
Project no. 609551
Project acronym: SyncFree
Project title: Large-scale computation without synchronisation

European Seventh Framework Programme

ICT call 10

Deliverable reference number and title: D.3.3
Protocols for invariant preservation and security

Due date of deliverable: March 23, 2016
Actual submission date: March 23, 2016

Start date of project: October 1, 2013
Duration: 36 months
Name and organisation of lead editor
for this deliverable: NOVA
Revision: 0.1
Dissemination level: CO

SyncFree Deliverable D.3.3(v0.1), March 23, 2016

CONTENTS

Contents

1 Executive Summary 1

2 Milestones in the Deliverable 3

2.1 Status of the work . 4

3 Contractors Contributing to the Deliverable 5

3.1 KL . 5

3.2 INRIA . 5

3.3 Louvain . 5

3.4 Nova . 5

3.5 Basho . 5

3.6 Trifork . 5

4 Results 6

4.1 Security . 6

4.1.1 Access control in weakly consistent systems 6

4.1.2 Secure dissemination . 9

4.2 Invariants . 10

4.2.1 Enforcing Numeric Invariants 11

4.2.2 Explicit Consistency . 11

4.3 Extensions to Works Previously Reported 15

4.3.1 Quality-of-data . 15

4.3.2 Delta State-based CRDTs 16

4.3.3 Efficient Support of Large CRDTs in Riak 16

4.3.4 Causality with partial knowledge 17

4.3.5 Other works . 17

5 Publications 18

6 Published papers 23

6.1 Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh,
and Marc Shapiro. ’Cause I’m strong enough: Reasoning about con-
sistency choices in distributed systems. In Proceedings of the 43rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2016, pages 371– 384, New York, NY,
USA, 2016. ACM. 23

6.2 Iwan Briquemont, Manuel Bravo, Zhongmiao Li, and Peter Van Roy.
Conflict- free partially replicated data types. In Proceedings of the
7th IEEE Interna- tional Conference on Cloud Computing Technol-
ogy and Science (CloudCom 2015). IEEE, Nov 2015. 38

6.3 Carlos Baquero and Nuno Preguiça. Why logical clocks are easy.
Queue, January 2016. ACM. 47

6.4 Carlos Baquero and Nuno Preguiça. Why logical clocks are easy.
Commun. ACM, April 2016. ACM. 65

SyncFree Deliverable D.3.3(v0.1), March 23, 2016, Page 2

CONTENTS

6.5 Valter Balegas, Cheng Li, Mahsa Najafzadeh, Daniel Porto, Allen
Clement, Sérgio Duarte, Carla Ferreira, Johannes Gehrke, João Leitão,
Nuno Preguiça, Rodrigo Rodrigues, Marc Shapiro, and Viktor Vafeiadis.
Geo-replication: Fast if possible, consistent if necessary. IEEE Data
Engineering Bulletin (to appear), 2016. 71

6.6 Valter Balegas, Sérgio Duarte, Carla Ferreira, Nuno Preguiça, and
Rodrigo Rodrigues. Making Weak Consistency Great Again. In Pro-
ceedings of the Second Workshop on Principles and Practice of Con-
sistency for Distributed Data (to appear), PaPoC ’16. ACM, 2016. . 84

6.7 Carlos Baquero, Paulo Sérgio Almeida, and Carl Lerche. The prob-
lem with embedded CRDT counters and a solution. In Proceedings
of the Second Workshop on Principles and Practice of Consistency
for Distributed Data (to appear), PaPoC ’16. ACM, 2016. 88

6.8 Albert van der Linde, João Leitão, and Nuno Preguiça. ∆-CRDTs:
Making δ-CRDTs Delta-Based. In Proceedings of the Second Work-
shop on Principles and Practice of Consistency for Distributed Data
(to appear), PaPoC ’16. ACM, 2016. 92

6.9 Mahsa Najafzadeh, Alexey Gotsman, Hongseok Yang, Carla Ferreira,
and Marc Shapiro. The CISE Tool: Proving Weakly-Consistent Ap-
plications Correct. In Proceedings of the Second Workshop on Prin-
ciples and Practice of Consistency for Distributed Data (to appear),
PaPoC ’16. ACM, 2016. 96

7 Submitted papers 101
7.1 Mathias Weber, Annette Bieniusa, and Arnd Poetzsch-Heffter. Ac-

cess control for weakly consistent cloud-storage systems. Submitted
for publication, 2016. 101

7.2 Christopher Meiklejohn. Loquat: A partially replicated, secure,
broadcast protocol for edge computation. Submitted for publication,
2016. 111

7.3 Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. Delta state
replicated data types. Submitted for publication, 2016. 120

7.4 Seyed H. Haeri (Hossein), Peter Van Roy, Carlos Baquero, and Christo-
pher Meiklejohn. Deduction with partial knowledge about causality.
Submitted for publication, 2016. 148

SyncFree Deliverable D.3.3(v0.1), March 23, 2016, Page 3

1 EXECUTIVE SUMMARY

1 Executive Summary

The SyncFree project aims to enable trustworthy large-scale distributed applications
in geo-replicated settings. The core concepts are replicated yet consistent data types
(CRDTs) which allow information dissemination and sharing without the need for
global synchronization.

Within the project, Work Package 3 (WP3) coordinates the work on extending
the safety, quality and security guarantees provided by a system that uses minimal
synchronisation. This deliverable, Protocols for invariant preservation and security,
reports results of task 2, Divergence control and quality-of-data and task 3, Security.
Regarding invariant preservation, the research focused on providing mechanisms for
ensuring that global invariants are preserved in the presence of concurrent updates.
Regarding security, the research focused on providing access control in weakly con-
sistent environments, where access control policies can be updated concurrently
with the execution of updates.

The specific requirements addressed in our work were driven by the use cases
studied in WP1, but also from previous experience of the project partners, both
industrial and academic. We now briefly overview the results achieved during the
reporting period. Although the solutions presented address the problems that we
promised to address, we expect to continue improving some of the works until the
end of the project.

Invariants Although a large number of applications can work correctly under
weak consistency models, other applications need to maintain global invariants that
cannot be enforced using such models.

To address this problem, we have proposed explicit consistency, as a novel
consistency model that extends weak consistency with the enforcement of global
application invariants. We have proposed a number of techniques to enforce ex-
plicit consistency, notably a methodology for extending applications with reser-
vation mechanisms [3, 5], CISE logic for proving that a given reservation system
enforces invariants [12], and the Bounded Counter for enforcing numeric invariants
in systems that do not implement the full Explicit Consistency approach [2].

In this period, we have published the work on CISE logic [12] and we have
completed a tool that uses CISE logic for helping programmers identifying the
operations that can lead to problems [17].

We have additionally worked on a solution for enforcing invariants by repairing
invariants [4], which is complementary to the reservation-based approach. This
solution combines several new CRDT designs with a tool that proposes extensions
to application operations that guarantee that invariants are preserved even in the
presence of concurrent operations.

Security Access control is an important aspect of information systems as these
systems store sensitive information. In weakly consistent systems, however, concur-
rent modifications and out-of-order delivery of data updates and policy changes
impose security threats due to inconsistencies among policies and data operations.

We have proposed an access control model for eventually consistent data stores
that avoids information leakage, unauthorized modifications and guarantees con-

SyncFree Deliverable D.3.3(v0.1), March 23, 2016, Page 1

1 EXECUTIVE SUMMARY

vergence of the copies of the security policy among replicas [22]. In particular, we
address the problem of policy changes which modify the permissions being executed
concurrently with the execution of updates. We consider two settings: a data-center
setting, where all replicas and clients run in the data-center and can be assumed
to be trusted; and an extension of this that includes clients that can synchronize
among them in peer-to-peer interactions.

We have additionally addressed the problem of providing secure data dissemi-
nation among replicas, by proposing changes to the dissemination protocols used
in Lasp [16]. The proposed protocols create dissemination trees where only nodes
with the same security permissions participate.

Extensions to Works Previously Reported A number of works that started
being developed in the context of Task 3.1 and 3.2 have continued during this pe-
riod. The following works have led to publications in this period: (i) the model
and designs of CRDTs with delta-mutations [1, 20] for efficient synchronization;
(ii) the model of conflict-free partially replicated data types for partially caching
large objects [10]; (iii) fundamental techniques for tracking causality [7, 8]. We
have also continued our research on how to inform applications about the potential
divergence of the data being read.

SyncFree Deliverable D.3.3(v0.1), March 23, 2016, Page 2

2 MILESTONES IN THE DELIVERABLE

2 Milestones in the Deliverable

WP3, tasks 2 and 3 contribute to the following milestone, shared with other work
packages:

Mil. no Mil. name Date due Actual date Lead contractor
MS3 Results consolidation

and validation plan
M30 M360 INRIA

Task 3.2 has contributed to this deliverable and milestone by focusing mainly
on solutions for enforcing global invariants, as stated in the project proposal:

This deliverable will report on the protocols for divergence control and
Quality-of-Data (QoD). This deliverable includes protocols for decen-
tralised invariant preservation and divergence control. Synchronisation-
freedom comes at the price of divergence among replicas. While many
applications can work properly in this context, others require additional
information, e.g., QoD metrics such as an estimate of the amount of
divergence, or bounding the divergence, or ensuring global invariants.
Compared to previous work [8, 50, 122], extreme-scale replication poses
new challenges, both in the definition of divergence metrics and in the
scalability of the divergence measurement and control algorithms. We
will identify sub-classes of CRDTs according to the guarantees they
provide, and formally analyse the degree of synchronisation that these
sub-classes require. We will also explore the design space of CRDTs and
associated protocols for efficiently preserving global invariants, from us-
ing decentralised solution such as escrow, reservation, and exo-leasing
[74, 82], to solutions that use some synchronisation. The main challenge
is to push the limits of the efficiency of the implementation of CRDTs
and supporting systems for various classes of invariants, and the seam-
less integration of different solutions in the same platform. [month 18]

Task 3.3 addresses the specific security aspects of systems adopting weakly con-
sistent data models, in particular those using CRDTs. In particular, we focused
mainly on the problem of access control, as stated in the project proposal:

This deliverable contains final results, including a security approach for
the deployment of a CRDT-based platform. In applications such as the
Danish Shared Medication Records, security is paramount. In partic-
ular, we will focus on access control in a decentralized environment.
Access control is fundamental to ensure that information is disclosed
only to authorised users has been widely studied, both in centralised
[57, 90] and distributed databases [2, 10, 11]. However, extreme scale
replication of mutable shared data raises new issues. Access control
policies must be propagated and enforced in all replicas, but the use
of different policies may compromise eventual consistency. Wobber et
al. [120] propose an EC access control mechanism, assuming a separate

SyncFree Deliverable D.3.3(v0.1), March 23, 2016, Page 3

2 MILESTONES IN THE DELIVERABLE

security layer with a single root of authority, and restricting policy ex-
pressiveness. Recent approaches [26, 28] integrate access control with
data entities, verifying conformance of arguments with access control
policies statically, using refinement types. In particular, Caires et al.
[26] supports access control that depends on the state of data. This
task will extend this approach to replicated data and combine it with
the EC guarantees of Wobber et al. [120].

2.1 Status of the work

This deliverable reports the proposals made in the context of WP3 (in collaboration
with other Work Packages) for invariant preservation and security. Although the
work presented herein matches the expected outcomes when the project has been
proposed, some of the works are still on-going and we expect to developed improved
versions until the end of the project.

In particular, regarding security we are still finishing the implementation of the
proposed access control model for settings where not only servers synchronize their
replicas, but where also clients can engage in peer-to-peer interactions.

Regarding protocols for enforcing global invariants, we are finishing the devel-
opment of a solution that enforces invariants by allowing any concurrent operations
to execute without coordination and automatically repairs invariants when merging
the state of replicas. This approach is complementary to the other solution devel-
oped, where invariants are preserved by restricting the execution of operations that
may lead to an invariant violation.

Finally, regarding our work on QoD for providing divergence information for
applications, we continued our work on evaluating different protocols for dissemi-
nating information for computing divergence metrics, which we will also evaluate in
the context of the FMK experiment that we have planned (as described in D5.2).

SyncFree Deliverable D.3.3(v0.1), March 23, 2016, Page 4

3 CONTRACTORS CONTRIBUTING TO THE DELIVERABLE

3 Contractors Contributing to the Deliverable

The following contractors contributed to the deliverables:

3.1 KL

Annette Bieniusa, Mathias Weber.

3.2 INRIA

Mahsa Najafzadeh, Jordi Martori, Marc Shapiro, Alejandro Tomsic, Tyler Crain,
Pascal Urso, Marek Zawirski, Micha l Jabczyński.

3.3 Louvain

Christopher Meiklejohn, Seyed H. HAER, Iwan Briquemont, Manuel Bravo, Zhong-
miao Li, Peter van Roy.

3.4 Nova

Valter Balegas, Sérgio Duarte, João Leitão, Ali Shoker, Carla Ferreira, Paulo Sérgio
Almeida, Rodrigo Rodrigues, Carlos Baquero, Nuno Preguiça.

3.5 Basho

Russell Brown, Engel Sanchez.

3.6 Trifork

Kresten Thorup.

SyncFree Deliverable D.3.3(v0.1), March 23, 2016, Page 5

4 RESULTS

4 Results

This section presents the results obtained in WP3, during the reporting period. We
organize the results in three groups: Security (§ 4.1), discussing the work on security
features; Invariants (§ 4.2), detailing how to enforce invariants while minimizing
the required coordination; and Other works (§ 4.3), describing extensions to works
preciously reported.

4.1 Security

In the context of security, as planned, our main focus has been on defining an access
control mechanism that can work in weakly consistent systems. We describe our
proposal in section 4.1.1. We have additionally addressed the problem of guarantee-
ing secure dissemination of information among replicas to avoid leaking information.
This work is described in section 4.1.2.

4.1.1 Access control in weakly consistent systems

Access control is important to protect sensitive information stored in information
systems. Security policies describe the rules applied to determine whether a user is
allowed to perform a specific operation. The policy of the organization running the
information system usually changes over time. These changes need to be reflected in
the implementation of the access control system. Therefore, access control systems
support updating the policy rules at runtime. For strongly consistent systems, the
implementation of access control is well understood since the order in which op-
erations are processed is the same on all replicas. In weakly consistent systems
however, a global order over the operations does not exist. Concurrent modifica-
tions and message reordering impose security threats due to inconsistencies among
policies and data operations.

A typical situation in the evolution of policies is the reduction of the permissions
of a user. In a social network example, this reduction can be achieved by removing a
user from the list of friends of some other user. As a result of this reduction, the user
may no longer perform operations, that he was previously allowed to perform. In the
social network example, this may mean that the user is no longer allowed to observe
changes like the upload of new photos. In the strongly consistent case, the semantics
of this policy modification is clear because of the global order of operations. In a
weakly consistent data store, the policy modification and a subsequent upload of a
picture may arrive in different order on different replicas. This leads to inconsistency
between the intended policy semantics and the fact that the new photo can be
accessed by the user between the arrival of the upload operation and the arrival
of the policy modification. For weakly consistent systems, the semantics and also
the correctness of the access control system can only be defined based on the local
order of operations for each replica.

In our work we assume that (server) replicas of the system are trusted, which is
a common assumption in cloud environments. We further assume that the system
includes a mechanism to authenticate clients, which can be implemented by using
secret sharing (e.g. user/password) or certificates. Clients can be assured of being

SyncFree Deliverable D.3.3(v0.1), March 23, 2016, Page 6

4 RESULTS

communicating with the servers by using secure channels (e.g. using SSL).

4.1.1.1 Correctness of Access Control in Weakly Consistent Systems
We denote the happens-before relation between operations op1 and op2 based on
the order of execution on a replica as op1 → op2. The policy consists of right
assignments (r, s, o) ∈ Rights × Subjects × Objects . The access control system
checks all operations performed on the system. A rights assignment (r, s, o) permits
an operation op performed by subject s′, written (r, s, o) |= (op, s′) iff target(op) = o,
s = s′ and the capabilities r allow operation op. The policy can be modified at
runtime using policy modifying operations which assign new capabilites for a subject-
object pair, also written (r, s, o) for assigning capabilities r for object o to subject
s.

For strongly consistent systems, we can assume that the happens-before rela-
tion is a total order on the operations. We can define the correctness of access
control as follows: If (r, s, o) → (op, s′), target(op) = o and (r, s, o) 6|= (opR, s) and
target(opR) = o then (r, s, o) 6→ (opR, s). If the rights assignment (r, s, o) restricts
the capabilities of s such that s may not perform opR on object o then opR can-
not be allowed by the access control system after performing the rights assignment
(r, s, o). In particular, this means that (op, s′) 6→ (opR, s), assuming opR to be a
read operation shows that modifications performed by op on object o are not visible
to s.

The reasoning above shows that there is a relation between rights assignments
and subsequent data operations that has to be retained by the access control sys-
tem to be correct. We call this relation the protection relation and write (r, s1, o)C
(opW , s2) to mean the rights assignment (r, s1, o) protects the operation opW by
subject s2. The protection relation is a subset of the happens-before relation.
(r, s1, o) C (opW , s2) holds if (r, s1, o) → (opW , s2) and target(opW) = o. We claim
that the protection relation has to be retained on every replica in order for an access
control system to be correct in the context of weakly consistent systems.

A more complete presentation of the model is available in the submitted publi-
cation 7.1 ([22]).

4.1.1.2 Implementation on Antidote We are currently building a prototype
implementation of an access control system that preserves the protection relation
called ProPreAC. The underlying idea is to represent all concurrent rights assign-
ments and require the set of capabilities Rights to form a lattice. A rights as-
signment (r, s, o) replaces all rights assignments visible when performing (r, s, o).
All rights assignments that happened concurrently are retained. To compute the
capabilities a subject s has on object o, we consider all of these concurrent rights as-
signments {(r1, s, o), (r2, s, o), ..., (rk, s, o)} and compute the minimum capabilities
min(r1, r2, ..., rk). This way, a possible reduction of capabilities is retained. The sys-
tem has to retain the protection relation when applying downstream operations. If
(r, s1, o)C (opW , s2) then (r, s1, o) has to be applied before (opW , s2) on all replicas.

The current implementation is based on Antidote. We implemented a CRDT
implementation suitable for modeling the concurrent rights assignments. The ca-
pabilities are modeled as sets of operations that may be performed by the subject.
The minimum, in this case, is the intersection of all concurrently assigned capability

SyncFree Deliverable D.3.3(v0.1), March 23, 2016, Page 7

4 RESULTS

sets. When generating the downstream operations, the current policy is added as
an additional parameter to the operation. Applying the downstream operation on
a replica removes all rights assignments of this old policy and adds the new rights
assignment. Because Antidote preserves the happens-before relation between oper-
ations and the protection relation is a subset of this happens-before relation, this
CRDT is sufficient to retain the correctness of the policy handling.

We are currently working on using ProPreAC as the access control mechanism
for Antidote. In such case, whenever a new operation is issued, the system tags the
operation with the user that issued the operation, and the verification of permissions
is executed as explained before.

4.1.1.3 Implementation on Titan Titan is a system that allows clients to
replicate shared objects and propagate modifications in a peer-to-peer fashion (ad
detailed in deliverable 2.3). Titan integrates with cloud databases, by forwarding
updates executed in the clients to the data centers and retrieving new updates from
the servers. Although Titan has been designed to allow integration with different
cloud databases, its use of CRDTs makes it a natural extension for using data stored
in Antidote in client machines.

We are currently extending and implementing the proposed access control model
for Titan. While in the implementation on Antidote we assume that replicas
(servers) are trustable and will only execute correct code without the possibility
of forging different causal relations among operations, it is not reasonable to as-
sume the same when replicas execute in the clients.

Our approach to extend the proposed access control model relies on using servers
to certify causal dependencies. In this case, when a server receives an operation
from a client, it certifies the causal dependencies of the received operation to be the
the current state in the server.

This avoids that a client, after seeing that she no longer has rights to execute
some operation, tries to submit the operation by stating that it was executed with-
out having the knowledge that her permission had changed. In the case where an
operation is executed in a client concurrently with a change in the associated per-
mission in the server, this approach takes a conservative approach that denies the
execution of the operations.

We should note that this approach still allows the attack that a client, after
observing a change in her permissions, received from a given server, can contact
some other server for submitting an operation she is no longer allowed to execute.
If the server has no knowledge of the change in permissions when certifying the
causal dependencies, the operation will be accepted.

We are considering alternatives to this approach, including the use of wall clocks
in the process. In this case, a server receiving an operation from a client would
certify the time when the operations was received. The time of operations would be
compared with the time when the changes in the authorisation rules were performed
to decide whether an operation should be accepted or not. Obviously, we would
need to consider that it is impossible to synchronize the clocks in all machines and
that a time interval should be considered for the operation times, as in Spanner
[11]. This approach had the potential to reduce the vulnerability window.

For avoiding reads from clients that are no longer allowed to read the state of

SyncFree Deliverable D.3.3(v0.1), March 23, 2016, Page 8

4 RESULTS

an object, information propagated among client nodes is ciphered with a symmetric
key. For each access control configuration (or view), the system generates a new
symmetric key. This keys are maintained in the servers, with client requiring a key
having to ask for the key of a given view to a server.

We are also considered the possibility of adopting the dissemination approach
that will be presented in the next section. However, we currently believe that in
a setting where the number of clients might be small, involving all clients in the
propagation of information might be a better approach. We intend to evaluate this
experimentally.

4.1.2 Secure dissemination

In the context of supporting Lasp in a large number of clients, Meiklejohn [16] has
proposed Loquat for providing secure dissemination of information. Loquat provides
security by guaranteeing that nodes that cannot access some information will not
belong to the dissemination tree for that information. This work is complementary
of the work presented before.

Loquat includes two main features. First, an extension to the Plumtree [14]
epidemic broadcast protocol that supports partial replication of data. Second, an
extension to the protocol that supports information flow control, where nodes that
are not authorized to receive confidential information will not receive dissemination
of that information.

4.1.2.1 System model This work assumes a dynamic set of nodes, where each
node in the system has a globally unique node identifier. We assume the the crash-
stop failure model, and nodes that crash recover by rejoining the cluster with a new
globally unique node identifier and no state: identical to a new node. We assume
non-Byzantine network and node behavior.

We assume a set of unique tokens representing both the level of secrecy and
integrity placed on scopes of messages. We assume that messages within a given
scope can only move in two directions: messages can decrease in secrecy, or increase
in integrity (through additional declassification, or increased authentication.) We
assume actors in the system do not act maliciously, by lying about the security
contexts they are privileged to (non-Byzantine behaviour).

4.1.2.2 Information flow control To support information flow control, Lo-
quat alters the Plumtree protocol by assuming that there is a single spanning tree
computed for each security context s and scope γ. For instance, the set of nodes
that can read a given scope s with the same security context γ will compute their
own spanning tree. Each node keeps a map for a given scope and security context
to a pair containing the “eager” and “lazy” sets.

We assume that the lazy set for all scopes and security contexts is pre-populated
with either the entire set of nodes in the cluster, or the result of a peer sampling
services, for larger clusters. We augment each of the four message types (IHAVE,
GRAFT, PURGE, BCAST) to carry the scope and security context information for
every request.

SyncFree Deliverable D.3.3(v0.1), March 23, 2016, Page 9

4 RESULTS

We enumerate the steps in the initial spanning tree construction for a scope s
and a security context γ, which may occur over several rounds of broadcast.

1. At the beginning of the execution of the protocol, no members exist in the
“eager set” of the broadcasting node, and a random set of nodes is placed into
the “lazy set”.

2. Given this, the first message that is broadcast for scope s will be the IHAVE
message, containing the scope s, a unique message identifier derived from the
version vector c, and the security context for the scope γ.

3. Receiving nodes will not receive an eager broadcast within the time interval,
given these messages were never transmitted with eager broadcast.

4. When the timeout expires, nodes for which the information exchange predicate
holds (i.e., for which the integrity labels and secrecy labels are compatible)
will send the receiving node the GRAFT message to move nodes into the
broadcasting node’s “eager set”.

5. Finally, the message will be delivered by BCAST from the broadcasting node
containing the actual message.

This will cause a minimal spanning tree to be computed and maintained that
contains nodes that are only allowed to view the confidential information for a given
scope s.

4.1.2.3 Next steps This work in on-going and we are completing its imple-
mentation and evaluation as the dissemination infrastructure for running Lasp ap-
plications that address Internet-of-things scenarios. We will also evaluate whether
the proposed protocols are suitable for disseminating information among “heavy”
clients, as targeted by Titan.

4.2 Invariants

Systems that adopt weak consistency models have to deal with concurrent oper-
ations not seeing the effects of each other. If CRDTs can be used to guarantee
eventual convergence in these cases, they cannot be used to guarantee that ap-
plication invariants are enforced, which can lead to non-intuitive and undesirable
semantics.

To address this problem, we have researched solutions on how to to maintain
application invariants while minimizing coordination. Most of the work performed
in this context have already been reported in deliverable 3.2. For completeness, we
make a brief overview of our proposals for maintaining global invariants, detailing
only the work that has been performed since M24.

The first work addresses numeric invariants, which accounts for an important
class of application invariants. The second is more general and can efficiently ad-
dress generic application invariants by moving coordination outside of the normal
flow of operation execution. Finally, we are developing an approach that allows to
enforce some invariants without any coordination, by applying the ideas of CRDTs
over a set of objects that can be modified independently.

SyncFree Deliverable D.3.3(v0.1), March 23, 2016, Page 10

4 RESULTS

4.2.1 Enforcing Numeric Invariants

Our first work focused on enforcing numeric invariants [2] in the presence of con-
current updates to counter objects. To this end, we proposed a novel abstract data
type called Bounded Counter. This replicated object, like conventional CRDTs,
allows for operations to execute locally, automatically merges concurrent updates,
and, in contrast to previous counter CRDTs, also enforces numeric invariants while
avoiding any coordination in most cases. This work builds on the ideas of escrow
transactions [18] and the demarcation protocol [9].

We implemented the Bounded Counter in Antidote, and integrated it with the
Antidote transactional model, Transactional Causal+ Consistency. This allows to
provide much stronger guarantees to applications by enforcing numeric invariant.
We are still working on submitting this novel approach for publication.

4.2.2 Explicit Consistency

Our second work proposes a general approach for maintaining applications invari-
ants, based on Explicit Consistency [3]. Explicit Consistency is a novel consistency
semantics for replicated systems. The high level idea is to let programmers define
the application-specific correctness rules that should be met at all times. These
rules are defined as invariants over the database state.

Given the invariants expressed by the programmer, we propose a methodology
for enforcing explicit consistency that has three steps: (i) detect the sets of opera-
tions that may lead to invariant violation when executed concurrently (we call these
sets I-offender sets); (ii) select how to handle I-offender sets , by selecting either
violation-avoidance or invariant-repair techniques; (iii) instrument the application
code to use the selected mechanism on top of a weakly consistent database system.

4.2.2.1 Invariant Violation Avoidance For avoiding that the concurrent ex-
ecution of operations will violate invariants, we have proposed a reservation system
comprising the following techniques.

UID generator: A very common invariant is uniqueness of identifiers [15]. This
problem can be easily solved, without coordination, by statically splitting the space
of identifiers per replica. Indigo provides this service by appending a replica-specific
suffix to a locally-unique identifier.

Multi-level lock reservation: The multi-level lock reservation (or simply
multi-level lock) is our base mechanism to restrict the concurrent execution of op-
erations that can break invariants. A multi-level lock can provide the following
rights: (i) shared forbid, giving the shared right to forbid some action to occur;
(ii) shared allow, giving the shared right to allow some action to occur; (iii) exclusive
allow, giving the exclusive right to execute some action.

When a replica holds one of the above rights, no other replica holds rights of a
different type. For instance, if a replica holds a shared forbid, no other replica has
any form of allow. For an I-offender set , we can use a multi-level lock reservation
for allowing either the execution of one operation or the other for all clients. The
exclusive allow right can be used to assign the right to a single client.

Multi-level mask reservation: For invariants of the form P1∨P2∨. . .∨Pn, the
concurrent execution of any pair of operations that makes two different predicates

SyncFree Deliverable D.3.3(v0.1), March 23, 2016, Page 11

4 RESULTS

false may lead to an invariant violation if all other predicates were originally false.
A multi-level mask reservation, which can be seen as a vector of multi-level locks,
can efficiently control the execution of operations.

When a replica obtains a shared allow right in one entry, it must obtain a shared
forbid right in some other entry. For example, an operation that may make Pi false
needs to obtain the shared allow right on the ith entry and a shared forbid right on
an entry j for which the predicate is true. At runtime, to find an entry to forbid,
it is only necessary to evaluate the current value of the predicate associated with
each entry that can be locked.

Escrow reservation: For numeric invariants of the form x ≥ k, we include an
escrow reservation for allowing some decrements to execute without coordination
[18]. This is similar to the Bounded Counter described before.

We have implemented a variant called escrow reservation for conditions that
can be used to control the number of elements that verify a given condition. This
addresses the situations where the same element can be removed twice, which could
lead to the “leak” of rights.

Partition lock reservation: For some invariants, it is desirable to have the
ability to reserve part of a partitionable resource. For example, consider the invari-
ant that forbids two appointment in a calendar to overlap in time. Two operations
that schedule different appointments will break the invariant if the time periods
overlap. Using a multi-level lock, it would be necessary to obtain an exclusive allow
right for executing any operation to schedule a new tournament.

However, no invariant violation arises if the time periods of concurrent opera-
tions do not overlap. To address this case, we provide a partition lock that allows
a replica to obtain an exclusive lock on an interval of real values.1 Replicas can
obtain locks on multiple intervals, given that no two intervals reserved by different
replicas overlap.

Using Reservations Our static analysis outputs I-offender sets and the cor-
responding invariant violated. A programmer, electing to use the conflict avoidance
approach, must select the type of reservation to be used to avoid invariant viola-
tions. Figure 1 presents a default mapping between types of invariants and the
corresponding reservations. Conservatively, it is always possible to resort to multi-
level locks to enforce any invariant, at the expense of admissible concurrency, as
discussed earlier. In the context of WP4, it has been shown how to prove that a
system that uses a reservation system consisting only of multi-level locks preserves
a given invariant by using the CISE logic [12].

In this period, we have worked on improving the CISE tool, which help pro-
grammers exploiting explicit consistency. The CISE tool is a static analysis tool
for proving integrity invariants of applications using databases with hybrid consis-
tency models. The tool helps a programmer to find minimal consistency guarantees
sufficient for application correctness.

With the feedback provided by the static analysis of his program, a programmer
must decide which reservations will be used to restrict concurrency in a way that
invariants are not violated. Each operation is extended to acquire the appropriate

1 Partition locks are a simplified version of partitionable objects [21] and slot reservations [19].

SyncFree Deliverable D.3.3(v0.1), March 23, 2016, Page 12

4 RESULTS

Invariant type Formula (example) Reservation

Numeric x < K Escrow(x)

Referential p(x)⇒ q(x) Multi-level lock

Disjunction p1 ∨ . . . ∨ pn Multi-level mask

Overlapping t(s1, e1) ∧ t(s2, e2)⇒ Partition lock
s1 ≥ e2 ∨ e1 ≤ s2

Default — Multi-level lock

Table 1: Default mapping from invariants to reservations.

rights before executing its code, and to release appropriate rights afterwards.

4.2.2.2 Invariant Repair The results of our evaluation with the invariant vi-
olation avoidance approach show most operation can execute locally. However, in
some cases, the execution of some operations requires obtaining reservations from
remote site. This leads to high latency, with operation execution taking even longer
than in strong consistency settings, and lower availability as fault may make it im-
possible to obtain the necessary reservations.

We now show how to support invariant repair. In our presentation we use the
example of referential integrity, but our approach can address other invariants.

Running example We chose referential integrity as running example due to
its importance in relational databases and concurrent programming in general. We
consider a toy database composed of two entities, A and B. We assume, without
loss of generality, that each entity has a single attribute. There is a one-to-many
relationship Ra→b from elements of A to elements of B.

Consider the implementation of this example using an object-relational map-
ping approach, where entities are modeled as two distinct sets and the relationship
between them are modeled by a third set of pairs (a, b) : a ∈ A, b ∈ B.

We assume that the storage system stores each set in separate objects and that
it provides causal consistency and atomic updates across multiple objects.

The integrity constraint of this model is broken when ∃(a, b) ∈ Ra→b : a /∈
A ∨ b /∈ B, i.e. there is a relationship between entity a and b, but one or both of
them do not exist. We consider, for simplicity, that the application is correct under
strong consistency, i.e. any sequential execution of the program does not violate
the invariant. An invariant violation only occurs when a client issues an operation
to create a new relation (a, b) while another client issues an operation to remove a
or b from A or B, respectively.

Better safe than sorry To allow fast execution without constraining concur-
rency, every replica must be able to reply to a request without depending on remote
state. Under these circumstances it is not possible to avoid concurrent executions
that might leave the database in an inconsistent state. Since detecting conflicts and
fixing invalid database state is expensive, we propose solving conflicts beforehand
instead, so that operation execution is always safe. The idea is that an operation
can have extra effects in order to avoid generating an invalid state when replicas are
reconciled. As a trade-off, the semantics of operations that are implemented this

SyncFree Deliverable D.3.3(v0.1), March 23, 2016, Page 13

4 RESULTS

way is limited, but, as we show next, interesting semantics can be provided with
proper use of convergence rules.

In the next section we describe two alternative solutions for the described prob-
lem. In the first solution we rely exclusively on existing CRDT semantics, while in
the second solution we devise a new convergence rule for concurrent operations to
implement an alternative semantics.

Adding missing elements When a new element (a, b) is added to Ra→b, the
operation that adds this element to the relations set must ensure that a ∈ A and b ∈
B to preserve referential integrity. These elements might be removed concurrently
at other replicas leading to an invariant violation after replicas reconcile. To avoid
this conflict, we modify the operation that adds (a, b) to Ra→b to also add a to A and
b to B, atomically, and set the convergence rule of each set to use a Add-Wins policy.
This policy ensures that if an add and remove operations execute concurrently for
the same element, then the element will be present in the set, cancelling the effects of
the remove operation. The consequence of our modifications is that any concurrent
remove for elements a or b will be cancelled by the additional effect of the operation
that adds (a, b). Therefore, at any time, each replica is in a consistent state.

Ensuring that elements are removed In the previous solution, whenever
the conflicting operations execute, the operation that adds the relation takes prece-
dence over the remove operations. We might want the opposite semantics, i.e. that
whenever a remove operation for a or b is issued, we want to cancel any concurrent
operation that adds and element to Ra→b containing one of those values. This ex-
ample is different from the previous and cannot be solved in the same way, because
we do not know the possible pairs containing a or b that might be added to the set,
and it would be too expensive to consider the whole domain of A or B. To this
end, we had to design a new set CRDT that prevents concurrently adding elements
to a set that match a given criteria, without specifying their values.

The intuition behind this new set is to provide a special touch(Predicate p)
operation that accepts a predicate that specifies which elements we want to prevent
adding concurrently to the set. This way, whenever we execute a remove operation
for elements a or b, we also execute a touch in Ra→b that prevent the addiction of
any pair matching (a, ∗) or (∗, b), where ∗ means any element.

Repair conflicts only when necessary Now lets consider that the number
of relations between A and B is limited. If the size of Ra→b exceeds its limit, due
to concurrent operations that add elements to this set, we would like to remove
the extra elements from the set. But when a replica receives an update that makes
the set bigger than the allowed, it is still not possible to determine if there was an
invariant violation, because some concurrent operation, that has not been delivered
locally, may remove the exceeding elements. The system cannot wait for all con-
current operations to arrive before deciding which elements to remove, however it
can postpone this decision, to make it more accurate.

While the client does not read Ra→b the database is not showing any inconsis-
tency, therefore we do not need to restore the size of the set until it is requested for

SyncFree Deliverable D.3.3(v0.1), March 23, 2016, Page 14

4 RESULTS

read. At that point, the replica must check if the size of the set was exceeded and
use an arbitrary convergence policy to rule out exceeding elements, even if there is
some missing concurrent operations. The decision must be durable, so that other
replicas are able to take the same decision when they coordinate with this replica.
The strategy allows that some elements that are visible at a moment to be auto-
matically removed later, as consequence of some concurrent operation that was not
yet delivered, but this is a trade-off in semantics to preserve availability.

This repair strategy poses new consistency problems to the programmer, since
some elements might be removed in the background, leading to the same problems
discussed before to maintain integrity across multiple objects.

Tools for programming Weak Consistency In the previous section we
have seen how to preserve referential integrity in applications developed on top of
weak consistency. Even though the transformations to the operations are easy to
explain, it might be difficult for the average programmers to devise them. For this
reason, we are also working on tools that can ease identifying invariant violations
in applications and proposes possible solutions.

We are building a tool that, given the specification of an application’s operations
and invariants, identifies conflicts that might arise due to concurrent executions and
proposes transformations to the operations to fix them, without strengthening the
consistency model employed. For identifying conflicts, it is possible to rely on CISE
logic [12, 17] or use the tool included in Indigo [3]. We have been extending this
later tool to propose transformations to the operations like the ones we described
before.

We are currently evaluating the invariant repair approach, which we expect
to submit for publication in late April. Our results show that this approach can
address the problem of operations with high latency at the cost of typically minor
increases in the latency of other operations.

4.3 Extensions to Works Previously Reported

A number of works that started being developed in the context of Tasks 3.1 and 3.2
continued during this period, some of them leading to publications. We now briefly
overview the most relevant work, some of them being developed jointly with other
Work Packages.

4.3.1 Quality-of-data

In systems where data is weakly consistent, it might be interesting for an application
to have information about how divergent the data is. In deliverable 3.2 we have
reported a number of proposal for providing this kind of information. During this
period, our work related with this topic focused on two main directions.

First, we continued the work on defining and evaluating algorithms for propa-
gating the necessary information to be able to provide divergence information in
the replicas. This work is being done relying on simulation, as discussed in the
previous report. For the different divergence metrics proposed, we are currently
focusing on the following: Elapsed Time Since Last Sync; # of Operations That

SyncFree Deliverable D.3.3(v0.1), March 23, 2016, Page 15

4 RESULTS

Are Known to be Missing ; Estimated # of Missing Operations per Replica; and
Probability of staleness of each replica. The selection of the metrics to focus on was
done based on feedback received about how interesting the different metrics could
be. We currently expect to have results for a submission before the Summer.

Second, in the context of the FMK-inspired application being developed, we
have studied how divergence metrics could be used to improve the application and
how to implement this divergence metrics in Antidote.

The base divergence metric that will be used will be Elapsed Time Since Last
Sync to provide information on the potential staleness of the local replica. This
divergence metric can be applied to every data object and its implementation in
Antidote is rather straightforward, as the replication protocols already propagate
the necessary information.

The second divergence metric we will be using is the Estimated # of Missing
Operations per Replica, which we will apply to the objects storing the receipts for
a given pharmacy. Unlike other data object, for which updates are infrequent, we
expect this object to receive a more regular stream of updates, which will allow to
infer the evolution model of data.

In the next period, we expect to report on the implementation of this diver-
gence metrics in Antidote and on its evaluation in the context of the FMK-inspired
application as part of the final project experiments.

4.3.2 Delta State-based CRDTs

Delta State-based CRDTs provide an efficient mechanism for synchronizing state-
based CRDTs, by propagating only deltas among replicas. In this period, we have
proposed additional CRDT designs [6], which are publicly available 2. Additionally,
we have worked on a journal submission of this work – section 7.3.

An extension to the delta state-based model was also proposed [20]. This pro-
posal extends delta-based CRDTs by allowing to query a CRDT for the delta be-
tween the current version and a previous version identified by a version vectors.
This allows to improve the first synchronisation step, which is specially important
in settings where a replica changes its synchronization peers often, as it is the case
when using gossip protocols.

4.3.3 Efficient Support of Large CRDTs in Riak

The deployment of CRDTs in Riak 2.0, and their use in multiple production scenario
has led to performance problems due to unanticipated usage, such as clients storing
huge number of elements inside sets.

Basho continued to address this problem, by redesigning the support for CRDTs
inside Riak. This work explores ideas of Delta State-based CRDTs and will be
reported in more detail elsewhere at M36.

2https://github.com/CBaquero/delta-enabled-crdts

SyncFree Deliverable D.3.3(v0.1), March 23, 2016, Page 16

https://github.com/CBaquero/delta-enabled-crdts

4 RESULTS

4.3.4 Causality with partial knowledge

We have been work on designing efficient techniques for tracking causality among
operations. As discussed in previous reports, the key challenge relates with the
size of metadata necessary to track causality, which is even more challenging when
dealing with resource-limited devices.

We have proposed an approach that keeps partial knowledge on causality and
we have shown how to use this partial information [13]. Out work provides the
first proof-theoretic causality modelling for distributed partial knowledge. We show
that the partial knowledge gives rise to a weaker model than classical causality. We
provide rules for offline deduction about causality. We define two notions of bisim-
ilarity between devices, with which we prove two important results. Namely, no
matter the order of addition/removal, two devices deduce similarly about causality
so long as: (1) the same causal information is fed to both; (2) they start bisimilar
and erase the same causal information.

In the next period we will study how the proposed model can be used in the
works developed in the context of the project, in particular Antidote.

4.3.5 Other works

During this period, the following results submitted in the previous periods were
published:

• The work on Conflict-free Partially Replicated Data Structure, where a CRDT
can be partitioned in multiple particles was published in CloudCom’2015 [10].

• We have published a paper on logical clocks, which includes Dotted Version
Vectors and the Dotted Vector Clock variant in ACM Queue [7] and as a
practice paper at ACM Comm. of the ACM [8].

SyncFree Deliverable D.3.3(v0.1), March 23, 2016, Page 17

5 PUBLICATIONS

5 Publications

The work performed in the context of WP3 and in collaboration with other work
packages has led to several papers. The following papers have been published during
this period:

• [12] Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh,
and Marc Shapiro. ’Cause I’m strong enough: Reasoning about consistency
choices in distributed systems. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2016, pages 371– 384, New York, NY, USA, 2016. ACM. ($ 6.1)

• [10] Iwan Briquemont, Manuel Bravo, Zhongmiao Li, and Peter Van Roy.
Conflict-free Partially Replicated Data Types. In Proceedings of the 7th
IEEE International Conference on Cloud Computing Technology and Science
(CloudCom 2015). IEEE, Nov 2015. ($ 6.2)

• [7] Carlos Baquero and Nuno Preguiça. Why logical clocks are easy. Queue,
January 2016. ACM. ($ 6.3)

The following papers have been accepted and will be published during the next
period:

• [8] Carlos Baquero and Nuno Preguiça. Why logical clocks are easy. Commun.
ACM (to appear), April 2016. ACM. ($ 6.4)

• [5] Valter Balegas, Cheng Li, Mahsa Najafzadeh, Daniel Porto, Allen Clement,
Sérgio Duarte, Carla Ferreira, Johannes Gehrke, João Leitão, Nuno Preguiça,
Rodrigo Rodrigues, Marc Shapiro, and Viktor Vafeiadis. Geo-replication:
Fast if possible, consistent if necessary. IEEE Data Engineering Bulletin (to
appear), 2016. ($ 6.5)

• [4] Valter Balegas, Sérgio Duarte, Carla Ferreira, Nuno Preguiça, and Rodrigo
Rodrigues. Making Weak Consistency Great Again. In Proceedings of the
Second Workshop on Principles and Practice of Consistency for Distributed
Data (to appear), PaPoC ’16. ACM, 2016. ($ 6.6)

• [6] Carlos Baquero, Paulo Sérgio Almeida, and Carl Lerche. The problem
with embedded CRDT counters and a solution. In Proceedings of the Second
Workshop on Principles and Practice of Consistency for Distributed Data (to
appear), PaPoC ’16. ACM, 2016. ($ 6.7)

• [20] Albert van der Linde, João Leitão, and Nuno Preguiça. ∆-CRDTs: Mak-
ing δ-CRDTs Delta-Based. In Proceedings of the Second Workshop on Prin-
ciples and Practice of Consistency for Distributed Data (to appear), PaPoC
’16. ACM, 2016. ($ 6.8)

• [17] Mahsa Najafzadeh, Alexey Gotsman, Hongseok Yang, Carla Ferreira,
and Marc Shapiro. The CISE Tool: Proving Weakly-Consistent Applications
Correct. In Proceedings of the Second Workshop on Principles and Practice
of Consistency for Distributed Data (to appear), PaPoC ’16. ACM, 2016. ($
6.9)

SyncFree Deliverable D.3.3(v0.1), March 23, 2016, Page 18

5 PUBLICATIONS

The following paper are under submission or being prepared for submission.

• [22] Mathias Weber, Annette Bieniusa, and Arnd Poetzsch-Heffter. Access
control for weakly consistent cloud-storage systems. Submitted for publica-
tion, 2016. ($ 7.1)

• [16] Christopher Meiklejohn. Loquat: A partially replicated, secure, broadcast
protocol for edge computation. Submitted for publication, 2016. ($ 7.2)

• [1] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. Delta state repli-
cated data types. Submitted for publication, 2016. ($ 7.3)

• [13] Seyed H. Haeri (Hossein), Peter Van Roy, Carlos Baquero, and Christo-
pher Meiklejohn. Deduction with partial knowledge about causality. Submit-
ted for publication, 2016. ($ 7.4)

SyncFree Deliverable D.3.3(v0.1), March 23, 2016, Page 19

REFERENCES

References

[1] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. Delta state replicated
data types. Submitted for publication, 2016.

[2] V. Balegas, D. Serra, S. Duarte, C. Ferreira, M. Shapiro, R. Rodrigues, and
N. Preguica. Extending eventually consistent cloud databases for enforcing
numeric invariants. In Reliable Distributed Systems (SRDS), 2015 IEEE 34th
Symposium on, pages 31–36, Sept 2015.

[3] Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Nuno
Preguiça, Mahsa Najafzadeh, and Marc Shapiro. Putting consistency back
into eventual consistency. In Proceedings of the Tenth European Conference on
Computer Systems, EuroSys ’15, pages 6:1–6:16, New York, NY, USA, 2015.
ACM.

[4] Valter Balegas, Sérgio Duarte, Carla Ferreira, Nuno Preguiça, and Rodrigo
Rodrigues. Making Weak Consistency Great Again. Presented at the Second
Workshop on Principles and Practice of Consistency for Distributed Data,
PaPoC ’16, 2016.

[5] Valter Balegas, Cheng Li, Mahsa Najafzadeh, Daniel Porto, Allen Clement,
Sérgio Duarte, Carla Ferreira, Johannes Gehrke, João Leitão, Nuno Preguiça,
Rodrigo Rodrigues, Marc Shapiro, and Viktor Vafeiadis. Geo-replication: Fast
if possible, consistent if necessary. IEEE Data Engineering Bulletin (to appear),
2016.

[6] Carlos Baquero, Paulo Sérgio Almeida, and Carl Lerche. The problem with em-
bedded CRDT counters and a solution. In Proceedings of the Second Workshop
on Principles and Practice of Consistency for Distributed Data (to appear), Pa-
PoC ’16. ACM, 2016.

[7] Carlos Baquero and Nuno Preguiça. Why logical clocks are easy. Queue,
January 2016.

[8] Carlos Baquero and Nuno Preguiça. Why logical clocks are easy. Commun.
ACM, April 2016.

[9] Daniel Barbará-Millá and Hector Garcia-Molina. The demarcation protocol:
A technique for maintaining constraints in distributed database systems. The
VLDB Journal, 3(3):325–353, July 1994.

[10] Iwan Briquemont, Manuel Bravo, Zhongmiao Li, and Peter Van Roy. Conflict-
free partially replicated data types. In Proceedings of the 7th IEEE Interna-
tional Conference on Cloud Computing Technology and Science (CloudCom
2015). IEEE, Nov 2015.

[11] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li,

SyncFree Deliverable D.3.3(v0.1), March 23, 2016, Page 20

REFERENCES

Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,
Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher
Taylor, Ruth Wang, and Dale Woodford. Spanner: Google’s globally
distributed database. ACM Trans. Comput. Syst., 31(3):8:1–8:22, August 2013.

[12] Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh, and Marc
Shapiro. ’cause i’m strong enough: Reasoning about consistency choices in dis-
tributed systems. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2016, pages 371–
384, New York, NY, USA, 2016. ACM.

[13] Seyed H. Haeri (Hossein), Peter Van Roy, Carlos Baquero, and Christopher
Meiklejohn. Deduction with partial knowledge about causality. Submitted for
publication, 2016.

[14] Joao Leitao, Jose Pereira, and Luis Rodrigues. Epidemic broadcast trees. In
Proceedings of the 26th IEEE International Symposium on Reliable Distributed
Systems, SRDS ’07, pages 301–310, Washington, DC, USA, 2007. IEEE Com-
puter Society.

[15] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguiça, and
Rodrigo Rodrigues. Making geo-replicated systems fast as possible, consistent
when necessary. In Proceedings of the 10th USENIX Conference on Operating
Systems Design and Implementation, OSDI’12, pages 265–278, Berkeley, CA,
USA, 2012. USENIX Association.

[16] Christopher Meiklejohn. Loquat: A partially replicated, secure, broadcast
protocol for edge computation. Submitted for publication, 2016.

[17] Mahsa Najafzadeh, Alexey Gotsman, Hongseok Yang, Carla Ferreira, and Marc
Shapiro. The CISE Tool: Proving Weakly-Consistent Applications Correct. In
Proceedings of the Second Workshop on Principles and Practice of Consistency
for Distributed Data (to appear), PaPoC ’16. ACM, 2016.

[18] Patrick E. O’Neil. The escrow transactional method. ACM Trans. Database
Syst., 11(4):405–430, December 1986.

[19] Nuno Preguiça, J. Legatheaux Martins, Miguel Cunha, and Henrique Domin-
gos. Reservations for conflict avoidance in a mobile database system. In Pro-
ceedings of the 1st International Conference on Mobile Systems, Applications
and Services, MobiSys ’03, pages 43–56, New York, NY, USA, 2003. ACM.

[20] Albert van der Linde, João Leitão, and Nuno Preguiça. ∆-CRDTs: Making
δ-CRDTs Delta-Based. In Proceedings of the Second Workshop on Principles
and Practice of Consistency for Distributed Data (to appear), PaPoC ’16. ACM,
2016.

[21] G. D. Walborn and P. K. Chrysanthis. Supporting semantics-based transaction
processing in mobile database applications. In Proceedings of the 14TH Sympo-
sium on Reliable Distributed Systems, SRDS ’95, pages 31–, Washington, DC,
USA, 1995. IEEE Computer Society.

SyncFree Deliverable D.3.3(v0.1), March 23, 2016, Page 21

REFERENCES

[22] Mathias Weber, Annette Bieniusa, and Arnd Poetzsch-Heffter. Access control
for weakly consistent cloud-storage systems. Submitted for publication, 2016.

SyncFree Deliverable D.3.3(v0.1), March 23, 2016, Page 22

6 PUBLISHED PAPERS

6 Published papers

6.1 Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa
Najafzadeh, and Marc Shapiro. ’Cause I’m strong enough:
Reasoning about consistency choices in distributed sys-
tems. In Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2016, pages 371– 384, New York, NY,
USA, 2016. ACM.

SyncFree Deliverable D.3.3(v0.1), March 23, 2016, Page 23

’Cause I’m Strong Enough:
Reasoning about Consistency Choices in Distributed Systems

Alexey Gotsman
IMDEA Software Institute, Spain

Hongseok Yang
University of Oxford, UK

Carla Ferreira
NOVA LINCS, DI, FCT,

Universidade NOVA de Lisboa, Portugal

Mahsa Najafzadeh
Sorbonne Universités, Inria,

UPMC Univ Paris 06, France

Marc Shapiro
Sorbonne Universités, Inria,

UPMC Univ Paris 06, France

Abstract
Large-scale distributed systems often rely on replicated databases
that allow a programmer to request different data consistency guar-
antees for different operations, and thereby control their perfor-
mance. Using such databases is far from trivial: requesting stronger
consistency in too many places may hurt performance, and request-
ing it in too few places may violate correctness. To help program-
mers in this task, we propose the first proof rule for establishing
that a particular choice of consistency guarantees for various oper-
ations on a replicated database is enough to ensure the preservation
of a given data integrity invariant. Our rule is modular: it allows
reasoning about the behaviour of every operation separately under
some assumption on the behaviour of other operations. This leads
to simple reasoning, which we have automated in an SMT-based
tool. We present a nontrivial proof of soundness of our rule and
illustrate its use on several examples.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams

Keywords Replication; causal consistency; integrity invariants

1. Introduction
To achieve availability and scalability, many modern distributed
systems rely on replicated databases, which maintain multiple
replicas of shared data. Clients can access the data at any of the
replicas, and these replicas communicate changes to each other
using message passing. For example, large-scale Internet services
use data replicas in geographically distinct locations, and appli-
cations for mobile devices keep replicas locally to support offline

use. Ideally, we would like replicated databases to provide strong
consistency, i.e., to behave as if a single centralised node handles
all operations. However, achieving this ideal usually requires syn-
chronisation among replicas, which slows down the database and
even makes it unavailable if network connections between replicas
fail [2, 24].

