) ∈ s}

(s, c) t (s
′
, c

′
) = ((s ∩ s′) ∪ {(i, n, v) ∈ s | (i, n) 6∈ c′} ∪ {(i, n, v) ∈ s′ | (i, n) 6∈ c}, c ∪ c′)

Fig. 4: Optimized δ-CRDT multi-value register, replica i.

for Sets, can also be used to compactly tag the values in a multi-value register.
On a write operation wr, it is enough to assign a new scalar tag, from I × N,
using a replica id i and counter to uniquely tag the written value v. To ensure
that values overwritten are deleted, the produced causal context c lists all tags
associated to those values. Since those values are absent from the payload set s
they will be deleted in replicas that still have them, applying join definition t
(that is in common with Figure 3b). The causal context compression techniques
defined earlier also apply here.

8 Message Complexity

Our delta-based framework, δ-CRDT, clearly introduces significant cost improve-
ments on messaging. Despite being a generic framework, δ-CRDT requires delta
mutators to be defined per datatype. This makes the bit-message complexity
datatype-based rather than generic. To give an intuition about this complexity,
we address the three datatypes introduced above: counter, OR-Set, and MVR.

Counters. In classical state-based CRDTs, the entire map of a counter is
shipped. As the map-size grows with the number of replicas, this leads a bit-
message complexity of Õ(|I|) 1. In the δ-CRDT case, only recently updated map

entries α are shipped yielding a bit-complexity Õ(α), where α� |I|.
OR-set. Shipping in classical OR-set CRDTs delivers the entire state which

yields a bit-message complexity of O(S), where S is the state-size. In δ-CRDT,
only deltas are shipped, which renders a bit-message complexity O(s) where s
represents the size of the recent updates occurred since the last shipping. Clearly,
s� S since the updates that occur on a state in a period of time are often much
less than the total number of items.

MVR. In classical MVR, the worst case state is composed of |I| concurrently
written values, each associated with a |I| sized version vector. This makes the

bit-message complexity Õ(|I|2). In the novel delta design in Figure 4, no version
vector is used, whereas the number of possible values remain the same (summing
up the values set s and meta-data in c), this reduces the bit-message complexity

to Õ(|I|) as well as the worst case state complexity.

1 Õ is a variant of big O ignoring logarithmic factors in the size of integers and ids.



9 Related Work

Eventually convergent data types. The design of replicated systems that are al-
ways available and eventually converge can be traced back to historical designs in
[25,16], among others. More recently, replicated data types that always eventu-
ally converge, both by reliably broadcasting operations (called operation-based)
or gossiping and merging states (called state-based), have been formalized as
CRDTs [17,4,22,23]. These are also closely related to BloomL [10] and Cloud
Types [7].

Deltas. A key feature of δ-CRDT is message size reduction (not improving local
state lower bounds [8]), by using small-sized deltas, while preserving the advan-
tages of classical state-based CRDTs. The general old idea of using differences
between things, called “deltas” in many contexts, can lead to many designs, de-
pending on how exactly a delta is defined. The state-based deltas introduced for
Computational CRDTs [20] require an extra delta-specific merge (in addition to
the standard join) which does not ensure idempotence. In [14], an improved syn-
chronization method for non-optimized OR-set CRDT [22] is presented, where
delta information is propagated; in that paper deltas are a collection of items
(related to update events between synchronizations), manipulated and merged
through a protocol, as opposed to normal states in the semilattice. No generic
framework is defined (that could encompass other data types) and the protocol
requires several communication steps to compute the information to exchange.

Operation-based CRDTs. These CRDTs [22,23,3] also support small message
sizes, and in particular, pure flavors [3] that restrict messages to the operation
name, and possible arguments. Though pure operation-based CRDTs allow for
compact states and are very fast at the source (since operations are broadcast
without consulting the local state), the model requires more systems guarantees
than δ-CRDT do, e.g., exactly-once reliable delivery and membership informa-
tion, and impose more complex integration of new replicas. The work in [9]
shows a different trade-off among state deltas and pure operations, by tagging
operations and creating a globally stable log of operations while allowing local
transient logs to preserve availability. While having other advantages, the cre-
ation of this global log requires more coordination than our gossip approach for
causally consistent delta dissemination, and can stall dissemination.

Encoding causal histories. State-based CRDT are always designed to be causally
consistent [4,23]. Optimized implementations of sets, maps, and multi-value reg-
isters can build on this assumption to keep the meta-data small [8]. In δ-CRDT,
however, deltas and delta-groups are normally not causally consistent, and thus
the design of join, the meta-data state, as well as the anti-entropy algorithm used
must ensure this. Without causal consistency, the causal context in δ-CRDT can
not always be summarized with version vectors, and consequently, techniques
that allow for gaps are often used. A well known mechanism that allows for



encoding of gaps is found in Concise Version Vectors [18]. Interval Version Vec-
tors [19], later on, introduced an encoding that optimizes sequences and allows
gaps, while preserving efficiency when gaps are absent.

10 Conclusion

We introduced the new concept of δ-CRDTs and devised delta-mutators over
state-based datatypes which can detach the changes that an operation induces
on the state. This brings a significant performance gain as it allows only shipping
small states, i.e., deltas, instead of the entire state. The significant property in
δ-CRDT is that it preserves the crucial properties (idempotence, associativity
and commutativity) of standard state-based CRDT. In the worst case, deltas can
be forgotten and the entire state can always be shipped, allowing scenarios such
as long duration partitions, which would be problematic for op-based CRDTs.

In addition, we have shown how δ-CRDT can achieve causal consistency;
and we presented an anti-entropy algorithm that allows replacing classical state-
based CRDTs by more efficient ones, while preserving their properties. As an
application for our approach, we designed two novel δ-CRDT specifications for
two well-known datatypes: an optimized observed-remove set [5] and an opti-
mized multi-value register [13].
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Abstract
Geo-replicated storage systems are at the core of current In-
ternet services. The designers of the replication protocols
used by these systems must choose between either support-
ing low-latency, eventually-consistent operations, or ensur-
ing strong consistency to ease application correctness. We
propose an alternative consistency model, Explicit Consis-
tency, that strengthens eventual consistency with a guaran-
tee to preserve specific invariants defined by the applica-
tions. Given these application-specific invariants, a system
that supports Explicit Consistency identifies which opera-
tions would be unsafe under concurrent execution, and al-
lows programmers to select either violation-avoidance or
invariant-repair techniques. We show how to achieve the for-
mer, while allowing operations to complete locally in the
common case, by relying on a reservation system that moves
coordination off the critical path of operation execution. The
latter, in turn, allows operations to execute without restric-
tion, and restore invariants by applying a repair operation
to the database state. We present the design and evaluation
of Indigo, a middleware that provides Explicit Consistency
on top of a causally-consistent data store. Indigo guarantees
strong application invariants while providing similar latency
to an eventually-consistent system in the common case.

1. Introduction
To improve user experience in services that operate on a
global scale, from social networks and multi-player online
games to e-commerce applications, the infrastructure that
supports these services often resorts to geo-replication [9,
10, 12, 25, 27, 28, 41], i.e., maintains copies of applica-
tion data and logic in multiple datacenters scattered across
the globe. This ensures low latency, by routing requests to
the closest datacenter, but only when the request does not

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
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require cross-datacenter synchronization. Executing update
operations without cross-datacenter synchronization is nor-
mally achieved through weak consistency. The downside of
weak consistency models is that applications have to deal
with concurrent operations, which can lead to non-intuitive
and undesirable semantics.

These semantic anomalies do not occur in systems that
enforce strict serializability, i.e., serialize all operations in
real-time order. Weaker models, such as serializability or
snapshot isolation, relax synchronization, but still require
frequent coordination among replicas, which increases la-
tency and decreases availability. A promising alternative is
to try to combine the strengths of both approaches by sup-
porting both weak and strong consistency, depending on the
operation [25, 41, 43]. In this approach, operations requiring
strong consistency still incur high latency and are unavail-
able when the system partitions. Additionally, these systems
make it harder to design applications, as operations need to
be correctly classified to guarantee the correctness of the ap-
plication.

In this paper, we propose Explicit Consistency as an al-
ternative consistency model, in which an application speci-
fies the invariants, or consistency rules, that the system must
maintain. Unlike models defined in terms of execution or-
ders, Explicit Consistency is defined in terms of application
properties: the system is free to reorder execution of opera-
tions at different replicas, provided that the specified invari-
ants are maintained.

In addition, we show that it is possible to implement
explicit consistency while mostly avoiding cross-datacenter
coordination, even for critical operations that could poten-
tially break invariants. To this end, we propose a three-
step methodology to derive a safe version of the applica-
tion. First, we use static analysis to infer which operations
can be safely executed without coordination. Second, for the
remaining operations, we provide the programmer with a
choice of invariant-repair [38] or violation-avoidance tech-
niques. Finally, application code is instrumented with the
appropriate calls to our middleware library.

Violation-avoidance extends escrow and reservation ap-
proaches [15, 17, 32, 35, 39]. The idea is that a replica coor-
dinates in advance, to pre-allocate the permission to execute
some collection of future updates, which (thanks to the reser-



vation) will require no coordination. This amortizes the cost
and moves it off the critical path.

Finally, we present the design of Indigo, a middleware for
Explicit Consistency built on top of a geo-replicated key-
value store. Indigo is designed in a way that is agnostic to
the details of the underlying key-value store, only requiring
it to ensure properties that are known to be efficient to imple-
ment, namely per-key, per-replica linearizability, causal con-
sistency, and transactions with weak semantics [2, 27, 28].

In summary, we make the following contributions:

• Explicit Consistency, a new consistency model for appli-
cation correctness, centered on the application semantics,
and not on the order of operations.
• A methodology to derive an efficient reservation system

for enforcing Explicit Consistency, based on the set of
invariants associated with the application.
• Indigo, a middleware system implementing Explicit Con-

sistency on top of a causally consistent geo-replicated
key-value store.

The remainder of the paper is organized as follows: Sec-
tion 2 introduces Explicit Consistency. Section 3 gives an
overview of our approach. Section 4 presents the analysis
for detecting unsafe concurrent operations. Section 5 details
the techniques for handling these operations. Section 6 dis-
cusses the implementation of Indigo and Section 7 presents
an evaluation of the system. Related work is discussed in
Section 8. Finally, Section 9 concludes the paper.

2. Explicit Consistency
In this section we define precisely the consistency guaran-
tees that Indigo provides. We start by defining the system
model, and then how Explicit Consistency restricts the set of
behaviors allowed by that model.

To illustrate the concepts, we use as running example the
management of tournaments in a distributed multi-player
game. The game maintains information about players and
tournaments. Players can register and de-register from the
game. Players compete in tournaments, for which they can
enroll and disenroll. A set of matches occurs for each tour-
nament. Each tournament has a maximum capacity. In some
cases, e.g., when there are not enough participants, a tour-
nament can be canceled before it starts. Otherwise a tourna-
ment’s life cycle is creation, start, and end.

2.1 System Model and Definitions
We consider a database composed of a set of objects in a
typical cloud deployment, where data is fully replicated in
multiple datacenters, and partitioned inside each datacenter.

Applications access and modify the database by issu-
ing high-level operations. These operations consist of a se-
quence of read and write operations enclosed in transac-
tions. An application submits a transaction to a replica; its
reads and writes execute on a private copy of the replica

state. If the transaction commits, its writes are applied to
the local replica (local transaction), and propagate asyn-
chronously to remote replicas, where they are also applied
(remote transaction). If the transaction aborts, it has no ef-
fect.

We denote by t(S) the state after applying the write oper-
ations of committed transaction t to some state S. We define
a database snapshot, Sn, as the state of the database after a
sequence of committed transactions t1, . . . , tn from the ini-
tial database state, Sinit, i.e., Sn = tn(. . . (t1(Sinit))). The
state of a replica results from applying both local and remote
transactions, in the order received.

The transaction set T (S) of a database snapshot S
is the set of transactions included in S, e.g., T (Sn) =
{t1, . . . , tn}. We say that a transaction ta executing in a
database snapshot Sa happened-before tb executing in Sb,
ta ≺ tb, if ta ∈ T (Sb). Two transactions ta and tb are
concurrent, ta ‖ tb, if ta 6≺ tb ∧ tb 6≺ ta [24].

For a given set of transactions T , the happens-before
relation defines a partial order among them, O = (T,≺). We
say O′ = (T,<) is a valid serialization of O = (T,≺) if O′

is a linear extension of O, i.e., < is a total order compatible
with ≺.

Transactions can execute concurrently, with each replica
executing transactions according to a different valid seri-
alization. We assume the system guarantees state conver-
gence, i.e., all valid serializations of (T,≺) lead to the
same database state. Different techniques can be used to this
end, from a simple last-writer-wins strategy to more com-
plex approaches based on conflict-free replicated data types
(CRDTs) [38, 41].

2.2 Explicit Consistency
Explicit Consistency is a novel consistency semantics for
replicated systems, where programmers define the applica-
tion-specific correctness rules that should be met. These
rules are expressed as invariants over the database state.

Even if each replica maintains some invariant locally,
concurrent updates might still cause violation. Consider for
instance a tournament with a maximum capacity, limiting the
cardinality of the set of enrolled players. Two replicas could
concurrently enroll players into the same tournament, each
one respecting the capacity. However, if the merge function
is the union of the two sets of players, the capacity might be
exceeded nonetheless.

Our formal definition starts with the helper definition of
an invariant I , as a logical condition over the state of the
database. We say that state S is an I-valid state if I holds in
S, i.e., if I(S) = true.

Definition 2.1 (I-valid serialization). Given a set of trans-
actions T and its associated happens-before partial order ≺,
Oi = (T,<) is an I-valid serialization of O = (T,≺) if Oi

is a valid serialization of O, and I holds in every state that
results from executing some prefix of Oi.



We can now formally define the conditions that a system
must uphold to ensure Explicit Consistency.

Definition 2.2 (Explicit consistency). A system provides
Explicit Consistency if all serializations of O = (T,≺)
are I-valid serializations, where T is the set of transactions
executed in the system and ≺ their associated partial order.

This concept is related to the I-confluence of Bailis et al.
[5]. I-confluence defines the conditions under which opera-
tions may execute concurrently, while still ensuring that the
system converges to an I-valid state. The current work gen-
eralizes this to cases where coordination is needed, and fur-
thermore proposes efficient solutions.

3. Overview
Given application invariants, our approach for Explicit Con-
sistency has three steps: (i) Detect the sets of operations
that may lead to invariant violation when executed concur-
rently, called I-offender sets. (ii) Select an efficient mecha-
nism for handling I-offender sets. (iii) Instrument the appli-
cation code to use the selected mechanism on top of a weakly
consistent database system.

The first step consists of discovering I-offender sets. This
analysis is based on a model of the effects of operations. This
information is provided by the application programmer, as
annotations specifying the changes performed by each oper-
ation. Using this information, combined with the application
invariants, static analysis infers the sets of operation invoca-
tions that, when executed concurrently, may lead to invariant
violation (I-offender sets). Conceptually, the analysis con-
siders all reachable database states and, for each state, all
sets of operation invocations that can execute in that state;
it checks if executing these operations concurrently might
cause an invariant violation. Obviously, it is not feasible to
exhaustively consider all database states and operation sets;
instead, a practical approach is to use static verification tech-
niques, which are detailed in Section 4.

In the second, the developer decides which approach to
use to handle the I-offender sets. There are two options.
With the first, invariant repair, operations are allowed to
execute concurrently, and the conflict resolution rules that
merge their outputs should include code to restore the invari-
ants. One example is a graph data structure that supports op-
erations to add and remove vertices and edges; if one replica
adds an edge while concurrently another replica removes
one of the edge’s vertices, the merged state might ignore the
hanging edge to ensure the invariant that an edge connects
two vertices [38]. A similar approach applies to trees [30].

The second option, violation avoidance, consists of re-
stricting concurrency sufficiently to avoid the invariant vio-
lation. We propose a number of techniques to allow a replica
to execute such operations safely, without coordinating fre-
quently with the others. Consider for instance the enrollment
invariant (if a player is enrolled in a tournament, both the

player and the tournament must exist). Any replica is al-
lowed to execute the enrollTournament operation without
coordination, as long as all replicas are forbidden to run
removePlayer and removeTournament. This reservation may
apply to a particular subset of players and tournaments.

Our reservation mechanisms support such functionality
with reservations tailored to the different types of invariants,
as detailed in Section 5.

In the third step, the application code is instrumented to
use the conflict-repair and conflict-avoidance mechanisms
selected by the programmer. This involves extending oper-
ations to call the appropriate API functions supported by In-
digo.

4. Determining I-offender sets
In this section we detail the first step of our approach.

4.1 Defining invariants and post-conditions
Defining application invariants An application invariant
is described by a first-order logic formula. More formally,
we assume the invariant is an universally quantified formula
in prenex normal form1

∀x1, · · · , xn, ϕ(x1, · · · , xn).

First-order logic formulas can express a wide variety of con-
sistency constraints; we give some examples in Section 4.2.

An invariant can use predicates such as player(P ) or
enrolled(P, T ). A user may interpret them to mean that
P is a player and that P is enrolled in tournament T ; but
technically the system depends only on their truth values and
on the formulas that relate them. The application developer
needs only to specify the effects of operations on the truth
values of the terms used in the invariant.

Similarly, numeric restrictions can be expressed through
the use of functions. For example, we may use nrPlayers(T )
(the number of players in tournament T ) to limit the size of
a tournament: ∀T,nrPlayers(T ) ≤ 5.

An application must satisfy the conjunction of all invari-
ants.

Defining operation postconditions To express the side ef-
fects of operations, postconditions state the properties that
are ensured after the execution of an operation that modi-
fies the database. There are two types of side effect clauses:
predicate clauses, which describe a truth assignment for a
predicate (stating whether the predicate is true or false af-
ter execution of the operation); and function clauses, which
define the relation between the initial and final function val-
ues. To give some examples, operation removePlayer(P ),
which removes player P , has a postcondition with pred-
icate clause ¬player(P ), stating that predicate player is
false for player P . Operation enrollTournament(P, T ),

1 Formula ∀x, ϕ(x) is in prenex normal form if clause ϕ is quantifier-free.
Every first-order logic formula has an equivalent prenex normal form.



which enrolls player P into tournament T , has a postcondi-
tion with two clauses, enrolled(P, T ) and nrPlayers(T ) =
nrPlayers(T ) + 1. If the player is already enrolled, the op-
eration produces no side effects.

The syntax for postconditions is given by the grammar:

post ::= clause1 ∧ clause2 ∧ · · · ∧ clausek
clause ::= pclause | fclause
pclause ::= p(o1, o2, · · · , on) | ¬p(o1, o2, · · · , on)
fclause ::= f(o1, o2, · · · , on) = opr | opr ⊕ opr
opr ::= n | f(o1, o2, · · · , on)
⊕ ::= + | − | ∗ | . . .

where p and f are predicates and functions respectively, over
objects o1, o2, · · · , on.

Although we impose that a postcondition is a conjunc-
tion, it is possible to deal with operations that have alterna-
tive side effects, by splitting the alternatives between mul-
tiple dummy operations. For example, an operation ϕ with
postcondition ϕ1 ∨ ϕ2 could be replaced by operations op1
and op2 with postconditions ϕ1 and ϕ2, respectively.

4.2 Expressiveness of Application Invariants
Despite the simplicity of our model, it can express significant
classes of invariants, as discussed next.

4.2.1 Restrictions Over The State
An application can define the set of valid application states,
using invariants that define conditions that must be satisfied
in every database state. By combining user-defined predi-
cates and functions, it is possible to address a wide range of
application semantics.

Numeric constraints Numeric constraints refer to numeric
properties of the application and set lower or upper bounds
to data values. Often, they control the use or access to
a limited resource. For example, to ensure that a player
does not overspend her (virtual) budget: ∀P, player(P ) ⇒
budget(P ) ≥ 0. Disallowing an experienced player from
participating in a beginner tournament can be expressed as:
∀T, P, enrolled(P, T ) ∧ beginners(T ) ⇒ score(P ) ≤ 30.
By using user-defined functions in the constraints, it is pos-
sible to express complex conditions over the database state.
We have previously shown how to limit the number of en-
rolled players in a tournament by using a function that counts
the enrolled players. The same approach can be used to
limit the number of elements in the database that satisfy
any generic condition.

Uniqueness, a common correctness property, may also
be expressed using a counter function. For example, the
formula ∀P, player(P ) ⇒ nrPlayerId(P ) = 1, states that
P must have a unique player identifier. Whereas, the formula
∀T, tournament(T ) ⇒ nrLeaders(T ) = 1 states that a
collection has exactly one leader.

Integrity constraints An integrity constraint specifies the
relationships between different objects, such as the foreign

key constraint in databases. A typical example is the one at
the beginning of this section, stating that enrollment must
refer to existing players and tournaments. If the tournament
application had a score table for players, another integrity
constraint might be that every table entry must belong to an
existing player: ∀P, hasScore(P )⇒ player(P ).

General constraints over the state An invariant may also
capture general constraints. For example, consider an ap-
plication to reserve meetings, where two meetings must not
overlap in time. Using predicate time(M,S,E) to mean that
meeting M starts at time S and ends at time E, we could
write this invariant as follows: ∀M1,M2, S1, S2, E1, E2,
time(M1, S1, E1) ∧ time(M2, S2, E2) ∧ M1 6= M2 ⇒
E2 ≤ S1 ∨ S2 ≥ E1.

4.2.2 Restrictions Over State Transitions
In addition to conditions over database state, we support
some forms of temporal specifications, i.e., restrictions over
state transitions. Our approach is to turn this into an invariant
over the state of the database, by augmenting the database
with a so-called history variable that records its state in a
given moment in the past [1, 33].

In our running example, we might want to state, for
instance, that players may not enroll or drop from an ac-
tive tournament, i.e., between the start and the end of the
tournament. For this, when a tournament starts, the ap-
plication stores the list of participants, which can later be
checked against the list of enrollments. If participant(P, T )
asserts that player P participates in active tournament T ,
and active(T ) asserts that tournament T is active, the
above rule can be specified as follows: ∀P, T, active(T ) ∧
enrolled(P, T )⇒ participant(P, T ).

An alternative is to use a logic with support for tempo-
ral logic expressions, which allow for writing expressions
that specify rules over time [24, 34]. Such approach would
require more complex specification for programmers and a
more complex analysis. We decided to forgo temporal logic,
since our experience showed that our simpler approach was
sufficient for specifying common application invariants.

4.2.3 Existential quantifiers
Some properties require existential quantifiers, for instance
to state that tournaments must have at least one player en-
rolled: ∀T, tournament(T ) ⇒ ∃P, enrolled(P, T ). This
can be easily handled, since the existential quantifier can be
replaced by a function, using the technique called skolemiza-
tion. For this example, we may use function nrPlayers(T )
as such: ∀T, tournament(T )⇒ nrPlayers(T ) ≥ 1.

4.2.4 Uninterpreted predicates and functions
The fact that predicates and functions are uninterpreted im-
poses limitations to the invariants that can be expressed. It
implies, for example, that it is not possible to express reacha-
bility properties or other properties over recursive data struc-
tures. To encode invariants that require such properties, the



@Invariant(” f o r a l l ( P : p , T : t ) :− e n r o l l e d ( p , t ) =>
pl a y e r ( p ) and tournament ( t ) ”)
@Invariant(” f o r a l l ( P : p ) :− budget ( p ) >= 0”)
@Invariant(” f o r a l l (T : t ) :− nrPlayers ( t ) <= Capacity ”)
@Invariant(” f o r a l l (T : t ) :− a c t i v e ( t )
=> nrPlayers ( t ) >= 1”)
@Invariant(” f o r a l l (T : t , P : p ) :− a c t i v e ( t ) and
e n r o l l e d ( p , t ) => p a r t i c i p a n t ( p , t ) ”)
p u b l i c i n t e r f a c e ITournament {
@True(” p l a y e r ( $0 ) ”)
void addPlayer(P p);

@False(” p l a ye r ( $0 ) ”)
void removePlayer(P p);

@True(” tournament ( $0 ) ”)
void addTournament(T t);

@False(” tournament ( $0 ) ”)
void removeTournament(T t);

@True(” e n r o l l e d ( $0 , $1 ) ”)
@False(” p a r t i c i p a n t ( $0 , $1 ) ”)
@Increments(” nrP layers ( $1 , 1 ) ”)
@Decrements(” budget ( $0 , 1 ) ”)
void enrollTournament(P p, T t);

@False(” e n r o l l e d ( $0 , $1 ) ”)
@Decrements(” nrP layers ( $1 , 1 ) ”)
void disenrollTournament(P p, T t);

@True(” a c t i v e ( $0 ) ”)
@True(” p a r t i c i p a n t ( , $0 ) ”)
void beginTournament(T t);

@False(” a c t i v e ( $0 ) ”)
void endTournament(T t);

@Increments(” budget ( $0 , $1 ) ”)
void addFunds(P p, i n t amount);

}

Figure 1. Invariant specification for the tournament appli-
cation in Java (excerpt)

programmer has to express predicates that encode coarser
statements over the database, which lead to a conservative
view of safe concurrency. For example, instead of specify-
ing some property over a branch of a tree, the programmer
can define the property over the whole tree.

4.2.5 Example
In Figure 1 shows how to express the invariants for the
tournament application in our Java prototype. The invariants
in the listing are a subset of the examples just discussed.
Application invariants are entered as Java annotations to the
application interface (or class), and operation side-effects as
annotations to the corresponding methods. Our notation was
defined to be simple to convert to the language of the Z3
theorem prover, used in our prototype.

4.3 Algorithm
To identify the sets of concurrent operations that may lead
to an invariant violation, we perform static analysis of oper-
ation postconditions against invariants. This analysis focuses
on the case where operations execute concurrently from the
same state. Although we assume that in a sequential execu-
tion, the invariants hold2 , nonetheless, concurrently execut-

2 This can be achieved by having a precondition such that an operation
produces no side effects, if its sequential execution against a state that does
not meet that precondition would violate invariants.

ing operations at different replicas may cause an invariant
violation, which we call a conflict.

First, we check whether concurrent operations may result
in opposite postconditions (e.g., p(x) and ¬p(x)), break-
ing the generic (implicit) invariant that a predicate cannot
have two different values. For instance, consider operations
addPlayer(P ) with effect player(P ), vs. removePlayer(P )
with effect ¬player(P ). These operations conflict, since ex-
ecuting them concurrently with the same parameter P leaves
unclear whether player P exists or not in the database. The
developer may address this convergence violation by using a
conflict resolution policy such as add-wins or remove-wins.

The remainder of the analysis consists in checking the
effect of executing pairs of operations concurrently on the
invariant. Our approach is based on Hoare logic [18], where
the triple {I ∧ P} op {I} expresses that the execution of
operation op, in a state where precondition P holds, pre-
serves invariant I . To determine if a set of operations are
safe, we substitute their effects on the invariant, obtaining
I ′, and check that the formula I ′ is valid given that the pre-
conditions to execute the operations hold.

Considering all pairs of operations is sufficient to detect
all invariant violations. The intuition why this is correct is
that the static analysis considers all possible initial states
before executing each concurrent pair, and therefore adding
a third concurrent operation is equivalent to modifying the
initial state of the two other operations.

To illustrate this process, we consider our tournament
application, with the following invariant I:

I = ∀P, T, enrolled(P, T )⇒ player(P ) ∧ tournament(T )
∧
nrPlayers(T ) ≤ 5

For simplicity of presentation, let us examine each of the
conjuncts defined in invariant I separately. First, we consider
the numeric restriction: ∀T,nrPlayers(T ) ≤ 5, to illustrate
how to check if multiple instances of the same operation are
self-conflicting. In this case, one of the operations we need
to take into account is enrollTournament(P, T ) whose out-
come affects nrPlayers(T ). This operation has precondition
nrPlayers(T ) ≤ 4, the weakest precondition that ensures
the sequential execution does not break the invariant (see
Footnote 2). To determine if this may break the invariant,
we substitute the effects of running the enrollTournament
operation twice into invariant I . We then check whether this
results in a valid formula, when considering also the weakest
precondition. In this example, this corresponds to the follow-
ing derivation (where notation I〈f〉 describes the application
of effect f in invariant I):

I 〈nrPlayers(T )← nrPlayers(T ) + 1〉
〈nrPlayers(T )← nrPlayers(T ) + 1〉

nrPlayers(T ) ≤ 5 〈nrPlayers(T )← nrPlayers(T ) + 1〉
〈nrPlayers(T )← nrPlayers(T ) + 1〉

nrPlayers(T ) + 1 ≤ 5 〈nrPlayers(T )← nrPlayers(T ) + 1〉
nrPlayers(T ) + 1 + 1 ≤ 5



Algorithm 1 Algorithm for detecting unsafe operations.
Require: I : invariant; O : operations.

1: C←∅ {subsets of unsafe operations}
2: for op ∈ O do
3: if self-conflicting(I, {op}) then
4: C ← C ∪ {{op}}
5: for op, op′ ∈ O do
6: if opposing(I, {op, op′}) then
7: C ← C ∪ {{op, op′}}
8: for op, op′ ∈ O : {op, op′} 6∈ C do
9: if conflict(I, {op, op′}) then

10: C ← C ∪ {op, op′}}
11: return C

The resulting assertion I ′ = nrPlayers(T ) + 1 + 1 ≤ 5
is not ensured when both the initial invariant and the weak-
est precondition nrPlayers(T ) ≤ 4 hold. This shows that
concurrent executions of enrollTournament(P, T ) conflict
and enrollTournament is a self-conflicting operation.

The second clause of I is ∀P, T, enrolled(P, T ) ⇒
player(P )∧ tournament(T ). This case illustrates a conflict
between different operations. In this case, we check whether
concurrent enrollTournament(P, T ) and removePlayer(P )
may violate the invariant. Again, we substitute the effects of
these operations into the invariant and check whether the re-
sulting formula is valid, assuming that initially the invariant
and the preconditions of the two operations hold.

I 〈enrolled(P, T )← true〉 〈player(P )← false〉
enrolled(P,T )⇒player(P )∧tournament(T ) 〈enrolled(P,T )← true〉

〈player(P )←false〉
true ⇒ player(P )∧tournament(T ) 〈player(P )←false〉

true ⇒ false

false

As the resulting formula is not valid, another pair of I-
offenders is identified: {enrollTournament , removePlayer}.

We now present the complete logic to detect I-offender
sets in Algorithm 1. This algorithm statically determines the
pairs of operation that are conflicting, which are defined as
follows.

Definition 4.1 (Conflicting operations). Operations op1,
op2, · · · , opn conflict with respect to invariant I if, assum-
ing that I is initially true and the preconditions for op1 and
op2 to produce side effects are initially true, the result of
substituting the postconditions of both operations into the
invariant is not a valid formula.

The core of the algorithm is made of auxiliary functions,
which use the satisfiability modulo theory (SMT) solver
Z3 [11] to verify the validity of the logical formulas used
in Definition 4.1. Function self-conflicting(I, {op}) deter-
mines whether op is self-conflicting, i.e., if concurrent ex-
ecutions of op with the same or different arguments may
break the invariant. Function opposing(I, {op, op′}) deter-
mines whether op and op′ have opposing postconditions.
Function conflict(I, {op, op′}) determines whether the pair
of operations break invariant I , by making it false under con-

current execution. They use the solver to check the validity
of a set of formulas, namely the invariant, the preconditions
for producing effects, and the updated invariant after substi-
tuting the effects of both operations.

Algorithm 1 uses these functions for computing I-offender
sets in three steps. The initial step (line 2) determines self-
conflicting operations. The second step (line 5) determines
opposing operations by detecting contradictory predicate as-
signments for any pair of operations. The last step (line 8)
determines other I-offender sets by checking if combining
the effects of any two distinct operations raises an invariant
violation. If it leads to a conflict, it adds the pair to the set of
I-offender sets.

The number of test cases generated is polynomial in the
number of operations, O(|O|2). However, the satisfiability
problem to be solved in each auxiliary function is, in the
general case, NP-complete [19]. Z3 relies on heuristics to
analyze formulas efficiently, in most cases. The results pre-
sented in Section 7.1.1 suggest that it is fast enough to be
practical.

5. Handling I-offender sets
The previous step identifies I-offender sets. These sets are
reported to the programmer, who decides how each situation
should be addressed. We now discuss the techniques that are
available to the programmer in Indigo.

5.1 Invariant Repair
One approach is to allow the conflicting operations to ex-
ecute concurrently, and to repair invariant violations after
the fact. Indigo has only limited support for this approach,
since it can only address invariants defined in the context
of a single database object (even though the object can be
complex, such as a tree or a graph). To this end, Indigo
provides a library of objects that repair invariants automat-
ically using techniques proposed in the literature, e.g., sets,
maps, graphs, trees with different conflict resolution policies
[30, 38].

Application developers may extend this library, in order
to support additional invariants. For instance, the program-
mer might want to extend the unbounded set provided by
the library, to implement a set with bounded capacity n. She
could modify queries such that they ignore excess elements
from the underlying unbounded set; however, she must take
care to use a deterministic and monotonic algorithm to select
the elements to ignore [31].

5.2 Invariant-Violation Avoidance
The alternative approach is to avoid the concurrent execu-
tion of operations that would lead to an invariant violation
when combining their effects. Indigo provides a set of basic
techniques for achieving this, which extend previous ideas
from the literature [17, 32, 35, 39, 44]. In comparison to
the previous work, we not only combine these ideas in the



same system, but we also propose a new implementation,
which is optimized for a geo-replicated setting by requiring
only peer-to-peer communication, and relying on CRDTs to
manage information [38].

5.2.1 Reservations
We now discuss the high-level semantics of the techniques
used to restrict the concurrent execution of updates. The next
section discusses their implementation in weakly consistent
stores.

UID generator: A very common invariant is uniqueness
of identifiers [5, 25]. This problem can be easily solved,
without coordination, by statically splitting the space of
identifiers per replica. Indigo provides this service by ap-
pending a replica-specific suffix to a locally-unique identi-
fier.

Multi-level lock reservation: The multi-level lock reser-
vation (or simply multi-level lock) is our base mechanism
to restrict the concurrent execution of operations that can
break invariants. A multi-level lock can provide the follow-
ing rights: (i) shared forbid, giving the shared right to forbid
some action to occur; (ii) shared allow, giving the shared
right to allow some action to occur; (iii) exclusive allow, giv-
ing the exclusive right to execute some action.

When a replica holds one of the above rights, no other
replica holds rights of a different type. For instance, if a
replica holds a shared forbid, no other replica has any form
of allow. We now show how to use this knowledge to control
the execution of I-offender sets.

In the tournament example, {enrollTournament(P, T ),
removePlayer(P )} is an I-offender set. To avoid the vio-
lation of invariants, we can associate an appropriate multi-
level lock to each of the operations, for specific values of
the parameters. For example, we can have a multi-level lock
associated with removePlayer(P ), for each value of P . For
executing removePlayer(P ), it is necessary to obtain the
right shared allow on the reservation for removePlayer(P ).
For executing enrollTournament(P, T ), it is necessary
to obtain the shared forbid right on the reservation for
removePlayer(P ). This guarantees that enrolling some
player will not execute concurrently with deleting the same
player. However, concurrent enrolls or concurrent removes
are allowed. In particular, if all replicas hold the shared for-
bid right on removing players, the most frequent enroll op-
eration can execute in any replica, without coordination with
other replicas.

The exclusive allow right, in turn, is necessary when an
operation is incompatible with itself, i.e., when executing
concurrently the same operation may lead to an invariant
violation.

Multi-level locks are a form of lock [17] that can be used
to restrict the concurrent execution of operations in any I-
offender sets. It would be possible to enforce any application
invariants using only multi-level locks. However, in some

cases it is possible to provide additional concurrency while
enforcing invariants, by using the following reservations.

Multi-level mask reservation: For invariants of the form
P1 ∨ P2 ∨ . . . ∨ Pn, the concurrent execution of any pair
of operations that makes two different predicates false may
lead to an invariant violation if all other predicates were
originally false. In our analysis, each of these pairs is an I-
offender set.