For this reason, modern replicated databases often eschew syn-
chronisation completely; such databases are commonly dubbed
eventually consistent [47]. In these databases, a replica performs
an operation requested by a client locally without any synchronisa-
tion with other replicas and immediately returns to the client; the
effect of the operation is propagated to the other replicas only even-
tually. This may lead to anomalies—behaviours deviating from
strong consistency. One of them is illustrated in Figure 1(a). Here
Alice makes a post while connected to a replica r1, and Bob, also
connected to r1, sees the post and comments on it. After each of
the two operations, r1 sends a message to the other replicas in the
system with the update performed by the user. If the messages with
the updates by Alice and Bob arrive to a replica r2 out of order,
then Carol, connected to r2, may end up seeing Bob’s comment,
but not Alice’s post it pertains to. The consistency model of a repli-
cated database restricts the anomalies that it exhibits. For example,
the model of causal consistency [33], which we consider in this pa-
per, disallows the anomaly in Figure 1(a), yet can be implemented
without any synchronisation. The model ensures that all replicas in
the system see causally dependent events, such as the posts by Al-
ice and Bob, in the order in which they happened. However, causal
consistency allows different replicas to see causally independent
events as occurring in different orders. This is illustrated in Fig-
ure 1(b), where Alice and Bob concurrently make posts at r1 and
r2. Carol, connected to r3 initially sees Alice’s post, but not Bob’s,
and Dave, connected to r4, sees Bob’s post, but not Alice’s. This
outcome cannot be obtained by executing the operations in any to-
tal order and, hence, deviates from strong consistency.

Such anomalies related to the ordering of actions are often ac-
ceptable for applications. What is not acceptable is to violate cru-
cial well-formedness properties of application data, called integrity
invariants. Consistency models that do not require any synchroni-
sation are often too weak to ensure these. For example, consider a
toy banking application where the database stores the balance of a
single account that clients can make deposits to and withdrawals
from. In this case, an integrity invariant may require the account
balance to be always non-negative. Consider the database compu-

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

POPL’16, January 20–22, 2016, St. Petersburg, FL, USA
ACM. 978-1-4503-3549-2/16/01...
http://dx.doi.org/10.1145/2837614.2837625

371

add(post)

r1 r2

add(comment)

query:
{comment}

(a)

add(postA)
r1 r2 r3 r4

query:
{postA}

add(postB)

query:
{postB}

(b)

withdraw(100):
✔

r1 r2

query: -100query: -100

σinit = 100(c)

withdraw(100):
✔

Figure 1. Illustrations of replicated database computations.

add(post)

add(comment) query:
{post, comment}

(a)

add(postA)

query: {postA}

add(postB)

(b)

query: {postB}

withdraw(100):
{τ}, ✔

query: 0query: 0

σinit = 100, τ ⋈ τ(c)

withdraw(100):
{τ}, ✔

Figure 2. Examples illustrating Definition 1. We omit return values when they are ⊥ and token sets when they are empty.

tation in Figure 1(c), allowed by causal consistency. Initially all
replicas store the same balance of 100. Alice and Bob, connected
to r1 and r2, both withdraw 100, thinking that there are sufficient
funds available. Once the two replicas exchange the updates, the
balance becomes −100, violating the integrity invariant. To ensure
the integrity invariant in this example, we have to introduce syn-
chronisation between replicas, and, since synchronisation is expen-
sive, we would like to introduce it sparingly. To allow this, some
research [9, 32, 42, 44] and commercial [6, 10, 35] databases now
provide hybrid consistency models that allow the programmer to
request stronger consistency for certain operations and thereby in-
troduce synchronisation. For example, a consistency model may
execute some operations under causal consistency, and some under
strong consistency [32]. To preserve the integrity invariant in our
banking application when using this model, only withdrawal op-
erations need to use strong consistency, and hence, synchronise to
ensure that the account is not overdrawn; deposit operations may
use causal consistency and hence proceed without synchronisation.
Requesting stronger consistency in hybrid models is similar to the
use of fences in weak memory models of shared-memory multipro-
cessors and programming languages [11] (see §7 for a comparison).

Even though hybrid consistency models allow the programmer
to fine-tune consistency level, using these models effectively is far
from trivial. Requesting stronger consistency in too many places
may hurt performance and availability, and requesting it in too
few places may violate correctness. Striking the right balance re-
quires the programmer to reason about the application behaviour
on the subtle semantics of the consistency model, taking into ac-
count which anomalies are disallowed by a particular consistency
strengthening and whether disallowing these anomalies is enough
to ensure correctness. This difficulty is compounded by the peren-
nial challenge of reasoning about concurrency, present even with
strong consistency—having to consider the huge number of possi-
ble interactions between concurrently executing operations.

To help programmers exploit hybrid consistency models, we
propose the first proof rule and tool for proving integrity invariants
of applications using replicated databases with a range of hybrid
models. In more detail, our first contribution is a generic hybrid
consistency model (§2) that is flexible enough to encode a variety
of consistency models for replicated databases proposed in the lit-
erature [9, 32, 33, 42]. It guarantees causal consistency by default
and allows the programmer to additionally specify which pairs of
operations may not execute without synchronisation by means of a

special conflict relation. For example, to ensure the non-negativity
of balances in the banking application, the conflict relation may re-
quire any pair of withdrawals to synchronise, so that one of them
is aware of the effect of the other. This is equivalent to execut-
ing withdrawals under strong consistency. In general, different in-
stances of the conflict relation correspond to different interfaces
for strengthening consistency proposed in the literature. Our proof
rule is developed for the generic consistency model and, hence,
applies to existing models that can be represented as its instanti-
ations. We specify our consistency model formally (§3) using the
approach previously proposed for specifying variants of eventual
consistency [15]. In this approach, a database computation is de-
noted by a partial order on client operations, representing causality,
and the conflict relation imposes additional constraints on this or-
der.

Our next, and key, technical contribution is a proof rule for
showing that a set of operations preserves a given integrity invari-
ant when executed on our consistency model with a given choice of
conflict relation (§4). For example, we can prove that withdrawals
and deposits preserve the non-negativity of balances when executed
with the conflict relation described above. To avoid explicit reason-
ing about all possible interactions between operations, our proof
rule is modular: it allows us to reason about the behaviour of every
operation separately under some assumption on the behaviour of
other operations, which takes into account the conflict relation. In
this way, our proof rule allows the programmer to reason precisely
about how strengthening or weakening consistency of certain oper-
ations affects correctness.

The modular nature of our proof rule allows it to reason in
terms of states of a single database copy, just like in proof rules for
strongly consistent shared-memory concurrency. We have proved
that this simple reasoning is sound, despite the weakness of the
consistency model (§5). As part of this proof we have identified
a more general event-based rule that reasons directly in terms
of partial orders on events representing database computations,
instead of database states that these events lead to. The soundness
of the original state-based rule is proved by deriving it from the
event-based one. In this way, the event-based rule explicates the
reasons for the soundness of the state-based rule.

We have also developed a prototype tool that automates our
proof rule by reducing checking its obligations to SMT queries
(§6). Using the tool, we have verified several example applications
that require strengthening consistency in nontrivial ways. These

372

include an extension of the above banking application, an online
auction service and a course registration system. In particular, we
were able to handle applications using replicated data types (aka
CRDTs [40]), which encapsulate policies for automatically merg-
ing the effects of operations performed without synchronisation at
different replicas. The fact that we can reduce checking the correct-
ness properties of complex computations in our examples to query-
ing off-the-shelf SMT tools demonstrates the simplicity of reason-
ing required by our approach.

2. Consistency Model, Informally
We start by presenting our generic consistency model. Even though
this model is not implemented in its full generality by an existing
database, it can encode a variety of models that have in fact been
implemented. In this section we present the programming interface
of our consistency model and describe its semantics informally,
from an operational perspective. We give a formal semantics in §3.

2.1 Causal Consistency and Its Implementation
Our hybrid model guarantees at least causal consistency [33], al-
ready mentioned in §1. We therefore start by presenting informally
how a typical implementation of a causally consistent database op-
erates. Let State be the set of possible states of the data managed
by the database system. We denote states by σ and let σinit be a
distinguished initial state. Applications define a set of operations
Op = {o, . . .} on the data and interact with the database by issu-
ing these operations. For simplicity, we assume that an operation
always terminates and returns a single value from a set Val. We use
a value ⊥ ∈ Val to model operations that return no value. We do
not consider operation parameters, since these can be part of the
operation name.

The database implementation consists of a set of replicas, each
maintaining a complete copy of the database state; we identify
replicas by r1, r2, . . . For the purposes of the informal explanation,
we assume that replicas never fail. A client operation is initially ex-
ecuted at a single replica, which we refer to as its origin replica. At
this replica, the execution of the operation is not interleaved with
that of others. This execution updates the replica state determinis-
tically, and immediately returns a value to the client. After this, the
replica sends a message to all other replicas containing the effect
of the operation, which describes the updates done by the opera-
tion to the database state. The replicas are guaranteed to receive the
message at most once. Upon receipt, the replicas apply the effect to
their state.

In this paper, we abstract from a particular language in which
operations may be written and assume that their semantics is given
by a function

F ∈ Op→ (State→ (Val× (State→ State))). (1)

To aid readability, for o ∈ Op we write Fo instead of F(o) and let

∀o, σ. Fo(σ) = (F val
o (σ),F eff

o (σ)).

Given a state σ of o’s origin replica, F val
o (σ) ∈ Val determines the

return value of the operation and F eff
o (σ) ∈ State → State its

effect. The latter is a function, to be applied by every replica to its
state to incorporate the operation’s effect: immediately at the origin
replica, and after receiving the corresponding message at all other
replicas.

For example, states in the toy banking application of §1 are
integers, representing the account balance: State = Z. We define

deposit
(20)

r1 r2

interest

query:
125

query:
125

(a)

deposit
(20)

interest

query:
125

query:
125

(b)

Figure 3. (a) An illustration of a database computation; (b) the
corresponding execution of Definition 1. We assume σinit = 100.

the semantics of operations for depositing an amount a > 0,
accruing a 5% interest and querying the balance:

Fdeposit(a)(σ) = (⊥, (λσ′. σ′ + a));

Finterest(σ) = (⊥, (λσ′. σ′ + 0.05 ∗ σ));

Fquery(σ) = (σ, skip),

(2)

where skip = (λσ′. σ′). Figure 3(a) illustrates a database compu-
tation involving these operations. Note that interest first computes
the interest 0.05 ∗σ based on the balance σ at the origin replica; its
effect then adds the resulting amount to the balance at each replica.
In particular, in Figure 3(a) interest at r2 does not take into account
the deposit made at r1. This behaviour is the price to pay for avoid-
ing synchronisation between replicas. The good news is that, once
the replicas r1 and r2 exchange the effects of deposit and interest,
they converge to the same balance, which is returned by the query
operations.

Such convergence is not guaranteed for arbitrary operations. For
example, we could implement interest so that its effect multiplied
the balance by 1.05 at each replica where it is applied:

F eff
interest(σ) = (λσ′. (1.05 ∗ σ′)). (3)

In the scenario in Figure 3(a), this would lead the query operations
to return different values, 126 at r1 and 125 at r2. In this case,
even after all messages are delivered, replicas end up in different
states. This is undesirable for database users: we would like the
implementation to be convergent, i.e., such that two replicas that
see the same set of operations are in the same state. In particular,
if users stop performing updates to the database, then once all
outstanding messages are delivered, all replicas should reach the
same state [47]. To ensure convergence, for now we require that the
effects of all operations commute (we relax this condition slightly
in §2.2):

∀o1, o2, σ1, σ2. F eff
o1 (σ1) ◦ F eff

o2 (σ2) = F eff
o2 (σ2) ◦ F eff

o1 (σ1). (4)

For example, this condition holds of the effects defined by (2). The
requirement of commutativity is not very taxing: as we elaborate
in §6, to satisfy (4), programmers can exploit ready-made repli-
cated data types (aka CRDTs [40]). These encapsulate commuta-
tive implementations of policies for merging concurrent updates to
the database.

As we explained in §1, asynchronous operation processing may
lead to anomalies, and causal consistency disallows some of them.
It ensures that message propagation between replicas is causal: if a
replica sends a message containing the effect of an operation o2

after it sends or receives a message containing the effect of an
operation o1, then no replica will receive the message about o2

before it receives the one about o1. In this case we say that the
invocation of o2 causally depends on that of o1. Causal propagation
disallows the computation in Figure 1(a), but allows the one in
Figure 1(b).

373

Token = {τ}
./ = {(τ, τ)}

Fdeposit(a)(σ) = (⊥, (λσ′. σ′ + a), ∅)
Finterest(σ) = (⊥, (λσ′. σ′ + 0.05 ∗ σ), ∅)
Fquery(σ) = (σ, skip, ∅)

Fwithdraw(a)(σ) = if σ ≥ a then (X, (λσ′. σ′ − a), {τ})
else (7, skip, {τ})

Figure 4. Operation semantics for the banking application. Note
that a > 0.

2.2 Strengthening Consistency
The guarantees provided by causal consistency are too weak to
ensure certain integrity invariants. For example, in our banking
application we would like the state at each replica to satisfy the
invariant

I = {σ | σ ≥ 0}. (5)
To ensure this, an operation for withdrawing an amount a > 0
could check whether the account has sufficient funds and return X
or 7 depending on the result:

Fwithdraw(a)(σ) = if σ ≥ a then (X, (λσ′. σ′ − a)) else (7, skip).

This is enough to maintain the invariant when all operations are
processed at the same replica, but not when they are processed
asynchronously at different replicas. This is illustrated by the com-
putation in Figure 1(c), already explained in §1.

The problem in this example arises because two particular op-
erations update the database concurrently, without being aware of
each other. To address this, our consistency model allows the pro-
grammer to strengthen causal consistency by specifying explic-
itly which operations may not be executed in this way. Namely,
the model is parameterised by a token system T = (Token, ./),
consisting of a set of tokens Token and a symmetric conflict re-
lation ./ ⊆ Token × Token. Tokens are ranged over by τ and
their sets, by T . For sets T1 and T2 of tokens we let T1 ./ T2

if there exists a pair of conflicting tokens coming from these sets:
∃τ1 ∈ T1.∃τ2 ∈ T2. τ1 ./ τ2.

Each operation may acquire a set of tokens. To account for this,
we redefine the type of F in (1) as

F ∈ Op→ (State→ (Val× (State→ State)× P(Token)))
(6)

and let

∀o, σ.Fo(σ) = (F val
o (σ),F eff

o (σ),F tok
o (σ)).

Thus, F tok
o (σ) ∈ P(Token) gives the set of tokens acquired by

the operation o when executed in the state σ. Informally, our con-
sistency model guarantees that operations that acquire tokens con-
flicting according to ./ have to be causally dependent one way or
another: the origin replica of one operation must have incorpo-
rated the effect of the other by the time the former operation ex-
ecutes. Ensuring this in implementations requires replicas to syn-
chronise [9, 32].

In our consistency model, we can guarantee the preservation of
invariant (5) in the banking application by defining operation se-
mantics as in Figure 4. Thus, withdraw acquires a token τ con-
flicting with itself, and all other operations do not acquire any to-
kens. Then the scenario in Figure 1(c) cannot happen: one with-
drawal would have to be aware of the other and would therefore
fail. However, deposits and interest accruals can be causally inde-
pendent with all operations, and replicas can therefore execute them
without any synchronisation [9, 32]. In this example, the token τ is

analogous to a mutual exclusion lock in shared-memory concur-
rency. Our proof method (§4) establishes that this use of the token
is indeed sufficient to preserve the integrity invariant (5).

Since operations acquiring conflicting tokens have to be
causally dependent, causal message propagation (§2.1) ensures that
all replicas see such operations in the same order. This allows us to
weaken (4) to require commutativity only for operations that do not
acquire conflicting tokens:

∀o1, o2, σ1, σ2. (F tok
o1 (σ1) ./ F tok

o2 (σ2)) ∨
(F eff

o1 (σ1) ◦ F eff
o2 (σ2) = F eff

o2 (σ2) ◦ F eff
o1 (σ1)). (7)

As we show in §3, this is sufficient to ensure the property of con-
vergence that we introduced in §2.1. For example, the operations
in Figure 4 satisfy (7). Furthermore, if all operations except query
acquired the token τ , then we would be able to implement interest
by the effect given by (3) without compromising convergence.

3. Formal Semantics
We now formally define the semantics of our consistency model,
i.e., the set of all client-database interactions it allows. To keep
the presentation as simple as possible, we define the semantics
declaratively: our formalism does not refer to implementation-level
concepts, such as replicas or messages, even though we do use
these concepts in informal explanations. We build on an approach
previously used to specify forms of eventual consistency [15].
Namely, our denotations of database computations consist of a
set of events, representing operation invocations by clients, and a
relation on events, describing abstractly how the database processes
the corresponding operations.

Assume a countably infinite set Event of events, ranged over
by e, f, g. A relation is a strict partial order if it is transitive and
irreflexive. For a relation R we write (e, f) ∈ R and e R−→ f
interchangeably.

DEFINITION 1. Given a token system T = (Token, ./), an execu-
tion is a tuple X = (E, oper, rval, tok, hb), where:

• E is a finite subset of Event;
• oper : E → Op gives the operation whose invocation a given

event denotes;
• rval : E → Val gives the return value of the operation;
• tok : E → P(Token) gives the set of tokens acquired by the

operation;
• hb ⊆ E × E, called happens-before, is a strict partial order

such that

∀e, f ∈ E. tok(e) ./ tok(f) =⇒ (e
hb−→ f ∨ f hb−→ e). (8)

Operationally, each event represents an invocation of an opera-
tion at its origin replica. The applications of the operation’s effect at
other replicas are not recorded in an execution explicitly. Instead,
the happens-before relation records causal dependencies between
operations arising from such applications: e hb−→ f means that ei-
ther the operations denoted by e and f were executed at the same
replica in this order, or they were executed at different replicas and
the message containing the effect of e had been delivered to the
replica performing f before f was executed. Hence, if we have
e

hb−→ f , then the effect of e is incorporated into the state to which
f is applied and may influence its return value. We give examples of
executions in Figures 2 and 3(b). The ones in Figures 2(b) and 3(b)
model the computations of the database informally illustrated in
Figures 1(b) and 3(a), respectively.

The transitivity of hb in Definition 1 reflects the guarantee
of causal message propagation in implementations explained in

374

§2.1 [15]. For example, in the execution of Figure 2(a), the tran-
sitivity of hb mandates the edge between the addition of a post
and the query (cf. Figure 1(a)). The condition (8) formalises the
stronger consistency guarantee provided by tokens: operations ac-
quiring conflicting tokens have to be causally dependent. For ex-
ample, since the two withdraw operations in Figure 2(c) acquire a
token τ with τ ./ τ , they have to be related by happens-before.
Finally, we require executions to contain only finitely many events,
because in this paper we are only concerned with safety properties
of applications.

We write Exec(T) for the set of all executions over the token
system T . In the following, we denote components of X and
similar structures as in X.E. We let Xinit be the unique execution
with Xinit.E = ∅.

We now define the semantics of our consistency model as the
set of all executions X ∈ Exec(T) over a token system T whose
return valuesX.rval and token setsX.tok are computed usingF as
informally described in §2. To define this set, we first let the context
of an event e in an execution X be

ctxt(e,X) = (E, (X.oper)|E , (X.rval)|E , (X.tok)|E , (X.hb)|E),

where E = (X.hb)−1(e) and ·|E is the restriction to events in E.
Operationally-speaking, the context consists of those events whose
effects have been incorporated into the state of the replica where
the operation X.oper(e) executes; it is these events that influence
the outcomes of e—the return value X.rval(e) and the token set
X.tok(e). For example, the context of each of the query events in
Figure 3(b) consists of the deposit and interest events. This reflects
the events that the corresponding replica has seen before executing
query in Figure 3(a).

It is technically convenient for us to initially formulate
definitions without assuming effect commutativity (7). In this
case, X.rval(e) and X.tok(e) are not determined by ctxt(e,X)
uniquely. In operational terms, this is because the state that a replica
will be in after seeing the events in ctxt(e,X) depends on the order
in which the replica finds out about these events: although causal
message propagation ensures that messages about causally depen-
dent events in ctxt(e,X) will be delivered to the replica in the order
consistent with X.hb, messages about causally independent events
may be delivered in arbitrary order. We therefore first define a func-
tion

eval†F : Exec(T)→ P(State)

that yields the set of all possible states that a replica may end up
in after seeing the events in a given execution, such as ctxt(e,X).
For an execution Y , we define eval†F (Y) inductively on the size of
Y.E. If Y.E = ∅, then eval†F (Y) = {σinit}. Otherwise,

eval†F (Y) = {F eff
Y.oper(e)(σ

′)(σ) | e ∈ max(Y) ∧
σ ∈ eval†F (Y |Y.E−{e}) ∧ σ′ ∈ eval†F (ctxt(e, Y))},

where

max(Y) = {e ∈ Y.E | ¬∃f ∈ Y.E. (e, f) ∈ Y.hb}. (9)

Thus, to compute eval†F (Y) for a non-empty Y , we choose an hb-
maximal event e in Y . Operationally, this is the event whose effect
is incorporated last by the replica r whose state we are determining.
We then pick a state σ that r could be in right before incorporating
the effect of e. The set of such states is obtained by invoking eval†F
on the execution Y |Y.E−{e}, describing the events r knew about
when it incorporated e. To determine the effect of e’s operation,
we pick a state σ′ that the replica r′ that generated e could be in
at the time of this generation. The set of such states is computed
by invoking eval†F on the execution ctxt(e, Y), describing the
events that replica r′ knew about when it generated e. Then the
effect of e’s operation is F eff

Y.oper(e)(σ
′), and we determine the

state of the replica r after e by applying this effect to the state σ:
F eff
Y.oper(e)(σ

′)(σ).
To illustrate eval†F , consider the execution Y consisting of the

deposit and interest events in Figure 3(b) and the operation se-
mantics F in Figure 4. Recall that in this case σinit = 100. We
can evaluate Y in two ways, corresponding to the orders in which
replicas r1, respectively r2, apply the effects of the events in the
computation in Figure 3(a):

eval†F (Y) = {F eff
interest(σinit)(F eff

deposit(20)(σinit)(σinit)),

F eff
deposit(20)(σinit)(F eff

interest(σinit)(σinit))}
= {100 + 20 + 5, 100 + 5 + 20} = {125}.

Both ways of evaluation lead to the same outcome. This would not
be the case if we used a function F ′ identical to F , but with the
effect of interest defined by (3), which violates (7). In this case,

eval†F′(Y) = {100 + 20 + 6, 100 + 5 + 20} = {126, 125},
which corresponds to the diverging database computation we ex-
plained in §2.1.

We note that, for notational convenience, eval†F takes as a pa-
rameter a whole execution including return values (rval) and token
sets (tok) associated with its events. However, the function as we
defined it does not depend on these: the state is determined solely
based on the operations performed (oper) and happens-before rela-
tionships among them (hb).

DEFINITION 2. An execution X ∈ Exec(T) is consistent with T
and F , denoted X |= T ,F , if

∀e ∈ X.E. ∃σ ∈ eval†F (ctxt(e,X)).

(X.rval(e) = F val
X.oper(e)(σ)) ∧ (X.tok(e) = F tok

X.oper(e)(σ)).

We let Exec(T ,F) = {X | X |= T ,F} be the set of executions
allowed by our consistency model.

PROPOSITION 3.

∀X ∈ Exec(T ,F). ∀e ∈ X.E. (ctxt(e,X) ∈ Exec(T ,F)).

Operationally,X |= T ,F means that the outcomes inX can be
produced by the database implementation sketched in §2 with some
order of message delivery. The executions in Figures 2 and 3(b)
are consistent with the parameters in Figure 4 or the expected
semantics of operations on posts and comments. In particular, the
execution in Figure 2(c) is consistent because the context of the
right-hand-side withdraw includes the left-hand-side withdraw.
Evaluating this context yields a zero balance, which causes the
right-hand-side withdraw to generate skip as its effect.

LEMMA 4. If X |= T ,F , then eval†F (X) is a singleton set. Fur-
thermore, so is eval†F (ctxt(e,X)) for any e ∈ X.E.

The lemma shows that in Definition 2 it does not matter how
we choose the order of evaluation in eval†F . When viewed oper-
ationally, this independence implies the convergence property from
§2.1: two replicas that see the same events will end up in the same
state. The proof of Lemma 4, given in [26, §A], exploits proper-
ties (7) and (8). This proof is subtle because (7) does not require
commutativity for the effects of pairs of operations that acquire
conflicting tokens.

Motivated by Lemma 4, we define the evaluation of consistent
executions

evalF : Exec(T ,F)→ State

as follows: evalF (X) is the unique σ such that eval†F (X) = {σ}.
To illustrate the flexibility of our consistency model, we show

how it can represent some of the existing models; we provide more
instantiations in §6.

375

Causal consistency [16, 33] is the baseline model we obtain
without using any tokens: Token = ∅ and ∀o, σ.F tok

o (σ) = ∅.
Then (8) is a tautology and (7) is equivalent to (4), so that all effects
have to commute.

Sequential consistency [29] is a form of strong consistency and
the strongest consistency model we can obtain from ours. It re-
quires every operation to acquire a mutual exclusion token:

Token = {τ}; ./ = {(τ, τ)}; ∀o, σ.F tok
o (σ) = {τ}.

Then in any execution X ∈ Exec((Token, ./),F), the happens-
before X.hb is total, and each event in X is aware of the effects of
all events preceding it in X.hb.

RedBlue consistency [32] is a hybrid consistency model that
classifies operations as either red or blue: Op = Opr] Opb.
Red operations are guaranteed sequential consistency, and blue
operations, only causal consistency. To express this in our model,
we again use a mutual exclusion token: Token = {τ} and ./ =
{(τ, τ)}. Red operations acquire τ , and blue operations acquire no
tokens:

(∀o ∈ Opr. ∀σ.F tok
o (σ) = {τ}) ∧ (∀o ∈ Opb.∀σ.F tok

o (σ) = ∅).
Then red operations are totally ordered by happens-before, and blue
ones are ordered only partially. The token assignment in our bank-
ing application (Figure 4) is an instance of the RedBlue consis-
tency, where withdraw operations are red, and all others are blue.

Our framework cannot express some of common consistency
models, such as prefix consistency [43], which is stronger than
causal consistency. However, the framework could be adjusted to
assume prefix consistency as a baseline following [17].

4. State-based Proof Rule
We consider the following verification problem: given a token
system T = (Token, ./), prove that operations F maintain an
integrity invariant I ⊆ State over database states. Formally, we
establish that any execution consistent with T and F evaluates to a
state satisfying I:

Exec(T ,F) ⊆ eval−1
F (I).

By Proposition 3 this implies that the return value of every event
in an execution X ∈ Exec(T ,F) can be obtained by applying its
operation to a state satisfying I:

∀e ∈ X.E. ∃σ ∈ I. (X.rval(e) = F val
X.oper(e)(σ)).

For example, we show that any execution consistent with Fig-
ure 4 evaluates to a state satisfying the invariant (5). Hence, a query
operation will always return a non-negative balance.

The key challenge of the above verification problem is the
need to consider infinitely many executions consistent with T and
F . Our main technical contribution is the proof rule for solving
this problem that avoids considering all such executions explicitly.
Instead, the proof rule is modular in that it allows us to reason
about the behaviour of every operation separately. Our proof rule
is also state-based in that it reasons in terms of states obtained by
evaluating parts of executions or, from the operational perspective,
in terms of replica states.

We give our proof rule in Figure 5 and explain it from the op-
erational perspective. The rule assumes that the invariant I holds
of the initial database state σinit (condition S1). Consider a compu-
tation of the database implementation from §2 and a state σ of a
replica r at some point in this computation. The proof rule assumes
that σ ∈ I and aims to establish that executing any operation o at r
will preserve the invariant I . This is easy if we only consider how

∃G0 ∈ P(State× State), G ∈ Token→ P(State× State)
such that

S1. σinit ∈ I
S2. G0(I) ⊆ I ∧ ∀τ. G(τ)(I) ⊆ I
S3. ∀o, σ, σ′. (σ ∈ I ∧ (σ, σ′) ∈ (G0 ∪G((F tok

o (σ))⊥))∗)

=⇒ (σ′,F eff
o (σ)(σ′)) ∈ G0 ∪G(F tok

o (σ))

Exec(T ,F) ⊆ eval−1
F (I)

Figure 5. State-based proof rule for a token system T =
(Token, ./). For T ⊆ Token we let G(T) =

⋃
τ∈T G(τ) and

T⊥ = {τ | τ ∈ Token ∧ ¬∃τ ′ ∈ T. τ ./ τ ′}. We denote by R∗

the reflexive and transitive closure of a relation R. For a relation
R ∈ P(A × B) and a predicate P ∈ P(A), the expression R(P)
denotes the image of P under R.

�0

r

�

r0

(a) (b)

e

X
X 0

X 00
F e↵

o (�)

Figure 6. Graphical illustrations of (a) the state-based rule; and (b)
the event-based rule.

o’s effect changes the state of r, since this effect is applied to the
state σ where it was generated:

∀σ. (σ ∈ I =⇒ F eff
o (σ)(σ) ∈ I). (10)

The difficulty comes from the need to consider how o’s effect
changes the state of any other replica r′ that receives it; see Fig-
ure 6(a). At the time of the receipt, r′ may be in a different state
σ′, due to operations executed at r′ concurrently with o. We can
show that it is sound to assume that this state σ′ also satisfies the
invariant. Thus, to check that the operation o preserves the invariant
when applied at any replica, it is sufficient to ensure

∀σ, σ′. (σ, σ′ ∈ I =⇒ F eff
o (σ)(σ′) ∈ I). (11)

However, establishing this without knowing anything about the re-
lationship between σ and σ′ is a tall order. In the bank account
example, both σ = 100 and σ′ = 0 satisfy the integrity invari-
ant (5). Then F eff

withdraw(100)(σ)(σ′) = −100, which violates the
invariant. Condition (11) fails in this case because it does not take
into account the tokens acquired by withdraw.

The proof rule in Figure 5 addresses the weakness of (11) by al-
lowing us to assume a certain relationship between the state where
an operation is generated (σ) and where its effect is applied (σ′),
which takes into account the tokens acquired by the operation. To
express this assumption, the rule uses a form of rely-guarantee rea-
soning [27]. Namely, it requires us to associate each token τ with a
guarantee relation G(τ), describing all possible state changes that
an operation acquiring τ can cause. Crucially, this includes not only
the changes that the operation can cause on the state of its origin
replica, but also any change that its effect causes at any other replica
it is propagated to. We also have a guarantee relationG0, describing
the changes that can be performed by an operation without acquir-
ing any tokens. Condition S2 requires the guarantees to preserve
the invariant.

376

Like (11), condition S3 considers an arbitrary state σ of o’s
origin replica r, assumed to satisfy the invariant I . The condition
then considers any state σ′ of another replica r′ to which the effect
of o is propagated. The conclusion of S3 requires us to prove that
applying the effectF eff

o (σ) of the operation o to the state σ′ satisfies
the union of G0 and the guarantees associated with the tokens
F tok
o (σ) that the operation o acquires. By S2, this implies that the

effect of the operation preserves the invariant. Condition S3 further
allows us to assume that the state σ′ of r′ can be obtained from the
state σ of r by applying a finite number of changes allowed by G0

or the guarantees for those tokens that do not conflict with any of
the tokens acquired by the operation o, i.e., G0 ∪G((F tok

o (σ))⊥).
Informally, acquiring a token denies other replicas permissions to
concurrently perform changes that require conflicting tokens.

We now use our proof rule to show that the operations in the
banking application (Figure 4) preserve the integrity invariant (5).
We assume that the initial state σinit satisfies the invariant. The
guarantees are as follows:

G(τ) = {(σ, σ′) | 0 ≤ σ′ < σ};
G0 = {(σ, σ′) | 0 ≤ σ ≤ σ′}. (12)

Since withdrawals acquire the token τ , the guarantee G(τ) for this
token allows decreasing the balance without turning it negative;
the guarantee G0 allows increasing a non-negative balance. Then
condition S2 is satisfied. We show how to check the condition S3
in the most interesting case of o = withdraw(a). Consider σ and
σ′ satisfying the premiss of S3:

σ ∈ I ∧ (σ, σ′) ∈ (G0 ∪G((F tok
o (σ))⊥))∗.

Since F tok
o (σ) = {τ}, we have (F tok

o (σ))⊥ = ∅. Thus, (σ, σ′) ∈
G∗0. This and σ ∈ I imply

0 ≤ σ ≤ σ′. (13)

If σ < a, then F eff
o (σ)(σ′) = σ′. Furthermore, σ′ ≥ 0 by

(13). Thus, (σ′,F eff
o (σ)(σ′)) = (σ′, σ′) ∈ G0, which implies the

conclusion of S3.
If σ ≥ a, then F eff

o (σ)(σ′) = σ′− a. Since σ ≤ σ′ by (13), we
have σ′ ≥ a. Thus, (σ′,F eff

o (σ)(σ′)) = (σ′, σ′ − a) ∈ G({τ}),
which implies the conclusion of S3. Operationally, in this case
our proof rule establishes that, if there was enough money in the
account at the replica where the withdrawal was made, then there
will be enough money at any replica the withdrawal is delivered to.
This completes the proof of our example.

In a banking application with multiple accounts, we could en-
sure non-negativity of balances by associating every account c with
a token τc such that τc ./ τc, but τc 6./ τc′ for another account
c′. Thus, withdrawals from the same account would have to syn-
chronise, while withdrawals from different accounts could proceed
without synchronisation. Our proof rule easily deals with this gen-
eralisation by associating every token τc with a guarantee describ-
ing the changes to the corresponding account. As we elaborate in
§6, the banking application we verify with the aid of our tool allows
multiple accounts. There we also provide more complex examples
of using our proof rule. For now, it is instructive to see how the
proof rule is specialised for some of the simpler instantiations of
our consistency model from §3.

Sequential consistency. Recall that for sequential consistency,
./ = {(τ, τ)} and we always have F tok

o (σ) = {τ}, so that
(F tok

o (σ))⊥ = ∅. Let G0 = ∅, so that we always have σ = σ′

in S3. Then S2 and S3 require us to find G(τ) such that

G(τ)(I) ⊆ I ∧ ∀o, σ. (σ ∈ I =⇒ (σ,F eff
o (σ)(σ)) ∈ G(τ)).

It is easy to show that we can find such a G(τ) if and only if (10)
holds for all o. Thus, in this case it is sufficient to check that the

deposit(20)

(a)

query:
-20

σinit = 0

withdraw(20):
{τ}, ✔

deposit(20)

withdraw(126):
{τ}, ✔

interest

(b) σinit = 100

query:
-1

Figure 7. Executions illustrating the unsoundness of the state-
based proof rule on weaker consistency models.

effect of an operation preserves the invariant when applied to the
same state where it was generated.

Causal consistency. We have Token = ∅ and the conditions S2
and S3 become equivalent to

G0(I) ⊆ I ∧ (∀o, σ, σ′. (σ ∈ I ∧ (σ, σ′) ∈ G∗0)

=⇒ (σ′,F eff
o (σ)(σ′)) ∈ G0).

In this case the effects of all operations are described by a single
guarantee relation G0. We need to show that every operation satis-
fies this guarantee while assuming that concurrently executing op-
erations at other replicas do. Note that (11), for all o, is a special
case of the above obligation for G0 = I × I . Thus, (11) is an
invariant-based version of the above rely-guarantee proof rule.

As we elaborate in §7, our proof rule bears a lot of similar-
ity to proof rules for strongly consistent shared-memory concur-
rency [21, 27, 36]. The reasons for the soundness of our proof in the
setting of weak consistency are subtle. Its soundness relies crucially
on the fact that our consistency model guarantees at least causal
consistency and on the commutativity of operation effects (7). For
example, some consistency models do not guarantee the transitiv-
ity of happens-before [8, 47] and thus allow the execution in Fig-
ure 7(a), which uses the operations in Figure 4. Here a withdrawal
hb-follows a deposit; a query sees only the withdrawal, thus vio-
lating the integrity invariant (5). Since we have proved these op-
erations to preserve the invariant using our proof rule, this rule is
unsound over a consistency model allowing the execution in Fig-
ure 7(a). We note that the obligation (11), for all o, establishes the
invariant I even for a consistency model where hb is only acyclic,
but not necessarily transitive.

To illustrate that our rule becomes unsound if we drop the re-
quirement of effect commutativity (7), consider the operations in
Figure 4, but with the effect of interest defined by (3). It is easy
to show that the premiss of the rule holds for the invariant (5) even
with this change. At the same time, the execution in Figure 7(b)
violates the invariant, yet is consistent with the operations in Fig-
ure 4 according to Definition 2. This is because the evaluation de-
termining the effect of withdraw(126) can order deposit(20) be-
fore interest, whereas the evaluation determining the outcome of
query can order these operations the other way round, resulting in
a smaller balance. Again, the obligation (11) establishes the invari-
ant even without (7): it ensures

∀X ∈ Exec(T ,F). eval†F (X) ⊆ I.

5. Event-based Proof Rule and Soundness
We now prove the soundness of the state-based proof rule. To this
end, we present an event-based proof rule (Figure 8), from which
the state-based one is derived. This event-based rule highlights the
reasons for the soundness of the state-based one. Instead of rea-
soning about replica states, the event-based rule reasons about ex-
ecutions describing the events that replicas know about; the eval-
uation of the corresponding effects yields the replica states in the

377

∃G ∈ P(Exec(T)× Exec(T)) such that

E1. Xinit ∈ I
E2. G(I) ⊆ I
E3. ∀X,X ′, X ′′. ∀e ∈ X ′′.E.

(X ∈ I ∧X ′ = X ′′|X′′.E−{e} ∧X ′′ ∈ Exec(T ,F) ∧
e ∈ max(X ′′) ∧X = ctxt(e,X ′′) ∧ (X,X ′) ∈ G∗)
=⇒ (X ′, X ′′) ∈ G

Exec(T ,F) ⊆ I

Figure 8. Event-based proof rule.

state-based rule. In particular, we specify the desired integrity in-
variant as a predicate on executions: I ⊆ Exec(T). The event-
based rule establishes that any execution consistent with given
T = (Token, ./) and F belongs to I: Exec(T ,F) ⊆ I.

As before, we explain the event-based rule from the operational
perspective. The rule again uses rely-guarantee reasoning, but with
the guarantee G represented by a relation on executions. The guar-
antee describes the change to a replica’s knowledge brought on by
the replica executing a new operation or receiving the effect of an
operation originally executed elsewhere.

Conditions E1 and E2 are similar to S1 and S2: E1 requires
the invariant I to allow an empty execution Xinit (§3), which eval-
uates to the initial database state σinit; E2 requires the guarantee
to preserve the invariant. Condition E3 is graphically illustrated in
Figure 6(b). Similarly to S3, the condition E3 considers any op-
eration, denoted by an event e, and checks that the change to the
database state made by the operation satisfies the guarantee. This
check is done not only at the origin replica r of e, but also at any
other replica r′ that receives its effect. The execution X can be
thought of as describing the events known to the replica r when
it executed the operation denoted by e. We assume that the ex-
ecution X satisfies the invariant I. The execution X ′ describes
the events known to the replica r′ just before it receives the ef-
fect of e; X ′′ describes the events known to r′ after this, so that
X ′ = X ′′|X′′.E−{e}. The execution X ′′ is consistent with T and
F ; the conditions in the proof rule imply that so areX andX ′. The
condition e ∈ max(X ′′) (see (9)) reflects the fact that e is the latest
event received by r′. The condition X = ctxt(e,X ′′) ensures that
X is a part of X ′ = X ′′|X′′.E−{e}. This reflects the guarantee of
causal message propagation: when r′ receives the effect of e, this
replica is guaranteed to know about all the events that the replica r
knew about when it executed e.

Even though the rule allows us to assume that X is part of X ′,
the latter may contain additional events that the replica r′ found
out about by the time it received the effect of e. The rule allows
us to assume that the changes in the knowledge of r′ brought
on by adding these events satisfy the guarantee: (X,X ′) ∈ G∗.
In exchange, the rule requires us to ensure that adding the event
e to the knowledge of replica r′ will also satisfy the guarantee:
(X ′, X ′′) ∈ G.

In the following, we use the fact that the premiss of the impli-
cation in E3 entails that all events in X ′.E − X.E are causally
independent with e.

PROPOSITION 5. For all X,X ′, X ′′ and e ∈ X ′′.E,

(X ′ = X ′′|X′′.E−{e} ∧ e ∈ max(X ′′) ∧X = ctxt(e,X ′′))

=⇒ ¬∃f ∈ (X ′.E −X.E). (e
X′′.hb−−−−→ f ∨ f X′′.hb−−−−→ e).

PROOF. Consider f ∈ (X ′.E −X.E). Since e ∈ max(X ′′), we

cannot have e X′′.hb−−−−→ f . If f X′′.hb−−−−→ e, then f ∈ X.E due to
X = ctxt(e,X ′′). But this contradicts f ∈ (X ′.E −X.E). ut

We now give the proof of soundness of the event-based rule and
sketch the derivation of the state-based one (we give a full proof of
the latter in [26, §A]).

Let v be the following partial order on executions:

X v X ′ ⇐⇒ (X = X ′|X.E ∧ ((X ′.hb)−1)(X.E) ⊆ X.E).
(14)

When X v X ′, we say that X is a causal cut of X ′; any event
is included into X together with its causal dependencies in X ′.
Operationally, X v X ′ means that X and X ′ can describe the
knowledge of a replica at different points in the same database
computation.

PROPOSITION 6.

∀X ∈ Exec(T ,F).∀Y. (Y v X =⇒ Y ∈ Exec(T ,F)).

THEOREM 7. The event-based proof rule in Figure 8 is sound.

PROOF. Assume E1-E3 hold. We prove that

∀X ′′ ∈ Exec(T ,F).∀Y. (Y v X ′′ =⇒ (Y,X ′′) ∈ G∗), (15)

i.e., that the guarantee G allows us to transition into a consistent
executionX ′′ from any of its causal cuts Y . The desired conclusion
Exec(T ,F) ⊆ I follows from (15): it implies (Xinit, X

′′) ∈ G∗,
but Xinit ∈ I (E1) and G preserves I (E2).

The proof of (15) is done by induction on the size of X ′′.
In the base case, we must have Y = X ′′ = Xinit, which im-
plies (Y,X ′′) ∈ G∗. In the induction step, we consider X ′′ ∈
Exec(T ,F) and Y v X ′′ such that Y 6= X ′′. We pick an event
e ∈ (X ′′.E − Y.E) such that e ∈ max(X ′′) and define X and X ′

as in E3:

X = ctxt(e,X ′′) ∧X ′ = X ′′|X′′.E−{e}.

Then
Y v X ′ ∧X v X ′. (16)

By Proposition 6 we have X,X ′ ∈ Exec(T ,F). Thus, we can
apply the induction hypothesis to X ′ and its causal cuts X and Y ,
as well as to X and its causal cut Xinit, getting:

(Y,X ′) ∈ G∗ ∧ (X,X ′) ∈ G∗ ∧ (Xinit, X) ∈ G∗.
By E1 and E2, (Xinit, X) ∈ G∗ implies X ∈ I. Together with
(X,X ′) ∈ G∗, this allows us to apply E3 and obtain (X ′, X ′′) ∈
G. This and (Y,X ′) ∈ G∗ imply (Y,X ′′) ∈ G∗, as required. ut

In operational terms, the statement (15) established in the proof
ensures that any sequence of changes in the knowledge of a replica
during a database computation is described by G∗. The above proof
relies crucially on the fact that our consistency model guarantees
at least causal consistency. For example, in (16) we can deduce
X v X ′ from X = ctxt(e,X ′′) because happens-before is
transitive.

COROLLARY 8. The state-based proof rule in Figure 5 is sound.

PROOF SKETCH. Assume a state-based invariant I ⊆ State. We
construct the corresponding event-based invariant I as the set of all
executions that evaluate to a state in I: I = eval−1

F (I). Then the
conclusion Exec(T ,F) ⊆ I of the event-based rule implies the
conclusion Exec(T ,F) ⊆ eval−1

F (I) of the state-based rule.
We now show that the premiss of the state-based rule implies

that of the event-based rule. Assume state-based guaranteesG0 and
G that satisfy S1-S3. We construct the corresponding event-based
guarantee G by describing the change to the knowledge of a replica

378

brought on by incorporating the effect of an operation satisfying
the state-based guarantees G0 and G:

G = {(X,Y) | ∃e. (Y.E −X.E) = {e} ∧X v Y ∧
(evalF (X), evalF (Y)) ∈ G0 ∪G(Y.tok(e))}. (17)

Thus, the guarantee G consists of pairs (X,Y), where Y extends
X by a single event e representing the operation, and the two
executions evaluate to a pair of states inG0 orG(τ) for some token
τ acquired by e.

It remains to prove that the event-based guarantee G satisfies
conditions E1-E3. Conditions E1 and E2 trivially follow from con-
ditions S1 and S2; we thus only need to show that S3 implies E3.
Assume that for some X,X ′, X ′′ and e ∈ X ′′.E, the premiss of
E3 holds:

X ∈ I ∧X ′ = X ′′|X′′.E−{e} ∧X ′′ ∈ Exec(T ,F) ∧
e ∈ max(X ′′) ∧X = ctxt(e,X ′′) ∧ (X,X ′) ∈ G∗. (18)

Let σ = evalF (X), σ′ = evalF (X ′) and o = X ′′.oper(e). We
now show that the premiss of S3 holds:

σ ∈ I ∧ (σ, σ′) ∈ (G0 ∪G((F tok
o (σ))⊥))∗. (19)

First of all, σ ∈ I follows from X ∈ I by the definition of I.
Furthermore, by Proposition 5, all events in (X ′.E − X.E) are
unrelated to e in (X ′′.hb ∪ (X ′′.hb)−1). But then by (8), they
cannot acquire tokens that conflict with the ones acquired by e:

∀f ∈ (X ′.E −X.E).¬(X ′′.tok(e) ./ X ′′.tok(f)).

Using this fact, (X,X ′) ∈ G∗ given by (18) and the definition of
G given by (17), we can show that

(σ, σ′) = (evalF (X), evalF (X ′)) ∈ (G0 ∪G((X ′′.tok(e))⊥))∗

= (G0 ∪G((F tok
o (σ))⊥))∗,

thus establishing (19). Then the conclusion of S3 yields
(σ′,F eff

o (σ)(σ′)) ∈ G0 ∪G(F tok
o (σ)), so that

(evalF (X ′), evalF (X ′′)) = (σ′,F eff
o (σ)(σ′))

∈ G0 ∪G(F tok
o (σ))

= G0 ∪G(X ′′.tok(e)).

(20)

This implies the conclusion of E3: (X ′, X ′′) ∈ G. ut
The above proof relies crucially on Lemma 4, which allows us

to define evalF . The lemma guarantees that, when evaluating exe-
cutions, choosing different orders for causally independent events
does not affect the resulting state. In (20) this allows us to choose a
particular convenient order of evaluating X ′′ that applies the oper-
ation o last. Lemma 4 holds due to the commutativity condition (7),
and this illustrates the importance of this condition for the sound-
ness of the state-based rule.

6. Examples and Automation
We have developed a prototype tool that automates the state-based
proof rule by reducing its obligations to SMT queries. Using the
tool, we have verified three applications: an extended version of
the banking application in Figure 4, an auction service and a course
registration system. Our results are summarised in Figure 9. In
the following, we first show more sophisticated uses of our proof
rule using fragments of the auction and courseware applications,
as well as the consistency model of parallel snapshot isolation [38,
42]. We then present our automation approach and the complete
applications that we verified.

6.1 Auction Service
Figure 10 shows a fragment of an auction application. An auction
can be either open or closed. While the auction is open, a client can

Application # ops # tokens # invariants time (ms)
Banking 5 1 1 385
Auction 14 9 12 5297

Courseware 5 5 2 512

Figure 9. Characteristics of the applications verified and the time
taken by the tool. The numbers of operations are given ignoring op-
eration parameters. The numbers of tokens are similarly given with-
out taking into account tokens associated with different instances of
the same object, such as different bank accounts. The tool was run
on a Mac Mini, 3 GHz Intel Core i7.

State = P(N)× (N ∪ {⊥})
σinit = (∅,⊥)

I = {(B,w) | w 6= ⊥ =⇒ B 6= ∅ ∧ w = max(B)}
Token = {τc, τp}

./ = {(τc, τc), (τc, τp), (τp, τc)}
Fplace(b)((B,w)) = if w 6= ⊥ then (7, skip, {τp})

else (X, (λ(B′, w′). (B′ ∪ {b}, w′)), {τp})
Fclose((B,w)) = if (w 6= ⊥ ∨B = ∅) then (7, skip, {τc})

else (X, (λ(B′, w′). (B′,max(B))), {τc})
Fquery((B,w)) = ((B,w), skip, ∅)

Figure 10. A fragment of an auction application.

place a bid with the amount b using the place(b) operation. A client
can also close the auction at any time using the close operation,
which declares the winner. Finally, clients can query the database
state using query.

The database state is of the form (B,w). Here B contains the
amounts of the bids placed; for simplicity, we do not distinguish
two bids with the same amount. The component w is either ⊥,
signifying that the auction is still open, or the winning bid. A
successful place(b) operation has the effect of adding b to B. The
close operation writes the winning bid into w. Note that the effects
of two close operations do not commute. To satisfy (7), and to
ensure that clients can only close the auction once, we let close
operations acquire a token τc such that τc ./ τc.

The integrity invariant I we would like to maintain in the auc-
tion application is that, if the auction is closed, then the winning
bid is the maximal of all the bids placed. Without using any other
tokens than τc, this invariant can be violated: Alice can close the
auction and declare the winner, e.g., 100, without being aware of a
higher bid 105 placed concurrently by Bob. A query aware of both
operations will return the bid set containing 105 and 100 but mark
100 as the winning bid in the set.

To preserve the invariant in the RedBlue consistency model
(§3), we would have to use strong consistency for both place and
close operations, i.e., let them acquire the mutually exclusive token
τc. To address this inefficiency, Balegas et al. [9] proposed a hybrid
model where consistency can be strengthened using multi-level
locks, analogous to readers-writer locks from shared memory. In
our example, we represent such a lock by a pair of tokens: τc,
introduced before, and τp. Each close operation acquires τc, and
each place operation, τp. We have τc ./ τp. Hence, for every pair
of close and place(b) operations, either close is aware of the bid b
and takes it into account when computing the winner, or place(b)
is aware that the auction has been closed and, hence, does not
place the bid. However, we do not have τp ./ τp and, hence,
bid placements can be causally independent. In our analogy with
a readers-writer lock, bid placements play the role of readers and
closing the auction, the role of a writer.

379

State = P(Student)×RWset(Course)×P(Student×Course)

σinit = (∅, ∅RWset, ∅)
I = {(S,C,E) | E ⊆ P(S × contents(C))}

Token = {τe(c), τr(c) | c ∈ Course}
./ = {(τe(c), τr(c)), (τr(c), τe(c)) | c ∈ Course}

Fregister(s)((S,C,E)) =

(⊥, (λ(S′, C′, E′). (S′ ∪ {s}, C′, E′)), ∅)
FaddCourse(c)((S,C,E)) =

(⊥, (λ(S′, C′, E′). (S′, add(c, C′), E′)), ∅)
Fenrol(s,c)((S,C,E)) =

if (s 6∈ S ∨ c 6∈ contents(C)) then (7, skip, {τe(c)})
else (X, (λ(S′, C′, E′). (S′, C′, E′ ∪ {(s, c)})), {τe(c)})
FremCourse(c)((S,C,E)) =

if (c 6∈ contents(C) ∨ ∃s. (s, c) ∈ E)) then (7, skip, {τr(c)})
else (X, (λ(S′, C′, E′). (S′, remove(c, C′), E′)), {τr(c)})
Fquery((S,C,E)) = ((S, contents(C), E), skip, ∅)

RWset(Course) = P(Course)× P(Course)

∅RWset = (∅, ∅)
add(c, (A, T)) = (A ∪ {c}, T)

remove(c, (A, T)) = (A, T ∪ {c})
contents((A, T)) = A− T

Figure 11. A fragment of a courseware application.

Balegas et al. [9] show how to implement multi-level locks so
that a replica can place a bid without any synchronisation; only an
operation closing the auction has to synchronise with other replicas
to make sure that no bids are placed concurrently. Thus, the most
frequent operation of bid placement is the least expensive.

We now use our proof rule to show that the above consistency
choice is indeed sufficient to preserve the invariant I . Let

G0 = {((B,w), (B,w)) | (B,w) ∈ I};
G(τp) = {((B,⊥), (B′,⊥)) | B ⊂ B′};
G(τc) = {((B,⊥), (B,max(B))) | B 6= ∅}.

Then the condition S2 in Figure 5 is satisfied. We show how to
check the condition S3 in the most interesting case of o = place(b).

Consider σ = (B,w) and σ′ = (B′, w′) satisfying the premiss
of S3. Then σ ∈ I . Also, since

(σ, σ′) ∈ (G0 ∪G((F tok
o (σ))⊥))∗

and (F tok
o (σ))⊥ = {τp}, we get

w′ = w ∧B ⊆ B′ ∧ (w 6= ⊥ =⇒ B′ = B). (21)

If w 6= ⊥, then F eff
o (σ)(σ′) = σ′ and, by (21), σ = σ′. Since

σ ∈ I , we have

(σ′,F eff
o (σ)(σ′)) = (σ′, σ′) = (σ, σ) ∈ G0.

This implies the conclusion of S3.
If w = ⊥, then F eff

o (σ)(σ′) = (B′ ∪ {b}, w′). In this case (21)
implies w′ = w = ⊥. We then get

(σ′,F eff
o (σ)(σ′)) = ((B′, w′), (B′ ∪ {b}, w′)) ∈ (G0 ∪G(τp)),

the desired conclusion of S3. Operationally, our proof rule estab-
lishes that, if the auction was open at the replica where the bid was
placed, then it will be open at any replica the bid is delivered to.

Similarly to our banking application (§4), we can deal with mul-
tiple auctions by using a pair of tokens (τc, τp) for every auction.
The above proof generalises straightforwardly to this case.

addCourse
(Java) addCourse

(Java)
remCourse

(Java)

query: ?

(a)

addCourse
(Java)

enrol
(Carol, Java)

(b)

addStudent
(Carol)

remCourse
(Java)

query: ({Carol},∅,{(Carol, Java)})

Figure 12. Executions illustrating the need for (a) replicated data
types and (b) tokens in the courseware application.

6.2 Courseware
Our next example illustrates a different kind of an integrity invari-
ant and the use of replicated data types [40] to construct commu-
tative operations. Figure 11 shows a fragment of a courseware ap-
plication. We assume sets of courses Course and students Student.
A client can add a course c using addCourse(c) and register a stu-
dent s using register(s). A registered student s can be enrolled
into a course c using enrol(s, c). In the application fragment we
consider, student registrations and enrolments cannot be cancelled.
However, a course c that has not secured any student enrolment can
be removed using remCourse(c). As usual, we also have a query
operation.

A database state (S,C,E) consists of the set of students S, the
set of courses C and the enrolment relation E between students
and courses. The set of courses is actually not just an ordinary set,
but a replicated remove-wins set RWset(Course), explained in the
following. The effects of operations are mostly as expected, with
courses accessed using special functions add, remove and contents
on the replicated set. Note that the operation enrol(c, s) takes effect
only if the student s is registered and the course c exists. The
operation remCourse(c) removes the course c only when it exists
and has no students enrolled into it.

Using a replicated data type for the set of courses is needed to
satisfy (7), because additions to and removals from a usual set do
not commute. To illustrate, consider the execution in Figure 12(a).
There Alice adds a course on Java and then changes her mind and
removes the course; concurrently, Bob adds the same Java course.
If we maintained the information about courses using a usual set,
then the outcome of the query in the figure would depend on the
order in which we evaluate the effects of the causally indepen-
dent operations addCourse(Java) by Bob and remCourse(Java)
by Alice: the query would return ∅ if the addition was evaluated be-
fore removal, and {Java} otherwise (see Definition 2). In an actual
database, implementing the operations using ordinary sets would
violate the replica convergence property (§2.1).

Replicated data types [40] provide implementations of opera-
tions on data structures with commutative effects. They differ in the
way in which they resolve conflicting updates to the data structure,
such as those in Figure 12(a): when using an add-wins set, the query
in the figure will return {Java}, and when using a remove-wins set,
∅ [39]. The decision which data type to use ultimately depends on
application requirements. To keep presentation manageable, in our
example we use one of the simplest set data types, which provides
a rudimentary version of the remove-wins semantics.

The data type represents the replicated set of courses using a
pair of sets (A, T). The function add(c, ·) puts c into the set of
A, and the function remove(c, ·) puts c into the set T , called the
tombstone set. To get the contents of the replicated set, we just
take the difference between A and T . The functions add(c, ·) and
remove(c, ·) commute: even if the removal is evaluated first, it will

380

still cancel the subsequent addition1. This ensures that the effects
of all operations in Figure 11 commute and thus satisfy (7).

The integrity invariant I we would like to maintain in this appli-
cation is that the enrolment relation refers to existing courses and
students only. This property is an instance of referential integrity,
which requires an object referenced in one part of the database to
exist in another. Without using tokens, the operations in our appli-
cation can break the invariant. This is illustrated by the execution
in Figure 12(b). There a Java course initially has no students en-
rolled. Then Alice removes the course and concurrently Bob enrols
Carol into it, thinking that the course is still available. This results
in Carol being enrolled into a non-existent course.

To ensure that such situations do not happen, we use a pair
of conflicting tokens for each course c ∈ Course: τe(c) and
τr(c). The operation enrol(s, c) acquires τe(c), and the operation
remCourse(c) acquires τr(c). Then for every pair of operations
enrol(s, c) and remCourse(c), either the enrolment operation is
aware that the course has been removed, or the removal is aware
that there are still students enrolled into the course; in either case
the corresponding operation takes no effect. However, other pairs
of operations can be causally independent and, hence, do not have
to synchronise. This includes pairs of operations enrolling students
into courses and pairs of operations manipulating courses, such as
those in Figure 12(a). The above use of tokens is equivalent to as-
sociating every course with a multi-level lock [9] that can be in one
of two modes, one of which allows enrolling students into a course
(τe(c)) and the other removing the course (τr(c)). Unlike in the auc-
tion application above, neither of the tokens τe(c) or τr(c) conflicts
with itself, and thus, neither of the above lock modes is exclusive.

Our proof rule can establish that the above consistency choice is
sufficient to preserve the integrity invariant. To this end, we use the
following guarantees, associating changes with tokens as expected:

G0 = (I × I) ∩ {((S,C,E), (S′, C′, E)) |
S ⊆ S′ ∧ contents(C) ⊆ contents(C′)};

G(τe(c)) = (I × I) ∩ {((S,C,E), (S,C,E′)) |
∃s. E′ = E] {(s, c)}};

G(τr(c)) = (I × I) ∩ {((S,C,E), (S,C′, E)) |
contents(C) = contents(C′)] {c}}.

The actual proof is similar to that of the auction application above
and is omitted.

6.3 Parallel Snapshot Isolation
We show that our generic consistency model (§3) can be instan-
tiated to capture parallel snapshot isolation (PSI), a consistency
model recently proposed for replicated databases [38, 42], which
strengthens causal consistency in a way different from the models
we have considered so far. We then give a proof rule specific to PSI.

We assume that the database consists of a finite set Obj of ob-
jects, ranged over by x, y. The objects store values from a set Val,
so that we let State = Obj→ Val. Operations in PSI perform com-
putations that read and write objects, and any two operations writ-
ing to the same object acquire conflicting tokens. Thus, by (8) up-
dates to the same object can never be concurrent, and the program-
mer does not have to merge them explicitly. However, PSI does
not provide strong consistency, since it allows updates to different
objects to be concurrent. For example, PSI allows the outcome in
Figure 2(b) when the operations add(postA) and add(postB) write
to different objects, e.g., representing the feeds of different users.

1 In fact, once an element was removed, it can never be successfully added
again, which may not be a desirable behaviour. There are replicated sets that
provide a more sophisticated semantics [39].

∃G ∈ P(State× State) such that

PSI1. σinit ∈ I
PSI2. G(I) ⊆ I
PSI3. ∀o, σ, σ′. (σ ∈ I ∧ (σ, σ′) ∈ (G ∩ (=

dom(Supdates
o (σ))

))∗)

=⇒ (σ′,F eff
S,o(σ)(σ′)) ∈ G

PSIExec(S) ⊆ eval−1
FS (I)

Figure 13. Proof rule for PSI. For a set of objects Ω, we define the
relation (=Ω) of type State× State as follows: for all states σ, σ′,
σ =Ω σ′ iff ∀x ∈ Ω. σ(x) = σ′(x).

To represent PSI in our framework, we consider a token system
TPSI = (Token, ./), that associates every object x with a mutual
exclusion token τx:

Token = {τx | x ∈ Obj}; τx ./ τy ⇐⇒ x = y.

To define the semantics of operations o ∈ Op, we assume a
function

S ∈ Op→ (State→ Val× (Obj⇀ Val))

and let
∀o, σ. So(σ) = (Sval

o (σ),Supdates
o (σ)).

Thus, Sval
o (σ) gives the return value of an operation o executed in

a state σ, and Supdates
o (σ) gives the values that o writes to objects.

We lift S to a function FS of the type (6) as follows:

FS,o(σ) = (Sval
o (σ),

(λσ′. λx. if x ∈ dom(S) then S(x) else σ′(x)),

{τx | x ∈ dom(S)}),
where S = Supdates

o (σ). Thus, the effect of an operation o is limited
to writing the values specified by So; this is unlike the general
case of our consistency model, which allows arbitrary effects. The
acquired tokens are those for the objects written according to So.
Note that the effect specified by FS,o(σ) changes only the values
of the objects written to by the operation, but the converse is not
true: an operation can write to an object the same value it originally
stored. This will still trigger token acquisitions and, hence, create
causality relationships with other operations writing to the same
object.

PROPOSITION 9. For any S, the function FS satisfies (7).

The proof is given in [26, §A]. Note that FS does not always
satisfy (4): the flexibility allowed by (7) is crucial to represent PSI
as an instance of our generic consistency model.

We write PSIExec(S) = {X | X |= TPSI,FS} for the set
of all PSI executions with operation semantics given by S. It is
easy to show that this definition is equivalent to a recently-proposed
declarative definition of PSI [17].

Figure 13 gives a proof rule for checking that operations S
preserve an integrity invariant I when executed on PSI. The rule
requires us to specify the changes performed by all operations
using a single guarantee G, which has to preserve I (condition
PSI2). Condition PSI3 then requires us to check that the effect of
an operation o generated in a state σ ∈ I satisfies the guarantee
when applied to another state σ′. This state σ′ can be assumed
to result from σ by a finite number of changes allowed by the
guarantee G that do not modify the objects written by the operation
o. Intuitively, the latter constraint comes from the fact that such
operations acquire tokens conflicting with those of o.

THEOREM 10. The rule in Figure 13 is sound.

381

∃G0 ∈ P(State× State), G ∈ Token→ P(State× State)
such that

T1. σinit ∈ I
T2. G0(I) ⊆ I ∧ ∀τ. G(τ)(I) ⊆ I
T3. ∀o. ∃T.∃P1, . . . , Pn, Q1, . . . , Qn ∈ P(State).

T3a. T =
⋂{F tok

o (σ) | σ ∈ I} ∧
T3b. I ⊆ ⋃n

i=1 Pi ∧
T3c. ∀i = 1..n. Pi ⊆ Qi ∧
T3d. (G0 ∪G(T⊥))(Qi) ⊆ Qi ∧
T3e. (Qi × (F eff

o (Pi)(Qi))) ⊆ (G0 ∪G(T))

Exec(T ,F) ⊆ eval−1
F (I)

Figure 14. Proof rule used by our tool. We assume a token system
T = (Token, ./) and use the same notation as in Figure 5. We let
F eff
o (Pi)(Qi) = {F eff

o (σ)(σ′) | σ ∈ Pi ∧ σ′ ∈ Qi}.

The proof, given in [26, §A], derives the rule for PSI directly
from the event-based rule in Figure 8. We could derive the rule
for PSI from a generalisation of the state-based rule in Figure 5
that associates guarantees with sets of tokens. However, to simplify
presentation we opted for the simpler version of the state-based rule
at the expense of a more complex derivation of the rule for PSI.

6.4 Automation
Our tool uses the proof rule in Figure 14, which is derived from
the one in Figure 5 and is more amenable to automation. The
premisses T1 and T2 are identical to S1 and S2; T3 changes S3
in two ways. A minor change is motivated by the fact that our
tool currently handles only operations that acquire the same set
of tokens regardless of the state they are executed in. Hence, T3
precomputes the set of tokens T acquired by an operation o (T3a).
The key way in which T3 changes S3 is that it eliminates the
transitive closure of the guarantees, which is hard to automate.
Whereas S3 quantifies over states σ where the effect of an operation
o is generated and σ′ where it is applied, T3 considers properties
of these states, respectively denoted by predicates Pi and Qi, i =
1..n. T3b requires the predicates Pi to cover all possible states in
which o can be executed. T3c requires Qi to cover Pi, reflecting
the fact that the effect of o can be applied in a state different from
the one where it was generated. T3d requires Qi to be stable under
the changes allowed by the guarantees [27]. Finally, T3e checks
that, if the effect of o is generated in a state satisfying Pi, then
applying this effect to a state satisfying Qi is consistent with the
guarantees. Note that the constraints T3c and T3d have the same
effect as relating the states σ and σ′ in S3 by a transitive closure of
guarantees.

For example, consider the operation o = withdraw(a) from
the banking application in Figure 4. We let T = {τ} and use the
guarantees (12). We use two predicates:

P1 = {σ | σ ≥ a}; P2 = {σ | 0 ≤ σ < a}.
These are motivated by the condition of the if-then-else in F eff

o , as
well as the invariant I . We then letQ1 = P1 andQ2 = I . It is easy
to check that the obligations in T3 are fulfilled.

Our tool accepts as input a token system T , the semantics of
operations F and an integrity invariant I , the latter two in the
SMT-LIB format (we leave a programming language for writing
operations as future work). The tool generates predicates Pi from
preconditions of branches in F . As Qi, the tool takes either Pi
or the invariant I . Finally, the tool generates guarantees G0 and

G by intersecting the semantics of operations F with the invari-
ant I . The required obligations are then discharged using the Z3
SMT solver [1]. Currently our tool assumes that the condition (7)
of operation commutativity is fulfilled: checking commutativity au-
tomatically is nontrivial [28].

Applications verified. The applications verified using our tool
(Figure 9) are more realistic versions of the examples we discussed
before (Figures 4, 10 and 11).

The banking application extends the one in Figure 4 by con-
sidering multiple accounts and allowing clients to transfer money
between accounts. We preserve the non-negativity of all balances
by associating a mutual exclusion token with each account, as de-
scribed in §4.

The auction application extends the one in Figure 10 by addi-
tionally maintaining information about buyers, sellers and prod-
ucts, and by allowing clients to sell multiple product items in a
single auction. Buyers and sellers can register and unregister. Reg-
istered buyers can bid in open auctions, and registered sellers can
add products, create auctions consisting of these and close auctions.
The complex data model of this application requires multiple in-
tegrity invariants, including referential integrity constraints span-
ning multiple parts of the database. This makes it nontrivial to see
if enough synchronisation has been added to the application to pre-
serve these invariants, and our tool copes with this task.

The courseware application extends the one in Figure 11 by
allowing clients to cancel student registrations and enrolments. It
also imposes an additional integrity invariant limiting the number
of students that can register for a course; maintaining this invariant
requires extra synchronisation.

The above case studies demonstrate the feasibility of applying
our proof rule to realistic applications.

7. Related Work
Reasoning in strongly consistent shared memory. Our state-
based proof rule interprets tokens as permissions to perform certain
state changes. Such interpretations have been used in various logics
for strongly consistent shared memory [20, 21, 36]. For example,
such a logic could allow threads to modify the memory in a partic-
ular way only when holding a mutual exclusion lock, similar to our
use of a token in the banking application (§4).

This similarity suggests that existing work in shared memory
may be helpful in exploring the novel area of replicated databases.
However, the distributed and weakly consistent setting in which
our proof rule is applied makes the reasons for its soundness sub-
tle. In this setting, we do not have an illusion of a single copy of the
database state and a global notion of time this copy would evolve
with: as Figure 1(b) illustrates, different processes can see events as
occurring in different orders. The usual justification for the sound-
ness of the proof rules for strong consistency relies on the con-
cepts of global time and state: when considering a thread holding a
mutex lock, such proof rules reason that no other thread can hold
the lock at the same time and, hence, modify the memory state in
the way associated with the lock. In this setting, locks constrain
the global order on events. In contrast, tokens in our consistency
model provide a more subtle guarantee (8), only constraining the
partial happens-before relation.

Reasoning about consistency in distributed systems and
databases. Several papers have considered reasoning about cor-
rectness properties on weak consistency models of replicated and
centralised databases.

Bailis et al. [7] have proposed a criterion for checking when an
integrity invariant is preserved by running operations without using
any synchronisation at all. But they do not provide guidelines on
how to introduce synchronisation if the invariant is violated.

382

Li et al. [31, 32] have proposed a static analysis that uses the
proof rule (11) to check if executing operations on causal con-
sistency preserves a given integrity invariant. In case when (11)
fails for some operation o, the analysis suggests to execute o under
strong consistency in the RedBlue consistency model (§3). How-
ever, the analysis does not check that the result will indeed validate
the invariant, and our proof rule fills this gap.

Sivaramakrishnan et al. [41] have proposed a static analysis that
automatically chooses consistency levels in a replicated database
given programmer-supplied contracts. However, these contracts are
more low-level than our invariants, since they typically constrain
the happens-before relation. For example, in the banking applica-
tion (Figure 4) their contract requires happens-before to totally or-
der all withdrawal operations. The static analysis then ensures that
the contract is followed, but not that it ensures the integrity invari-
ant (5).

Lu et al. [34] proposed proof rules for establishing correctness
properties of transactions running on non-hybrid weak consistency
models of classical relational databases, such as snapshot isola-
tion [12]. In contrast, we concentrate on hybrid consistency models
of modern replicated databases, which are more sophisticated.

Fekete [22] considered a hybrid consistency model for relational
databases where some transactions execute under snapshot isola-
tion [12] and some under serialisability, a form of strong consis-
tency. He proposed conditions determining which transactions in
an application need to execute under serialisability for the whole
application to be robust, i.e., produce only behaviours that would be
obtained by executing all transactions under serialisability. In con-
trast, our proof rule only checks integrity invariants while allow-
ing the application to produce weakly consistent behaviours and,
hence, benefit from the resulting performance gains.

Weak memory models. Strong consistency is forgone not only
by modern databases, but also by shared-memory multiprocessors
and programming languages, which provide weak memory models.
All such models used in practice are hybrid, in that they allow
the programmer to strengthen consistency on demand, e.g., using
memory fences. However, weak memory models usually provide
only a limited number of operations on data, such as reads, writes
and compare-and-swaps on single memory cells. Concurrent writes
to the same memory cell result in one value being overwritten by
the other. In contrast, we deal with arbitrary operations (6) that
merge concurrent updates in a user-defined way.

That said, in the future there may be a fruitful exchange of ideas
between program logics for applications using weakly consistent
databases and those running on weak memory models. In particular,
there have been recent proposals of program logics for the “release-
acquire” fragment of the C/C++ memory model [45, 46]. This frag-
ment is analogous to causal consistency, with the above caveats
about the operations allowed. However, the published logics do not
meaningfully handle operations requesting the stronger “sequen-
tially consistent” level of C/C++. Reasoning about on-demand re-
quests of stronger-than-causal consistency is precisely the goal of
the present paper.

Several papers [3–5, 13, 18, 19] have verified application cor-
rectness on weak memory models using model checkers and
abstract interpreters. These papers thus explore verification ap-
proaches different from the one considered in this paper. Addi-
tionally, most of the papers have focused on models similar to
TSO [3, 13, 18, 19], which is stronger than the causal consistency
model we consider as a baseline. As the target correctness property,
papers on weak memory models have often considered robustness
(see above), which is too strong a requirement for our setting. On
the other hand, some of the papers [3, 4, 13, 19] automatically in-
ferred fences required to satisfy a correctness property. We do not
address the inference of consistency choices, although in the future

our state-based proof rule can serve as a basis for this. In particular,
the proof in Figure 6 can be used to refine a given conflict relation:
when the stability check T3d fails, the relation can be extended to
so as to shrink the set G(T⊥) and make the check pass.

Consistency models. Our conflict relations are similar to those
used by Pedone and Schiper [37] to specify constraints on message
delivery in a broadcast algorithm. We use the conflict relations
to define a high-level consistency model, which abstracts from a
message-based database implementation.

In a position paper, Li et al. [30] independently proposed an
idea of a hybrid consistency model similar to ours. Their model
does not have a formal semantics and is less flexible than ours,
since their analogue of the conflict relation is defined directly on
operations, instead of indirectly using tokens. This does not allow
the synchronisation mandated for an operation to depend on the
state it is executed in and, hence, does not allow expressing parallel
snapshot isolation (§6).

Specifying consistency models. The formal specification of our
consistency model (§3) builds on a framework previously proposed
to specify forms of eventual consistency [15]. Despite this simi-
larity, we take a somewhat different approach to specifying the se-
mantics of operations. Previous work [15] specified the return value
of an event by an arbitrary function of its context in the execution
(§3). In contrast, our Definition 2 uses a particular function eval†F ,
itself constructed from more primitive functions F eff

o , operating on
states. This choice allows us to define the semantics of operations in
terms of states, as opposed to events, which can then be used in our
state-based proof rule. The use of states also allows to use off-the-
shelf SMT solvers to discharge the required verification conditions.
However, it is likely that our event-based rule may be adapted to the
operation specifications used in [15].

8. Conclusion and Future Work
We presented the first proof rule establishing that a given consis-
tency choice in a replicated database is sufficient to preserve a given
integrity invariant. Our proof rule is modular and simple to use. We
demonstrated this by small but nontrivial examples, and by reduc-
ing the verification conditions of the proof rule to SMT checks. De-
spite this simplicity, the soundness of our proof rule is nontrivial:
the rule fully exploits the guarantees provided by our consistency
model while correctly accounting for anomalies it allows.

Our results represent only an initial step in building an infras-
tructure of reasoning methods for applications using modern repli-
cated databases. They open several avenues for future work. First,
our generic consistency model is not implemented by any database
in its full generality; we use it only as a means to compactly rep-
resent a selection of more specific models in existing implementa-
tions. However, in the future the generic model can serve as a basis
for exploring the space of possible hybrid consistency models. One
could also consider a database that implements our model in its
general form.

Second, the soundness of our proof rule relies on the fact that
our consistency model guarantees at least causal consistency (§4).
Even though causal consistency can be implemented without any
synchronisation between replicas, this model has its cost [14]. In
the future, we plan to propose proof rules for weaker models where
causality preservation is not guaranteed for all operations. We also
hope to generalise our methods to more expressive correctness
properties than integrity invariants.

Finally, in this paper we used the event-based proof rule just to
structure the proof of soundness of the state-based one. However,
the event-based rule is also interesting in its own right. In the future
it can be used in cases when, to prove a correctness property,

383

we need to maintain information about the computation history.
For example, this is often necessary when reasoning about shared-
memory concurrency [23, 25].

Acknowledgements. We thank Valter Balegas for helpful discus-
sions and Vincent Gramoli for comments on an earlier draft of this
paper. Gotsman was supported by an EU FET project ADVENT.
Ferreira, Najafzadeh, and Shapiro were supported in part by an
EU project SyncFree (FP7 609 551, 2013–2016). Yang was sup-
ported by EPSRC and an Institute for Information & communi-
cations Technology Promotion (IITP) grant funded by the Korea
government (MSIP, No. R0190-15-2011).

References
[1] https://github.com/Z3Prover/z3.

[2] D. Abadi. Consistency tradeoffs in modern distributed database sys-
tem design: CAP is only part of the story. IEEE Computer, 45(2),
2012.

[3] P. A. Abdulla, M. F. Atig, and N. T. Phong. The best of both worlds:
Trading efficiency and optimality in fence insertion for TSO. In ESOP,
2015.

[4] J. Alglave, D. Kroening, V. Nimal, and D. Poetzl. Don’t sit on the
fence - A static analysis approach to automatic fence insertion. In
CAV, 2014.

[5] J. Alglave, D. Kroening, V. Nimal, and M. Tautschnig. Software
verification for weak memory via program transformation. In ESOP,
2013.

[6] Amazon. Supported operations in DynamoDB.
http://docs.aws.amazon.com/amazondynamodb/latest/
developerguide/APISummary.html, 2015.

[7] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M. Hellerstein, and
I. Stoica. Coordination avoidance in database systems. PVLDB, 2015.

[8] P. Bailis, A. Fekete, A. Ghodsi, J. M. Hellerstein, and I. Stoica. Scal-
able atomic visibility with RAMP transactions. In SIGMOD, 2014.

[9] V. Balegas, N. Preguiça, R. Rodrigues, S. Duarte, C. Ferreira, M. Na-
jafzadeh, and M. Shapiro. Putting the consistency back into eventual
consistency. In EuroSys, 2015.

[10] Basho Inc. Using strong consistency in Riak.
http://docs.basho.com/riak/latest/dev/advanced/strong-consistency/,
2015.

[11] M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber. Mathematizing
C++ concurrency. In POPL, 2011.

[12] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil.
A critique of ANSI SQL isolation levels. In SIGMOD, 1995.

[13] A. Bouajjani, E. Derevenetc, and R. Meyer. Checking and enforcing
robustness against TSO. In ESOP, 2013.

[14] M. Bravo, N. Diegues, J. Zeng, P. Romano, and L. E. T. Rodrigues.
On the use of clocks to enforce consistency in the cloud. IEEE Data
Eng. Bull., 38(1), 2015.

[15] S. Burckhardt, A. Gotsman, H. Yang, and M. Zawirski. Replicated
data types: specification, verification, optimality. In POPL, 2014.

[16] S. Burckhardt, D. Leijen, M. Fähndrich, and M. Sagiv. Eventually
consistent transactions. In ESOP, 2012.

[17] A. Cerone, G. Bernardi, and A. Gotsman. A framework for transac-
tional consistency models with atomic visibility. In CONCUR, 2015.

[18] A. M. Dan, Y. Meshman, M. T. Vechev, and E. Yahav. Predicate
abstraction for relaxed memory models. In SAS, 2013.

[19] A. M. Dan, Y. Meshman, M. T. Vechev, and E. Yahav. Effective
abstractions for verification under relaxed memory models. In VMCAI,
2015.

[20] T. Dinsdale-Young, M. Dodds, P. Gardner, M. J. Parkinson, and
V. Vafeiadis. Concurrent abstract predicates. In ECOOP, 2010.

[21] M. Dodds, X. Feng, M. Parkinson, and V. Vafeiadis. Deny-guarantee
reasoning. In ESOP, 2009.

[22] A. Fekete. Allocating isolation levels to transactions. In PODS, 2005.
[23] M. Fu, Y. Li, X. Feng, Z. Shao, and Y. Zhang. Reasoning about op-

timistic concurrency using a program logic for history. In CONCUR,
2010.

[24] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services. SIGACT News,
33(2), 2002.

[25] A. Gotsman, N. Rinetzky, and H. Yang. Verifying concurrent memory
reclamation algorithms with grace. In ESOP, 2013.

[26] A. Gotsman, H. Yang, C. Ferreira, M. Najafzadeh, and M. Shapiro.
’Cause I’m strong enough: Reasoning about consistency choices in
distributed systems (extended version). Available from
http://software.imdea.org/∼gotsman/.

[27] C. B. Jones. Specification and design of (parallel) programs. In IFIP
Congress. North-Holland, 1983.

[28] D. Kim and M. C. Rinard. Verification of semantic commutativity
conditions and inverse operations on linked data structures. In PLDI,
2011.

[29] L. Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs. IEEE Trans. Comput., 28(9), 1979.

[30] C. Li, J. Leitão, A. Clement, N. Preguiça, and R. Rodrigues. Minimiz-
ing coordination in replicated systems. In Workshop on Principles and
Practice of Consistency for Distributed Data (PaPoC), 2015.

[31] C. Li, J. Leitão, A. Clement, N. M. Preguiça, R. Rodrigues, and
V. Vafeiadis. Automating the choice of consistency levels in replicated
systems. In USENIX ATC, 2014.

[32] C. Li, D. Porto, A. Clement, R. Rodrigues, N. Preguiça, and J. Gehrke.
Making geo-replicated systems fast if possible, consistent when nec-
essary. In OSDI, 2012.

[33] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Don’t
settle for eventual: scalable causal consistency for wide-area storage
with COPS. In SOSP, 2011.

[34] S. Lu, A. J. Bernstein, and P. M. Lewis. Correct execution of trans-
actions at different isolation levels. IEEE Trans. Knowl. Data Eng.,
16(9), 2004.

[35] Microsoft. Consistency levels in DocumentDB.
http://azure.microsoft.com/en-us/documentation/articles/
documentdb-consistency-levels/, 2015.

[36] P. W. O’Hearn. Resources, concurrency and local reasoning. Theor.
Comput. Sci., 375(1-3), 2007.

[37] F. Pedone and A. Schiper. Generic broadcast. In DISC, 1999.
[38] M. Saeida Ardekani, P. Sutra, and M. Shapiro. Non-monotonic

snapshot isolation: Scalable and strong consistency for geo-replicated
transactional systems. In SRDS, 2013.

[39] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. A comprehen-
sive study of Convergent and Commutative Replicated Data Types.
Technical Report 7506, INRIA, 2011.

[40] M. Shapiro, N. M. Preguiça, C. Baquero, and M. Zawirski. Conflict-
free replicated data types. In SSS, 2011.

[41] K. Sivaramakrishnan, G. Kaki, and S. Jagannathan. Declarative pro-
gramming over eventually consistent data stores. In PLDI, 2015.

[42] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional storage
for geo-replicated systems. In SOSP, 2011.

[43] D. Terry. Replicated data consistency explained through baseball.
Commun. ACM, 56(12), 2013.

[44] D. B. Terry, V. Prabhakaran, R. Kotla, M. Balakrishnan, M. K. Aguil-
era, and H. Abu-Libdeh. Consistency-based service level agreements
for cloud storage. In SOSP, 2013.

[45] A. Turon, V. Vafeiadis, and D. Dreyer. GPS: Navigating weak memory
with ghosts, protocols, and separation. In OOPSLA, 2014.

[46] V. Vafeiadis and C. Narayan. Relaxed separation logic: A program
logic for C11 concurrency. In OOPSLA, 2013.

[47] W. Vogels. Eventually consistent. CACM, 52(1), 2009.

384

6 PUBLISHED PAPERS

6.2 Iwan Briquemont, Manuel Bravo, Zhongmiao Li, and
Peter Van Roy. Conflict- free partially replicated data
types. In Proceedings of the 7th IEEE Interna- tional
Conference on Cloud Computing Technology and Sci-
ence (CloudCom 2015). IEEE, Nov 2015.

SyncFree Deliverable D.3.3(v0.1), March 23, 2016, Page 38

Conflict-free Partially Replicated Data Types

Iwan Briquemont*, Manuel Bravo*†, Zhongmiao Li*† and Peter Van Roy*

*Université catholique de Louvain, Belgium
†Instituto Superior Técnico, Universidade de Lisboa, Portugal

Abstract—Designers of large user-oriented distributed ap-
plications, such as social networks and mobile applications,
have adopted measures to improve the responsiveness of their
applications. Latency is a major concern as people are very
sensitive to it. Geo-replication is a commonly used mechanism
to bring the data closer to clients. Nevertheless, reaching the
closest datacenter can still be considerably slow. Thus, in order
to further reduce the access latency, mobile and web applications
may be forced to replicate data at the client-side. Unfortunately,
fully replicating large data structures may still be a waste of
resources, specially for thin-clients.

We propose a replication mechanism built upon conflict-
free replicated data types (CRDT) to seamlessly replicate parts
of large data structures. The mechanism is transparent to
developers and gives improvements without increasing application
complexity. We define partial replication and give an approach to
keep the strong eventual consistency properties of CRDTs with
partial replicas. We integrate our mechanism into SwiftCloud, a
transactional system that brings geo-replication to clients. We
evaluate the solution with a content-sharing application. Our
results show improvements in bandwidth, memory, and latency
over both classical geo-replication and the existing SwiftCloud
solution.

Keywords—CRDTs, partial replication, caching

I. INTRODUCTION

Globally accessible web applications, such as social net-
works, aim to provide low-latency access to their services.
Thus, data locality is a fundamental property of their systems.
Geo-replication is a common solution where data is replicated
in multiple datacenters [1]–[3]. In this scenario, user requests
are forwarded to the closest datacenter. Therefore, the latency
is reduced. Unfortunately, the latency, even when accessing the
closest datacenter, may still be considerable. [4], [5] argue that
clients are sensitive to even small increases of latency.

Systems such as [6], [7] use caching techniques to yet
reduce latency even more. However, this can be challenging
and expensive. For instance, one could simply use client caches
for reading purposes. Nevertheless, in order to keep some
consistency guarantees and freshness of data, mechanisms,
such as cache invalidation, need to be used. Scaling these kinds
of techniques is difficult and directly affects the performance.
Moreover, one could let clients apply write operations locally
and eventually propagate them. However, this can cause con-
flicts between replicas and potential rollbacks.

The recently formalized CRDTs [8], [9] can serve to dimin-
ish the impact of some of the previously mentioned problems.
These data types are conflict-free by default; therefore, no
conflict resolution mechanisms need to be written by appli-
cation developers. SwiftCloud [10], a geo-replicated storage
system that ensures causal consistency, benefits from CRDT

semantics. It replicates CRDTs not only across datacenters,
but it also replicates them in clients. It allows read and
write operations to be directly executed in client caches. In
consequence, SwiftCloud reduces latency, and enables off-line
mode during disconnection periods.

The current specifications of CRDTs do not allow par-
titioning. Thus, a CRDT replica is assumed to contain the
full data structure. We believe partitioned CRDTs may pose
several benefits for current applications. First, CRDTs can
easily become heavy data structures, such as a set CRDT that
contains the posts of a user wall in a Facebook-like application.
In many cases, users are simply interested in the most relevant
posts, according to some criterium. For instance, one may be
interested in reading the top-ten most voted posts of a Reddit-
like application. Thus, replicating the whole CRDT is a waste
of resources, of both storage and bandwidth. The former can be
critical when thin devices, such as smartphones, are considered
as clients. These types of clients have limited memory re-
sources; therefore, it is convenient to avoid storing unnecessary
data. On the other hand, bandwidth is one of the most costly
resources offered by cloud providers such as Amazon S3 [11],
Google Cloud Storage (GCS) [12], and Microsoft Azure [13];
therefore, it is beneficial to use it efficiently. Second, the full
replication of CRDTs in clients may arise security concerns.
By partitioning CRDTs, applications could precisely decide
which data each client stores. This could keep malicious clients
from storing sensitive data. Finally, they can also be used to
provide multiple fidelity requirements for data accommodated
in resource-limited devices, while keeping consistency between
fidelity levels [14]. This could be achieved by not replicating
less important information on mobile devices.

In this paper, we propose a new kind of CRDTs that allows
partitioning. We call them “Conflict-free Partially Replicated
Data Types” (hereafter CPRDTs). We study how partitions
of the same CRDT can interact among each other and still
maintain its consistency guarantees. Furthermore, we revise
previously defined CRDT specifications and propose new
specifications that consider partitioning. One could claim that
developers could simply re-format their data structures to
obtain similar benefits; nevertheless, this adds complexity to
application development and, in some cases, optimal results
can be difficult to achieve. We propose to better integrate
CPRDTs into the system. Thus, developers will benefit from
them transparently, without being aware of their existence.

The major contributions of this paper are the following: (i)
definition of the new CPRDTs, which includes revisiting the
specifications of previously defined CRDTs; (ii) extension of
SwiftCloud to integrate CPRDTs; and (iii) extensive evaluation
of the performance improvements of CPRDTs in SwiftCloud.
The latter includes the implementation of a Reddit-like [15],
[16] application, called SwiftLinks, on top of SwiftCloud.

The remainder of the paper is organized as follows: Section
II presents a formal definition of the partitioned CRDTs; Sec-
tion III discusses some practical issues of CPRDTs; Section IV
presents an extensive evaluation of the SwiftCloud extension
that includes CPRDTs; Section V briefly describes preceding
related work; finally, Section VI concludes the paper.

II. CONFLICT-FREE PARTIALLY REPLICATED DATA TYPES

Allowing partitioning poses new challenges: all operations
are not enabled on partial replicas, which means new pre-
conditions must be added to ensure correctness. However,
these preconditions must not compromise the convergence of
replicas. Plus, a partial replica could vary the parts it keeps,
by choosing to replicate more, or less, parts. This has to be
done without losing data and still achieving convergence.

A. Example of use

Let us use an example to illustrate the advantages of
CPRDTs: the user wall of a social network. We can model
a user’s wall as a set. In this example, there are four users that
interact: Alice, Bob, Charlie and an anonymous user. Bob is
a friend of Alice, while Charlie is a friend of Bob, but not of
Alice. Participating users may want to read or post something
in Alice’s wall. We make two assumptions: (i) users maintain
a full replica of their wall; and (ii) a user X that reads or posts
in user Y ’s wall replicates user Y ’s wall locally.

Each post contains a date, an author, and a message. Each
user is allowed to read a subset of other users’ walls, depending
on their friendship and posts visibility (private or public). For
instance, Bob can read all the posts of Alice’s wall because
of their friendship. Nevertheless, Charlie can only read public
and Bob’s posts (friends of friends). Finally, any other user
can only read public posts.

We can assume that Alice has been using the social network
for a few years and there are a considerable number of posts
on her wall. It seems natural that a user should not have
to replicate the whole wall to simply read the latest posts.
Nevertheless, this is what presumably may occur in a fully-
replicated scenario (CRDT-like), where the data structures
cannot be partitioned and we still want to replicate data in
clients-side. One solution is to manually split the data structure
according to some criteria (e.g. by date, author or privacy
setting). However, developers then need to anticipate how users
will use the application. While possible in some cases, it seems
to make the application cumbersome to write.

In this scenario, CPRDTs have two applications. On the one
hand, CPRDTs abstract the partitioning from the application.
Thus, from the point of view of programmers, there will only
be one logical data structure per wall. This simplifies the
developer’s task. Moreover, this allows a more efficient and
fine-grained partitioning adapted to the needs of a particular
client in a specific point of time, which may be impossible if
the partitioning is done manually by developers. The second
application of CPRDTs is related to the enforcement of secu-
rity policies. We may want users to only replicate posts that
they are allowed to see. This could keep malicious users from
storing sensitive data locally.

B. Definitions

Before defining CPRDTs, we have to clarify some concepts
that we will use throughout the paper. An object is a named
instance of a CRDT or CPRDT in our case. Each participating
process replicates a set of objects. A process that replicates an
object is called replica of the CRDT (or CPRDT) instantiated
by the object. Objects can be read using query operations and
modified by update operations. Query operations return the
abstract state of the object, that we call the data of the object.
Nevertheless, additional data, which we refer as metadata, is
kept internally to ensure convergence.

An update operation can have preconditions that capture
its safety requirements. In consequence, an operation is said
to be enabled at a replica, if it satisfies its preconditions. For
instance, the remove operation of a set is enabled only if the
element to be removed is present in the set.

Previous definitions fit into both CRDTs and CPRDTs.
Nevertheless, for CPRDTs, we further consider that a process
might replicate an object partially: it only has access to a part
of data, thus the process only keeps the metadata required for
that given part. Intuitively, this means that only part of the data
structure is replicated: some elements of a set, a subgraph of
a graph, or a slice of a sequence. CRDTs that only have one
element, such as counters and registers, cannot be partitioned
and therefore do not need to be specified as CPRDTs.

particle We define a particle as an element of a collection.
For instance, a particle in a set would be any element that can
be added to the set.

Apart from the definition of particle, we introduce three
new concepts: shard set, required, and affected.

shard set Each replica xi of a CPRDT has associated a set of
particles, namely shard set in analogy to the databases concept.
Respectively, shard(xi) is a function that returns the shard set
of xi. A replica xi only knows the state of the particles in
shard(xi); therefore, it can only enable query operations that
require those particles. Furthermore, a replica xi only needs to
receive update operations that affect the particles in shard(xi).

There are two special cases: a full replica and a hollow
replica. We use π to represent the full set of possible particles
a CPRDT may be interested in. The set π may be infinite. Thus,
we say that a full replica’s shard set is equal to π. Notice that
a full replica CPRDT is equivalent to a normal CRDT. On the
other hand, when shard(xi) = ∅, then xi is a hollow replica
(as named in [17]). A hollow replica does not maintain any
state. Nevertheless, it can still handle updates (section II-C2).

required For an operation op with its arguments, required(op)
is the set of particles needed by op to be properly executed.
This means that, for replica xi, an operation op is enabled
only if required(op) ⊆ shard(xi). For instance, for the lookup
operation of a set, required(lookup(e)) = {e} where e is an
element of the set. In case e /∈ shard(xi), the replica xi does
not know whether e is in the set because it has not kept a
state for it. This implies that updates affecting e have not been
necessarily seen by xi.

affected The function affected(op) returns a particle that may
have its state affected after executing an update operation. We
assume that an update can only affect one particle. This may

not be true for complex data structures, however it is always
possible to split an operation into several ones that each only
affects one particle. For example, for a graph, an operation
for removing a vertex will remove the vertex as well as all
its edges. It can be split into several sub-operations that firstly
remove all edges of the vertex and then remove the vertex.

C. Replication

As for the original CRDTs, we consider two equivalent
replication techniques: state- and operation-based. Allowing
partitioning introduces changes in the way these replication
techniques work. Furthermore, concepts such as causal history
and convergence have to be revisited. The following definitions
are based on the ones in [8] for fully-replicated CRDTs.

To simplify our definitions, we assume that the shard set
of a CPRDT is fixed. However, in practice, it can be necessary
to dynamically change it. Nevertheless, definitions apply if
we consider that changing the shard set is equivalent to the
creation of a new CPRDT replica.

Since the abstract state of a CPRDT may change after
applying an update, we denote the abstract states of a CPRDT
replica (xi) by an increasing numbered sequence as sk(xi),
such as s0(xi), s1(xi)... sk(xi)...

Now we define when two replicas are equivalent.

Definition 1 (Equivalence). xi and xj have equivalent abstract
states if all query operations q, for which required(q) ⊆
(shard(xi) ∩ shard(xj)), return the same values.

Different replicas of the same CPRDT might have different
shard sets. Thus, we define intersecting abstract state as the
abstract state for the particles in the intersection of shard sets.

Definition 2 (Intersecting abstract state). For a replica xi with
its current state sk(xi), sk(xi|xj) denotes the sk state for
particles ∈ shard(xi) ∩ shard(xj).

The requirement for replicas to converge is that they apply,
directly or indirectly, the same update operations. We can
informally define the causal history of a replica, denoted by
Ck(xi), as a set containing the applied update operations.
As xi applies each operation, its causal history goes through
a sequence of states C0(xi), C1(xi), ..., Ck(xi), We also
define the intersecting causal history as Ck(xi|xj) = {f ∈
Ck(xi)| affected(f) ∈ (shard(xi) ∩ shard(xj))}. Intuitively,
it includes updates from Ck(xi) that affect the particles of xj .

Now, we are ready to formally define convergence in the
context of CPRDTs:

Definition 3 (Eventual Convergence of Partial Replicas). Two
partial replicas xi and xj of an object x converge eventually
if the following conditions are met:

• Safety: ∀i, j : ∀k, k′, if Ck(xi|xj) = Ck′(xj |xi), then
sk(xi|xj) = sk′(xj |xi).

• Liveness: ∀i, j : ∀k, if f ∈ Ck(xi) and affected(f) ∈
shard(xj), then ∃k′ that f ∈ Ck′(xj).

1) State-based partial replication: In this replication tech-
nique, a replica ships its whole internal state to the rest.
Upon arrival, replicas merge both the local and the received
states. The merge method is an idempotent, commutative and
associative operation that has two replicas internal states as
arguments. In the CPRDTs context, the merge method used by
a replica must only merge the state of the particles belonging
to the intersection between local and remote replicas shard
sets, and ignore the rest.

State-based replication is an interesting propagation mech-
anism since it poses almost no communication requirements.
Nevertheless, it may be expensive to always ship the full
internal state. CPRDTs can optimize this technique since only
parts of the state need to be sent and received. We define
the causal history of a replica for state-based replication as
follows:

Definition 4 (Causal History on Partial Replicas - state-based).
For any replica xi of x:

• Initially, C0(xi) = ∅.

• Before executing update operation f ,
if affected(f) ∈ shard(xi) then execute f and
Ck+1(xi) = Ck(xi) ∪ {f},
otherwise Ck+1(xi) = Ck(xi).

• After executing merge against states xi, xj ,
Ck+1(xi) = Ck(xi) ∪ {f ∈ Ck′(xj)| affected(f) ∈
shard(xi)}

To achieve convergence with state-based replication on
partial replicas, updates operations cannot be applied if it
affects a particle that is not in that replica’s shard set. This
would violate the liveness property of convergence as that
update might not be added to the causal history of another
replica when merging. Thus, an operation f is disabled if
affected(f) 6∈ shard(xj). On the other hand, since the replicas
only converge on their common parts, a replica xi just needs
to send to another, xj , the state of the intersection of their
shards (shard(xi) ∩ shard(xj)).

2) Operation-based partial replication: As with classical
CRDTs, the update operations are divided into two phases:
prepare and downstream phase. The former is done at the
source replica and does not have any side-effect. The latter
is applied at all replicas and it affects the state of replicas.
We define the causal history of a replica for operation-based
replication as follows:

Definition 5 (Causal History on Partial Replicas - op-based).
For any replica xi of x:

• Initially, C0(xi) = ∅.

• After executing the downstream phase of operation
f at replica xi,
if affected(f) ∈ shard(xi) then Ck+1(xi) = Ck(xi)∪
{f},
otherwise Ck+1(xi) = Ck(xi).

In contrast to CRDTs, CPRDTs only have to broadcast
updates to the replicas interested in the particles affected by
the update. Therefore, an update u is broadcasted to xi if
affected(u) ∈ shard(xi). This poses an interesting situation.

A CPRDT replica can sometimes complete the first phase of
the update operation without necessarily completing the second
phase. For instance, a replica xi, whose shard(xi) are particles
a and b, receives an update operation that affects particle c. In
this situation xi may complete the prepare phase, broadcast the
downstream operation to the interested replicas, and discard it
locally. We name this scenario blind updates. This can only
happen in operation-based replication. Hollow replicas, whose
shard is empty, can only do blind updates.

D. Specification of CPRDTs

In this section, we present the specifications of an
operation-based observed-remove set (OR-set) CPRDT. We
resort into this example in order to better illustrate how to
integrate the newly defined concepts into a CRDT (original
specifications in [8]); and thus, transform it into a CPRDT.
More examples of CPRDTs and generic specification tem-
plates, for both operation- and state-based, are found in [18].

An OR-set works as follows: (i) elements are uniquely
tagged by the source replica when added to the set. The
source replica is the one receiving the client operation. (ii)
concurrent additions of the same element are all reflected in
the set internal state by storing them with different tags. (iii)
a remove operation is transformed into the list of unique tags
related to the element to be removed that are present in the
source replica. Since causal delivery is assumed, this ensures
convergence of replicas even in the presence of concurrent
adds and removes of the same element.

The specifications incorporate (i) the particle definition
(line 1); (ii) the required and affected preconditions (lines
11, 15 and 19); and (iii) a new function called fraction. The
fraction operation allows us to create new partial replicas from
a subset of a given replica. The subset we want to copy in the
new replica is defined by a set of particles. More formally,
fraction can be defined as follows:
xj = fraction(xi, Z), where Z is the set of particles to repli-
cate. The operations ensures that shard(xj) = shard(xi) ∩ Z.

Specification 1 Op-based OR-set with Partial Replication
1: particle definition A possible element of the set.
2: payload set S
3: initial ∅
4: query lookup(element e) : boolean b
5: required particles {e}
6: let b = ∃u : (e, u) ∈ S

7: update add(element e)
8: prepare (e) : α
9: let α = unique()

10: effect (e, α)
11: affected particles {e}
12: S := S ∪ {e, α}
13: update remove(element e)
14: prepare (e) : R
15: required particles {e}
16: pre lookup(e)
17: let R = {(e, u)|∃u : (e, u) ∈ S}
18: effect (R)
19: affected particles {e}
20: pre ∀(e, u) ∈ R : add(e, u) has been delivered
21: S := S \ R

22: fraction (particles Z) : payload D
23: let D.S = {(e, u) ∈ S|e ∈ Z}

III. PRACTICAL ISSUES

In this section, we discuss (i) shard queries, and (ii) the
implications of allowing dynamic shard sets. Both issues are
relevant for making CPRDTs practical.

A. Shard queries

The operation fraction, introduced in II-D, is the canonical
form to define the shard set of a replica. Nevertheless, fraction
is not practical. In practice, applications will transform their
semantics into a high-level query language. For instance, an
application could issue a query in the form of “give me the first
10 elements of your sorted set”. We name this type of queries
shard queries. They bridge the gap between the application
semantics and the function fraction adding expressiveness to
the usage of CPRDTs.

There are two types of shard queries: version-independent
and version-dependent. The former only depends on the prop-
erties of the particles, and not in the version of the CPRDT.
In contrast, the latter depends on the current version of the
CPRDT. Let us use a CPRDT set whose domain is the set
of integers as example. A version-independent query could be
“integers greater than 0”. This shard query will always return
the same shard set ((0, +∞)) independently of the queried
CPRDT version. On the other hand, a version-dependent query,
such as “the 10 highest integers in the set”, will return a
different shard set depending on which elements have been
already added, and removed, on the version being queried.

Version-independent queries are easier to work with: they
are comparable. One could determine which query is more spe-
cific without knowing the version of the CPDRT they apply to.
While with version-dependent queries, one can only compare
queries if they apply to the same version. Nevertheless, both
types are needed in order to make CPRDTs practical.

B. Dynamic shard set

Dynamic shard set refers to the capability of a partial
replica to modify, either shrink or expand, its shard set. We
believe this capability is useful in practice, e.g. a client may
become interested in new parts. Having dynamic shard set, a
replica does not need to be re-created, only the missing state
needs to be grabbed. Nevertheless, maintaining convergence in
some scenarios can become challenging.

On the one hand, a partial replica can easily shrink its
shard set without compromising convergence in the operation-
based scenario. A replica only needs to take two things into
consideration: (i) updates prepared locally have been already
broadcasted, and (ii) the data to be dropped is replicated by
some other replica; therefore, data is not lost. On the other
hand, expanding a partial replica is more tricky. For instance,
in an operation-based scenario, the following situation can
easily occur: (i) a replica’s (xi) shard set is a, c; therefore,
xi does not receive updates that affect b; (ii) suddenly, xi

becomes interested in b and starts accepting updates on b; (iii)
unfortunately, xi will not converge since updates have been
missed. In order to ensure convergence, extra communication
between replicas would be needed to recover dropped updates.
This would add complexity to the underlying protocols.

In state-based replication, shrinking or expanding the shard
set is simpler. On the one hand, a replica only needs to
broadcast its state before shrinking its shard set. On the other
hand, a replica that wants to expand its shard set only needs to
merge its current state with the state of a replica that contains
new particles.

IV. EVALUATION

In this section, we report the results of our experimental
evaluation. This study aims at evaluating the benefits of
CPRDTs in terms of memory, bandwidth and latency.

SwiftLinks In order to evaluate our solution, we implemented
an application, namely SwiftLinks, on top of SwiftCloud.
SwiftLinks is a vote-based content-sharing application based
on Reddit. In short, the application allows users to create fo-
rums where they can publish posts. Then, users can vote posts
positively or negatively. As a consequence, posts get ranked.
In addition, users can comment posts and other comments.
Users can also vote comments, and consequently, comments
get ranked (more information [15], [16]).

SwiftLinks is modeled with three types of data structures:
(i) OR-Set for each forum, (ii) a novel Remove-once Tree for
each tree of comments, and (iii) Last-Writer-Wins Registers
for each vote associated to a post/comment. The application
uses both types of queries: version-independent and version-
dependent. The former is mostly used for reading single
comments or posts. The latter is used for reading ranking of
posts and comments.

Warm-up We used Reddit’s API to fetch data to warm up our
system. For each benchmark, we create 10000 posts over 20
forums (so an average of 500 posts per forum). Each post has
20 comments on average. Moreover, each post has an average
of 170 votes, while comments an average of 13 votes.

Workload Our workloads are composed by read and update
operations. Read operations are executed over posts and com-
ments. On the other hand, there are three types of update
operations: (i) new post, (ii) new comment, and (iii) new vote.

For most of the experiments, 20% of the operations are
updates and 80% are reads. Furthermore, 90% of the operations
are biased to previously accessed objects. This means that they
are likely to hit the cache. The rest (10%) is done on randomly
selected posts and comments.

A. Integration of CPRDTs into a real system

We chose SwiftCloud [10] to integrate CPRDTs. Swift-
Cloud is a geo-replicated cloud storage system written in Java
that stores CRDTs and caches data at clients. It consists of
several datacenters that fully replicate the key-space. Clients
indirectly communicate through the datacenters. In absence of
failures, a client always interacts with its closest datacenter
and caches accessed data in its local cache. SwiftCloud pro-
vides transactional causal+ consistency. Transactions are first
executed and committed on the client side, then propagated
to the datacenters. For fault tolerance purposes, committed
transactions are only visible after they have been seen by K
datacenters.