Using simple multi-level locks for every pair of opera-
tions is too restrictive, as getting a shared allow on one oper-
ation would prevent the execution of all operations that could
make any of the other predicates false. The reason why this
is overly pessimistic is that, in this case, for executing an
operation that makes some predicate false it suffices to guar-
antee that some other predicate remains true, which can be
done by only forbidding the operations that make it false.

To allow for this, Indigo includes a multi-level mask
reservation that can be seen as a vector of multi-level locks.
For the invariant P1∨P2∨ . . .∨Pn, a multi-level mask with
n entries is created, with entry i used to control operations
that may make Pi false.

When a replica obtains a shared allow right in one entry,
it must obtain a shared forbid right in some other entry.
For example, an operation that may make Pi false needs to
obtain the shared allow right on the ith entry and a shared
forbid right on an entry j for which the predicate is true. At
runtime, to find an entry to forbid, it is only necessary to
evaluate the current value of the predicate associated with
each entry that can be locked.

Escrow reservation: For numeric invariants of the form
x ≥ k, we include an escrow reservation for allowing some
decrements to execute without coordination [32]. Given an
initial value for x = x0, there are initially x0 − k rights to
execute decrements. These rights can be split dynamically
among replicas. For executing x.decrement(n), the opera-
tion must acquire and consume n rights to decrement x in
the replica it is submitted. If not enough rights exist in the
replica, the system will try to obtain additional rights from
other replicas. If this is not possible, the operation will fail.
Executing x.increment(n) creates n rights to decrement n,
initially assigned to the replica in which the operation that
executes the increment is submitted.

A similar approach is used for invariants of the form x ≤
k, with increments consuming rights and decrements creat-
ing new rights. For invariants of the form x+y+. . .+z ≥ k,
a single escrow reservation is used, with decrements to any
of the involved variables consuming rights and increments
creating rights. If a variable x is involved in more than one
invariant, several escrow reservations will be affected by a
single increment/decrement operation on x.

The variant called escrow reservation for conditions
checks a count of elements against some condition; for in-
stance, the number of participants in a tournament in the
invariant nrP layers(T ) < k. In this case, if the same user



is enrolled twice concurrently, two rights are consumed, al-
though the number of participants increases by only one.
This is conservative, but “leaks” rights. However, if the same
user is disenrolled twice concurrently, then the number of
users increases by only one; creating two rights might later
let the invariant be violated.

Our escrow reservation for conditions addresses this
problem using the following approach (considering invari-
ant c ≥ k). A decrement operation requires rights, just as
a normal escrow reservation. However, an increment opera-
tion does not create rights immediately, but instead tags the
reservation to be reevaluated. One of the replicas, marked
as the primary for the reservation, is entrusted with recre-
ating rights. To do so, it evaluates the distance between the
current state and the threshold, taking into account the ag-
gregate number of outstanding rights. More precisely, given
the current value for c = c1 and the number k1 of outstand-
ing rights (i.e., rights assigned to a replica and still not used,
as known by the primary replica), c1− k− k1 rights are cre-
ated and assigned initially to the primary replica. This can be
done either when the reservation is marked for reevaluation,
or when new rights are needed.

Partition lock reservation: For some invariants, it is
desirable to have the ability to reserve part of a partitionable
resource. For example, consider the invariant that forbids
two tournaments to overlap in time. Two operations that
schedule different tournaments will break the invariant if
the time periods overlap. Using a multi-level lock, it would
be necessary to obtain an exclusive allow for executing any
operation to schedule a new tournament.

However, no invariant violation arises if the time periods
of concurrent operations do not overlap. To address this case,
we provide a partition lock that allows a replica to obtain
an exclusive lock on an interval of real values.3 Replicas can
obtain locks on multiple intervals, given that no two intervals
reserved by different replicas overlap.

In our example, time would be mapped to a real num-
ber. To execute the operation that schedules a tournament, a
replica would have to obtain a lock on an interval that in-
cludes the time from the start to the end of the tournament.

5.2.2 Using Reservations
The analysis from Section 4 outputs I-offender sets and the
corresponding invariant violated. A programmer, electing to
use the conflict avoidance approach, must select the type of
reservation to be used to avoid invariant violations. Figure 1
presents a default mapping between types of invariants and
the corresponding reservations. Conservatively, it is always
possible to resort to multi-level locks to enforce any invari-
ant, at the expense of admissible concurrency, as discussed
earlier.

3 Partition locks are a simplified version of partitionable objects [44] and
slot reservations [35].

Invariant type Formula (example) Reservation
Numeric x < K Escrow(x)

Referential p(x)⇒ q(x) Multi-level lock
Disjunction p1 ∨ . . . ∨ pn Multi-level mask
Overlapping t(s1, e1) ∧ t(s2, e2)⇒ Partition lock

s1 ≥ e2 ∨ e1 ≤ s2
Default — Multi-level lock

Table 1. Default mapping from invariants to reservations.

When using multi-level locks to prevent the concur-
rent execution of I-offender sets, it is possible to use
different sets of reservations. We call this a reservation
system. For example, consider our tournament applica-
tion with the following two I-offender sets, which fol-
low from the integrity constraint associated with enroll-
ment: {enrollTournament(P, T ), removePlayer(P )} and
{enrollTournament(P, T ), removeTournament(P )}.

Given these I-offender sets, two alternative reservation
systems can be used. The first system includes a single multi-
level lock associated with enroll(P, T ), where this opera-
tion would have to obtain a shared allow right to execute,
while both removePlayer(P ) and removeTournament(T )
would have to obtain the shared forbid right to execute.
The second system includes two multi-level locks associ-
ated with removePlayer(P) and removeTournament(T ),
where enroll would have to obtain the shared forbid right in
both locks to execute.

A simple optimization process is used to decide which
reservations to use. As generating all possible combinations
of reservation types may take too long, this process starts
by generating a small number of systems using the follow-
ing heuristic algorithm: (i) select a random I-offender set;
(ii) decide the reservation to control the concurrent execu-
tion of operations in the set, and associate the reservation
with the operation: if a reservation already exists for some
of the operations, use the same reservation; otherwise, gen-
erate a new reservation from the type previously selected by
the user; (iii) select the remaining I-offender set, if any, that
has the most operations controlled by existing reservations,
and repeat the previous step.

For each generated combination of reservations, Indigo
computes the expected frequency of reservation operations
needed, using as input the expected frequency of operations.
The optimization process tries to minimize this expected
frequency of reservation operations.

After deciding which reservation system will be used,
each operation is extended to acquire the appropriate rights
before executing its code, and to release appropriate rights
afterwards. For escrow locks, an operation that consumes
rights will acquire rights before its execution (and these
rights will not be released when the operation ends). Con-
versely, an operation that creates rights will create these
rights after its execution. For multi-level masks, the pro-



grammer must provide the code that verifies the values of the
predicate associated with each element of the disjunction.

6. Implementation
In this section, we discuss the implementation of Indigo as
a middleware running on top of a causally consistent store.
We first explain the implementation of reservations and how
they are used to enforce Explicit Consistency. We conclude
by explaining how Indigo is designed to use an existing geo-
replicated store.

6.1 Reservations
Indigo maintains information about reservations as objects
stored in the underlying causally consistent storage system.
For each type of reservation, a specific object class exists.
Each reservation instance maintains information about the
rights assigned to each of the replicas; in Indigo, each data-
center is considered a single replica, as explained later.

The escrow lock object maintains the rights currently as-
signed to each replica, and the following operations modify
its state: escrow consume depletes rights assigned to the lo-
cal replica; escrow generate generates new rights assigned
to the local replica; and escrow transfer transfers rights from
the local replica to some given replica. For example, for an
invariant x ≥ K, escrow consume must be used by an oper-
ation that decrements x and escrow generate by operations
that increment x. For the escrow lock for conditions variant,
a replica is tagged as the primary. The escrow generate only
creates rights in the primary.

When escrow consume and escrow transfer operations
execute in a replica, if that replica has insufficient rights, the
operation fails and it has no side effects. Otherwise, the state
of the replica is updated accordingly and the side effects
are asynchronously propagated to the other replicas, using
the normal replication mechanisms of the underlying stor-
age system. As operations only deplete rights of the replica
where they are submitted, it is guaranteed that every replica
has a conservative view of the rights assigned to it: all op-
erations that have consumed rights are known, but opera-
tions that transferred new rights from some other replica may
still have to be received. Given that the execution of opera-
tions is serialized by the replica, this approach guarantees
the correctness of the system in the presence of any number
of concurrent updates in different replicas and asynchronous
replication, as no replica will ever consume more rights than
those assigned to it.

The multi-level lock object maintains which right (exclu-
sive allow, shared allow, shared forbid) is assigned to each
replica, if any. Rights are obtained for executing operations
with some given parameters. For instance, in the tournament
example, for removing player P the replica needs a shared
allow right for player P . Thus, a multi-level lock object man-
ages the rights for the different parameters independently.
Each replica can then hold a given right for a specific value

of the parameters or a subset of the parameter values. For
simplicity, in our description, we assume that a single pa-
rameter exists.

The following operations can be submitted to modify the
state of the multi-level lock object: mll giveRight gives a
right to some other replica; a replica with a shared right can
give the same right to some other replica; a replica that is the
only one with some right can change the right type and give
it to itself or to some other replica; mll freeRight revokes
a right assigned to the local replica. As a replica can have
been given rights by multiple concurrent mll giveRight oper-
ations executed in different replicas, mll freeRight internally
encodes which mll giveRight operations are being revoked.
This is necessary to guarantee that all replicas converge to
the same state.

As with escrow lock objects, each replica has a conser-
vative view of the rights assigned to it, as all operations that
revoke the local rights are always executed initially in the
local replica. Additionally, assuming causal consistency, if
the local replica shows that it is the only replica with some
right, that information is correct system-wide. This condition
holds despite concurrent operations and the asynchronous
propagation of updates, as any mll giveRight executed in
some replica is always propagated before a mll freeRight in
that replica. Thus, if the local replica shows that no other
replica holds any right, that is because no mll giveRight has
been executed (without being revoked).

The multi-level mask object is implemented using a vec-
tor of multi-level lock objects, with operations specifying
which multi-level lock must be modified.

The partition lock object maintains which replica owns
each interval. When it is created, a single replica holds the
complete interval of values. A single operation modifies the
state of the object: pol giveRight, which transfers part of the
interval owned by the local replica to some other replica.
Using the same reasoning as in the previous cases, it is clear
that the local replica always has a conservative view of the
intervals it owns.

6.2 Indigo Middleware
We have built a prototype of Indigo on top of a geo-
replicated data store with the following properties: (i) causal
consistency; (ii) support for transactions that access a database
snapshot and merge concurrent updates using CRDTs [38];
(iii) linearizable execution of operations for each object in
each datacenter. There are at least two systems that sup-
port all these functionalities: SwiftCloud [46] and Walter
[41]. Given that SwiftCloud has a more extensive support
for CRDTs, which are fundamental for invariant-repair, we
decided to build the Indigo prototype on top of SwiftCloud.

Storing reservations Reservation objects are stored in the
underlying storage system and they are replicated in all dat-
acenters. Reservation rights are assigned to datacenters in-
dividually, which keeps the information small. As discussed



in the previous section, the execution of operations in reser-
vation objects at a given datacenter must be linearizable (to
guarantee that two concurrent transactions do not consume
the same rights).

The execution of an operation in the replica where it is
submitted has three phases: i) the reservation rights needed
for executing the operation are obtained; if not all rights can
be obtained, the operation fails; ii) the operation executes,
reading and writing the objects of the database; iii) the used
rights are released (except for escrow reservations, where
the rights that are consumed are not released); new rights
are created in this step. After the local execution, the side
effects of the operation in the data and reservation objects are
propagated and executed in other replicas asynchronously
and atomically.

Note that reservations guarantee that operations that can
lead to invariant violation do not execute concurrently, but
they do not guarantee that the preconditions for the operation
to generate side effects hold. For example, in the tournament,
before removing a tournament it is necessary to disenroll all
players, thus guaranteeing that no player in enrolled.

Reservations manager The reservations manager is a ser-
vice that runs in each datacenter and is responsible for ex-
changing reservations between datacenters, tracking reser-
vations in use by local clients, and providing clients the
database snapshot information to access the underlying stor-
age. For correctness, it is necessary to enforce that updates
of an operation are atomic and that reads are causally consis-
tent with the current rights at each replica. In Indigo, these
properties are guaranteed directly by the underlying storage
system.

An example shows why these properties are necessary. In
our tournament application, to enroll a player it is necessary
to obtain the right that allows the enroll (by forbidding the
removal of both the player and the tournament). After the en-
roll completes, the right is released and can be obtained by
an operation that wants to remove the tournament. The prob-
lem is that if the state observed by the remove tournament
operation did not include the previous enrollment, the appli-
cation could end up deleting the tournament without disen-
rolling the students, leading to an invariant violation.

Obtaining reservation rights The first and last phases of
operation execution obtain and free the rights needed for
operation execution. Indigo provides API functions for ob-
taining and releasing a list of rights. Indigo tries to obtain
the necessary rights locally using ordered locking to avoid
deadlocks. If other datacenters need to be contacted for ob-
taining some reservation rights, this process is executed be-
fore starting to obtain rights locally. Unlike the process for
obtaining rights in the local datacenter, Indigo tries to ob-
tain the needed rights from remote datacenters in parallel
for minimizing latency. This approach is prone to deadlocks;
therefore, if some remote right cannot be obtained, we use an

exponential backoff approach that frees all rights and tries to
obtain them again after an increasing amount of time.

When it is necessary to contact other datacenters to ob-
tain some right, the latency of operation execution can be
severely affected. Therefore, reservation rights are obtained
proactively using the following strategy. Escrow lock rights
are divided among datacenters, with a datacenter asking for
additional rights to the datacenter it believes has more rights
(based on local information). The primary of an escrow lock
for conditions creates new rights by computing the number
of missing rights whenever either it runs out of rights or
the object is marked for reevaluation. Multi-level lock and
multi-level mask rights are pre-allocated to allow executing
the most common operations (based on the expected fre-
quency of operations), with shared allow and forbid rights
being shared among all datacenters. In the tournament ex-
ample, shared forbid for removing tournaments and players
can be owned in all datacenters, allowing the more frequent
enroll operation to execute locally. Partition lock rights are
initially assigned to a single replica, and transferred when
needed.

The reservations manager maintains a cache of reserva-
tion objects and allows concurrent operations to use the same
shared (allow or forbid) right. While some ongoing opera-
tion is using a shared or exclusive right, the right cannot be
revoked. The information about ongoing operations is main-
tained in soft-state. If the machine where the reservations
manager runs fails, the ongoing operation will fail when try-
ing to release the obtained rights.

6.3 Fault tolerance
Indigo builds on the fault tolerance of the underlying stor-
age system. In a typical geo-replicated store, data is repli-
cated inside a datacenter using quorums or a state-machine
replication algorithm. Thus, the failure of a machine inside a
datacenter does not lead to any data loss. This also applies to
the machine running the reservations manager: as explained
before, ongoing transactions will fail in this case; committed
changes to the reservation objects are stored in the underly-
ing storage system.

If a datacenter (fails or) gets partitioned from other dat-
acenters, it is impossible to transfer rights from and to the
partitioned datacenter. In each partition, operations that only
require rights available in the partition can execute normally.
Operations requiring rights not available in the partition will
fail. When the partition is repaired (or the datacenter recov-
ers with its state intact), normal operation is resumed.

In the event that a datacenter fails losing its internal state,
the rights held by that datacenter are lost. As reservation
objects maintain the rights held by all replicas, the procedure
to recover the rights lost by the datacenter failure is greatly
simplified: it is only necessary to guarantee that recovery
is executed only once with a state that reflects all updates
received from the failed datacenter.



7. Evaluation
This section presents an evaluation of Indigo. The main
question our evaluation tries to answer is how does Explicit
Consistency compares against causal consistency and strong
consistency in terms of latency and throughput with different
workloads. Additionally, we try to answer the following
questions:

• Can the algorithm for detecting I-offender sets be used
with realistic applications?
• What is the impact of an increasing the amount of con-

tention in objects and reservations?
• What is the impact of using an increasing number of

reservations in each operation?
• What is the behavior when coordination is necessary for

obtaining reservations?

7.1 Applications
To evaluate Indigo, we used the following two applications.

Ad counter The ad counter application models the infor-
mation maintained by a system that manages ad impressions
in online applications. This information needs to be geo-
replicated for allowing the fast delivery of ads. For maximiz-
ing revenue, an ad should be impressed exactly the number
of times the advertiser is willing to pay for. This invariant can
be easily expressed as nrImpressions(Ai) ≤ Ki, where Ki

is the maximum number of times ad Ai should be impressed
and the function nrImpressions(Ai) returns the number of
times it has been impressed.

Advertisers will typically require ads to be impressed a
minimum number of times in some countries. For instance,
ad A should be impressed exactly 10,000 times, with at least
4,000 impressions in the US and another 4,000 impressions
in the EU. This example is modeled through the following
invariants for specifying the limits on the number of impres-
sions (where nrImpressionsOther counts the sum of the
number of impressions in datacenters other than those two
with the impressions in excess of 4, 000 in the EU or the
US):

nrImpressionsEU (A) ≤ 4, 000
nrImpressionsUS(A) ≤ 4, 000

nrImpressionsOther(A) ≤ 2, 000

We modeled this application by having one counter for
each ad and region pair. Invariants were defined with the tar-
get limits stored in the database: nrImpressions(R,A) ≤
targetImpressions(R,A) A single update operation that in-
crements the ad tally was defined, which increments the
function nrImpressions . Our analysis shows that two incre-
ment operations for the same counter can lead to an invariant
violation, but increments on different counters are indepen-
dent. Invariants can be enforced by relying on escrow lock
reservations for each ad.

Our experiments used workloads with a mix of: a read
only operation that returns the value of a set of counters

selected randomly; an operation that reads and increments
a randomly selected counter. Our default workload included
only increment operations.

Tournament management This is a version of the applica-
tion for managing tournaments described in Section 2 (and
used throughout the paper as our running example), ex-
tended with read operations for browsing tournaments. The
operations defined in this application are similar to opera-
tions that one would find in other management applications
such as courseware management.

As detailed throughout the paper, this application has a
rich set of invariants, including uniqueness rules for assign-
ing ids; generic referential integrity rules for enrollments;
and numeric invariants for specifying the capacity of each
tournament. This leads to a reservation system that uses
both escrow lock for conditions and multi-level lock reser-
vation objects. There are three operations that do not require
any right to execute: add player, add tournament and disen-
roll tournament, although the latter accesses the escrow lock
object associated with the capacity of the tournament. The
other update operations involve acquiring rights before they
can execute.

In our experiments we have run a workload with 82%
of read operations (a value similar to the TPC-W shopping
workload), 4% of update operations requiring no rights for
executing, and 14% of update operations requiring rights
(8% of the operations are enrollment and disenrolments).

7.1.1 Performance of the Analysis
We implemented in Java the algorithm described in Sec-
tion 4 for detecting I-offender sets, relying on the satisfi-
ability modulo theory (SMT) solver Z3 [11] for verifying
invariants. As discussed in Section 4, our algorithm relies on
the efficiency of Z3 to be able to analyze programs in rea-
sonable time.

Our prototype was was able to find the existing I-offender
sets in the applications we have implemented. The average
running time of this process in a recent MacBook Pro laptop
was 19 ms for the ad counter applications and 730 ms for the
more complex tournament application.

For the evaluation of the analysis, we additionally mod-
eled TPC-W, so that we get results for a standard benchmark
application. This application has less invariants to check than
our custom applications, but has more operations. The run-
ning time for detecting I-offender sets was in this case 320
ms. These results show that although the running time in-
creases with the number of invariants and operations, our
algorithm can process realistic applications in reasonable
times.

7.2 Experimental Setup
We compare Indigo against three alternative approaches:

Causal Consistency (Causal) As our system was built on
top of the causally consistent SwiftCloud system [46],



we have used unmodified SwiftCloud as representative
of a system providing causal consistency. We note that
this system cannot enforce invariants. This comparison
allows us to measure the overhead introduced by Indigo.

Strong Consistency (Strong) We have emulated a strongly
consistent system by running Indigo in a single DC and
forwarding all operations to that DC. We note that this
approach allows more concurrency than a typical strong
consistency system as it allows updates on the same ob-
jects to proceed concurrently and be merged if they do
not violate invariants.

RedBlue consistency (RedBlue) We have emulated a sys-
tem with RedBlue consistency [25] by running Indigo in
all DCs and having red operations (those that may vio-
late invariants and require reservations) execute in a mas-
ter DC, while blue operations execute in the closest DC,
while respecting causal dependencies.

Our experiments comprised 3 Amazon EC2 datacenters,
US-East, US-West and EU, with inter-datacenter latency
presented in Table 2. In each DC, Indigo servers run in a
single m3.xlarge virtual machine with 4 vCPUs and 8 ECUs
of computational power, and 15GB of memory available.
Clients that issue transactions run in up to three m3.xlarge
machines. Where appropriate, we placed the master DC in
the US-East datacenter to minimize the overall communica-
tion latency and this way optimize the performance of that
configuration.

RTT (ms) US-E US-W
US-West 81 –
EU 93 161

Table 2. RTT Latency among datacenters in Amazon EC2

7.3 Latency and Throughput
We start by comparing the latency and throughput of Indigo
with alternative deployments for both applications.

We ran the ad counter application with 1000 ads and a sin-
gle invariant for each ad. The maximum number of impres-
sions was set sufficiently high to guarantee that the limit is
not reached. The workload included only update operations
for incrementing the counter. This allowed us to measure the
peak throughput when operations were able to obtain reser-
vations in advance. The results are presented in Figure 2, and
show that Indigo achieves throughput and latency similar to
a causally consistent system. Strong and RedBlue results are
similar to each other, as all update operations are red and
execute in the master DC in both configurations.

Figure 3 presents the results when running the tournament
application with the default workload. As before, results
show that Indigo achieves throughput and latency similar to
a causally consistent system. In this case, as most operations
are either read-only or otherwise can be classified as blue
and thus execute in the local datacenter, the throughput of
RedBlue is only slightly worse than that of Indigo.

Figure 4 details these results, presenting the latency
per operation type (for selected operations) in a run with
throughput close to the peak value. The results show that In-
digo exhibits lower latency than RedBlue for red operations.
These operations can execute in the local DC in Indigo, as
they require either no reservation or reservations that can be
shared and are typically locally available.

Two other results deserve some discussion: Remove tour-
nament requires canceling shared forbid rights acquired by
other DCs before being able to acquire the shared allow right
for removing the tournament, which explain the high latency.
Sometimes latency is very high (as shown by the line with
the maximum value). This is a result of the asynchronous
algorithms implemented and the approach for requesting re-
mote DCs to cancel their rights, which can fail when a right
is being used.

Add player has a surprisingly high latency in all configu-
rations. Analyzing the situation, we found out that the reason
for this lies in the fact that this operation manipulates very
large objects used to maintain indexes, causing all configu-
rations to have a fixed overhead.

7.4 Micro-benchmarks
Next, we examine the impact of key parameters.

Increasing contention Figure 5(a) shows the throughput
of the system with increasing contention in the ad counter
application, by varying the number of counters in the experi-
ment. As expected, the throughput of Indigo decreases when
contention increases as several steps require executing oper-
ations sequentially. Furthermore, the results reflect the fact
that our middleware introduces an additional level of con-
tention, because operations have to contact the reservation
manager.

Increasing number of invariants Figure 5(b) presents the
results of the ad counter application with an increasing num-
ber of invariants involved in each operation: the operation
reads 5 counters (R5) and updates one to three counters (W1
to W3). In this case, the results show that the peak through-
put for Indigo decreases while latency keeps constant. The
reason for this is that for escrow locks, each invariant has
an associated reservation object. Thus, when increasing the
number of invariants, the number of updated objects also
increases, with an impact on the operations that each data-
center needs to execute. To verify our explanation, we ran
a workload with operations that access the same number
of counters in the weak consistency configuration. The pre-
sented results show the same pattern of decreased through-
put.

Impact when transferring reservations Figure 5(c) shows
the latency of individual operations executed in the US-
W datacenter in the ad counter application, for a workload
where increments reach the invariant limit for multiple coun-
ters and where the rights were initially assigned to a single
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Figure 5. Micro-benchmarks.

datacenter. When rights do not exist locally, Indigo cannot
mask the latency imposed by coordination, in this case, for
obtaining additional rights from the remote datacenters. This
explains the high latency operations close to the start of the
experiment. As a bulk of rights is obtained, the following op-
erations execute with low latency until it is necessary to ob-
tain additional rights. When a replica believes that no other
replica has available rights in an escrow lock object, it does
not contact replicas. Instead, the operation fail locally, lead-
ing to low latency.

In Figure 4, we showed the impact of obtaining a multi-
level lock shared right that requires revoking rights present
in all other replicas. We have discussed this problem and a
possible solution in Section 7.3. Nevertheless, it is important
to note that such impact in latency is only experienced when
it is necessary to revoke shared forbid rights in all replicas
before acquiring the needed shared allow right. The posi-
tive consequence of this approach is that enroll operations
requiring the shared forbid right that was shared by all repli-
cas can execute with latency close to zero. The maximum
latency line in enroll operation shows the maximum latency
experienced when a replica acquires a shared forbid right
from a replica already holding such right.

8. Related Work
Geo-replicated storage systems Many cloud storage sys-
tems supporting geo-replication emerged in recent years.
Some offer variants of eventual consistency, where opera-
tions return right after being executed in a single datacenter,
usually the closest one, so that end-user response times are
improved [2, 12, 23, 27, 28]. These variants target different
requirements, such as: reading a causally consistent view of
the database (causal consistency) [2, 3, 14, 27]; supporting
limited transactions where a set of updates are made visible
atomically [4, 28]; supporting application-specific or type-
specific reconciliation with no lost updates [7, 12, 27, 41],
etc. Indigo is built on top of a geo-replicated store support-
ing causal consistency, a restricted form of transactions and
automatic reconciliation; it extends those properties by en-
forcing application invariants.

Eventual consistency is insufficient for some applications
that require (some operations to execute under) strong con-
sistency for correctness. Spanner provides strong consis-
tency for the whole database, at the cost of incurring co-
ordination overhead for all updates [10]. Transaction chains
support transaction serializability with latency proportional
to the latency to the first replica that is accessed [47]. MDCC
[22] and Replicated Commit [29] propose optimized ap-
proaches for executing transactions but still incur in inter-
datacenter latency for committing transactions.



Some systems combine the benefits of weak and strong
consistency models by supporting both. In Walter [41] and
Gemini [25], transactions that can execute under weak con-
sistency run fast, without needing to coordinate with other
datacenters. Bayou [42] and Pileus [43] allow operations to
read data with different consistency levels, from strong to
eventual consistency. PNUTS [9] and DynamoDB [40] also
combine weak consistency with per-object strong consis-
tency relying on conditional writes, where a write fails in the
presence of concurrent writes. Indigo enforces Explicit Con-
sistency rules, exploring application semantics to let (most)
operations execute in a single datacenter.

Exploring application semantics Several works have
explored the semantics of applications (and data types)
for improving concurrent execution. Semantic types [16]
have been used for building non serializable schedules that
preserve consistency in distributed databases. Conflict-free
replicated data types [38] explore commutativity for en-
abling the automatic merge of concurrent updates, which
Walter [41], Gemini [25] and SwiftCloud [46] use as the ba-
sis for providing eventual consistency. Indigo goes further
by exploring application semantics to enforce application
invariants.

Escrow transactions [32] offer a mechanism for enforc-
ing numeric invariants under concurrent execution of trans-
actions. By enforcing local invariants in each transaction,
they can guarantee that a global invariant is not broken.
This idea can be applied to other data types, and it has
been explored for supporting disconnected operation in mo-
bile computing [35, 39, 44]. The demarcation protocol [6] is
aimed at maintaining invariants in distributed databases. Al-
though its underlying protocols are similar to escrow-based
approaches, it focuses on maintaining invariants across dif-
ferent objects. Warranties [15] provide time-limited asser-
tions over the database state, which can improve latency of
read operations in cloud storages.

Indigo builds on these works, but it is the first to pro-
vide an approach that, starting from application invariants
expressed in first-order logic, leads to the deployment of
the appropriate techniques for enforcing such invariants in
a geo-replicated weakly consistent data store.

Other related work Bailis et al. [5] studied the possi-
bility of avoiding coordination in database systems and still
maintain application invariants. Our work complements that,
addressing the cases that cannot entirely avoid coordination,
yet allow operations to execute immediately by obtaining the
required reservations in bulk and in anticipation.

Others have tried to reduce the need for coordination by
bounding the degree of divergence among replicas. Epsilon-
serializability [36] and TACT [45] use deterministic algo-
rithms for bounding the amount of divergence observed by
an application using different metrics: numerical error, order
error and staleness. Consistency rationing [21] uses a statis-
tical model to predict the evolution of replica state and al-

lows applications to switch from weak to strong consistency
upon the likelihood of invariant violation. In contrast to these
works, Indigo focuses on enforcing invariants efficiently.

The static analysis of code is a standard technique used
extensively for various purposes, including in a context sim-
ilar to ours [8, 13, 20]. Sieve [26] combines static and dy-
namic analysis to infer which operations should use strong
consistency and which operations should use weak consis-
tency in a RedBlue system [25]. Roy et al. [37] present an
analysis algorithm that describes the semantics of transac-
tions. These works are complementary to ours, since the pro-
posed techniques could be used to automatically infer appli-
cation side effects. The latter work also proposes an algo-
rithm to allow replicas to execute transactions independently
by defining conditions that must be met in each replica.
Whenever an operation cannot commit locally, a new set
of conditions is computed and installed in all replicas using
two-phase commit. In Indigo, replicas can exchange rights
in a peer-to-peer manner.

9. Conclusions
This paper proposes an application-centric consistency model
for geo-replicated services, Explicit Consistency, where pro-
grammers specify the consistency rules that the system must
maintain as a set of invariants. We describe a methodol-
ogy that helps programmers decide which invariant-repair
and violation-avoidance techniques to use to enforce Ex-
plicit Consistency, extending existing applications. We also
present the design of Indigo, a middleware that can enforce
Explicit Consistency on top of a causally consistent store.
The results show that the modified applications have per-
formance similar to weak consistency for most operations,
while being able to enforce application invariants. Some rare
operations that require intricate rights transfers exhibit high
latency. As future work, we intend to improve the algorithms
for exchanging reservation rights on those situations.
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Abstract—Geo-replicated databases often offer high availabil-
ity and low latency by relying on weak consistency models.
The inability to enforce invariants across all replicas remains
a key shortcoming that prevents the adoption of such databases
in several applications. In this paper we show how to extend
an eventually consistent cloud database for enforcing numeric
invariants. Our approach builds on ideas from escrow transac-
tions, but our novel design overcomes the limitations of previous
works. First, by relying on a new replicated data type, our
design has no central authority and uses pairwise asynchronous
communication only. Second, by layering our design on top of a
fault-tolerant database, our approach exhibits better availability
during network partitions and data center faults. The evaluation
of our prototype, built on top of Riak, shows much lower latency
and better scalability than the traditional approach of using
strong consistency to enforce numeric invariants.

I. INTRODUCTION

Scalable cloud databases with a key-value store interface
have emerged as the platform of choice for providing online
services that operate on a global scale [11], [9], [7]. In
this context, a common technique for improving the user
experience is geo-replication [9], [7], i.e., maintaining copies
of application data and logic in multiple data centers scattered
across the globe. This decreases the latency for handling user
requests by routing them to a nearby data center, but at the
expense of resorting to weaker data consistency guarantees to
avoid costly coordination among replicas.

When executing under such weaker consistency models,
applications have to deal with concurrent operations. A com-
mon approach is to rely on a last writer wins strategy [15],
[11], but this can lead to lost updates. To address this prob-
lem, some databases include specific reconciliation support
for some data types, such as counters in Cassandra and
DynamoDB, and CRDTs [18] in Riak.

Still, these approaches are unable to enforce invariants
across all replicas. For example, it is impossible to enforce
numeric invariants (e.g., x ≥ K), which previous works have
shown to be central for maintaining application correctness
[14]. This prevents the adoption of such databases in many
contexts, such as virtual wallets in games, or management of
stocks in e-commerce and ticket reservation applications. In
this paper we show how to extend eventually consistent cloud
databases for enforcing numeric invariants.

Maintaining this type of invariants would be trivial in
systems that offer strong consistency guarantees, namely those
that serialize all updates [14], [8]. The problem with these
systems is that they require coordination among replicas,

leading to an increased latency and reduced fault tolerance.
In contrast, our approach builds on the key idea of escrow
transactions [16], which is to partition the difference between
the current value of a numeric variable and the bound to be
enforced among existing replicas. These parts are distributed
among replicas, who can locally execute operations that do not
exceed their allocated part without contacting other replicas.

In this paper, we present the design of a middleware that
overcomes a number of important limitations that exist in
previous works that build on the same ideas. First, in contrast
to previous escrow based approaches, ours includes no central
authority and is totally asynchronous. To this end, we propose
a novel replicated data type [18], the Bounded Counter, to
maintain the information about the escrow each replica holds.
Second, we layer the management of Bounded Counters on
top of an eventually consistent cloud database. Thus, our
design inherits the fault tolerance properties of the underlying
database and exhibits better availability than systems that
use strong consistency, during network partitions and data
center faults. Finally, our middleware combines caching with
operation batching, thus improving write throughput without
reducing the fault tolerance properties of the system.

The evaluation of our prototype, running on top of Riak,
shows that: 1) when compared to using strong consistency,
our approach can enforce invariants without paying the latency
price for replica coordination, which is considerable for all but
the local clients; 2) when compared to using weak consistency,
our optimizations lead to higher throughput with a very small
increase in latency, while guaranteeing that invariants are not
broken.

The remainder of the paper is organized as follows. Sec-
tion II overviews our approach; Section III introduces the
Bounded Counter CRDT; Section IV presents our middleware
that extends Riak with numeric invariant preservation; Section
V evaluates our prototypes; Section VI discusses related work;
and Section VII concludes the paper.

II. SYSTEM MODEL

We target a typical geo-replicated scenario, with copies of
application data and logic replicated in multiple data centers
(DCs) scattered across the globe. End clients contact the clos-
est DC for executing application operations. We consider that
system processes are connected by an asynchronous network
and assume that processes may fail by crashing. A crashed
process may either remain crashed forever, or recover with its
persistent memory intact.



System API: In addition to get(key) and put(key, value)
operations to access common objects, our middleware provides
the following operations to manipulate Bounded Counter ob-
jects:
(i) create(key, type, bound), creates a new Bounded Counter
with the given key, constraint type (≥,≤) and bound – e.g.,
create(’A’, ’≥’, 10) creates a counter with initial value 10 that
enforces constraint A≥ 10;
(ii) value(key), returns the current value of counter key;
(iii) inc(key, value, remote) and dec(key, value, remote), update
the counter if it is known that the change will not break the
invariant, with the remote flag allowing to request contacting
remote nodes if necessary. Update operations return success if
they succeed or error otherwise.

Consistency Guarantees: We build our middleware on
top of an eventually consistent database, extending the un-
derlying guarantees with invariant preservation for counters.
In particular, the eventual consistency model means that the
outcome of each operation reflects the effects of only the subset
of operations that have already been executed by the replica
that the client has contacted. However, for each operation that
successfully returns at a client, there is a point in time after
which its effect becomes visible to every operation that is
invoked after that time, i.e., operations are eventually executed
by all replicas.

In terms of the invariant preservation guarantee, our system
guarantees that the value of the counter never violates the
bounds specified by the invariant, neither locally nor globally.
By locally, this means that the subset of operations seen by
the replica must obey:
lower bound ≤ initial value +∑ inc−∑dec ≤ upper bound.

By globally, this means that, at any instant in the execution of
the system, when considering the union of all the operations
executed by every replica, the same bounds must hold.

Note that the notion of causality is orthogonal to our
design, in the sense that if the underlying storage system offers
causal consistency, then we also provide numeric invariant-
preserving causal consistency.

Enforcing Numeric Invariants: To enforce numeric in-
variants, our design borrows ideas from the escrow transac-
tional model [16]. The key idea is to see the difference between
the value of a counter and its bound as a set of rights to
execute operations. Consider, for example, a counter, n, with
initial value n = 40 and an invariant n ≥ 10. In this case,
there are 30 rights to execute decrement operations. Executing
dec(5) consumes 5 of these rights. Executing inc(5) creates 5
new rights. In this model, these rights can be split among the
replicas of the counter. In our example, if there are 3 replicas,
each replica can be assigned 10 rights. If the rights needed to
execute some operation exist in the local replica, the operation
can safely execute locally, knowing that the global invariant
will not be broken. Again, in our example, if the decrements
of each replica are less or equal to 10, it follows that the total
number of decrements will not exceed 30, and therefore the
invariant is preserved. If not enough rights exist, then either
the operation fails or additional rights must be obtained from
other replicas.

Our approach encompasses two components that work to-
gether to achieve the goal of our system: a novel data structure,

the Bounded Counter CRDT, to maintain the necessary infor-
mation for locally verifying whether it is safe to execute an
operation or not (Section III); and a middleware to manipulate
instances of this data structure, which are persistently stored
in the underlying cloud database (Section IV).

III. DESIGN OF BOUNDED COUNTER CRDT

This section presents the Bounded Counter, a CRDT that
maintains information for enforcing numeric invariants without
requiring coordination for most executions of operations.

A. CRDT Basics

Conflict-free replicated data types (CRDTs) [18] are a class
of distributed data types that allow replicas to be modified
without coordination, while guaranteeing that replicas con-
verge to the same value after all updates are propagated and
executed in all replicas.

In this work, we adopted the state-based model of CRDTs,
as we built our work on top of a key/value store (KV-Store) that
synchronizes replicas by propagating the state of the database
objects. In this model, an operation submitted in a given site
executes in the local replica. Updates are then propagated
among replicas in peer-to-peer interactions, where a replica
r1 propagates its state to another replica r2, which merges its
local state with the received state, by executing the merge()
operation.

It has been proven that a sufficient condition for guaran-
teeing the convergence of the replicas of state-based CRDTs is
that the object conforms the properties of a monotonic semi-
lattice object [18], in which: (i) The set S of possible states
forms a semi-lattice ordered by ≤; (ii) The result of merging
state s with remote state s′ is the result of computing the least
upper bound (LUB) of the two states in the semi-lattice of
states, i.e., merge(s,s′) = sts′; (iii) The state is monotonically
non-decreasing across updates, i.e., for any update u, s≤ u(s).

B. Bounded Counter CRDT

We now detail the Bounded Counter, a CRDT for main-
taining the invariant greater or equal to K. The pseudocode is
presented in Figure 1.

Bounded Counter state: The Bounded Counter maintains
the limit value K and information about the rights each replica
holds. For a system with n replicas, this information is stored
in: a matrix R, where entry R[i][ j] keeps the rights transferred
from replica i to replica j; and in a vector U , where U [i] keeps
the rights consumed by replica i.

Operations: An increment executed at ri updates the
number of increments for ri by updating the value of R[i][i].
This operation is safe and can always execute locally.

A decrement executed at ri updates the number of decre-
ments for ri by updating the value of U [i]. This operation can
only execute if ri holds enough rights locally before executing
the operation, otherwise the operation fails.

The rights of replica ri, returned by function localRights,
are given by adding the local increments R[i][i] to the transfers
from other replicas to ri, given by ∑ j: j 6=i R[ j][i], subtracting the



1: payload integer[n][n] R, integer[n] U , integer min
2: initial [[0,0,...,0], ..., [0,0,...,0]], [0,0,...,0], K
3: query value () : integer v
4: v = min+ ∑

i∈Ids
R[i][i]− ∑

i∈Ids
U [i]

5: query localRights () : integer v
6: id = repId() %Id of the local replica
7: v = R[id][id]+ ∑

i 6=id
R[i][id]− ∑

i6=id
R[id][i]−U [id]

8: update increment (integer n)
9: id = repId()

10: R[id][id] = R[id][id]+n
11: update decrement (integer n)
12: pre-condition localRights()≥ n
13: id = repId()
14: U [id] =U [id]+n
15: update transfer (integer n, replicaId to): boolean b
16: pre-condition b = (localRights()≥ n)
17: from = repId()
18: R[from][to] := R[from][to]+n
19: update merge (S)
20: R[i][ j] = max(R[i][ j],S.R[i][ j]), ∀i, j ∈ Ids
21: U [i] = max(U [i],S.U [i]), ∀i ∈ Ids

Fig. 1: Bounded Counter for invariant greater or equal to K.
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Fig. 2: Example of the state of Bounded Counter for main-
taining the invariant greater or equal to 10.

transfers from ri to other replicas, ∑ j: j 6=i R[i][ j], and subtracting
the local decrements U [i].

Figure 2 shows an example of a Bounded Counter for the
invariant greater or equal to 10. The initial value of the counter
is the bound of the constraint, 10. Replicas r1, r2 and r3 have
incremented the counter by 30, 1 and 0 units, respectively, as
shown in the diagonal of R. The current value of the counter is
given by adding to the limit, the increments performed in every
replica, ∑i R[i][i], and subtracting the decrements, ∑i U [i], as
represented in the grey cells. The operation transfer transfers
rights from ri to some other replica r j, by increasing the value
recorded in R[i][ j]. This operation can only execute if enough
local right exist. In the example of Figure 2, transfers of 10
rights from r1 to each of r2 and r3 are recorded in the values
of R[1][2] and R[1][3].

The merge() operation is executed during peer-to-peer
synchronization, when a replica receives the state of a remote
replica. The local state is updated by just taking, for each entry,
the maximum of the local and the received value.

In a companion technical report [4], we prove that the
Bounded Counter is a CRDT and that the data structure ensures
invariant maintenance in the presence of concurrent updates in
different replicas. A TLA proof of correctness is also available.

Extensions: The exact same logic can be applied to pre-
serve invariants of the form less or equal to K: Rights represent
the possibility of executing increment operations instead of
decrement operations. The specification of the data type is
changed accordingly.
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Fig. 3: Middleware for deploying Bounded Counters.

Some applications may require two bounds for a counter,
e.g., greater or equal to K0 and less or equal to K1. A
Bounded Counter can maintain an invariant of that form by
combining the information of two Bounded Counters in one
object, similarly to what is done to specify a PN-Counter
from two P-Counters [18]. Some expressions might involve
constraints over multiple counters. With the current prototype,
the only way to implement these is to store them in a single
object, but we do not support it in the current interface.

In general, the approach used for Bounded Counters can
be applied to other data types that support escrow [22].

Optimizations: The state of Bounded Counter has com-
plexity O(n2), for n logical replicas. In practice, the impact
of this is expected to be small as the number of data centers
in common deployments is typically small and each DC will
typically hold a single logical replica. In a technical report
[4] we show how to lower the space complexity of Bounded
Counters to O(n).

IV. MIDDLEWARE TO ENFORCE NUMERIC INVARIANTS

We now present a middleware, depicted in Figure 3,
that uses Bounded Counters to extend cloud databases with
numeric invariants. In each DC, our system is composed by a
set of middleware nodes and an underlying key-value store to
persistently store data. Operations on regular objects execute
directly in the key-value store. Operations on counters are
handled by middleware nodes, with client requests routed to a
specific node using a DHT communication substrate.

In our prototype, we use riak_core [10] as the DHT com-
munication substrate and Riak 2.0, a key-value store inspired
in Dynamo [9], as the underlying storage system. Riak 2.0 also
includes a conditional write mode, where a write from a client
fails if there has been a concurrent write since the client’s
previous operation. Our middleware uses this mechanism to
serialize the execution of operations for each counter in each
replica. We deploy a logical replica of the Bounded Counter
per DC, which is replicated in a quorum of nodes by Riak. An
operation in a counter is sent to the DHT node responsible for
the counter. The DHT node executes the operation by reading
the counter from Riak, executing the operation and writing
back the new value, using the conditional write mechanism.
The operation only succeeds if it is safe, i.e., if the local replica
holds enough rights to guarantee the invariant is preserved.
By using the conditional write mechanism, we guarantee
that operations in each Bounded Counter execute sequentially
without requiring any guarantees from the DHT. For example,
if during a reconfiguration, concurrent requests to the same
counter are sent to two different nodes, our approach is still
safe as one of the operations will fail when writing to Riak.

Since Riak does not geo-replicate keys marked as strongly
consistent, our middleware is responsible for replicating



Bounded Counters across DCs. To this end, each DHT node
periodically propagates modified Bounded Counters to the
remote DCs. When the payload is delivered on the remote
DC, it is merged with the local state. This strategy batches a
sequence of local operations on a single key and propagates
them in a single update, saving bandwidth and processing.

Transferring Rights: Our middleware exchanges rights
between replicas in two situations. First, when an operation
cannot execute in a replica and the application has specified
that remote replicas should be used. In this case, the DHT
node executing the operation requests a transfer from a remote
DC. To this end, it sends a message to a node in the remote
data center, so that it executes a transfer operation in the
Bounded Counter. Second, replicas proactively exchange rights
in the background periodically to balance the rights assigned
to each replica. These mechanisms are detailed in a separate
document [4].

Fault tolerance: We now analyze how our middleware
designs provide fault tolerance building on the fault tolerance
properties of the underlying cloud database.

The cloud database is assumed to have sufficient internal
redundancy to never lose its state in a DC. However, a failure
in a node of the middleware layer may cause the DHT to re-
configure, with the possibly that two nodes temporarily accept
requests for the same key. This does not affect correctness as
we rely on conditional writes to guarantee that operations of
each counter are serialized.

During a network partition, rights can be used in both sides
of the partition – the only restriction is that it is impossible to
transfer rights between any two nodes in different partitions.
If an entire DC becomes unavailable, only the rights owned
by the unreachable DC become temporarily unavailable. This
contrasts with state-of-the-art strong consistency protocols
[12], which can only serve requests if at least a majority
of replicas (or a primary) is reachable. In our approach, any
replica can serve requests if it owns enough rights or if it can
gather the needed rights from reachable replicas.

Improving the performance of the middleware: Our
prototype includes a number of optimizations to improve its
efficiency. The first optimization is to cache Bounded Counters
on the DHT nodes. This allows us to avoid reading the counter,
when it is already in cache. Second, under high contention in
a Bounded Counter, the design described so far is not very
efficient, since an operation must complete before the next
operation starts being processed. In particular, since processing
an update requires writing the modified Bounded Counter back
to the Riak database to ensure durability, each operation can
take a few milliseconds to complete. To improve throughput,
while the write to Riak is taking place, the requests received
by the DHT node are processed using the cached counter.
The system still writes the batched updates to storage before
replying to the waiting clients, but this strategy allows to
execute a single write for multiple requests. Our evaluation
shows that this strategy improves the throughput of the system
by orders of magnitude.

V. EVALUATION

We evaluated experimentally our prototype to address the
following main questions. (i) How much overhead is intro-
duced by our middleware? (ii) What is the throughput and

latency for different levels of contention? (iii) What is the
latency when the value is close to the invariant bounds?

A. Configurations and Setup

In the experiments, we compare our middleware, BC, with
the following configurations:

Weakly Consistent Counters (Weak). This configuration
uses Riak 2.0 Enterprise Edition (EE), with native counters
running under weak consistency. Native counters handle con-
flicts automatically inside the database layer. The native geo-
replication mechanism of Riak EE is used.

Strongly Consistent Counters (Strong). This configuration
runs a Riak 2.0 Community Edition database (for using condi-
tional writes) in a single DC, serving local and remote requests.
Updating a counter uses the conditional write mechanism
of Riak for enforcing serializability, only succeeding if no
concurrent write has completed.

Our experiments comprised 3 Amazon EC2 DCs dis-
tributed across the globe. The average latency between DCs is:
US-East–Us-West, 80 ms; Europe (EU-West)–US-East, 96 ms;
Europe–US-Wast, 160 ms. In each DC, we use three m1.large
machines with 7.5GB of memory for running the database
servers and server-based middleware and three m1.large ma-
chines for running the clients.

Data is fully geo-replicated in all DCs, with clients access-
ing the replicas in the local DC. Riak operations use a quorum
of 3 replicas for writes and 1 replica for reads. In Strong, geo-
replication is not used, data is stored in the US-East DC, which
minimizes the latency for remote clients.

B. Single Counter

We first evaluate performance under high contention. To
this end, we use a single counter initialized to a value that is
large enough to never break the invariant. Clients execute 20%
of increments and 80% of decrements in a closed loop with a
think time of 100 ms. Each experiment runs for two minutes
after the initialization of the database. The load is controlled
by tuning the number of clients running in each experiment,
with clients evenly distributed among the client machines.

Throughput vs. latency: Figure 4 presents the variation
of the throughput vs. latency values as more operations are
injected in the system.

The results of Strong show that throughput quickly starts
degrading when load increases. This occurs because when
more clients try to submit operations to a single DC they
increase the interference, which prevents the conditional write
from succeeding. We also observe that Strong exhibits the
higher latency values which occurs because requests are all
redirected to a single DC which is remote for 2/3 of the clients.

In comparison to Strong, the throughput of Weak is much
larger and it does not degrade when increasing the load – after
reaching the maximum throughput, increasing the load just
leads to an increase in latency. The much higher throughput
of the middleware solution is due to the batching mechanism of
BC, which batches a sequence of updates into a single write to
storage. To prove this hypothesis, we ran the same experiment,
turning off the batching and writing every update in Riak,
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TABLE I: Latency of operations with a single counter.

Median (Max) latency (ms) Weak Strong BC
US-East 2 (7) 172 (180) 4 (9)
US-West 2 (7) 169 (187) 8 (13)
Europe 2 (8) 5 (9) 5 (11)

BC-nobatch. In this case, we can observe that the throughput
is much lower than Weak, as the middleware introduces an
additional communication step and executes operations in
sequence. The same approach for batching multiple operations
into a single Riak write could be used with other configura-
tions, such as Weak, to improve their scalability.

Latency under low load: Table I presents the median and
maximum latency experienced by clients in different regions
under low load. As expected, the results show that for Strong,
remote clients experience high latency, while local clients are
fast. It also shows that our middleware introduces an overhead
of about about 2 ms when compared with Weak, which is
justified by the additional communication steps.

Effects of exhausting rights: In this experiment we
evaluate the behavior of our middleware when the value of
the counter approaches the limit and contention for the last
available rights rises. We initialize the counter with the value
6000 and 5 clients execute decrement operations until all rights
are consumed. Figure 5 shows that most operations have low
latency, with a few peaks of high latency whenever a replica
needs to obtain additional rights. The number of peaks is
small because most of the time the proactive mechanism for
exchanging rights is able to provision a replica with enough
rights before all local rights are consumed. We see these peaks
more frequently near the end of the experiment, because there
are less resources available and they might be temporarily
exhausted. When all resources are consumed, replicas stop
requesting rights and operations fail locally.

Invariant Preservation: To evaluate the severity of the risk
of invariant violation, we computed how many decrements in
excess were executed with success in the different solutions.
We run the same experiment as before, but vary the number
of clients. Figure 6 shows that Weak is the only configura-
tion that experiences invariant violation. The operation for
decrementing consists in reading the counter, checking if the
value is greater than the limit and executing a decrement. The
decrement operation is not atomic and because of this, multiple
decrements can execute concurrently considering the same read
value. This effect increases with the number of clients and
concurrent updates.
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Fig. 7: Throughput vs. latency with multiple counters.

C. Multiple Counters

To evaluate how the system behaves in the common case
where clients access to multiple counters, we ran the experi-
ment of Section V-B with 100 counters. For each operation,
a client selects the counter to update randomly with uniform
distribution. The results presented in Figure 7 show that Strong
now scales to a larger throughput. The reason for this is that by
increasing the number of counters, the number of concurrent
writes to the same key is lower, leading to a smaller number of
failed operations. Additionally, when the maximum throughput
is reached, the latency degrades but the throughput remains
almost constant.

The Weak configuration scales up to a much larger value
(9K decrements/s compared with 3K decrements/s for a single
counter). As each Riak node includes multiple virtual nodes,
when using multiple counters the load is balanced among them
– enabling multi-core capabilities to process multiple requests
in parallel (whereas with a single node, a single virtual node
is used, resulting in requests being processed sequentially).

The results show that BC has a low latency (close to that
of Weak) as long as the number of writes can be handled by
Riak’s conditional write mode in a timely manner. In contrast
with the experiment with a single counter, Riak’s capacity is
shared among all the keys, each contributing with writes to
Riak. Therefore, as the load increases, writing batches to Riak
will take longer to complete and contribute to accumulate
latency sooner than in the single key case. Nevertheless,
batching still allows multiple client requests to be processed
per each Riak operation, leading to a better throughput. The
maximum throughput even surpasses the results for the Weak
configuration.

The results for BC-nobatch, where each individual update



is written using one Riak operation, can be seen as the worst
case of our middleware, in which the batching had no effect.
Still, since all BC operations are local to a given DC and access
only a quorum of Riak nodes, one can expect that increasing
the local cluster’s capacity should have a positive effect both
on latency and throughput.

VI. RELATED WORK

Many cloud databases supporting geo-replication have been
developed in recent years. Several of them [9], [15], [1],
[11], [6], [20] offer variants of eventual/weak consistency
where operations return immediately once executed in a single
DC. For some applications, strong consistency is necessary to
ensure correctness [8]. To avoid the cost of strong consistency
for all operations, some systems support both weak and strong
consistency for different operation types or objects [14], [7],
[20], [6]. In contrast, our work extends eventual consistency
with numeric invariants, aiming to keep latency low for all
operations.

Bailis et al. [2] examine which invariant of database sys-
tems can be enforced without coordination. Indigo [3] extends
this approach by providing mechanisms to enforce generic
invariants without coordination in most cases. In this work,
the focus is on the implementation of a middleware that can
be used on top of production databases to provide numeric
invariants. We use Riak as a proof of its applicability and show
experimentally how to enhance the system’s performance by
making good use of CRDTs.

Escrow transactions [16], initially proposed for increasing
concurrency of transactions in single databases, have also been
used for supporting disconnected operation in mobile comput-
ing environments either relying on centralized [17], [22] or
peer-to-peer [19] protocols for escrow distribution. The demar-
cation protocol [5] enforces numeric invariants across multiple
objects, located in different nodes. Additionally, it shows how
to encode other invariants, such as referential integrity, using
numeric invariants, which could also be explored in our work.
Our work combines convergent data types [18] with ideas
from these systems to provide a decentralized approach with
replicated data that offers both automatic convergence and
invariant preservation with no central authority. Additionally,
we describe, implement and evaluate how such solution can
be integrated into existing cloud databases.

VII. CONCLUSION

This paper presents a middleware to extend eventually
consistent cloud databases for enforcing numeric invariants.
Our design allows most operations to complete within a single
DC by moving the necessary coordination outside of the
critical path of operation execution. Additionally, our design
exhibit a high degree of fault tolerance, by building on the high
availability of the underlying database. Thus, we have shown
how to combine the benefits of eventual consistency, low
latency and high availability, with those of strong consistency,
enforcing global numeric invariants. The evaluation of our
prototype shows that our middleware has competitive perfor-
mance when compared with Riak’s native weak consistency
mechanism where invariants can be compromised.
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ABSTRACT
Today’s global services and applications are expected to be
highly available, scale to unprecedented number of clients
and offer reliable, low-latency operations. This can be achieved
through geo-replication, especially when data consistency is
relaxed. There are however applications whose data must
obey global invariants at all times. Strong consistency proto-
cols easily address this issue but require global coordination
among replicas and inevitably degrade application through-
put and latency.

While coordination is an inherent requirement for maintain-
ing global application invariants, there are instances where
coordination on a per operation basis can be avoided. In
particular, it has been shown that either moving coordina-
tion outside the critical path for executing operations, or
having one coordination round for multiple operations, are
both effective ways to maintain global invariants and avoid
most of the penalties of coordination. Our stance is that
expanding this idea to geo-replicated settings has yet to be
fully realised.

In this paper, we review the design space of current solu-
tions for engineering geo-replicated applications and present
our guiding vision towards a general technique for providing
global application invariants under eventual consistency, as
a much cheaper alternative to strong consistency.

1. INTRODUCTION
The advent of global Internet-based services and applica-
tions has fuelled the rise of cloud computing and exposed
the challenges of building distributed applications target-
ing millions of users scattered across the globe. Turning
users into customers or potential customers of a whole new
economy of social networks and e-commerce platforms made
quality of service paramount to achieve success online.

A measure of quality of service that users perceive directly

is the responsiveness of their interactions with the service.
There is evidence from major industry players [29, 15, 25]
that even a slight degradation in latency correlates with in-
creased user dissatisfaction and, consequently, loss of rev-
enue. In recent years, a great deal of research and technology
advances have been directed to addressing this issue.

Geo-replication is a widely adopted technique to improve
the responsiveness of online services. It employs multiple
data centers, placed at strategic locations across the globe,
and attempts to redirect user requests to a nearby replica
of the service. Thus, the latency between end-users and the
servers can be significantly reduced, in addition to offering
improvements in system scalability and fault tolerance.

Under geo-replication, systems scale-out by partitioning data
requests [14, 5, 12, 18]. Yet, the need to replicate databases
over high latency, intercontinental network links forces sys-
tem designers to choose between system availability and data
consistency, since it is not possible to have both under net-
work partitions [10]. Eventually consistent and strongly con-
sistent systems are at the opposite extremes of that trade-off.

Eventually consistent systems forgo tight replica coordina-
tion to favor availability, allowing replicas to diverge un-
der network partitions. Operations are executed locally and
their effects are replicated asynchronously. This allows users
to observe the immediate effects of their actions, but can re-
sult in concurrency anomalies, due to conflicting operations
performed at other sites. In order to maintain global in-
variants, applications on top of eventually consistent data
stores require additional programming logic, thus compli-
cating their design and development.

Strongly consistent systems, in contrast, are well suited for
applications that need to enforce global application invari-
ants across replicas, at all times [9]. In these systems, data
consistency is achieved by limiting concurrency, either by
funnelling all updates to a central site, or running some con-
sensus algorithm, such as Paxos, so that all sites agree on
some global order of operations. However, performing this
level of coordination every time the application state is mu-
tated is expensive, particularly in the case of replicas that
are far apart, as expected in geo-replication settings. In
either case, throughput and scalability are compromised.

In an attempt to bridge the gap between availability and
consistency, researchers sought to figure out what guarantees



are attainable without impairing availability [3, 34]. They
determined that, under some conditions, Causality is the
strongest form of always-available consistency [3]. It also
happens this is insufficient for enforcing global application
invariants, such as ensuring non-negativity of an inventory
counter under concurrent decrements.

Others have pursued the approach of combining the best
aspects of eventual and strong consistency into systems that
choose the most appropriate consistency level for each of
the workload operations [33, 22]. Whether that choice is
made manually by the programmer (a delicate and error
prone process) or by a tool [21, 11, 19], it still remains that
the strongly consistent execution path can still undermine
availability and performance if those operations are frequent.

While coordination is necessary for enforcing global invari-
ants under concurrency, it should be possible to reap addi-
tional parallelism from the following observation: in many
cases, operations that in general are unsafe under concur-
rency, only actually break invariants when particular limit
conditions are reached. For instance, when a non-negative
counter is far from zero, concurrent decrements do not pro-
duce anomalous behaviour, regardless of the order they are
committed to the database. In other cases, the typical fre-
quency of unsafe operations in a given application workload
may provide an opportunity to save on coordination costs.
For instance, the frequency of operations that imperil a ref-
erential integrity invariant may be tiny compared to the rest
of operations. Treating all these operations in the same way
may miss the chance for optimizations - for instance, by
requiring the rarer operation to perform most of the bur-
den of global coordination may allow executing the most
frequent operation without need to contact other replicas
in the common case. These insights have motivated us to
improve geo-replication performance in a principled way by
moving coordination outside the critical execution path of
operations, instead of focusing on the ordering of operations
– the approach that is employed by most existing solutions.

The rest of the paper is structured as follows. In section
2, we further discuss the limitations of eventual consistency
(EC) using a social network application as an example. Sec-
tion 3 covers some work on using program analysis to deter-
mine which operations require coordination to ensure invari-
ants; then, in Section 4 we review additional techniques for
enforcing invariants. Section 5 presents the overall approach
of our work for providing global application invariants on top
of eventual consistency. Section 6 concludes the paper.

2. PITFALLS OF EVENTUAL
CONSISTENCY

Eventual consistency guarantees that in the future, if up-
dates cease, all replicas will converge to the same value, be-
coming indistinguishable [35]. In systems that offer eventual
consistency, clients can access any replica, which allows the
system to provide high availability despite failures as long
as a single replica is available. Additionally, these systems
tend to achieve low latency, as the client can access the clos-
est replica. These advantages come at the price of increased
complexity in application design [32].

In this section, we use a social network application to illus-

trate the anomalies that can occur in eventually consistent
systems and how to address them by requiring additional
guarantees from the system.

In particular, we start by discussing session guarantees [34],
which are an interesting set of additional guarantees that
can be implemented by eventually consistent systems.

In a social network, a user writes posts that are added to her
own wall and to the walls of all her friends. We say that the
system provides the monotonic reads session guarantee [34]
if, after observing some post, successive read operations re-
turn a state that includes the post (unless it was explic-
itly removed). The system provides read-your-writes if the
client will always reads her previous posts. These guaran-
tees respect only a single user session and can be supported
by requiring stick-availability, in which a client maintains
stickness or affinity with a server (or set of servers) [3] or
acts as a server by caching the writes and returning them in
subsequent reads.

Other session guarantees concern the state observable by
any client session. In particular, the system provides the
monotonic writes guarantee if when a client executes two
successive writes, any read that includes the effects of last
write also include the effects of the first write.

The final session guarantee is motivated by the fact that,
when a post is a reply to a previous post, a user expects to
observe the original post before the reply. A system provid-
ing the writes follows reads guarantee enforces this property
– more precisely, if a client does a write w after observing
the effects of a set of previous writes Sw, any client that ob-
serves the effects of w will also observe the effects of Sw. A
system that enforces causality [20] guarantees that all these
sessions guarantees are respected, as events are delivered to
different replicas according to the happens-before relation.
Many recent systems provide causal consistency [23, 1, 24,
38, 5].

In addition to session guarantees, there are other interesting
properties that eventually consistent systems may decide to
provide. For example, consider the following set of require-
ments. In social network systems, friendship is usually a bi-
directional relation, i.e., if user A is a friend of user B, user
B is also friend of user A. As such, when a friend request is
acknowledged, both friend lists must be updated. Updating
the friend lists without atomicity may result in some user
observing that A is friend of B but B is not friend of A or
vice-versa. This violates the friendship relation invariant.
To address this, some geo-replicated systems provide atom-
icity for a sequence of writes, while enforcing causality [24,
38, 33].

Finally, as a more challenging requirement, consider the fol-
lowing example scenario. Social networks allow the creation
of groups where users can interact. The only invariant that
tends to exist is that a user can only join a group for which
she has been invited. This rule is easily enforced by using
causal consistency, which guarantees that the acceptance of
an invitation will always follow the invitation itself. How-
ever, stricter semantics would be impossible to enforce rely-
ing only on causal consistency, particularly when concurrent



operations can lead to a state where the invariant is violated.
For example, it is impossible to guarantee that every mem-
ber of the group is friend of the administrator of the group,
since a friendship relationship could be cancelled while a user
concurrently joins the group. This invariant can instead be
repaired after the violation is detected – e.g., by removing
from the group the members that are no longer friends of
the administrator.

However, some other invariants may not have a trivial re-
pair function – consider that an award is given to a limited
number of users in the group. A system relying on causal
consistency could concurrently give out more awards than
the limit. In this case, there is no trivial solution to select
the users that should remain in the set of awardees, and the
situation can be particularly problematic in case the award
emails have been sent out.

The examples presented in this section show that there are
several additional guarantees that eventually consistent sys-
tems should provide. However, in some cases these guaran-
tees can be particularly difficult to enforce under eventual
consistency, even with the help of a repair function. As such,
to address these requirements, applications tend to adopt
strong consistency models (or at least provide support for
both weak and strong semantics [33, 22]).

3. MAKING THE RIGHT CHOICE
In the previous section we have seen that not all operations
have the same consistency requirements. For this reason,
many existing systems take the approach of supporting dif-
ferent levels of consistency to implement applications effi-
ciently.

Gemini [22], BloomL [11], Walter [33] and Lazy Replica-
tion [19] allow developers to choose between different levels
of consistency to ensure application correctness. This ap-
proach allows developers to use eventual consistency when
operations are compatible with any possible concurrent up-
dates, and only use strong consistency when concurrent op-
erations can make the database inconsistent. This allows for
fine tuning the consistency requirements of each operation.
However, it poses an heavy burden on the programmer, who
must decide the correct level of consistency to use: if the pro-
grammer is too conservative, this may lead to an inefficient
application; if the programmer is too relaxed due to incor-
rect reasoning about the application semantics, this can lead
to incorrect behaviour. Recent work has proposed to iden-
tify the best consistency level automatically, which provides
good results free of human error. In particular, Sieve [21] de-
termines the consistency level for operations that run on top
of Gemini, under RedBlue consistency. It combines static
and dynamic analysis to determine which operations are safe
under causal consistency, and which operations need serial-
izability to maintain invariants. The analysis considers a
set of user-provided invariants and small annotations that
specify the convergence techniques used for concurrent op-
erations on the same objects.

The first step of the analysis, completed offline, generates ab-
stract models that represent the space of possible concurrent
executions during runtime and, for each model, determines
the set of minimal pre-conditions for being safe to execute

the operation without coordination.

At runtime, an operation executes under causal consistency
if the minimal pre-conditions for weak execution determined
offline are matched. Otherwise, the operation executes un-
der strong consistency.

For example, the offline algorithm would determine that any
operation that adds a negative value to a non-negative stock
is unsafe to be executed under eventual consistency (as con-
current operations can lead the stock to become negative).
At runtime, if an operation adds a positive value, it will
execute under eventual consistency; otherwise it needs to
execute under strong consistency.

BloomL[11] is a logic programming language for distributed
applications that maintains application invariants. It is based
on the observation that monotonic programs never retract
information that is previously known, and therefore they
converge regardless the delivery order of messages in differ-
ent replicas. A total order of messages is only required for
non-monotonic operations. An important part of BloomL

is the CALM analysis that allows to identify which parts of
the program are non-monotonic.

The BloomL language provides a library of semi-lattice con-
structs that ensure convergence, similar to CRDTs[30]. The
language supports non-monotonic operators: operators that
may give different results depending on the arrival order of
remote messages. For executing a non-monotonic operator,
a coordination protocol must be executed, to ensure that
the result of the non-monotonic operation is equivalent in
all replicas.

Both strategies identify which operations may break invari-
ants and require coordination among replicas to execute
them. This strategy is conservative, as in many executions it
is safe to execute the operations without coordination. For
instance, in the stock example, coordination is only neces-
sary when the number of available units becomes low, but
the system is forced to coordinate on every request because
it does not take the current level of the stock into account.

When determining if an operation can execute without co-
ordination. BloomL looks only at the code of operations,
while Sieve takes into consideration both the code of the op-
eration and the value of parameters. In the latter case, the
final decision on whether coordination is necessary or not is
executed in runtime. We argue that it is possible to extend
this approach by considering also the state of the database.
This has the potential to reduce, or even completely avoid,
the cost of global coordination by extending conflict anal-
ysis with runtime information about the database and the
participants.

In the literature, some proposals use the estimation of replica
divergence to avoid coordination [37, 17], either by using de-
terministic or stochastic models. However, these techniques
cannot be applied to general invariants and only give a es-
timation of the divergence, allowing invariants to be broken
in certain scenarios.



4. OLD TECHNIQUES REVISITED
In this section, we revisit two works that inspire our vision
for enforcing invariants without requiring coordination in
the critical path of operation execution: the escrow trans-
actional method [26] and the demarcation protocol [7]. We
discuss the use of these protocol to provide the invariants
from Section 2 without using strong consistency, or replica
coordination in the general case.

The escrow model [26] was proposed to allow long-lived
transactions to commit without interfering with other on-
going transactions. The key idea is to divide resources into
escrows that can be used concurrently by different nodes. If
the client has enough resources in its escrow, it can execute
the operation without coordination and release the remain-
ing resources on commit, or abort.

In the example of the limited number of awards, consider
that each group has a limit of K awards. Each node i that
holds a copy of group G grants awards up to a limit Yi such

that
n∑

i=1

Yi <= K, where n is the number of copies of G.

While the number of given awards do not exceed the local
limit Yi, each node can execute the operations locally with
low-latency.

This model has been extended to support different partition-
able data types [36] and operations [27, 31], but all imple-
mentations rely on a central component to manage escrows.

The demarcation protocol [7] has a insight similar to the es-
crow model, but enforces invariants over multiple variables.
For each variable, the protocol defines a limit for the value
of the variable. The combination of the defined limits for all
variable guarantee that the defined invariants remain valid.
Thus, operations are safe if updates do not exceed the de-
fined limits.

If an operations requires a variable to exceeds its limit, an-
other peer must change its limit to make that operation
safe: a node sends a request with the change in the limit it
requires; the node that accepts the request adjust its own
limits and notifies the requester of the change; the requester
then increase its safety limits with the received delta and
the operation executes safely.

Changing the limits with point-to-point communication can
be fast when nodes know enough information about the
other peers. When the resources are scarce and nodes change
the limits more frequently some request might fail leading
to multiple point-to-point messages. Additionally, the point-
to-point protocol needs to enforce exactly-once delivery or
the limits may become more restrictive than necessary.

The authors have used this protocol to maintain a numeric
invariant over resources distributed in multiple machines,
enforcing the uniqueness invariant and to provide referential
integrity constraints.

A referential integrity constraint is modelled by a logical
implication: predicate(A) ⇒ predicate(B). Each nodes
stores a boolean value for each predicate. The idea is to
enforce that whenever a node updates a predicate to a value

that may turn the expression false (unsafe), it must enforce
that the other nodes changes the value of their predicate
to maintain the expression true. In our example, we have
JoinGroup(A,G) ⇒ isFriend(A,B), with A a user, B the
administrator and G a group of users1. Making JoinGroup(A,G)
true is unsafe because that value is only allowed if isFriend(A,B)
is true, otherwise the expression is false. The node requests
the peer holding the predicate isFriend(A,B) to change
the minimum value for that predicate to true. The con-
verse must also be ensured, to make isFriend(A,B) false -
the node must ask the peer holding the value for predicate
JoinGroup(A,G) to ensure it is false.

The idea of distributing data by multiple nodes in an infras-
tructure has been widely adopted in other contexts to do
load balancing for distributed memory multiprocessor [13],
quota enforcement in grid [16] and cloud environments [8].
More recently MDCC [18] uses a variation of the demarca-
tion protocol to extract more concurrency of commutative
operations that maintain numerical constraints invariants.
The homeostasis protocol [28] also extends the demarcation
protocol, but requires a new set of conditions to be com-
puted and installed in all replicas using two-phase commit.
We argue that it is possible to leverage these old ideas in
the new geo-replicated settings relying on peer-to-peer and
unreliable asynchronous communication protocols only, as
discussed in the next section.

5. LOW-COST INVARIANTS
In the previous sections, we have shown techniques that al-
low the maintenance of database invariants in two different
ways: by identifying what operations are not safe and use
strong consistency to execute those or by enforcing local con-
straints to ensure that operation are safe, while the system is
divergent. We argue that a combination of these techniques
can be used to provide a principled approach to execute op-
erations that maintain invariants without coordination in
the general case.

We envision a system that identifies operations that require
strong consistency, but use an efficient protocol to guarantee
that local executions are safe instead of using global coordi-
nation. The system would exchange the necessary resources,
outside the critical path of execution, to guarantee that op-
erations can execute safely, but could still resort to strong
consistency when those requirements are not met.

Our preliminary investigations indicates that Sieve is a good
candidate to build our system. We could modify the analysis
that determines the weakest pre-conditions to accept more
facts, computed during runtime, to enable the execution of
more operations locally. For instance if the weakest pre-
condition to execute joingroup(A,G) is that isFriend(A,B),
than we could add some fact that gives the local replica the
exclusive right to modify that predicate, which would ensure
it does not become false. On execution, if the current replica
holds that guarantee it can execute the operation without
coordination because it has the guarantee that the value of
that predicate can only change locally. Otherwise, it should
resort to strong consistency to execute the operation.