In our version of SwiftCloud, datacenters store full replicas
as in the original implementation. Nevertheless, clients only

cache partial replicas. Having full replicas coexisting with the
partial replicas considerably simplifies the management of the
latter. This poses several advantages in comparison to an ad-
hoc architecture where no full replicas, namely authorities, are
assumed. Firstly, clients can discard their (partial) replicas at
will as long as their updates have been reliably sent to an
authority. Secondly, a client can request any fraction from an
authority in order to either get a new partial replica, or to
expand its own shard set. Notice that having an authority also
simplifies the integration of state-dependent shard queries in
the system, very difficult and costly otherwise. Finally, the
authority could store which particles each partial replica has
in his shard set. Thus, it could only propagate operations to
the interested replicas, saving bandwidth.

B. Experimental setup

SwiftLinks was evaluated using three Amazon EC2 servers
as datacenters: one in Ireland and two in the USA (east and
west coast). The EC2 instances are equivalent to a single core
64-bit 2.8 GHz Intel Xeon virtual processor (4 ECUs) with 7.5
GB of RAM. The clients run in 15 PlanetLab nodes located
near the DCs. These nodes have heterogeneous configurations
with varying processing power and RAM. We set up five
SwiftLinks users running concurrently per node, a total of 75.
Each client performs an operation per second.

Throughout the evaluation, we use three different modes:

• Cloud: This mode simulates a typical geo-replicated
system. Clients do not cache any data. Operations
are applied synchronously at one datacenter and asyn-
chronously replicated to the rest of datacenters.

• Partial. This is the mode that integrates the CPRDTs.
Thus, clients only fetch and cache parts of the data
structures (CRDTs) as needed.

• Full. This is the SwiftCloud approach. Clients cache
whole CRDTs even when only part of it is needed.

We limit the capacity of the cache in our experiments
to simulate memory restrictions on thin clients, such as a
mobile phone. Nowadays, a mobile phone can have up to
several gigabytes of memory, but it can easily have tens of
applications running simultaneously. An application needs to
cohabit with many other applications with limited memory.
Therefore, we use 64MB as the default size for cache. If the
cache size exceeds this limit, the least recently used object is
dropped. In this configuration, full and partial, if the cache
contains the required data, the operations are run locally, and
asynchronously propagated to the closest datacenter.

The difference between full and partial is that the latter
benefits from the partial replication mechanism described in
the paper. This means that objects are fetched in parts as
needed, so the cache can hold parts of an object. For instance,
a query for the top ten posts of a forum would only replicate
those ten posts in clients cache. On the other hand, for the full
mode, the objects are only fully replicated in clients side, as
in SwiftCloud. Therefore, the same top ten posts query would
replicate the whole forum.

C. Latency

We evaluated the perceived latency for various operations
with and without partial object replication. Figure 1 shows
the cumulative distribution functions of different operations’
latency. These results are obtained after a warm-up phase for
the cache. This means that the cache is pre-filled with objects
that will be used by the operations present in the workload.
For the full and partial mode, there are always a percentage
of operations with a very low latency. We can conclude that it
is the percentage of operations that hit the cache.

Read operations Figure 1a shows that the full mode has
greater cache hit rate (35%) than the partial mode. Never-
theless, the hit rate is not optimal due to the limit in the cache
size: the cache cannot hold full replicas of all the forums and
thus sometimes need to fetch them again. Figure 1c shows
the results of a similar experiment but without any cache size
limit. In that case, the cache hit rate, for the full mode, is
90%, which corresponds to our ratio of biased operations,
and it confirms the previous results with a social network
application of the SwiftCloud paper [10]. On the other hand,
in partial mode, the cache hit rate is lower, with only 20% in
both experiments (figures 1a and 1c), because the cache only
holds partial replicas which gives it less chance of having all
the parts needed for hitting the cache in subsequent operations.
However, it has the advantage of a lower maximum latency: if
an operation does not hit the cache, it only needs to fetch some
parts, instead of the full object. In that scenario, it induces a
delay similar to the cloud solution, around 200 to 300 ms,
while without partial replication, the delay is increased to
around 500 to 700 ms by having to replicate a full object. This
poses a trade-off between the cache hit rate and the maximum
latency. While fully replicating an object will provide more
cache hits, a cache miss is more costly.

For the latency of reading comments of a post, shown in
Figure 1b, the situation is a bit different. Clients are less likely
to read the same comment tree multiple times; therefore, this
affects the cache hit ratio. As the figure shows, the hit ratio
is less than 5% in both partial and full replication. But again,
partial replication has the advantage of reducing the impact of
a cache miss as it only replicates the comments required by
the operation instead of the full comment tree. In consequence,
the partial approach has a slightly better latency, close to
the cloud mode. The cloud mode performs better because it
never needs to fetch any extra metadata, which means that the
returned messages are considerable smaller. Notice that the
difference between full and partial mode has been reduced in
this experiment because the involved objects are smaller.

Update operations Caching modes (full and partial) are more
beneficial with update operations. The reason is that update
operations are typically applied on objects, or parts of objects,
that have already been read by the client. In addition, the
update operations only use version-independent queries to
fetch their missing parts, which substantially simplifies the
comparison of partial objects in the cache. Figure 1e proves
experimentally our reasoning. While the cloud mode has an
almost constant latency for all operations of a round-trip time,
with caching modes, most of the operations (almost 90%)
have no latency. Again, the partial mode has the advantage
of reducing the latency when the cache is not hit, as it only
needs to fetch the parts of the object that need to be updated,

 0

 20

 40

 60

 80

 100

 10 100 1000

C
u
m

u
la

ti
v
e
 O

c
u
rr

e
n
c
e
s
 [
 %

]

Latency [ms]

Cloud
Partial
Full

(a) Reading posts. 64MB cache.

 0

 20

 40

 60

 80

 100

 10 100

C
u
m

u
la

ti
v
e
 O

c
u
rr

e
n
c
e
s
 [
 %

]

Latency [ms]

Cloud
Partial

Full

(b) Reading comments. 64MB cache.

 0

 20

 40

 60

 80

 100

 10 100 1000

C
u

m
u

la
ti
v
e

 O
c
u

rr
e

n
c
e

s
 [

 %
]

Latency [ms]

Cloud
Partial

Full

(c) Reading posts. Unlimited.

 80

 85

 90

 95

 100

 1 10 100 1000

C
u

m
u

la
ti
v
e

 O
c
u

rr
e

n
c
e

s
 [

 %
]

Latency [ms]

Partial
Full

(d) Commenting. 64MB cache.

 60

 65

 70

 75

 80

 85

 90

 95

 100

 1 10 100 1000

C
u
m

u
la

ti
v
e
 O

c
u
rr

e
n
c
e
s
 [
 %

]

Latency [ms]

Cloud
Partial

Full

(e) A mixed update-only workload of
posting, commenting, voting a post,
and voting a comment

Fig. 1: CDF of SwiftLinks operation latencies

instead of the full object. Moreover, some updates can be done
blindly, therefore, they are completed locally.

In particular, Figure 1d shows the benefit of updates when
posting comments, which almost always only requires particles
already present in the cache. One can see that with partial
replication, all the operations have almost no latency, as they
can be done completely asynchronously. In contrast, in full
mode, there can be a large delay when the tree of comments
is not in the cache, as it needs to be fetched from the store.
As in previous scenarios, even if an operation cannot be done
completely locally in partial mode, the client only has to fetch
part of the tree to complete the update.

D. Impact of cache size limit

In this section we look at how the application performance
changes with various cache size limits (16, 64, and 128MB).

1) Impact on latency: We have empirically demonstrated
that the partial mode performs better without cache limit when
reading links. We run the same experiments showed in figures
1a, 1b and 1e setting the cache size limit to 16MB and 128MB.
The experiments show that a smaller cache (16MB) size limit
has a big latency impact on reading links and updates in
full mode. Nevertheless, its impact is considerable smaller in

CPRDT

CRDT

Partial

Full

(a) Number of cache misses with
different cache size limits.

CPRDT

CCRDT

Partial

Full

(b) Total number of objects kept in
the cache.

Fig. 2: Impact of cache size limit in partial and full modes

partial mode. With a small cache, the cache hit rate of full
mode of reading links becomes worse than in partial mode.
This is because only a few objects can fit in the cache at a given
time; therefore, clients need to fetch objects more frequently.
This results in a lower fraction of operations having no latency,
about 5% against the 35% obtained with a 64MB cache. There
is also an impact for the partial mode, but it is considerable
lower: it only drops to 13% from 20%. The same applies for
update operations. Nevertheless, reads of comments are almost
not impacted by the cache size limit: the operations have a low
cache locality, so most operations need to fetch an object from
the datacenter.

With a 128MB cache size limit, the full mode has a large
portion of zero latency operations when reading posts, as more
are kept in the cache. It however still performs worse than
partial fetching for operations that do not hit the cache. The
latency of updates also improves for the full mode with larger
cache size, but the partial mode still outperforms it.

2) Impact on cache miss rate: The size limit imposed on
the cache also has an impact on the cache hit rate. Figure
2a shows that the partial mode is less impacted by the cache
size limit than the full mode. With the three cache limits, the
partial mode shows a rather stable number of cache misses,
about 180. Nevertheless, this does not apply to the full mode,
where the number of caches misses increases as the cache size
is reduced. As in previous experiments, the cache miss rate is
greater in the partial mode. Nevertheless, we have shown that
latency in partial mode, is always smaller in average.

3) Impact on number of objects in the cache: The cache
size also impacts the number of objects that can be kept in
the cache. Notice that for partial replication, only one object
is counted even if multiple parts of it have been fetched over
time. Figure 2b shows the difference between both modes:
partial and full. In the partial mode, many more objects can fit
in the cache at any moment, since only parts are kept. 64MB is
enough to keep all the objects needed by the application, while
in the full mode, even 128MB is not enough. This, depending
on the workload, may increase the cache hit rate.

E. Bandwidth usage

In partial mode, when a client accesses an object, only the
needed part of that object is fetched. This can result in saving
bandwidth usage compared to full mode. In this experiment,
we compare the bandwidth usage of partial mode and full

Partial Full

Fig. 3: Average bandwidth usage to fetch objects with a 128MB cache
limit, with the cache already warmed up.

 0

 20

 40

 60

 80

 100

 10 100 1000

C
u
m

u
la

ti
v
e
 O

c
u
rr

e
n
c
e
s
 [
 %

]

Latency [ms]

Partial
Full

(a) Reading posts

 0

 20

 40

 60

 80

 100

 1 10 100

C
u
m

u
la

ti
v
e
 O

c
u
rr

e
n
c
e
s
 [
 %

]

Latency [ms]

Partial
Full

(b) Reading comments

Fig. 4: Perceived latency of SwiftLinks during cache warm up.

mode. We measure the average bandwidth usage of one client
for both over one minute, with the cache already warmed up.
Figure 3 shows that the partial mode uses only about 12% of
bandwidth compared to the full mode.

F. Cache warm up

The following experiments compare both partial and full
modes latencies when the cache is still cold, i.e. no objects
are stored in the client side. Figure 4 shows the latency of
operations during the first 10 seconds of running the applica-
tion, with a cold cache. In this case, the partial mode produces
lower latencies as it does not need to replicate the full object.
The difference is more noticeable for post reading operations,
as shown in Figure 4a, as the set of posts (forums) are large
objects. But even for smaller objects, such as comment trees,
the partial mode outperforms the full one (Figure 4b). Notice
that the cache size limit does not impact these experiments,
since after 10 seconds, the cache does not get full.

G. Discussion

We have seen that partial replication has advantages over
full replication of objects. First, it sets an upper bound on the
latency of operations by limiting the amount of data that is
fetched from the store. Plus, blind update operations gain the
additional benefit of being applied locally even if the object is
not cached. Second, the cache is more efficiently used, which
allows more objects to be kept locally even with a small cache
size limit. This is useful for memory-thin devices, and to work
on very large data structures with a low memory usage. Third,
partial replication also reduces the bandwidth usage of the
application by a factor of 8, which is especially valuable on
mobile wireless connections, such as EDGE and 3G. Finally,
the last advantage is a lower cost of filling the cache when

starting the application. When the cache is empty all operations
induce a cache miss, which is especially costly if a large object
has to be fetched. Partial replication limits this issue by only
replicating the parts of the object that are actually needed.

Unfortunately, partial mode limits the cache hit rate, as
objects are not fully replicated right away, and non-replicated
parts may be needed by subsequent operations. Thus, its use
may depend on the workload and the cost of a cache miss.
However, a tradeoff is possible between the two: instead of
only fetching the parts needed by the operations, one could
fetch extra parts of the object. This would however increase
bandwidth and cache size utilisation. Latency could be kept
low by asynchronously fetching the additional parts.

V. RELATED WORK

PRACTI [19] allows clients to select a subset of objects
to replicate. Clients only receive updates on objects of their
selected subset. However, clients are forced to keep some
metadata about objects that they are not interested. Polyjuz [20]
stores objects consisting of a set of fields. Clients can decide
which fields of each object to replicate. Each subset of fields
is denoted as fidelity level. Clients can select different fidelity
levels according to the space or network limitations of the
device where the objects are replicated. Polyjuz transparently
handles the replication of an object in different fidelity levels.
In Cimbiosys [21], objects are grouped into collections. Users
can use filter expressions to only replicate objects that satisfy
some criteria. For example, a user can group his emails in
a collection and choose only to replicate emails from his
university in his phone. While in the first two systems, users
choose the object or fields to replicate based on their name or
type, in Cimbiosys user can define replication criteria based
on the value of some properties of objects.

VI. CONCLUSION AND FUTURE WORK

We have introduced and formalized a new set of CRDTs
called Conflict-free Partially Replicated Data Types, an exten-
sion of CRDTs which allows replicas to hold parts of data
structures. Our extensive evaluation has shown that CPRDTs
can improve the bandwidth and memory usage of replicas
by only replicating parts needed by clients, specially in the
presence of large data structures under limited cache sizes.
Although cache sizes may be larger in the future, we believe
that our reasoning will still apply and future applications will
still benefit from the CPRDTs approach. The experimental
study has also shown that CPRDTs reduce latency in average
in comparison to the full mode. However, CPRDTs have a
negative impact on the cache hit rate, which has to be weighted
against the upper bound on the latency provided.

We plan to extend this work in several directions. First,
partial replication can be used as a security mechanism to
avoid replicating sensitive data by restricting access with
finely grained rules. We believe it is an interesting way of
exploiting CPRDTs. Second, we want to study how predictive
caching techniques could still improve bandwidth usage and
consequently reduce latency even more.

Acknowledgments: We thank Marek Zawirski for his help in-
tegrating CPRDTs into SwiftCloud. This work was partially funded by the

SyncFree project in the European Seventh Framework Programme (FP7/2007-
2013) under Grant Agreement no 609551 and by the Erasmus Mundus Joint
Doctorate Programme under Grant Agreement 2012-0030.

REFERENCES

[1] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kan-
thak, E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle,
S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor,
R. Wang, and D. Woodford, “Spanner: Google’s globally distributed
database,” ACM Trans. Comput. Syst., vol. 31, no. 3, pp. 8:1–8:22,
Aug. 2013.

[2] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen, “Don’t
settle for eventual: Scalable causal consistency for wide-area storage
with cops,” in SOSP’11. New York, NY, USA: ACM, 2011, pp. 401–
416.

[3] A. Lakshman and P. Malik, “Cassandra: A decentralized structured
storage system,” SIGOPS Oper. Syst. Rev., vol. 44, no. 2, pp. 35–40,
Apr. 2010.

[4] E. Schurman and J. Brutlag, “The user and business impact of server
delays, additional bytes, and http chunking in web search,” in Velocity
Web Performance and Operations Conference, June 2009.

[5] C. Jay, M. Glencross, and R. Hubbold, “Modeling the effects of delayed
haptic and visual feedback in a collaborative virtual environment,” ACM
Trans. Comput.-Hum. Interact., vol. 14, no. 2, Aug. 2007.

[6] M. Satyanarayanan, J. Kistler, P. Kumar, M. Okasaki, E. Siegel, and
D. Steere, “Coda: a highly available file system for a distributed
workstation environment,” IEEE Transactions on Computers, vol. 39,
no. 4, p. 447459, Apr 1990.

[7] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer,
and C. H. Hauser, Managing update conflicts in Bayou, a weakly
connected replicated storage system. ACM, 1995, vol. 29.

[8] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “A compre-
hensive study of Convergent and Commutative Replicated Data Types,”
INRIA, Rapport de recherche RR-7506, Jan. 2011.

[9] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “Conflict-
free replicated data types,” in Stabilization, Safety, and Security of
Distributed Systems, ser. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2011, vol. 6976, pp. 386–400.

[10] M. Zawirski, A. Bieniusa, V. Balegas, S. Duarte, C. Baquero,
M. Shapiro, and N. M. Preguiça, “Swiftcloud: Fault-tolerant geo-
replication integrated all the way to the client machine,” CoRR, vol.
abs/1310.3107, 2013.

[11] “Amazon S3,” http://aws.amazon.com/s3.
[12] “Google cloud storage,” http://cloud.google.com/storage.
[13] “Windows Azure,” http://www.microsoft.com/windowsazure.
[14] K. Veeraraghavan, V. Ramasubramanian, T. L. Rodeheffer, D. B. Terry,

and T. Wobber, “Fidelity-aware replication for mobile devices,” in
MobiSys’09. Association for Computing Machinery, Inc., June 2009.

[15] “About reddit,” http://www.reddit.com/about/, accessed: 2014-06-02.
[16] “Reddit source code,” https://github.com/reddit/reddit, accessed: 2014-

04-08.
[17] D. Navalho, S. Duarte, N. Preguiça, and M. Shapiro, “Incremental

stream processing using computational conflict-free replicated data
types,” in CloudDP’13. New York, NY, USA: ACM, 2013, pp. 31–36.

[18] I. Briquemont, “Optimising client-side geo-replication with partially
replicated data structures,” Master’s thesis, ICTEAM Institute, Universit
catholique de Louvain, Sep. 2014.

[19] N. Belaramani, M. Dahlin, L. Gao, A. Nayate, A. Venkataramani,
P. Yalagandula, and J. Zheng, “Practi replication,” in NSDI’06. Berke-
ley, CA, USA: USENIX Association, 2006, pp. 5–5.

[20] K. Veeraraghavan, V. Ramasubramanian, T. L. Rodeheffer, D. B. Terry,
and T. Wobber, “Fidelity-aware replication for mobile devices,” in
MobiSys ’09. New York, NY, USA: ACM, 2009, pp. 83–94.

[21] V. Ramasubramanian, T. L. Rodeheffer, D. B. Terry, M. Walraed-
Sullivan, T. Wobber, C. C. Marshall, and A. Vahdat, “Cimbiosys: A
platform for content-based partial replication,” in NSDI’09. Berkeley,
CA, USA: USENIX Association, 2009, pp. 261–276.

6 PUBLISHED PAPERS

6.3 Carlos Baquero and Nuno Preguiça. Why logical clocks
are easy. Queue, January 2016. ACM.

SyncFree Deliverable D.3.3(v0.1), March 23, 2016, Page 47

acmqueue | january-february 2016 1

programming languages

A
ny computing system can be described as executing
sequences of actions, with an action being any
relevant change in the state of the system. For
example, reading a file to memory, modifying the
contents of the file in memory, or writing the new

contents to the file are relevant actions for a text editor. In
a distributed system, actions execute in multiple locations;
in this context, actions are often called events. Examples of
events in distributed systems include sending or receiving
messages, or changing some state in a node. Not all events
are related, but some events can cause and influence how
other, later events occur. For example, a reply to a received
mail message is influenced by that message, and maybe by
prior messages received.

Events in a distributed system can occur in a close location,
with different processes running in the same machine, for
example; or at nodes inside a data center; or geographically
spread across the globe; or even at a larger scale in the
near future. The relations of potential cause and effect
between events are fundamental to the design of distributed
algorithms. These days hardly any service can claim not to
have some form of distributed algorithm at its core.

To make sense of these cause-and-effect relations, it
is necessary to limit their scope to what can be perceived

Sometimes all
you need is the
right language

CARLOS BAQUERO AND NUNO PREGUIÇA

1 of 17 TEXT
ONLY

Why Logical Clocks
are Easy

acmqueue | january-february 2016 2

programming languages

inside the distributed system itself—internal causality.
Naturally, a distributed system interacts with the rest of the
physical world outside of it, and there are also cause-and-
effect relations in that world at large. For example, consider
a couple planning a night out using a system that manages
reservations for dinner and a movie. One person makes a
reservation for dinner and lets the other person know with a
phone call. After receiving the phone call, the second person
goes to the system and reserves a movie. A distributed
system has no way of knowing that the first reservation has
actually caused the second one.

This external causality cannot be detected by the system
and can only be approximated by physical time. (Time,
however, totally orders all events, even those unrelated—
thus, it is no substitute to causality—and wall clocks are
never perfectly synchronized.11,16) This article focuses instead
on internal causality—the type that can be tracked by the
system.

HAPPENED-BEFORE RELATION
In 1978 Leslie Lamport defined a partial order, referred to
as happened before, that connects events of a distributed
system that are potentially causally linked.8 An event c
can be the cause of an event e, or c happened before e, iff
(if and only if) both occur in the same node and c executed
first, or, being at different nodes, if e could know about the
occurrence of c thanks to some message received from some
node that knows about c. If neither event can know about the
other, then they are said to be concurrent.

2 of 17

A
distributed
system
has no
way of
knowing

that the first
reservation has
actually caused
the second one

acmqueue | january-february 2016 3

programming languages

Using the example of dinner and movie reservations,
figure 1 shows a distributed system with three nodes.
An arrow between nodes represents a message sent
and delivered. Both Bob’s positive answer to the dinner
suggestion by Alice and Chris’s later request to join the party
are influenced by Alice’s initial question about plans for
dinner.

In this distributed computation, a simple way to check if
an event c could have caused another event e (c happened
before e) is to find at least one directed path linking c to e.
If such a connection is found, this partial order relation is
marked c → e to denote the happened-before relation or
potential causality. Figure 1 has a1 → b2 and b3 → c3 (and, yes,
also a1 → c3, since causality is transitive). Events a1 and c2
are concurrent (denoted a1 ∥ c2), because there are no causal
paths in either direction. Note x ∥ y if and only if x ↛ y and y
↛ x. The fact that Chris was bored neither influenced Alice’s
question about dinner, nor the other way around.

3 of 17

node A(lice)

node B(ob)

node C(hris)

time

Dinner?
a1 a2 a3

b1 b2 b3

c1 c2 c3

Yes, let’s do it

Bored... Can I join?

FIGURE 1: Happened-before relation

acmqueue | january-february 2016 4

programming languages

Thus, the three possible relations between two events x
and y are: (a) x might have influenced y, if x → y; (b) y might
have influenced x, if y → x; (c) there is no known influence
between x and y, as they occurred concurrently x ∥ y.

CAUSAL HISTORIES
Causality can be tracked in a very simple way by using causal
histories.3,14 The system can locally assign unique names to
each event (e.g., node name and local increasing counter) and
collect and transmit sets of events to capture the known
past.

For a new event, the system creates a new unique name,
and the causal history consists of the union of this name
and the causal history of the previous event in the node. For
example, the second event in node C is assigned the name c2,
and its causal history is Hc = {c1, c2} (shown in figure 2). When
a node sends a message, the causal history of the send event
is sent with the message. When the message is received, the

4 of 17

node A

node B

node C

time

{a1} {a1,a2} {a1,a2,a3}

{b1}
{a1,a2,b1,b2}

{a1,a2,b1,b2,b3}

{c1} {c1,c2}
{a1,a2,b1,b2,b3,c1,c2,c3}

FIGURE 2: Causal histories

acmqueue | january-february 2016 5

programming languages

remote causal history is merged (by set union) with the local
history. For example, the delivery of the first message from
node A to B merges the remote causal history {a1, a2} with the
local history {b1} and the new unique name b2, leading to {a1,
a2, b1, b2}.

Checking causality between two events x and y can be
tested simply by set inclusion: x → y iff Hx ⊊ Hy. This follows
from the definition of causal histories, where the causal
history of an event will be included in the causal history
of the following event. Even better, marking the last local
event added to the history (distinguished in bold in the figure)
allows the use of a simpler test: x → y iff x ∈ Hy (e.g., a1 →
b2, since a1 ∈ {a1, a2, b1, b2}). This follows from the fact that a
causal history includes all events that (causally) precede a
given event.

VECTOR CLOCKS
It should be obvious by now that causal histories work
but are not very compact. This problem can be addressed
by relying on the following observation: the mechanism
of building the causal history implies that if an event b3 is
present in Hy, then all preceding events from that same node,
b1 and b2, are also present in Hy. Thus, it suffices to store the
most recent event from each node. Causal history {a1, a2,
b1, b2, b3, c1, c2, c3} is compacted to {a ⟼ 2, b ⟼ 3, c ⟼ 3} or
simply a vector [2, 3, 3].

Now the rules used with causal histories can be
translated to the new compact vector representation.

Verifying that x → y requires checking if Hx ⊊ Hy. This

5 of 17

acmqueue | january-february 2016 6

programming languages

can be done, verifying for each node, if the unique names
contained in Hx are also contained in Hy and there is at
least one unique name in Hy that is not contained in Hx. This
is immediately translated to checking if each entry in the
vector of x is smaller or equal to the corresponding entry in
the vector of y and one is strictly smaller (i.e., ∀i : Vx[i] ≤ Vy [i]
and ∃j : Vx[j] < Vy [j]). This can be stated more compactly as x
→ y iff Vx < Vy.

For a new event the creation of a new unique name is
equivalent to incrementing the entry in the vector for the
node where the event is created. For example, the second
event in node C has vector [0, 0, 2], which corresponds to the
creation of event c2 of the causal history.

Finally, creating the union of the two causal histories Hx
and Hy is equivalent to taking the pointwise maximum of the
corresponding two vectors Vx and Vy (i.e., ∀i : V [i] = max(Vx[i],
Vy [i])). Logic tells us that, for the unique names generated in
each node, only the one with the largest counter needs to be
kept.

When a message is received, in addition to merging
the causal histories, a new event is created. The vector
representation of these steps can be seen, for example,
when the first message from a is received in b, where taking
the pointwise maximum leads to [2, 1, 0] and the new unique
name finally leads to [2, 2, 0], as shown in figure 3.

This compact representation, known as a vector clock,
was introduced around 1988.5,10 Vector comparison is an
immediate translation of set inclusion of causal histories.
This equivalence is often forgotten in modern descriptions of

6 of 17

acmqueue | january-february 2016 7

programming languages

vector clocks and can turn what is a simple encoding problem
into an unnecessarily complex and arcane set of rules, going
against logic.

DOTTED VECTOR CLOCKS
As shown thus far, when using causal histories, knowing the
last event could simplify comparison by simply checking
if the last event is included in the causal history. This can
still be done with vectors, if you keep track of the node in
which the last event has been created. For example, when
questioning if x = [2, 0, 0] → y = [2, 3, 0], with boldface
indicating the last event in each vector, you can simply test if
x[0] ≤ y[0] (2 ≤ 2) since you have marked that the last event
in x was created in node A (i.e., it corresponds to the first
entry of the vector). Since marking numbers in bold is not a
practical implementation, however, the last event is usually
stored outside the vector (and is sometimes called a dot): for
example, [2, 2, 0] can be represented as [2, 1, 0]b2. Notice that

7 of 17

node A

node B

node C

time

[1,0,0] [2,0,0] [3,0,0]

[0,1,0]

[2,2,0]

[2,3,0]

[0,0,1] [0,0,2] [2,3,3]

FIGURE 3: Vector clocks

acmqueue | january-february 2016 8

programming languages

now the vector represents the causal past of b2, excluding
the event itself.

VERSION VECTORS
In an important class of applications there is no need
to register causality for all the events in a distributed
computation. For example, to modify replicas of data, it often
suffices to register only those events that change replicas. In
this case, when thinking about causal histories, you need only
to assign a new unique name to these relevant events. Still,
you need to propagate the causal histories when messages
are propagated from one site to another, and the remaining
rules for comparing causal histories remain unchanged.

Figure 4 presents the same example as before, but now
with events that are not registered for causality tracking
denoted with ◦. If the run represents the updates to replicas
of a data object, then after nodes A and B are concurrently
modified, the state of replica a is sent to replica b (in a

8 of 17

node A

node B

node C

time

{a1} {a1} {a1,a2}

{b1}
{a1,b1,b2}

{a1,b1,b2}

{ } { } {a1,b1,b2}

FIGURE 4: Causal histories with only some relevant events

acmqueue | january-february 2016 9

programming languages

message). When the message is received in node B, it is
detected that two concurrent updates have occurred, with
histories {a1} and {b1}, as neither a1 → b1 nor b1 → a1. In this
case, a new version that merges the two updates is created
(merge is denoted by the join symbol ⊔), which requires
creating a new unique name, leading to {a1, b1, b2}. When
the state of replica b is later propagated to replica c, as
no concurrent update exists in replica c, no new version is
created.

Again, vectors can compact the representation. The
result, known as a version vector, was created in 1983,12 five
years before vector clocks. Figure 5 presents the same
example as before, represented with version vectors.

In some cases when the state of one replica is propagated
to another replica, the two versions are kept by the system
as conflicting versions. For example, in figure 6, when the
message from node A is received in node B, the system
keeps each causal history {a1} and {b1} associated with the

9 of 17

node A

node B

node C

time

{a1} {a1} {a1,a2}

{b1}
{a1,b1,b2}

{a1,b1,b2}

{ } { } {a1,b1,b2}

FIGURE 4: Causal histories with only some relevant events

acmqueue | january-february 2016 10

programming languages

respective version. The causal history associated with the
node containing both versions is {a1, b1}, the union of the
causal history of all versions. This approach allows later
checking for causality relations between each version and
other versions when merging the states of additional nodes.
The conflicting versions could also be merged, creating a
new unique name, as in the example.

node A

node B

node C

time

[1,0,0] [1,0,0] [2,0,0]

[0,1,0]

[1,2,0]

[1,2,0]

[0,0,0] [0,0,0] [1,2,0]

FIGURE 5: Version vectors with only some relevant events

node A

node B

node C

time

{a1} {a1} {a1,a2}

{b1}

{a1},{b1}

{a1,b1,b2}{a1,b1,b2}

{ } { } {a1,b1,b2}

FIGURE 6: Causal histories with versions not immediately merged

10 of 17

acmqueue | january-february 2016 11

programming languages

DOTTED VERSION VECTORS
One limitation of causality tracking by vectors is that one
entry is needed for each source of concurrency.4 You can
expect a difference of several orders of magnitude between
the number of nodes in a data center and the number of
clients they handle. Vectors with one entry per client don’t
scale well when millions of clients are accessing the service.7
Again, a look at the foundation of causal histories shows how
to overcome this limitation.

The basic requirement in causal histories is that each
event be assigned a unique identifier. There is no requirement
that this unique identifier be created locally or immediately.
Thus, in systems where nodes can be divided into clients and
servers and where clients communicate only with servers, it
is possible both to delay the creation of a new unique name
until the client communicates with the server and to use
a unique name generated in the server. The causal history
associated with the new version is the union of the causal
history of the client and the newly assigned unique name.

Figure 7 shows an example where clients A and B
concurrently update server S. When client B first writes
its version, a new unique name, s1, is created (in the figure
this action is denoted by the symbol ⊚) and merged with the
causal history read by the client {}, leading to the causal
history {s1}. When client A later writes its version, the causal
history assigned to this version is the causal history at the
client, {}, merged with the new unique name s2, leading to {s2}.
Using the normal rules for checking for concurrent updates,
these two versions are concurrent. In the example, the

11 of 17

acmqueue | january-february 2016 12

programming languages

system keeps both concurrent updates. For simplicity, the
interactions of server T with its own clients were omitted,
but as shown in the figure, before receiving data from server
S, server T had a single version that depicted three updates it
managed—causal history {t1, t2, t3}—and after that it holds two
concurrent versions.

One important observation is that in each node, the union
of the causal histories of all versions includes all generated
unique names until the last known one: for example, in server
S, after both clients send their new versions, all unique
names generated in S are known. Thus, the causal past of
any update can always be represented using a compact
vector representation, as it is the union of all versions
known at some server when the client read the object. The
combination of the causal past represented as a vector and

client B

client A

Server S

Server T

time

{ } { }

put

{ } { }

{ } { }

put

{s1}

{s1},{s2}

{t1,t2,t3} {t1,t2,t3},{s1}{t1,t2}

FIGURE 7: Causal histories in a distributed storage system

12 of 17

acmqueue | january-february 2016 13

programming languages

the last event, kept outside the vector, is known as a dotted
version vector.2,13 Figure 8 shows the previous example using
this representation, which, as the system keeps running,
eventually becomes much more compact than causal
histories.

In the condition expressed before (clients communicate
only with servers and a new update overwrites all versions
previously read), which is common in key-value stores where
multiple clients interact with storage nodes via a get/put
interface, the dotted version vectors allow causality to be
tracked between the written versions with vectors of the
size of the number of servers.

FINAL REMARKS
Tracking causality should not be ignored. It is important
in the design of many distributed algorithms. And not

client B

client A

Server S

Server T

time

[0,0]

[0,0]

put

[0,0]

[0,0][0,0]

[0,0]

put

[0,0]s1 [0,0]s1,[0,0]s2

[0,2]t3 [0,2]t3,[0,0]s1[0,1]t2

FIGURE 8: Dotted version vectors in distributed storage system

13 of 17

acmqueue | january-february 2016 14

programming languages

respecting causality can lead to strange behaviors for users,
as reported by multiple authors.1,9

The mechanisms for tracking causality and the rules used
in these mechanisms are often seen as complex,6,15 and their
presentation is not always intuitive. The most commonly
used mechanisms for tracking causality—vector clocks and
version vectors—are simply optimized representations of
causal histories, which are easy to understand.

By building on the notion of causal histories, you can begin
to see the logic behind these mechanisms, to identify how
they differ, and even consider possible optimizations. When
confronted with an unfamiliar causality-tracking mechanism,
or when trying to design a new system that requires it,
readers should ask two simple questions: (a) Which events
need tracking? (b) How does the mechanism translate back to
a simple causal history?

Without a simple mental image for guidance, errors and
misconceptions become more common. Sometimes, all you
need is the right language.

Acknowledgments
We would like to thank Rodrigo Rodrigues, Marc Shapiro,
Russell Brown, Sean Cribbs, and Justin Sheehy for their
feedback. This work was partially supported by EU FP7
SyncFree project (609551) and FCT/MCT projects UID/
CEC/04516/2013 and UID/EEA/50014/2013.

References
1. Ajoux, P., Bronson, N., Kumar, S., Lloyd, W., Veeraraghavan,

14 of 17

acmqueue | january-february 2016 15

programming languages

K. 2015. Challenges to adopting stronger consistency at
scale. In Proceedings of the 15th Workshop on Hot Topics in
Operating Systems, Kartause Ittingen, Switzerland. Usenix
Association.

2. Almeida, P. S., Baquero, C., Gonçalves, R., Preguiça, N. M.,
Fonte, V. 2014. Scalable and accurate causality tracking
for eventually consistent stores. In Proceedings of the
Distributed Applications and Interoperable Systems, held
as part of the Ninth International Federated Conference
on Distributed Computing Techniques, Berlin, Germany:
67–81.

3. Birman, K. P., Joseph, T. A. 1987. Reliable communication in
the presence of failures. ACM Transactions on Computer
Systems 5(1): 47–76.

4. Charron-Bost, B. 1991. Concerning the size of logical
clocks in distributed systems. Information Processing
Letters 39(1): 11–16.

5. Fidge, C. J. 1988. Timestamps in message-passing systems
that preserve the partial ordering. Proceedings of the 11th
Australian Computer Science Conference 10(1): 56–66.

6. Fink, B. 2010. Why vector clocks are easy. Basho Blog;
http://basho.com/posts/ technical/why-vector-clocks-are-
easy/.

7. Hoff, T. 2014. How League of Legends scaled chat to 70
million players—it takes lots of minions. High Scalability;
http://highscalability.com/blog/2014/10/13/how-league-of-
legends-scaled-chat-to-70-million-players-it-t.html.

8. Lamport, L. 1978. Time, clocks, and the ordering of events

15 of 17

acmqueue | january-february 2016 16

programming languages

in a distributed system. Communications of the ACM 21(7):
558–565.

9. Lloyd, W., Freedman, M. J., Kaminsky, M., Andersen,
D. G. 2011. Don’t settle for eventual: scalable causal
consistency for wide-area storage with COPS. In
Proceedings of the 23rd ACM Symposium on Operating
Systems Principles, New York, NY: 401–416.

10. Mattern, F. 1988. Virtual time and global states in
distributed systems. In Proceedings of the International
Workshop on Parallel and Distributed Algorithms, Gers,
France: 215– 226.

11. Neville-Neil, G. 2015. Time is an illusion. acmqueue 13(9).
57 - 72

12. Parker, D.S., Popek, G. J., Rudisin, G., Stoughton, A., Walker,
B. J., Walton, E., Chow, J. M., Edwards, D., Kiser, S., Kline,
C. 1983. Detection of mutual inconsistency in distributed
systems. IEEE Transactions on Software Engineering 9(3):
240–247.

13. Preguiça, N. M., Baquero, C., Almeida, P. S., Fonte, V.,
Gonçalves, R. 2012. Brief announcement: efficient
causality tracking in distributed storage systems with
dotted version vectors. In ACM Symposium on Principles
of Distributed Computing, eds. D. Kowalski and A.
Panconesi: 335–336.

14. Schwarz, R., Mattern, F. 1994. Detecting causal
relationships in distributed computations: in search of the
Holy Grail. Distributed Computing 7(3): 149–174.

15. Sheehy, J. 2010. Why vector clocks are hard. Basho Blog;

16 of 17

acmqueue | january-february 2016 17

programming languages

http://basho.com/posts/ technical/why-vector-clocks-are-
hard/.

16. Sheehy, J. 2015. There is no now. acmqueue 13(3): 20-27.

LOVE IT, HATE IT? LET US KNOW feedback@queue.acm.org

Carlos Baquero is assistant professor of computer science
and senior researcher at the High-Assurance Software
Laboratory, Universidade do Minho and INESC Tec. He
obtained his MSc and PhD degrees from Minho Universidade
do in 1994 and 2000. His research interests are focused
on distributed systems, in particular causality tracking,
data types for eventual consistency, and distributed data
aggregation. He can be reached at cbm@di.uminho.pt and as
@xmal on Twitter.

Nuno Preguiça is associate professor in the Department
of Computer Science, Faculty of Science and Technology,
Universidade NOVA de Lisboa, and leads the computer
systems group at NOVA Laboratory for Computer Science
and Informatics. He received a PhD in computer science from
Universidade NOVA de Lisboa in 2003. His research interests
are focused on the problems of replicated data management
and processing of large amounts of information in distributed
systems and mobile computing settings. He can be reached at
nuno.preguica@fct.unl.pt and as @nunopreguica on Twitter.
Copyright © 2016 held by owner/author. Publication rights licensed to ACM.

17 of 17

6 PUBLISHED PAPERS

6.4 Carlos Baquero and Nuno Preguiça. Why logical clocks
are easy. Commun. ACM, April 2016. ACM.

SyncFree Deliverable D.3.3(v0.1), March 23, 2016, Page 65

april 2016 | vol. 59 | no. 4 | communications of the acm 1

Any computing system can be described as executing
sequences of actions, with an action being any relevant
change in the state of the system. For example, reading
a file to memory, modifying the contents of the file
in memory, or writing the new contents to the file are
relevant actions for a text editor. In a distributed

system, actions execute in multiple
locations; in this context, actions are
often called events. Examples of events
in distributed systems include send-
ing or receiving messages, or changing
some state in a node. Not all events are
related, but some events can cause and
influence how other, later events occur.
For example, a reply to a received email
message is influenced by that message,
and maybe by prior messages received.

Events in a distributed system can
occur in a close location, with differ-
ent processes running in the same
machine, for example; or at nodes in-
side a datacenter; or geographically
spread across the globe; or even at a
larger scale in the near future. The re-
lations of potential cause and effect
between events are fundamental to
the design of distributed algorithms.
These days hardly any service can
claim not to have some form of dis-
tributed algorithm at its core.

To make sense of these cause-
and-effect relations, it is necessary to
limit their scope to what can be per-
ceived inside the distributed system
itself—internal causality. Naturally, a
distributed system interacts with the
rest of the physical world outside of it,
and there are also cause-and-effect rela-
tions in that world at large. For example,
consider a couple planning a night out
using a system that manages reserva-
tions for dinner and a movie. One per-
son makes a reservation for dinner and
lets the other person know with a phone
call. After receiving the phone call, the
second person goes to the system and
reserves a movie. A distributed system
has no way of knowing the first reserva-
tion has actually caused the second one.

This external causality cannot be
detected by the system and can only be
approximated by physical time. (Time,
however, totally orders all events, even
those unrelated—thus, it is no substi-

Why Logical
clocks
are easy

Doi:10.1145/2890782

 article development led by
queue.acm.org

Sometimes all you need
is the right language.
By carLos Baquero anD nuno Preguiça

2 communications of the acm | april 2016 | vol. 59 | no. 4

practice

movie reservations, Figure 1 shows a
distributed system with three nodes.
An arrow between nodes represents
a message sent and delivered. Both
Bob’s positive answer to the dinner
suggestion by Alice and Chris’s later
request to join the party are influenced
by Alice’s initial question about plans
for dinner.

In this distributed computation, a
simple way to check if an event c could
have caused another event e (c hap-
pened before e) is to find at least one
directed path linking c to e. If such a
connection is found, this partial order
relation is marked c → e to denote the
happened-before relation or potential
causality. Figure 1 has a1 → b2 and b2 →
c3 (and, yes, also a1 → c3, since causality
is transitive). Events a1 and c2 are con-
current (denoted a1 c2), because there
are no causal paths in either direction.
Note x y if and only if x y and y x.
The fact Chris was bored neither influ-
enced Alice’s question about dinner,
not the other way around.

Thus, the three possible relations be-
tween two events x and y are: (a) x might
have influenced y, if x → y; (b) y might
have influenced x, if y → x; (c) there is
no known influence between x and y, as
they occurred concurrently x y.

causal histories
Causality can be tracked in a very sim-
ple way by using causal histories.3,14
The system can locally assign unique
names to each event (for example, node
name and local increasing counter)
and collect and transmit sets of events
to capture the known past.

For a new event, the system creates a
new unique name, and the causal histo-
ry consists of the union of this name and
the causal history of the previous event in
the node. For example, the second event
in node C is assigned the name c2, and its
causal history is Hc = {c1, c2} (shown in
Figure 2). When a node sends a mes-
sage, the causal history of the send
event is sent with the message. When
the message is received, the remote
causal history is merged (by set union)
with the local history. For example, the
delivery of the first message from node
A to B merges the remote causal his-
tory {a1, a2} with the local history {b1}
and the new unique name b2, leading
to {a1, a2, b1, b2}.

Checking causality between two

tute for causality—and wall clocks are
never perfectly synchronized.11,16) This
article focuses instead on internal cau-
sality—the type that can be tracked by
the system.

happened-Before relation
In 1978, Leslie Lamport defined a par-
tial order, referred to as happened be-
fore, that connects events of a distribut-
ed system that are potentially causally

linked.8 An event c can be the cause of
an event e, or c happened before e, iff
(if and only if) both occur in the same
node and c executed first, or, being at
different nodes, if e could know about
the occurrence of c thanks to some
message received from some node that
knows about c. If neither event can
know about the other, then they are
said to be concurrent.

Using the example of dinner and

figure 1. happened-before relation.

node A(lice)

node B(ob)

node C(hris)

time

Dinner?

a1

b1

c1 c2 c3

a2

b2 b3

a3

Yes, let’s do it

Bored... Can I join?

figure 2. causal histories.

node A

node B

node C

time

{a1}

{b1}

{c1}

{a1, a2}

{c1, c2}

{a1, a2, a3}

{a1, a2, b1, b2}

{a1, a2, b1, b2, b3}

{a1, a2, b1, b2, b3, c1, c2, c3}

figure 3. Vector clocks.

node A

node B

node C

time

[1,0,0] [2,0,0] [3,0,0]

[0,1,0]

[2,2,0]

[2,3,0]

[0,0,1] [0,0,2] [2,3,3]

april 2016 | vol. 59 | no. 4 | communications of the acm 3

practice

events x and y can be tested simply by
set inclusion: x → y iff Hx ∈ Hy. This fol-
lows from the definition of causal his-
tories, where the causal history of an
event will be included in the causal his-
tory of the following event. Even better,
marking the last local event added to
the history (distinguished in bold in the
figure) allows the use of a simpler test:
x → y iff x ∈ Hy (for example, a1 → b2,
since a1 ∈ {a1, a2, b1, b2}). This follows
from the fact a causal history includes
all events that (causally) precede a giv-
en event.

Vector clocks
It should be obvious by now that causal
histories work but are not very com-
pact. This problem can be addressed
by relying on the following observa-
tion: the mechanism of building the
causal history implies if an event b3 is
present in Hy, then all preceding events
from that same node, b1 and b2, are also
present in Hy. Thus, it suffices to store
the most recent event from each node.
Causal history {a1, a2, b1, b2, b3, c1, c2, c3}
is compacted to {a 2, b 3, c 3}
or simply a vector [2, 3, 3].

Now the rules used with causal his-
tories can be translated to the new
compact vector representation.

Verifying that x → y requires check-
ing if Hx Hy. This can be done, verify-
ing for each node, if the unique names
contained in Hx are also contained in Hy
and there is at least one unique name
in Hy that is not contained in Hx. This
is immediately translated to checking
if each entry in the vector of x is smaller
or equal to the corresponding entry in
the vector of y and one is strictly smaller
(such as, ∀i : Vx[i] ≤ Vy [i] and ∃j : Vx[j] < Vy [j]).
This can be stated more compactly as
x → y iff Vx < Vy.

For a new event the creation of a new
unique name is equivalent to incre-
menting the entry in the vector for the
node where the event is created. For ex-
ample, the second event in node C has
vector [0, 0, 2], which corresponds to the
creation of event c2 of the causal history.

Finally, creating the union of the two
causal histories Hx and Hy is equivalent
to taking the pointwise maximum of
the corresponding two vectors Vx and Vy
(such as, ∀i : V [i] = max(Vx[i], Vy [i])). Logic
tells us that, for the unique names gen-
erated in each node, only the one with
the largest counter needs to be kept.

When a message is received, in ad-
dition to merging the causal histories,
a new event is created. The vector repre-
sentation of these steps can be seen, for
example, when the first message from a
is received in b, where taking the point-
wise maximum leads to [2, 1, 0] and the
new unique name finally leads to [2, 2, 0],
as shown in Figure 3.

This compact representation, known
as a vector clock, was introduced around
1988.5,10 Vector comparison is an im-
mediate translation of set inclusion of
causal histories. This equivalence is
often forgotten in modern descriptions
of vector clocks and can turn what is a
simple encoding problem into an un-
necessarily complex and arcane set of
rules, going against logic.

As shown thus far, when using
causal histories, knowing the last event
could simplify comparison by simply
checking if the last event is included in
the causal history. This can still be done
with vectors, if you keep track of the
node in which the last event has been
created. For example, when questioning
if x = [2, 0, 0] → y = [2, 3, 0], with boldface
indicating the last event in each vector,
you can simply test if x[0] ≤ y[0] (2 ≤ 2)

since you have marked the last event in x
was created in node A (that is, it corre-
sponds to the first entry of the vector).
Since marking numbers in bold is not
a practical implementation, however,
the last event is usually stored outside
the vector (and is sometimes called a
dot): for example, [2, 2, 0] can be rep-
resented as [2, 1, 0]b2. Notice that now
the vector represents the causal past of
b2, excluding the event itself.

In an important class of applications
there is no need to register causality for
all the events in a distributed computa-
tion. For example, to modify replicas
of data, it often suffices to register only
those events that change replicas. In
this case, when thinking about causal
histories, you need only to assign a new
unique name to these relevant events.
Still, you need to propagate the causal
histories when messages are propa-
gated from one site to another and the
remaining rules for comparing causal
histories remain unchanged.

Figure 4 presents the same example
as before, but now with events that are
not registered for causality tracking
denoted with . If the run represents
the updates to replicas of a data object,

figure 4. causal histories with only some relevant events.

node A

node B

node C

time

{ } { }

{a1}

{b1}

{a1} {a1, a2}

{a1, b1, b2}

{a1, b1, b2}

{a1, b1, b2}

figure 5. Version vectors with only some relevant events.

node A

node B

node C

time

[1,0,0] [1,0,0] [2,0,0]

[0,1,0]

[1,2,0]

[1,2,0]

[0,0,0] [0,0,0] [1,2,0]

4 communications of the acm | april 2016 | vol. 59 | no. 4

practice

system as conflicting versions. For ex-
ample, in Figure 6, when the message
from node A is received in node B, the
system keeps each causal history {a1}
and {b1} associated with the respective
version. The causal history associated
with the node containing both versions
is {a1, b1}, the union of the causal histo-
ry of all versions. This approach allows
later checking for causality relations
between each version and other ver-
sions when merging the states of addi-
tional nodes. The conflicting versions
could also be merged, creating a new
unique name, as in the example.

One limitation of causality tracking
by vectors is that one entry is needed for
each source of concurrency.4 You can
expect a difference of several orders
of magnitude between the number of
nodes in a datacenter and the number
of clients they handle. Vectors with one
entry per client do not scale well when
millions of clients are accessing the
service.7 Again, a look at the founda-
tion of causal histories shows how to
overcome this limitation.

The basic requirement in causal
histories is each event be assigned a
unique identifier. There is no require-
ment this unique identifier be created
locally or immediately. Thus, in sys-
tems where nodes can be divided into
clients and servers and where clients
communicate only with servers, it is
possible both to delay the creation of a
new unique name until the client com-
municates with the server and to use a
unique name generated in the server.
The causal history associated with the
new version is the union of the causal
history of the client and the newly as-
signed unique name.

Figure 7 shows an example where
clients A and B concurrently update
server S. When client B first writes its
version, a new unique name, s1, is cre-
ated (in the figure this action is denot-
ed by the symbol) and merged with
the causal history read by the client {},
leading to the causal history {s1}. When
client A later writes its version, the
causal history assigned to this version
is the causal history at the client, {},
merged with the new unique name s2,
leading to {s2}. Using the normal rules
for checking for concurrent updates,
these two versions are concurrent. In
the example, the system keeps both
concurrent updates. For simplicity, the

then after nodes A and B are concur-
rently modified, the state of replica a is
sent to replica b (in a message). When
the message is received in node B, it is
detected two concurrent updates have
occurred, with histories {a1} and {b1},
as neither a1 → b1 nor b1 → a1. In this
case, a new version that merges the two
updates is created (merge is denoted
by the join symbol), which requires
creating a new unique name, leading
to {a1, b1, b2}. When the state of replica

b is later propagated to replica c, as no
concurrent update exists in replica c,
no new version is created.

Again, vectors can compact the rep-
resentation. The result, known as a
version vector, was created in 1983,12
five years before vector clocks. Figure
5 presents the same example as before,
represented with version vectors.

In some cases when the state of one
replica is propagated to another rep-
lica, the two versions are kept by the

figure 6. causal histories with versions not immediately merged.

node A

node B

node C

time

{ } { }

{a1}

{b1}

{a1}

{a1},{b1}

{a1, a2}

{a1, b1, b2} {a1, b1, b2}

{a1, b1, b2}

figure 7. causal histories in a distributed storage system.

client B

client A

Server S

Server T

time

{ } { }

put

{ } { }

{ } { }

put

{s1}

{s1},{s2}

{t1, t2} {t1, t2, t3} {t1, t2, t3},{s1}

figure 8. Dotted version vectors in distributed storage system.

client B

client A

Server S

Server T

time

[0,0]

[0,0]

put

[0,0]

[0,0][0,0]

[0,0]

put

[0,0]s1 [0,0]s1,[0,0]s2

[0,2]t3 [0,2]t2,[0,0]s1[0,1]t2

april 2016 | vol. 59 | no. 4 | communications of the acm 5

practice

interactions of server T with its own cli-
ents were omitted, but as shown in the
figure, before receiving data from serv-
er S, server T had a single version that
depicted three updates it managed—
causal history {t1, t2, t3}—and after that
it holds two concurrent versions.

One important observation is that
in each node, the union of the causal
histories of all versions includes all
generated unique names until the last
known one: for example, in server S,
after both clients send their new ver-
sions, all unique names generated in S
are known. Thus, the causal past of any
update can always be represented us-
ing a compact vector representation,
as it is the union of all versions known
at some server when the client read the
object. The combination of the causal
past represented as a vector and the
last event, kept outside the vector, is
known as a dotted version vector.2,13
Figure 8 shows the previous example
using this representation, which, as
the system keeps running, eventually
becomes much more compact than
causal histories.

In the condition expressed before
(clients communicate only with serv-
ers and a new update overwrites all
versions previously read), which is
common in key-value stores where
multiple clients interact with storage
nodes via a get/put interface, the dot-
ted version vectors allow causality to
be tracked between the written ver-
sions with vectors of the size of the
number of servers.

final remarks
Tracking causality should not be ig-
nored. It is important in the design of
many distributed algorithms. And not
respecting causality can lead to strange
behaviors for users, as reported by mul-
tiple authors.1,9

The mechanisms for tracking
causality and the rules used in these
mechanisms are often seen as com-
plex,6,15 and their presentation is not
always intuitive. The most commonly
used mechanisms for tracking cau-
sality—vector clocks and version vec-
tors—are simply optimized represen-
tations of causal histories, which are
easy to understand.

By building on the notion of caus-
al histories, you can begin to see the
logic behind these mechanisms, to

identify how they differ, and even
consider possible optimizations.
When confronted with an unfamil-
iar causality-tracking mechanism, or
when trying to design a new system
that requires it, readers should ask
two simple questions: Which events
need tracking? How does the mecha-
nism translate back to a simple caus-
al history?

Without a simple mental image for
guidance, errors and misconceptions
become more common. Sometimes,
all you need is the right language.

acknowledgments
We would like to thank Rodrigo Ro-
drigues, Marc Shapiro, Russell Brown,
Sean Cribbs, and Justin Sheehy for
their feedback. This work was par-
tially supported by EU FP7 SyncFree
project (609551) and FCT/MCT proj-
ects UID/CEC/04516/2013 and UID/
EEA/50014/2013.

 Related articles
 on queue.acm.org

The Inevitability of Reconfigurable Systems
Nick Tredennick, Brion Shimamoto
http://queue.acm.org/detail.cfm?id=957767

Abstraction in Hardware System Design
Rishiyur S. Nikhil
http://queue.acm.org/detail.cfm?id=2020861

Eventually Consistent: Not What You Were
Expecting?
Wojciech Golab, et al.
http://queue.acm.org/detail.cfm?id=2582994

References
1. Ajoux, P., Bronson, N., Kumar, S., Lloyd, W.,

Veeraraghavan, K. Challenges to adopting stronger
consistency at scale. In Proceedings of the 15th
Workshop on Hot Topics in Operating Systems, Kartause
Ittingen, Switzerland. Usenix Association, 2015.

2. Almeida, P.S., Baquero, C., Gonçalves, R., Preguiça,
N.M., Fonte, V. Scalable and accurate causality tracking
for eventually consistent stores. In Proceedings of the
Distributed Applications and Interoperable Systems,
held as part of the Ninth International Federated
Conference on Distributed Computing Techniques
(Berlin, Germany, 2014), 67–81.

3. Birman, K.P., Joseph, T.A. Reliable communication
in the presence of failures. ACM Transactions on
Computer Systems 5, 1 (1987), 47–76.

4. Charron-Bost, B. Concerning the size of logical clocks
in distributed systems. Information Processing Letters
39, 1 (1991), 11–16.

5. Fidge, C.J. Timestamps in message-passing systems
that preserve the partial ordering. Proceedings of the
11th Australian Computer Science Conference 10, 1
(1988), 56–66.

6. Fink, B. Why vector clocks are easy. Basho Blog, 2010;
http://basho.com/posts/ technical/why-vector-clocks-
are-easy/.

7. Hoff, T. How League of Legends scaled chat
to 70 million players—it takes lots of minions.
High Scalability; http://highscalability.com/
blog/2014/10/13/how-league-of-legends-scaled-chat-
to-70-million-players-it-t.html.

8. Lamport, L. Time, clocks, and the ordering of events in
a distributed system. Communications of the ACM 21,

7 (1978), 558–565.
9. Lloyd, W., Freedman, M.J., Kaminsky, M., Andersen,

D.G. Don’t settle for eventual: Scalable causal
consistency for wide-area storage with COPS. In
Proceedings of the 23rd ACM Symposium on Operating
Systems Principles (New York, NY, 2011), 401–416.

10. Mattern, F. Virtual time and global states in distributed
systems. In Proceedings of the International
Workshop on Parallel and Distributed Algorithms
(Gers, France, 1988), 215– 226.

11. Neville-Neil, G. Time is an illusion. acmqueue 13, 9
(2015). 57–72

12. Parker, D.S. et al. Detection of mutual inconsistency in
distributed systems. IEEE Transactions on Software
Engineering 9, 3 (1983), 240–247.

13. Preguiça, N.M., Baquero, C., Almeida, P.S., Fonte, V.,
Gonçalves, R. Brief announcement: Efficient causality
tracking in distributed storage systems with dotted
version vectors. In ACM Symposium on Principles of
Distributed Computing. D. Kowalski and A. Panconesi,
Eds. (2012), 335–336.

14. Schwarz, R., Mattern, F. Detecting causal relationships
in distributed computations: in search of the Holy
Grail. Distributed Computing 7, 3 (1994), 149–174.

15. Sheehy, J. Why vector clocks are hard. Basho Blog,
2010; http://basho.com/posts/ technical/why-vector-
clocks-are-hard/.

16. Sheehy, J. There is no now. acmqueue 13, 3 (2015),
20–27.

Carlos Baquero (cbm@di.uminho.pt) is assistant
professor of computer science and senior researcher at
the High-Assurance Software Laboratory, Universidade
do Minho and INESC Tec. His research interests are
focused on distributed systems, in particular causality
tracking, data types for eventual consistency, and
distributed data aggregation.

Nuno Preguiça (nuno.preguica@fct.unl.pt) is associate
professor in the Department of Computer Science,
Faculty of Science and Technology, Universidade NOVA
de Lisboa, and leads the computer systems group at
NOVA Laboratory for Computer Science and Informatics.
His research interests are focused on the problems of
replicated data management and processing of large
amounts of information in distributed systems and mobile
computing settings.

Copyright held by authors. Publication rights licensed to
ACM. $15.00

6 PUBLISHED PAPERS

6.5 Valter Balegas, Cheng Li, Mahsa Najafzadeh, Daniel
Porto, Allen Clement, Sérgio Duarte, Carla Ferreira,
Johannes Gehrke, João Leitão, Nuno Preguiça, Ro-
drigo Rodrigues, Marc Shapiro, and Viktor Vafeiadis.
Geo-replication: Fast if possible, consistent if necessary.
IEEE Data Engineering Bulletin (to appear), 2016.

SyncFree Deliverable D.3.3(v0.1), March 23, 2016, Page 71

Geo-Replication: Fast If Possible, Consistent If Necessary*

Valter Balegas1, Cheng Li2, Mahsa Najafzadeh4, Daniel Porto3, Allen Clement2,5, Sérgio Duarte1,
Carla Ferreira1, Johannes Gehrke6, João Leitão1, Nuno Preguiça1, Rodrigo Rodrigues3,

Marc Shapiro4, Viktor Vafeiadis2

1NOVA LINCS, DI, FCT, Universidade NOVA de Lisboa 2Max Planck Institute for Software Systems (MPI-SWS)
3INESC-ID / IST, University of Lisbon 4Inria & Sorbonne Universités, UPMC Univ Paris 06, LIP6

5Currently at Google 6Microsoft

Abstract

Geo-replicated storage systems are at the core of current Internet services. Unfortunately, there ex-
ists a fundamental tension between consistency and performance for offering scalable geo-replication.
Weakening consistency semantics leads to less coordination and consequently a good user experience,
but it may introduce anomalies such as state divergence and invariant violation. In contrast, maintain-
ing stronger consistency precludes anomalies but requires more coordination. This paper discusses two
main contributions to address this tension. First, RedBlue Consistency enables blue operations to be
fast (and weakly consistent) while the remaining red operations are strongly consistent (and slow). We
identify sufficient conditions for determining when operations can be blue or must be red. Second, Ex-
plicit Consistency further increases the space of operations that can be fast by restricting the concurrent
execution of only the operations that can break application-defined invariants. We further show how to
allow operations to complete locally in the common case, by relying on a reservation system that moves
coordination off the critical path of operation execution.

1 Introduction

A geo-replicated system maintains copies of the service state across geographically dispersed locations. Geo-
replication is not only employed today by virtually all the providers of major Internet services, who typically
manage several data centers spread across the globe, but is also accessible to anyone outsourcing their computa-
tional needs to cloud providers, since cloud services allow computations or VMs to be instantiated in different
data centers.

There are two main reasons for deploying geo-replicated systems. The first reason is disaster tolerance, i.e.,
the ability to tolerate the unplanned outage of an entire data center, due to catastrophic events such as natural
disasters [1]. The second reason is to reduce the latency between the users and the machines that provide the
service. The importance of this aspect is demonstrated by several studies that point out an inverse correlation
between response times and user satisfaction for important Internet services such as search [30].

Copyright 0000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

*Student authors are followed by faculty author names, both in alphabetical order. Cheng Li and Valter Balegas are the lead authors
of the work.

71

However, there is a fundamental tension between latency and consistency: intuitively, ensuring strong con-
sistency requires coordination between replicas before returning a reply to the user, while, alternatively, a fast
response can be given without replica coordination, but only ensuring weak consistency guarantees. This tension
has led the providers of global-scale Internet services to choose, for some parts of their services, storage systems
offering weak consistency guarantees such as eventual consistency [13], and, for other components, systems
with strong consistency such as serializability [10].

This paper revisits in a unified way two of our recent results in trying to achieve a balance between per-
formance and consistency, by devising methods to build geo-replicated systems that introduce a small amount
of coordination between replicas to achieve the desired semantics, i.e., systems that are fast when possible and
consistent when necessary [21, 7]. In the first result, we improve the performance of geo-replicated systems
by (1) allowing different operations to execute in either a weakly consistent (fast) or strongly consistent (slow)
manner; and (2) identifying a set of principles for making safe use and increasing the space of fast operations.
In the second result, we further increase the space of operations that can execute fast by (1) identifying the oper-
ations that can break application invariants when executing concurrently; and (2) deploying concurrency control
mechanisms that remove coordination from the critical path of operation execution, while preserving invariants.

We start the presentation by laying out our terminology and system model in Section 2. We present an initial
approach based on a coarse-grained classification into strong and weak consistency in Section 3. One key aspect
of this approach is operation commutativity, and we explain how to achieve it using CRDTs in Section 4. Then
we present an approach that makes use of fine-grained coordination between pairs of operations in Section 5.
We discuss related work in section 6 and conclude in Section 7.

2 System model

Our system model is that of a fully replicated distributed system, where replicas are located in different data
centers. Each replica follows a deterministic state machine: there is a set of operations U , which manipulate
a set of reachable system states S . Each operation u is initially submitted at a given replica (preferably in the
closest data center), which we call the origin replica of u. When the remaining replicas receive a request to
replicate this operation, they will apply the operation against their local state.

Throughout our explanation we will highlight two important properties that the replicated system should
obey. First, there is the state convergence property, which says that all the sites that have executed the same
set of operations against the same initial state are in the same final state. This is important to prevent a situ-
ation where the system quiesces (no more updates are received) and read-only queries return different results
depending on which sites the users are connected to. The second property is to preserve application-specific
invariants, which comprise a specification for the behavior of the system. To define these, we introduce the
primitive valid(S) to be true if state S obeys these invariants and false otherwise.

3 Mixing consistency levels in RedBlue consistency

In this section, we present a hybrid consistency model called RedBlue consistency, where weakly consistent
operations, labeled blue, can be executed at a single replica and propagated in the background, with mostly no
coordination with concurrent actions at other replicas, while others, labeled red, require a stronger consistency
level and thus require cross-replica coordination. RedBlue consistency is one of several systems that propose
labeling operations according to their consistency levels [18, 33, 21, 36], but improves on these systems by
offering a precise method for labeling operations.

72

Alice in EU Bob in US

b3

b1

b2

a3

a1

b4

a2

(a) RedBlue order O of operations

b1

b2

a2

a3

b3

b4

a1
S0

S1

S2

S3

S4

S5

S6

S7

a1

b2

b3

a2

a3

b4

b1
S0

S1'

S2'

S3'

S4'

S5'

S6'

S7'

Alice in EU Bob in US

(b) Serializations of O

Figure 1: RedBlue order and serializations for a system spanning two sites. Operations marked with ? are red,
and operations marked with4 are blue. Dotted arrows in a indicate the partial ordering of operations.

3.1 Defining RedBlue consistency

RedBlue consistency relies on three components: (1) a partitioning of operations into weakly consistent blue
operations whose order of execution can vary from site to site, and red operations that must be executed in the
same order at all sites, (2) a RedBlue order, which defines a partial order of operations where red operations
have to be ordered with respect to each other, and (3) a set of site-specific serializations (i.e., total orders) in
which the operations are locally applied. More precisely:

Definition 1 (RedBlue consistency): A replicated system is RedBlue consistent if each site i applies operations
according to a linear extension of a RedBlue order O of the operations that were invoked, where O is a partial
order among those operations with the requirement that red operations are totally ordered in O.

Figure 1 shows a RedBlue order and two serializations, i.e., the linear extensions of that order in which op-
erations are applied at two different sites. In systems where every operation is labeled red, RedBlue consistency
is equivalent to serializability [10]; in systems where every operation is labeled blue, RedBlue consistency be-
comes a form of causal consistency [37, 23, 25], since the partial order conveys the necessary causality between
operations.

When applying RedBlue consistency to an application, we would like to label all operations blue to obtain
best performance. However, this could lead to state divergence and invariant violation, when operations are not
commutative. We describe a set of sufficient conditions to guide the classification of operations in order to safely
use weak consistency when possible.

3.2 Ensuring state convergence

In the context of RedBlue consistency, we can formalize state convergence as follows:

Definition 2 (State convergence): A RedBlue consistent system is state convergent if all serializations of the
underlying RedBlue order O reach the same state S w.r.t. any initial state S0.

73

Alice in EU Bob in US

 accrueinterest() deposit(20)

(a) RedBlue order O of operations issued by Alice and
Bob

deposit(20)accrueinterest()

¹

deposit(20)
balance:100

accrueinterest()

Alice in EU Bob in US

balance:100

balance:120 balance:105

balance:126 balance:125

(b) Serializations of O leading to diverged state

Figure 2: A RedBlue consistent account with initial balance of 100 and final diverged state.

To find a correct labeling for maintaining state convergence while providing low latency access, we describe
a simple banking example, in which users may share an account that is modified via three operations, namely
deposit, withdraw and accrueinterest1. Keeping in mind that one of the goals of RedBlue consis-
tency is to make the target service as fast as possible, we tentatively label all these operations blue. According
to this labeling result, we construct a RedBlue order of deposits and interest accruals made by two users Alice
and Bob and two possible serializations applied at both branches of the bank, as shown in Figure 2. This ex-
ample shows that the labeling of these operations as described is not state convergent. This is because RedBlue
consistency allows the two sites to execute blue operations in a different order, but two of the blue operations
in the example are non-commutative, namely deposit and accrueinterest. To prevent this situation,
a sufficient condition to guarantee state convergence in a system supporting RedBlue consistency is that every
blue operation commutes with all other operations, blue or red.

However, when applying this condition to the banking example, it implies that we need to label all three
operations red (deposit, withdraw and accrueinterest). This is equivalent to running the system
under serializability, which requires coordination across replicas for executing all these operations. To address
the problem that it is difficult to find operations that commute with all other operations in the system, we
observe that, in many cases, while operations may not be commutative, we can make the changes they induce on
the system state to commute. In the banking example, we can engineer accrueinterest commute with the
remaining two operations by first computing the amount of interested accrued at the primary replica and then
treating that value as a deposit.

To exploit this observation and increase operation commutativity, we propose a change to our original system
model, where we split each original application operation u into two components: a generator operation gu with
no side-effects, which is executed only at the primary site against some system state S and produces a shadow
operation hu(S), which is executed at every site (including the primary site). The generator operation decides
which state transitions should be made while the shadow operation applies the transitions in a state-independent
manner.

3.3 Preserving invariants

Although the concept of shadow operation helps produce more commutative operations, labeling too many
shadow operations as blue may introduce the problem of breaking application invariants. In the banking exam-
ple, assuming that the shared bank account has an initial balance of 100, if both Alice and Bob withdraw 70 and
60 respectively, the final balance would be �30. This violates the invariant that a bank balance should never
be negative. To determine which shadow operations can be safely labeled blue, we begin by defining that a
shadow operation is invariant safe if, when applied to a valid state, it always transitions the system into another
valid state. This allows us to define the following sufficient condition: a RedBlue consistent system preserves

1accrueinterest computes a new balance by multiplying the old balance value and (1 + interest rate).

74

invariants (meaning that all its sites are always in valid states) if all shadow operations that are not invariant safe
are labeled red (i.e., strongly consistent).

3.4 What can be blue? What must be red?

In summary, the two conditions above lead to the following procedure for deciding which shadow operations
can be blue or must be red if a RedBlue consistent system is to provide both state convergence and invariant
preservation:

1. For any pair of non-commutative shadow operations hu and hv, label both hu and hv red.

2. For any shadow operation hu that is not invariant safe, label hu red.

3. Label all remaining shadow operations blue.

4 State convergence

In the previous section we discussed how RedBlue consistency achieves state convergence by relying on shadow
operations that commute with each other. With this approach, defining a new operation also implies writing
one or more commutative shadow operations, each of which corresponds to a distinct side effect. The major
challenge of doing this manual work is that, in an application with a large number of operations, this process
may be complex and error-prone.

We now discuss an alternative principled approach to create commutative operations by design. Our ap-
proach builds on conflict-free replicated data types (CRDTs) [31], which are specially-designed data structures
that can be replicated and modified concurrently, and include mechanisms to merge concurrent updates in a
deterministic way. Application operations consist of updates to these elementary data types, thus guaranteeing
state convergence.

4.1 CRDTs

A CRDT is a data type that can be replicated at multiple replicas. As such, it defines an interface with a set
of operations to read and to modify its state. A CRDT replica can be modified by locally executing an update
operation. When different replicas of the same object are modified concurrently, they temporarily diverge.
CRDTs have built-in support for achieving strong eventual consistency [31], in which all replicas will eventually
reach the same (equivalent) state after applying the same set of updates, without relying on a distributed conflict
arbitration process.

Two main flavors of CRDTs have been studied in the literature: operation-based CRDTs and state-based
CRDTs. For each of these, sufficient conditions for achieving strong eventual consistency have been established.

In operation-based CRDTs (or commutative replicated data types), updates are propagated by broadcasting
operations to every replica in causal order. Interestingly, this proposal matches the operation execution de-
composition presented in RedBlue consistency (Section 3), where operations are divided in two components, a
generator operation that executes in the local replica, has no side effect and produces a shadow operation, which
is propagated and executed in all replicas. The two types of operations are analogous to prepare and downstream
operations in the context of operation-based CRDTs, respectively, with the main difference that shadow oper-
ations are assigned a consistency level in RedBlue consistency. Similarly to the consequence of commutative
shadow operations, the replicas of an operation-based CRDT converge to the same state after executing the same
set of updates (in any order that respects causality) if the execution of any two concurrent downstream operations
commutes [31].

75

SQL type CRDT Description

FIELD* LWW Use last-writer-wins to solve concurrent updates
NUMDELTA Add a delta to the numeric value

TABLE AOSET, UOSET, Sets with restricted operations (add, update, and/or remove).
AUSET, ARSET Conflicting operations are logically executed by timestamp order.

Table 2: Commutative replicated data types (CRDTs) for relational data. * FIELD covers primitive types such
as integer, float, double, datetime and string.

A state-based CRDT (or convergent replicated data type) defines, in addition to the operations to read and
update its state, an operation to merge the state of two replicas. Replicas synchronize by exchanging the full
replica states: when a new state is received, the new updates are incorporated in the local replica by executing
the merge function. It has been shown that the replicas of a state-based CRDT converge to the same state after
all replicas synchronize (directly or indirectly) if: (1) all the possible states of an object are partially ordered,
forming a join-semilattice; (2) the merge operation between two states is the semilattice join; and (3) an update
monotonically increases the state according to the defined partial order [31].

4.2 Examples

CRDTs have been used in a number of research systems, such as Walter [35] and SwiftCloud [39], and com-
mercial systems, such as Riak [2] and SoundCloud [3]. These systems include CRDTs that implement several
data types, such as registers, counters, sets, maps, and flags. For each such data type, it is possible to define
and implement different semantics to handle concurrent updates, leading to different CRDTs. These semantics
define which is the final state of a CRDT when concurrent updates occur. For example, for sets, it is possible
to define an add-wins semantics, where, in the presence of a concurrent add and remove of some element e, the
final state will contain e (or, more precisely, there exists an add of e that does not happen before a remove of e).
It is also possible to define a remove-wins semantics, where the remove will win over a concurrent add. Other
semantics can also be implemented, such as a last-writer-wins strategy where an element will belong to the set
or not depending on which was the last operation executed, according to the order among operations.

When creating an application, an application developer must select the CRDT with the most appropriate
semantics for its goal. For example, in the bank account example, the balance of an account can be modeled as
a counter and the set of accounts of a client can be maintained in an add-win set or map CRDT.

In general, an application operation will manipulate multiple data objects. When using CRDTs, it is possible
to maintain replicas of these objects in multiple nodes. An operation can execute by accessing a single replica of
each object it accesses. These updates can later be propagated to other nodes, with CRDT rules guaranteeing that
the replicas of each object will converge to the same state. By propagating the updates to all objects modified in
an operation atomically, it is possible to guarantee that all effects of an operation are observed at the same time.

CRDTs for relational databases In relational databases, it is also possible to model data using CRDTs. Table
2 presents the mapping proposed in SIEVE [20]. Regarding table fields, we defined only two CRDTs. The LWW
CRDT can be used with any field type and implements a last-writer-wins strategy for defining the final value
of a field. The NUMDELTA CRDT can be used with numeric fields, and transforms each update operation in
a downstream operation that adds or subtracts a constant to the value of the field. This can be used to support
account balances, counters, etc.

A database table can be seen as a set of tuples. In the general case, and following the semantics of the
ARSET CRDT, when concurrent insert, update and delete operations occur, the following rules can be used:
(1) concurrent inserts of tuples with the same key are treated as an insert followed by a sequence of updates;

76

(2) for concurrent updates, the rules defined for fields are used to deterministically define the final value; (3) a
delete will only take effect if no concurrent update or insert was executed.

While using CRDTs guarantees that all replicas converge to the same state, it does not guarantee that the
convergence rules executed independently by different CRDTs maintain application invariants. Next, we show
how we can address this problem by restricting the concurrent execution of operations that can break application
invariants.

5 Preserving invariants with minimal coordination

As mentioned before, in the banking example, the withdraw operation, despite being commutative, cannot
execute under weak consistency, as the concurrent execution of multiple withdrawals can break the invariant that
the account balance cannot be negative. To avoid the possibility of breaking the invariant, RedBlue consistency
would label all withdrawals as red, requiring replicas to coordinate the execution of every withdraw operation.
In practice, however, only in a few cases the cumulative effects of all concurrent withdrawals will surpass the
actual balance of the account.

To relieve the strong constraint imposed by RedBlue consistency, we propose a more efficient coordination
plan: given some account balance, replicas can coordinate beforehand to split the balance among them. Until a
replica consumes its allocated share of the balance, it can execute operations locally, without coordination with
other replicas, with the guarantee that the balance will not become negative, i.e., the application invariant will
not be broken.

The above idea has been previously explored in the context of escrow transactions [9, 27]. We revisit
and generalize the concept of escrow transactions, to allow replicas to assess the safety of operations without
coordination when executing operations. In our generalization, when replicas cannot ensure an operation is safe
by reading local state, they contact remote peers to update their vision of the database to decide the fate of
the operation. In addition, we discuss how we avoid the coordination across sites for all red operations, which
is required for totally ordering them. Instead, we identify a small set of coordination requirements between
operations, and show how to enforce those rules at runtime.

5.1 Explicit Consistency in a nutshell

We present a new consistency model, called Explicit Consistency, that extends RedBlue consistency to avoid the
coordination of red operations when possible. The idea is that instead of labeling shadow operations as red or
blue, programmers specify the application invariants. The system must execute operations while guaranteeing
that these invariants are not broken.

To this end, we propose the following methodology for creating applications that adhere to Explicit Con-
sistency. First, programmers must specify the application invariants and operation effects. Second, we provide
a tool to analyze the specification of the application and identify the pairs of conflicting shadow operations.
Non-conflicting shadow operations execute without any restrictions, as blue operations. We include a library
of CRDTs to help programmers define commutative operations. Third, for each pair of conflicting shadow
operations, the programmer can use a specialized concurrency control mechanism that restricts the concurrent
execution of these operations. This mechanism executes coordination outside of the critical path of operation
execution, allowing these operations to execute locally without the need to coordinate with other replicas.

The following sections provide additional details on these steps to use the Explicit Consistency model.

5.2 Application specification

Programmers specify application invariants and the post-conditions of shadow operations as first order logic
expressions. Invariants must be written as universally quantified formulas in prenex normal form, while the

77

(a) Specification written with Java Annotations. (b) Conflicting pairs of operations for the Bank example.

Figure 3: Bank application specification and analysis results.

grammar for specifying applications post-conditions is restricted to predicate assignments, that assert the truth
value of some predicate, and function clauses, which define the relation between the value of some predicate
before and after the execution of the operation.

The code snippet in figure 3a shows the specification of the banking application. We extended this example
to illustrate different invariant violations. In the extended version, clients must have a valid contract with the
bank to be able to access an account. Clients might have multiple accounts and must close all of them before
finishing the contract. In Line 2, the invariant guarantees that an account balance is never negative. In line 3, the
invariant states that, for every open account, the account holder must be registered with the bank.

5.3 Analysis

The analysis checks which are the shadow operations whose concurrent execution might produce a database
state that is invalid with respect to the declared invariants. Conceptually, for each pair of operations and for
every valid state where these operation can execute, the algorithm verifies if the execution of both operations
will lead to a state that is not valid according to the invariants of the application. Obviously, checking every pair
of operations in every valid state exhaustively is unfeasible. Instead, our algorithm relies in the Z3 satisfiability
modulo theory (SMT) solver to perform this verification efficiently. A full description of the algorithm is given
in our prior publication [7].

Figure 3b summarizes the conflicts in the example of Figure 3a: two concurrent successful withdrawals
might make the balance negative (non-idempotence); assigning and removing an account concurrently for the
same user might leave the system in an inconsistent state, because each shadow operation writes different values
for the predicate userAccount(cId, aId) (opposing post-conditions); and finally, the pair createAccount(cId,
aId) and endContract(cId) might violate the integrity constraint of line 3, because a new account is being
added to a user that is ending a contract with the bank.

5.4 Code instrumentation

After identifying which operations can lead to conflicts, the programmer must instrument the application to
avoid them.

Some conflicts can be handled by simply relying on CRDTs to automatically solve them. For example,
our analysis can report that operations have opposing post-conditions: e.g., operations assignAccout and

78

remAccount assign the value true and false to predicate userAccount(cId, aId). In this situation, the pro-
grammer can choose a preferred value for the predicate and use a CRDT that automatically implements the
selected decision2.

Other conflicts must be handled by restricting the concurrent execution of operations that can cause invariants
to be broken. To this end, we provide a set of specialized reservation-based concurrency control mechanisms.

For conflicts on numeric invariants, like the one that withdraw causes, we support an escrow reservation
for allowing some decrements of numeric values to execute without coordination. In an escrow reservation,
each replica is assigned a budget of decrements, based on the initial value of the data. In our example, when a
replica receives a withdraw request, if the local budget is sufficient, the generator operation executes immediately
without coordination, generating a shadow operation that decrements the balance. This local execution is safe,
guaranteeing that the invariant still holds after executing all concurrent operations, because the sum of the
budgets of all replicas is equal to the value of the initial value. If the local budget is not enough to satisfy the
request, the replica needs to contact remote replicas to increase its budget, until it can satisfy the request. If that
is not possible, because there are not enough resources globally, then the generator operation fails, generating
no shadow operation.

For conflicts on generic invariants, we include a multi-value lock reservation. This lock can be in one of the
following three states: (1) shared forbid, giving the shared right to forbid some action to occur; (2) shared allow,
giving the shared right to allow some action to occur; (3) exclusive allow, giving the exclusive right to execute
some action. The idea is that, for a conflicting pair of operations, (o1, o2), the lock will be associated with
the execution of one of the operations, say o1. To execute o1, a replica must hold the lock in the shared allow
mode. This right can be shared by multiple replicas. To execute o2, a replica must hold the lock in the shared
forbid mode. As before, when executing the generator operation, if the replica already holds the necessary locks
(in the required mode to execute the operation), it can execute locally and generate the corresponding shadow
operation. If not, it must contact other replicas to obtain the necessary locks.

Besides these two locks, we also proposed other locks that can efficiently restrict the concurrent execution of
operations that conflict in other types of invariants, including conditions on the number of elements that satisfy
a given condition and disjunctions. In a related work, Gotsman et. al. [16] have shown how to prove that a given
set of locks is sufficient for maintaining invariants.

6 Related work

Many cloud storage systems supporting geo-replication have emerged in recent years. Some of these systems
offer variants of eventual consistency, where operations produce responses right after being executed in a single
data center (usually the closest one) and are replicated in the background, so that user observed latency is
improved [13, 23, 24, 4, 19]. These variants target different requirements, such as: reading a causally consistent
view of the database (causal consistency) [23, 4, 14, 6]; supporting limited transactions where a set of updates
are made visible atomically [24, 5]; supporting application-specific or type-specific reconciliation with no lost
updates [13, 23, 35, 2], etc.

While some systems implement eventual consistency by relying on a simple last-writer-wins strategy, others
have explored the semantics of applications (and data types). Semantic types [15] have been used for build-
ing non-serializable schedules that preserve consistency in distributed databases. Conflict-free replicated data
types [31] explore commutativity for enabling the automatic merge of concurrent updates to the same data types.

Eventual consistency is insufficient for some applications that require some operations to execute under
strong consistency for correctness. To this end, several systems support strong consistency. Spanner provides
strong consistency for the whole database, at the cost of incurring coordination overhead for all updates [12].

2In our experience, boolean predicates can be implemented using Set CRDTs with add-wins and remove-wins policies to enforce
that the corresponding predicate becomes true or false respectively.

79

Transaction chains support transaction serializability with latency proportional to the latency to the first replica
that the corresponding transaction accesses [40]. MDCC [17] and Replicated Commit [26] propose optimized
approaches for executing transactions but still incur inter-data center latency for committing transactions.

Some systems combine the benefits of weak and strong consistency models by allowing both levels to coex-
ist. In Walter [35], transactions that can execute under weak consistency run fast, without needing to coordinate
with other datacenters. Bayou [37] and Pileus [36] allow operations to read data with different consistency
levels, from strong to eventual consistency. PNUTS [11] and DynamoDB [34] also combine weak consistency
with per-object strong consistency relying on conditional writes, where a write fails in the presence of concur-
rent writes. RedBlue consistency also combines weak and strong consistency in the same system. Unlike other
systems, RedBlue consistency splits operations into generator and shadow parts to allow more operations to
commute, and define a procedure to help programmers labeling shadow operations as weak or strong.

Escrow transactions [27] offer a mechanism for enforcing numeric invariants under concurrent execution
of transactions. By enforcing local invariants in each transaction, they can guarantee that a global invariant is
not broken. This idea can be applied to other data types, and it has been explored for supporting disconnected
operation in mobile computing [38, 28, 32]. Balegas et al. [8] proposed the bounded counter CRDT that can be
used to enforce numeric invariants in weakly consistent cloud databases. The demarcation protocol [9] aims at
maintaining invariants in distributed databases. Although its underlying protocols are similar to escrow-based
approaches, it focuses on maintaining invariants across different objects. Warranties [22] provide time-limited
assertions over the database state, which can improve latency of read operations in cloud storages. Indigo builds
on similar ideas for enforcing application invariants, but it is the first piece of work to provide an approach that,
starting from application invariants expressed in first-order logic, leads to the deployment of the appropriate
techniques for enforcing such invariants in a geo-replicated weakly consistent data store. Gotsman et. al.
[16] propose a proof rule for establishing that the use of a given set of techniques is sufficient to ensure the
preservation of invariants.

The static analysis of code is a standard technique used extensively for various purposes, including in a
context similar to ours. SIEVE [20] combines static and dynamic analysis to infer which operations should use
strong consistency and which operations should use weak consistency in a RedBlue system [21]. Roy et al. [29]
present an analysis algorithm that describes the semantics of transactions. These works are complementary to
ours, since the proposed techniques could be used to automatically infer application side effects.

7 Conclusion

In this paper we summarized two of our recent results in addressing the fundamental tension between latency and
consistency in geo-replicated systems. First, RedBlue consistency [21] offers fast geo-replication by presenting
sufficient conditions that allow programmers to safely separate weakly consistent (fast) operations from strongly
consistent (slow) ones in a coarse-grained manner. To increase the space of potential fast operations and simplify
the programmer’s task of defining commutative operations, we propose the use of conflict-free replicated data
types. Second, Explicit Consistency [7] enables programmers to make fine-grained decisions on consistency
level assignments by connecting application invariants to ordering conflicts between pairs of operations, and
explores efficient reservation techniques for coordinating conflicting operations with low cost.

Acknowledgments

The research of Rodrigo Rodrigues is supported by the European Research Council under an ERC Starting Grant.
This research was also supported in part by EU FP7 SyncFree project (609551), FCT/MCT SFRH/BD/87540/2012,
PEst-OE/ EEI/ UI0527/ 2014, NOVA LINCS (UID/CEC/04516/2013), and INESC-ID (UID/CEC/50021/2013).

80

References
[1] 7 Data Center Disasters You’ll Never See Coming. http://www.informationweek.com/cloud/

7-data-center-disasters-youll-never-see-coming/d/d-id/1320702. Accessed Feb-2016.

[2] Using data types – riak documentation. http://docs.basho.com/riak/latest/dev/using/
data-types/. Accessed Feb-2016.

[3] Consistency without Consensus: CRDTs in Production at SoundCloud. http://www.slideshare.net/
InfoQ/consistency-without-consensus-crdts-in-production-at-soundcloud Accessed
Feb-2016.

[4] S. Almeida, J. Leitão, and L. Rodrigues. ChainReaction: A Causal+ Consistent Datastore Based on Chain Replica-
tion. In EuroSys ’13, 85–98, 2013. ACM.

[5] P. Bailis, A. Fekete, J. M. Hellerstein, A. Ghodsi, and I. Stoica. Scalable Atomic Visibility with RAMP Transactions.
In SIGMOD ’14, 27–38, 2014. ACM.

[6] P. Bailis, A. Ghodsi, J. M. Hellerstein, and I. Stoica. Bolt-on Causal Consistency. In SIGMOD ’13, 761–772, 2013.
ACM.

[7] V. Balegas, S. Duarte, C. Ferreira, R. Rodrigues, N. Preguiça, M. Najafzadeh, and M. Shapiro. Putting consistency
back into eventual consistency. In EuroSys ’15, 6:1–6:16, 2015. ACM.

[8] V. Balegas, D. Serra, S. Duarte, C. Ferreira, M. Shapiro, R. Rodrigues, and N. Preguica. Extending eventually
consistent cloud databases for enforcing numeric invariants. In SRDS ’15, 31–36, Sept 2015.

[9] D. Barbará-Millá and H. Garcia-Molina. The demarcation protocol: A technique for maintaining constraints in
distributed database systems. The VLDB Journal, 3(3):325–353, July 1994.

[10] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Database Systems. Addison-
Wesley, 1987.

[11] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bohannon, H.-A. Jacobsen, N. Puz, D. Weaver, and
R. Yerneni. PNUTS: Yahoo!’s Hosted Data Serving Platform. Proc. VLDB Endow., 1(2):1277–1288, Aug. 2008.

[12] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan,
R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor, R. Wang, and D. Woodford. Spanner: Google’s Globally-
distributed Database. In OSDI ’12, 251–264, 2012. USENIX Association.

[13] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: Amazon’s Highly Available Key-value Store. In SOSP ’07, 205–220, 2007. ACM.

[14] J. Du, S. Elnikety, A. Roy, and W. Zwaenepoel. Orbe: Scalable Causal Consistency Using Dependency Matrices and
Physical Clocks. In SOCC ’13, 11:1–11:14, 2013. ACM.

[15] H. Garcia-Molina. Using semantic knowledge for transaction processing in a distributed database. ACM Trans.
Database Syst., 8(2):186–213, June 1983.

[16] A. Gotsman, H. Yang, C. Ferreira, M. Najafzadeh, and M. Shapiro. ’cause i’m strong enough: Reasoning about
consistency choices in distributed systems. In POPL 2016, 371–384, 2016. ACM.

[17] T. Kraska, G. Pang, M. J. Franklin, S. Madden, and A. Fekete. MDCC: Multi-data Center Consistency. In EuroSys
’13, 113–126, 2013. ACM.

[18] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing high availability using lazy replication. ACM Trans.
Comput. Syst., 10(4):360–391, Nov. 1992.

[19] A. Lakshman and P. Malik. Cassandra: A Decentralized Structured Storage System. In SIGOPS Oper. Syst. Rev.,
44(2):35–40, 2010.

[20] C. Li, J. Leitão, A. Clement, N. Preguiça, R. Rodrigues, and V. Vafeiadis. Automating the choice of consistency
levels in replicated systems. In ATC ’14, 281–292, 2014. USENIX Association.

81

[21] C. Li, D. Porto, A. Clement, J. Gehrke, N. Preguiça, and R. Rodrigues. Making Geo-replicated Systems Fast As
Possible, Consistent when Necessary. In OSDI ’12, 265–278, 2012. USENIX Association.

[22] J. Liu, T. Magrino, O. Arden, M. D. George, and A. C. Myers. Warranties for faster strong consistency. In NSDI
’14, 2014. USENIX Association.

[23] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Don’t Settle for Eventual: Scalable Causal Consis-
tency for Wide-area Storage with COPS. In SOSP ’11 , 401–416, 2011. ACM.

[24] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Stronger Semantics for Low-latency Geo-replicated
Storage. In NSDI ’13, 313–328, 2013. USENIX Association.

[25] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, M. Dahlin, and M. Walfish. Depot: cloud storage with minimal
trust. In OSDI, 2010.

[26] H. Mahmoud, F. Nawab, A. Pucher, D. Agrawal, and A. El Abbadi. Low-latency Multi-datacenter Databases Using
Replicated Commit. Proc. VLDB Endow., 6(9):661–672, 2013.

[27] P. E. O’Neil. The escrow transactional method. ACM Trans. Database Syst., 11(4):405–430, Dec. 1986.

[28] N. Preguiça, J. L. Martins, M. Cunha, and H. Domingos. Reservations for Conflict Avoidance in a Mobile Database
System. In MobiSys ’03, 43–56, 2003. ACM.

[29] S. Roy, L. Kot, G. Bender, B. Ding, H. Hojjat, C. Koch, N. Foster, and J. Gehrke. The homeostasis protocol: Avoiding
transaction coordination through program analysis. In SIGMOD ’15, 1311–1326, 2015.

[30] E. Schurman and J. Brutlag. Performance related changes and their user impact. Presented at velocity web perfor-
mance and operations conference. http://slideplayer.com/slide/1402419/, 2009.

[31] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. Conflict-free Replicated Data Types. In SSS ’11, 386–400,
2011. Springer-Verlag.

[32] L. Shrira, H. Tian, and D. Terry. Exo-leasing: Escrow Synchronization for Mobile Clients of Commodity Storage
Servers. In Middleware ’08, 42–61, 2008. Springer-Verlag New York, Inc.

[33] A. Singh, P. Fonseca, P. Kuznetsov, R. Rodrigues, and P. Maniatis. Zeno: Eventually Consistent Byzantine-Fault
Tolerance. In NSDI’09, 169–184, 2009.

[34] S. Sivasubramanian. Amazon DynamoDB: A Seamlessly Scalable Non-relational Database Service. In SIGMOD
’12, 729–730, 2012. ACM.

[35] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional Storage for Geo-replicated Systems. In SOSP ’11,
385–400, 2011. ACM.

[36] D. B. Terry, V. Prabhakaran, R. Kotla, M. Balakrishnan, M. K. Aguilera, and H. Abu-Libdeh. Consistency-based
Service Level Agreements for Cloud Storage. In SOSP ’13, 309–324, 2013. ACM.

[37] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer, and C. H. Hauser. Managing Update Conflicts
in Bayou, a Weakly Connected Replicated Storage System. In SOSP ’95, 172–182, 1995. ACM.

[38] G. D. Walborn and P. K. Chrysanthis. Supporting Semantics-based Transaction Processing in Mobile Database
Applications. In SRDS ’95, 31–40, 1995. IEEE Computer Society.

[39] M. Zawirski, N. Preguiça, S. Duarte, A. Bieniusa, V. Balegas, and M. Shapiro. Write fast, read in the past: Causal
consistency for client-side applications. In Middleware ’15, 75–87, 2015. ACM.

[40] Y. Zhang, R. Power, S. Zhou, Y. Sovran, M. K. Aguilera, and J. Li. Transaction Chains: Achieving Serializability
with Low Latency in Geo-distributed Storage Systems. In SOSP ’13, 276–291, 2013. ACM.

82

6 PUBLISHED PAPERS

6.6 Valter Balegas, Sérgio Duarte, Carla Ferreira, Nuno
Preguiça, and Rodrigo Rodrigues. Making Weak Con-
sistency Great Again. In Proceedings of the Second
Workshop on Principles and Practice of Consistency
for Distributed Data (to appear), PaPoC ’16. ACM,
2016.

SyncFree Deliverable D.3.3(v0.1), March 23, 2016, Page 84

Making Weak Consistency Great Again

Valter Balegas, Sérgio Duarte
Carla Ferreira, Nuno Preguiça

NOVA LINCS / FCT, Universidade NOVA de
Lisboa

Rodrigo Rodrigues
INESC-ID / IST, University of Lisbon

ABSTRACT
This talk focus on the problem of implementing web appli-
cations on top of weakly consistent geo-replicated system.
Several techniques, such as CRDTs, have been proposed to
achieve state convergence on a per-data type basis. How-
ever, this is not sufficient for guaranteeing application cor-
rectness, as convergence rules executed individually at each
object may lead to an invalid state.

We advocate that it is possible to address these problems
and implement correct applications under weak consistency.
To this end, it is necessary to combine CRDTs with novel
semantics, a judicious selection of CRDTs used by applica-
tions and transform application operation to guarantee that
convergence rules applied on a per-object basis always lead
to a valid application state. individually Achieving this is
complex, requiring tools that can help programmers taming
the complexity of programming on top of weak consistency
and make the technology more accessible.

We conclude our talk with the demonstration of a tool that
we are developing that is capable of detecting concurrency
conflicts on applications and proposes transformations to
make them conflict-free.

1. INTRODUCTION
The pervasiveness of the internet in people’s day-to-day

activities has lead to a paradigm shift in the way developers
build web applications. Nowadays systems need to scale
to unprecedented levels and provide good quality of service
at a world-wide scale. Centralized systems are inherently
hard to scale, prone to failure and provide poor quality of
service, for users that access from remote locations. This
has lead developers to become more interested in developing
distributed systems that do not suffer from the limitations of
the former. In this context, geo-replication appears as a core
technique to implement scalable and responsive distributed
systems for clients scattered across the globe.

Systems that use geo-replication typically provide weaker
forms of consistency in order to allow replicas to process
requests without contacting remote replicas. As a conse-
quence, when the same objects are updated at different lo-
cations, their values diverge and need to be reconciled later.
Conflict-free Replicated Data types (CRDTs) [7] are a prin-
cipled approach to handle replica convergence. These data
types support the reconciliation of multiple divergent copies
of the same object, with a well-defined semantics. Various
systems use CRDTs to provide richer programming models
for developers [5, 8].

Despite the effort to make weak consistency systems easier

to program, it remains difficult. In systems that use strong
consistency, application correctness is always ensured as long
as the application’s individual operations respect the invari-
ants. That is not the case for applications implemented
on top of weak consistency, where developers must carefully
ensure that application invariants hold under concurrent ex-
ecution. The root of this problem is that the reconciliation
of concurrent updates might produce a state that is invalid
with respect to the application invariants. Bailis et al. have
studied applications available online and found that many
applications built on top of weak consistency do not provide
the expected semantics [2].

In our recent work with bounded counter [4], we have de-
signed a counter that can maintain numeric invariants under
concurrent update execution. The same strategy can be used
with other data types to provide other invariants. However a
more general problem is yet to solve: how to maintain invari-
ants across multiple objects, without loss of availability? An
example of such invariants is to ensure referential integrity
in relational databases. Previous works have addressed this
issue by constraining the operations that can be executed in
each replica in order to preserve data integrity [3, 6]. When-
ever a replica receives a request to execute an operation that
might violate an invariant, the replica must coordinate with
remote replicas to ensure that the operation is safe. Al-
though this coordination may sometime be execute outside
of the critical execution path of operations, a replica can
always be forbidden to execute some operation because it
needs to contact a remote replica that is unavailable.

In this talk, we study the example of referential integrity
and show how to transform an application to provide that
invariant on top of weak consistency. We discuss different
semantics to solve the conflict without constraining concur-
rency, showing that it is possible to implement scalable and
correct applications on top of weak consistency. We also
present the current status of a tool we are developing to
help developers in that process.

2. RUNNING EXAMPLE
We chose referential integrity as running example due to

its importance in relational databases and concurrent pro-
gramming in general. We consider a toy database composed
of two entities, A and B. We assume, without loss of gen-
erality, that each entity has a single attribute. There is a
one-to-many relationship Ra→b from elements of A to ele-
ments of B.

Consider the implementation of this example using an
object-relational mapping approach, where entities are mod-

eled as two distinct sets and the relationship between them
are modeled by a third set of pairs (a, b) : a ∈ A, b ∈ B.

We assume that the storage system stores each set in sep-
arate objects and that it provides causal consistency and
atomic updates across multiple objects.

The integrity constraint of this model is broken when
∃(a, b) ∈ Ra→b : a /∈ A ∨ b /∈ B, i.e. there is a relation-
ship between entity a and b, but one or both of them do not
exist. We consider, for simplicity, that the application is cor-
rect under strong consistency, i.e. any sequential execution
of the program does not violate the invariant. An invari-
ant violation only occurs when a client issues an operation
to create a new relation (a, b) while another client issues an
operation to remove a or b from A or B, respectively.

3. BETTER SAFE THAN SORRY
To allow fast execution without constraining concurrency,

every replica must be able to reply to a request without
depending on remote state. Under these circumstances it
is not possible to avoid concurrent executions that might
leave the database in an inconsistent state. Since detect-
ing conflicts and fixing invalid database state is expensive,
we propose solving conflicts beforehand, so that execution
is always safe. The idea is that an operation can have extra
effects in order to avoid generating an invalid state when
replicas are reconciled. As a trade-off, the semantics of op-
erations that are implemented this way is limited, but, as
we show next, interesting semantics can be provided with
proper use of convergence rules.

In the next section we describe two alternative solutions
for the described problem. In the first solution we rely ex-
clusively on existing CRDT semantics, while in the second
solution we devise a new convergence rule for concurrent
operations to implement an alternative semantics.

3.1 Adding missing elements
When a new element (a, b) is added to Ra→b, the operation

that adds this element to the relations set must ensure that
a ∈ A and b ∈ B to preserve referential integrity. These
elements might be removed concurrently at other replicas
leading to an invariant violation after replicas reconcile. To
avoid this conflict, we modify the operation that adds (a, b)
to Ra→b to also add a to A and b to B, atomically, and set
the convergence rule of each set to use a Add-Wins policy.
This policy ensures that if an add and remove operations
execute concurrently for the same element, then the element
will be present in the set, cancelling the effects of the remove
operation. The consequence of our modifications is that any
operation to remove elements a or b will be cancelled by the
additional effect of the operation that adds (a, b), if they
execute concurrently.

3.2 Ensuring that elements are removed
In the previous solution, whenever the conflicting opera-

tions execute, the operation that adds the element to Ra→b

takes precedence over the remove operations. We might
want the opposite semantics, i.e. that whenever a remove
operation for a or b is issued, we want to cancel any concur-
rent operation that adds and element to Ra→b containing
one of those values. This example is different from the pre-
vious and cannot be solved in the same way, because we do
not know the possible pairs containing a or b that might be
added to the set, and it would be too expensive to consider

the whole domain of A or B. In this talk we present a new
set CRDT that prevents concurrently adding elements to
a set that match a given criteria, without specifying their
values.

The intuition behind this new set is to provide a special
touch(Predicate p) operation that accepts a predicate that
specifies which elements we want to prevent adding concur-
rently to the set. This way, whenever we execute a remove
operation for elements a or b, we also execute a touch in
Ra→b that prevent the addiction of any pair matching (a, ∗)
or (∗, b), where ∗ means any element.

4. TOOLS FOR PROGRAMMING WEAK CON-
SISTENCY

In the previous section we have seen how to preserve ref-
erential integrity in applications developed on top of weak
consistency. Even though the transformations to the opera-
tions are easy to explain, it might be difficult for the average
programmers to devise them. For this reason, we are also
working on tools that can ease identifying invariant viola-
tions in applications and proposes possible solutions.

We are building a tool that, given the specification of
an application’s operations and invariants, identifies con-
flicts that might arise due to concurrent executions and pro-
poses transformations to the operations to fix them, without
strengthening the consistency model employed. The algo-
rithm for identifying conflicts has already been published in
our previous work [3]. We are extending this tool to propose
transformations to the operations like the ones we described
before. In the talk we show the tool in action to solve the
referential integrity example.

5. FINAL REMARKS
In the course of the talk we have shown how to maintain a

specific invariant by making good use of data type semantics.
We started with a known invariant and the knowledge of the
operations that might violate it, and devised two solutions
for the problem. In practice, the programmer might not
be as sensitive to the anomalies of weak consistency, might
not be aware of the conflicts in his applications and might
have difficulty in fixing violations, which makes development
cumbersome.

Many recent works abandoned weak consistency towards
stronger consistency models as these are easier to program
and understand [9]. But the downsides of strong consistency
come in many flavors: high latency, bad fault tolerance and
bad scalability. To mitigate these problems, people have
tried to pinpoint where weak consistency can be used and
use strong consistency for everything else [1, 6]. Despite
the performance improvements for operations that remain
correct under weak consistency, it does not improve oper-
ations that require strong consistency. The bottom line of
this talk is that is essential to to keep building on techniques
to use weak consistency correctly, by preserving invariants
and, at the same time, having the low latency, high avail-
ability benefits of the model. To sustain our argument, we
have shown how to design proper convergence semantics to
provide specific invariants and presented a tool that can re-
lieve the programmer of the complexity of identifying and
solving conflicts.

6. REFERENCES

[1] Alvaro, P., Conway, N., Hellerstein, J. M., and
Marczak, W. R. Consistency analysis in bloom: A
calm and collected approach. In In Proceedings 5th
Biennial Conference on Innovative Data Systems
Research (2011), pp. 249–260.

[2] Bailis, P., Fekete, A., Franklin, M. J., Ghodsi,
A., Hellerstein, J. M., and Stoica, I. Feral
concurrency control: An empirical investigation of
modern application integrity. In Proceedings of the 2015
ACM SIGMOD International Conference on
Management of Data (New York, NY, USA, 2015),
SIGMOD ’15, ACM, pp. 1327–1342.

[3] Balegas, V., Duarte, S., Ferreira, C.,
Rodrigues, R., Preguiça, N., Najafzadeh, M.,
and Shapiro, M. Putting consistency back into
eventual consistency. In Proceedings of the Tenth
European Conference on Computer Systems (New York,
NY, USA, 2015), EuroSys ’15, ACM, pp. 6:1–6:16.

[4] Balegas, V., Serra, D., Duarte, S., Ferreira, C.,
Shapiro, M., Rodrigues, R., and Preguiça, N. M.
Extending eventually consistent cloud databases for
enforcing numeric invariants. In 34th IEEE Symposium
on Reliable Distributed Systems, SRDS 2015, Montreal,
QC, Canada, September 28 - October 1, 2015 (2015),
pp. 31–36.

[5] Basho. Riak. http://basho.com/riak/, 2014.
Accessed Fev/2016.

[6] Li, C., Porto, D., Clement, A., Gehrke, J.,
Preguiça, N., and Rodrigues, R. Making
geo-replicated systems fast as possible, consistent when
necessary. In Proceedings of the 10th USENIX
Conference on Operating Systems Design and
Implementation (Berkeley, CA, USA, 2012), OSDI’12,
USENIX Association, pp. 265–278.

[7] Shapiro, M., Preguiça, N., Baquero, C., and
Zawirski, M. Conflict-free replicated data types. In
Proceedings of the 13th International Symposium on
Stabilization, Safety, and Security of Distributed
Systems (SSS) (Grenoble, France, Oct. 2011),
X. Défago, F. Petit, and V. Villain, Eds., vol. 6976 of
Lecture Notes on Computer Science, Springer,
pp. 386–400.

[8] Zawirski, M., Preguiça, N., Duarte, S., Bieniusa,
A., Balegas, V., and Shapiro, M. Write fast, read
in the past: Causal consistency for client-side
applications. In Proceedings of the 16th Annual
Middleware Conference (New York, NY, USA, 2015),
Middleware ’15, ACM, pp. 75–87.

[9] Zhang, I., Sharma, N. K., Szekeres, A.,
Krishnamurthy, A., and Ports, D. R. K. Building
consistent transactions with inconsistent replication. In
Proceedings of the 25th Symposium on Operating
Systems Principles, SOSP 2015, Monterey, CA, USA,
October 4-7, 2015 (2015), pp. 263–278.