1The invariant presented is simplified for illustration pur-
pose, it should also ensure that B is administrator of G



We have a preliminary design of a data-type that maintains
numerical invariants [6]. Our data-type maintains the full
state of the invariant, which allows the current value to be
queried by a client, in opposition to the demarcation proto-
col, that may require to contact multiple nodes before know-
ing the actual value of the inequality. Evaluation shows that
all operations execute locally while they do not contend for
the last available resources. This is a first stepping stone to
provide data-types that are able to preserve the demarcation
protocol invariants in a replicated system.

Our approach is able to maintain different forms of invari-
ants and we already have a data-type that realises the nu-
merical invariants, but it remains an open question what is
the extent of invariants can we capture. Baillis et Al. [4]
made a survey on the typical invariants on benchmarks and
concluded that the most common invariants have the form of
referential integrity, numerical constraints and uniqueness,
which all can be implemented with the demarcation proto-
col.

To our knowledge, none of the previous approaches can be
directly applied to implement our vision. None of the former
works addresses all the key points in building geo-replicated
data-bases: Either they only capture limited forms of in-
variants, do not deal with data-replication, rely on a cen-
tral components to manage resources or do not provide low-
latency, fault tolerance and scalability to million of clients.

6. CONCLUSION
Current systems give up low-latency and availability for con-
sistency when invariants are essential to applications. At
best, only those invariants that are compatible with eventual
consistency can be enforced with low latency. For the rest,
the default has been to rely blindly on strong consistency.
To help figure out which case applies, recent research has
produced techniques that help programmers sort out which
parts of a program are unsafe under concurrency and need
global coordination. Avoiding coordination over expensive
inter-continental links has proved to be an important opti-
misation with noticeable impact on performance.

In this paper, we propose leveraging additional techniques
to further avoid paying the full cost of coordination while
enforcing global invariants on top of eventual consistency.
To the best of our knowledge, no current implementations
are tailored to harness these techniques on cloud infrastruc-
tures.

After reviewing the literature, we concluded that the ap-
proach applies to the most frequent application invariants.
We have already confirmed this in part with the design of
a data-type that maintains numerical invariants with low-
latency. We are now adapting these protocols to be deployed
on geo-replicated systems and have been using existing anal-
ysis techniques to determine when our optimizations can be
applied.
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Abstract
In this paper, we introduce a technique that can be used by dis-
tributed transactional protocols to reduce the vulnerability window
of transactions. For this purpose, we propose a so far unexplored
(to the best of our knowledge) usage of hybrid clocks. On one
hand, loosely synchronized physical clocks are used to maximize
the freshness of the snapshots used by transactions to read. On the
other hand, logical clocks are used to reduce the extent to which
the snapshot of update transactions is advanced upon their commit.

We claim that the joint usage of these two techniques can po-
tentially reduce the abort rate in comparison to previous protocols
such as Clock-SI, GMU, and SCORe.

Categories and Subject Descriptors C.2.4 [Distributed Systems]:
Distributed Databases

Keywords hybrid clocks, concurrency control, transactional pro-
tocols, abort rate, snapshot isolation

1. Introduction
Capturing the passage of time and the cause-effect relations among
events is a key problem at the core of the design of distributed
systems. Unsurprisingly, this issue is also of paramount importance
in the design of cloud data stores that provide some meaningful
consistency guarantee, such as causal consistency [8], snapshot
isolation [3], and serializable snapshot isolation [5]. A variety of
clock mechanisms have been proposed to track and reason about
the order in which events happen, such as physical clocks, logical
clocks, and hybrid clocks.

A key characteristic of distributed transactional protocols that
impacts the performance of transactional cloud data stores is the
abort rate, which is affected by the degree of concurrency. Trans-
action abort probability depends, naturally, on the workload char-
acteristics. However, the concurrency control mechanism may also
play a role in reducing or increasing the likelihood of conflicts. We
define the vulnerability window as the time window defined be-
tween transaction’s starting point and its serialization point; other
transactions whose vulnerability window overlaps may potentially
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cause the transaction to abort (a more precise definition is given in
Section 3). In protocols that use clocks, the vulnerability window
depends on how the protocol handles time.

In this short paper we propose a novel technique that aims at
reducing the vulnerability window of transactions. Our technique
uses an hybrid clock implementation. The idea is to use the physical
part of the hybrid clock to set the starting time of the transaction;
therefore, moving the starting point forward in time as much as
possible. On the other hand, our technique proposes to use the
logical part of the hybrid clock in order to serialize transactions
at the earliest possible point in time. The combination of these two
techniques has the potential of reducing the vulnerability window;
and in consequence, the abort rate.

Despite the fact that this is still a work in progress, we believe
that this paper already discusses and flags interesting aspects of the
use of clocks in distributed transactional protocols. The contribu-
tions of this paper are the following:

• A technique that proposes a novel usage of hybrid clocks in
distributed transactional protocols that aims at reducing the
abort rate by shortening transactions’ vulnerability windows.
• Comparison and discussion of the implications that different

types of clocks pose in the implementation of a distributed
transactional protocol. The discussion uses protocols found in
the literature such as Clock-SI [4], GMU [12] and SCORe [11].

The rest of the paper is organized as follows. Section 2 gives
a brief overview of the different clocks that can be used to order
events in distributed systems. Section 3 describes our technique
by integrating it into a protocol in order to ease readers compre-
hension. Section 4 compares our solution to other proposed pro-
tocols that use different clock implementations. Finally, Section 5
discusses the next steps of our research and concludes the paper.

2. Clocks
In the design of distributed systems, one could use different clocks
techniques to reason about the order of events. A first type of clocks
are physical clocks. Each participant of a distributed system can
use its own physical clock to timestamp events, and reason about
the ordering by comparing timestamps. Nevertheless, these clocks
can never be perfectly synchronized which may increase system
latencies due to the need to keep into account drifts in the clock,
e.g., by introducing additional wait phases. Tightly synchronized
physical clocks can be achieved by leveraging GPS protocols at the
cost of expensive hardware; whereas, loosely synchronized physi-
cal clocks can be inexpensively produced by relying on distributed
clock synchronization algorithms, such as NTP [10] and PTP [2].

A second type of clocks are logical clocks. Introduced by Lam-
port in 1978 [8], these clocks order events based on passage of in-



formation rather than passage of time. Different forms of logical
clocks have been proposed, as scalar [8], vectors [6, 9] and ma-
trix [13, 16]. While scalar clocks are very efficient w.r.t. the mes-
sage size, they may insert extra dependences between events. Vec-
tor and matrix clocks fix this problem at the cost of increasing the
size of the messages to sometimes unbearable sizes.

Finally, the last type of clocks are a combination of the previous
categories, namely hybrid clocks. A good example of this type of
clocks is Hybrid Logical Clocks (HLC) [7]. It combines a physical
clock with a scalar logical clock. This approach can be used to (i)
avoid, at least in some circumstances, waiting periods due to clock
drift, and (ii) precisely identify cause-effect relations avoiding the
possibility of wrongly ordering events.

3. On Fully Distributed Transactional Protocols
In order to better understand and illustrate the benefits of our tech-
nique, we resort to a concrete protocol that embodies it. We have
observed that some of the fully distributed transactional protocols
in the literature, such as SCORe [11] and Clock-SI [4], share a com-
mon structure and mostly only differ for the type of clocks they
use. Thus, the protocol we use throughout the discussion shares
this common pattern and integrates our technique. In this section,
we first give an overview of the protocol and how we integrate our
technique. Then, we describe the protocol in detail.

3.1 Protocol Overview
The protocol implements snapshot isolation (SI) [3]. It satisfies the
following three properties: (i) each transaction reads from a con-
sistent snapshot, (ii) conflicting update transactions commit in total
order producing a new snapshot in the database, and (iii) a trans-
action aborts if introduces a conflict with a concurrent committed
transaction. In SI, two transactions conflict if their write-sets, which
is the set of updated data items, have common elements. This type
of conflicts are called write-write conflicts. In consequence, SI pre-
cludes read-only transactions to abort. Since workloads are usually
composed by mostly read-only transactions, SI is likely to improve
performance compared to stronger consistency criteria, such as se-
rializability where read-write conflicts abort transactions. SI is the
default consistency choice of popular data engines as Oracle and
Microsoft SQL Server.

In addition, the protocol can be characterized as a Genuine
Partial Replication (GPR) [14] and Deferred Update Replication
(DUR) [15] protocol. GPR protocols are those in which only the
servers that store data needed by the transaction are involved in
the coordination. This is a desirable characteristic for large-scale
systems. DUR is an optimization for transactional protocols where
updates are buffered in the coordinator and sent atomically in the
commit step. This reduces coordination and potentially latency.

The protocol is composed by three phases: (i) an initial phase
where transaction’s snapshot time is set, defining the versions that
transactions can read, (ii) an interactive phase where clients issue
read and update requests, and (iii) a two phase commit protocol that
sets transaction’s commit time, in case all involved servers agree
on committing. We define vulnerability window of a transaction as
the window time created between transaction’s snapshot time and
transaction’s commit time. Two transactions whose vulnerability
windows overlap are considered concurrent by the protocol. Since a
transaction is aborted if there is a concurrent conflicting transaction
already committed, one goal of this type of protocols should be to
shorten the vulnerability window as much as possible. This leads to
reduce the abort rate and improve protocol’s performance.

Our technique precisely focus on this observation. We propose
the use of hybrid clocks to identify consistent snapshots and order
committed transactions. The hybrid clock is composed by a phys-
ical clock and a scalar logical clock. The physical clock is always

equal to the value of the server’s physical clock and it is used to set
transaction’s snapshot time. We assume that physical clocks of dif-
ferent servers are loosely synchronized through a distributed clock
synchronization protocol as NTP; nevertheless, the protocol cor-
rectness does not depend on how synchronized clocks are. On the
other hand, the scalar logical clock will always be set to the largest
time stamp the server has seen. This means that the logical clock is
“infected” by the physical time. The protocol uses the logical part
of the hybrid clock to propose commit times.

3.2 Protocol
Algorithm 1 shows the pseudocode of the protocol running in
the coordinator of the transaction (lines 1-24) and on the servers
(lines 25-43). Notice that any server can act as a coordinator. A
transaction issued by a client would take the following steps:

1. Upon a start transaction request, the coordinator initializes the
transaction and sets the snapshot time as the maximum between
its physical clock and logical clock (lines 2-5). The snapshot
time will be used by the transaction to identify the consistent
snapshot from where to read.

2. Clients interactively send operations (read/update) to the coor-
dinator. Updates are buffered in the coordinator (line 14). Reads
are sent to the partition responsible for the data item (if not
buffered). Upon a read request for key, the server first updates
its logical clock (line 26). Then, it waits for prepared conflicting
transactions with smaller prepare time than transaction’s snap-
shot time to commit (lines 27-30). Otherwise, the server may
return a version that misses writes of concurrent transactions.
Finally, the server returns the largest version with a smaller or
equal commit time than transaction’s snapshot time.

3. Upon a commit transaction request, the coordinator starts a two
phase commit protocol (2PC) to either commit or abort.
• First, the coordinator sends a prepare request to the servers

storing part of the transactions’s write set (lines 17-18).
• Each server first updates its logical clock (line 33). Then,

it waits for already prepared conflicting concurrent transac-
tions to either commit or abort (lines 34-35). Otherwise, SI
may be violated. Next, the server runs a certification check
that look for conflicting concurrent committed transactions
(line 36). If none, the server increases its logical clock (line
37) and uses it as prepare time. The proposed prepare time
is sent to the coordinator. Otherwise, an abort message is
sent back to the coordinator.
• The coordinator waits for all the partitions to reply. If all

partitions agree on committing, the coordinator sets the
commit time of the transaction to the maximum of the gath-
ered prepare times. Finally, it sends committed to the client
and the commit time to the involved servers.
• When a server receives the commit time, it applies the up-

dates to its local store using the commit time as version id.

Our protocol has two points where the execution may need to
be delayed in order to ensure correctness. The first can be found
in lines 27-30. A server waits until conflicting concurrent prepared
transactions are committed or aborted if their commit time may be
smaller than current transaction’s snapshot time. For instance, let
us assume two potentially concurrent transactions T1 and T2. T1

starts before T2, updates data items x and y, and tries to commit in
servers P1 and P2. On the other hand, T2 is a read-only transaction
that reads data item x in P1. When the read request reaches P1, T1

has not been committed yet; therefore, P1 does not know whether
T1 has to be included in T2’s snapshot or not. If P1 proposed a
prepare times for T1 smaller than T2’s snapshot time, there is a



Algorithm 1: Protocol
// Coordinator operations
1 upon receive start tx() from Client do
2 T.TxId←generate txid()
3 T.SnapshotTime←max(Server.PhysicalClock, Server.MaxTS)
4 T.State←active
5 T.Client←Client
6 send T to Client

7 upon receive read (T, Key) from Client do
8 if is buffered(T, Key) then
9 send get buffered value(T, Key) to Client
10 else
11 Server←get responsible(Key)
12 send read(T, Key) to Server

13 upon receive update(T, Key, Value) from Client do
14 buffer value(T, Key, Value)
15 send ok to Client

16 upon receive commit(T) from Client do
17 foreach Server in T.UpdatePartitions do
18 send prepare(T) to Server
19 wait until receiving PrepareTime from T.UpdatePartitions
20 T.CommitTime←max(all prepare times)
21 T.State←committed
22 foreach Server in T.UpdatePartitions do
23 send commit(T) to Server
24 send ok to Client

// Server operations
25 upon receive read (T, Key) from Coordinator do
26 Server.MaxTS←max(Server.MaxTS, T.SnapshotTime)
27 if Key is updated by T’ ∧
28 T’.State = prepared ∧
29 T.SnapshotTime > T’.PrepareTime then
30 wait until T’.State = committed
31 send get(Server.Backend, Key, T.SnapshotTime) to T.Client

32 upon receive prepare(T) from Coordinator do
33 Server.MaxTS←max(Server.MaxTS, T.SnapshotTime)
34 if Key is updated by T’ ∧ T’.State = prepared then
35 wait until T’.State = committed
36 if CertificationCheck(T) then
37 Server.MaxTS←Server.MaxTS + 1
38 T.PrepareTime←Server.MaxTS
39 T.State←prepared
40 send T.PrepareTime to Coordinator

41 upon receive commit(T) from Coordinator do
42 T.State←committed
43 put(Server.Backend, T.WriteSet, T.CommitTime)

possibility that the maximum of all proposed prepare time, and in
consequence T1’s commit time, is smaller than T2’s snapshot time.
In this case, T1 has to be included in T2’s snapshot, otherwise SI
is violated. The only way to ensure correctness in this scenario,
without adding extra coordination, is to wait for T1 to finish, as
our protocol does. Clock-SI [4], which uses physical clocks to set
transactions snapshot times, solves the problem similarly.

The second point where waiting can be required is found in lines
34-35. The intuition behind this is that prepared transactions are not
considered in the certification check (line 36) and they may pose
write-write conflicts, and thus, violate SI. Therefore, we suggest
to wait until there is no conflicting transaction committing before
starting the certification phase. Let us discuss an example to clarify
this safety property. Let us assume two transactions T1 and T2

whose write sets intersect in data item x stored in P1. P1 receives a
prepare request first for T1. Then, it receives the prepare request for
T2. Since T1’s commit time is unknown at this point, there is always
the possibility that T1 and T2 are concurrent. Therefore, only one
should successfully commit. If P1 do not wait for T1 to commit or

abort before preparing T2 both may commit, and thus, violate SI.
Even when T1 and T2 are known to be concurrent, one should not
abort T2 immediately since T1 may abort.

4. Comparison with Related Work
We now focus on discussing the implications and the trade-offs that
our clock choice poses in comparison to other clock mechanisms
proposed in the literature. We consider three protocols to compare:
SCORe [11] that uses a simple scalar logical clock, GMU [12]
that uses a vector clock with an entry per server in the cluster, and
Clock-SI [4] that uses a single physical clock. All these protocols
share a very similar protocol skeleton to the one described above.
In addition, we also use Hybrid Logical Clocks (HLC) [7] in our
discussion. In fact, it would be relatively straightforward to use
them in our protocol skeleton. Furthermore, HLCs have already
been used in transactional databases, such as CockroachDB [1].

As we have seen, there are two crucial points in which the type
of clock used characterizes a GPR protocol: assigning the snapshot
time when the transaction starts and proposing a commit time in the
commit phase. We analyse them in the following paragraphs.

Assigning snapshot time This step (i) defines how recent the read
data is, and (ii) impacts the transaction’s vulnerability window by
setting its starting point. Physical clocks are in general desirable for
this task since, with logical clocks, the rate in which each server’s
clock advances directly depends on how often they participate in
transactions. Thus, if a server that was isolated for a while happens
to assign the snapshot time of a transaction, this is likely to (i) read
quite stale data, and (ii) abort since the beginning of the transaction
will be set way in the past for active servers. For instance, let us
discuss a example with three servers P1, P2, and P3 whose initial
logical clocks are the same. After executing a large number of
transactions in which only P1 and P2 participate, P3’s logical clock
will be set way behind in the past in comparison to P1 and P2’s
clocks. In this situation, we say that P3 is isolated. In consequence,
next time that P3 sets the snapshot time of a transaction that updates
data items in any of the other servers, the transaction is likely to
abort. In the contrary, physical clocks advance automatically even
for servers that are isolated by the workload. Thus, physical clocks
are capable to avoid both problems. SCORe and GMU suffer from
these problems. GMU tackles them by advancing the snapshot time
as a transaction reads if possible. This, however, comes at the cost
of storing and shipping a vector instead of a single scalar.

On the other hand, physical clocks also have a major disadvan-
tage: protocol’s performance depends on the clock skew. This has
two implications. First, a read request and a prepare request of a
transaction with a snapshot time in the future (w.r.t. local server’s
clock) has to be delayed until the local clock catches up. Second,
while logical clocks always assign snapshot times that represent, at
least, already prepared transactions, physical clocks may assign a
snapshot time that is in the future. This means that a server is more
likely to have prepared conflicting transactions that make the snap-
shot to be unavailable; and thus, delay the transaction (first waiting
period of our protocol, lines 27-30). Clock-SI suffers from both
problems. On the contrary, our protocol avoids the first by the use
of the scalar in conjunction to the physical. Thus, instead of waiting
for the physical clock to catch up, our protocol simply updates the
logical one. This is possible because snapshot times are set as the
maximum between the physical and the logical clock. Notice that
we are not first to notice this improvement of hybrid clocks over
physical clocks, as the HLC paper already mentions it.

Proposing commit time This step impacts the size of transac-
tion’s vulnerability window. As argued before, the protocol should
try to shorten it in order to reduce the abort rate. Thus, there will be
less overlapping between the transactions and less chance to find



Protocol Clocks Freshness
Vulnerability Unavailable Clock

Window Snapshot skew
SCORe Scalar Low f1(wl) No No
GMU Vector Medium f2(wl) No No

Clock-SI Physical High f3(wl, cs) Yes Yes
HLC Hybrid High f3(wl, cs) Yes No

Our protocol Hybrid High ≤ min(f1, f3) Yes No

Table 1. Summary of GPR protocols with different clock choices
and its implications. In the vulnerability window column, wl stands
for workload and cs stands for clock skew. This column gives an
intuition on which factors the size of the vulnerability window de-
pends. The last column refers to the technique of delaying transac-
tion’s execution to cope with potential clock skews.

conflicts. Based on this assumption, logical clocks are more suit-
able for this task. They only move forward when necessary while
physical clocks automatically advance, potentially proposing larger
commit times. SCORe and GMU use logical clocks for this task,
while Clock-SI uses a physical clock. On the other hand, HLC
would take the maximum between the physical clock and the logi-
cal clock, potentially leading to similar results than Clock-SI. Our
protocol, instead, only uses the logical clock for this task.

Discussion We claim that our protocol takes the best clock choice
in both steps, by reducing the vulnerability window of transactions
and maximizing data freshness. Table 1 summarizes the advantages
and disadvantages of different clocks techniques applied to GPR
protocols. As the table shows, our protocol is the best among all
the protocols. It will (i) serve the most recent data, (ii) generate the
smallest vulnerability windows (with the exception of GMU that is
incomparable), and (iii) avoid points where the execution have to
be delayed due to clock skew.

Regarding the size of the vulnerability window in other proto-
cols, it will depend on different factors. For instance, in SCORe and
GMU, it will depend on how often servers are isolated by the work-
load. In those scenarios, the vulnerability window created for the
first transaction after a period of inactivity can be arbitrarily large.
Nevertheless, even when the workload does not isolate servers, our
protocol will always generate, on average, smaller windows that
SCORe since the starting time of the transaction is the maximum
between the physical and the logical clock. Thus, if the physi-
cal clock is ahead of the logical one, the window’s size would be
smaller than the one generated by SCORe. On the other hand, if the
physical clock is behind, due to clock skew, our protocol will gen-
erate window’s sizes equivalent to the ones generated by SCORe.
Notice that our protocol and GMU are incomparable. Since GMU
may advance transaction’s snapshot time, it may generate smaller
windows in some cases.

On the other hand, in Clock-SI and HLC, the size of the vul-
nerability window will depend on the workload and the clock skew.
Both would generate the same sizes, since the only improvement
of HLC over Clock-SI is that avoids points where the execution has
to be delayed due to clock skew. In comparison to our protocol,
there are two scenarios to discuss. First, in the hypothetical sce-
nario with perfectly synchronized clocks, our protocol will always
generate smaller windows because the logical clock will always be
behind the physical one due to network latencies. Thus, the commit
time of transactions will always be smaller that the ones generated
by Clock-SI and HLC. On the other hand, when clocks are only
loosely synchronized, if the logical is ahead of the physical one,
the three protocols would generate the same window size. Other-
wise, our protocol would generate smaller sizes.

5. Future work
We plan to implement the proposed protocol and compare its per-
formance and other parameters, as the abort rate, to other fully dis-
tributed transactional protocols. We are mostly interested to com-
pare to systems with a similar protocol but using different type
of clocks. This will lead us to experimentally prove or disprove
whether our initial conclusions are right.
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Abstract. Large scale distributed data stores rely on optimistic replica-
tion to scale and remain highly available in the face of network partitions.
Managing data without coordination results in eventually consistent data
stores that allow for concurrent data updates. These systems often use
anti-entropy mechanisms (like Merkle Trees) to detect and repair diver-
gent data versions across nodes. However, in practice hash-based data
structures are too expensive for large amounts of data and create too
many false conflicts.
Another aspect of eventual consistency is detecting write conflicts. Log-
ical clocks are often used to track data causality, necessary to detect
causally concurrent writes on the same key. However, there is a non-
negligible metadata overhead per key, which also keeps growing with
time, proportional with the node churn rate. Another challenge is delet-
ing keys while respecting causality: while the values can be deleted, per-
key metadata cannot be permanently removed without coordination.
We introduce a new causality management framework for eventually con-
sistent data stores, that leverages node logical clocks (Bitmapped Version
Vectors) and a new key logical clock (Dotted Causal Container) to pro-
vides advantages on multiple fronts: 1) a new efficient and lightweight
anti-entropy mechanism; 2) greatly reduced per-key causality metadata
size; 3) accurate key deletes without permanent metadata.
Keywords. Distributed Systems, Key-Value Stores, Eventual Consis-
tency, Causality, Logical Clocks, Anti-Entropy.

1 Introduction

Modern distributed data stores often emphasize high availability and low la-
tency [2,9,7] on geo-replicated settings. Since these properties are at odds with
strong consistency [3], these systems allow writing concurrently on different
nodes, which avoids the need for global coordination to totally order writes,
but creates data divergence. To deal with conflicting versions for the same key,
generated by concurrent writes, we can either use the last-writer-wins rule [5],
which only keeps the “last” version (according to a wall-clock timestamp for
example) and lose the other versions, or we can properly track each key causal



history with logical clocks [10], which track a partial order on all writes for a
given key to detect concurrent writes.

Version Vectors [13] – the logical clocks used in Dynamo – are an established
technique that provides a compact representation of causal histories [14]. How-
ever, Version vectors do not scale well when multiple users concurrently update
the same node, as they would require one entry per user. To address this Riak, a
commercial Dynamo inspired database, uses a newer mechanism – called Dotted
Version Vectors [1] – to handle concurrent versions on the same node in addition
to the concurrency across nodes. While these developments improved the scal-
ability problem, the logical clock metadata can still be a significant load when
tracking updates on lots of small data items.

In this paper, we address the general case in which, for each key, multiple
concurrent versions are kept until overwritten by a future version; no updates
are arbitrarily dropped. We present a solution that expressively improves the
metadata size needed to track per-key causality, while showing how this also
benefits anti-entropy mechanisms for node synchronization and add support for
accurate distributed deletes1.

Brief summary of the contributions:

High Savings on Causality Metadata Building on Concise Version Vectors
[11], and on Dotted Version Vectors [1], we present a new causality management
framework that uses a new logical clock per node to summarize which key ver-
sions are currently locally stored or have been so in the past. With the node
clock, we can greatly reduce the storage footprint of keys’ metadata by factoring
out the information that the node clock already captures. The smaller footprint
makes the overall metadata cost closer to last-write-wins solutions and delivers
a better metadata-to-payload ratio for keys storing small values, like integers.

Distributed Key Deletion Deleting a key in an eventually consistent system
while respecting causality is non-trivial when using traditional version vector
based mechanisms. If a key is fully removed while keeping no additional meta-
data, it will re-appear if some node replica didn’t receive the delete (by lost
messages or network partitions) and still has an old version (the same applies
for backup replicas stored offline). Even worse, if a key is deleted and re-created,
it risks being silently overwritten by an older version that had a higher version
vector (since a new version vector starts again the counters with zeros). This
problem will be avoided by using the node logical clock to create monotonically
increasing counters for the key’s logical clocks.

Anti-Entropy Eventually consistent data stores rely on anti-entropy mecha-
nisms to repair divergent versions across the key space between nodes. It both
1 For this work we don’t discuss stronger consistency guarantees like client session
guarantees or causal consistency across multiple keys, although it is compatible with
our framework and it’s also part of our future work.



detects concurrent versions and allows newer versions to reach all node replicas.
Dynamo [2], Riak [7] and Cassandra [9] use Merkle-trees [12] for their anti-
entropy mechanism. This is an expensive mechanism, in both space and time,
that requires frequent updates of an hash tree and presents a trade-off between
hash tree size and risk of false positives. We will show how a highly compact
and efficient node clock implementation, using bitmaps and binary logic, can
be leveraged to support anti-entropy and dispense the use of Merkle-trees alto-
gether.

2 Architecture Overview and System Model

Consider a Dynamo-like [2] distributed key-value store, organized as large num-
ber (e.g., millions) of virtual nodes (or simply nodes) mapped over a set of
physical nodes (e.g., hundreds). Each key is replicated over a deterministic sub-
set of nodes – called replica nodes for that key –, using for example consistent
hashing [6]. Nodes that replicate common keys are said to be peers. We assume
no affinity between clients and server nodes. Nodes also periodically perform an
anti-entropy protocol with each other to synchronize and repair data.

2.1 Client API

At a high level, the system API exposes three operations:

read : key → P(value)× context,
write : key× context× value→ (),

delete : key× context → ().

This API is motivated by the read-modify-write pattern used by clients to
preserve data causality: the client first reads a key, updates the value(s) and only
then writes it back. Since multiple clients can concurrently update the same key,
a read operation can return multiple concurrents values for the client to resolve.
By passing the read’s context back to the subsequent write, every write request
provides the context in which the value was updated by the client. This context is
used by the system to remove versions of that key already seen by that client. A
write to a non-existing key has an empty context. The delete operation behaves
exactly like a normal write, but with an empty value.

2.2 Server-side Workflow

The data store uses several protocols between nodes, both when serving client
requests, and to periodically perform anti-entropy synchronization.



Serving reads Any node upon receiving a read request can coordinate it, by
asking the respective replica nodes for their local key version. When sufficient
replies arrive, the coordinator discards obsolete versions and sends to the client
the most recent (concurrent) version(s), w.r.t causality. It also sends the causal
context for the value(s). Optionally, the coordinator can send the results back to
replica nodes, if they have outdated versions (a process known as Read Repair).

Serving writes/deletes Only replica nodes for the key being written can coor-
dinate a write request, while non-replica nodes forward the request to a replica
node. A coordinator node: (1) generates a new identifier for this write for the
logical clock; (2) discards older versions according to the write’s context; (3) adds
the new value to the local remaining set of concurrent versions; (4) propagates
the result to the other replica nodes; (5) waits for configurable number of acks
before replying to the client. Deletes are exactly the same, but omit step 3, since
there is no new value.

Anti-entropy To complement the replication done at write time and to ensure
consistency convergence, either because some messages were lost, or some replica
node was down for some time, or writes were never sent to all replica nodes
to save bandwidth, nodes perform periodically an anti-entropy protocol. The
protocol aims to figure out what key versions are missing from which nodes (or
must be deleted), propagating them appropriately.

2.3 System Model
All interaction is done via asynchronous message passing: there is no global clock,
no bound on the time it takes for a message to arrive, nor bounds on relative
processing speeds. Nodes have access to durable storage; nodes can crash but
eventually will recover with the content of the durable storage as at the time of
the crash. Durable state is written atomically at each state transition. Message
sending from a node i to a node j, specified at a state transition of node i by
sendi,j , is scheduled to happen after the transition, and therefore, after the next
state is durably written. Such a send may trigger a receivei,j action at node j
some time in the future. Each node has a globally unique identifier.

2.4 Notation
We use mostly standard notation for sets and maps. A map is a set of (k, v)
pairs, where each k is associated with a single v. Given a map m, m(k) returns
the value associated with the key k, and m{k 7→ v} updates m, mapping k to
v and maintaining everything else equal. The domain and range of a map m is
denoted by dom(m) and ran(m), respectively. fst(t) and snd(t) denote the first
and second component of a tuple t, respectively. We use set comprehension of the
forms {f(x) | x ∈ S} or {x ∈ S | Pred(x)}. We use �− for domain subtraction;
S �−M is the map obtained by removing from M all pairs (k, v) with k ∈ S. We
will use K for the set of possible keys in the store, V for the set of values, and I
for the set of node identifiers.



3 Causality Management Framework

Our causality management framework involves two logical clocks: one to be used
per node, and one to be used per key in each replica node.

The Node Logical Clock Each node i has a logical clock that represents all
locally known writes to keys that node i replicates, including writes to those
keys coordinated by other replica nodes, that arrive at node i via replication
or anti-entropy mechanisms;

The Key Logical Clock For each key stored by a replica node, there is a
corresponding logical clock that represents all current and past versions seen
(directly or transitively) by this key at this replica node. In addition, we
attached to this key logical clock the current concurrent values and their
individual causality information.

While this dual-logical clock framework draws upon the work of Concise
Version Vectors (cvv) [11], our scope is on distributed key-value stores (kvs)
while cvv targets distributed file-systems (dfs). Their differences pose some
challenges which prevent a simple reuse of cvv:

– Contrary to dfs where the only source of concurrency are nodes themselves,
kvs have external clients making concurrent requests, implying the gener-
ation of concurrent versions for the same key, even when a single node is
involved. Thus, the key logical clock in a kvs has to possibly manage mul-
tiple concurrent values in a way that preserves causality;

– Contrary to dfs, which considers full replication of a set keys over a set of
replicas nodes, in a kvs two peer nodes can be replica nodes for two non-
equal set of keys. E.g., we can have a key k1 with the replica nodes {a, b}, a
key k2 with {b, c} and a key k3 with {c, a}; although a, b and c are peers (they
are replica nodes for common keys), they don’t replicated the exact same
set of keys. The result is that, in addition to gaps in the causal history for
writes not yet replicated by peers, a node logical clock will have many other
gaps for writes to key that this node is not replica node of. This increases
the need for a compact representation of a node logical clock.

3.1 The Node Logical Clock

A node logical clock represents a set of known writes to keys that this node
is replica node of. Since each write is only coordinated by one node and later
replicated to other replica nodes, the nth write coordinated by a node a can
be represented by the pair (a, n). Henceforth, we’ll refer to this pair as a dot.
Essentially, a dot is a globally unique identifier for every write in the entire
distributed system.

A node logical clock could therefore be a simple set of dots. However, the set
would be unbound and grow linearly with writes. A more concise implementation
would have a version vector to represent the set of consecutive dots since the first
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Fig. 1. A bitmapped version vector example and its visual illustration. The bitmap
least-significant bit is the first bit from the left.

write for every peer node id, while keeping the rest of the dots as a separate set.
For example, the node logical clock: {(a, 1), (a, 2), (a, 3), (a, 5), (a, 6), (b, 1), (b, 2)}
could be represented by the pair ([(a, 3), (b, 2)], {(a, 5), (a, 6)}), where the first
element is a version vector and the second is the set of the remaining dots.
Furthermore, we could map peer ids directly to the pair of the maximum con-
tiguous dot and the set of disjointed dots. Taking our example, we have the map:
{a 7→ (3, {5, 6}), b 7→ (2, {})}.

Crucial to an efficient and compact representation of a node logical clock
is the need to have the least amount of gaps between dots as possible. For
example, the dots in a node logical clock that are from the local node are always
consecutive with no gaps, which means that we only need maximum dot counter
mapped to the local node id, while the the set of disjointed dots is empty.

The authors of [11] defined the notion of an extrinsic set, which we improve
and generalize here as follows (note that an event can be seen as a write made
to a particular key):

Definition 1 (Extrinsic). A set of events E1 is said to be extrinsic to another
set of events E2, if the subset of E1 events involving keys that are also involved
in events from E2, is equal to E2.

This definition means that we can inflate our node logical clock to make it
easier to compact, if the resulting set of dots is extrinsic to the original set.
In other words, we can fill the gaps from a node logical clock, if those gaps
correspond to dots pertaining to keys that the local node is not replica node of.

Taking this into consideration, our actual implementation of a node logical
clock is called Bitmapped Version Vector (bvv), where instead of having the
disjointed dots represented as a set of integers like before, we use a bitmap
where the least-significant bit represents the dot immediately after the dot in
the first element of the pair. A 0 means that dot is missing, while a 1 is the
opposite. The actual structure of a bvv uses the integer corresponding to the
bitmap to efficiently represent large and sparse sets of dots. Figure 3.1 gives a
simple bvv example and its visual representation.

Functions over Node Logical Clocks Lets briefly describe the functions
necessary for the rest of the paper, involving node logical clocks:



– norm(base, bitmap) normalizes the pair (base, bitmap). In other words, it
removes dots from the disjointed set if they are contiguous to the base, while
incrementing the base by the number of dots removed. Example: norm(2, 3) =
(4, 0);

– values(base, bitmap) returns the counter values for the all the dots repre-
sented by the pair (base, bitmap). Example: values(2, 2) = {1, 2, 4};

– add((base, bitmap), m) adds a dot with a counter m to the pair (base, bitmap).
Example: add((2, 2), 3) = (4, 0);

– base(clock) returns a new node logical clock with only the contiguous dots
from clock, i.e., with the bitmaps set to zero. Example: base({a 7→ (2, 2), . . .}) =
{a 7→ (2, 0), . . .};

– event(c, i) takes the node i’s logical clock clock and its own node id i, and
returns a pair with the new counter for a new write in this node i and
the original logical clock c with the new counter added as a dot. Example:
event({a 7→ (4, 0), . . .}, a) = (5, {a 7→ (5, 0), . . .});

Due to size limitations, we refer the reader to appendix A, for a formal
definition of a bvv as well as the complete function definitions.

3.2 The Key Logical Clock

A key logical clock using client ids is not realistic in the kind of key-value store
under consideration, since the number of clients is virtually unbound. Using sim-
ple version vectors with node ids also doesn’t accurately capture causality, when
a node stores multiple concurrent versions for a single key [1]. One solution is to
have a version vector describing the entire causal information (shared amongst
concurrent versions), and also associate to each concurrent version their own dot.
This way, we can independently reason about each concurrent versions causality,
reducing false concurrency. An implementation of this approach can be found in
Dotted Version Vector Sets (dvvs) [1].

Nevertheless, logical clocks like dvvs are based on per-key information; i.e.,
each dot generated to tag a write is only unique in the context of the key being
written. But with our framework, each dot generated for a write is globally
unique in the whole system. One of the main ideas of our framework is to take
advantage of having a node logical clock that store these globally unique dots,
and use it whenever possible to remove redundant causal information from the
key logical clock.

Contrary to version vectors or dvvs, which use per-key counters and thus
have contiguous ranges of dots that can have a compact representation, the use
of globally unique dots poses some challenges in defining dcc and its operations:
even if we only have one version per-key, we still don’t necessarily have a con-
tiguous set of dots starting with counter one. Therefore, a compact and accurate
implementation of a key logical clock is problematic: using an explicit set of dots
is not reasonable as it grows unbounded; neither is using a bvv- like structure,
because while a single bvv per node can be afforded, doing so per key is not
realistic, as it would result in many low density bitmaps, each as large as the



node one. Since there may be millions of keys per node, the size of a key logical
clock must be very small.

The solution is to again leverage the notion of extrinsic sets, by filling the
gaps in the clock with dots pertaining to other keys, thus not introducing false
causal information. The subtlety is that every key logical clock can be inflated
to a contiguous set of dots, since every gap in the original set was from dots
belonging to other keys2.

Dotted Causal Container Our key logical clock implementation is called
Dotted Causal Container (dcc). A dcc is a container-like data structure, in the
spirit of a dvvs, which stores both concurrent versions and causality information
for a given key, to be used together with the node logical clock (e.g. a bvv). The
extrinsic set of dots is represented as a version vector, while concurrents versions
are grouped and tagged with their respective dots.

Definition 2. A Dotted Causal Container (dcc for short) is a pair (I×N ↪→
V)× (I ↪→ N), where the first component is a map from dots (identifier-integer
pairs) to values, representing a set of versions, and the second component is a
version vector (map from [replica node] identifiers to integers), representing a set
extrinsic to the collective causal past of the set of versions in the first component.

Functions over Key Logical Clocks Figure 2 shows the definitions of func-
tions over key logical clocks (dcc) – which also involves node logical clocks (bvv)
– necessary for the rest of the paper. Function values returns the values of the
concurrent versions in a dcc; add(c, (d, v)) adds all the dots in the dcc (d, v) to
the bvv c, using the standard fold higher-order function with the function add
defined over bvvs. Function sync merges two dccs: it discards versions in one
dcc made obsolete by the other dcc’s causal history, while the version vectors
are merged by performing the pointwise maximum. The function context simply
returns the version vector of a dcc, which represents the totality of causal his-
tory for that dcc (note that the dots of the concurrent versions are also included
in the version vector component). Function discard((d, v), c) discards versions in
a dcc (d, v) which are made obsolete by a vv c, and also merges c into v. Func-
tion add((d, v), (i, n), x) adds to versions d a mapping from the dot (i, n) to the
value x, and also advances the i component of the vv v to n.

Finally, functions strip and fill are an essential part of our framework. Func-
tion strip((d, v), c) discards all entries from the vv v in a dcc that are covered
by the corresponding base component of the bvv c; only entries with greater
sequence numbers are kept. The idea is to only store dccs after stripping the
causality information that is already present in the node logical clock. Function
fill adds back the dots to a stripped dcc, before performing functions over it.
2 The gaps are always from other keys, because a node i coordinating a write to a
key k that generates a dot (i, n), is guaranteed to have locally coordinated all other
versions of k with dots (i, m), where m < n, since local writes are handle sequentially
and new dots have monotonically increasing counters.



values((d, v)) = {x | (_, x) ∈ d}
context((d, v)) = v

add(c, (d, v)) = fold(add, c, dom(d))
sync((d1, v1), (d2, v2)) = ((d1 ∩ d2) ∪ {((i, n), x) ∈ d1 ∪ d2 | n > min(v1(i), v2(i))},

join(v1, v2))
discard((d, v), v′) = ({((i, n), x) ∈ d | n > v′(i)}, join(v, v′))

add((d, v), (i, n), x) = (d{(i, n) 7→ x}, v{i 7→ n})
strip((d, v), c) = (d, {(i, n) ∈ v | n > fst(c(i))})

fill((d, v), c) = (d, {i 7→ max(v(i), fst(c(i))) | i ∈ dom(c)})

Fig. 2. Functions over Dotted Causal Containers (also involving bvv)

Note that, the bvv base components may have increased between two con-
secutive strip 7→ fill manipulation of a given dcc, but those extra (consecutive)
dots to be added to the dcc are necessarily from other keys (otherwise the dcc
would have been filled and updated earlier). Thus, the filled dcc still represents
an extrinsic set to the causal history of the current concurrent versions in the
dcc. Also, when nodes exchange keys: single dccs are filled before being sent;
if sending a group of dccs, they can be sent in the more compact stripped form
together with the bvv from the sender (possibly with null bitmaps), and later
filled at the destination, before being used. This causality stripping can lead
to significant network traffic savings in addition to the storage savings, when
transferring large sets of keys.

4 Server-side Distributed Algorithm

We now define the distributed algorithm corresponding to the server-side work-
flow discussed in section 2.2; we define the node state, how to serve updates
(writes and deletes); how to serve reads; and how anti-entropy is performed. It
is presented in Algorithm 1, by way of clauses, each pertaining to some state
transition due to an action (basically receive), defined by pattern-matching over
the message structure; there is also a periodically to specify actions which happen
periodically, for the anti-entropy. Due to space concerns, and because it is a side
issue, read repairs are not addressed.

4.1 Auxiliary Functions

In addition to the operations over bvvs and dccs already presented, we make
use of: function nodes(k), which returns the replica nodes for the key k; function
peers(i), which returns the set of nodes that are peers with node i; function
random(s) which returns a random element from set s.



Algorithm 1: Distributed algorithm for node i

durable state:
gi : bvv, node logical clock; initially gi = {j 7→ (0, 0) | j ∈ peers(i)}
mi : K ↪→ dcc, mapping from a key to its logical clock; initially mi = {}
li : N ↪→ K, log of keys locally updated; initially li = {}
vi : vv; other peers’ knowledge; initially vi = {j 7→ 0 | j ∈ peers(i)}

volatile state:
ri : (I×K) ↪→ (dcc×N), requests map; initially ri = {}

on receivej,i(write, k : K, v : V, c : vv):
if i 6∈ nodes(k) then

u = random(nodes(k)) // pick a random replica node of k

sendi,u(write, k, v, c) // forward request to node u

else
d = discard(fill(mi(k), gi), c) // discard obsolete versions in k’s dcc
(n, g′

i) = event(gi, i) // increment and get the new max dot from the local bvv
d′ = if v 6= nil then add(d, (i, n), v) else d // if it’s a write, add version
m′

i = mi{k 7→ strip(d′, g′
i)} // update dcc entry for k

l′
i = li{n 7→ k} // append key to log

for u ∈ nodes(k) \ {i} do
sendi,u(replicate, k, d′) // replicate new dcc to other replica nodes

on receivej,i(replicate, K : K, d : dcc):
g′

i = add(gi, d) // add version dots to node clock gi, ignoring dcc context
m′

i = mi{k 7→ strip(sync(d, fill(mi(k), gi)), g′
i)} // sync with local and strip

on receivej,i(read, K : K, n : N):
r′

i = ri{(j, k) 7→ ({}, n)} // initialize the read request metadata
for u ∈ nodes(k) do

sendi,u(read_request, j, k) // request k versions from replica nodes
on receivej,i(read_request, u : I, k : K):

sendi,j(read_response, u, k, fill(mi(k), gi)) // return local versions for k

on receivej,i(read_response, u : I, k : K, d : dcc):
if (u, k) ∈ dom(ri) then

(d′, n) = ri((u, k)) // d′ is the current merged dcc
d′′ = sync(d, d′) // sync received with current dcc
if n = 1 then

r′
i = {(u, k)}�− ri // remove (u, k) entry from requests map

sendi,u(k, values(d′′), context(d′′)) // reply to client u

else
r′

i = ri{(u, k) 7→ (d′′, n− 1)} // update requests map
periodically:

j = random(peers(i))
sendi,j(sync_request, gi(j))

on receivej,i(sync_request, (n, b) : (N×N)):
e = values(gi(i)) \ values((n, b)) // get the dots from i missing from j

K = {li(m) | m ∈ e ∧ j ∈ nodes(li(m))} // remove keys that j isn’t replica
node of
s = {k 7→ strip(mi(k), gi) | k ∈ K} // get and strip dccs with local bvv
sendi,j(sync_response, base(gi), s)
v′

i = vi{j 7→ n} // update vi with j’s information on i

M = {m ∈ dom(li) | m < min(ran(v′
i)} // get dots i seen by all peers

l′
i = M �− li // remove those dots from the log

m′
i = mi{k 7→ strip(mi(k), gi) | m ∈M, k ∈ li(m)} // strip the keys removed

from the log
on receivej,i(sync_response, g : bvv, s : K ↪→ dcc):

g′
i = gi{j 7→ g(j)} // update the node logical clock with j’s entry

m′
i = mi{k 7→ strip(sync(fill(mi(k), gi), fill(d, g)), g′

i) | (k, d) ∈ s}



4.2 Node State

The state of each node has five components: gi is the node logical clock, a bvv; mi

is the proper data store, mapping keys to their respective logical clocks (dccs);
li is a map from dot counters to keys, serving as a log holding which key was
locally written, under a given counter; vi is a version vector to track what other
peers have seen of the locally generated dots; we use a version vector and not
a bvv, because we only care for the contiguous set of dots seen by peers, to
easily prune older segments from li corresponding to keys seen by all peers; ri

is an auxiliary map to track incoming responses from other nodes when serving
a read request, before replying to the client. It is the only component held in
volatile state, which can be lost under node failure. All other four components
are held in durable state (that must behave as if atomically written at each state
transition).

4.3 Updates

We have managed to integrate both writes and deletes in a unified framework.
A delete(k, c) operation is translated client-side to a write(k, nil, c) operation,
passing a special nil as the value.

When a node i is serving an update, arriving from the client as a (write, k, v, c)
message (first “on” clause in our algorithm), either i is a replica node for key k
or it isn’t. If it’s not, it forwards the request to a random replica node for k. If
it is: (1) it discards obsolete versions according to context c; (2) creates a new
dot and adds its counter to the node logical clock; (3) if the operation is not a
delete (v 6= nil) it creates a new version, which is added to the dcc for k; (4) it
stores the new dcc after stripping unnecessary causal information; (5) appends
k to the log of keys update locally; (6) sends a replicate message to other replica
nodes of k with the new dcc. When receiving a replicate message, the node adds
the dots of the concurrent versions in the dcc (but not the version vector) to
the node logical clock and synchronizes with local key’s dcc. The result is then
stripped before storing.

Deletes For notational convenience, doing mi(k) when k isn’t in the map, results
in the empty dcc: ({}, {}); also, a map update m{k 7→ ({}, {})} removes the
entry for key k. This describes how a delete ends up removing all content from
storage for a given key: (1) when there are no current versions in the dcc; (2)
and when the causal context becomes older than the node logical clock, resulting
in an empty dcc after stripping. If these conditions are not met at the time the
delete was first requested, the key will still maintain relevant causal metadata,
but when this delete is known by all peers, the anti-entropy mechanism will
remove this key from the key-log li, and strip the rest of causal history in the
key’s dcc, resulting in a complete and automatic removal of the key and all its
metadata3.
3 The key may not be entirely removed if in the meantime, another client has insert
back this key, or made a concurrent update to this key. This is the expected behavior



With traditional logical clocks, nodes either maintained the context of the
deleted key stored forever, or they would risk the reappearance of deleted keys
or even losing new key-values created after a delete. With our algorithm using
node logical clocks, we solve both cases: regarding losing new writes after deletes,
updates always have new dots with increasing counters, and therefore cannot be
causally in the past of previously deleted updates; in the case of reappearing
deletes from anti-entropy with outdated nodes or delayed messages, a node can
check if it has already seen that delete’s dot in its bvv without storing specific
per-key metadata.

4.4 Reads

To serve a read request (third “on” clause), a node requests the corresponding
dcc from all replica nodes for that key. To allow flexibility (e.g. requiring a
quorum of nodes or a single reply is enough) the client provides an extra argu-
ment: the number of replies that the coordinator must wait for. All responses are
synchronized, discarding obsolete versions, before replying to the client with the
(concurrent) version(s) and the causal context in the dcc. Component ri of the
state maintains, for each pair client-key, a dcc maintaining the synchronization
of the versions received thus far, and how many more replies are needed.

4.5 Anti-Entropy

Since node logical clocks already reflect the node’s knowledge about current
and past versions stored locally, comparing those clocks tells us exactly what
updates are missing between two peer nodes. However, only knowing the dots
that are missing is not sufficient: we must also know what key a dot refers to.
This is the purpose of the li component of the state: a log storing the keys of
locally coordinated updates, which can be seen as a dynamic array indexed by
a contiguous set of counters.

Periodically, a node i starts the synchronization protocol with one of its peers
j. It starts by sending j’s entry of i’s node logical clock to j. Node j receives
and compares that entry with its own local entry, to detect which local dots
node i hasn’t seen. Node j then sends back its own entry in its bvv (we don’t
care about the bitmap part) and the missing key versions (dccs) that i is also
replica node of. Since we’re sending a possibly large set of dccs, we stripped
them of unnecessary causal context before sending, to save bandwidth (they were
stripped when they where stored, but the node clock has probably advanced since
then, so we strip the context again to possibly have further savings).

Upon reception, node i updates j’s entry in its own bvv, to reflect that i
has now seen all updates coordinated by j reflected in j’s received logical clock.
Node i also synchronizes the received dccs with the local ones: for each key, its

when dealing with concurrent writes or new insertions after deletes. Excluding these
concurrent or future writes, eventually all keys that received a delete request will be
removed.



Key/Leaf
Ratio

Hit
Ratio

Per Node
Metadata

Exchanged

Metadata
Per Key
Repaired

Average Entries
Per Key L. Clock

Merkle Tree
1 60.214 % 449.65 KB 4.30 KB

VV or
DVV 310 9.730 % 293.39 KB 2.84 KB

100 1.061 % 878.40 KB 7.98 KB
1000 0.126 % 6440.96 KB 63.15 KB

BVV & DCC – 100 % 3.04 KB 0.019 KB DCC 0.231
Table 1. Results from a micro-benchmark run with 10000 writes.

fills the received dcc with j’s logical clock, it reads and fills the equivalent local
dccs with i’s own logical clock, and then synchronizes each pair into a single
dcc and finally locally stores the result after striping again with i’s logical clock.

Additionally, node j also: (1) updates the i’s entry in vj with the max con-
tiguous dot generated by j that i knows of; (2) if new keys are know known
by all peers (i.e. if the minimum counter of vj has increased), then remove the
corresponding keys from the key-log li. This is also a good moment to revisit
the locally saved dccs for these keys, and check if we can further strip causality
information, given the constant information growth in the node logical clock. As
with deletes, if there were no new updates to a key after the one represented by
the dot in the key-log, the dcc will be stripped of its entire causal history, which
means that we only need one dot per concurrent version in the stored dcc.

5 Evaluation

We ran a small benchmark, comparing a prototype data store4 based on our
framework5, against a traditional one based on Merkle Trees and per-key logical
clocks6. The system has 16 nodes and was populated with 40000 keys, each key
replicated in 3 nodes, and we measured some metrics over the course of 10000
writes, 10% losing a message replicating the write to one replica node. The
evaluation aimed to compare metadata size of anti-entropy related messages
and the data store causality-related metadata size. We compared against four
Merkle Trees sizes to show how its “resolution”, i.e., the ratio of keys-per-leaf
impacts results.

Table 1 shows the results of our benchmark. There is always significant over-
head with Merkle Trees, worse for larger keys-per-leaf ratios, where there are
many false positives. Even for smaller ratios, where the “hit ratio” of relevant-
hashes over exchanged-hashes is higher, the tree itself is large, resulting in sub-
stantial metadata transferred. In general, the metadata overhead to perform
anti-entropy with our scheme is orders of magnitude smaller than any of the
Merkle Tree configurations.

Concerning causality-related metadata size, being negligible the cost of node-
wide metadata amortized over a large database, the average per-key logical clock
4 https://github.com/ricardobcl/DottedDB
5 https://github.com/ricardobcl/GlobalLogicalClocks
6 https://github.com/ricardobcl/BasicDB



metadata overhead is also significantly smaller in our scheme, since most of the
time the causality is entirely condensed by the node-wide logical clock. With
traditional per-key logical clocks, the number of entries is typically the degree
of replication, and can be larger, due to entries for retired nodes that remain in
the clock forever, a problem which is also solved by our scheme.

6 Related Work

The paper’s mechanisms and architecture extend the specialized causality mech-
anisms in [11,1], apply it over a eventually consistent data store. In addition to
the already mentioned differences between our mechanism and Concise Version
Vectors [11], our key logical clock size is actually bounded by the number of
active replica nodes, unlike PVEs (the cvv key logical clock is unbounded).

Our work also builds on concepts of weakly consistent replication present
in log-based systems [15,8,4] and data/file synchronization [13]. The assignment
of local unique identifiers for each update event is already present in [15], but
each node totally orders its local events, while we consider concurrent clients to
the same node. The detection of when an event is known in all other replicas
nodes – a condition for log pruning – is common to the mentioned log-based
systems; however, our log structure (the key log) is only an inverted index that
tracks divergent data replicas, and thus is closer to optimistic replicated file-
systems. Our design can reduce divergence both as a result of foreground user
activity (both on writes, deletes, and read repair) and by periodic background
anti-entropy, while using a common causality framework.

7 Conclusion

The mechanisms and architecture introduced here significantly reduce the meta-
data size for eventually consistent data stores. This also makes logical clocks
systems more competitive with systems that use last-writer-wins and ignore
causality. The lightweight anti-entropy mechanism introduced removes a tradi-
tional bottleneck in these designs, that used merkle-tree with heavy maintenance
and resulted in false positives overhead for data divergence. Finally, the proposed
modeling of deletes and how they deal with (re-)creation of keys, provides a sim-
ple solution to a non-trivial problem in distributed systems.

Further work will extend the framework to allow variations that address
integration of stronger session guaranties and causal consistency, while keeping
a general approach that is still expressive enough to keep concurrent versions
and comply with no-lost-updates.
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A Node Logical Clock Implementation: Bitmapped
Version Vector

A Bitmapped Version Vector is a version vector augmented with a bitmap per
entry; here we use arbitrary size integers for the bitmap components.

Definition 3. A Bitmapped Version Vector (bvv for short) is a map from
identifiers to pairs of integers, I ↪→ N×N, where an entry {i 7→ (n, b)} represents
the set of the mth events from node i such that m ≤ n or b� (m−1−n) mod 2 6=
0.

Here � stands for the right-bitshift operator, in a C-like notation. In a bvv,
the first integer in each pair plays the same role as the integer in a version vector,
i.e., a base component, representing a downward-closed set of events, with no
gaps, and the second component is interpreted as a bitmap, describing events
with possible gaps, where the least-significant bit represents the event after those
given by the base component. As an example, the bvv {i 7→ (4, 10)} represents
the set of events from node i given by {i1, i2, i3, i4, i6, i8}, as 10 = 10102, which
means that the event following i4, i.e., i5 is missing, as well as i7.

In a bvv, as gaps after the base are filled, the base moves forward, and thus
keeps the bitmap with a reasonable size. The idea is that as time passes, the
base will describe most events that have occurred, while the bitmap describes
a relatively small set of events. The base describes in fact a set of events that
is extrinsic to the events relevant to the node, and its progress relies on the
anti-entropy algorithm. In a bvv’s bitmap there is no point in keeping set bits
representing events contiguous to the base; pairs of integers in bvvs are normal-
ized by a norm function, making the second integer in the pair always an even
number.

In Figure 3 we define functions over bvvs7, where c ranges over bvv clocks,
i over identifiers, n and m over natural numbers, and b over natural numbers
playing the role of bitmaps; operator or denotes bitwise or.

7 The presentation aims for clarity rather than efficiency; in actual implementations,
some optimizations may be performed, such as normalizing only on word boundaries,
e.g., when the first 64 bits of a bitmap are set.



norm(n, b) =
{

norm(n + 1, b� 1) if b mod 2 6= 0,
(n, b) otherwise.

values((n, b)) = {m ∈ N | m ≤ n ∨ (b� (m− 1− n)) mod 2 6= 0}

add((n, b), m) =
{

norm(n, b) if m ≤ n,
norm(n, b or (1� (m− 1− n))) otherwise.

add(c, (i, n)) = c{i 7→ add(c(i), n)}
base(c) = {(i, (n, 0)) | (i, (n,_)) ∈ c}

event(c, i) = (n, add(c, (i, n))) where n = fst(c(i)) + 1

Fig. 3. Operations over Bitmapped Version Vectors
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HASLab / INESC TEC & University of Minho
Braga, Portugal

Abstract—Strongly consistent systems supporting distributed
transactions can be prone to high latency and do not tolerate
partitions. The present trend of using weaker forms of consis-
tency, to achieve high availability, poses notable challenges in
writing applications due to the lack of linearizability, e.g., to
ensure global invariants, or perform mutator operations on a
distributed datatype. This paper addresses a specific problem: the
exactly-once transfer of a “quantity” from one node to another
on an unreliable network (coping with message duplication, loss,
or reordering) and without any form of global synchronization.
This allows preserving a global property (the sum of quantities
remains unchanged) without requiring global linearizability and
only through using pairwise interactions between nodes, therefore
allowing partitions in the system. We present the novel quantity-
transfer algorithm while focusing on a specific use-case: a
redistribution protocol to keep the quantities in a set of nodes
balanced; in particular, averaging a shared real number across
nodes. Since this is a work in progress, we briefly discuss the
correctness of the protocol, and we leave potential extensions
and empirical evaluations for future work.

Keywords-Distributed monoid-like data-types; exactly-once
quantity-transfer, idempotence.

I. INTRODUCTION

The trend of distributed storage systems nowadays is to use
relaxed forms of consistency to improve availability. This is
often established through delaying inter-replica synchroniza-
tion and offering the requesting client a fast (though stale)
response based on the local state, that is coordinated with
other replicas off the critical path in an asynchronous fashion.
In order to relax consistency in a way that is tolerated by
application semantics, that semantics needs to be considered.
In this paper, we focus on monoid-like datatypes that hold
partitionable quantities, that can be split and added back, such
as counters or multi-sets.

In the simplest formulation, we consider the distributed
datatype state to depict a quantity, say a collection of tickets,
that is partitioned among a set of nodes. Contrary to replicated
systems where the same total value is present at all replicas,
here the local quantity is a part of the whole, and can
be immediately operated upon, e.g., increased or decreased
by local requests, with no need for node synchronization,
resulting in high availability and low latency. Local operations
only depend on the quantity locally available and, by being
conservative, a global invariant can be preserved as a result
from a local invariant: if a decrease is limited to the local
quantity, it will remain non-negative, and therefore, so will
the sum of all quantities in the system.

Over time, the quantities can become unbalanced across
nodes: excess of tickets on some nodes and scarcity on

others. This motivates the asynchronous transfer of quantities
between nodes in order to balance them. The transfer can
be performed pairwise, opportunistically, without requiring
global connectivity, and therefore with part of the system
being partitioned. The challenge of this approach is how to
perform the transfer reliably, with an exactly-once guarantee,
to preserve the total quantity in the system.

Many redistribution protocols (e.g., [1], [2], [3], [4], [5],
[6]) have been proposed to redistribute quantities, however
none was immune to message duplication, i.e., the messages
involved were not idempotent. In this work, we propose
an new redistribution (a.k.a., quantity transfer) protocol with
idempotent messages.

Redistribution protocols in the 80’s suffered either from
latency issues due to resource locking and extensive use
of 2PC (two-phase commit) or from delivery ordering con-
straints [2], [1], [7]. The demarcation protocol [3], [4] was
then proposed as an alternative solution that is immune to
message delays and reception order: Whenever a node wishes
to perform an unsafe operation (e.g., may violate an invariant),
it requests that the other node perform a corresponding safe
operation and waits for notification. (The addressed problem
in this protocol was mainly redistributing limits by granting or
receiving a slack which is analogous to the quantity exchange
problem we address here.) This allowed the propagation of
any number of consecutive changes to be made without having
to wait for acknowledgments. For these reasons, in addition
to its simplicity, the demarcation protocol is still being used
nowadays [8], [9], [10], [11]. However, the authors themselves
admit that the protocol mis-behaves if no assumptions about
message delivery are made. Even though safety is not violated,
over time, under message duplication or loss, resources can
be “lost” or limits can become overly restrictive, as explained
in [6] and [8]. Krishnakumar and Jain tried to avoid these
problems in mobile inventory services [6]; however, they used
multiple 2PC phases and a third party server, which not only
it is very costly but also a single point of failure.

Addressing the problem of reliable communication between
two parties, in practice, requires retaining unique message
identifiers for the set of received, and delivered, messages
at the destination endpoint. Messages can be retransmitted
when not acknowledged for some time, and the identifier set
in the destination can always filter out received duplicates and
ensure exactly-once delivery. The filter set, however, will grow
linearly with the number of messages received. In settings that
aim for reliable FIFO communication, the long term space
requirements in the destination endpoint can be improved to



be linear with the number of sources, by storing for each
source the number that identifies the last message delivered.
Messages received out of order must still be buffered. (Notice
that quantity transfers do not necessarily require FIFO, since
adding received quantities is commutative.)

Transport layer protocols, such as TCP/IP, try to ensure
that only within a connection, data sent from one end-
point is delivered exactly-once to the other end-point, and
in FIFO order [12]. However, if a connection breaks while
non-acknowledged sent messages are present, those mes-
sages are only guaranteed to be delivered at-most-once. To
enforce exactly-once, the connection management protocol
would have to retain connection specific information between
different connection incarnations [13], something that TCP/IP
avoids [14]. Even weaker properties are provided by UDP,
where messages can be lost, duplicated or re-ordered.

Reducing storage requirements at the destination are only
possible at the expense of time. Attiya and Rappoport have
shown, in [13], that endpoints can retain counters that are not
connection specific if at least a three-way handshake is used
to establish a connection. This incurs a latency cost in the first
exactly-once transmission. Since its quite reasonable to expect
quantity transfers among geo-distributed data centers that aim
to keep local escrow for high-availability, and these will have
be connected by high latency links, the three-way handshake
is particularly taxing for short lived connections.

In this paper, we leverage the fact that we focus on specific
short lived task, quantity transfer, to make as much progress
as possible in the two initial communications of the three-
way handshake and use the third communication step to do
the exactly-once transfer. The extra information that is piggy-
backed in the initial steps, while important for progress, is not
required to be done exactly-once; and thus any undetected
duplications do not harm the correctness of the exchange
and the conservation of quantities. The protocol keeps extra
information during the exchange, but after the transfer occurs
the state in a node only stores a globally unique node identifier
and one counter (nodes that both send and receive store two
counters).

The original idea in this paper is inspired from Handoff
Counters [15] where the authors design scalable eventually
consistent counter CRDTs [16] that can work correctly despite
network partitions, and avoid the identity explosion problems
of previous CRDTs like G-Counters [16]. However, this paper
generalizes this idea to quantity transfers in any “splittable”
datatype and also expands the application spectrum of the idea
to new possible use-cases.

Given the limited paper space, we present our redistribution
protocol addressing a specific use-case: reliably moving quan-
tities from a source host to a destination host. A quantity is
a simple abstraction that represents a value that can be split
into two values that added back together produces the original
value. A simple example is that of money transfer between two
wallets. Money in origin wallet o in variable o. val is split into
o. val′ and m, with o. val = o. val′+m; then m is transferred,
exactly-once, to a destination wallet d that changes the stored
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Fig. 1. R Data type example: Positive reals that ask for half difference (when
smaller) and give as much as possible.

amount to d. val′ = d. val +m. No money is lost or created,
since o. val+d. val = o. val′+d. val′. The same principle can
be applied to many applications: stock escrow, token transfers,
service handoffs, etc [17], [6], [18].

In the future, we plan to present this concept more formally,
including transfer policies discussions, protocol variants, and
empirical experimentation.

II. PROTOCOL

A. System Model

Consider a distributed system with nodes containing lo-
cal memory, with no shared memory between them. Any
node can send messages to any other node. The network is
asynchronous, there being no global clock, no bound on the
time it takes for a message to arrive, nor bounds on relative
processing speeds. The network is unreliable: messages can
be lost, duplicated or reordered (but are not corrupted). Some
messages will, however, eventually get through: if a node sends
infinitely many messages to another node, infinitely many of
these will be delivered. In particular, this means that there can
be arbitrarily long partitions, but these will eventually heal.

The system is composed of n nodes. Nodes have access
to stable storage. Nodes can crash but eventually will recover
with the content of the stable storage as at the time of the
crash. We assume no Byzantine or Rational behaviors.

B. Payload Data Types

Valid data values types T must be commutative monoids
with a generic sum operator ⊕, and identity element 0.
(Splittable data values in the related work history were called
partitionable, fragmentable, or even escrowable; in this paper
we choose to use commutative monoids as it captures the
essential mathematical properties that are actually required.)
Fragmenting a quantity is done via a user defined split func-
tion; it can be any function such that (x′, q) = split(x, h) ⇔
x′⊕ q = x. Some split functions can use the hint h to further
ensure that 0 ≤ q ≤ h, but this is not needed for correction.
Load-balancing is abstracted via a user defined needs function
that compares a local amount to a remote amount, deciding
how much to ask. It can be such that h = needs(x, y) creates
a hint h and that typically we will have 0 ≤ h ≤ y, with h
representing a value that is beneficial to split from y and move
to x.



Fig. 2. Basic fault-free communication scenario.

val data value reported by fetch;
sck source clock – logical clock incremented when cre-

ating tokens;
dck destination clock – logical clock incremented when

creating slots;
slots map from source ids to pairs ((sck, dck), D) con-

taining a pair of logical clocks and a data value;
tokens map from destination ids to pairs ((sck, dck), D)

containing a pair of logical clocks and a data value;

Fig. 3. Replica state (record fields)

C. Use-case and Redistribution Policy

Since discussing redistribution policies is not the focus of
this short article, we assume the following use-case: a quantity
(e.g., a real number) that needs to be evenly balanced over all
replicas, so that they try to keep similar fractions of the global
amount. Replicas periodically share their values; a replica that
owns more credits will split its value and transfer them to
another replica that needs it (i.e., has scarce resources). Fig. 1
shows how split and needs are performed over real numbers.
In addition, we assume that redistribution occurs in a periodic
fashion. We aim at supporting more policies in the future.

While Fig. 1 shows how these datatype-specific functions
can be implemented for positive reals, we have also built
and tested similar definitions for integers and for maps from
identifiers to integers, that would more directly represent
stock/inventory abstractions.

D. The Algorithm

Our protocol, running on each node, is depicted in Algo-
rithm 1, and makes use of auxiliary functions defined in Fig. 4..
Each node has access to a globally unique identifier i, a set of
neighbors ni, and an initial quantity v0 of a valid data type.
The algorithm shows operations that can be invoked locally, to
act on the local data type; how to handle messages received;
and triggers periodic transmissions to other nodes. The node
state is a record with fields shown in Fig. 3.

a) Overview: Fig. 2 depicts the basic fault-free com-
munication scenario of our algorithm. Node j receives a
(periodically sent) message from i. Node j notices that i has
more resources (a larger quantity) and asks for some quantity
by creating a slot (a receptor) for i. When i eventually receives
the message, it checks if it still has extra resources and splits
its local val, creating a token containing the split quantity, and
sends a message with the token to j. As soon as j receives
the token, it adds the quantity to its val, removing the slot

Algorithm 1: Distributed algorithm for a generic node i.

constants:
i, globally unique node id
ni, set of neighbors of node i
v0, initial data value of type T

state:
Ci = {val = v0, sck = 0, dck = 0,

slots = {}, tokens = {}}
local fetchi

return Ci. val

local plusi(q)
Ci := Ci{val = vali⊕q}

local minusi(q)
let (v, q′) = split(Ci. val, q)
Ci := Ci{val = v}
return q′

on receivej,i(Cj)
Ci := fillslots(Ci, Cj)
Ci := createslot(Ci, Cj)
Ci := GCtokens(Ci, Cj)
Ci := createtoken(Ci, Cj)

periodically
for j ∈ ni do

let m = Ci{
slots = {(k, s) ∈ slotsi | k = j},
tokens = {(k, s) ∈ tokensi | k = j}}

sendi,j(m)

(function fillslots) and replies back to i. Finally, i can safely
garbage collect the token (function GCtokens). We describe
the algorithm in more detail in the following.

b) Notation: We use mostly standard notation for sets
and maps/relations. A map is a set of (k, v) pairs (a relation),
where each k is associated with a single v; to emphasize the
functional relationship we also use k 7→ v for entries in a
map. We use M{. . .} for map update; M{x 7→ 3} maps x to
3 and behaves like M otherwise. For records we use similar
notations but with = instead of 7→, to emphasize a fixed set
of keys. We use �− for domain subtraction; S�−M is the map
obtained by removing from M all pairs (k, v) with k ∈ S.
We use set comprehension of the form {x ∈ S | P (x)}.
The domain of a relation R is denoted by dom(R), while
fst(T ) and snd(T ) denote the first and second component,
respectively, of a tuple T . To define a function or predicate by
cases, we use if X then Y else Z to mean “Y if X is true,
Z otherwise”.

c) Local functions: Function fetch returns the val field;
operation plus adds an amount to val; operation minus attempts
to subtract an amount from val, limited to the available
quantity, as val cannot go below zero, returning the amount



fillslots(Ci, Cj)
.
= if (i, (ck, q)) ∈ tokensj ∧ (j, (ck, )) ∈ slotsi

then Ci{val = vali⊕ q, slots = {j}�− slotsi}
else if (j, ((sck, ), )) ∈ slotsi ∧ sckj > sck

then Ci{slots = {j}�− slotsi}
else Ci

createslot(Ci, Cj)
.
= let h = needs(vali, valj)

if j 6∈ dom(slotsi) ∧ h 6= 0

then Ci{slots = slotsi{j 7→ ((sckj , dcki), h)}, dck = dcki +1}
else Ci

GCtokens(Ci, Cj)
.
= if j ∈ dom(tokensi) ∧ (i ∈ dom(slotsj) ∧ snd(fst(tokensi(j))) < snd(fst(slotsj(i)))

∨ i 6∈ dom(slotsj) ∧ snd(fst(tokensi(j))) < dckj)

then Ci{tokens = {j}�− tokensi}
else Ci

createtoken(Ci, Cj)
.
= if i ∈ dom(slotsj) ∧ fst(fst(slotsj(i))) = scki

then let (v, q) = split(vali, snd(slotsj(i)))
Ci{tokens = tokensi{j 7→ (fst(slotsj(i)), q)},

val = v,
sck = scki +1}

else Ci

Fig. 4. Auxiliary functions in receive.

actually subtracted. It makes use of function split that splits
val into two amounts.

d) Sending: Periodically, each node i sends a message
to each neighbor j, containing the view of its state, con-
taining only the information that is relevant to the specific
receiver j. Notice that while the connection between two
nodes is unreliable, as sending is done periodically, eventually
a message will be received. We do not specify a specific
network topology, but the algorithm will balance values in each
connected component. For simplicity the reader can picture a
simple topology with a single connected component, such as
a ring or a complete graph.

e) Receiving: Once i receives a new message from
another node j, it incorporates it into its state by performing
four steps, using the functions from Fig. 4. These functions
receive as argument two state records and return the new state,
possibly with some of its fields updated.

Node i starts by checking if it has open slots for j and
tries to fill them if so (fillslots); it first verifies if j has a
token for i (that must have been previously created) and if
that very token has a locally opened slot on i (a matching
ck). In this case, i adds the received amount q to its val and
removes the corresponding slot. On the contrary, if a slot for
j exists on i but ck is not matching, i tries to garbage collect
the slot if the source clock of j is ahead the clock registered
in the designated local slot. This basically means that j has
already created a token to another node (and incremented it
local clock sckj) to acquire lacking amounts and discarded
creating a token corresponding to a previously sent slot by i.