6 PUBLISHED PAPERS

6.7 Carlos Baquero, Paulo Sérgio Almeida, and Carl Lerche.
The problem with embedded CRDT counters and a
solution. In Proceedings of the Second Workshop on
Principles and Practice of Consistency for Distributed
Data (to appear), PaPoC ’16. ACM, 2016.

SyncFree Deliverable D.3.3(v0.1), March 23, 2016, Page 88

The problem with embedded CRDT counters and a solution

Carlos Baquero
HASLab, INESC TEC &
Universidade do Minho

Braga, Portugal
cbm@di.uminho.pt

Paulo Sérgio Almeida
HASLab, INESC TEC &
Universidade do Minho

Braga, Portugal
psa@di.uminho.pt

Carl Lerche
Portland, Oregon

me@carllerche.com

ABSTRACT
Conflict-free Replicated Data Types (CRDTs) can simplify
the design of deterministic eventual consistency. Consid-
ering the several CRDTs that have been deployed in pro-
duction systems, counters are among the first. Counters
are apparently simple, with a straightforward inc/dec/read
API, but can require complex implementations and several
variants have been specified and coded. Unlike sets and
registers, that can be adapted to operate inside maps, cur-
rent counter approaches exhibit anomalies when embedded
in maps. Here, we illustrate the anomaly and propose a so-
lution, based on a new counter model and implementation.

Keywords
Distributed Counting, Eventual Consistency, CRDTs.

1. INTRODUCTION
In order to support high-availability and low response

latency in geo-replicated data storage systems, developers
have successfully explored relaxed consistency models, such
as eventual consistency [8, 1], and supporting frameworks,
such as conflict-free replicated data types (CRDTs) [6, 7].
This trend towards fast querying and data manipulation at
the edge, possibly under partitions, will likely become more
prevalent with the growth of IoT deployments.

Complex CRDT deployments require mechanisms for com-
posing together several base data types. A common strategy
[5] is to define a replicated map data structure that maps
keys to CRDT instances. In the Riak data store, maps can
store sets, registers, flags, counters and even, recursively,
other maps [3] (as they are CRDTs themselves). Maps need
to support the addition and removal of entries (key bind-
ings), and allow data type dependent updates over the stored
CRDT instances.

2. EMBEDDED COUNTERS ANOMALY
In order to provide a sound semantics for key removal,

Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
PaPoC’16 April 18, 2016, London, UK
Copyright 2016 ACM 978-1-4503-2716-9/14/04 ...$15.00.

CRDT maps behave in a way such that a non-present key
(e.g., after removal), when fetched returns the default ini-
tial state, i.e., bottom, of the embedded CRDT. Efficient
implementations require the storable CRDT data types to
provide a special reset operation that brings the instance
back to bottom, which need not be stored in the map, while
allowing the map meta-data to remember the reset state in
a efficient way, without requiring any per-key metadata; i.e.,
no per-key tombstone. Technically this is done by keeping a
global causal context for the whole map, that is common to
all the recursively embedded CRDTs. This can be thought
of as a observed-reset, in the sense that all operations that
have been observed to be applied to the map when the reset
is issued, should be equivalently reset on another instance
which observes the reset upon a join. Bellow is an example
of a correct reset over an add-wins set.

m1[” f r i e n d ”] . add (” a l i c e ”) ;
m2. j o i n (m1) ;
m2. remove (” f r i e n d ”) ; // m2: {}
m1[” f r i e n d ”] . add (”bob ”) ;
m1. j o i n (m2) ; // m1: {” f r i e n d ” −> {”bob ”}}

After m2.join(m1) both replicas hold a mapping to a
AWSet with a single“alice”element. Once replica m2 removes
the “friend” entry from the map, the set becomes implicitly
empty. Concurrently, replica m1 adds a new element“bob”to
the set. Later, after joining the two replicas, we see that the
reset, implicitly called on the set when removing the entry,
only undoes the add("alice") and not the add("bob").

We now change the example to illustrate the ideal (sound)
semantics when counters are embedded. Initially we incre-
ment by 2 the “friend” entry and then we concurrently re-
move it and increment by 3. Ideally, removing the entry
should undo the “increment by 2”, which when merged to
m1, would leave the “increment by 3” as the only remaining
operation, and counter value of 3.

m1[” f r i e n d ”] . i nc (2) ;
m2. j o i n (m1) ; m2. remove (” f r i e n d ”) ;
m1[” f r i e n d ”] . i nc (3) ;
m1. j o i n (m2) ; // m1: {” f r i e n d ” −> 3}

The desired counter evolution would be:

m1 0
inc 2 // 2

join��

inc 3 // 5 // 3

m2 0 // 2 reset // 0

join
@@

However, embedding a simple CRDT counter implemen-
tation, and namely the behaviour of Riak DT Counters, ex-
hibit an anomaly, leading to the following outcome:

m1 0
inc 2 // 2

join��

inc 3 // 5 // 5

m2 0 // 2 reset // 0

join
@@

The problem is that the reset does not undo all observed
operations (here the initial increment by 2) when merging
to other replica, if such replica concurrently updates the
counter. This limitation is known in Riak DT and it was an
open problem to find an alternative solution [4].

3. A NEW EMBEDDED COUNTER
Our approach to address the problem is to try to obtain

the desired observed-reset behaviour without compromising
the scalability of the underlying meta-data. We found that
this can be obtained in a remove wins counter design. In
this counter all increments (and decrements) that are ob-
served in a replica are correctly reset upon entry removal.
Moreover, any concurrent operations are also affected by the
reset, thus the remove wins behaviour. Lets illustrate this
in our example.

m1[” f r i e n d ”] . i nc (2) ;
m2. j o i n (m1) ; m2. remove (” f r i e n d ”) ;
m1[” f r i e n d ”] . i nc (3) ;
m1. j o i n (m2) ; // m1: {” f r i e n d ” −> 0}

Leading to the counter evolution:

m1 0
inc 2 // 2

join��

inc 3 // 5 // 0

m2 0 // 2 reset // 0

join
@@

Notice that although concurrent operations are affected
(both increments and decrements), any operations that causally
follow the reset are not affected. Thus if we had done
m2["friend"].inc(1) after m2.remove("friend") the out-
come would have been 1:

m1 0
inc 2 // 2

join��

inc 3 // 5 // 1

m2 0 // 2 reset // 0 inc 1 // 1

join
@@

4. A SEMANTIC TRADE-OFF WITH STATE
Although we fixed the observed-reset anomaly, some ap-

plications might have a need for an add wins counter where
reset only affects the (observed) past operations and leaves
concurrent ones unaffected.

This behaviour is simple to obtain, but at a meta-data
cost. The idea is to provide a fresh() operation which
has the effect of protecting subsequent updates from being
affected by resets concurrent to it. The following example
shows that, by calling fresh(), the inc(3) operation is not
affected by the concurrent reset, and the outcome is 3, as
desired.

m1[” f r i e n d ”] . i nc (2) ;
m2. j o i n (m1) ; m2. remove (” f r i e n d ”) ;
m1[” f r i e n d ”] . f r e s h () ; m1[” f r i e n d ”] . i nc (3) ;
m1. j o i n (m2) ; // m1: {” f r i e n d ” −> 3}

Leading to the counter evolution:

m1 0
inc 2 // 2

join��

fresh // 2 inc 3 // 5 // 3

m2 0 // 2 reset // 0

join
@@

In the counter presented below, if no fresh() calls are
made the counter scalability is O(r log o), as usual, where r
is the number of replicas that issued operations and o is the
number of operations done. If we consider an arbitrary num-
ber of fresh calls f ≥ r, the scalability becomes O(f log o),
when fresh calls are made. Therefore, if meta-data size is
a concern then fresh() should be called sparingly. The
good news is that, upon resets, meta-data comes back to
O(r log o), so only the number of observed fresh() calls un-
til a reset is relevant. Moreover, to obtain the ideal seman-
tics, it is enough to perform a fresh() only after shipping
the state to other replicas. A possible direction towards ob-
taining state-scalability could involve a combination of the
use of fresh, together with periodic resets through some
replica coordination.

5. COUNTER SPECIFICATION
Figure 1 shows a mathematical specification of the pro-

posed counter. The state is a pair (m, c) formed by a map
m from replica generated ids to a pair of integers, and by a
map c (referred to as causal context) from replica ids to inte-
gers that compactly encodes causality (essentially a version
vector). The first map is what we call a dot store; each key,
called a dot, serves as globally unique id, being formed by
a pair of replica id and a monotonically increasing counter;
the value is a pair of integers that contain the positive and
negative partial counts registered under that key.

Initially both the dot store and the causal context are
empty, and the reported count value, by query function
valuei, returns 0. In order to increment or decrement the
counter at replica i an active entry for i must be found, or
created, in the dot store m. Mutator functions inci and deci
invoke an auxiliary mutator updi with a pair (either (1, 0) or
(0, 1)) containing the number of increments and decrements
to be applied to the partial count on an active entry for
replica i. Thus, function updi before updating must check
if an active entry is already available for replica i in the dot
store m or create a new one by calling freshi; if an active
entry exists in m its key corresponds to the more recent dot
known in the causal context in i, i.e., dot (i, c(i)).

The freshi mutator will always create a new entry in m
by creating a new (globally unique) dot, with replica id i
and the next sequence number, c(i) + 1, and map it to the
(0, 0) positive-negative partial count. It leaves other entries
untouched and, therefore, does not change the counter value.
The query function valuei simply sums up all the positive
values in the active map and subtracts the corresponding
negative ones. By calling reseti all mappings are removed
from the dot store and only the causal context is preserved;
thus, the reported value will be again 0. When counter
CRDTs are embedded inside maps, a reset is called on the

Counter = (I×N ↪→ N×N)× (I ↪→ N)

⊥ = ({}, {})
inci(s) = updi(s, (1, 0))

deci(s) = updi(s, (0, 1))

updi((m, c), u) = (m′{d 7→ m′(d) + u}, c′) where d = (i, c′(i)),

(m′, c′) =

{
freshi((m, c)) if (i, c(i)) 6∈ domm

(m, c) otherwise

freshi((m, c)) = (m{(i, c(i) + 1) 7→ (0, 0)}, c{i 7→ c(i) + 1})
reseti((m, c)) = ({}, c)
valuei((m, c)) =

∑

d∈domm

fstm(d)− sndm(d)

(m, c) t (m′, c′) = ({d 7→ m(d) tm′(d) | d ∈ domm′ ∩ domm} ∪
{((j, n), v) ∈ m | n > c′(j)} ∪ {((j, n), v) ∈ m′ | n > c(j)},
c t c′)

Figure 1: Resettable Counter, replica i.

counter instance when the corresponding key is removed.
Since CRDTs embedded in maps all share a common causal
context, removing a map entry effectively removes all the
state associated to the counter instance.

Finally, the join function will: look for entries in com-
mon among the two maps m,m′ and join the corresponding
values by taking the pairwise maximum of the two positive-
negative values; and for entries that are present only in one
map, only those whose dot was never seen in the other causal
context are preserved. This is done by checking if the num-
ber n in the dot (j, n) is strictly higher than the highest
entry known for j in the other causal context. The joined
causal context is simply obtained, as usual for version vec-
tors, by coordinate-wise maximum between the maps c and
c′.

6. FINAL REMARKS
The new counter design we propose in this paper addresses

the problem that prevented counters to be embedded in a
map and still provide a reset that would correctly remove
all past operations, to be used when removing an entry from
the map. Even when not embedded, current counters still
have that problem if applications require a reset operation.

The solution we propose is efficient, in terms of meta-data
cost, under a remove-wins semantics. The alternative, add-
wins, that protects operations from being cancelled by con-
current resets, has considerable meta-data cost. This cost
can be reduced by a system design that only creates fresh
entries after the counter state is sent to other replicas, pos-
sibly accepting the trade-off of a low rate of dissemination
and less overall recency. Further research is needed, to eval-
uate this cost and to attempt garbage collection of entries
possibly through reset together with some coordination.

Reference implementations for the various counters, in-
cluding the Riak DT counter (CCounter) and the proposed
counter (RWCounter), are publicly available in GitHub [2]
for C++. Rust implementations are under development.

7. ACKNOWLEDGMENTS
We thank the following funding sources: Project Norte-

01-0145-FEDER-000020 is financed by the North Portugal
Regional Operational Programme (Norte 2020), under the
Portugal 2020 Partnership Agreement, and through the Eu-
ropean Regional Development Fund (ERDF). Funding from
the European Union Seventh Framework Program (FP7/2007-
2013) under grant agreement 609551, SyncFree project.

8. REFERENCES
[1] P. Bailis and A. Ghodsi. Eventual consistency today:

Limitations, extensions, and beyond. Queue,
11(3):20:20–20:32, Mar. 2013.

[2] C. Baquero. Delta-enabled-crdts. URL
http://github.com/CBaquero/delta-enabled-crdts,
Retrieved 22-dec-2015.

[3] Basho. Riak datatypes. URL
http://github.com/basho, Retrieved 22-dec-2015.

[4] R. Brown. Personal Communication, Jan 2016.

[5] R. Brown, S. Cribbs, C. Meiklejohn, and S. Elliott.
Riak dt map: A composable, convergent replicated
dictionary. In Proceedings of the First Workshop on
Principles and Practice of Eventual Consistency,
PaPEC ’14, pages 1:1–1:1, New York, NY, USA, 2014.
ACM.

[6] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski.
A comprehensive study of Convergent and
Commutative Replicated Data Types. Rapp. Rech.
7506, INRIA, Rocquencourt, France, Jan. 2011.

[7] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski.
Conflict-free replicated data types. In X. Défago,
F. Petit, and V. Villain, editors, Int. Symp. on
Stabilization, Safety, and Security of Distributed
Systems (SSS), volume 6976 of Lecture Notes in Comp.
Sc., pages 386–400, Grenoble, France, Oct. 2011.
Springer-Verlag.

[8] W. Vogels. Eventually consistent. ACM Queue,
6(6):14–19, Oct. 2008.

6 PUBLISHED PAPERS

6.8 Albert van der Linde, João Leitão, and Nuno Preguiça.
∆-CRDTs: Making δ-CRDTs Delta-Based. In Proceed-
ings of the Second Workshop on Principles and Prac-
tice of Consistency for Distributed Data (to appear),
PaPoC ’16. ACM, 2016.

SyncFree Deliverable D.3.3(v0.1), March 23, 2016, Page 92

∆-CRDTs: Making δ-CRDTs Delta-Based

Albert van der Linde
NOVA LINCS, DI, FCT,

Universidade NOVA de Lisboa

João Leitão
NOVA LINCS, DI, FCT,

Universidade NOVA de Lisboa

Nuno Preguiça
NOVA LINCS, DI, FCT,

Universidade NOVA de Lisboa

ABSTRACT
Replication is a key technique for providing both fault tol-
erance and availability in distributed systems. However,
managing replicated state, and ensuring that these repli-
cas remain consistent, is a non trivial task, in particular
in scenarios where replicas can reside on the client-side,
as clients might have unreliable communication channels
and hence, exhibit highly dynamic communication patterns.
One way to simplify this task is to resort to CRDTs, which
are data types that enable replication and operation over
replicas with no coordination, ensuring eventual state con-
vergence when these replicas are synchronized. However,
when the communication patters, and therefore synchro-
nization patterns, are highly dynamic, existing designs of
CRDTs might incur in excessive communication overhead.
To address those scenarios, in this paper we propose a new
design for CRDTs which we call ∆-CRDT, and experimen-
tally show that under dynamic communication patters, this
novel design achieves better network utilization than exist-
ing alternatives.

1. INTRODUCTION AND CONTEXT
Web applications running in cloud infrastructures often

use geo-replication for providing high availability and low
latency to clients. To be able to continue operating during
network partitions, these systems often adopt weakly con-
sistent data replication protocols [2]. Such protocols allow
replicas to be modified concurrently, requiring some recon-
ciliation mechanism to merge these concurrent updates.

CRDTs [5] have been proposed as a principled approach
for providing convergence of general purpose data type. CRDTs
come in two main flavors. State-based CRDTs synchronize
by having replicas exchange their full local state (including
metadata). This is inefficient when the size of these data
objects grow significantly (for instance, in a large Set, the
full Set needs to be propagated whenever a single element
is added).The second flavor of CRDTs is called Operation-
based CRDTs, where instead of exchanging the full state,

Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
PaPoC’16 April 18, 2016, London, UK
Copyright 2016 ACM 978-1-4503-2716-9/14/04 ...$15.00.

replicas only propagate among them the operations that mu-
tate their state. In this case, operations have to be propa-
gated respecting the causality of operations, which not only
introduces additional overhead (to keep track of causality)
but also fits poorly in scenarios where there are large num-
ber of replicas, and where communication patterns among
these replicas are highly dynamic, for instance, due to poor
connectivity among these replicas.

A recent alternative, named δ-CRDTs [1] has been pro-
posed as a middle ground between the two approaches. δ-
CRDTs assumes that communication is mostly pairwise,
with each replica maintaining a communication buffer for
each of its peers where it stores the operations that have
not been propagated (and acknowledged) to the remote peer.
These buffers are used to compress multiple operations into
a single delta, and enforce FIFO communication semantics
between each pair of replicas. Whenever a new synchro-
nization path is established between two replicas, the whole
state of both replicas has to be synchronized by resorting
to a mechanism similar to those employed in State-based
CRDTs. Thus, this approach works well, only in settings
with continued and static synchronization patterns among
replicas.

In this paper, we introduce an extension to δ-CRDTs that
we name ∆-CRDTs. ∆-CRDTs were specially designed to
support dynamic communication patterns among a poten-
tially large number of replicas, and removes the assumption
that pairs of replicas are continuously communicating to syn-
chronize their state. Additionally, ∆-CRDTs do not resort
to specialized pairwise communication buffers, minimizing
the space overhead imposed over each individual replica.
Instead, we use the CRDT internal metadata to compute
the minimal Delta that needs to be propagated to a remote
replica, based on a causal context (usually, a vector clock)
that replicas exchange1. Due to this, ∆-CRDTs are well
suited to be used in decentralized dissemination protocols,
such as gossip protocols [4]. To achieve its properties, when
compared to optimized δ-CRDTs, ∆-CRDTs needs to tem-
porarily maintain additional metadata (tombstones). How-
ever, this metadata can be garbage collected locally at any
time, at the price of being unable to synchronize by send-
ing only a delta when the garbage-collected information is
needed for computing the delta. If this happens, the full
state needs to be exchanged (as it is always the case when
starting a new connection in δ-CRDTs).

We have run a set of preliminary experiments, using a

1Riak support for big sets uses a similar idea for efficiently
identifying removed elements [3].

Algorithm 1: ∆-CRDT replication

upon onVersionVector(vv, replica) do
∆←− getDelta(vv)
if ∆.size() > 0

replica.send(∆)
optionally do (push model)

if vv after self.versionVector
replica.send(self.versionVector)

upon delta(∆) do
self.state.applyDelta(∆)
self.versionVector.update(∆)

periodically do (pull model)
r ←− randomReplica()
r.send(self.versionVector)

on local operation do (push model)
r ←− randomReplica()
r.send(self.versionVector)

web-based framework, where we compare the performance
of our ∆-CRDTs with that of State-based and Operation-
based CRDTs, and have observed that our approach enables
a better network usage.

2. ∆-CRDTS
∆-CRDTs are replicated by propagating a delta (∆) of

the current state that is missing in a particular replica. To
compute the ∆, a getDelta function is called with the causal
context of the replica which initiated the communication
(i.e., which requires missing updates). This causal context
can be sent by a requesting replica (pull model) or, when
local operations are performed, sent to other replicas (push
model)2. Algorithm 1 shows how a simple replication pro-
tocol can be created by leveraging ∆-CRDTs. A replica
receives a causal context (version vector) from a replica and
computes a ∆ that is to be shipped back. A replica can re-
ceive a causal context (version vector) from a replica that is
simultaneously older and newer than its own context. This
means that both replicas have executed operations (concur-
rently) that the other has not yet seen, and thus both a ∆
and a causal context have to be shipped (as to ensure the
other replica also computes and send a ∆ back to that node).

To create ∆-CRDT the following methods have to be im-
plemented: a delta function must be implemented to be able
to compute a ∆ from a given point in time (i.e., the causal
history, typically in the form of a version vector); a apply-
Delta function must be implemented which applies a given
delta to the current state.

In container like data types, such as Sets and Maps, CRDTs
typically associate an unique timestamp to each data-item.
To avoid concurrent add-remove anomalies, typically these
data-types use a remove-set of unique timestamps, which
are called tombstones. In our ∆-CRDTs we use as unique
timestamp pairs of replicaID and operationNumber. This
ensures that each existing data-item and tombstone can be
related to any given version vector (as to be before or after
that point).

Notice that causality is maintained by the same principle
associated with shipping the whole state when using State-
based CRDTs. getDelta always returns the complete ∆ and
thus all missing operations on the other replica are sent in a

2The distinction between pull and push can be found in [4]

single message. A ∆ is always added to the local state in a
single execution step (i.e., no other methods should be able
to access the internal data-structures), and thus causality is
implicitly maintained. Note however, that when two replicas
are synchronized, or when a replica receives a causal context
that is in its future, the generated ∆ will be empty.

To be able to compute the delta from a given causal con-
text, ∆-CRDTs need to maintain metadata about deleted
elements (note that δ-CRDTs also need to maintain such
information in pairwise communication buffers). In order to
keep the amount of wasted space small we remove old meta-
data periodically (i.e., we provide a mechanism to garbage
collect old tombstones). A garbageCollection function is
added which removes old metadata associated with all op-
erations that happened before a given point in time (also
denoted by a version vector).

When garbage collection occurs, the previously described
applyDelta function has to be able to still infer if some por-
tion of the current local state is outdated (i.e., removed data-
items whose’s tombstones have been garbage collected). The
getDelta function is adapted to handle the (typically rare)
case where the local replica’s garbage collection point is fur-
ther ahead in time than the sender’s causal context. In this
case, a ∆-CRDT falls back to a State-based CRDT merge
procedure, where the whole state, including the causal con-
text of the last garbage collection step, have to be shipped
and integrated by the remote replica.

The main drawback of using ∆-CRDTs is expected to be
an increase in latency for replicas to receive operations. Typ-
ically State-based CRDTs and Operations-based CRDTs use
a push model to propagate local changes to a replica. Though
these data-types are able to immediately send the changes,
∆-CRDTs need an additional communication step between
replicas. Typically, a version vector is first sent, and then a
delta is sent back which can be locally applied. A version
vector can also be piggy-backed along with the delta, as to
ensure the initiating replica also ships any locally applied
changes that the remote replica has not yet received. When
using ∆-CRDTs with stable communication patterns, the
additional communication step is paid only when establish-
ing the connection.

When used in a scenario with dynamic communication
patterns and compared to δ-CRDTs, ∆-CRDTs have the
following advantages: (1) ∆-CRDTs do not require each
replica to maintain a buffer for each of its connections; (2)
by using the information exchanged in the vector clocks, a
replica will only send the minimal Delta needed by the re-
mote replica, instead of sending all the information stored
in the Delta (that might have arrived to the remote replica
through a different communication path).

3. PRELIMINARY RESULTS
To have an initial feel for the feasibility of ∆-CRDTs

in comparison to Delta-based CRDTs or Operation-based
CRDTs in a real setting we compare the usage of each type
of CRDT in a peer-to-peer setting. We implemented ∆-
CRDTs, State-based CRDTs, and Operation-based CRDTs,
namely an Observe-Remove Set, extending an existing browser-
based peer-to-peer framework which has support for State-
based CRDT and Operation-based CRDT replication.

We run multiple nodes (each node owns a replica of a sin-
gle replicated set) in a peer-to-peer setting. The interactions
between active peers is dynamic, i.e., replicas communicate

with a random sub-set of all existing replicas at each syn-
chronization step.

3.1 Implementation
Communication between replicas happens every T sec-

onds. In a synchronization step, a random subset of the
currently connected neighbours are selected by a peer. At
this point, the causal context of the initiating replica is set to
those peers (hence, we use a pull communication model). In
contrast State-based CRDTs the whole state is shipped to
the randomly selected peers; when using Operation-based
CRDTs the version vector is also shipped. This happens
because in our experimental setting there is no continuous
flow of messages between pairs of nodes (i.e., the communi-
cation patterns change at each synchronization step). The
alternative would require each replica in the system to main-
tain information about all operations which have previously
been sent and acknowledged. The remote replica will use
this vector clock to send back missing operations (and its
own version vector).

Note that while we use a push model when propagating
State-based CRDTs, a pull model is employed for Operation-
based CRDTs and ∆-CRDTs.

3.2 Experimental Setup
We run 8 clients in a browser-based peer-to-peer frame-

work where each client continuously issues operations over
the replicated CRDT Set. Each client was ran in its own
Google Chrome instance, on a local machine (MacBook Pro
Retina, 16GB RAM). All reported results are the mean re-
sult of three independent runs.

We compare the sizes of messages sent between clients
when using ∆-CRDTs, State-based CRDTs, and Operation-
based CRDTs. The Set is updated, by each peer, twice
per second. Each peer, per update, has a 30 % change to
remove an existing data-item and 70 % change to add a
new data-item (a string with 14 characters, with 2 bytes per
char resulting in 28 bytes per key). Each peer contacts 2
randomly selected peers, every 5 seconds, as to begin state
reconciliation between them (as discussed previously).

3.3 Results
Figure 1 reports the obtained results showing the size,

in bytes, of all messages exchanged between replicas, with
a sampling interval of one second (object related messages
only, including state, operations, ∆s, and version vectors
when applicable). As expected, State-based CRDTs have
an always growing load on the network. As more operations
are executed more state has to be exchanged between repli-
cas. The currently implemented Operation-based CRDTs
are not optimized for the employed communication model
and thus incur an initial load penalty. As only operations are
sent over the network (along with version vectors), eventu-
ally the network load becomes lower than state propagation.
∆-CRDTs propagate less data over the network as, when
the total amount of applied operations increases, what is
shipped between clients is always a ∆ where this ∆ is much
smaller that the whole state of the object.

4. CONCLUSION AND FUTURE WORK
The results that we have reported show that, in a scenario

with highly dynamic communication patterns, ∆-CRDTs
clearly outperform, from the standpoint of network usage,

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

4 6 8 10 12 14 16 18 20 22 24

Tr
an

sm
itt

ed
 d

at
a

be
tw

ee
n

cli
en

ts
 (b

yt
es

)

Time
 (seconds)

State
Op

Delta

Figure 1: Communication cost, results for 8 replicas
sharing a Observe-Remove Set. Each replica issues
an operations every 500ms. The workload is com-
posed of 70% inserts and 30% removes.

the competing alternative (we are currently updating our
browser-based peer-to-peer framework to make use of ∆-
CRDTs due to this). We intend to further implement and
evaluate ∆-CRDTs in a distributed setting (scenarios with
geo-replication for instance). We will also continue working
on improving the current implementation of ∆-CRDTs, as
the current implementations have unbounded growth on the
version vector size (i.e., it is bounded by the amount of repli-
cas in the system which can grow significantly when pushing
replicas to the client side).

5. REFERENCES
[1] P. S. Almeida, A. Shoker, and C. Baquero. Efficient

state-based crdts by delta-mutation. In A. Bouajjani
and H. Fauconnier, editors, Networked Systems - Third
International Conference, NETYS 2015, Agadir,
Morocco, May 13-15, 2015, Revised Selected Papers,
volume 9466 of Lecture Notes in Computer Science,
pages 62–76. Springer, 2015.

[2] E. Brewer. Towards robust distributed systems
(abstract). In ACM PODC, page 7, 2000.

[3] R. Brown. Riak support for big sets (private
communication), 2015.

[4] J. Leitão. Topology Management for Unstructured
Overlay Networks. PhD thesis, Technical University of
Lisbon, Sept. 2012.

[5] M. Shapiro, N. M. Preguiça, C. Baquero, and
M. Zawirski. Conflict-free replicated data types. In
X. Défago, F. Petit, and V. Villain, editors,
Stabilization, Safety, and Security of Distributed
Systems - 13th International Symposium, SSS 2011,
Grenoble, France, October 10-12, 2011. Proceedings,
volume 6976 of Lecture Notes in Computer Science,
pages 386–400. Springer, 2011.

6 PUBLISHED PAPERS

6.9 Mahsa Najafzadeh, Alexey Gotsman, Hongseok Yang,
Carla Ferreira, and Marc Shapiro. The CISE Tool:
Proving Weakly-Consistent Applications Correct. In
Proceedings of the Second Workshop on Principles and
Practice of Consistency for Distributed Data (to ap-
pear), PaPoC ’16. ACM, 2016.

SyncFree Deliverable D.3.3(v0.1), March 23, 2016, Page 96

The CISE Tool:
Proving Weakly-Consistent Applications Correct

Mahsa Najafzadeh
Sorbonne-Universités-UPMC & Inria, Paris, France

Alexey Gotsman
IMDEA Software Institute, Spain

Hongseok Yang
University of Oxford, UK

Carla Ferreira
NOVA LINCS, DI, FCT, U. NOVA de Lisboa, Portugal

Marc Shapiro
Sorbonne-Universités-UPMC & Inria, Paris, France

Abstract
Designers of a replicated database face a vexing choice be-
tween strong consistency, which ensures certain application
invariants but is slow and fragile, and asynchronous replica-
tion, which is highly available and responsive, but exposes
the programmer to unfamiliar behaviours. To bypass this
conundrum, recent research has studied hybrid consistency
models, in which updates are asynchronous by default, but
synchronisation is available upon request. To help program-
mers exploit hybrid consistency, we propose the first static
analysis tool for proving integrity invariants of applications
using databases with hybrid consistency models. This al-
lows a programmer to find minimal consistency guarantees
sufficient for application correctness.

1 Introduction
To achieve availability and scalability, many modern dis-
tributed systems rely on replicated databases, which main-
tain multiple replicas of shared data. Clients can access
the data at any of the replicas, and these replicas commu-
nicate changes to each other using message passing. For
example, large-scale Internet services use data replicas in ge-
ographically distinct locations, and applications for mobile
devices keep replicas locally to support offline use. Ide-
ally, we would like replicated databases to provide strong
consistency, i.e., to behave as if a single centralised node
handles all operations. However, achieving this ideal usu-
ally requires synchronisation among replicas, which slows
down the database and even makes it unavailable if network
connections between replicas fail [1, 7].

For this reason, modern replicated databases often eschew
synchronisation completely; such databases are commonly
dubbed eventually consistent [14]. In these databases, a
replica performs an operation requested by a client locally
without any synchronisation with other replicas and immedi-
ately returns to the client; the effect of the operation is prop-
agated to the other replicas only eventually. Unfortunately,
this way of processing operations exposes applications to

undesirable concurrency behaviours, which may cause bugs
such as state divergence or invariant violation [6].

For instance, consider a bank account replicated at differ-
ent bank branches, which supports operations deposit and
withdraw. A programmer would like to ensure an integrity
invariant that the balance is never negative. Assume that
the balance is initially e100. Eventual consistency will al-
low two users to concurrently withdraw e60 at different
branches and thus violate the integrity invariant. To ensure
the invariant in this example, we have to introduce syn-
chronisation between replicas, and, since synchronisation is
expensive, we would like to introduce it sparingly. To allow
this, some research [3, 9, 12, 13] and commercial [2, 4, 10]
databases now provide hybrid consistency models that allow
the programmer to request stronger consistency for certain
operations and thereby introduce synchronisation. For ex-
ample, to preserve the integrity invariant in our banking
application, only withdraw operations need to use strong
consistency, and hence, synchronise to ensure that the ac-
count is not overdrawn; deposit operations may use eventual
consistency and hence proceed without synchronisation.

Unfortunately, using hybrid consistency models effec-
tively is far from trivial. Requesting stronger consistency
in too many places may hurt performance and availability,
and requesting it in too few places may violate correctness.
Striking the right balance requires the programmer to reason
about the application behaviour on the subtle semantics of
the consistency model, taking into account which anomalies
are disallowed by a particular consistency strengthening and
whether disallowing these anomalies is enough to ensure
correctness.

To help programmers exploit hybrid consistency models,
we propose the first static analysis tool (called CISE: ’Cause
I’m Strong Enough) for proving integrity invariants of ap-
plications using replicated databases with a range of hybrid
models. Our tool is based on a novel proof rule, which we
have proved sound [8]. The tool automates the proof rule by
discharging its obligations using an SMT solver. If an obli-
gation fails, the tool provides a counter-example, which the
developer can use to understand the source of the problem.

1

Using the tool, we have verified several example applications
that require strengthening consistency in nontrivial ways [8].
These include an extension of the above banking application,
an online auction service and a course registration system.
A demo of the tool is available online [11].

In the rest of this paper, we explain our static analysis by
the example of the above banking application.

2 System Model
An application consists of a set of operations Op over some
set of objects, and invariants over the objects. The database
system consists of a set of replicas, each maintaining a full
copy of the database state State.

The replication model uses a Read-One-Write-All
(ROWA) approach [5]. A client operation is initially ex-
ecuted at a single replica, which we refer to as its origin
replica. This updates the replica state deterministically, and
immediately returns a value to the client. After this, the
replica sends a message to all other replicas containing the
effector of the operation, which describes the updates done
by the operation to the database state. Upon receipt, the repli-
cas apply the effector to their state. Effectors of causally-
dependent operations are executed in the same order at every
replica; effectors of independent (concurrent) operations are
executed in any order.

More precisely, the semantics of operations is defined by
a partial function

F ∈Op→ (State⇀ (Val× (State→State)×P(Token))).

Given a state σ ∈ State in which an operation o ∈ Op
executes at its origin replica, F(o)(σ) determines:

• The return value of the operation, from a set Val. We
use a special value ⊥ for operations that return no
value.

• A function defining the effector of the operation. This
will be applied by every replica to its state: immediately
at the origin replica, and after receiving the correspond-
ing message at all other replicas.

• A set of tokens, used to introduce synchronisation. We
explain them later.

For instance, consider the naïve banking application in
Figure 1. A client can read the balance from the local replica,
make deposits to and withdrawals from the account, and
compute interest, all without communicating with the other
replicas. Each operation is associated with a precondition—
a predicate over the state of its origin replica and parameters
that determines when the operation can be safely executed
(and the F function defined). A minimal precondition of
the deposit(amount) and withdraw(amount) operations is
amount ≥ 0. Their effectors add amount to (respectively,

σinit = 0

I = (balance ≥ 0)

Token = ∅
Fdeposit(amount)(balance) = (⊥, (λbalance′. balance+

amount), ∅)
Finterest()(balance) = (⊥, (λbalance′. (1.05∗

balance′)), ∅)
Fwithdraw(amount)(balance) = (⊥, (λbalance′. balance−

amount), ∅)

Precondition Operation
amount ≥ 0 deposit(amount)

true interest()

amount ≥ 0 withdraw(amount)

Figure 1: Simple banking application (incorrect).

subtract it from) the balance. The interest operation’s pre-
condition is true and its effector multiplies the balance by
the interest rate. (As we will see later, the analysis shows
that the precondition of withdraw needs to be strengthened,
and that this effector of interest is unsafe.)

3 CISE Analysis

3.1 Effector Safety Analysis

The first CISE proof obligation, called the effector safety
analysis, verifies that the effector of every operation main-
tains the invariant when applied to any state where the oper-
ation’s precondition is true (not necessarily the one in which
the operation was generated).

Let’s try out the effector safety analysis on the simple
banking application of Figure 1. According to the analysis,
the effectors of deposit and interest always maintain the
invariant. However, for withdraw, the obligation fails and
our tool produces a counter-example: if the balance is zero,
a non-zero withdraw operation makes the balance negative.
Therefore, we must fix the issue by strengthening its precon-
dition, so that the amount debited is less or equal than the
current balance.

With this correction, the effector safety analysis succeeds.
The corrected preconditions are shown at the bottom of
Figure 2.

3.2 Commutativity Analysis

Effectors of concurrent operations may execute in different
orders at different replicas. The second CISE obligation,
called the commutativity analysis, checks if all pairs of
effectors of such operations commute: executing them in
any order yields the same result, whatever the starting state.

2

σinit = 0

I = balance ≥ 0

Token = {τ}
./ = {(τ, τ)}

Fdeposit(amount)(balance) = (⊥, (λbalance′. balance+
amount), ∅)

Finterest()(balance) = (⊥, (λbalance′. (balance′ + 0.05

∗balance)), ∅)
Fwithdraw(amount)(balance) = (⊥, (λbalance′. balance−

amount), {τ})

Precondition Operation
amount ≥ 0 deposit(amount)

true interest()

balance ≥ amount ≥ 0 withdraw(amount)

Figure 2: Corrected banking application.

Let us check this obligation for the specification in Fig-
ure 1. Predictably, applying the commutativity analysis
proves that deposit and withdraw effectors commute. How-
ever, the effector of interest does not commute with that of
the other operations, and the tool returns a counter-example.
Consider two replicas 1 and 2. The balance is initially e100.
Replica 1 is the origin for an interest operation. Replica 2 is
the origin for a deposit(20) operation. Replica 1 first applies
the effector of interest and then that of deposit, whereas
replica 2 applies them in the opposite order. Depending on
the order of execution, the result is different, and the replicas
diverge.

We fix this by changing the interest operation to compute
the absolute interest at the origin replica and letting its ef-
fector add this amount to the local balance of every replica
(Figure 2). With this corrected specification, our tool proves
that the effector of interest does commute with those of the
other operations.

3.3 Stability Analysis
The effector safety analysis verified that that the effector
of each operation o maintains the invariant when executed
in a state satisfying the precondition of the operation. The
precondition holds at o’s origin replica, but how do we know
that it will hold when o’s effector is applied at a differ-
ent replica, which concurrently executes effectors of other
operations? The third obligation of CISE analysis, called
stability analysis, checks if executing the effector of any
other operation o′ maintains the precondition of o.

Let us illustrate the stability analysis of the withdraw
operation in Figure 1. The precondition of the withdraw op-
eration is stable under the effectors of deposit and interest,
but it is not stable under the effector of withdraw. The tool
returns the following counter-example. Let the balance be

e2. The precondition to withdraw(1) is verified. However,
a concurrent withdraw(2) (whose precondition is also OK)
at a different replica makes the balance zero, now violating
the precondition of withdraw(1). If we were to continue,
and to apply the effector of the first withdrawal operation at
the second replica, the balance would become negative.

To fix the problem, the developer of the banking appli-
cation may disallow the execution of withdrawals without
synchronisation. To model such concurrency control, we use
tokens Token = {τ, . . .} and a symmetric conflict relation
./ ⊆ Token× Token between pairs of them. In the banking
application, we associate a token τ to withdraw such that
τ ./ τ (similarly to a mutual exclusion lock). This ensures
that any two withdrawals synchronise.

Figure 2 presents the corrected banking application, incor-
porating all the changes outlined above. Our static analysis
confirms that this application indeed maintains the integrity
invariant.

4 Future Work
In the future, we plan to study proof rules for reasoning
about integrity invariants on consistency models weaker than
causal consistency. We also intend to automate the analysis
of counter-examples in order to generate corrections semi-
automatically.

References
[1] D. Abadi. Consistency tradeoffs in modern distributed

database system design: CAP is only part of the story. IEEE
Computer, 45(2), 2012.

[2] Amazon. Supported operations in DynamoDB.
http://docs.aws.amazon.com/amazondynamodb/
latest/developerguide/APISummary.html, 2015.

[3] V. Balegas, N. Preguiça, R. Rodrigues, et al. Putting con-
sistency back into eventual consistency. In Euro. Conf. on
Comp. Sys. (EuroSys), pp. 6:1–6:16, Bordeaux, France, Apr.
2015.

[4] Basho Inc. Using strong consistency in Riak.
http://docs.basho.com/riak/latest/dev/
advanced/strong-consistency/, 2015.

[5] P. Bernstein, V. Radzilacos, and V. Hadzilacos. Concurrency
Control and Recovery in Database Systems. Addison Wesley
Publishing Company, 1987.

[6] J. C. Corbett, J. Dean, M. Epstein, et al. Spanner: Google’s
globally-distributed database. In Symp. on Op. Sys. Design
and Implementation (OSDI), pp. 251–264, Hollywood, CA,
USA, Oct. 2012.

[7] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasi-
bility of consistent, available, partition-tolerant web services.
SIGACT News, 33(2):51–59, 2002. ISSN 0163-5700.

3

[8] A. Gotsman, H. Yang, C. Ferreira, et al. ’Cause I’m strong
enough: Reasoning about consistency choices in distributed
systems. In Symp. on Principles of Prog. Lang. (POPL), pp.
371–384, St. Petersburg, FL, USA, 2016.

[9] C. Li, D. Porto, A. Clement, et al. Making geo-replicated
systems fast as possible, consistent when necessary. In Symp.
on Op. Sys. Design and Implementation (OSDI), pp. 265–278,
Hollywood, CA, USA, Oct. 2012.

[10] Microsoft. Consistency levels in DocumentDB. http:
//azure.microsoft.com/en-us/documentation/
articles/documentdb-consistency-levels/, 2015.

[11] M. Najafzadeh and M. Shapiro. Demo of the CISE tool, Nov.
2015. https://youtu.be/HJjWqNDh-GA. Video of demo,
with explanations.

[12] Y. Sovran, R. Power, M. K. Aguilera, et al. Transactional
storage for geo-replicated systems. In Symp. on Op. Sys. Prin-
ciples (SOSP), pp. 385–400, Cascais, Portugal, Oct. 2011.

[13] D. B. Terry, V. Prabhakaran, R. Kotla, et al. Consistency-
based service level agreements for cloud storage. In SOSP,
2013.

[14] W. Vogels. Eventually consistent. CACM, 52(1), 2009.

4

7 SUBMITTED PAPERS

7 Submitted papers

7.1 Mathias Weber, Annette Bieniusa, and Arnd Poetzsch-
Heffter. Access control for weakly consistent cloud-
storage systems. Submitted for publication, 2016.

SyncFree Deliverable D.3.3(v0.1), March 23, 2016, Page 101

Access Control for Weakly Consistent
Cloud-Storage Systems

Mathias Weber
University of Kaiserslautern

m weber@cs.uni-kl.de

Annette Bieniusa
University of Kaiserslautern

bieniusa@cs.uni-kl.de

Arnd Poetzsch-Heffter
University of Kaiserslautern

poetzsch@cs.uni-kl.de

Abstract—Access control is an important aspect of information
systems as these systems store sensitive information. Security
policies describe the rules that applied to determine whether a
user is allowed to perform a specific operation. Typically, these
rules need to be adaptable over time, leading to the access control
system has to be updated at runtime. For strongly consistent
systems, the implementation of access control is well understood
since the order in which operations are processed is the same for
all replicas. In weakly consistent systems, however, concurrent
modifications and out-of-order delivery of data updates and
policy changes impose security threats due to inconsistencies
among policies and data operations.

In this paper, we present an access control model for systems
for eventually consistent data stores that avoids information
leakage, unauthorized modifications and guarantees convergence
of the copies of the security policy among replicas. In particular,
we address policy changes which restrict the visibility of the effect
of data operations where re-ordering of updates temporarily has
the data operation unprotected. Our model allows to implement
access-matrix based models such as the read-write-own model
employed in file systems and can be implemented efficiently in
state-of-the-art weakly consistent data stores.

Index Terms—Access control, security, weak consistency.

I. INTRODUCTION

Information systems often store sensitive information of
customers, clients and users in cloud storage facilities. To
protect this information from unauthorized access, the orga-
nization running such an information system needs to define
a security policy to determine who may access and/or modify
which subset of the data. This security policy is implemented
in an access control system which permits only those oper-
ations that satisfy the policy. In general, a security policy is
not immutable. New information is constantly entered into the
system, and organizational changes cause adaptations of the
security policy. For example, in social networks, users want
to be able to restrict access to their personal information when
interpersonal relations change. After such a policy change, the
new policy must be employed in the access control system
for all operations happening afterwards. Since restarting the
system for each policy change is not feasible due to availability
requirements, the access control system must support dynamic
changes of the policy at runtime.

For strongly consistent systems, the topic of dynamically
adaptable access control is well understood. Several access
control models have been proposed [7, 11, 12, 14, 16] which
implicitly rely on some total ordering of the operations as

friends

gallery

Replica 1

Bob

img.png

friends

gallery

Replica 2

Bob

img.png

upload sync

Fig. 1. Social Network Example.

strongly consistent systems induce on all operations. However,
Brewer’s conjecture [5, 8], having become known as the CAP
theorem, states that in a network without total synchronization
of clocks and with possible message loss, no service can
implement strong consistency, high availability and partition
tolerance. As partitioning cannot be prevented in computer
networks due to network hardware and replicas failing, imple-
mentors of data stores have to make the trade-off between
high availability and strong consistency. In many systems
[1, 2, 3, 6], consistency is traded over high availability. In such
weakly consistent systems, updates are accepted at any replica
and propagated asynchronously to the other replicas. These
synchronization messages coming from different replicas can
arrive in an arbitrary order on a node. To achieve higher
throughput, one usually uses a connectionless transmission
protocol such as UDP, which can even lead to reordering of
messages from the same replica during transmission. Though
there is usually a well-defined order in which the operations
happen on a replica, there is no total global order of all
operations issued.

In Figure 1, we illustrate this problem with a concrete exam-
ple. Consider a social network where users can create galleries
for uploaded pictures and share them with the community. By
default, the system denies access to a user’s personal page to
arbitrary users. Only users that have been added to a friend

list have full access to this user’s galleries.
Assume that Alice has an existing list of friends, one

of them being Bob. After a heated discussion with him,
Alice does not want Bob to have access to her most recent
photos. She therefore removes Bob from her friend list before
uploading her new photos of the last party.

When Alice interacts with the system through replica 1, the
remove operation of Bob is issued before the upload of the
new photos. In a system with strong consistency guarantees, it
would not be possible for Bob to access the new photos on any
replica unless he gets re-added to the friend list of Alice. In a
replicated system with weak consistency guarantees, however,
there might be some replica 2 that receives the upload of the
photos before the update of the friend list. This gives Bob the
possibility to access the new photos before the change to the
friend list of Alice is known to replica 2.

As the example shows, receiving the policy update and the
data modification out-of-order in reversed order can lead to
leakage of sensitive information. If the policy modification
restricts the visibility of the subsequent data modification, the
permutation of the operations leaves the effect of the data
modification temporarily unprotected. In the case above, Bob
may be able to access the personal information of Alice before
the policy modification is eventually received and restricts the
access. In order for the policy to be correctly implemented in
the access control system, the order between policy changes
and subsequent data operations need to be retained on all
replicas.

Contributions

In summary, we present a model for access control in
weakly consistent cloud-storage systems. In this setting, all
replicas are trusted and operate in a secure environment, but
exchange updates only asynchronously between them. Our
contributions are as follows:
• We give an abstract model for weakly consistent cloud-

storage systems with access control systems (Section II).
• We provide a notion of correctness for access control in

weakly consistent cloud-storage systems (Section III).
• We propose an access control system for the presented

setting and highlight its applicability and flexibility by
instantiating it for typical application scenarios (Section
IV).

• Finally, we sketch how to efficiently implementation
the access control model in state-of-the-art cloud-storage
systems (Section V).

II. FORMAL SYSTEM MODEL

To discuss the notion of correctness for access control
systems in weakly consistent data stores, we start with a formal
model of the system setting.

The basis for the model is a distributed weakly consistent
data store. We refer to the dataset subject to replication as
the data state. The data state consists of objects, o ∈ Objects.
The operations modifying objects are called data operations,
op ∈ Op. Each data operation has a target object, target(op) ∈

Objects. The set of operations can be divided into disjoint sets
of read-only operations OpR and modifying operations OpW .
Typically, at least one of these modifying operations allows to
create new objects. We associate each operation op with the
subject s who issued the operation, using a tuple (op, s). The
every objects is created in an initial empty state and evolves
by applying data operations.

The system consists of a (fixed) number of nodes hosting
the data store. The system can tolerate downtimes of replicas
as long as the network partitioning is not permanent (crash
recovery model). The communication between the replicas
is peer-to-peer. Messages can propagate through peer nodes
and the nodes do not require point-to-point connections. To
simplify the model, we assume full replication which means
that every object is replicated at each node. We relate the nodes
therefore to the replica and restrict ourselves to the notion of
replica in the following.

Updates can originate at any replica. We call these user-
driven operations upstream operations. Replicas synchronize
by exchanging messages about their local data operations. We
call the operations carried by these synchronization messages
downstream operations. Only update operations are exchanged
between the replicas; read-only operations are local to the
replica where the operation was issued. We further assume
that synchronization messages are eventually delivered to
each replica. The synchronization messages carry additional
information about the user that issued the operation on the
origin replica.

Downstream operations from other replicas are received at
a replica in an arbitrary order. We assume that the data state
is eventually consistent meaning that the data state eventually
converges to a common value when the system receives no
new updates. For example, data stores providing conflict-
free replicated data types [3, 18, 20] provide guarantees that
conflicts in updates are resolved identically at every replica.

We expect that the data store has support for causality
tracking [4], even though the data state itself does not need to
be causally consistent [13, 17]. At each replica, all operations,
upstream and downstream, are assumed to be processed at
each replica in a serialized order. Analogous to Lamport’s
notion of causality [13], we define a → b to mean operation
a happened before operation b on some replica R. This
means that operation a was visible on replica R at the time
when operation b was executed on R. Let CR〈a〉 denote the
local time at which operation a was executed on replica R.
We make no assumption about the relation of CR〈a〉 to the
(global) physical time. But we assume that if a → b than
CR〈a〉 < CR〈b〉.
Policies and trust

Each data store operates in an environment consisting of
the organization operating the data store, the physical servers
running the store, the building in which the servers are located
and so on. The organization needs to define rules which restrict
the operations that may be performed on the objects by the
individual subjects. In a concrete system, the subjects can be

R1: [o1, o2, . . . , on]

R3: [o1, o2, . . . , on]

R2: [o1, o2, . . . , on]

User 1

User 2

attacker

Fig. 2. System setting: A firewall protects the message exchange between
the replicas.

users, processes or applications executing operations on the
data store. A security policy assigns to each subject-object-
pair a specific right. We write such a rights assignment as a
triple (r, s,o) ∈ Rights × Subjects × Objects. A right allows to
execute a set of operations. In the social network example, we
have seen the right f riend that allows to access the pictures in
the gallery of a user. The interpretation of a right is given by
the `-relation where r ` op means that operation op is allowed
by right r . A rights assignment (r, s,o) permits an operation
(r, s,o) |= (op, s′) iff r ` op, target(op) = o and s = s′. Each
replica has a representation of the security policy called the
policy state. We give further details of how the policy state is
modeled for typical settings in Section IV. The policy state of
a replica is updated using policy modifying operations which
update the rights assignments. As with data operations, these
modifications of rights assignments are synchronized with the
other replicas using synchronization messages.

We make assumptions about the trust between the replicas
of the data store: The upstream operations are checked by
a access control system for adherence to the security policy.
The downstream operations are applied without checking their
correctness. This assumes that all replicas are trusted to check
the upstream operations and that the network connection
is secure. Our assumption matches the properties of cloud-
storage systems as in this setting all replicas are operated by
the same (trusted) organization in a controlled environment.
Communication between the replicas is usually secured using
encryption technology and additional physical access restric-
tions are in place to guarantee the integrity of the replicas.

Fig. 2 illustrates our expected system environment. The
replicas R1 to R3 can freely communicate in a peer-to-peer
fashion. Attackers cannot directly access the replicas nor
forge message that are exchanged between the nodes. Trusted
users log into the system and temporarily become part of
the protected environment. When they log out, they leave the
protected environment again.

III. CORRECTNESS OF ACCESS CONTROL IN WEAKLY
CONSISTENT SYSTEMS

Informally, an access control system is correct if it enforces
the security policy on all replicas. For strongly consistent
systems, this means that an operation opD performed by
subject s should only be allowed by the access control system
if the current rights assignment of the subject entails it, that
is (r, s,o) |= (op, s). Since the security policy is subject to
modifications, the permission to execute operation op implies
that the corresponding rights assignment happened before op:
(r, s,o) → (op, s). We do not only want to permit new
operations, but we also want to restrict the visibility of objects.
If a rights assignment does not permit a read operation,
(r, s,o) 6 |= (opR , s), then after applying the policy change the
operation should not happen, that is, (r, s,o) 6→ (opR , s). To
enable the read operation again, the policy has to be changed
accordingly. This means that a new rights assignment (r ′, s,o)
is installed such that (r ′, s,o) |= (opR , s), which allows that

(r, s,o)
!→ (r ′, s,o) → (opR , s).

The strong consistency of the system makes it possible
to talk about the current security policy. Strong consistency
induces a global order of all operations that occur in the
system. To find the current policy that applies to an operation
op, we take the initial policy and apply all policy modifications
that happened before op.

For weakly consistent systems, there is not such a total
order between all operations. At each replica, there is a total
order in which operations are applied, but this order can vary
for different replicas as explained above. Without enforcing
additional and costly synchronization between the nodes, we
can therefore only refer to the local copy of the security policy
represented by the policy state of the local replica.