Then it decides whether it should create a slot for j
(createslot); if i has no open slot for j, it opens a correspond-
ing slot only if h 6= 0 using the needs function (meaning that
j has excess amount to offer to i). Thus, i stores the newly
created slot that corresponds to (sckj , dcki) and advances its
sending clock dcki. Notice that since this is only done if i has
no open slots for j, this guarantees that no slots are created
for duplicate messages if sckj has not been incremented
(otherwise garbage collection would have occurred and a new
slot creation is allowed).

The next step is to check if node i has a token for j due
to a previous contact. In this case, the token may have been
successfully merged by j, and thus this token has to be garbage
collected GCtokens if: j has no open slots for i and its slots
clock dckj is ahead the said clock of the stored token. The
last step is to create a token if j has an open slot for i such
that the clock of the slot and node i are matching. In this case,
i splits its val using split to hand it off to j. Recall that, split
shall not return the exact amount needed by j if val is not
large enough according to the policy in Fig. 1).

III. CORRECTNESS

We provide an informal proof for the correctness (safety
and liveness) of our protocol. We postpone formal proofs to
an extended version due to page limits.

A. Safety

We explain safety by focusing on duplicated messages, re-
ordering, and “lost resources” problems since this is the aim of



the protocol. We omit the cases of lost message as we assume
eventual delivery and we explain re-ordering when needed.

Consider phase 1 in Fig. 2; this phase is safe under message
duplication since a duplicate slot will never be created as per
the conditions in createslot. In phase 2, upon receiving an open
slot, i creates a corresponding token and advances its clock
scki. Receiving a duplicate slot will have no effect since the
slot’s clock will not be matching anymore with scki. In phase
3, once j receives a token from i it fills the corresponding
slot (and deletes it); receiving another duplicate of the same
token will have no effect since there is no receptor slot at j.
The final phase 4 is also duplication-safe since a token will
be garbage collected only once.

The algorithm is also safe against message re-ordering. As
depicted on Fig. 2, there are only two re-ordering possibilities:
(1) Phase 1 and 3 are re-ordered. This is impossible to occur
since there is no way that j creates a slot (and consequently
i creates the corresponding token) unless if j received a prior
message, i.e., in phase 1. (2) Phase 2 and 4 are re-ordered.
This case is safe as i would simply discard the message since
it has no matching token for j.

As for “lost resources”, the only way for offering resources
is to createtoken (in which split is called); but as explained
above, this can only occur if the other node, j, has already a
corresponding open slot. In addition, j could not delete a slot
unless i’s sck is ahead the slot’s clock (else if in fillslots),
which means that i has already sent a token to another node
and it could not offer j a quantity; thus j must eventually
add (in fillslots) the split quantity (in createtoken) sent in the
token from i (phase 3).

B. Liveness

As for liveness, we first recall that we assume eventual
delivery of messages across all system nodes. Therefore,
network partitions, though possible, are considered transient
and messages will eventually go through. Now, we informally
demonstrate the liveness of the algorithm using Fig. 2.

First, notice in Fig. 2 that node j can createslot and fillslots
without blocking. In fact, j can always run createslot to create
a slot for i if its quantity is less than that of i. (An existing
slot would have been removed in fillslots.) In addition, j does
not have to wait until a token is received from i; however, it
could create other slots to other nodes too. Node j can thus
remove a created slot only when it receives a matching token
as shown in fillslots function in Fig. 4; otherwise, the slot is
kept (until it is eventually garbage collected), which has no
impact on progress.

As for node i, it only creates a token in createtoken if
an open slot is received and it still has larger quantity (as it
could have transferred some to another node by sending a prior
token). This is okay since j will eventually garbage collect the
corresponding slot. After creating the token, i will increment
its clock scki; this prevents it from creating any other token to
j unless it has received an ACK (i.e., a new slot with matching
scki) from it, since the condition fst(fst(slotsj(i))) = scki will
not be satisfied in createtoken. However, in all cases, i will be

able to create tokens to other nodes in the system if a matching
slot (holding the new incremented scki) is received and i has
extra quantity to transfer. Node i can then send new tokens to
j once an ACK from j is received and GCtokens is applied
(which will eventually occur).

Finally, the protocol will not block due to the transfer policy
since nodes with larger quantities will always offer quantities
to other nodes. This is guaranteed as we assume all nodes are
periodically exchanging states even if no local events occurred.
This can obviously be done in more efficient ways according
to the policy chosen (which we do not discuss here).

IV. DISCUSSION AND FUTURE WORK

In this paper, we focused on presenting the idea of the algo-
rithm on a simple real number averaging example. However,
the reader can easily notice that this algorithm can be used
in other cases of similar split/merge nature, as in [17], [5],
[19], [8], etc. We described our algorithm keeping in mind an
averaging policy whereas multiple policies could by addressed.
In this specific policy we did not address if averaging occurs
or not, but we rather focused on the correctness of the algo-
rithm. We conducted preliminary empirical evaluations to this
averaging problem on up to 1000 nodes and the results seem
promising: all nodes started with high variance of quantities
and came to an average value, while all meta-data (tokens
and slots) were garbage collected. We aim to provide more
evaluation and comparison results in the future.

In addition, we assumed that messages are simply dissem-
inated in a periodic fashion (e.g., through gossiping); clearly,
other options can be of interest too like having the node with
scarce resources ask other nodes (avoiding periodic dissemina-
tion). We have also assumed that no transitive sending occurs
between nodes, meaning that a third-party node could not
deliver a message on behalf of another node. We think that
this case is worth more focus in the future.

V. RELATED WORK

The problem of quantity transfer or redistribution (some-
times called repartitioning or reconfiguration) first appeared
in the context of database transactions by Carvalho et al. [2]
to maintain the invariants (or limits) on different servers as in
the Escrow Transactional method [20], [17]. The aim was to
redistribute an “escrowable” (or fragmentable) value (a limit)
over multiple partitions in a distributed storage by “splitting”
an amount on one replica and adding it to another. This idea
of “splitting” was first proposed by Davidson et al., in [21],
inspired by [22] in the context of reliable networks. Another
protocol was later proposed in [1] where a node can “borrow”
elements from neighbors (and waits) until acknowledged. They
used “partitionable operators” (similar to the ⊕ operator we
use in our paper); however, this protocol had impractical
weaknesses like blocking, re-ordering, and duplication.

The famous “demarcation” protocol was then introduced
by Barbara et al. in [3], [4]. This protocol aimed at main-
taining invariants in distributed databases using escrow-like
method [20], [17]. The demarcation protocol was immune to



message delays and the order of reception and would allow
the propagation of any number of consecutive changes to
be made without having to wait for acknowledgments. This
was a substantial improvement over its predecessors as it
could tolerate network partitions. The protocol however is
not immune to network problems like message dropping and
duplication which can lead to incorrect behaviors like more
conservative limits (in case of limit management) or “lost
resources” (in case of quantity transfer as in our work). Several
protocols were then proposed by Krishnakumar et al., in [7],
[23], [6], in the context of mobile services and inventory
to overcome these problems; however, they used many 2PC
phases which was not practical for systems that focus on low
latency and high availability.

To the best of our knowledge, no further improvements were
made to the demarcation protocol, and it is still being used by
current systems despite its aforementioned caveats [8], [9],
[10], [11].

VI. CONCLUSION

We introduced a new redistribution protocol to perform an
exactly-once transfer of a “quantity” from one node to another
in a distributed system. The protocol is immune to delivery
problems like message dropping, duplication, and re-ordering.
Although this protocol addressed a single “averaging” problem
of a distributed real number, it is easy to adapt to other
contexts, use-cases, and applications. The paper focused on
presenting the algorithm and showing its correctness properties
leaving other details to a future work, like distribution and
splitting policies and other variants of the protocol. Since this
is a work in progress, we aim at presenting more formal
presentation accompanied with experimentations in a longer
version. We already had some promising results showing that
the protocol brings all replicas (up to one thousand) to an
average value without leaving any garbage traces or meta-data.
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[4] D. Barbará-Millá and H. Garcia-Molina, “The demarcation protocol: A
technique for maintaining constraints in distributed database systems,”
The VLDB Journal, vol. 3, no. 3, pp. 325–353, Jul. 1994. [Online].
Available: http://dx.doi.org/10.1007/BF01232643

[5] R. Jain and N. Krishnakumar, “Network support for personal information
services to pcs users,” in Networks for Personal Communications, 1994.
Conference Proceedings., 1994, Mar 1994, pp. 1–7.

[6] N. Krishnakumar and R. Jain, “Escrow techniques for mobile sales and
inventory applications,” Wirel. Netw., vol. 3, no. 3, pp. 235–246, Aug.
1997. [Online]. Available: http://dx.doi.org/10.1023/A:1019161318592

[7] N. Krishnakumar and A. J. Bernstein, “High throughput
escrow algorithms for replicated databases,” in Proceedings
of the 18th International Conference on Very Large Data
Bases, ser. VLDB ’92. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1992, pp. 175–186. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645918.672481

[8] V. Balegas, D. Serra, S. Duarte, C. Ferreira, R. Rodrigues,
N. M. Preguiça, M. Shapiro, and M. Najafzadeh, “Extending
eventually consistent cloud databases for enforcing numeric
invariants,” CoRR, vol. abs/1503.09052, 2015. [Online]. Available:
http://arxiv.org/abs/1503.09052

[9] A. Elmagarmid, J. Jing, and O. Bukhres, “An efficient and reliable
reservation algorithm for mobile transactions,” in Proceedings of
the Fourth International Conference on Information and Knowledge
Management, ser. CIKM ’95. New York, NY, USA: ACM, 1995, pp.
90–95. [Online]. Available: http://doi.acm.org/10.1145/221270.221338

[10] T. Kraska, M. Hentschel, G. Alonso, and D. Kossmann, “Consistency
rationing in the cloud: Pay only when it matters,” Proc. VLDB
Endow., vol. 2, no. 1, pp. 253–264, Aug. 2009. [Online]. Available:
http://dx.doi.org/10.14778/1687627.1687657

[11] T. Kraska, G. Pang, M. J. Franklin, S. Madden, and A. Fekete,
“Mdcc: Multi-data center consistency,” in Proceedings of the 8th
ACM European Conference on Computer Systems, ser. EuroSys ’13.
New York, NY, USA: ACM, 2013, pp. 113–126. [Online]. Available:
http://doi.acm.org/10.1145/2465351.2465363

[12] P. Helland, “Idempotence is not a medical condition,” Queue,
vol. 10, no. 4, pp. 30:30–30:46, Apr. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2181796.2187821

[13] H. Attiya and R. Rappoport, “The level of handshake required for
establishing a connection,” in Distributed Algorithms, ser. Lecture
Notes in Computer Science, G. Tel and P. Vitnyi, Eds. Springer
Berlin Heidelberg, 1994, vol. 857, pp. 179–193. [Online]. Available:
http://dx.doi.org/10.1007/BFb0020433

[14] R.Braden, “Tcp extensions for transactions,” RFC, Jul. 1994. [Online].
Available: https://www.rfc-editor.org/rfc/rfc1644.txt

[15] P. S. Almeida and C. Baquero, “Scalable eventually consistent counters
over unreliable networks,” CoRR, vol. abs/1307.3207, 2013. [Online].
Available: http://arxiv.org/abs/1307.3207

[16] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “Conflict-
free replicated data types,” in Proceedings of the 13th International
Conference on Stabilization, Safety, and Security of Distributed Systems,
ser. SSS’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 386–400.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2050613.2050642

[17] A. Kumar and M. Stonebraker, “Semantics based transaction
management techniques for replicated data,” SIGMOD Rec.,
vol. 17, no. 3, pp. 117–125, Jun. 1988. [Online]. Available:
http://doi.acm.org/10.1145/971701.50215

[18] Paulo S’ergio Almeida and Ali Shoker and Carlos Baquero., “Efficient
State-based CRDTs by Delta-Mutation,” in Proceedings of the Interna-
tional Conference of Networked sYStems, ser. NETYS’15. Springer,
May 2015.

[19] M. Mouly and M.-B. Pautet, The GSM System for Mobile Communica-
tions. Telecom Publishing, 1992.

[20] P. E. O’Neil, “The escrow transactional method,” ACM Trans. Database
Syst., vol. 11, no. 4, pp. 405–430, Dec. 1986. [Online]. Available:
http://doi.acm.org/10.1145/7239.7265

[21] S. B. Davidson, H. Garcia-Molina, and D. Skeen, “Consistency
in a partitioned network: A survey,” ACM Comput. Surv.,
vol. 17, no. 3, pp. 341–370, Sep. 1985. [Online]. Available:
http://doi.acm.org/10.1145/5505.5508

[22] M. Hammer and D. Shipman, “Reliability mechanisms for sdd-
1: A system for distributed databases,” ACM Trans. Database
Syst., vol. 5, no. 4, pp. 431–466, Dec. 1980. [Online]. Available:
http://doi.acm.org/10.1145/320610.320621

[23] N. Krishnakumar and R. Jain, “High throughput escrow algorithms for
replicated databases,” in Proceedings of the MOBIDATA Workshop, ser.
MOBIDATA ’94. Rutgers Univ., 1994.



C PAPERS ACCEPTED FOR PUBLICATION

C Papers accepted for publication

C.1 Iwan Briquemont, Manuel Bravo, Zhongmiao Li, and
Peter Van Roy. Conflict-free Partially Replicated Data
Types. In Proc. 7th IEEE International Conference on
Cloud Computing Technology and Science (CloudCom
2015), Vancouver, BC, Nov. 30-Dec. 3, 2015. (to
appear)

SyncFree Deliverable D.3.2(v0.1), September 29, 2015, Page 127



Conflict-free Partially Replicated Data Types

Iwan Briquemont*, Manuel Bravo*†, Zhongmiao Li*† and Peter Van Roy*
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Abstract—Designers of large user-oriented distributed ap-
plications, such as social networks and mobile applications,
have adopted measures to improve the responsiveness of their
applications. Latency is a major concern as people are very
sensitive to it. Geo-replication is a commonly used mechanism
to bring the data closer to clients. Nevertheless, reaching the
closest datacenter can still be considerably slow. Thus, in order
to further reduce the access latency, mobile and web applications
may be forced to replicate data at the client-side. Unfortunately,
fully replicating large data structures may still be a waste of
resources, specially for thin-clients.

We propose a replication mechanism built upon conflict-
free replicated data types (CRDT) to seamlessly replicate parts
of large data structures. The mechanism is transparent to
developers and gives improvements without increasing application
complexity. We define partial replication and give an approach to
keep the strong eventual consistency properties of CRDTs with
partial replicas. We integrate our mechanism into SwiftCloud, a
transactional system that brings geo-replication to clients. We
evaluate the solution with a content-sharing application. Our
results show improvements in bandwidth, memory, and latency
over both classical geo-replication and the existing SwiftCloud
solution.

Keywords—CRDTs, partial replication, caching

I. INTRODUCTION

Globally accessible web applications, such as social net-
works, aim to provide low-latency access to their services.
Thus, data locality is a fundamental property of their systems.
Geo-replication is a common solution where data is replicated
in multiple datacenters [1]–[3]. In this scenario, user requests
are forwarded to the closest datacenter. Therefore, the latency
is reduced. Unfortunately, the latency, even when accessing the
closest datacenter, may still be considerable. [4], [5] argue that
clients are sensitive to even small increases of latency.

Systems such as [6], [7] use caching techniques to yet
reduce latency even more. However, this can be challenging
and expensive. For instance, one could simply use client caches
for reading purposes. Nevertheless, in order to keep some
consistency guarantees and freshness of data, mechanisms,
such as cache invalidation, need to be used. Scaling these kinds
of techniques is difficult and directly affects the performance.
Moreover, one could let clients apply write operations locally
and eventually propagate them. However, this can cause con-
flicts between replicas and potential rollbacks.

The recently formalized CRDTs [8], [9] can serve to dimin-
ish the impact of some of the previously mentioned problems.
These data types are conflict-free by default; therefore, no
conflict resolution mechanisms need to be written by appli-
cation developers. SwiftCloud [10], a geo-replicated storage
system that ensures causal consistency, benefits from CRDT

semantics. It replicates CRDTs not only across datacenters,
but it also replicates them in clients. It allows read and
write operations to be directly executed in client caches. In
consequence, SwiftCloud reduces latency, and enables off-line
mode during disconnection periods.

The current specifications of CRDTs do not allow par-
titioning. Thus, a CRDT replica is assumed to contain the
full data structure. We believe partitioned CRDTs may pose
several benefits for current applications. First, CRDTs can
easily become heavy data structures, such as a set CRDT that
contains the posts of a user wall in a Facebook-like application.
In many cases, users are simply interested in the most relevant
posts, according to some criterium. For instance, one may be
interested in reading the top-ten most voted posts of a Reddit-
like application. Thus, replicating the whole CRDT is a waste
of resources, of both storage and bandwidth. The former can be
critical when thin devices, such as smartphones, are considered
as clients. These types of clients have limited memory re-
sources; therefore, it is convenient to avoid storing unnecessary
data. On the other hand, bandwidth is one of the most costly
resources offered by cloud providers such as Amazon S3 [11],
Google Cloud Storage (GCS) [12], and Microsoft Azure [13];
therefore, it is beneficial to use it efficiently. Second, the full
replication of CRDTs in clients may arise security concerns.
By partitioning CRDTs, applications could precisely decide
which data each client stores. This could keep malicious clients
from storing sensitive data. Finally, they can also be used to
provide multiple fidelity requirements for data accommodated
in resource-limited devices, while keeping consistency between
fidelity levels [14]. This could be achieved by not replicating
less important information on mobile devices.

In this paper, we propose a new kind of CRDTs that allows
partitioning. We call them “Conflict-free Partially Replicated
Data Types” (hereafter CPRDTs). We study how partitions
of the same CRDT can interact among each other and still
maintain its consistency guarantees. Furthermore, we revise
previously defined CRDT specifications and propose new
specifications that consider partitioning. One could claim that
developers could simply re-format their data structures to
obtain similar benefits; nevertheless, this adds complexity to
application development and, in some cases, optimal results
can be difficult to achieve. We propose to better integrate
CPRDTs into the system. Thus, developers will benefit from
them transparently, without being aware of their existence.

The major contributions of this paper are the following: (i)
definition of the new CPRDTs, which includes revisiting the
specifications of previously defined CRDTs; (ii) extension of
SwiftCloud to integrate CPRDTs; and (iii) extensive evaluation
of the performance improvements of CPRDTs in SwiftCloud.
The latter includes the implementation of a Reddit-like [15],
[16] application, called SwiftLinks, on top of SwiftCloud.



The remainder of the paper is organized as follows: Section
II presents a formal definition of the partitioned CRDTs; Sec-
tion III discusses some practical issues of CPRDTs; Section IV
presents an extensive evaluation of the SwiftCloud extension
that includes CPRDTs; Section V briefly describes preceding
related work; finally, Section VI concludes the paper.

II. CONFLICT-FREE PARTIALLY REPLICATED DATA TYPES

Allowing partitioning poses new challenges: all operations
are not enabled on partial replicas, which means new pre-
conditions must be added to ensure correctness. However,
these preconditions must not compromise the convergence of
replicas. Plus, a partial replica could vary the parts it keeps,
by choosing to replicate more, or less, parts. This has to be
done without losing data and still achieving convergence.

A. Example of use

Let us use an example to illustrate the advantages of
CPRDTs: the user wall of a social network. We can model
a user’s wall as a set. In this example, there are four users that
interact: Alice, Bob, Charlie and an anonymous user. Bob is
a friend of Alice, while Charlie is a friend of Bob, but not of
Alice. Participating users may want to read or post something
in Alice’s wall. We make two assumptions: (i) users maintain
a full replica of their wall; and (ii) a user X that reads or posts
in user Y ’s wall replicates user Y ’s wall locally.

Each post contains a date, an author, and a message. Each
user is allowed to read a subset of other users’ walls, depending
on their friendship and posts visibility (private or public). For
instance, Bob can read all the posts of Alice’s wall because
of their friendship. Nevertheless, Charlie can only read public
and Bob’s posts (friends of friends). Finally, any other user
can only read public posts.

We can assume that Alice has been using the social network
for a few years and there are a considerable number of posts
on her wall. It seems natural that a user should not have
to replicate the whole wall to simply read the latest posts.
Nevertheless, this is what presumably may occur in a fully-
replicated scenario (CRDT-like), where the data structures
cannot be partitioned and we still want to replicate data in
clients-side. One solution is to manually split the data structure
according to some criteria (e.g. by date, author or privacy
setting). However, developers then need to anticipate how users
will use the application. While possible in some cases, it seems
to make the application cumbersome to write.

In this scenario, CPRDTs have two applications. On the one
hand, CPRDTs abstract the partitioning from the application.
Thus, from the point of view of programmers, there will only
be one logical data structure per wall. This simplifies the
developer’s task. Moreover, this allows a more efficient and
fine-grained partitioning adapted to the needs of a particular
client in a specific point of time, which may be impossible if
the partitioning is done manually by developers. The second
application of CPRDTs is related to the enforcement of secu-
rity policies. We may want users to only replicate posts that
they are allowed to see. This could keep malicious users from
storing sensitive data locally.

B. Definitions

Before defining CPRDTs, we have to clarify some concepts
that we will use throughout the paper. An object is a named
instance of a CRDT or CPRDT in our case. Each participating
process replicates a set of objects. A process that replicates an
object is called replica of the CRDT (or CPRDT) instantiated
by the object. Objects can be read using query operations and
modified by update operations. Query operations return the
abstract state of the object, that we call the data of the object.
Nevertheless, additional data, which we refer as metadata, is
kept internally to ensure convergence.

An update operation can have preconditions that capture
its safety requirements. In consequence, an operation is said
to be enabled at a replica, if it satisfies its preconditions. For
instance, the remove operation of a set is enabled only if the
element to be removed is present in the set.

Previous definitions fit into both CRDTs and CPRDTs.
Nevertheless, for CPRDTs, we further consider that a process
might replicate an object partially: it only has access to a part
of data, thus the process only keeps the metadata required for
that given part. Intuitively, this means that only part of the data
structure is replicated: some elements of a set, a subgraph of
a graph, or a slice of a sequence. CRDTs that only have one
element, such as counters and registers, cannot be partitioned
and therefore do not need to be specified as CPRDTs.

particle We define a particle as an element of a collection.
For instance, a particle in a set would be any element that can
be added to the set.

Apart from the definition of particle, we introduce three
new concepts: shard set, required, and affected.

shard set Each replica xi of a CPRDT has associated a set of
particles, namely shard set in analogy to the databases concept.
Respectively, shard(xi) is a function that returns the shard set
of xi. A replica xi only knows the state of the particles in
shard(xi); therefore, it can only enable query operations that
require those particles. Furthermore, a replica xi only needs to
receive update operations that affect the particles in shard(xi).

There are two special cases: a full replica and a hollow
replica. We use π to represent the full set of possible particles
a CPRDT may be interested in. The set π may be infinite. Thus,
we say that a full replica’s shard set is equal to π. Notice that
a full replica CPRDT is equivalent to a normal CRDT. On the
other hand, when shard(xi) = ∅, then xi is a hollow replica
(as named in [17]). A hollow replica does not maintain any
state. Nevertheless, it can still handle updates (section II-C2).

required For an operation op with its arguments, required(op)
is the set of particles needed by op to be properly executed.
This means that, for replica xi, an operation op is enabled
only if required(op) ⊆ shard(xi). For instance, for the lookup
operation of a set, required(lookup(e)) = {e} where e is an
element of the set. In case e /∈ shard(xi), the replica xi does
not know whether e is in the set because it has not kept a
state for it. This implies that updates affecting e have not been
necessarily seen by xi.

affected The function affected(op) returns a particle that may
have its state affected after executing an update operation. We
assume that an update can only affect one particle. This may



not be true for complex data structures, however it is always
possible to split an operation into several ones that each only
affects one particle. For example, for a graph, an operation
for removing a vertex will remove the vertex as well as all
its edges. It can be split into several sub-operations that firstly
remove all edges of the vertex and then remove the vertex.

C. Replication

As for the original CRDTs, we consider two equivalent
replication techniques: state- and operation-based. Allowing
partitioning introduces changes in the way these replication
techniques work. Furthermore, concepts such as causal history
and convergence have to be revisited. The following definitions
are based on the ones in [8] for fully-replicated CRDTs.

To simplify our definitions, we assume that the shard set
of a CPRDT is fixed. However, in practice, it can be necessary
to dynamically change it. Nevertheless, definitions apply if
we consider that changing the shard set is equivalent to the
creation of a new CPRDT replica.

Since the abstract state of a CPRDT may change after
applying an update, we denote the abstract states of a CPRDT
replica (xi) by an increasing numbered sequence as sk(xi),
such as s0(xi), s1(xi)... sk(xi)...

Now we define when two replicas are equivalent.

Definition 1 (Equivalence). xi and xj have equivalent abstract
states if all query operations q, for which required(q) ⊆
(shard(xi) ∩ shard(xj)), return the same values.

Different replicas of the same CPRDT might have different
shard sets. Thus, we define intersecting abstract state as the
abstract state for the particles in the intersection of shard sets.

Definition 2 (Intersecting abstract state). For a replica xi with
its current state sk(xi), sk(xi|xj) denotes the sk state for
particles ∈ shard(xi) ∩ shard(xj).

The requirement for replicas to converge is that they apply,
directly or indirectly, the same update operations. We can
informally define the causal history of a replica, denoted by
Ck(xi), as a set containing the applied update operations.
As xi applies each operation, its causal history goes through
a sequence of states C0(xi), C1(xi), ..., Ck(xi), .... We also
define the intersecting causal history as Ck(xi|xj) = {f ∈
Ck(xi)| affected(f) ∈ (shard(xi) ∩ shard(xj))}. Intuitively,
it includes updates from Ck(xi) that affect the particles of xj .

Now, we are ready to formally define convergence in the
context of CPRDTs:

Definition 3 (Eventual Convergence of Partial Replicas). Two
partial replicas xi and xj of an object x converge eventually
if the following conditions are met:

• Safety: ∀i, j : ∀k, k′, if Ck(xi|xj) = Ck′(xj |xi), then
sk(xi|xj) = sk′(xj |xi).

• Liveness: ∀i, j : ∀k, if f ∈ Ck(xi) and affected(f) ∈
shard(xj), then ∃k′ that f ∈ Ck′(xj).

1) State-based partial replication: In this replication tech-
nique, a replica ships its whole internal state to the rest.
Upon arrival, replicas merge both the local and the received
states. The merge method is an idempotent, commutative and
associative operation that has two replicas internal states as
arguments. In the CPRDTs context, the merge method used by
a replica must only merge the state of the particles belonging
to the intersection between local and remote replicas shard
sets, and ignore the rest.

State-based replication is an interesting propagation mech-
anism since it poses almost no communication requirements.
Nevertheless, it may be expensive to always ship the full
internal state. CPRDTs can optimize this technique since only
parts of the state need to be sent and received. We define
the causal history of a replica for state-based replication as
follows:

Definition 4 (Causal History on Partial Replicas - state-based).
For any replica xi of x:

• Initially, C0(xi) = ∅.

• Before executing update operation f ,
if affected(f) ∈ shard(xi) then execute f and
Ck+1(xi) = Ck(xi) ∪ {f},
otherwise Ck+1(xi) = Ck(xi).

• After executing merge against states xi, xj ,
Ck+1(xi) = Ck(xi) ∪ {f ∈ Ck′(xj)| affected(f) ∈
shard(xi)}

To achieve convergence with state-based replication on
partial replicas, updates operations cannot be applied if it
affects a particle that is not in that replica’s shard set. This
would violate the liveness property of convergence as that
update might not be added to the causal history of another
replica when merging. Thus, an operation f is disabled if
affected(f) 6∈ shard(xj). On the other hand, since the replicas
only converge on their common parts, a replica xi just needs
to send to another, xj , the state of the intersection of their
shards (shard(xi) ∩ shard(xj)).

2) Operation-based partial replication: As with classical
CRDTs, the update operations are divided into two phases:
prepare and downstream phase. The former is done at the
source replica and does not have any side-effect. The latter
is applied at all replicas and it affects the state of replicas.
We define the causal history of a replica for operation-based
replication as follows:

Definition 5 (Causal History on Partial Replicas - op-based).
For any replica xi of x:

• Initially, C0(xi) = ∅.

• After executing the downstream phase of operation
f at replica xi,
if affected(f) ∈ shard(xi) then Ck+1(xi) = Ck(xi)∪
{f},
otherwise Ck+1(xi) = Ck(xi).

In contrast to CRDTs, CPRDTs only have to broadcast
updates to the replicas interested in the particles affected by
the update. Therefore, an update u is broadcasted to xi if
affected(u) ∈ shard(xi). This poses an interesting situation.



A CPRDT replica can sometimes complete the first phase of
the update operation without necessarily completing the second
phase. For instance, a replica xi, whose shard(xi) are particles
a and b, receives an update operation that affects particle c. In
this situation xi may complete the prepare phase, broadcast the
downstream operation to the interested replicas, and discard it
locally. We name this scenario blind updates. This can only
happen in operation-based replication. Hollow replicas, whose
shard is empty, can only do blind updates.

D. Specification of CPRDTs

In this section, we present the specifications of an
operation-based observed-remove set (OR-set) CPRDT. We
resort into this example in order to better illustrate how to
integrate the newly defined concepts into a CRDT (original
specifications in [8]); and thus, transform it into a CPRDT.
More examples of CPRDTs and generic specification tem-
plates, for both operation- and state-based, are found in [18].

An OR-set works as follows: (i) elements are uniquely
tagged by the source replica when added to the set. The
source replica is the one receiving the client operation. (ii)
concurrent additions of the same element are all reflected in
the set internal state by storing them with different tags. (iii)
a remove operation is transformed into the list of unique tags
related to the element to be removed that are present in the
source replica. Since causal delivery is assumed, this ensures
convergence of replicas even in the presence of concurrent
adds and removes of the same element.

The specifications incorporate (i) the particle definition
(line 1); (ii) the required and affected preconditions (lines
11, 15 and 19); and (iii) a new function called fraction. The
fraction operation allows us to create new partial replicas from
a subset of a given replica. The subset we want to copy in the
new replica is defined by a set of particles. More formally,
fraction can be defined as follows:
xj = fraction(xi, Z), where Z is the set of particles to repli-
cate. The operations ensures that shard(xj) = shard(xi)∩Z.

Specification 1 Op-based OR-set with Partial Replication
1: particle definition A possible element of the set.
2: payload set S
3: initial ∅
4: query lookup(element e) : boolean b
5: required particles {e}
6: let b = ∃u : (e, u) ∈ S

7: update add(element e)
8: prepare (e) : α
9: let α = unique()

10: effect (e, α)
11: affected particles {e}
12: S := S ∪ {e, α}
13: update remove(element e)
14: prepare (e) : R
15: required particles {e}
16: pre lookup(e)
17: let R = {(e, u)|∃u : (e, u) ∈ S}
18: effect (R)
19: affected particles {e}
20: pre ∀(e, u) ∈ R : add(e, u) has been delivered
21: S := S \R

22: fraction (particles Z) : payload D
23: let D.S = {(e, u) ∈ S|e ∈ Z}

III. PRACTICAL ISSUES

In this section, we discuss (i) shard queries, and (ii) the
implications of allowing dynamic shard sets. Both issues are
relevant for making CPRDTs practical.

A. Shard queries

The operation fraction, introduced in II-D, is the canonical
form to define the shard set of a replica. Nevertheless, fraction
is not practical. In practice, applications will transform their
semantics into a high-level query language. For instance, an
application could issue a query in the form of “give me the first
10 elements of your sorted set”. We name this type of queries
shard queries. They bridge the gap between the application
semantics and the function fraction adding expressiveness to
the usage of CPRDTs.

There are two types of shard queries: version-independent
and version-dependent. The former only depends on the prop-
erties of the particles, and not in the version of the CPRDT.
In contrast, the latter depends on the current version of the
CPRDT. Let us use a CPRDT set whose domain is the set
of integers as example. A version-independent query could be
“integers greater than 0”. This shard query will always return
the same shard set ((0,+∞)) independently of the queried
CPRDT version. On the other hand, a version-dependent query,
such as “the 10 highest integers in the set”, will return a
different shard set depending on which elements have been
already added, and removed, on the version being queried.

Version-independent queries are easier to work with: they
are comparable. One could determine which query is more spe-
cific without knowing the version of the CPDRT they apply to.
While with version-dependent queries, one can only compare
queries if they apply to the same version. Nevertheless, both
types are needed in order to make CPRDTs practical.

B. Dynamic shard set

Dynamic shard set refers to the capability of a partial
replica to modify, either shrink or expand, its shard set. We
believe this capability is useful in practice, e.g. a client may
become interested in new parts. Having dynamic shard set, a
replica does not need to be re-created, only the missing state
needs to be grabbed. Nevertheless, maintaining convergence in
some scenarios can become challenging.

On the one hand, a partial replica can easily shrink its
shard set without compromising convergence in the operation-
based scenario. A replica only needs to take two things into
consideration: (i) updates prepared locally have been already
broadcasted, and (ii) the data to be dropped is replicated by
some other replica; therefore, data is not lost. On the other
hand, expanding a partial replica is more tricky. For instance,
in an operation-based scenario, the following situation can
easily occur: (i) a replica’s (xi) shard set is a, c; therefore,
xi does not receive updates that affect b; (ii) suddenly, xi

becomes interested in b and starts accepting updates on b; (iii)
unfortunately, xi will not converge since updates have been
missed. In order to ensure convergence, extra communication
between replicas would be needed to recover dropped updates.
This would add complexity to the underlying protocols.



In state-based replication, shrinking or expanding the shard
set is simpler. On the one hand, a replica only needs to
broadcast its state before shrinking its shard set. On the other
hand, a replica that wants to expand its shard set only needs to
merge its current state with the state of a replica that contains
new particles.

IV. EVALUATION

In this section, we report the results of our experimental
evaluation. This study aims at evaluating the benefits of
CPRDTs in terms of memory, bandwidth and latency.

SwiftLinks In order to evaluate our solution, we implemented
an application, namely SwiftLinks, on top of SwiftCloud.
SwiftLinks is a vote-based content-sharing application based
on Reddit. In short, the application allows users to create fo-
rums where they can publish posts. Then, users can vote posts
positively or negatively. As a consequence, posts get ranked.
In addition, users can comment posts and other comments.
Users can also vote comments, and consequently, comments
get ranked (more information [15], [16]).

SwiftLinks is modeled with three types of data structures:
(i) OR-Set for each forum, (ii) a novel Remove-once Tree for
each tree of comments, and (iii) Last-Writer-Wins Registers
for each vote associated to a post/comment. The application
uses both types of queries: version-independent and version-
dependent. The former is mostly used for reading single
comments or posts. The latter is used for reading ranking of
posts and comments.

Warm-up We used Reddit’s API to fetch data to warm up our
system. For each benchmark, we create 10000 posts over 20
forums (so an average of 500 posts per forum). Each post has
20 comments on average. Moreover, each post has an average
of 170 votes, while comments an average of 13 votes.

Workload Our workloads are composed by read and update
operations. Read operations are executed over posts and com-
ments. On the other hand, there are three types of update
operations: (i) new post, (ii) new comment, and (iii) new vote.

For most of the experiments, 20% of the operations are
updates and 80% are reads. Furthermore, 90% of the operations
are biased to previously accessed objects. This means that they
are likely to hit the cache. The rest (10%) is done on randomly
selected posts and comments.

A. Integration of CPRDTs into a real system

We chose SwiftCloud [10] to integrate CPRDTs. Swift-
Cloud is a geo-replicated cloud storage system written in Java
that stores CRDTs and caches data at clients. It consists of
several datacenters that fully replicate the key-space. Clients
indirectly communicate through the datacenters. In absence of
failures, a client always interacts with its closest datacenter
and caches accessed data in its local cache. SwiftCloud pro-
vides transactional causal+ consistency. Transactions are first
executed and committed on the client side, then propagated
to the datacenters. For fault tolerance purposes, committed
transactions are only visible after they have been seen by K
datacenters.

In our version of SwiftCloud, datacenters store full replicas
as in the original implementation. Nevertheless, clients only

cache partial replicas. Having full replicas coexisting with the
partial replicas considerably simplifies the management of the
latter. This poses several advantages in comparison to an ad-
hoc architecture where no full replicas, namely authorities, are
assumed. Firstly, clients can discard their (partial) replicas at
will as long as their updates have been reliably sent to an
authority. Secondly, a client can request any fraction from an
authority in order to either get a new partial replica, or to
expand its own shard set. Notice that having an authority also
simplifies the integration of state-dependent shard queries in
the system, very difficult and costly otherwise. Finally, the
authority could store which particles each partial replica has
in his shard set. Thus, it could only propagate operations to
the interested replicas, saving bandwidth.

B. Experimental setup

SwiftLinks was evaluated using three Amazon EC2 servers
as datacenters: one in Ireland and two in the USA (east and
west coast). The EC2 instances are equivalent to a single core
64-bit 2.8 GHz Intel Xeon virtual processor (4 ECUs) with 7.5
GB of RAM. The clients run in 15 PlanetLab nodes located
near the DCs. These nodes have heterogeneous configurations
with varying processing power and RAM. We set up five
SwiftLinks users running concurrently per node, a total of 75.
Each client performs an operation per second.

Throughout the evaluation, we use three different modes:

• Cloud: This mode simulates a typical geo-replicated
system. Clients do not cache any data. Operations
are applied synchronously at one datacenter and asyn-
chronously replicated to the rest of datacenters.

• Partial. This is the mode that integrates the CPRDTs.
Thus, clients only fetch and cache parts of the data
structures (CRDTs) as needed.

• Full. This is the SwiftCloud approach. Clients cache
whole CRDTs even when only part of it is needed.

We limit the capacity of the cache in our experiments
to simulate memory restrictions on thin clients, such as a
mobile phone. Nowadays, a mobile phone can have up to
several gigabytes of memory, but it can easily have tens of
applications running simultaneously. An application needs to
cohabit with many other applications with limited memory.
Therefore, we use 64MB as the default size for cache. If the
cache size exceeds this limit, the least recently used object is
dropped. In this configuration, full and partial, if the cache
contains the required data, the operations are run locally, and
asynchronously propagated to the closest datacenter.

The difference between full and partial is that the latter
benefits from the partial replication mechanism described in
the paper. This means that objects are fetched in parts as
needed, so the cache can hold parts of an object. For instance,
a query for the top ten posts of a forum would only replicate
those ten posts in clients cache. On the other hand, for the full
mode, the objects are only fully replicated in clients side, as
in SwiftCloud. Therefore, the same top ten posts query would
replicate the whole forum.



C. Latency

We evaluated the perceived latency for various operations
with and without partial object replication. Figure 1 shows
the cumulative distribution functions of different operations’
latency. These results are obtained after a warm-up phase for
the cache. This means that the cache is pre-filled with objects
that will be used by the operations present in the workload.
For the full and partial mode, there are always a percentage
of operations with a very low latency. We can conclude that it
is the percentage of operations that hit the cache.

Read operations Figure 1a shows that the full mode has
greater cache hit rate (35%) than the partial mode. Never-
theless, the hit rate is not optimal due to the limit in the cache
size: the cache cannot hold full replicas of all the forums and
thus sometimes need to fetch them again. Figure 1c shows
the results of a similar experiment but without any cache size
limit. In that case, the cache hit rate, for the full mode, is
90%, which corresponds to our ratio of biased operations,
and it confirms the previous results with a social network
application of the SwiftCloud paper [10]. On the other hand,
in partial mode, the cache hit rate is lower, with only 20% in
both experiments (figures 1a and 1c), because the cache only
holds partial replicas which gives it less chance of having all
the parts needed for hitting the cache in subsequent operations.
However, it has the advantage of a lower maximum latency: if
an operation does not hit the cache, it only needs to fetch some
parts, instead of the full object. In that scenario, it induces a
delay similar to the cloud solution, around 200 to 300 ms,
while without partial replication, the delay is increased to
around 500 to 700 ms by having to replicate a full object. This
poses a trade-off between the cache hit rate and the maximum
latency. While fully replicating an object will provide more
cache hits, a cache miss is more costly.

For the latency of reading comments of a post, shown in
Figure 1b, the situation is a bit different. Clients are less likely
to read the same comment tree multiple times; therefore, this
affects the cache hit ratio. As the figure shows, the hit ratio
is less than 5% in both partial and full replication. But again,
partial replication has the advantage of reducing the impact of
a cache miss as it only replicates the comments required by
the operation instead of the full comment tree. In consequence,
the partial approach has a slightly better latency, close to
the cloud mode. The cloud mode performs better because it
never needs to fetch any extra metadata, which means that the
returned messages are considerable smaller. Notice that the
difference between full and partial mode has been reduced in
this experiment because the involved objects are smaller.

Update operations Caching modes (full and partial) are more
beneficial with update operations. The reason is that update
operations are typically applied on objects, or parts of objects,
that have already been read by the client. In addition, the
update operations only use version-independent queries to
fetch their missing parts, which substantially simplifies the
comparison of partial objects in the cache. Figure 1e proves
experimentally our reasoning. While the cloud mode has an
almost constant latency for all operations of a round-trip time,
with caching modes, most of the operations (almost 90%)
have no latency. Again, the partial mode has the advantage
of reducing the latency when the cache is not hit, as it only
needs to fetch the parts of the object that need to be updated,
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(a) Reading posts. 64MB cache.
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(b) Reading comments. 64MB cache.
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(c) Reading posts. Unlimited.
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(e) A mixed update-only workload of
posting, commenting, voting a post,
and voting a comment

Fig. 1: CDF of SwiftLinks operation latencies

instead of the full object. Moreover, some updates can be done
blindly, therefore, they are completed locally.

In particular, Figure 1d shows the benefit of updates when
posting comments, which almost always only requires particles
already present in the cache. One can see that with partial
replication, all the operations have almost no latency, as they
can be done completely asynchronously. In contrast, in full
mode, there can be a large delay when the tree of comments
is not in the cache, as it needs to be fetched from the store.
As in previous scenarios, even if an operation cannot be done
completely locally in partial mode, the client only has to fetch
part of the tree to complete the update.

D. Impact of cache size limit

In this section we look at how the application performance
changes with various cache size limits (16, 64, and 128MB).

1) Impact on latency: We have empirically demonstrated
that the partial mode performs better without cache limit when
reading links. We run the same experiments showed in figures
1a, 1b and 1e setting the cache size limit to 16MB and 128MB.
The experiments show that a smaller cache (16MB) size limit
has a big latency impact on reading links and updates in
full mode. Nevertheless, its impact is considerable smaller in
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Fig. 2: Impact of cache size limit in partial and full modes

partial mode. With a small cache, the cache hit rate of full
mode of reading links becomes worse than in partial mode.
This is because only a few objects can fit in the cache at a given
time; therefore, clients need to fetch objects more frequently.
This results in a lower fraction of operations having no latency,
about 5% against the 35% obtained with a 64MB cache. There
is also an impact for the partial mode, but it is considerable
lower: it only drops to 13% from 20%. The same applies for
update operations. Nevertheless, reads of comments are almost
not impacted by the cache size limit: the operations have a low
cache locality, so most operations need to fetch an object from
the datacenter.

With a 128MB cache size limit, the full mode has a large
portion of zero latency operations when reading posts, as more
are kept in the cache. It however still performs worse than
partial fetching for operations that do not hit the cache. The
latency of updates also improves for the full mode with larger
cache size, but the partial mode still outperforms it.

2) Impact on cache miss rate: The size limit imposed on
the cache also has an impact on the cache hit rate. Figure
2a shows that the partial mode is less impacted by the cache
size limit than the full mode. With the three cache limits, the
partial mode shows a rather stable number of cache misses,
about 180. Nevertheless, this does not apply to the full mode,
where the number of caches misses increases as the cache size
is reduced. As in previous experiments, the cache miss rate is
greater in the partial mode. Nevertheless, we have shown that
latency in partial mode, is always smaller in average.

3) Impact on number of objects in the cache: The cache
size also impacts the number of objects that can be kept in
the cache. Notice that for partial replication, only one object
is counted even if multiple parts of it have been fetched over
time. Figure 2b shows the difference between both modes:
partial and full. In the partial mode, many more objects can fit
in the cache at any moment, since only parts are kept. 64MB is
enough to keep all the objects needed by the application, while
in the full mode, even 128MB is not enough. This, depending
on the workload, may increase the cache hit rate.

E. Bandwidth usage

In partial mode, when a client accesses an object, only the
needed part of that object is fetched. This can result in saving
bandwidth usage compared to full mode. In this experiment,
we compare the bandwidth usage of partial mode and full

Partial                             Full

Fig. 3: Average bandwidth usage to fetch objects with a 128MB cache
limit, with the cache already warmed up.
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Fig. 4: Perceived latency of SwiftLinks during cache warm up.

mode. We measure the average bandwidth usage of one client
for both over one minute, with the cache already warmed up.
Figure 3 shows that the partial mode uses only about 12% of
bandwidth compared to the full mode.

F. Cache warm up

The following experiments compare both partial and full
modes latencies when the cache is still cold, i.e. no objects
are stored in the client side. Figure 4 shows the latency of
operations during the first 10 seconds of running the applica-
tion, with a cold cache. In this case, the partial mode produces
lower latencies as it does not need to replicate the full object.
The difference is more noticeable for post reading operations,
as shown in Figure 4a, as the set of posts (forums) are large
objects. But even for smaller objects, such as comment trees,
the partial mode outperforms the full one (Figure 4b). Notice
that the cache size limit does not impact these experiments,
since after 10 seconds, the cache does not get full.

G. Discussion

We have seen that partial replication has advantages over
full replication of objects. First, it sets an upper bound on the
latency of operations by limiting the amount of data that is
fetched from the store. Plus, blind update operations gain the
additional benefit of being applied locally even if the object is
not cached. Second, the cache is more efficiently used, which
allows more objects to be kept locally even with a small cache
size limit. This is useful for memory-thin devices, and to work
on very large data structures with a low memory usage. Third,
partial replication also reduces the bandwidth usage of the
application by a factor of 8, which is especially valuable on
mobile wireless connections, such as EDGE and 3G. Finally,
the last advantage is a lower cost of filling the cache when



starting the application. When the cache is empty all operations
induce a cache miss, which is especially costly if a large object
has to be fetched. Partial replication limits this issue by only
replicating the parts of the object that are actually needed.

Unfortunately, partial mode limits the cache hit rate, as
objects are not fully replicated right away, and non-replicated
parts may be needed by subsequent operations. Thus, its use
may depend on the workload and the cost of a cache miss.
However, a tradeoff is possible between the two: instead of
only fetching the parts needed by the operations, one could
fetch extra parts of the object. This would however increase
bandwidth and cache size utilisation. Latency could be kept
low by asynchronously fetching the additional parts.

V. RELATED WORK

PRACTI [19] allows clients to select a subset of objects
to replicate. Clients only receive updates on objects of their
selected subset. However, clients are forced to keep some
metadata about objects that they are not interested. Polyjuz [20]
stores objects consisting of a set of fields. Clients can decide
which fields of each object to replicate. Each subset of fields
is denoted as fidelity level. Clients can select different fidelity
levels according to the space or network limitations of the
device where the objects are replicated. Polyjuz transparently
handles the replication of an object in different fidelity levels.
In Cimbiosys [21], objects are grouped into collections. Users
can use filter expressions to only replicate objects that satisfy
some criteria. For example, a user can group his emails in
a collection and choose only to replicate emails from his
university in his phone. While in the first two systems, users
choose the object or fields to replicate based on their name or
type, in Cimbiosys user can define replication criteria based
on the value of some properties of objects.

VI. CONCLUSION AND FUTURE WORK

We have introduced and formalized a new set of CRDTs
called Conflict-free Partially Replicated Data Types, an exten-
sion of CRDTs which allows replicas to hold parts of data
structures. Our extensive evaluation has shown that CPRDTs
can improve the bandwidth and memory usage of replicas
by only replicating parts needed by clients, specially in the
presence of large data structures under limited cache sizes.
Although cache sizes may be larger in the future, we believe
that our reasoning will still apply and future applications will
still benefit from the CPRDTs approach. The experimental
study has also shown that CPRDTs reduce latency in average
in comparison to the full mode. However, CPRDTs have a
negative impact on the cache hit rate, which has to be weighted
against the upper bound on the latency provided.

We plan to extend this work in several directions. First,
partial replication can be used as a security mechanism to
avoid replicating sensitive data by restricting access with
finely grained rules. We believe it is an interesting way of
exploiting CPRDTs. Second, we want to study how predictive
caching techniques could still improve bandwidth usage and
consequently reduce latency even more.
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1 Introduction

State-based CRDTs are rooted in mathematical structures called join-semilattices
(ore simply lattices, in this context). These order structures ensure that the
replicated states of the defined data types evolve and increase in a partial order
in a sufficiently defined way, so as to ensure that all concurrent evolutions can
be merged deterministically. In order to build, or understand the building prin-
ciples, of state-based CRDTs it is necessary to understand the basic building
blocks of the support lattices and how lattices can be composed.

2 From Sets to Lattices

In this context the most basic structure to define is a set of distinct values.
An example is the set of vowels that can defined by extension as vowels

.
=

{a, e, i, o, u}. Elements in a set have no specific order and they only need to be
distinguishable, i.e. by defining =.

Having a set we can define partial orders by defining a poset over a support
set and an order relation v. This relation can be any binary relation that is
reflexive, transitive and anti-symmetric. Given elements o, p, q in a set.

• (reflexive) o v o

• (transitive) o v p ∧ p v q ⇒ o v q

• (anti-symmetric) o v p ∧ p v o⇒ o = p

Since sets already define = it is possible to create posets transitively by enu-
merating the element pairs related by @. As an example, we can build a poset
with a total order on the set of vowels by defining 〈vowels, {(a, e), (e, i), (i, o), (o, u)}〉
In this example we ordered all elements and thus created a chain, with a @ e @
i @ o @ u, i.e. given any two elements o, p either o v p or p v o.

If some elements were left unordered we could have concurrent elements.

• (concurrent) o ‖ p ⇐⇒ ¬(o v p ∨ p v o)
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In the extreme case we could have left all elements unordered and defined a
poset that depicted an antichain, where any two elements are always concurrent.
E.g. 〈vowels, {}〉. Having a poset we also have the properties of a set.

A : poset

A : set

For a given poset to be a join-semilattice there must be a least-upper-bound
for any subset of the support set. Given a pair of elements o, p, their least-
upper-bound can be derived by the result of a binary join operator, by o t p.
Since the binary join is commutative and associative it can be iterated over the
elements of any subset to derive the least-upper-bound of the subset. Some
properties of join are listed bellow.

• (idempotent) o t o = o

• (commutative) o t p = p t o

• (associative) o t (p t q) = (o t p) t q

And properties of least-upper-bounds.

• (upper-bound) o v o t p

• (least-upper-bound) o v q ∧ o v q ⇒ o v p t q

A general example of a poset with a join is obtained from any set by selecting
the order to be set inclusion and the join to be set union. In our running example
this would be the lattice defined by 〈vowels,⊆,∪〉. Another simple lattice can
be obtained by taking the maximum in a total order (or dually the minimum),
for naturals we can derive maxint

.
= 〈N,≤N,max〉.

Having a lattice we also have the properties of a poset.

A : lattice

A : poset

A chain (a special case of a poset) always derives a lattice.

A : chain

A : lattice

Notice that although some specific partial orders always derive lattices, as is
the case for chains, in general we can have partial orders that are not lattices.
An example is the prefix ordering on bit strings that can produce concurrent
elements, 010 ‖ 100, and is not a lattice.

We will see in latter sections that in some cases it is useful to have a special
element in the lattice that is the bottom element ⊥. Some properties are.

• (bottom) ⊥ v o

• (identity) ⊥ t o = o
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The lattice formed by set inclusion has the empty set as bottom, 〈vowels,⊆
,∪, ∅〉. Not all lattices have a “natural” bottom, but it is always possible to
add an extra element as bottom to an existing lattice. We will address this con-
struction when talking about lattice composition by linear sums. As expected,
lattices with bottom also have the lattice properties.

A : lattice⊥
A : lattice

2.1 Primitive Lattices

We now introduce a small set of lattices, that will be later useful to construct
more complex structures by composition.

Singleton A single element, ⊥.

1 : lattice⊥

⊥ v ⊥ ⊥ t ⊥ = ⊥

Boolean Two elements B = {False,True} in a chain, join is logical ∨.

B : lattice⊥

False v True x t y = x ∨ y ⊥ = False

Naturals Natural numbers. We include the 0, thus N = {0, 1, . . .}.

N : lattice⊥

n v m = n ≤ m n t m = max(n,m) ⊥ = 0

3 Inflations make CRDTs

State-based CRDTs can be specified by selecting a given lattice to model the
state, and choosing an initial value in the lattice, usually the ⊥. Mutation
operations can only change the state by inflations and do not return values.
Query operations evaluate an arbitrary function on the state and return a value.

An inflation is an endo-function on the lattice type that picks a value x
among the set of valid lattice states a and produces a new value state such that:

• (inflation) x v f(x)

Inflations can be further classified as non-strict and strict inflations, where
a strict inflation is such that:
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• (strict inflation) x @ f(x)

We can now classify inflations.

∀x ∈ a · x v f(x)

f : A
v−→ A

∀x ∈ a · x @ f(x)

f : A
@−→ A

f : A
@−→ A

f : A
v−→ A

A state that is only updated as a result of an inflation over its current value,
is immutable under joins with copies of past states.

Notice that an inflation is not the same as a monotonic function, x v y ⇒
f(x) v f(y). Example, the function f(x) = x

2 on positive reals is monotonic
and is not an inflation.

3.1 Primitive Inflations

Building on the primitive lattices introduced above we can build some inflations.

id(x) = x
id : A

v−→ A

True(x) = True
True : B

v−→ B

succ(x) = x + 1
succ : N

@−→ N

3.2 Sequential Composition

Inflations can be composed sequentially. As long as there is at least one strict
inflation in the composition, we are sure to also have a strict composition.

(f • g)(x) = f(g(x))

f : A
v−→ A g : A

v−→ A

f • g : A
v−→ A

f : A
v−→ A g : A

@−→ A

f • g : A
@−→ A

f : A
@−→ A g : A

v−→ A

f • g : A
@−→ A
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4 Lattice Compositions

Since we are interested in creating lattices we consider a few composition tech-
niques that are known to derive lattices. While in some cases they build from
other lattices, in others they can derive lattices from simpler structures.

4.1 Product

The product ×, or pair construction, derives a lattice formed by pairs of other
lattices. It can be applied recursively and derive a composition from a sequence
of lattices, where operations are applied in point-wise order.

A : lattice B : lattice

A×B : lattice

(x1, y1) v (x2, y2) = x1 v x2 ∧ y1 v y2

(x1, y1) t (x2, y2) = (x1 t x2, y1 t y2)

The construction also extends to lattice⊥ when all sources are also lattice⊥.

A : lattice⊥ B : lattice⊥
A×B : lattice⊥

⊥ = (⊥,⊥)

As an example, the underlying lattice structure of a version vector among
three replica nodes is composable by N×N×N with ⊥ = (0, 0, 0).

Bellow are the properties of inflations over products. A strict inflation on
one of the components leads to an overall strict inflation.

(f × g)(x, y) = (f(x), g(y))

f : A
v−→ A g : B

v−→ B

f × g : A×B
v−→ A×B

f : A
v−→ A g : B

@−→ B

f × g : A×B
@−→ A×B

f : A
@−→ A g : B

v−→ B

f × g : A×B
@−→ A×B

4.2 Lexicographic Product

The � construct builds a lexicographic order from its source lattices. Compo-
nents to the left are more significant and, unless they are equal, they filter out
further comparisons to the right side.

A : lattice B : lattice⊥
A�B : lattice

A : lattice⊥ B : lattice⊥
A�B : lattice⊥
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(x1, y1) v (x2, y2) = x1 v x2 ∨ (x1 = x2 ∧ y1 v y2)

(x1, y1) t (x2, y2) =





(x1, y1) if x2 @ x1

(x2, y2) if x1 @ x2

(x1, y1 t y2) if x1 = x2

(x1 t x2,⊥) otherwise

⊥ = (⊥,⊥)

In the join definition we can observe that the ⊥ value is used only when the
left components can have concurrent values. Note that B could be simply a
lattice (B : lattice) and then join definition could be redefined in the following
manner:

(x1, y1) t (x2, y2) =





(x1, y1) if x2 @ x1

(x2, y2) if x1 @ x2

(x1, y1 t y2) if x1 = x2

(x1 t x2, y1 t y2) otherwise

If the left component is a chain, often the case in practical uses, then the
right one can be a simple lattice (without ⊥) and the fourth clause of the join
definition is not used.

A : chain B : lattice

A�B : lattice

And, if the right component is also a chain the composition is a chain.

A : chain B : chain

A�B : chain

Properties of inflations.

(f � g)(x, y) = (f(x), g(y))

f : A
v−→ A g : B

v−→ B

f � g : A�B
v−→ A�B

f : A
v−→ A g : B

@−→ B

f � g : A�B
@−→ A�B

f : A
@−→ A g : B −→ B

f � g : A�B
@−→ A�B

Notice that if we apply a strict inflation to the left component, then the right
can be transformed by any (endo-)function even if non inflationary. In practice
this allows resetting the right component after strictly inflating the left.
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4.3 Linear Sum

The next composition, linear sum ⊕, picks two lattices, left and right, and
creates a new lattice where any element from the left lattice is always lower
that any element in the right lattice. In the resulting set the elements are
tagged with a label that identifies from which source lattice they came form.
i.e. Left a means that element a came from the left lattice and is now named
Left a. Tagging also ensures that the sets supporting each lattice could have
had elements in common.

A : lattice B : lattice

A⊕B : lattice

A : lattice⊥ B : lattice

A⊕B : lattice⊥

Left x v Left y = x v y Left x t Left y = Left (x t y)
Right x v Right y = x v y Right x t Right y = Right (x t y)
Left x v Right y = True Left x t Right y = Right y
Right x v Left y = False Right x t Left y = Right x

⊥ = Left ⊥
A possible use of this construction is to add a ⊥ to a lattice that didn’t had

one. For instance 1 ⊕ R can add a special element, e.g. nil, that is ordered as
lower than any real number. The same construction can also be used to add
a top element > to a lattice, that can act as a tombstone that stops lattice
evolution. Notice that for any state x, x t > = >.

Properties of inflations.

(f ⊕ g)(Left x) = Left f(x)
(f ⊕ g)(Right x) = Right g(x)

f : A
v−→ A g : B

v−→ B

f ⊕ g : A⊕B
v−→ A⊕B

f : A
@−→ A g : B

@−→ B

f ⊕ g : A⊕B
@−→ A⊕B

4.4 Function and Map

A total function→ is obtained by combining a set with a lattice. This construc-
tion does keywise comparison and joins.

A : set B : lattice

A→ B : lattice

A : set B : lattice⊥
A→ B : lattice⊥

f v g = ∀x ∈ A · f(x) v g(x) (f t g)(x) = f(x) t g(x)

⊥(x) = ⊥
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A map ↪→ can be obtained from a function by assigning a bottom to keys
that are not present in a given map, and then using the function definitions.
The linear sum construction is used to assign a distinguished bottom to any
lattice V in the co-domain.

K ↪→ V ∼= K → 1⊕ V

K : set V : lattice

K ↪→ V : lattice⊥

For example, we can define a map of vowels keys to integer counters vowels ↪→
N by using a total function vowels→ 1⊕N. Where the map state {a 7→ 3, i 7→ 5}
would be the same as the function state {a 7→ 3, e 7→ ⊥, i 7→ 5, o 7→ ⊥, u 7→ ⊥}.

We define some inflations over maps. The first inflation applies an inflation
to all values in the co-domain and thus inflates the map composition.

map(f)(m) = {(k, f(v)) | (k, v) ∈ m}

f : V
v−→ V

map(f) : (K ↪→ V )
v−→ (K ↪→ V )

The second inflation transforms the value on a given key, and if the key is
missing applies it to ⊥. This allows a strict inflation in the co-domain lattice to
imply a strict inflation in the composition.

applyk(f)(m) =

{
m{k 7→ f(v)} if (k, v) ∈ m

m{k 7→ f(⊥)} otherwise

f : V
v−→ V

applyk(f) : (K ↪→ V )
v−→ (K ↪→ V )

f : V
@−→ V

applyk(f) : (K ↪→ V )
@−→ (K ↪→ V )

4.5 Sets and Multisets

Given any set A it is possible to derive a lattice⊥ by using the set of all possible
subsets, the powerset P(A).

For example, P({x, y, z}) = {{}, {x}, {y}, {z}, {x, y}, {x, z}, {y, z}, {x, y, z}}.

A : set

P(A) : lattice⊥

P(A) ∼= A→ B
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a v b = a ⊆ b a t b = a ∪ b ⊥ = {}
The powerset can also be represented by a function composition that maps

each set element to a boolean that states its presence in the subset.
This composition is very general since it can produce a lattice⊥ from any set.
A natural extension is to represent mutisets by mapping the domain set to

naturals, instead of booleans.

A : set

M(A) : lattice⊥

M(A) ∼= A→ N

a v b = a ⊆ b a t b = a ∪ b ⊥ = {}
The generic inflations defined for functions when used here show that adding

elements is inflationary. For sets represented by A→ B with a given state s we
can define how to add an element e.

add(e)(s) = applye(True)(s)

Likewise, when adding on multisets A → N one increments the element
count, having a strict inflation.

add(e)(s) = applye(succ)(s)

4.6 Antichain of Maximal Elements

Starting from a poset this construction produces a lattice⊥ by keeping an an-
tichain of maximal elements, given the base poset order. Upon join, all elements
that are concurrent are kept, but any element that is present together with a
higher element is removed.

A : poset

A(A) : lattice⊥

A(A) = {maximal(a) | a ∈ P(A)}

maximal(a) = {x ∈ a | @y ∈ a · x @ y}

a v b = ∀x ∈ a · ∃y ∈ b · x v y

a t b = maximal(a ∪ b)

⊥ = {}
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5 Abridged Catalog

In order to exemplify the composition constructs we present a small set of exam-
ple CRDTs. Simple query functions are included and all mutators are inflations.

Notice that join does not need to be defined as it follows from the composition
rules that were introduced.

5.1 Positive Counter

This simple form of counter can only increase. Replica nodes must have access
to unique ids among a set I and can only increment its position in a map of
ids to integers. While increment mutators are parametrized by id i the query is
anonymous and simply inspects the state.

PCounter = I ↪→ N

inci(a) = applyi(succ)(a)

value(a) =
∑
{v | (i, v) ∈ a}

Notice that if a given node does not yet have an entry in the map and
increments, then succ applies over ⊥, which for N was defined to be 0.

Positive counter with reset

PCounter = (I ↪→ N)× (I ↪→ N)

inci(a) = applyi(succ)(fst(a))

reset(a) = ⊥× fst(a) t snd(a)

value(a) =
∑
{v | (i, v) ∈ fst(a)} −

∑
{v | (i, v) ∈ snd(a)}

5.2 Positive and Negative Counter

This variation allows for both increments and decrements. A solution is to
pair two positive counters and consider the right side as negative. We use
the standard functions fst() and snd() to respectively access the left and right
elements of a pair.

PNCounter = I ↪→ N× I ↪→ N

inci(a) = applyi(succ)(fst(a))

deci(a) = applyi(succ)(snd(a))

value(a) =
∑
{v | (i, v) ∈ fst(a)} −

∑
{v | (i, v) ∈ snd(a)}
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An alternative way to obtain a similar result is to use a lexicographic pair
and have the first element incremented when one needs to update the count on
the second element.

PNCCounter = I ↪→ N�Z

inci(a) = applyi(id� succ)(a)

deci(a) = applyi(succ� pred)(a)

value(a) =
∑
{snd(v) | (i, v) ∈ a}

pred(x) = x− 1

5.3 Observed-remove Add-wins Set

An observed-remove set with add-wins semantics can be derived by creating
unique tokens whenever a new element is inserted, using for that a grow only
counter per replica, and canceling this tokens, by increasing a boolean to True,
upon removal. Only elements supported by non-canceled tokens are considered
to be in the set.

ORSet+ = E ↪→ I ↪→ N�B

adde,i(a) = applye(applyi(succ�False))(a)

rmve(a) = applye(map(id� True))(a)

membere(a) = ∃(e,m) ∈ a · ∃i, n · (n,False) ∈ m(i)

5.4 Observed-remove Remove-wins Set

An observed-remove set with remove-wins semantics is derived by a dual con-
struction to the previous one, while sharing the same state lattice. Removal
creates unique tokens, and additions need to cancel all remove tokens that are
visible in the state.

ORSet− = E ↪→ I ↪→ N�B

11



rmve,i(a) = applye(applyi(succ�False))(a)

adde(a) = applye(map(id� True))(a)

membere(a) = ∃(e,m) ∈ a · @i, n · (n,False) ∈ m(i)

5.5 Enable-wins Flag

A boolean flag that can be flipped, implemented in Riak under the name flag
data type. It is a special case of an ORSet+ for a singleton set. Flag starts
disabled.

Flag+ = I ↪→ N�B

enablei(a) = applyi(succ�False)(a)

disable(a) = map(id� True)(a)

value(a) = ∃i, n · (n,False) ∈ a(i)

5.6 Disable-wins Flag

A boolean flag that can be flipped, implemented in Riak under the name flag
data type. It is a special case of an ORSet− for a singleton set. Flag starts
enabled.

Flag− = I ↪→ N�B

disablei(a) = applyi(succ�False)(a)

enable(a) = map(id� True)(a)

value(a) = @ i, n · (n,False) ∈ a(i)

5.7 Multi-value Register

A non-optimized multi-value register can be derived by lexicographic coupling
of a version vector clock C with a payload value V . When a new value v is to
be assigned, a new clock, greater than all visible clocks in the state, is created

12



and coupled with the value. These pairs are kept in a antichain of maximal
elements. Thus, upon merge, concurrently assigned values will be collected, but
any subsequent assignment will again reduce the state to a single pair value.

MVReg(V, I) = A(C � V )

C = I ↪→ N

assignv,i(a) = {applyi(succ)(
⊔
{c | (c, v′) ∈ a})� v}

values(a) = {v | (c, v) ∈ a}

Notice that the value is never updated without creating a new clock. Thus,
lexicographic comparison (needed for the operation of the antichain join) is
always decided by the first component, and in practice V can be any opaque
payload without need to define a partial order on its values.

6 Closing Remarks

This report collects several composition techniques for lattices, adopts the notion
of inflation and how it applies to the specification of state based CRDTs over
lattices. Most of the lattice compositions are very standard techniques from
order theory [5]. An early version of this work was presented at Schloss Dagstuhl
under the title Composition of Lattices and CRDTs and the summary of the
presentation is available at [6]. Most of the CRDT constructions used here are
influenced by work in [8, 7, 2, 4, 3, 1].
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[6] Bettina Kemme, André Schiper, G. Ramalingam, and Marc Shapiro.
Dagstuhl seminar review: Consistency in distributed systems. SIGACT
News, 45(1):67–89, March 2014.

[7] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. A com-
prehensive study of Convergent and Commutative Replicated Data Types.
Rapp. Rech. 7506, Institut National de la Recherche en Informatique et
Automatique (INRIA), Rocquencourt, France, January 2011.

[8] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski.
Conflict-free replicated data types. In Xavier Défago, Franck Petit, and
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We can say that any computing system executes sequences of actions, with
an action being any relevant change in the state of the system. For example,
reading a file to memory, modifying the contents of the file in memory, or writing
the new contents to the file, are relevant actions for a text editor. In a distributed
system, actions execute in multiple locations; in this context, actions are often
named events. Examples of events in distributed systems include sending or
receiving messages, or changing some state in a node. Not all events are related,
but some events can cause and influence how other, latter events, occur. For
instance a reply to a received mail message is influenced by that message, and
maybe by other prior messages also received.

Events in a distributed system can either occur in a close location such as
different processes running in the same machine, at nodes inside a data center,
or geographically spread across the globe, or even at a larger scale in the near
future. Relations of potential cause and effect between events are fundamental
to the design of distributed algorithms, and nowadays few services can claim
not to have some form of distributed algorithm at its core.

Before we try to make sense of these cause and effect relations, it is necessary
to limit their scope to what can be perceived inside the distributed system itself
– we can refer to this as internal causality. Naturally, a distributed system
interacts with the rest of the physical world outside it, and there are also cause
and effect relations in that world at large. For example, consider a couple
planning a night out using a system that manages reservations for dinners and
cinema. One person reserves the dinner and calls the other on the phone saying
that. After receiving the phone call, the second person goes to the system and
reserves the cinema. In a distributed system, the system has no way to know
that the first reservation has actually caused the second one.

This external causality cannot be detected by the system, and can only be
approximated by physical time (however, time totally orders all events, even
those unrelated, thus it is no substitute to causality; and wall clocks are never
perfectly synchronized [14]). In this article, we focus on characterizing internal
causality, the causality that can be tracked by the system.

Happened-before relation This brings us to 1978, when Leslie Lamport
defined a partial order, happened before, that connects events of a distributed
systems that are potentially causally linked [7]. An event c can be the cause
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of an event e, or c happened before e, iff both occur in the same process and c
executed first, or, being at different processes, if e could know the occurrence
of c thanks to some message received from some process that knows about c. If
neither event can know about the other, we say they are concurrent.

Process A(lice) •a1

Dinner?
// •a2 //

��

•a3

Process B(ob) •b1 // •b2
Yes, let’s do it

// •b3

��
Process C (hris) •c1 // •c2

Bored . . .
// •c3

Can I join?

Time //

Figure 1: Run in a distributed system with three nodes: happens-before relation.

Figure 1 shows an example of a distributed system. An arrow between
processes represents a message sent and delivered. We can see that both Bob’s
positive answer to the dinner suggestion by Alice, and Chris later request to
join the party, are both influenced by Alice’s initial question about plans for
dinner.

Looking at the events in this distributed computation, a simple way to check
if an event c could have caused another event e (c happened before e) is to find
at least one directed path linking c to e. If such a connection is found we mark
this partial order relation by c → e to denote the happened before relation or
potential causality. For instance we have a1 → b2 and b2 → c3 (and yes, as well
a1 → c3, since causality is transitive). Events a1 and c2 are concurrent, denoted
a1 ‖ c2, because there are no causal paths in either direction. We note x ‖ y
iff x 9 y and y 9 x. The fact that Chris was bored didn’t influence Alice’s
question about dinner, nor the other way around.

We can now recapitulate the three possible relations between two events x
and y: (a) x might have influenced y, if x → y; (b) y might have influenced x,
if y → x; (c) no known influence among x and y, as they occurred concurrently
x ‖ y.

Causal histories Causality can be tracked in a very simple way by using
causal histories [12, 2]. The system can locally assign unique names to each
event (e.g. process name and local increasing counter) and collect, and transmit,
sets of events to capture the known past.

For a new event, the system creates a new unique name and the causal
history is comprised of the union of this name and the causal history of the
previous event in the process. For example, the second event in process C is
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Process A •{a1} // •{a1,a2} //

��

•{a1,a2,a3}

Process B •{b1} // •
{a1,a2,b1,b2}

// •{a1,a2,b1,b2,b3}

��
Process C •

{c1}
// •
{c1,c2}

// •
{a1,a2,b1,b2,b3,c1,c2,c3}

Time //

Figure 2: Run in a distributed system with three nodes: causal histories.

assigned name c2 and its causal history is Hc = {c1, c2} (shown in Figure 2).
When a process sends a message, the causal history of the send event is sent
with the message. On reception, the remote causal causal history is merged (by
set union) to the local history. For example, the delivery of the first message
from process A to B merges the remote causal history, {a1, a2}, with the local
history, {b1}, and the new unique name, b2, leading to {a1, a2, b1,b2}.