Data operations may depend on policy modifications in two
different ways:

1) A data operation is valid because a change in the policy
permits it:

(r, s,o) → (opW , s) and (r, s,o) |= (opW , s)

2) A policy modification protects the modification of the
state of an object by revoking access for specific subject:

(r, s1,o) → (opW , s2) and (r, s1,o) 6 |= (opR , s1)

The first case only concerns the consistency between the
local security policy and the data state. Wobber et al. [19]
have discovered this relation in the implementation of their
access control system for weakly consistent replication. Their
implementation blocks a data operation on a replica until
the respective policy update arrives. In contrast, our system
model trusts the replicas to check the consistency of operations
and updates to the security policy. The second case is more
interesting since it can lead to leakage of information as seen
in the social network example in the introduction.

We sketch the situation in Fig. 3. Let us assume that the cur-
rent rights assignment of the local security policy of replica R2
grants the read access to object o to s1, (r ′, s1,o) |= (opR , s1).

R1

R2

policy (r ′, s1,o)

(r, s1,o) (opW , s2)

(opW , s2) (opR , s1) (r, s1,o) t

Fig. 3. Scenario leading to a policy violation.

Now, an authorized subject modifies the security policy on
replica R1 to (r, s1,o). Afterwards, subject s2 issues a write
operation to the object.

If R2 receives (opW , s2) out-of-order, we can have the
situation that subject s2 meanwhile tries to read object o with
(opW , s2,o) → (opR , s1), thus observing the updates issued by
s2. The current security policy on R2 grants the right to s1 for
reading the object. This is a violation of the policy enforcement
and thus should be considered incorrect in an access control
system.

In the social network example given in the introduction, a
similar policy modification by removing Bob from the list of
friends protected the upload of further pictures to the gallery.
If the order between the policy modification and the upload is
not preserved on the other replicas, the uploaded pictures can
be leaked to Bob even though the policy prohibits access of
Bob.

Protection relation

For an access control system for distributed weakly con-
sistent systems to be correct, operations that depend on
policy changes globally need to be applied after the policy
modifications that possibly restrict the access to the object.
A rights assignment (r, s1,o) is in protection relation with
a modifying operation (opW , s2) if target(opW) = o. We
denote the protection relation as (r, s1,o) C (opW , s2). The
relation covers all policy modifications (r, s,o) targeting the
same object o as a modifying operation opW , which is an
over-approximation since only policy modifications restricting
the access to o need to be covered.

A distributed access control systems retains the pro-
tection relation if for all modifying operations opW with
target(opW) = o, it holds that all policy modifications
(r, s,o) that happened before are applied on all replicas before
applying opW :

(r, s1,o) → (opW , s2) ∧ target(opW) = o

=⇒ Ci〈(r, s1,o)〉 < Ci〈(opW , s2)〉
The protection relation can be violated by synchronizing

a concurrent policy modification. The situation is sketched
in Fig. 4. We assume that (r, s1,o) C (opW , s2) and that
(r ′, s1,o) |= (opR , s1). The rights assignments (r, s1,o) and
(r ′, s1,o) happen concurrently on replicas R1 and R3. The
order in which these two policy modifications are applied on

R1

R2

R3

(r, s1, o)

(r ′, s1,o)

(opW , s2)

(opR , s1)

t

Fig. 4. Concurrent right assignment violating the protection relation.

R2 is arbitrary, which means that (r ′, s1,o) could be applied
after (r, s1,o) and before the protected modifying operation
(opW , s2). In this case, we have that (r, s1,o) → (opW , s2) →
(opR , s1) which violates that protective property of the security
policy. The problem in this case is the concurrent modification
of the policy. The integration of this policy also needs to make
sure that the protection relation stays intact.

To implement a correct access control system, all replicas
have to retain the protection relation and make sure that
integrating concurrent policy modifications do not violate it.

IV. PROTECTION-PRESERVING ACCESS CONTROL

In this section we describe ProPreAC, our protection-
preserving access control model. The model has to support
two major requirements:

1) it must support local modifications at the replica that are
eventually propagated and reflected in the policies of all
other replicas;

2) the protection relation has to be retained.
The first point means that it should be possible to change

a rights assignment visible on the local replica thereby updat-
ing the policy representation of remote replicas through the
system’s synchronization mechanism. The second point deals
with the problem of concurrent policy modification that have
to be integrated in such a way that they do not violate the
protection relation.

The policy state P consist of rights-assignment triples
(r, s,o). For each subject-object-pair there may be multiple
such rights-assignments, one for each concurrently issued
policy modification. We define the set

P |s,o= {(r, s′,o′) | (r, s′,o′) ∈ P ∧ s′ = s ∧ o′ = o}
to be the set of all concurrent rights-assignments for subject s
on object o. We assume that each policy modification can be
uniquely identified.

To correctly implement a policy model that retains the
protection relation, we need to consider the causality relation
[13, 17] between policy modifications. We therefore need a
strategy how to integrate downstream policy changes into
the local copy of the security policy without violating the
protection relation. Downstream policy updates are given in

form of a rights assignment, pdown = (r, s,o). When applying
it locally, it replaces all rights assignments (r ′, s,o) in the
receiver replica that target the same object and subject and
happened before, i.e. (r ′, s,o) → (r, s,o).

P |new
s,o = {p | p ∈ P |old

s,o ∪{pdown} :

¬∃p′ ∈ P |old
s,o ∪{pdown} : p→ p′}

The new downstream policy is added to the set of policies
for subject s and object o. The policies which have been
overwritten are removed from this set. This construction
makes sure that concurrent policy modifications are tracked
separately and that no such modification is lost. Since rights
assignments that were visible on a replica are replaced by
policy modifications that happen afterwards, policy updates
propagate through the system without being lost.

To prevent violations of the protection relation, we require
that the set of rights Rights forms a lattice. For two rights r1
and r2, r1 < r2 means that r1 grants less operations than r2,
that is, r1 is stricter than r2. To deduce the policy for subject
s and object o determined by a security policy P |s,o , the
minimal right is a safe interpretation of the granted rights:

min(Ps,o) = (min(rights(Ps,o)), s,o)

where rights(P) = {r | (r, s,o) ∈ P}.
If we have two concurrent policy modification (r ′, s1,o) and

(r, s1,o) with (r, s1,o) C (opW , s2) and (r, s1,o) 6 |= (opR , s1),
then min({(r, s1,o), (r ′, s1,o)}) 6 |= (opR , s1). This guarantees
that (opW , s2) 6→ (opR , s1). In that way, the above construction
guarantees that downgrades of permissions do not get lost and
therefore the protection relation is preserved under concurrent
policy modifications.

In addition, the given construction supports that policy
updates can be applied out-of-order since the construction does
not depend on causal consistency of the rights assignments.
Modifying operations only have to wait for their accompa-
nying policy modifications on the same object to arrive. In
contrast to previous systems, our system does not only wait
for the policy modifications enabling the modifying operation,
but also for the policy changes protecting the data operation.

To illustrate the formal model, we will discuss now how to
instantiate ProPreAC for a classical system with hierarchical
read-write-own policies and a fine-grained operation-based
access control.

Consider a system with three subjects: Alice, Bob and Eve.
In this example, the subjects are actual users of the system.
Alice and Bob are special admin users with the special right
to modify the security policy, which is tracked outside of
the access control system. The data store maintains as stored
objects maps which associate keys with values. Maps can
be modified by assigning a value v to a key k in map m
(operation put(m, k,v)). Operation get(m) returns all key-
value assignments of map m. Deleting a map from the data
store is supported by the del(m) operation, which removes
all assignments from map m. The target object is for each
operation, respectively, defined as:

target(get(m)) = m

target(put(m, k,v)) = m

target(del(m)) = m

Further, we assume that the data store ensures eventual con-
sistency of the map objects under concurrent modification
(e.g. by implementing Map CRDTs [3]). For the sake of the
example, we assume that when issuing two put operations
on distinct keys k1 and k2 concurrently, both assignments are
retained.

Hierarchical Read-Write-Own Model

A classical policy model in access control systems is the
read-write-own hierarchy. A user which has read access to
an object can read the object. The write access also grants the
permission to read the object, and in addition the user can also
modify the object. The own access grants the same rights as the
write access and in addition allows to delete the object. This
system is based on a total order between the different access
rights Rights = {none, read, write, own} where none <
read < write < own.

The rights entail the operations ` as follows for some map
m:

read ` get(m)
write ` get(m), write ` put(m, k, v)
own ` get(m), own ` put(m, k, v), own ` del(m)

Because the lattice of rights builds on a total order, we call
this model a hierarchical read-write-own model.

Let us assume that users Alice and Bob have write access
to map m, whereas Eve has only read access to m. In addition,
Alice and Bob have the permission to assign new permissions
for map m, and may thus modify the security policy. Consider
now two replicas R1 and R2, both converged to the same state
with an identical security policy:

P |oldAlice,m= {(write,Alice,m)}
P |oldBob,m= {(write,Bob,m)}
P |oldEve,m= {(read,Eve,m)}

Now, the system state evolves as follows: On R1, Alice first
sets the permission of Eve for m to none, because she thinks
that Eve is not trustworthy, and afterwards writes a value v1 to
key k1 in map m which Eve should not read. In parallel, Bob
first sets the permission of Eve for m to write, because he
thinks that Eve is trustworthy, and shares a value v2 with Eve
by writing it to key k2 in m. Fig. 5 illustrates the situation.

After forwarding the data state and the policy modifications
to the respective other replica, the common converged state
looks like this: The data state for map m is extended by
the two write operations put(m, k1,v1) and put(m, k2,v2).
When reading from m, both the assignment to k1 and the
assignment to k2 are visible. The policy state is updated
by both rights assignments, from R1 and from R2, thereby

R1

R2 t

(none, Eve, m) (put(m, k1, v1), Alice)

(write, Eve, m) (put(m, k2, v2), Bob)

Fig. 5. Read-Write-Own Parallel Policy Change.

overwriting previous rights assignments. Since these policy
modification happened in parallel, the policy state is now

P |newEve,m= {(none,Eve,m), (write,Eve,m)}
When asked for the current policy for Eve, the system
computes the minimum of rights assigned to Eve, which
in this case is the policy (none,Eve,m). In this state, the
operation get(m) is not allowed to be performed by Eve
since (none,Eve,m) 6 |= (get(m),Eve). This is consistent with
the fact that the assignment (k1,v1) should not be readable
by Eve because of the protection relation (none,Eve, m) C
(put(m, k1,v1),Alice) induced by the operations on R1.

Fine-grained operation-based Model

ProPreAC supports also the implementation of a fine-
grained operation-based model. In contrast to the read-write-
own model presented in the previous paragraph, this operation-
based model allows more control over which operation is
permitted for each user. If multiple modifying operations are
available for a data type, like setting the value of an integer
object and incrementing the value of the object, each of the
operations can be granted and revoked individually in such a
system. As the set Rights, we use sets of operation identifiers
Rights = 2{get,put,del} and base the lattice on the subset
relation instead of totally ordering the rights. Under this model,
a user maybe able to read and delete an object, but not write
it. In this way, we have more fine-grained control over which
operations are allowed for each user.

For the previous example, this means that the policies for
the users Alice, Bob and Eve in the converged state of the
replicas R1 and R2 looks like this:

P |oldAlice,m= {({get,put},Alice,m)}
P |oldBob,m= {({get,put},Bob,m)}
P |oldEve,m= {({get},Eve,m)}

Fig. 6 shows again the operations that happen concurrently
on replicas R1 and R2. Alice assigns the rights for Eve to the
empty set, revoking all permissions she previously had, before
storing v1 into the map at key k1. This policy modification
protects the subsequent write

({},Eve,m) C (put(, k1,v1),Alice).

Bob, on the other hand, gives full read- and write-access to
the map by assigning the permission to perform get- and put-
operations on the map. The resulting policy for Eve on m after

R1

R2 t

({}, Eve, m) (put(m, k1, v1), Alice)

({get,put}, Eve, m) (put(m, k2, v2), Bob)

Fig. 6. Operation-based concurrent policy modifications.

synchronizing the states is

P |newEve,m= {({},Eve,m), ({get,put},Eve,m)}.
Computing the minimum of rights granted to Eve is done by
intersect of all right sets min(rs) =

⋂
rs. In this case, the

result is the empty set {}, meaning Eve has no permission to
access the map m, which preserves as required the protection
relation

({},Eve,m) C (put(m, k1,v1),Alice).

Operations for policy modifications

Up to this point, we have only considered data operations
and the policy restricting these operations. The model can
easily be modified to support also operations that modify the
policy. For example, many systems have a grant-operation,
which enables a user to give other users the permission to
access an object. To this end, we extend the set of operations
to also include policy modifying operations:

Op = OpR] OpW] Oppolicy

The policy modifying operations Oppolicy are akin to data
operations issued locally on some replica. The effect of
such an operation opp ∈ Oppolicy is a policy modification
effect(opp) = (r, s,o) ∈ Rights × Subjects × Objects, which is
synchronized with the other replicas. As before, the upstream
operations are checked the same way data operations are
checked against the local security policy.

Let us consider the grant-operation in more detail. It
typically has three parameters, grant(s,o,perm), where s ∈
Subjects, o ∈ Objects and perm ∈ Rights. Adding the grant-
operation to the read-write-own system works by extending
the `-relation with:

own ` grant(s,o,perm)

The target of the grant-operation is the object given
as parameter target(grant(s,o,perm)) = o. The effect of
the operation effect(grant(s,o,perm)) = (perm, s,o) is a
rights assignment, not a data state modification as for the data
operations. For Bob, to grant Eve the write permission on the
map m, he would need the own permission for m and execute
a grant(Eve, m, write) operation. The corresponding policy
change (write,Eve,m) is synchronized with the other replicas.

This scheme allows to store the complete security policy in
the data store and to user the access control system to enforce

the complete policy. Otherwise, the permissions to modify the
policy would have to be tracked and enforced by a separate
system.

V. IMPLEMENTATION

In this section, we sketch how our model ProPreAC can
be efficiently implemented in state-of-the-art weakly consis-
tent storage systems. The base for our implementation is an
eventually consistent data store.

As discussed in Section IV, the model requires tracking
of the causality between two policy modifications as well as
between policy modifications and data operations. Causality
tracking as implemented in Amazon Dynamo [6] using vector
clocks is known to not scale very well. The problem is that the
meta-data needed to track causality information grows with
the number of clients or it grows only with the number of
servers but is then less accurate. Tracking the information
per server does not allow to express concurrent or causally
related operations on the same server which can lead to
false concurrency information regarding operations on the
same server. Almeida et al. [4] propose a more efficient and
accurate solution using dotted version vectors. This technology
allows to track causality of operations accurately by combining
server-based version vectors with more detailed tracking of
individual operations. Gonalves et al. [9] presents an imple-
mentation of this technology which is not only efficient and
accurate, but also has low overhead in the distribution of the
causality information.

For the implementation of ProPreAC, we have to integrate
an access control check into the processing layer of upstream
operations. These operations have to be directly checked
against the current local security policy represented by the
policy state of the replica. The local policy for an operation
(opD ,u) is computed by taking the set of rights-assignments
for the subject-object-pair P |s,target(opD) and computing the
minimum rights as described in Section IV.

The downstream processing layer has to wait when receiv-
ing a downstream modifying operation (opW , s), until all pol-
icy modifications in the protection relation (r, s,o) C (opW , s)
have been received. This can be efficiently implemented based
on the information about the causality between policy changes
and data operations. The processing of (opW , s) has to be
postponed until all rights assignments (r, s,o) have been
received where target(opW) = o and (r, s,o) → (opW , s).
Concurrent policy changes can be applied in any order without
harming integrity. Similarly, operations on different objects
can be applied concurrently if the data store supports eventual
consistency.

We are currently working on an implementation of the
model based on the Riak key-value store [3]. Dotted version
vectors and CRDTs are implemented in Riak [3] since version
2.0., thus showing the feasibility of the technique in large scale
real-world applications and systems.

VI. RELATED WORK

In the area of access control for weakly consistent systems,
there are two major tracks of related work: weakly consistent

data stores and collaborative editors.
Eventually consistent data stores: With the implementation

of cloud systems, weakly consistent data stores have moved
into the focus of distributed systems research. Though many
protocols and implementation schemes have been proposed
and implemented, the topic of access control for these systems
has received surprisingly little attention. The original version
of Amazon Dynamo [6] did not offer authentication and autho-
rization capabilities. Several other related eventually consistent
data stores offer meanwhile techniques to implement access
control, but the granularity is not fine enough to provide access
control on the application level. Riak KV [3], MongoDB [2]
and Couchbase [1] all support the management of users, roles
and permissions. But the smallest granularity is on the level
of buckets or collections, comparable with tables in relational
data bases. Typical permissions on this level allow to read,
write, modify, or delete any value of the bucket or collection.
A more fine-grained permission level relating to the operations
on the application level is not supported.

Regarding eventually consistent data stores, Samarati et al.
[15] describe a high-level approach to authorization. The
general idea is to optimistically accept all operations and
compensate the operations which were executed despite the
security policy by performing rollbacks. While this approach
guarantees convergence of the security policy, it is not clear for
each operation how to undo the effect of this operation after it
has been executed. One of the problems is the potential binding
between operations and effects in the data store and changes
of the real world. For example, a banking system allows
to withdraw money from an account and the ATM outputs
the money. In this case, it is hard to undo the withdrawal
because the person with the money has already walked away.
In addition, the guarantees given by such an optimistic system
remain unclear. Effects of operations can be perceived by a
user of the data store before the rollback, thereby possibly
leaking sensible information.

Wobber et al. [19] present an access control model for
weakly consistent mutually distrustful replicated systems.
Their focus work is on partial replication with different access
policies per replica. While we consider a different setting of
cloud-storage systems, similar problems can be identified. The
causality between a policy and the subsequent operation that
are permitted by the policy is captured by their model by
waiting for the required policy change to arrive. However, the
causality between a policy change that restricts the visibility
of the effect of an operation and the subsequent execution
of this operation is not captured. As such, the model still
allows leaking sensitive information because of the possible
violation of the protection relation between a policy change
and a subsequent data operation.

Collaborative Editors: Imine et al. [10] present an access
control model for distributed collaborative editors. The sim-
ilarities to data stores lies in the fact that the modifications
of the document in the editor can be seen as data operations
and the document needs to be eventually consistent on all
distributed editor instances. As such, the editors can be seen

as replicas managing the document as the data state. In
this setting, the policy modifications consider objects such
as a character or section of text. To prevent divergence, all
operations on an object are ordered by the authoring editor
instance. This implies a one-to-one relation between parts
of the text and the responsible editor instance, which again
leads to a single point of failure. A addition, the model only
considers modifying operations; all users are allowed to read
the complete document. The implementation by Imine et al.
is very similar to an implementation of causality tracking for
a data store. In contrast, our model considers read operations,
which allows us to talk about leakage of information because
the policy can restrict the read access, thereby protecting data
modifications. Further, we introduce neither bottlenecks nor
single-points-of-failure by building on the causality relation.

VII. CONCLUSION

We have introduced ProPreAC, an access control system
for eventually consistent cloud storage. To the best of our
knowledge, it is the first system that considers a causal
relation between policy modifications and subsequent data
operations to prevent information leakage and unauthorized
data modification.

We presented a formal model of access control in weakly
consistent replicated systems and formulated a definition of the
correctness for access control in such a system. The definition
is strongly based on the protection relation between a policy
modification which restricts access to an object and a subse-
quent data operation modifying the object. ProPreAC preserves
this protection relation, thereby guaranteeing correct enforce-
ment of the security policy. We showed how to instantiate
our system with different policy schemes such a hierarchical
read-write-own policy schema, thus illustrating that the model
is flexible and applicable for different schemes. Finally, we
gave a sketch of how an efficient implementation of the access
control model in state-of-the-art cloud-storage systems like
Riak [3] can be achieved. In contrast to currently employed
access control systems, ProPreAC supports high availability,
does not hinder scalability and allows to implement fine-
granular and flexible security policies as required by modern
information systems.

REFERENCES

[1] Couchbase. URL http://www.couchbase.com/.
[2] MongoDB for GIANT Ideas | MongoDB. URL https:

//www.mongodb.org/.
[3] Riak KV. URL http://basho.com/products/riak-kv/.
[4] P. S. Almeida, C. Baquero, R. Gonalves, N. M. Preguia,

and V. Fonte. Scalable and Accurate Causality Track-
ing for Eventually Consistent Stores. In K. Magoutis
and P. Pietzuch, editors, Distributed Applications and
Interoperable Systems - 14th {IFIP} {WG} 6.1 Inter-
national Conference, {DAIS} 2014, Held as Part of the
9th International Federated Conference on Distributed
Computing Techniques, DisCoTec 2014, Berlin, Ger-
many, June 3-5, 2014, volume 8460 of Lecture Notes in

Computer Science, pages 67–81. Springer, 2014. URL
http://dx.doi.org/10.1007/978-3-662-43352-2 6.

[5] E. A. Brewer. Towards Robust Distributed Systems
(Abstract). In Proceedings of the Nineteenth Annual
ACM Symposium on Principles of Distributed Comput-
ing, PODC ’00, pages 7–, New York, NY, USA, 2000.
ACM. ISBN 1-58113-183-6. URL http://doi.acm.org/10.
1145/343477.343502.

[6] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels. Dynamo: Amazon’s Highly
Available Key-value Store. In Proceedings of Twenty-
first ACM SIGOPS Symposium on Operating Systems
Principles, SOSP ’07, pages 205–220, New York, NY,
USA, 2007. ACM. ISBN 978-1-59593-591-5. URL
http://doi.acm.org/10.1145/1294261.1294281.

[7] D. Ferraiolo and R. Kuhn. Role-Based Access Control.
In In 15th NIST-NCSC National Computer Security Con-
ference, pages 554–563, 1992.

[8] S. Gilbert and N. Lynch. Brewer’s conjecture and the
feasibility of consistent, available, partition-tolerant web
services. ACM SIGACT News, 33(2):51, 2002. ISSN
01635700. URL http://doi.acm.org/10.1145/564585.
564601.

[9] R. Gonalves, P. S. Almeida, C. Baquero, and V. Fonte.
Concise Server-Wide Causality Management for Even-
tually Consistent Data Stores. In A. Bessani and
S. Bouchenak, editors, Distributed Applications and In-
teroperable Systems, number 9038 in Lecture Notes in
Computer Science, pages 66–79. Springer International
Publishing, June 2015. ISBN 978-3-319-19128-7 978-
3-319-19129-4. URL http://link.springer.com/chapter/10.
1007/978-3-319-19129-4 6.

[10] A. Imine, A. Cherif, and M. Rusinowitch. A Flexible
Access Control Model for Distributed Collaborative Edi-
tors. In Secure Data Management, 6th VLDB Workshop,
SDM 2009, Lyon, France, August 28, 2009. Proceedings,
pages 89–106, 2009. URL http://dx.doi.org/10.1007/
978-3-642-04219-5 6.

[11] X. Jin, R. Krishnan, and R. S. Sandhu. A Uni-
fied Attribute-Based Access Control Model Cover-
ing DAC, MAC and RBAC. DBSec, 12:41–55,
2012. URL http://link.springer.com/content/pdf/10.1007/
978-3-642-31540-4.pdf#page=52.

[12] X. Jin, R. Sandhu, and R. Krishnan. RABAC: role-centric
attribute-based access control. In Computer Network
Security, pages 84–96. Springer, 2012. URL http://link.
springer.com/chapter/10.1007/978-3-642-33704-8 8.

[13] L. Lamport. Time, Clocks, and the Ordering of Events
in a Distributed System. Commun. ACM, 21(7):558–565,
July 1978. ISSN 0001-0782. URL http://doi.acm.org/10.
1145/359545.359563.

[14] P. Samarati and S. D. C. d. Vimercati. Access Control:
Policies, Models, and Mechanisms. In FOSAD, pages
137–196, 2000.

[15] P. Samarati, P. Ammann, and S. Jajodia. Maintaining

Replicated Authorizations in Distributed Database Sys-
tems. Data Knowl. Eng., 18(1):55–84, 1996. URL
http://dx.doi.org/10.1016/0169-023X(95)00000-I.

[16] G. Saunders, M. Hitchens, and V. Varadharajan. An
Analysis of Access Control Models. In ACISP, pages
281–293, 1999.

[17] R. Schwarz and F. Mattern. Detecting causal relation-
ships in distributed computations: In search of the holy
grail. Distrib Comput, 7(3):149–174, Mar. 1994. ISSN
0178-2770, 1432-0452. URL http://link.springer.com/
article/10.1007/BF02277859.

[18] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski.
Conflict-free Replicated Data Types. In Proceedings
of the 13th International Conference on Stabilization,
Safety, and Security of Distributed Systems, SSS’11,
pages 386–400, Berlin, Heidelberg, 2011. Springer-
Verlag. ISBN 978-3-642-24549-7. URL http://dl.acm.
org/citation.cfm?id=2050613.2050642.

[19] T. Wobber, T. L. Rodeheffer, and D. B. Terry. Policy-
based access control for weakly consistent replication.
In European Conference on Computer Systems, Pro-
ceedings of the 5th European conference on Computer
systems, EuroSys 2010, Paris, France, April 13-16, 2010,
pages 293–306, 2010. URL http://doi.acm.org/10.1145/
1755913.1755943.

[20] M. Zawirski, N. Preguiça, S. Duarte, A. Bieniusa,
V. Balegas, and M. Shapiro. Write Fast, Read in the
Past: Causal Consistency for Client-side Applications. In
Proceedings of the Annual ACM/IFIP/USENIX Middle-
ware Conference, Vancouver, BC, Canada, Dec. 2015.
ACM/IFIP/Usenix, ACM.

7 SUBMITTED PAPERS

7.2 Christopher Meiklejohn. Loquat: A partially repli-
cated, secure, broadcast protocol for edge computation.
Submitted for publication, 2016.

SyncFree Deliverable D.3.3(v0.1), March 23, 2016, Page 111

Loquat: A Partially Replicated, Secure, Broadcast
Protocol for Edge Computation

Christopher Meiklejohn
Université catholique de Louvain

Louvain-la-Neuve, Belgium
Email: christopher.meiklejohn@gmail.com

Abstract—We provide a work-in-progress report on a partially
replicated, secure, broadcast protocol for edge computation. This
protocol, called Loquat, is inspired by the authors previous work
on edge computation; specifically a gossip-based runtime system
for a distributed, declarative, programming model for edge
computation, called Lasp. This protocol is designed to scale to a
large number of clients while providing both partial replication
of data, and secure transmission of confidential information,
both extremely useful properties of multi-tenant sensor and edge
networks. We motivate our work with an industrial use case
where security and efficiency in data dissemination is paramount.

I. INTRODUCTION

Efficient large-scale computation continues to grow in im-
portance as the reach of mobile Internet applications increases,
and new and different types of devices are connected to the
Internet to support “Internet of Things” applications such as
sensor networks and smart cities. Moving computation to
the edge is becoming extremely important as the amount of
data generated by the edge make traditional approaches that
centralize computation around the data center intractable.

A. Motivating Example

We consider the industry use case of a “Internet of Things”
(IoT) service provider that builds sensors for monitoring the
temperature of refrigerators deployed at hospitals in the San
Francisco Bay Area [1]. In this application, refrigerators store
vital organs and tissue samples that make it critical that
refrigerators are monitored for temperature anomalies and that
alerts triggered when the temperature is outside of a specified
range.

In Figure 1, we depict the design most frequently seen
deployed in industry. In this design, refrigerators transmit
temperature samples to a central location for processing. More
specifically, in this example we use HDFS1 for aggregation
of data in the data center. Providers typically choose one of
two routes for processing incoming samples: either a batch
processing system, such as Hadoop [2] is used to repeatedly
process received samples, or a stream processing system such
as Spark (D-Streams) [3] is used to react to samples in
realtime. Figure 2 shows a successful execution in this model.

1The both commercially available, and open-source Apache Foundation
Hadoop Distributed File System.

Internet HDFS

Hadoop

Client

Client

Internet

Spark

Client

Client

Internet

Figure 1: Typical structure of IoT application. Data is ag-
gregated from sensors at the edge to a central location for
processing.

Internet HDFS
Spark

35F40F

ClientInternet HDFS
Spark

35F40F

Internet HDFS
Spark

35F

Internet HDFS
Spark

35F35F

35F40F35F40F

Figure 2: Successful execution using the centralized model.
Once a sample arrives that should trigger an alert, the alert
is triggered.

B. Designing for Uncertainty

This design is desirable to the developers of these applica-
tions. It allows them to develop algorithms and reports using
a centralized processing model where the developer does not
have to worry about the challenges of distributed computation:

specifically, the problems of unreliable asynchronous networks
with unpredictable latency. However good this design may
be for application developers, this solution to the problem
is far from ideal as it involves a significant amount of state
transmission and can not tolerate periods without connectivity
to the central database where processing occurs.

Internet HDFS
Spark

35F35F40F 40F

Figure 3: Connectivity problems with the data center may
prohibit the transmission of events that should trigger alerts.

In this design, connectivity, or lack thereof, is problematic.
If a sensor that is generating samples that should trigger
an alert (such as our problematic 40◦ sample in Figure 2)
does not have connectivity to the central processing location,
no action can be taken and we risk the destruction of any
items in the refrigerator because of overheating (or rather,
not cooling enough). We see an example of this in Figure 3.
This scenario is more common than it may seem: sensors are
traditionally underpowered, operating on battery over long-
range wireless networks. In many cases, operation of the
antenna is the biggest power drain of the device, which we
will see contributes to the problem of state transmission below,
as well.

Therefore, to ensure that we can alert on events regardless
of connectivity, the obvious solution is to co-locate hardware
alongside each of the sensors, so each sensor can trigger an
alert (possibly, via telephone) in the event that connectivity is
unavailable. This approach has precedent set in the late 90s and
early 2000s2. However, this approach is extremely expensive,
because all “edge” devices need to have the means to alert,
and the processing power to process their own events locally.

One modification of this approach previously proposed by
Meiklejohn [4] suggested the use of transitive dissemination
of events3 to reduce the amount of hardware needed at the
edge. In this design, there is a specific trade-off between the
time-to-alert and the amount of hardware deployed at the edge
for alerting.

To demonstrate this design, we refer the reader to Figure 4.
In this example, a node might have connectivity to another
node in the system, and through that node have transitive
connectivity to the data center for dissemination of events. In

2The author was previous involved in a telecommunications project where
T1 lines were backed up by ISDN or 56k modems. EMC, a large manufacturer
of storage hardware, previously used telephone lines attached to early NAS
products for “phone home” behavior when CRC violations were detected on
mounted volumes.

3No proceedings are available, but presented at OBT 2016, co-located with
POPL 2016.

Internet HDFS
Spark

35F40F

Client

35F40F

Figure 4: Connectivity problems with the data center may
prohibit the transmission of events that should trigger alerts.
However, transitive dissemination through reachable nodes may
mitigate connectivity problems.

this case, a gossip protocol [5], that supports a reliable peer-to-
peer information dissemination model that is highly resilient
to churn and network faults, seems to fit better than the
alternative tree-based approaches which are fragile at scale4.

C. Drawbacks

Given the ideal design, we identify two remaining problems
with the state of the art as it relates to gossip protocols and
their deployment at the edge to enable the ideal design.

• Partial replication. None of gossip protocols sur-
veyed [6], [7], [5] had support for partial replication
of data items. Partial replication differs from traditional
“full” replication, where each node in the system stores
the same set of data as every other node participating in
the cluster. In this design, nodes in the cluster can store
potentially disjoint sets of data.

• Security. In the ideal design, some systems may not be
privileged to transmit data on behalf of other nodes. For
instance, the refrigerators used by the science department
may not be authorized to transmit data for refrigerators
used by the physics department. Therefore, a mechanism
is required to ensure that transitive dissemination is only
performed by authorized parties.

D. Contributions

The contributions of this work are as follows:

• Partial replication. We propose an extension to the
Plumtree [7] epidemic broadcast protocol that supports
partial replication of data. Our work is inspired by the
authors previous work on the Selective Hearing [8] exten-
sion to the Lasp programming model [9] for distributed,
declarative edge computation.

• Information flow control. We provide a work-in-
progress design for an extension to this protocol that
supports information flow control, where nodes that are
not authorized to receive confidential information will not
receive dissemination of that information.

4This discussion is continued in Section II.

II. BACKGROUND

This section presents background material on the Plumtree
protocol and Information Flow Control.

A. Plumtree

The Plumtree protocol is a hybrid approach to gossip
protocols. The protocol combines the use of broadcast trees,
for fast dissemination of information to a cluster of nodes,
with the use of a epidemic broadcast protocol, for flooding the
network with information to detect partitions in the network, or
where disconnected nodes in the spanning tree have prevented
messages from reaching all nodes in the cluster. This approach
has been shown to be both more efficient and more resilient
to network failures and churn [7], while being easier to
debug than alternative hybrid protocols, such as Bimodal
Multicast [6].

The Plumtree protocol operates by maintaining a spanning
tree either per cluster, or per node, that contains some sample
set of initial nodes5. When messages are broadcast to the
spanning tree, or the “eager set”, nodes that deliver a duplicate
message, or a message previously received by another node,
are pruned from the “eager set” and moved to the “lazy set”.
This results in the computation of a minimal spanning tree,
represented by a cluster-wide, or node-local “eager set”.

Nodes in the “eager set” should receive broadcast messages
immediately, whereas nodes in the “lazy set” receive only
broadcast messages containing a unique identifier of messages
they should receive via the eager broadcast6. These messages
are referred to as BCAST messages and IHAVE messages,
respectively.

In the event that one of these messages is not received within
a given time interval through the eager broadcast mechanism,
a network partition or failed node must have caused the
spanning tree to fail to deliver a message. When this occurs,
the following procedure is performed:

1) The receiving node that failed to receive the message that
it saw advertised randomly selects one of the sending
nodes that sent the IHAVE message.

2) The receiving node then sends a GRAFT message adding
the sending node back to its “eager set”.

3) The sending node then sends a BCAST message con-
taining the missing message.

B. Plumtree Optmizations

However, in practice, the Plumtree protocol as designed is
not sufficient to guarantee reliable delivery to a client that may
be offline for extended period of time (for instance, a long-
lived data center partition, or a client that has gone offline for
an extended period of time) [11]. Therefore, we consider two
extensions to the Plumtree protocol, as originally conceived
by Basho Technologies, Inc. in practice.

5The Plumtree protocol relies on an external peer sampling services, such
as HyParView [10] by the same authors, for managing cluster membership.

6This process can happen on a per-message basis or in batches, depending
on how the operator desires network utilization by control messages

1) In the original protocol, IHAVE messages, or broadcasts
to the “lazy set”, are only transmitted once at the time
of the original broadcast. This results in a problem
where a partitioned or offline client may never receive
a broadcasted message if connectivity to the rest of
the cluster is restored after these IHAVE messages have
already been broadcast.

2) The delivery of these IHAVE messages may not reach
all clients as the failure or churn rate of the cluster
approaches 70% [7]. Therefore, it is necessary to aug-
ment this protocol with an anti-entropy protocol which
periodically selects random peers and does a full state
exchange, to ensure eventual delivery of all messages.

C. Information Flow Control

Our contributions extend the previous work from Myers
and Liskov [12] on Decentralized Information Flow Control
(DIFC) and the work on CamFlow from Pasquier et al. [13].

Decentralized IFC extends the seminal work on Information
Flow Control (IFC) in 1976 by Denning [14] on a Manda-
tory Access Control mechanism for controlling the flow of
information on computer systems based on security classes.
IFC proposes two security classes for secrecy and integrity of
entities and process in the computing system. Specifically, the
no read up, no write down policy for secrecy from Bell and
LaPadula [15] and the no read down, no write up policy for
integrity from Biba [16]. IFC’s policies were generic enough
to model a traditional military classification system, where
information moves between public, secret, and top secret
classifications.

In 1997, Myers and Liskov’s work on Decentralized
IFC [12] moved the model away from a static, hierarchical
model to a flexible, dynamic model based on principals and
labels. Principals represent parties who own information,
therefore their information privacy is protected, whereas labels
are the way in which principals express privacy concerns over
entities.

Labels take the form of a set of policies, a pair of an owner
and a set of readers: L = {o1 : r1, r2; o2 : r2, r3}; in this
example, one policy defines that o1 is a principal that has only
granted access to a given item protected by label L to readers
r1 and r2. Given this object’s label contains two policies, the
only valid reader of this object is r2, the intersection of the
policy set as defined by owners o1 and o2. This is the idea
that information can flow, or be released “by the consensus
of all of the parties.” [12] A similar idea exists for both the
declassification and relabeling of information,; labels must be
adjusted through an copy by a principal that has consensus
of all of the parties. In this model, both principals and labels
form a lattice, where information, and rights to declassify or
relabel, can flow upwards.

Finally, the CamFlow model in 2015 by Pasquier et al. [13]
further extends the work on Decentralized IFC to cloud
environments and presents a slightly simpler formalism. In
CamFlow, every entity in the system is associated with two
labels, one for secrecy and one for integrity. Each labels is

formed by a set of tags, each tag being a user-defined token.
Information flow is preserved in a similar way as the previous
systems: secrecy follows the no read up, no write down policy
and integrity follows the no read down, no write up policy.

To clarify the presentation, we include the example from
the CamFlow model. Consider a medical patient Bob, being
monitored from his home; information from his home would
be tagged bob, medical for secrecy and information from
his home would be hospital-device for integrity. Information
received at the hospital would enforce the integrity policy by
refusing any information that was from a device that is not
tagged hospital-device and hospital devices attempting to read
this data would have to have the proper tags for secrecy: bob,
medical [13].

III. LOQUAT: PARTIAL REPLICATION

We provide an overview followed by the formal semantics
of Loquat’s partial replication algorithm.

A. Overview

Simply put, Loquat implements partial replication by
uniquely identifying each message in the system with a
namespace, or as we refer to it, a scope. Nodes in the Loquat
system subscribe to zero or more of these scopes to designate
which messages in the system these nodes will replicate. To
ensure complete delivery of all messages to all replicas in the
system, nodes track the greatest message identifier, specified
using a version vector, for each scope observed, regardless of
whether or not they are a replica for that scope. Quiescence
is achieved when two criteria are met: all messages have been
delivered to all replicas for those messages; and when all nodes
have received the maximum message identifier for all scopes
in the system.

B. System Model

We assume a dynamic cluster of nodes, where each node in
the system has a globally unique node identifier. We assume
the the crash-stop failure model, and nodes that crash recover
by rejoining the cluster with a new globally unique node
identifier and no state: identical to a new node. We assume
non-Byzantine network and node behavior.

We assume the standard merge function for version vec-
tors [17], and we assume that objects themselves can be
merged together deterministically resulting in a monotonically
greater value [18], [19].

C. Preliminaries

We assume a cluster of nodes, each with a globally unique
identifier i.

N = {ni, ni′ , . . .} (1)

We assume scopes are unique symbols denoting a group of
messages. For simplicity, we quantify over natural numbers.

S = {si, si′ , . . .} (2)

We assume entities in the system are the globally defined
set of scopes with the globally defined set of nodes.

Σ = S ∪N (3)

We assume, for each node i, that each node’s state is a pair,
σi the set of known scopes and their values at node i, and δi
the set of scopes node i is responsible for replicating.

ni = (σi, δi) (4)

We define a transition function for each node i, where k
denotes the k-th state of an execution.

ni = (σi, δi) = (σ0
i , δ

0
i)→ . . .→ (σki , δ

k
i) (5)

We define σi as a node’s context: a set of pairs containing
a scope s and a value v. More formally, σi is a function from
a scope s to a value v.

σi ⊆ {(si, vi) | i ∈ N} (6)

We define δi as a set of scopes that a node is interested in7.

δi ⊆ {s | s ∈ π1(σi)} (7)

We enforce the invariant that δ will be a subset of the
standard projection of σ for a given node i.

δi ⊆ π1(σi) (8)

We define values as a pair of a version vector c and a
payload p.

V = {(ci, pi) | i ∈ N} (9)

We induce a partial order over values v with the partial
order on version vectors c [20].

∀(c, p). (c′, p′) ∈ V [c ≤ c′ ⇐⇒ (c, p) ≤v (c′, p′)] (10)

We induce a partial order over contexts σ with the lexi-
cographical ordering on scopes s and partial order on values
v.

∀(s, v). (s′, v′) ∈ σ[v ≤ v′ ⇐⇒ (s, v) ≤σ (s′, v′)] (11)

We define a function α to return a maximal message in
a scope s based on that partial order. We will see in Sec-
tion III-D, that given the way write operations are performed,
there can be only one maximal element.

α(σ, s) = sup({(s, v) | (s, v) ∈ σ}) (12)

7We define π as the standard projection.

D. Semantics

We begin by defining two operations for contexts, regard
and disregard and two operations for the broadcast protocol,
read and write. Regard is used to express interest in a
scope, and disregard is used to express disinterest in a scope;
therefore, they are duals. Write is used to create a message for
a given scope, and read is used to return the latest message
for a given scope.

We define the regard operation as follows. Given a scope
s and a node i, update our local interest set δ accordingly.

regard i(s) : σ′i = σi ∪ {(s, (⊥,⊥))}
δ′i = δi ∪ {s}

(13)

We define the disregard operation as follows. Given a scope
s and a node i, update our local interest set δ accordingly. We
add the scope s with the bottom value to the context σ, to
satisfy the invariant in Equation 8.

disregard i(s) : σ′i = σi ∪ {(s, (⊥,⊥))}
δ′i = δi \ {s}

(14)

We define the write operation as follows. Given a scope
s, a payload p, and a broadcasting node i, update our local
context σ with the updated message and broadcast.

writei(s, p) : m = α(σ, s)

v = π2(m)

c′ = incr i(π1(v))

σ′i = σi ∪ {(s, (c′, p))}
broadcast i(s, (c

′, p))

(15)

We define the read operation as follows. Given a scope s
and a reading node i, return the latest message in our local
context σ and add the scope to the “interest” set of scopes δ.

read i(s) : σ′i = σi ∪ {(s, (⊥,⊥))}
δ′i = δi ∪ {s}
return α(σ, s)

(16)

We define a function to merge an incoming value v for
scope s, consisting of a version vector c and a payload p to
node j from node i. The merge function always transmits the
most recent version vector; given that objects can be merged,
the newest version vector and payload will always subsume
previous state8.

mergeij(s, (c, p)) : m = α(σ, s)

v = π2(m)

c′ = c t π1(v)

p′ = p t π2(v)

σ′j = σj ∪ {(s, (c′, p′))}
broadcastj(s, (c

′, p′))

(17)

8It is also important to note, if not already clear, that for a given message
once it has already been observed, the version vector merge function will
result in the computation of a fixed point.

We define a function to ignore an incoming value v for a
“uninteresting” scope s to node j from node i.

ignoreij(s, (c, p)) : m = α(σ, s)

v = π2(m)

c′ = c t π1(v)

σ′j = σj ∪ {(s, (c′,⊥))}
broadcast i(s, (c

′, p))

(18)

We define a function to drop and incoming value v for a
quiesced scope s to node j from node i.

dropij(s, (c, p)) : ⊥ (19)

We define a predicate function seen for an incoming value
v for scope s, consisting of a version vector c and a payload
p to node j from node i.

seenij(s, (c, p)) ⇐⇒ (s, (c,)) ∈ σj (20)

We define a predicate function interested for an incoming
value v for scope s, consisting of a version vector c and a
payload p to node j from node i.

interested ij(s) ⇐⇒ (s,) ∈ δj (21)

When receiving a broadcast message from node i at node
j containing a scope s, version vector c and payload p, a
receiving node places the version vector into its context σ, but
only accepts the payload if the scope appears in its “interest”
set δ.

For the receive procedure, we merge the incoming version
vector along with the value for the maximum value and
broadcast the resulting value after the merge. Only scopes
considered “interesting” have their payloads stored; otherwise,
we store bottom, to prevent this node from replicating “unin-
teresting” payloads. Broadcasts are continued as long as we
have not previously observed the value, to guarantee events
are delivered to all nodes in the broadcast tree via the eager
push mechanism.

receiveij(s, (c, p)) :

dropij(s, (c, p)) if seenij(s, (c, p)),

mergeij(s, (c, p)) if interested ij(s),

ignoreij(s, (c, p)) otherwise.
(22)

E. Eager and Lazy Push

We continue to use the normal eager and lazy push algo-
rithms from the Plumtree protocol with one note: the unique
message identifier used for each message is the maximum
vector for a given scope, and provided explicitly to the
broadcast algorithm. This ensures that eventually the greatest
message for a given scope is always delivered. Given that
messages are always mergable, and partially ordered, this
results in eventually delivery of all messages in the system.

F. Late Interest

However, a client may express “interest” in a scope after all
messages for that scope have been delivered. In this case, the
read operation, after declaring “interest“ will, at a subsequent
anti-entropy round (as discussed in Section II-B, ensure that
the message is eventually delivered to that node.

G. Optimizations

One potential optimization for the receive procedure would
be avoiding the merge of both value and version vector if the
value is already dominated by the local version vector on the
receiving node. The semantics presented here are correct, but
not efficient in practice. The previous work by this author on
the Selective Hearing [8] contains this optimization.

Another potential optimization is to only store the greatest
version vector and payload per scope. In our formal semantics,
all received version vectors and payloads are stored for ease
of presentation and the planned verification of the protocol.

IV. LOQUAT: INFORMATION FLOW CONTROL

We provide an overview followed by the formal semantics
of the Loquat information flow control protocol.

A. Overview

To support information flow control, Loquat alters the
Plumtree protocol by assuming that there is a single spanning
tree computed for each security context and scope pair. This
spanning tree begins with an empty “eager” set and a random
peer selection or all nodes, in the “lazy” set. The spanning tree
for that pair is then computed through the process of nodes
responding to the “lazy” broadcast message, if and only if
they have a compatible security context. We formally define a
security context below.

B. System Model

For our initial formalism of the information flow control
extension, we extend the system model presented in Sec-
tion III-B. We assume a set of unique tokens representing
both the level of secrecy and integrity placed on scopes of
messages. We assume that messages within a given scope can
only move in two directions: messages can decrease in secrecy,
or increase in integrity (through additional declassification, or
increased authentication.) We assume actors in the system do
not act maliciously, by lying about the security contexts they
are privileged to (non-Byzantine behaviour). For a discussion
on using cryptographic methods from hardware for authentica-
tion and authorization of clients in an edge network, we refer
the reader to [21]).

Finally, we assume that code executes on a trusted execution
platform that enforces our system model.

C. Preliminaries

We assume a finite set of tags, or immutable tokens.

T = {t0, . . . , tn} (23)

We define a function τ at each node i that returns a set of
secrecy tags, or the secrecy label for any entity in the system,
including nodes.

∀e ∈ Σ. τi(e) ∈ P(T) (24)

We define a function ϕ at each node i that returns a set
of integrity tags, or the integrity label for any entity in the
system, including nodes.

∀e ∈ Σ. ϕi(e) ∈ P(T) (25)

We define the information exchange predicate as ω. Infor-
mation, for a given scope s, is allowed to flow from a entity
i to a entity j if the integrity labels and secrecy labels are
compatible.

ωij(s) = τi(s) ⊆ τj(s) ∧ ϕj(s) ⊆ ϕi(s) (26)

For each scope s at node i we maintain a security context
at each node containing the pair of secrecy tags τ and integrity
tags ϕ.

∀s ∈ S. ∀ni ∈ N. γsi = (τi(s), ϕi(s)) (27)

Given that, we can reformulate Equation 26 in terms of
security contexts, γ.

γ →flow γ
′ ⇐⇒ π1(γ) ⊆ π1(γ′) ∧ π2(γ′) ⊆ π2(γ) (28)

D. Protocol

We assume a single spanning tree per unique scope s and
security context γ. For instance, the set of nodes that can read
a given scope s with the same security context γ will compute
their own spanning tree. We discuss optimizations to reduce
the number of active spanning trees in Section IV-G.

More formally, each node keeps a map for a given scope
and security context to a pair containing the “eager” and “lazy”
sets.

trees : (S,Γ)→ (N,N) (29)

We assume that the lazy set for all scopes and security
contexts is pre-populated with either the entire set of nodes
in the cluster, or the result of a peer sampling services, for
larger clusters. We augment each of the four message types
(IHAVE, GRAFT, PURGE, BCAST) to carry the scope and
security context information for every request.

We enumerate the steps in the initial spanning tree construc-
tion for a scope s and a security context γ, which may occur
over several rounds of broadcast.

1) At the beginning of the execution of the protocol, no
members exist in the “eager set” of the broadcasting
node, and a random set of nodes is placed into the “lazy
set”9.

2) Given this, the first message that is broadcast for scope
s will be the IHAVE message, containing the scope s,
a unique message identifier derived from the version
vector c, and the security context for the scope γ.

9Or, this could be all nodes in the cluster, depending on the cluster size
and peer sampling protocol used.

3) Receiving nodes will not receive an eager broadcast
within the time interval, given these messages were
never transmitted with eager broadcast.

4) When the timeout expires, nodes for which the in-
formation exchange predicate ω holds, will send the
receiving node the GRAFT message to move nodes into
the broadcasting node’s “eager set”.

5) Finally, the message will be delivered by BCAST from
the broadcasting node containing the actual message.

This will cause a minimal spanning tree to be computed
and maintained that contains nodes that are only allowed to
view the confidential information for a given scope s. Figure 5
shows a spanning tree being computed by nodes that share a
security context.

IHave

Graft

BCast

IHave

Prune

!1
4(s) = ?

!1
3(s) = >

!1
2(s) = >

Figure 5: Computation of a minimal spanning tree for a given
security context and scope. Nodes begin with a selection of
random nodes in their “lazy set” that messages are delivered
to, and pruned accordingly based on message delivery. Nodes
without a compatible security context are excluded.

E. Purging

Spanning trees can be automatically purged for a given
scope and security context after a given interval without
broadcast messages, to reduce space leaks for contexts that
are retired.

F. Anti-Entropy Protocol

When performing anti-entropy, peer selection must enforce
the information exchange rule when performing value ex-
change with a randomly selected peer int he cluster. This
is performed by initially exchanging the scopes and security
contexts before performing the exchange of values.

G. Protocol Optimizations

For some scopes and security contexts, duplication of span-
ning trees may not be necessary. One potential optimization is
to map between a single spanning tree to many scopes, if the
scopes happen to share a security context. This optimization
would reduce the number of in-memory spanning trees at
any one time, and additionally would reduce the cost of
computing the spanning tree upon the broadcast of the scopes
first message.

It may also be possible to share spanning trees with
less classified information and with stronger integrity across
scopes, as long as the information exchange rule is preserved.
However, both of these techniques require a mapping structure
between scopes and security contexts in a way that is less
complex in space for the optimization to be beneficial.

H. Sessions

Each node i can perform many read and write operations.
To consider a particular execution safe, any write operations
that follow read operations must preserve security; therefore,
we must guarantee that the information exchange predicate is
satisfied for all pairs of operations in a given execution.

We consider that a number of sessions may exist per node i.
Each session is composed of read and write operations issued
by that node.

Sessioni ∈ Sessionsi (30)

Each session contains a totally ordered set of operations
executed at that node.

Sessioni = {Opi, Opi+1, . . .} (31)

We define each operation as a scope s, the security context
γ, and a value v.

Opi = (s, γ, v) (32)

We define a predicate function write that determines
whether an operation was a write operation, and a function
read that determines whether an operation was a read opera-
tion.

We define a function to filter the write operations for a given
session.

writes(Sessioni) = {Op | Op ∈ Sessioni

∧ write(Op)} (33)

We define a function to filter the read operations for a given
session.

reads(Sessioni) = {Op | Op ∈ Sessioni

∧ read(Op)} (34)

We can now define a function to return all of the read
operations that occurred before a given write operation for
a single session.

earlierReads(Op,Sessioni) =

{Op′ | Op′ ∈ Sessioni ∧
read(Op′) ∧Op′ ≤ Op}

(35)

For a given operation, we define a function that returns the
joined security context for all previous read operations.

earlierReadContext(Op,Sessioni) =⋃
{π2(Op′) |

Op′ ∈ earlierReads(Op,Sessioni)}
(36)

We say that an execution is safe if the information exchange
is allowed, transitively for all operations in the execution. In
other words, for each write operation performed, the security

context for the write operation must be compatible with the
security context of all read operations that preceded it.

Op ∈ Sessioni .

earlierReadContext(Op,Sessioni)→flow γ
Op
i

(37)

V. RELATED WORK

Previous academic approaches for the collection of events
in large-scale sensor networks, such as both the Tiny AG-
gregation [22] and directed and digest diffusion [23], [24]
systems, either assumed that event delivery would complete
for all clients within a time limited window, or involved
designing a specific protocol for based on the shape of events.
Neither of these approaches provides a general model for
guaranteed message delivery that tolerates both churn and
network failures.