Checking causality between two events x and y, can be tested simply by set
inclusion: x→ y iff Hx ⊂ Hy. This follows from the definition of causal histories,
where the causal history of an event will be included in the causal history of
the following event. Even better, if we mark the last local event added to the
history (distinguished in bold in the diagram) we can use a simpler test: x→ y
iff x ∈ Hy – e.g. a1 → b2, since a1 ∈ {a1, a2, b1, b2}. This follows from the fact
that a causal history includes all events that (causally) precede a given event.

Vector clock It should be obvious by now, that causal histories work but are
not very compact. For instance, the mechanism of building the history implies
that if an event b3 is present in Hy, then all preceding events from that same
process, b1 and b2, are also present in Hy. Thus, its suffices to store the most
recent event from each process. Causal history {a1, a2, b1, b2, b3, c1, c2, c3} is
compacted to {a 7→ 2, b 7→ 3, c 7→ 3}, or simply a vector [2, 3, 3].

Now, we can translate the rules used with causal histories to the new compact
vector representation.

For verifying that x→ y, we needed to check if Hx ⊂ Hy. This can be done,
verifying for each node, if the unique names contained in Hx are also contained
in Hy and there is at least one unique name in Hy that is not contained in Hx.
This is immediately translated in checking if each entry in the vector of x is
smaller or equal to the correspondent entry in the vector of y and one is strictly
smaller, i.e., ∀i : Vx[i] ≤ Vy[i] and ∃j : Vx[j] < Vy[j]. This can be stated more
compactly by x→ y iff Vx < Vy.

For a new event, the creation of a new unique name is equivalent to incre-
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Process A •[1,0,0] // •[2,0,0] //

��

•[3,0,0]

Process B •[0,1,0] // •
[2,2,0]

// •[2,3,0]

��
Process C •

[0,0,1]
// •
[0,0,2]

// •
[2,3,3]

Time //

Figure 3: Run in a distributed system with three nodes: vector clocks.

menting the entry in the vector for the process where the event is created. For
example, the second event in process c has vector [0, 0, 2], that corresponds to
the creation of event c2 of the causal history.

Finally, doing the union of two causal histories, Hx and Hy, is equivalent
to taking the point-wise maximum of the correspondent two vectors Vx and Vy,
i.e., ∀i : V [i] = max(Vr[i], Vl[i]). The intuition is that, for the unique names
generated in each node, we only need to keep the one with the largest counter.

When receiving a message, besides merging the causal histories, a new event
is created. The vector representation of these steps can be seen, for example
when the first message from a is received in b, where taking the point-wise
maximum leads to [2, 1, 0] and the new unique name finally leads to [2, 2, 0].

This compact representation, is known as vector clock and was introduced
around 1988 [4, 9]. As explained, vector comparison is an immediate translation
of set inclusion of causal histories. This equivalence is often forgotten in modern
descriptions of vector clocks, and can make what is a simple encoding problem
into an unnecessarily complex and arcane set of rules, breaking the intuition.

Dotted Vector Clocks When using causal histories, we have shown that
knowing the last event could simplify comparison by simply checking if the last
event is included in the causal history. This can still be done with vectors, if
we keep track in which node the last event has been created. For example,
when questioning if x = [2, 0, 0] → y = [2,3, 0], with boldface indicating the
last event in each vector, we can simply test if x[0] ≤ y[0] (2 ≤ 2) since we
have marked that the last event in x was created in node a, i.e., it corresponds
to the first entry of the vector. Since marking numbers in bold is not a very
practical implementation, the last event is usually stored outside the vector (and
sometimes called a dot): e.g. [2,2, 0] can be represented as [2, 1, 0]b2. Notice
that now the vector represents the causal past of b2, excluding the event itself.
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Version Vector In an important class of applications there is no need to
register causality for all the events in a distributed computation. For instance,
when modifying replicas of data, it often suffices to only register events that
change replicas. In this case, when thinking about causal histories, we only
need to assign a new unique name to these relevant events. Still, we need to
propagate the causal histories when messages are propagated from one site to the
other and the remaining rules for comparing causal histories remain unchanged.

Node A •{a1} // ◦{a1} //

��

•{a1,a2}

Node B •{b1} // •
{a1,b1,b2}

t // ◦{a1,b1,b2}

��
Node C ◦

{}
// ◦
{}

// ◦
{a1,b1b2}

Time //

Figure 4: Run in a distributed system with three nodes, where only some events
are relevant: causal histories.

Figure 4 presents the same example as before, but with events not being reg-
istered for causality tracking denoted with ◦. If the run represents the updates
to replicas of a data object, we can see that after node a and b are concurrently
modified, the state of replica a is sent to replica b (in a message). When the
message is received in node b, it is detected that two concurrent updates have
occurred, with histories {a1} and {b1}, as neither a1 → b1 nor b1 → a1. In this
case, a new version that merges the two updates is created (merge is denoted
by the join symbol t), which requires creating a new unique name, leading to
{a1, b1, b2}. When the state of replica b is later propagated to replica c, as no
concurrent update exist in replica c, no new version is created.

Again we can use vectors to compact the representation. The resulting
representation is known as version vector and was created in 1983 [10], five years
before vector clocks. Figure 5 presents the same example as before, represented
with version vectors.

In some cases, when the state of one replica is propagated to the other
replica, the two versions are kept by the system as conflicting versions. For
example, in Figure 6, when the message from node a is received in node b, the
system keeps each causal history, {a1} and {b1}, associated to the respective
version. The causal history associated with the node containing both version is
{a1, b1}, the union of the causal history of all versions This approach allows to
later check for causality relations between each version and other versions when
merging the state of additional nodes. The conflicting versions could also be
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Node A •[1,0,0] // ◦[1,0,0] //

��

•[2,0,0]

Node B •[0,1,0] // •
[1,2,0]

t // ◦[1,2,0]

��
Node C ◦

[0,0,0]
// ◦
[0,0,0]

// ◦
[1,2,0]

Time //

Figure 5: Run in a distributed system with three nodes, where only some events
are relevant: version vectors.

merged, creating a new unique name, as in the example.

Node A •{a1} // ◦{a1} //

��

•{a1,a2}

Node B •{b1} // ◦
{a1},{b1}

// •{a1,b1,b2}
t

// ◦{a1,b1,b2}

��
Node C ◦

{}
// ◦
{}

// ◦
{a1,b1b2}

Time //

Figure 6: Run in a distributed system with three nodes, where only some events
are relevant and versions are not immediately merged: causal histories.

Dotted Version Vector One limitation of causality tracking by vectors is
that one entry is needed for each source of concurrency [3]. One can expect a
difference of several orders of magnitude from the number of nodes in a data-
center to the number of clients they handle. Vectors with one entry per client,
don’t scale well when millions of clients are accessing the service [6]. Again, we
can appeal to the foundation of causal histories to check how to overcome this
limitation.

The basic requirement in causal histories is that each event is assigned a
unique identifier. There is no requirement that this unique identifier is created
locally nor that it is immediately created. Thus, in systems where nodes can be
divided in clients and servers and where clients communicate only with servers,
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it is possible to delay the creation of a new unique name until the client com-
municates with the server and to use a unique name generated in the server.
The causal history associated with the new version is the union of the causal
history of the client and the newly assigned unique name.

Client A ◦
{}

// ◦put
{}

��

Client B ◦
{}

// ◦put
{}

��
Server S ◦

{}
//

GG

◦

??

{}
// �{s1} //

��

�
{s1},{s2}

Server T ◦
{t1,t2}

// �{t1,t2,t3} // ◦
{t1,t2,t3},{s1}

Time //

Figure 7: Run in a distributed storage system: causal histories.

Client A ◦
[0,0]

// ◦put
[0,0]

��

Client B ◦
[0,0]

// ◦put
[0,0]

��
Server S ◦

[0,0]
//

GG

◦

??

[0,0]
// �[0,0]s1 //

��

�
[0,0]s1,[0,0]s2

Server T ◦
[0,1]t2

// �[0,2]t3 // ◦
[0,2]t3,[0,0]s1

Time //

Figure 8: Run in a distributed storage system: dotted version vectors.

Figure 7 shows an example where clients A and B concurrently update server
S. When client B first writes its version, a new unique name, s1, is created (in
the figure we denote this action by the symbol �) which is merged with the
causal history read by the client, {}, leading to the causal history {s1}. When
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client A later writes its version, the causal history assigned to this version is the
the causal history at the client, {}merged with the new unique name, s2, leading
to {s2}. Using the normal rules for checking for concurrent updates, these two
versions are concurrent. In the example, the system keeps both concurrent
updates. For simplicity we omitted interactions of server T with its own clients,
but we can see that before receiving data from server S it had a single version
that depicted three updates managed by server T, causal history {t1, t2, t3},
and after that it holds two concurrent versions.

An important observation is that in each node, the union of the causal
histories of all versions includes all generated unique name until the last known
one: for example, in server S, after both clients send their new versions, all
unique names generated in S are known. Thus, the causal past of any update
can always be represented using a compact vector representation, as it is the
union of all versions known at some server when the client read the object. The
combination of the causal past represented as a vector and the last event, kept
outside the vector, is known as a dotted version vector [11]. Figure 8 shows the
previous example using this representation, that eventually becomes much more
compact than causal histories as the system keeps running.

In the condition expressed before (clients only communicate with servers
and a new update overwrites all versions previously read), which is common in
key-value stores where multiple clients interact with storage nodes via a get/put
interface, the dotted version vectors allow to track causality between the written
version with vectors of the size of the number of servers.

Final remarks Tracking causality is important due to several reasons. On
one hand, not respecting causality can lead to strange behaviors for users as
reported by multiple authors [8, 1]. On the other hand, tracking causality is
important in the design of many distributed algorithms.

The mechanisms for tracking causality and the rules used in these mecha-
nisms are often seen as something complex [5, 13] and their presentation of-
ten lacks the necessary intuition of how they work. The most commonly used
mechanisms for tracking causality, vector clocks and version vectors, are simply
optimized representations of causal histories, which are easy to understand.

By building on the notion of causal histories, we believe it is simple to
understand the intuition behind these mechanisms, to identify how they differ
and even possible optimizations. When confronted with an unfamiliar causality
tracking mechanism, or when trying to design a new system that requires it, we
urge the reader to fall back to two simple questions: (a) Which are the events
that need tracking? (b) How does the mechanism translate back to a simple
causal history?

Without a simple mental image to guide us, errors and misconceptions be-
come much more common. Sometimes, one only needs the right language.
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  4. Explicit Consistency for invariant repair 

§	  
•  Eliminate global coordination completely to provide 

true high-availability. 

•  Ensure that database invariants always hold. 

  2. Objective 
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  1. Problem 
•  Systems need to provide low-latency and high 

availability for clients worldwide. 
•  Geo-replicated systems do not scale under Strong 

Consistency. 
•  How to ensure correctness without coordination? 
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THE QUEST FOR COORDINATION-FREE  
CLOUD STORAGE SYSTEMS 

Invariant Confluent Reservation Repairable 

Referential integrity NO YES YES 

Numeric constraints NO YES SOME 

Uniqueness YES YES YES 

Sequential identifiers NO YES NO 

1st order logic over sets SOME YES YES 

  5. Preliminary results 
•  Comparing invariant repair to other techniques. 
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  6. Challenges 
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	  	  	  	  Broken	  reference	  

1. Specify application 

Inv	  =	  enrolled(p,t)	  ⇒	  player(p)	  ∧	  tournament(t)	  

{enrolled(p,t)	  :=	  true	  }	  	  
removeTournament(t):	   {	  tournament(t)	  :=	  false}	  

enroll(p,	  t):	  

3. Choose resolution rule and transform operations 

§	  

•  Eliminate coordination completely to provide true 
high-availability. 

•  Example execution: 

•  When conflicts occur repair database invariants! 

  2. Objective 

Inv	  =	  enrolled(p,t)	  ⇒	  player(p)	  ∧	  tournament(t)	  

tournament(t)	  
player(p)	  

rem_trnmt(t):  
-tournament(t) 

enrolled(p,t)	  
tournament(t)	  

player(p)	  

player(p)	  
Sinitial_state	  

 SDC_2	  

 SDC_1	  

enrolled(p,t)	  
player(p)	  

 SFinal	  

Execute enroll(p,t) and remove_tournamnet(t) concurrently in two sites. 

Invariant violation: 
player enrolled in a tournament 
removed concurrently.  

enroll(p, t):  
+enrolled(p, t) 

sync_to(DC_2):  
-tournament(t) 

sync_to(DC_1):  
+enrolled(p, t) 

tournament(t)	  
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•  How to ensure that multiple transformed operations 
converge and preserve invariants? 

•  How to address operations with dependencies? 

•  How to automatize operation transformation? 

•  Optimize transformed operations. 

{enrolled(p,t)	  :=	  true	  	  
tournament(t)	  :=	  true}	  	  

removeTournament(t):	  
{tournament(t)	  :=	  false}	  

enroll(p,	  t):	   {enrolled(p,t)	  :=	  true}	  
removeTournament(t):	  

{tournament(t)	  :=	  false	  
	  enrolled(*,t)	  =	  false}	  

enroll(p,	  t):	  

Conflict	  resolu^on	  policy:	  
tournament(t)	  :=	  false	  ||	  tournament(t)	  :=	  true	  

Conflict	  resolu^on	  policy:	  
enrolled(p,	  t)	  :=	  false	  ||	  enrolled(p,	  t)	  	  =	  true	  

tournament(t)	  :=	  true	   enrolled(p,	  t)	  :=	  false	  
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merge: 
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•  Repair invariant violations when conflicts occur. 

•  Classical solutions: 
•  Ensure a total order of updates. 
•  Requires a global vision over the database state. 
•  Do not address partial replication. 

  3. Invariant repair 
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Players	   Tournaments	  

	  
	  
{enrolled(p,t)	  :=	  true	  	  
	  tournament(t)	  :=	  true}	  	   	  

	  
{tournament(t)	  :=	  false}	  	  

Mario 
Pac-Man 

Sonic 

Open Cup 
World Cup 

Players	   Tournaments	  

	  
	  
{enrolled(p,t)	  :=	  true}	  

	  
	  
{tournament(t)	  :=	  false	  
	  enrolled(*,t)	  =	  false}	  	  

tournament(t)	  :=	  true	  wins	  	   enrolled(p,	  t)	  :=	  false	  wins	  	  

enroll(p,	  t)	  

rem_trmt(t)	  

enroll(p,	  t)	   rem_trmt(t)	  

•  Transform	  opera^ons	  to	  preclude	  invalid	  states.	  
•  Use	  per-‐object	  conflict	  resolu^on	  accordingly.	  

•  Use	  per-‐object	  conflict	  resolu^on	  during	  run^me.	  
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Sonic 
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Stateinitial 

merge: 
tournament(t) = true 

wins! 

	  	  	  	  Broken	  reference	  

2. Static analysis detects conflicting operations 4. Automatic conflict repair on runtime 

{enrolled(p,t)	  :=	  true,	  
	  	  	  	  tournament(t)	  :=	  true}	  	  

enroll(p,	  t):	   rem_trnmt	  (t):	  {tournament(t)	  :=	  false	  
enrolled(*,t)	  :=	  false}	  

DC2	  

DC1	  
DC3	  
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Designing Concurrency-aware Geo-Replicated
systems

Valter Balegas, Sérgio Duarte
Carla Ferreira, Rodrigo Rodrigues, Nuno Preguiça

NOVA LINCS/FCT/Universidade Nova de Lisboa

Abstract—Geo-replicated systems present a range of con-
sistency semantics spanning from weak to strong consistency.
Systems with strong consistency have prohibitive coordination
requirements, therefore developers prefer using weak consistency
semantics, giving up on correctness for a wide range of appli-
cations. Recent work has made possible to achieve correctness
relying exclusively on weak consistency semantics, however the
strategy employed requires coordination prior to operation exe-
cution to ensure safety, which might result in the system becoming
unavailable when some nodes are down.

We propose an alternative strategy that does not require
safety guarantees prior to operation execution. Instead, the system
allows every operation to execute locally and replicate them in
a safe way, preventing application invariants from being broken
when operations are delivered to remote peers. In this papers,
we present our visions and discuss algorithms that can be used
to provide the intended semantics.

I. INTRODUCTION

The design of geo-replicated systems requires making
difficult trade-offs. In one hand we have Strong Consistency
systems [9], [33] that provide correct applications but oper-
ations have high latencies and systems are less available and
scale poorly. In the other hand, weakly consistent systems [10],
[21], [2] are highly available, provide low-latency operations
and scale better, but cannot provide the same correctness
properties of the former platforms. Platforms with this level
of consistency are far more popular to provide global scale
systems, as liveliness and availability appear to be a factor for
the success of production services [26], [1]. However, despite
the performance being better, programming applications on
top of these systems are an error prone task, due to the few
guarantees that the model provides — data converges in the
future.

To make these systems easier to program, researchers have
come up with new abstractions that can improve semantics
without impairing their availability and liveliness properties of
these systems: replicated data types [27] provide a sensible
way to handle convergence of operations without losing up-
dates, with different semantics for different data-types; Session
guarantees [30], and causality [21], [22], can strengthen the
ordering of operation execution, to help preserve the intention
of the users. Despite weak consistency models work well with
many applications, or more precisely, only shows anomalies
that are tolerable by the application, there are a wide range of
applications that require Strong consistency to work properly.
Systems that require Strong consistency are typically less
available and operation latencies are higher, due to the fact
that they require global coordination to ensure correctness.

A key insight is that not all operations in an applica-
tion workload have such strong coordination requirements,
therefore coordination can be used at a fine grain to ensure
correctness, or otherwise, use weak consistency to improve
the availability and latency of operations when possible [20],
[29]. Pushing the responsibility of choosing the appropriate
consistency level for the developer is cumbersome, therefore
strategies to automate the choice of consistency have been
developed [19], [28], [3].

Our recent work on the topic addresses the optimization of
operations that require coordination. To that end, we require
the identification of the fundamental invariants of the applica-
tion, determining the operations that conflict with each other
regarding the specified invariants and the deployment of special
mechanisms capable of handling different conflicts efficiently.
Our strategy combines static analysis and runtime support to
extract more concurrency from operations, but still requires
replicas to coordinate, out of the critical path of execution,
to ensure that operations that execute concurrently do not
interfere with the invariants. This coordination step makes the
system less available because some operation might require
coordination with a remote replica that is unavailable at the
time.

In this paper, we discuss an alternative idea to ensure
applications correctness without enforcing coordination. We
make two important observations that drive our research:
1) Human interactions are inherently concurrent and people
are aware of that. 2) Some activities need a coordinator to
ensure that a procedure finishes well. When coordination is
impracticable, a uncoordinated solution with confirmation step
afterwards can be employed. Typically, consistency models
that ensure application correctness are poorly available. We
believe that to improve the availability of system, the next step
is to treat conflicts as part of the application. In this paper we
propose the use of compensating actions to handle conflicting
executions that break application invariants. Compensating
actions can be generated automatically, or can be provided
by the programmer, and are applied as soon as a conflict is
detected to restore the invariants of the database locally.

We assume that replicas use a concurrency control strong
enough to ensure the correctness of applications, therefore
invariant violations only occur when operation effects are prop-
agated between different replicas. We handle those situations
by applying a convergence strategy that repairs the invariants of
the application that might have been broken by the concurrent
execution, thus restoring the correctness of the application.
In order to accomplish that it might be necessary to make
the effects of one operation dominate the other, or apply



some custom action to compensate for the occurrence. The
first solution produces an outcome equivalent to a serializable
execution, while the second acknowledges the mistake and
applies a proper resolution, as would occur in real life. Work
on compensating transactions has been studied in the past [11],
[15], however existing systems do not provide programming
support for that. Also, existing work does not address an
important challenge of geo-replicated systems, which is to
provide solutions that are coordination free to keep the systems
responsive and available.

The document is organized as follows: in section two,
we introduce Explicit consistency [4], a consistency model
that allows us to exploit concurrency without interfering with
the correctness of applications; section three presents the
motivation for invariant repair; section four analyzes different
repair algorithms with concrete examples; we present the work
in section five and present some closing remarks in section
eight.

II. EXPLICIT CONSISTENCY

Explicit Consistency [4] is a consistency semantics where
programmers identify the correctness properties that character-
ize an application and the systems only need to enforce those
properties. Correctness properties are defined in terms of in-
variants — logical properties expressed over the database state.
An execution trace of multiple clients across different replicas,
ordered by the happens-before relation [18], is said to be I-
serializable if all the possible permutations of concurrent oper-
ations, only produce database states that satisfy the invariants
of the application. A system that only produces I-serializable
traces satisfies Explicit Consistency. Serializability trivially
satisfies Explicit Consistency. To identify I-Serializable traces
one can use a static analysis tool [4], [28]. The approach taken
in Indigo does so by requiring the developer to provide the
specification of operations using first-order logic to express
the post-conditions of the operations in the workload.

Explicit consistency is implemented in three simple steps:
first, the programmer provides a specification of the application
and the effects of each operation; second, a static analysis
determines the pairs of operations whose concurrent execution
conflict with the specified invariants; third, the application code
is instrumented by the programmer, or automatically, with
mechanisms to execute those operations safely and avoiding
coordination.

In Indigo, the main mechanism to enforce application
invariants consists in using reservations. Reservations are a
family of data-types that ensures that can be used to ensure
that operations only succeed locally if the correctness of the
application is preserver globally. Escrow counters [24] and
Multi-level locks [4] (locks with shared/exclusive access) are
examples of reservations. The reservations use coordination to
enforce safety prior to operation execution. This mechanism
avoids coordination by amortizing the coordination costs by
using a single coordination step to ensure the execution of
one or multiple operations by the same replica. The downside
of the approach is that it might become impossible to obtain a
reservation to execute some operation of the workload if some
node becomes unreachable.

In this work we explore a different approach for imple-
menting Explicit consistency. Instead of ensuring safety prior
to operation execution, we assume that local operations are
always safe to execute and that conflicts only occur when
the effects of an operation is delivered on a remote replica,
because it is incompatible with operations executed there.
When delivering the updates the system must be capable of
identifying that those effects conflict with the locally executed
operations and restore the application invariants.

III. OUR TAKE ON THE CAP THEOREM

Geo-replication improves the quality of service in two
directions of the vector: consistency and availability. Both
conditions are very desirable in the perspective of service
providers, but applications are much harder to program because
it is necessary to account for the execution of operations
that can take an unbounded time to be delivered at all
replicas. It has been widely accepted that it achieving the
three goal, consistency, availability, and partition tolerance
is impossible [7]. In practice, partitions are unavoidable, but
not permanent, therefore the effort is to handle partitioning
explicitly to achieve the best of availability and consistency.

The limitations with modern approaches to the CAP the-
orem is that consistency is defined in terms of ensuring an
ordering of operation execution that is capable of satisfying
the application invariants. Total ordering operations naturally
satisfies any defined invariant, as operations effects always
affect the most recent state of the database, therefore it auto-
matically enforces application invariants. But, to enforce a total
order of operations it is necessary that a quorum of replicas
is always available [13] to ensure that replicas can agree
on the ordering of operations. To provide better availability
under partitioning, the alternative is only to enforce a partial
ordering of operations, such as causality, that allows replicas
to make progress without coordinating with remote peers.
In this case, conflict-resolution rules are necessary to ensure
data convergence [27], [29], [21], [22], [32], when updates
are propagated across replicas. Conflict-resolution policies are
defined on a data-types basis, which might result in application
invariant violations, since those resolution do not take into
account the semantics of the application. In our approach we
make replication aware of the application invariants, to ensure
that conflict-resolution maintains database invariants. Next
we discuss the desired semantics for our conflict-resolution
approach and how our approach relates to real-world scenarios.

A. Handling the conflicts explicitly

In the real world, companies want to maximize their
revenue, they are not willing to let got some client because they
cannot ensure that they can accomplish her request. Services
ran by humans naturally operate in parallel: imagine two
salesmen, that are both trying to sell the stock of a product,
but they might be more successful then expected and outsell
the product. This would be an unusual situation and they could
simply contact the last buyers of the product to inform them
that they ran out of stock. This might require further actions
from the selling entities, but they are capable of handling this
exceptional situation. In the other hand, some other sales are
more sensitive, for instance, selling the item would require
to make a commitment contract. In that case, the salesman



would prefer to contact a manager to ask if they still have
stock available, to avoid compensating for overselling the
item. It is still possible that the manager becomes unavailable,
for instance, because of a meeting, therefore it would be
convenient that the salesmen would know how many resources
they can sell without asking permission.

Humans understand that their actions affect others and we
can make ad-hoc decisions to account for those situations
or to prevent them. Many authors [14], [6], [12], [11] have
discussed scenarios where operations may have to be retracted
in order to allow better availability and parallelism, they take
real world examples of applications that do the same to support
their arguments. Despite the fact that we are aware that our
action are not irrevocable, especially online, in practice, no
modern system provides a programming support to handle
them n a structured way. In the following sections we discuss
concrete examples of invariant violations and discuss possible
resolutions for each conflict. Later, we sketch algorithms to
preserve those invariants.

IV. TOURNAMENT APPLICATION

I this section we present the tournament example and a
few conflicts that may arise during the concurrent execution
of operations in the workload. We discuss the semantics of the
execution that ensures a total and partial ordering of operations
to support our convergence rules.

The tournament example is a micro-service that could be
used to support most common competition online games. The
operations described here are based on a previous version of
the same example, first presented in [4]. We now describe the
features of the application. Players participate in tournaments
and compete against each other in matches. A tournament has
three phases: an enrollment phase where players can enroll
in the tournament, an active phase where there can be no
modifications to the participants of the tournament and a
finished phase, when the tournament is concluded and a winner
is elected, based on the number of points achieved in each
match. A tournament cannot be removed after it starts and has a
minimum and maximum number of participants. A tournament
has a leader that can start or remove the tournament, the
leadership role can be shared with other players. A player can
deposit and spend credit anytime to buy items that are used in-
game to get advantage over the adversary. Items have limited
availability.

A. Example 1: A matter of ordering

While a tournament does not start, players can enroll and
disenroll, but the tournament can only start after a minimum
number of players have enrolled in the tournament. When
a partial ordering of execution is allowed, this constitutes a
problem for invariant preservation: a leader of the tournament
can start the tournament because he observer, in the local
replica, that there is a minimum number of players enrolled,
however, concurrently, at a remote replica, a player might
disenroll from the tournament, dropping the number of players
below minimum. Under serial execution this does not occur
because one of the operations will fail, i.e., either the player
cannot disenroll from the tournament, because it starts before,
or the tournament cannot start because it does not have

enough players. Despite the fact that serialization ensures the
applications invariants, programmers need to check that the
preconditions of the operations are met before modifying the
state of the database.

Under partial ordering execution, the operations must also
check the pre-conditions of the operations before taking any
action locally, but that does not preclude a concurrent operation
from interfering with this one. It might occur that a concurrent
remote operation also satisfies its local dependencies but is
conflicting with the current operation, and, when both opera-
tions are delivered in the same replica, an invariant violation
occurs.

Different strategies to repair the invariant violation are
possible: we can apply a repair function that makes none of
the operations take effect; or the player is not disenrolled
from the tournament and the tournament can start, or the
player is disenrolled from the tournament and the tournament
is canceled. The first solution does not provide a good user
experience, because both users will see their actions retracted.
The other two repair functions provide a semantic equivalent
to the serializable execution, i.e. operations appear to have
executed one after the other. However, there is an important
caveat with this conflict resolution: more operations might
depend on the operation being repaired, for instance, a player
might have participated a match after the tournament had
started and if we chose to cancel the tournament, that game
should have not occurred. In this case it is easy to stop invariant
violation from contaminating other operations. We can chose
to remove the player from the tournament, in which case no
other operation is affected by this convergence policy because
no other operation in the workload depends on the player not
being enrolled in the tournament to be able to execute 1.

In general, it might be necessary to analyze conflict res-
olution strategies in order to prevent the generation of new
conflicts. We intend to study static analysis to evaluate the
quality of repair strategies.

B. Example 2: When ordering is not enough

In some situations, invariant violations are not easily re-
paired. Consider that two players concurrently bought the
last unit of an item in the application. For this conflict we
cannot apply a repair function that produces a state equivalent
to one operation executing after the other, because one of
the requests would have different effects, i.e. the operation
would fail because there are no available resources left. This
situation occurs when operations are not commutative, which
means that we cannot arbitrate an ordering for their execution
without producing different effects. This is different from the
previous example because, in the first case, despite arbitrating
the execution ordering of the pair of operations, the effects of
both operations are preserved.

In fact, a serial execution is what makes most sense in the
real life, as it would be impossible to duplicate resources. We
could think of a service that allows items to be sold in parallel
and therefore overselling, but we cannot take more items then
physically available.

1We do not require the player to be disenrolled from a tournament to allow
the enroll operation because this operation is idempotent



If this invariant is important for the application, we have no
option then to use a strong coordination mechanism to ensure
that no user buys more resources then available. However,
some invariants, or lets say, application properties, are desir-
able properties and not essential for correctness, in which case
more solutions are possible. To not be unfair with any player,
the applications could allow the item to be sold twice which is
equivalent to the semantics of eventual consistency. Or, remove
the item from one of the player’s inventory and give back some
credit. In this case, she might have used the item already and
that would create more conflicts. The developer can still make
this choice, as long as she is able to repair any operation that
used the resource. The last alternative is to create new items to
compensate for the advantage that were given to both players.

Our conclusion is that some operations naturally require a
coordinated execution, but one can make an alternative version
of the same algorithm that does not require serialization and
apply a compensation when things go wrong. This is how
online stores deal with exhausted stocks, or ATMs handle with-
drawals that cannot read the actual balance of an account [6],
do in practice.

V. ALGORITHMS TO REPAIR INVARIANT VIOLATIONS

In the previous section we discussed two examples of
invariant violations and described possible semantics to correct
them. In this section, we are going to describe different
algorithms to implement those repairs.

A. Invariant-aware convergence rules

Consider that we repair the invariant violation of sec-
tion IV-A by keeping the player in the tournament. we pursue
a repair strategy that does not impair the availability of the
system, therefore we avoid strategies that assume a central
authority or require coordination to ensure that the invariant is
repaired.

The algorithm we propose is based on the convergence
rules used in CRDTs [27]. CRDTs can ensure add-/remove-
wins policies when concurrent add and remove operations
execute over the same data-type. This means that we can select
the outcome of a concurrent add/remove operation of the same
element to a set. In the example, the begin operation checks
that the set of participants in the tournament has the minimum
number of players and then changes the value of some flag to
true, meaning that the tournament has started. The concurrent
disenroll operation removes one element from the participants
set, making its size smaller then the minimum and when both
operations are propagated to the same replica we end in a state
with a set of participants that is smaller than the required for
the value of the flag being true.

The solution for this problem is quite easy. Considering that
the set of participants uses a add-wins strategy for handling
conflicting adds and removes. This allows to ensure that
that the size of the tournament does not decrease with any
concurrent remove, because we can cancel the effect of the
remove with an add. In order to do that, when starting the
tournament, we just add again, to the set of participants, all
the players that belong to the set of player in the moment the
tournament starts. This enforces that any concurrent remove
will take no effect, because the merge strategy of the set

preserves the concurrent adds, therefore the size of the set
does not decrease. Adding all the elements to the set again
can be done in an efficient way, to avoid processing overheads
when the tournament is large.

The benefit of this strategy is that it does not require any
additional mechanism to detect conflicts, as the execution of
the operations automatically enforces the pre-conditions for
the operation hold when its delivered to any replica. This
strategy additionally requires identifying the pre-conditions
of operations, instrument the code with the extra updates
and check for compatibility between operations, i.e., that the
different convergence rules are compatible with the invariants.
We recognize that it might not be possible to handle all
conflicts with this strategy, but it is promising.

B. Compensating for conflicts

In section IV-B, we describe an example where the
invariant violation cannot be repaired, thus the system must
handle it as part of an exception of the workload. To handle
those situations we want to apply some action that compensates
for the occurrence. In the previous example, the solutions
consist in doing nothing, remove the item from one player’s
item list, or create new resources. However, two things have
to be taken into consideration when writing compensations:
does the compensation conflict with any other invariant? what
happens if two different replicas compensate the same action?
To answer the first question we can consider a compensating
action as part of the workload and use the same tools to detect
the conflicts of the application. Applying compensating actions
is trivial when the operations are idempotent, because they
can execute at multiple machines without producing further
outputs. The problem with applying the compensating actions
is that if when the operation is non-idempotent, in which case,
multiple executions of the same operation produce cumulative
effects. For instance, if the compensation was to create new
resources, it could create more resources than desired.

The simplest way to implement the compensation mecha-
nism is to use a central authority that would guarantee that the
compensating action only occurred once, or use a consensus
algorithm. However, this requires coordination which is what
we are trying to avoid at all costs. The alternatively is to make
compensations idempotent. To enable that, replicas need to
maintain the log of the operation they applied, the information
of what compensations they applied to solve each conflict
and the compensating operations must be deterministic and
independent of the current state of the database. If every replica
keeps this information, they can independently identify what
remote replicas have applied the compensation and cancel
the effect of multiple repairs. The downside of the approach
is that replicas cannot compress the log until all replicas
have received the conflicting updates, but we can assume that
partitions, when they occur, do not last forever. The damage of
compressing the log before a replica acknowledges a conflict
is measurable and the developer can decide to move forward
after some time, to avoid the log size to increase. The result
would be that the unreachable nodes could have compensated
for the same conflict and the effects will accumulate. Another
property of compensating transactions is that they may not
have to be executed immediately, i.e., the system can delegate



applying the fix to the future, which can be convenient in some
cases.

VI. RELATED WORK

Geo-replicated systems are at the core of Cloud infrastruc-
tures. Existing system provide a wide spectrum of consistency
levels, from systems that provide Weak Consistency [10],
[8], [21], [22] to Strong Consistency [9], [23], [16] or a
combination of both [20], [29]. Eventual Consistency is a very
popular consistency model in production environments. The
wide range of industry platforms that implement it is a proof
of that [5], [17]. Not all application work well under Eventual
Consistency. Researchers have tried to reach the boundaries
of Eventual consistency: CRDTs [27] explore commutativity
for enabling automatic merge of concurrent operations; Causal
Consistency [21], [22] ensures that operations ordering pre-
serve the intention of the users; Bailis et al. have studied what
invariants can be provided with high availability and when
coordination is required to ensure correctness [3]. Quelea [28]
is a tool that capable of generating a protocol that enforces the
minimum consistency semantics that is necessary to maintain
the correctness of an application.

While the limits of Weak consistency and Strong consis-
tency are well understood, other work tries to explore the
grey area between the two semantics. Indigo [4] is capable
of providing Strong consistency semantics relying exclusively
on weak consistency protocols. To that end, the system com-
bines analysis techniques and runtime support to ensure what
operations are safe to execute without coordination. The home-
ostasis protocol [25] is also capable of ensuring safety with
operations executing locally, but requires two-phase commit
to communicate between replicas.

Many authors share the vision that better availability prop-
erties are only possible with weaker transactions/consistency
semantics [11], [6], [14]. When correctness properties ave
violated, a compensation action can restore the invariants of
the database [11], [15]. Bayou [31] puts these ideas into
practice. In Bayou, replicas can execute operations without
coordination and conflicts are merged after being detected
with custom merge operations provided by the programmer. In
Bayou conflict resolution can only be applied at object level,
similarly to CRDTs. In our work, we revise this approach in
the context of geo-replicated system and generalize the idea
to operations that touch multiple objects. We propose fixing
conflicts without using any conflict detection mechanism, to
preserve the availability of the system. We envision that repair
functions can be generated automatically from the application
specification. When a custom action is preferable, we check
that this action does not create any new invariant violations.

VII. CONCLUSION

In this paper, we proposed new ideas to improve the
availability of systems working on top of geo-replicated Cloud
storage. Our insight is that applications need to deal with
conflicts explicitly to improve correctness without loosing
availability. The solutions we proposed allow the system to
remain correct as long as operations exhibit some desirable
properties that allow conflicts to be repaired. When conflict
are not repairable, the solution is to fall back to coordinated

execution, implement the operations with weaker semantics,
or acknowledge the conflict and provide an operation to
compensate the occurrence. We briefly discussed algorithms to
repair invariant violations and apply compensating transactions
that have good availability properties.
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