VI. FUTURE WORK AND CONCLUSION

This paper presents a work in progress report on a partially
replicated, gossip protocol with information flow control for
performing efficient state transmission, in a fault-tolerant man-
ner, for large-scale sensor networks. This design builds on pre-
vious work in leveraging gossip protocols for reliable message
delivery and information flow control, and ensures that state
transmission can be performed transitively through nodes, in
a manner where nodes are only exposed to information that is
not confidential. We plan to continue the implementation and
verification of our design to evaluate the protocol in practice.

ACKNOWLEDGMENT

Thanks to Martin Kleppmann and Jordan West for their
feedback.

REFERENCES

[1] M. Nijdam, private communication, 2015.
[2] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on

large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[3] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica,
“Discretized streams: Fault-tolerant streaming computation at scale,”
in Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles. ACM, 2013, pp. 423–438.

[4] C. Meiklejohn, “Declarative, secure, convergent edge computation,”
CoRR, vol. abs/1512.04898, 2015. [Online]. Available: http://arxiv.org/
abs/1512.04898

[5] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, and D. Terry, “Epidemic algorithms for
replicated database maintenance,” in Proceedings of the Sixth Annual
ACM Symposium on Principles of Distributed Computing, ser. PODC
’87. New York, NY, USA: ACM, 1987, pp. 1–12. [Online]. Available:
http://doi.acm.org/10.1145/41840.41841

[6] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and Y. Min-
sky, “Bimodal multicast,” ACM Transactions on Computer Systems
(TOCS), vol. 17, no. 2, pp. 41–88, 1999.

[7] J. Leitao, J. Pereira, and L. Rodrigues, “Epidemic broadcast trees,” in
26th IEEE International Symposium on Reliable Distributed Systems
(SRDS 2007). IEEE, 2007, pp. 301–310.

[8] C. Meiklejohn and P. Van Roy, “Selective Hearing: An Approach to
Distributed, Eventually Consistent Edge Computation,” in Workshop on
Planetary-Scale Distributed Systems collocated with SRDS 2015. IEEE,
2015.

[9] ——, “Lasp: A language for distributed, coordination-free program-
ming,” in Proceedings of the 17th Symposium on Principles and Practice
of Declarative Programming (PPDP 2015). ACM, Jul. 2015.

[10] J. Leitao, J. Pereira, and L. Rodrigues, “Hyparview: A membership
protocol for reliable gossip-based broadcast,” in Dependable Systems
and Networks, 2007. DSN’07. 37th Annual IEEE/IFIP International
Conference on. IEEE, 2007, pp. 419–429.

[11] “Controlled Epidemics: Riak’s New Gossip Protocol and Metadata
Store,” https://www.youtube.com/watch?v=s4cCUTPU8GI, accessed:
2016-02-06.

[12] A. C. Myers and B. Liskov, “Protecting privacy using the decentralized
label model,” ACM Transactions on Software Engineering and Method-
ology (TOSEM), vol. 9, no. 4, pp. 410–442, 2000.

[13] T. Pasquier, J. Singh, D. Eyers, and J. Bacon, “Camflow: Managed data-
sharing for cloud services,” 2015.

[14] D. E. Denning, “A lattice model of secure information flow,” Commu-
nications of the ACM, vol. 19, no. 5, pp. 236–243, 1976.

[15] D. E. Bell and L. J. LaPadula, “Secure computer systems: Mathematical
foundations,” DTIC Document, Tech. Rep., 1973.

[16] K. J. Biba, “Integrity considerations for secure computer systems,” DTIC
Document, Tech. Rep., 1977.

[17] D. S. Parker Jr, G. J. Popek, G. Rudisin, A. Stoughton, B. J. Walker,
E. Walton, J. M. Chow, D. Edwards, S. Kiser, and C. Kline, “Detection
of mutual inconsistency in distributed systems,” Software Engineering,
IEEE Transactions on, no. 3, pp. 240–247, 1983.

[18] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer,
and C. H. Hauser, Managing update conflicts in Bayou, a weakly
connected replicated storage system. ACM, 1995, vol. 29, no. 5.

[19] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “A comprehen-
sive study of convergent and commutative replicated data types,” INRIA,
Tech. Rep. RR-7506, 01 2011.

[20] F. Mattern, “Virtual time and global states of distributed systems,”
Parallel and Distributed Algorithms, vol. 1, no. 23, pp. 215–226, 1989.

[21] T. F.-M. Pasquier, J. Singh, and J. Bacon, “Clouds of things need
information flow control with hardware roots of trust.”

[22] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “Tag: A
tiny aggregation service for ad-hoc sensor networks,” ACM SIGOPS
Operating Systems Review, vol. 36, no. SI, pp. 131–146, 2002.

[23] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion:
a scalable and robust communication paradigm for sensor networks,”
in Proceedings of the 6th annual international conference on Mobile
computing and networking. ACM, 2000, pp. 56–67.

[24] J. Zhao, R. Govindan, and D. Estrin, “Computing aggregates for
monitoring wireless sensor networks,” in Sensor Network Protocols
and Applications, 2003. Proceedings of the First IEEE. 2003 IEEE
International Workshop on. IEEE, 2003, pp. 139–148.

7 SUBMITTED PAPERS

7.3 Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero.
Delta state replicated data types. Submitted for pub-
lication, 2016.

SyncFree Deliverable D.3.3(v0.1), March 23, 2016, Page 120

ar
X

iv
:1

60
3.

01
52

9v
1

 [
cs

.D
C

]
 4

 M
ar

 2
01

6

Delta State Replicated Data Types

Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero

HASLab/INESC TEC and Universidade do Minho, Portugal

Abstract. CRDTs are distributed data types that make eventual con-
sistency of a distributed object possible and non ad-hoc. Specifically,
state-based CRDTs ensure convergence through disseminating the en-
tire state, that may be large, and merging it to other replicas; whereas
operation-based CRDTs disseminate operations (i.e., small states) as-
suming an exactly-once reliable dissemination layer. We introduce Delta
State Conflict-Free Replicated Data Types (δ-CRDT) that can achieve
the best of both worlds: small messages with an incremental nature,
as in operation-based CRDTs, disseminated over unreliable communi-
cation channels, as in traditional state-based CRDTs. This is achieved
by defining δ-mutators to return a delta-state, typically with a much
smaller size than the full state, that to be joined with both local and
remote states. We introduce the δ-CRDT framework, and we explain it
through establishing a correspondence to current state-based CRDTs. In
addition, we present an anti-entropy algorithm for eventual convergence,
and another one that ensures causal consistency. Finally, we introduce
several δ-CRDT specifications of both well-known replicated datatypes
and novel datatypes, including a generic map composition.

1 Introduction

Eventual consistency (EC) is a relaxed consistency model that is often adopted
by large-scale distributed systems [1,2,3] where availability must be maintained,
despite outages and partitioning, whereas delayed consistency is acceptable. A
typical approach in EC systems is to allow replicas of a distributed object to
temporarily diverge, provided that they can eventually be reconciled into a com-
mon state. To avoid application-specific reconciliation methods, costly and error-
prone, Conflict-Free Replicated Data Types (CRDTs) [4,5] were introduced, al-
lowing the design of self-contained distributed data types that are always avail-
able and eventually converge when all operations are reflected at all replicas.
Though CRDTs are deployed in practice and support millions of users world-
wide [6,7,8], more work is still required to improve their design and performance.

CRDTs support two complementary designs: operation-based (or op-based)
and state-based. In op-based designs [9,5], the execution of an operation is done
in two phases: prepare and effect. The former is performed only on the local
replica and looks at the operation and current state to produce a message that
aims to represent the operation, which is then shipped to all replicas. Once
received, the representation of the operation is applied remotely using effect.

On the other hand, in a state-based design [10,5] an operation is only executed
on the local replica state. A replica periodically propagates its local changes to
other replicas through shipping its entire state. A received state is incorporated
with the local state via a merge function that deterministically reconciles both
states. To maintain convergence, merge is defined as a join: a least upper bound
over a join-semilattice [10,5].

Op-based CRDTs have some advantages as they can allow for simpler im-
plementations, concise replica state, and smaller messages; however, they are
subject to some limitations: First, they assume a message dissemination layer
that guarantees reliable exactly-once causal broadcast; these guarantees are hard
to maintain since large logs must be retained to prevent duplication even if TCP
is used [11]. Second, membership management is a hard task in op-based sys-
tems especially once the number of nodes gets larger or due to churn problems,
since all nodes must be coordinated by the middleware. Third, the op-based ap-
proach requires operations to be executed individually (even when batched) on
all nodes.

The alternative is to use state-based systems, which are free from these lim-
itations. However, a major drawback in current state-based CRDTs is the com-
munication overhead of shipping the entire state, which can get very large in size.
For instance, the state size of a counter CRDT (a vector of integer counters, one
per replica) increases with the number of replicas; whereas in a grow-only Set,
the state size depends on the set size, that grows as more operations are in-
voked. This communication overhead limits the use of state-based CRDTs to
data-types with small state size (e.g., counters are reasonable while large sets
are not). Recently, there has been a demand for CRDTs with large state sizes
(e.g., in RIAK DT Maps [12] that can compose multiple CRDTs and that we
formalize in Section 7.4).

In this paper, we rethink the way state-based CRDTs should be designed,
having in mind the problematic shipping of the entire state. Our aim is to ship
a representation of the effect of recent update operations on the state, rather
than the whole state, while preserving the idempotent nature of join. This en-
sures convergence over unreliable communication (on the contrary to op-based
CRDTs that demand exactly-once delivery and are prone to message dupli-
cation). To achieve this, we develop in detail the concept of Delta State-based
CRDTs (δ-CRDT) that we initially introduced in [13]. In this new (delta) frame-
work, the state is still a join-semilattice that now results from the join of multiple
fine-grained states, i.e., deltas, generated by what we call δ-mutators. δ-mutators
are new versions of the datatype mutators that return the effect of these mu-
tators on the state. In this way, deltas can be temporarily retained in a buffer
to be shipped individually (or joined in groups) instead of shipping the entire
object. The changes to the local state are then incorporated at other replicas by
joining the shipped deltas with their own states.

The use of “deltas” (i.e., incremental states) may look intuitive in state dis-
semination; however, this is not the case for state-based CRDTs. The reason is
that once a node receives an entire state, merging it locally is simple since there

is no need to care about causality, as both states are self-contained (including
meta-data). The challenge in δ-CRDT is that individual deltas are now “state
fragments” and usually must be causally merged to maintain the desired seman-
tics. This raises the following questions: is merging deltas semantically equivalent
to merging entire states in CRDTs? If not, what are the sufficient conditions
to make this true in general? And under what constraints causal consistency
is maintained? This paper answers these questions and presents corresponding
proofs and examples.

We address the challenge of designing a new δ-CRDT that conserves the
correctness properties and semantics of an existing CRDT by establishing a
relation between the novel δ-mutators with the original CRDT mutators. We
prove that eventual consistency is guaranteed in δ-CRDT as long as all deltas
produced by δ-mutators are delivered and joined at other replicas, and we present
a corresponding simple anti-entropy algorithm. We then show how to ensure
causal consistency using deltas through introducing the concept of delta-interval
and the causal delta-merging condition. Based on these, we then present an anti-
entropy algorithm for δ-CRDT, where sending and then joining delta-intervals
into another replica state produces the same effect as if the entire state had been
shipped and joined.

We illustrate our approach through a simple counter CRDT and a corre-
sponding δ-CRDT specification. Later, we present a portfolio of several δ-CRDTs
that adapt known CRDT designs and also introduce a generic kernel for the def-
inition of CRDTs that keep a causal history of known events and a CRDT map
that can compose them. All these δ-CRDT datatypes, and a few more, are avail-
able online in a reference C++ library [14]. Our experience shows that a δ-CRDT
version can be devised for all CRDTs, but this requires some design effort that
varies with the complexity of different CRDTs. This refactoring effort can be
avoided for new datatypes by writing all mutations as delta-mutations, and only
deriving the standard mutators if needed; these can be trivially obtained from
the delta-mutators.

2 System Model

Consider a distributed system with nodes containing local memory, with no
shared memory between them. Any node can send messages to any other node.
The network is asynchronous; there is no global clock, no bound on the time
a message takes to arrive, and no bounds on relative processing speeds. The
network is unreliable: messages can be lost, duplicated or reordered (but are
not corrupted). Some messages will, however, eventually get through: if a node
sends infinitely many messages to another node, infinitely many of these will be
delivered. In particular, this means that there can be arbitrarily long partitions,
but these will eventually heal. Nodes have access to durable storage; they can
crash but will eventually recover with the content of the durable storage just
before the crash occurred. Durable state is written atomically at each state
transition. Each node has access to its globally unique identifier in a set I.

2.1 Notation

We use mostly standard notation for sets and maps, including set comprehension
of the forms {f(x) | x ∈ S} or {x ∈ S | Pred(x)}. A map is a set of (k, v) pairs,
where each k is associated with a single v. Given a map m, m(k) returns the value
associated with key k, while m{k 7→ v} denotes m updated by mapping k to v.
The domain and range of a map m is denoted by domm and ranm, respectively,
i.e., domm = {k | (k, v) ∈ m} and ranm = {v | (k, v) ∈ m}. We use fst p and
snd p to denote the first and second component of a pair p, respectively. We use
B, N, and Z, for the booleans, natural numbers, and integers, respectively; also I
for some unspecified set of node identifiers. Most sets we use are partially ordered
and have a least element ⊥ (the bottom element). We use A →֒ B for a partial
function from A to B; given such a map m, then domm ⊆ A and ranm ⊆ B, and
for convenience we use m(k) when k 6∈ domm and B has a bottom, to denote
⊥B; e.g., for some m : I →֒ N, then m(k) denotes 0 for any unmapped key k.

3 A Background of State-based CRDTs

Conflict-Free Replicated Data Types [4,5] (CRDTs) are distributed datatypes
that allow different replicas of a distributed CRDT instance to diverge and
ensures that, eventually, all replicas converge to the same state. State-based
CRDTs achieve this through propagating updates of the local state by dissem-
inating the entire state across replicas. The received states are then merged to
remote states, leading to convergence (i.e., consistent states on all replicas).

A state-based CRDT consists of a triple (S, M, Q), where S is a join-semi-
lattice [15], Q is a set of query functions (which return some result without
modifying the state), and M is a set of mutators that perform updates; a mutator
m ∈ M takes a state X ∈ S as input and returns a new state X ′ = m(X). A
join-semilattice is a set with a partial order ⊑ and a binary join operation ⊔
that returns the least upper bound (LUB) of two elements in S; a join is designed
to be commutative, associative, and idempotent. Mutators are defined in such a
way to be inflations, i.e., for any mutator m and state X , the following holds:

X ⊑ m(X)

In this way, for each replica there is a monotonic sequence of states, defined under
the lattice partial order, where each subsequent state subsumes the previous state
when joined elsewhere.

Both query and mutator operations are always available since they are per-
formed using the local state without requiring inter-replica communication; how-
ever, as mutators are concurrently applied at distinct replicas, replica states will
likely diverge. Eventual convergence is then obtained using an anti-entropy pro-
tocol that periodically ships the entire local state to other replicas. Each replica
merges the received state with its local state using the join operation in S.
Given the mathematical properties of join, if mutations stop being issued and
anti-entropy proceeds, all replicas eventually converge to the same state. i.e. the

GCounter = I →֒ N

⊥ = {}
inci(m) = m{i 7→ m(i) + 1}

value(m) =
∑

j∈I
m(j)

m ⊔m′ = {j 7→ max(m(j),m′(j)) | j ∈ domm ∪ domm′}

Fig. 1: State-based Counter CRDT; replica i.

least upper-bound of all states involved. State-based CRDTs are interesting as
they demand little guarantees from the dissemination layer, working under mes-
sage loss, duplication, reordering, and temporary network partitioning, without
impacting availability and eventual convergence.

Fig. 1 represents a state-based increment-only counter. The GCounter CRDT
state is a map from replica identifiers to positive integers. Initially, the bottom
state ⊥ is an empty map (unmapped keys implicitly mapping to zero). A single
mutator, i.e., inci, is defined that increments the value corresponding to the
local replica i (returning the updated map). The query operation value returns
the counter value by adding the integers in the map entries. The join of two
states is the point-wise maximum of the maps. Mutators, like inci, are in general
parameterized by the replica id i, so that their exact behavior can depend on it,
while queries, like value, are typically replica agnostic and only depend on the
CRDT state, regardless of in which replica they are invoked.

The main weakness of state-based CRDTs is the cost of dissemination of
updates, as the full state is sent. In this simple example of counters, even though
increments only update the value corresponding to the local replica i, the whole
map will always be sent in messages, even when the other map entries remained
unchanged (e.g., if no messages have been received and merged).

It would be interesting to only ship the recent modification incurred on the
state, and possibly any received modifications that effectively changed it. This is,
however, not possible with the current model of state-based CRDTs as mutators
always return a full state. Approaches which simply ship operations (e.g., an “in-
crement n” message), like in operation-based CRDTs, require reliable communi-
cation (e.g., because increment is not idempotent). In contrast, the modification
that we introduce in the next section allows producing and encoding recent mu-
tations in an incremental way, while keeping the advantages of the state-based
approach, namely the idempotent, associative, and commutative properties of
join.

4 Delta-state CRDTs

We introduce Delta-State Conflict-Free Replicated Data Types, or δ-CRDT for
short, as a new kind of state-based CRDTs, in which delta-mutators are defined

to return a delta-state: a value in the same join-semilattice which represents the
updates induced by the mutator on the current state.

Definition 1 (Delta-mutator). A delta-mutator mδ is a function, correspond-
ing to an update operation, which takes a state X in a join-semilattice S as
parameter and returns a delta-mutation mδ(X), also in S.

Definition 2 (Delta-group). A delta-group is inductively defined as either a
delta-mutation or a join of several delta-groups.

Definition 3 (δ-CRDT). A δ-CRDT consists of a triple (S, M δ, Q), where
S is a join-semilattice, M δ is a set of delta-mutators, and Q a set of query
functions, where the state transition at each replica is given by either joining the
current state X ∈ S with a delta-mutation:

X ′ = X ⊔ mδ(X),

or joining the current state with some received delta-group D:

X ′ = X ⊔ D.

In a δ-CRDT, the effect of applying a mutation, represented by a delta-
mutation δ = mδ(X), is decoupled from the resulting state X ′ = X ⊔ δ, which
allows shipping this δ rather than the entire resulting state X ′. All state transi-
tions in a δ-CRDT, even upon applying mutations locally, are the result of some
join with the current state. Unlike standard CRDT mutators, delta-mutators do
not need to be inflations in order to inflate a state; this is however ensured by
joining their output, i.e., deltas, into the current state: X ⊑ X ⊔ mδ(X).

In principle, a delta could be shipped immediately to remote replicas once ap-
plied locally. For efficiency reasons, multiple deltas returned by applying several
delta-mutators can be joined locally into a delta-group and retained in a buffer.
The delta-group can then be shipped to remote replicas to be joined with their
local states. Received delta-groups can optionally be joined into their buffered
delta-group, allowing transitive propagation of deltas. A full state can be seen
as a special (extreme) case of a delta-group.

If the causal order of operations is not important and the intended aim is
merely eventual convergence of states, then delta-groups can be shipped using
an unreliable dissemination layer that may drop, reorder, or duplicate messages.
Delta-groups can always be re-transmitted and re-joined, possibly out of order,
or can simply be subsumed by a less frequent sending of the full state, e.g., for
performance reasons or when doing state transfers to new members.

4.1 Delta-state decomposition of standard CRDTs

A δ-CRDT (S, M δ, Q) is a delta-state decomposition of a state-based CRDT
(S, M, Q), if for every mutator m ∈ M , we have a corresponding mutator mδ ∈
M δ such that, for every state X ∈ S:

m(X) = X ⊔ mδ(X)

This equation states that applying a delta-mutator and joining into the cur-
rent state should produce the same state transition as applying the corresponding
mutator of the standard CRDT.

Given an existing state-based CRDT (which is always a trivial decomposition
of itself, i.e., m(X) = X ⊔ m(X), as mutators are inflations), it will be useful
to find a non-trivial decomposition such that delta-states returned by delta-
mutators in M δ are smaller than the resulting state:

size(mδ(X)) ≪ size(m(X))

In general, there are several possible delta-state decompositions, with multi-
ple possible delta-mutators that correspond to each standard mutator. In order
to minimize the generated delta-states (which will typically minimize their size)
each delta-mutator chosen mδ should be minimal in following sense: for any
other alternative choice of delta-mutator mδ′ , for any X , mδ′(X) 6❁ mδ(X).
Intuitively, minimal delta-mutators do not leak into the deltas they produce
any redundant information that is already present in X . Moreover (although
in theory not always necessarily the case) for typical datatypes that we have
come across in practice, for each mutator m there exists a corresponding min-
imum delta-mutator mδ⊥ , i.e., with mδ⊥ ⊑ mδ′ (under the standard pointwise
function comparison), for any alternative delta-mutator. As we will see in the
concrete examples, typically minimum delta-mutators are found naturally, with
no need for some special “search”.

4.2 Example: δ-CRDT Counter

Fig. 2 depicts a δ-CRDT specification of a counter datatype that is a delta-state
decomposition of the state-based counter in Fig. 1. The state, join and value
query operation remain as before. Only the mutator incδ is newly defined, which
increments the map entry corresponding to the local replica and only returns that
entry, instead of the full map as inc in the state-based CRDT counter does. This
maintains the original semantics of the counter while allowing the smaller deltas
returned by the delta-mutator to be sent, instead of the full map. As before,
the received payload (whether one or more deltas) might not include entries
for all keys in I, which are assumed to have zero values. The decomposition is
easy to understand in this example since the equation inci(X) = X ⊔ incδi (X)
holds as m{i 7→ m(i) + 1} = m ⊔ {i 7→ m(i) + 1}. In other words, the single
value for key i in the delta, corresponding to the local replica identifier, will
overwrite the corresponding one in m since the former maps to a higher value
(i.e., using max). Here it can be noticed that: (1) a delta is just a state, that
can be joined possibly several times without requiring exactly-once delivery, and
without being a representation of the “increment” operation (as in operation-
based CRDTs), which is itself non-idempotent; (2) joining deltas into a delta-
group and disseminating delta-groups at a lower rate than the operation rate

GCounter = I →֒ N

⊥ = {}
incδi (m) = {i 7→ m(i) + 1}

value(m) =
∑

j∈I
m(j)

m ⊔m′ = {j 7→ max(m(j),m′(j)) | j ∈ domm ∪ domm′}

Fig. 2: A δ-CRDT counter; replica i.

reduces data communication overhead, since multiple increments from a given
source can be collapsed into a single state counter.

5 State Convergence

In the δ-CRDT execution model, and regardless of the anti-entropy algorithm
used, a replica state always evolves by joining the current state with some delta:
either the result of a delta-mutation, or some arbitrary delta-group (which itself
can be expressed as a join of delta-mutations). Without loss of generality, we
assume S has a bottom ⊥ which is also the initial state. (Otherwise, a bottom can
always be added, together with a special init delta-mutator, which returns the
initial state.) Therefore, all states can be expressed as joins of delta-mutations,
which makes state convergence in δ-CRDT easy to achieve: it is enough that all
delta-mutations generated in the system reach every replica, as expressed by the
following proposition.

Proposition 1. (δ-CRDT convergence) Consider a set of replicas of a δ-CRDT
object, replica i evolving along a sequence of states X0

i = ⊥, X1
i , . . ., each replica

performing delta-mutations of the form mδ
i,k(X

k
i) at some subset of its sequence

of states, and evolving by joining the current state either with self-generated
deltas or with delta-groups received from others. If each delta-mutation mδ

i,k(X
k
i)

produced at each replica is joined (directly or as part of a delta-group) at least
once with every other replica, all replica states become equal.

Proof. Trivial, given the associativity, commutativity, and idempotence of the
join operation in any join-semilattice.

This opens up the possibility of having anti-entropy algorithms that are only
devoted to enforce convergence, without necessarily providing causal consistency
(enforced in standard CRDTs); thus, making a trade-off between performance
and consistency guarantees. For instance, in a counter (e.g., for the number of
likes on a social network), it may not be critical to have causal consistency, but
merely not to lose increments and achieve convergence.

1 inputs:
2 ni ∈ P(I), set of neighbors
3 ti ∈ B, transitive mode
4 choosei ∈ S × S → S, state/delta

5 durable state:
6 Xi ∈ S, CRDT state, X0

i = ⊥
7 volatile state:
8 Di ∈ S, delta-group, D0

i = ⊥
9 on operationi(m

δ)

10 d = mδ(Xi)
11 X ′

i = Xi ⊔ d
12 D′

i = Di ⊔ d

13 on receivej,i(d)
14 X ′

i = Xi ⊔ d
15 if ti then
16 D′

i = Di ⊔ d
17 else
18 D′

i = Di

19 periodically
20 m = choosei(Xi, Di)
21 for j ∈ ni do
22 sendi,j(m)
23 D′

i = ⊥

Algorithm 1: Basic anti-entropy algorithm for δ-CRDT.

5.1 Basic Anti-Entropy Algorithm

A basic anti-entropy algorithm that ensures eventual convergence in δ-CRDT is
presented in Algorithm 1. For the node corresponding to replica i, the durable
state, which persists after a crash, is simply the δ-CRDT state Xi. The volatile
state D stores a delta-group that is used to accumulate deltas before eventually
sending it to other replicas. The initial value for both Xi and Di is ⊥.

When an operation is performed, the corresponding delta-mutator mδ is ap-
plied to the current state of Xi, generating a delta d. This delta is joined both
with Xi to produce a new state, and with D. In the same spirit of standard
state based CRDTs, a node sends its messages in a periodic fashion, where the
message payload is either the delta-group Di or the full state Xi; this decision is
made by the function choosei which returns one of them. To keep the algorithm
simple, a node simply broadcasts its messages without distinguishing between
neighbors. After each send, the delta-group is reset to ⊥.

Once a message is received, the payload d is joined into the current δ-CRDT
state. The basic algorithm operates in one of two modes: (1) a transitive mode
(when ti is true) in which d is also joined into D, allowing transitive propaga-
tion of delta-mutations, where deltas received at node i from some node j can
later be sent to some other node k; (2) a direct mode where a delta-group is
exclusively the join of local delta-mutations (j must send its deltas directly to
k). The decisions of whether to send a delta-group versus the full state (typi-
cally less periodically), and whether to use the transitive or direct mode are out
of the scope of this paper. In general, decisions can be made considering many
criteria like delta-group size, state size, message loss distribution assumptions,
and network topology.

6 Causal Consistency

Traditional state-based CRDTs converge using joins of the full state, which im-
plicitly ensures per-object causal consistency [16]: each state of some replica of

an object reflects the causal past of operations on the object (either applied
locally, or applied at other replicas and transitively joined).

Therefore, it is desirable to have δ-CRDTs offer the same causal-consistency
guarantees that standard state-based CRDTs offer. This raises the question
about how can delta propagation and merging of δ-CRDT be constrained (and
expressed in an anti-entropy algorithm) in such a manner to give the same re-
sults as if a standard state-based CRDT was used. Towards this objective, it is
useful to define a particular kind of delta-group, which we call a delta-interval :

Definition 4 (Delta-interval). Given a replica i progressing along the states
X0

i , X1
i , . . ., by joining delta dki (either local delta-mutation or received delta-

group) into Xk
i to obtain Xk+1

i , a delta-interval ∆a,b
i is a delta-group resulting

from joining deltas dai , . . . , d
b−1
i :

∆a,b
i =

⊔
{dki | a ≤ k < b}

The use of delta-intervals in anti-entropy algorithms will be a key ingredient
towards achieving causal consistency. We now define a restricted kind of anti-
entropy algorithm for δ-CRDTs.

Definition 5 (Delta-interval-based anti-entropy algorithm). A given anti-
entropy algorithm for δ-CRDTs is delta-interval-based, if all deltas sent to other
replicas are delta-intervals.

Moreover, to achieve causal consistency the next condition must satisfied:

Definition 6 (Causal delta-merging condition). A delta-interval based anti-
entropy algorithm is said to satisfy the causal delta-merging condition if the al-
gorithm only joins ∆a,b

j from replica j into state Xi of replica i that satisfy:

Xi ⊒ Xa
j .

This means that a delta-interval is only joined into states that at least reflect
(i.e., subsume) the state into which the first delta in the interval was previously
joined. The causal delta-merging condition is important, since any delta-interval
based anti-entropy algorithm for a δ-CRDT that satisfies it can be used to obtain
the same outcome of a standard CRDT; this is formally stated in Proposition 2.

Proposition 2. (CRDT and δ-CRDT correspondence) Let (S, M, Q) be a stan-
dard state-based CRDT and (S, M δ, Q) a corresponding delta-state decomposi-
tion. Any δ-CRDT state reachable by an execution Eδ over (S, M δ, Q), by a
delta-interval based anti-entropy algorithm Aδ satisfying the causal delta-merging
condition, is equal to a state resulting from an execution E over (S, M, Q), hav-
ing the corresponding data-type operations, by an anti-entropy algorithm A for
state-based CRDTs.

Proof. By simulation, establishing a correspondence between an execution Eδ,
and execution E of a standard CRDT of which (S, M δ, Q) is a decomposition, as

follows: 1) the state (Xi, Di, . . .) of each node in Eδ containing CRDT state Xi,
information about delta-intervals Di and possibly other information, corresponds
to only Xi component (in the same join-semilattice); 2) for each action which is
a delta-mutation mδ in Eδ, E executes he corresponding mutation m, satisfying
m(X) = X ⊔ mδ(X); 3) whenever Eδ contains a send action of a delta-interval

∆a,b
i , execution E contains a send action containing the full state Xb

i ; 4) whenever

Eδ performs a join into some Xi of a delta-interval ∆a,b
j , execution E delivers

and joins the corresponding message containing the full CRDT state Xb
j . By

induction on the length of the trace, assume that for each replica i, each node
state Xi in E is equal to the corresponding component in the node state in Eδ, up
to the last action in the global trace. A send action does not change replica state,
preserving the correspondence. Replica states only change either by performing
data-type update operations or upon message delivery by merging deltas/states
respectively. If the next action is an update operation, the correspondence is
preserved due to the delta-state decomposition property m(X) = X ⊔ mδ(X).
If the next action is a message delivery at replica i, with a merging of delta-
interval/state from other replica j, because algorithm Aδ satisfies the causal

merging-condition, it only joins into state Xk
i a delta-interval ∆a,b

j if Xk
i ⊒ Xa

j .
In this case, the outcome will be:

Xk+1
i = Xk

i ⊔ ∆a,b
j

= Xk
i ⊔

⊔
{dlj | a ≤ l < b}

= Xk
i ⊔ Xa

j ⊔
⊔

{dlj | a ≤ l < b}
= Xk

i ⊔ Xa
j ⊔ daj ⊔ da+1

j ⊔ . . . ⊔ db−1
j

= Xk
i ⊔ Xa+1

j ⊔ da+1
j ⊔ . . . ⊔ db−1

j

= . . .

= Xk
i ⊔ Xb−1

j ⊔ db−1
j

= Xk
i ⊔ Xb

j

The resulting state Xk+1
i in Eδ will be, therefore, the same as the corresponding

one in E where the full CRDT state from j has been joined, preserving the
correspondence between Eδ and E.

Corollary 1. (δ-CRDT causal consistency) Any δ-CRDT in which states are
propagated and joined using a delta-interval-based anti-entropy algorithm satis-
fying the causal delta-merging condition ensures causal consistency.

Proof. From Proposition 2 and causal consistency of state-based CRDTs.

6.1 Anti-Entropy Algorithm for Causal Consistency

Algorithm 2 is a delta-interval based anti-entropy algorithm which enforces the
causal delta-merging condition. It can be used whenever the causal consistency

1 inputs:
2 ni ∈ P(I), set of neighbors
3 durable state:
4 Xi ∈ S, CRDT state, X0

i = ⊥
5 ci ∈ N, sequence number, c0i = 0

6 volatile state:
7 Di ∈ N →֒ S, deltas, D0

i = {}
8 Ai ∈ I →֒ N, ack map, A0

i = {}
9 on receivej,i(delta, d, n)

10 if d 6⊑ Xi then
11 X ′

i = Xi ⊔ d
12 D′

i = Di{ci 7→ d}
13 c′i = ci + 1

14 sendi,j(ack, n)

15 on receivej,i(ack, n)
16 A′

i = Ai{j 7→ max(Ai(j), n)}

17 on operationi(m
δ)

18 d = mδ(Xi)
19 X ′

i = Xi ⊔ d
20 D′

i = Di{ci 7→ d}
21 c′i = ci + 1

22 periodically // ship interval or state
23 j = random(ni)
24 if Di = {} ∨ min domDi > Ai(j)

then
25 d = Xi

26 else
27 d =

⊔{Di(l) | Ai(j) ≤ l < ci}
28 if Ai(j) < ci then
29 sendi,j(delta, d, ci)

30 periodically // garbage collect deltas
31 l = min{n | (, n) ∈ Ai}
32 D′

i = {(n, d) ∈ Di | n ≥ l}

Algorithm 2: Anti-entropy algorithm ensuring causal consistency of δ-CRDT.

guarantees of standard state-based CRDTs are needed. For simplicity, it ex-
cludes some optimizations that are important in practice, but easy to derive.
The algorithm distinguishes neighbor nodes, and only sends to each one appro-
priate delta-intervals that obey the delta-merging condition and can joined at
the receiving node.

Each node i keeps a contiguous sequence of deltas dli, . . . , d
u
i in a map D

from integers to deltas, with l = min domD and u = max domD. The sequence
numbers of deltas are obtained from the counter ci that is incremented when
a delta (whether a delta-mutation or delta-interval received) is joined with the
current state. Each node i keeps an acknowledgments map A that stores, for
each neighbor j, the largest index b for all delta-intervals ∆a,b

i acknowledged by

j (after j receives ∆a,b
i from i and joins it into Xj).

Node i sends a delta-interval d = ∆a,b
i with a (delta, d, b) message; the re-

ceiving node j, after joining ∆a,b
i into its replica state, replies with an acknowl-

edgment message (ack, b); if an ack from j was successfully received by node i,
it updates the entry of j in the acknowledgment map, using the max function.
This handles possible old duplicates and messages arriving out of order.

Like the δ-CRDT state, the counter ci is also kept in a durable storage. This
is essential to cope with potential crash and recovery incidents. Otherwise, there
would be the danger of receiving some delayed ack, for a delta-interval sent
before crashing, causing the node to skip sending some deltas generated after
recovery, thus violating the delta-merging condition.

The algorithm for node i periodically picks a random neighbor j. In prin-
ciple, i sends the join of all deltas starting from the latest delta acked by j.
Exceptionally, i sends the entire state in two cases: (1) if the sequence of deltas

Di is empty, or (2) if j is expecting from i a delta that was already removed
from Di (e.g., after a crash and recovery, when both deltas and the ack map,
being volatile state, are lost). A delta message is only sent if the counter ci has
advanced past the next delta expected by node j, i.e., if Ai(j) < ci, to avoid
sending the full state in local inactivity periods, when no local operations are
being issued, all neighbor nodes have acked all deltas, and garbage collection
has been applied, making the Di map empty. To garbage collect old deltas, the
algorithm periodically removes the deltas that have been acked by all neighbors.

Proposition 3. Algorithm 2 produces the same reachable states as a standard
algorithm over a CRDT for which the δ-CRDT is a decomposition, ensuring
causal consistency.

Proof. From Proposition 2 and Corollary 1, it is enough to prove that the al-
gorithm satisfies the causal delta-merging condition. The algorithm explicitly
keeps deltas dki tagged with increasing sequence numbers (even after a crash),

according with the definition; node j only sends to i a delta-interval ∆a,b
j if i has

acked a; this ack is sent only if i has already joined some delta-interval (possi-

bly a full state) ∆k,a
j . Either k = 0 or, by the same reasoning, this ∆k,a

j could

only have been joined at i if some other interval ∆l,k
j had already been joined

into i. This reasoning can be recursed until a delta-interval starting from zero is
reached. Therefore, Xi ⊒ ⊔{dkj | 0 ≤ k < a} = ∆0,a

j = Xa
j .

7 Portfolio of δ-CRDTs

Having established the equivalence to classic state based CRDTs we now derive a
series of specifications based on delta-mutators. Although we cover a significant
number of CRDTs, the goal is not to provide an exhaustive survey, but instead
to illustrate more extensively the design of specifications with deltas. In our
experience the intellectual effort of designing a delta-based CRDT is not much
higher than designing it with standard mutators. Since standard mutators can
be obtained from delta-mutators, by composing these with join, having delta-
mutators as basic building blocks can only add flexibility to the designs.

First, we will cover simple CRDTs and CRDT compositions that do not
require distinguished node identifiers for the mutation. Next, we cover CRDTs
that require a unique identifier for each replica that is allowed to mutate the
state, and make use of this identifier in one or more of the mutations. Then, we
address the important class of what we denote by Causal CRDTs, presenting a
generic design in which the state lattice is formed by a dot store and a causal
context. We define three such dot stores and corresponding lattices, which are
then used to defined several causal CRDTs. We conclude the portfolio with
a Map design, a causal CRDT which can correctly embed any causal CRDT,
including the map itself.

All of the selected CRDTs have delta implementations available in C++ [14],
that complement the specifications. Most of the Causal CRDTs, including the

Pair〈A,B〉 = A×B

⊥ = (⊥,⊥)

(a, b) ⊔ (a′, b′) = (a ⊔ a′, b ⊔ b′)

Fig. 3: Pair of join-semilattices.

LexPair〈A,B〉 = A⊠B

⊥ = (⊥,⊥)

(a, b) ⊔ (a′, b′) =

(a, b) if a > a′

(a′, b′) if a′ > a

(a, b ⊔ b′) if a = a′

(a ⊔ a′,⊥) otherwise

Fig. 4: Lexicographic pair of join-semilattices.

Map, are also available in Erlang and deployed in production as part of Riak
DT [17].

7.1 Simple Lattice Compositions

To obtain composite CRDTs, a basic ingredient is being able to obtain states,
which are join-semilattices, as composition of join-semilattices. Two common
useful cases are the product and lexicographic product. Other examples of lattice
composition are presented in [18,15].

Pair In Figure 3 we show the standard pair composition. The bottom is the pair
of respective bottoms and the join is the coordinate-wise join of the components.
This can be generalized to products of more than two components.

Lexicographic Pair A variation of the pair composition is to establish a lexi-
cographic pair. In this construction, in Figure 4, the first element takes priority in
establishing the outcome of the join, and a join of the second component is only
performed on a tie. One important special case in when the first component is a
total order; it can be used, e.g., to define an outcome based on the comparison
of a time-stamp, as will be shown later.

7.2 Anonymous δ-CRDTs

The simplest CRDTs are anonymous. This occurs when the mutators do not
make use of a globally unique replica identifier, having a uniform specification

GSet〈E〉 = P(E)

⊥ = {}
insertδi (e, s) = {e}
elements(s) = s

s ⊔ s′ = s ∪ s′

Fig. 5: δ-CRDT grow-only set, replica i.

2PSet〈E〉 = P(E)× P(E)

⊥ = (⊥,⊥)

insertδi (e, (s, t)) = ({e},⊥)

removeδi (e, (s, t)) = (⊥, {e})
elements((s, t)) = s \ t
(s, t) ⊔ (s′, t′) = (s ⊔ s′, t ⊔ t′)

Fig. 6: δ-CRDT two-phase set, replica i.

for all replicas. (Although for uniformity of notation we will keep parameterizing
mutators by replica identifier.)

GSet A simple example is illustrated by a grow-only set, in Figure 5. The single
delta mutator insertδi (e, s) does not even need to consider the current state of
the replica, available in s, and simply produces a delta with a singleton set
containing the element e to be added. This delta {e} when joined to s produces
the desired result: an inflated set s ∪ {e} that includes element e. The join of
grow-only sets is trivially obtained by unioning the sets.

2PSet In case one needs to remove elements, there are multiple ways of address-
ing it. The simplest way is to include another (grow-only) set that gathers the
removed elements. This is done in Figure 6, which shows a two-phase set, with
state being a pair of sets. The name comes from the fact that elements may go
through two phases: the added phase and the removed phase. The shortcoming
of this simple design is that once removed, elements cannot be re-added.

If we look at the query function elements it is clear that the data-type is
presenting to the user the set difference between the added elements and the
removed elements (those stored in the tombstone set t). Removing an element
simply adds it to the removed set. (A variant of 2PSet with guarded removes
[19] only does so if the element is already present in the added set.) The join is
simply a pairwise join.

AWLWWSet〈E〉 = E →֒ N⊠B
⊥ = {}

insertδi (e, t,m) = {e 7→ (t,True)}
removeδi (e, t,m) = {e 7→ (t,False)}

elements(m) = {e | (e, (,True)) ∈ m}
m ⊔m′ = {e 7→ m(e) ⊔m′(e) | e ∈ domm ∪ domm′}

Fig. 7: δ-CRDT Add-Wins LWW Set, replica i.

Add-Wins Last-Writer-Wins Set This construction, depicted in Figure 7,
manages a set of elements of type E by tagging them with timestamps from
some total order – here we use natural numbers. Each time an elements is added,
it is tagged with a client supplied timestamp and the boolean True. Removed
elements are similarly tagged, but with the boolean False. Elements marked
with True are considered to be in the set. When joining two such sets, those
elements in common will have to compete to define if they are in the set. By using
lexicographic pairs, we obtain the behaviour that elements with higher (more
recent) time-stamps will win, defining the presence according to the boolean tag;
if there is a tie in the time-stamp, adds will win, since we order False < True.

Notice that is is up to the client to ensure that supplied timestamps always
grow monotonically. Failure to do so is a common source of errors in timestamp
based systems [20]. A dual construction to the Add-Wins LWW Set is a Remove-
Wins LWW Set, where remove operations take priority on the event of a time-
stamp tie. This construction has been widely deployed in production as part the
SoundCloud system [6].

7.3 Named δ-CRDTs

Another design strategy for conflict-free data-types is to ensure that each replica
only changes a specific part of the state. In Section 4, we defined a GCounter
that, using a map from globally unique replica identifiers to natural numbers,
keeps track of how many increment operations each replica did. This was the
first example of a named CRDT, the construction covered in this section. The
distinction from anonymous CRDTs is that mutations make use of the replica
identifier i.

PNCounter By composing, in a pair, two grow-only counters we obtain a
positive-negative counter that can track both increments and decrements. Shown
in Figure 8, the increment and decrement operations will update the first and
second components of the pair, respectively. As expected, the value is obtained
by subtracting the decrements from the increments.

PNCounter = GCounter×GCounter

⊥ = (⊥,⊥)

incδi ((p, n)) = (incδi (p),⊥)

decδi ((p, n)) = (⊥, incδi (n))

value((p, n)) = value(p)− value(n)

(p, n) ⊔ (p′, n′) = (p ⊔ p′, n ⊔ n′)

Fig. 8: δ-CRDT positive-negative counter, replica i.

LexCounter = I →֒ N⊠Z
⊥ = {}

incδi (m) = {i 7→ m(i) + (0, 1)}
decδi (m) = {i 7→ m(i) + (1,−1)}
value(m) =

∑

j∈I
sndm(j)

m ⊔m′ = {j 7→ m(j) ⊔m′(j) | j ∈ domm ∪ domm′}

Fig. 9: δ-CRDT Lexicographic Counter, replica i.

Lexicographic Counter While the PNCounter was one of the first CRDTs
to be added to a production database, in Riak 1.4 [21], the competing Cassan-
dra database had its own counter implementations based on the LWW strategy.
Interestingly it proved to be difficult to avoid semantic anomalies in the be-
haviour of those early counters, and since Cassandra 2.1, a new counter was
introduced [22]. We capture its main properties in the Figure 9 specification of
a LexCounter.

This counter is updated by either incrementing or decrementing the second
component of the lexicographic pair corresponding to the replica issuing the
mutation. Decrements also increment the first component, to ensure that the pair
will be inflated, making it (and therefore, the just updated second component)
win upon a lexicographic join.

7.4 Causal δ-CRDTs

We now introduce a specific class of CRDTs, that we will refer to as causal
CRDTs. Initial designs [5] introduced data types such as observed-remove sets
and multi-value registers. While these made possible sets which allow adding
and removing elements multiple times, and to model the design of the even-
tually consistent shopping cart, in Amazon Dynamo [3], they had sub-optimal
scalability properties [16]. Later designs, such as in observed-remove sets without

CausalContext = P(I×N)

maxi(c) = max({n | (i, n) ∈ c} ∪ {0})
nexti(c) = (i,maxi(c) + 1)

Fig. 10: Causal Context.

tombstones [23], allow an efficient management of meta-data state and can be
applied to a broad class of data-types.

We introduce the concept of dot store to be used together with a causal
context to form the state (a join-semilattice) of a causal CRDT, presenting three
such dot stores and lattices. These are then used to obtain several related data-
types, including flags, registers, sets, and maps.

Causal Context A common property to causal CRDTs is that events can be
assigned unique identifiers. A simple mechanism is to create these identifiers by
appending to a globally unique replica identifier a replica-unique integer. For
instance, in replica i ∈ I we can create the sequence (i, 1), (i, 2), Each of
these pairs can be used to tag a specific event, or client action, and if we collect
these pairs in a grow-only set, we can remember which events are known to each
replica. The pair is called a dot and the grow-only set of pairs can be called a
causal history, or alternatively a causal context, as we do here.

As seen in Figure 10, a causal context is a set of dots. We define two functions
over causal contexts: maxi(c) gives the maximum sequence number for pairs in
c from replica i, or 0 if there is no such dot; nexti(c) produces the next available
sequence number for replica i given set of events in c.

Causal Context Compression In practice, a causal context can be efficiently
compressed without any loss of information. When using an anti-entropy algo-
rithm that provides causal consistency, e.g., Algorithm 2, then for each replica
state Xi that includes a causal context ci, and for any replica identifier j ∈ I,
we have a contiguous sequence:

1 ≤ n ≤ maxj(ci) ⇒ (j, n) ∈ ci.

Thus, under causal consistency the causal context can always be encoded as a
compact version vector [24] I →֒ N that keeps the maximum sequence number
for each replica.

Even under non-causal anti-entropy, such as in Algorithm 1, compression
is still possible by keeping a version vector that encodes the initial contiguous
sequence of dots from each replica, together with a set for the non-contiguous
dots. As anti-entropy proceeds, each dot is eventually encoded in the vector, and
thus the set remains typically small. Compression is less likely for the causal
context of delta-groups in transit or buffered to be sent, but those contexts are

DotStore

dots〈S : DotStore〉 : S → P(I×N)

DotSet : DotStore = P(I×N)

dots(s) = s

DotFun〈V : Lattice〉 : DotStore = I×N →֒ V

dots(s) = dom s

DotMap〈K, V : DotStore〉 : DotStore = K →֒ V

dots(m) =
⋃

{dots(v) | (, v) ∈ m}

Fig. 11: Dot Stores.

only transient and smaller than those in the actual replica states. Moreover, the
same techniques that encodes contiguous sequences of dots can also be used for
transient context compression [25].

Dot Stores Together with a causal context, the state of a causal CRDT will
use some kind of dot store, which acts as a container for data-type specific
information. A dot store can be queried about the set of event identifiers (dots)
corresponding to the relevant operations in the container, by function dots, which
takes a dot store and returns a set of dots. In Figure 11 we define three kinds
of dot stores: a DotSet is simply a set of dots; the generic DotFun〈V 〉 is a map
from dots to some lattice V ; the generic DotMap〈K, V 〉 is a map from some set
K into some dot store V .

Causal δ-CRDTs In figure 12 we define the join-semilattice which serves as
state for Causal δ-CRDTs, where an element is a pair of dot store and causal
context. We define the join operation for each of the three kinds of dot stores.
These lattices are a generalization of techniques introduced in [23,26]. To under-
stand the meaning of a state (and the way join must behave), a dot present in
a causal context but not in the corresponding dot store, means that the dot was
present in the dot store, some time the past, but has been removed meanwhile.
Therefore, the causal context can track operations with remove semantics, while
avoiding the need for individual tombstones.

When joining two replicas, a dot present in only one dot store, but included
in the causal context of the other, will be discarded. This is clear for the simpler
case of a DotSet, where the join preserves all dots in common, together with
those not present in the other causal context. The DotFun〈V 〉 case is analogous,

Causal〈T : DotStore〉 = T × CausalContext

⊔ : Causal〈T 〉 × Causal〈T 〉 → Causal〈T 〉

when T : DotSet

(s, c) ⊔ (s′, c′) = ((s ∩ s′) ∪ (s \ c′) ∪ (s′ \ c), c ∪ c′)

when T : DotFun〈 〉
(m, c) ⊔ (m′, c′) = ({k 7→ m(k) ⊔m′(k) | k ∈ domm ∩ domm′} ∪

{(d, v) ∈ m | d 6∈ c′} ∪ {(d, v) ∈ m′ | d 6∈ c}, c ∪ c′)

when T : DotMap〈 , 〉
(m, c) ⊔ (m′, c′) = ({k 7→ v(k) | k ∈ domm ∪ domm′ ∧ v(k) 6= ⊥}, c ∪ c′)

where v(k) = fst ((m(k), c) ⊔ (m′(k), c′))

Fig. 12: Lattice for Causal δ-CRDTs.

but the container is now a map from dots to some value, allowing the value for
a given dot to evolve with time, independently at each replica. It assumes the
value set is a join-semilattice, and applies the corresponding join of values for
each dot in common.

In the more complex case of DotMap〈K, V 〉, a map from some K to some
dot store V , the join, for each key present in either replica, performs a join in
the lattice Causal〈V 〉, by pairing the per-key value with the replica-wide causal
context, and storing the resulting value (first component of the result) for that
key, but only when it is not ⊥V . This allows the disassociation of a composite
embedded value from a key, with no need for a per-key tombstone, by remem-
bering in the causal context all dots from the composite value. Matching our
notation, in a DotMap〈K, V 〉, any unmapped key corresponds effectively to the
bottom ⊥V .

Enable-Wins Flag The flags are simple, yet useful, data-types that were first
introduced in Riak 2.0 [17]. Figure 13 presents an enable-wins flag. Enabling
the flag simply replaces all dots in the store by a new dot; this is achieved by
obtaining the dot through nexti(c), and making the delta mutator return a store
containing just the new dot, together with a causal context containing both the
new dot and all current dots in the store; this will make all current dots to be
removed from the store upon a join (as previously defined), while the new dot is
added. Concurrent enabling can lead to the store containing several dots. Reads
will consider the flag enabled if the store is not an empty set. Disabling is similar
to enabling, in that all current dots are removed from the store, but no new dot

EWFlag = Causal〈DotSet〉
enableδi ((s, c)) = (d, d ∪ s) where d = {nexti(c)}
disableδi ((s, c)) = ({}, s)

read((s, c)) = s 6= {}

Fig. 13: δ-CRDT Enable-wins Flag, replica i.

MVRegister〈V 〉 = Causal〈DotFun〈V 〉〉
writeδi (v, (m, c)) = ({d 7→ v}, {d} ∪ domm) where d = nexti(c)

clearδi ((m, c)) = ({}, domm)

read((m, c)) = ranm

Fig. 14: δ-CRDT Multi-value register, replica i.

is added. It is possible to construct a dual data-type with disable-wins semantics
and its code is also available [14].

Multi-Value Register A multi-value register supports read and write op-
erations, with traditional sequential semantics. Under concurrent writes, a join
makes a subsequent read return all concurrently written values, and a subsequent
write will overwrite all those values. This data-type captures the semantics of
the Amazon shopping cart [3], and the usual operation of Riak (when not using
CRDT data-types). Initial implementations of these registers tagged each value
with a full version vector [5]; here we introduce an optimized implementation
that tags each value with a single dot, by using a DotFun〈V 〉 as dot store. In
Figure 14 we can see that the write delta mutator returns a causal context with
all dots in the store, so that they are removed upon join, together with a single
mapping from a new dot to the value written; as usual, the new dot is also put in
the context. A clear operation simply removes current dots, leaving the register
in the initial empty state. Reading simply returns all values mapped in the store.

Add-Wins Set In an add-wins set removals do not affect elements that have
been concurrently added. In this sense, under concurrent updates, an add will
win over a remove of the same element. The implementation, in Figure 15, uses
a map from elements to sets of dots as dot store. This data-type can be seen
as a map from elements to enable-wins flags, but with a single common causal
context, and keeping only elements mapped to an enabled flag.

When an element is added, all dots in the corresponding entry will be replaced
by a singleton set containing a new dot. If a DotSet for some element were to be-
come empty, such as when removing the element, the join for DotMap〈E,DotSet〉

AWSet〈E〉 = Causal〈DotMap〈E,DotSet〉〉
addδi (e, (m, c)) = ({e 7→ d}, d ∪m(e)) where d = {nexti(c)}

removeδi (e, (m, c)) = ({}, m(e))

clearδi ((m, c)) = ({}, dots(m))

elements((m, c)) = domm

Fig. 15: δ-CRDT Add-wins set, replica i.

RWSet〈E〉 = Causal〈DotMap〈E,DotMap〈B,DotSet〉〉〉
addδi (e, (m, c)) = ({e 7→ {True 7→ d}}, d ∪ dots(m(e))) where d = {nexti(c)}

removeδi (e, (m, c)) = ({e 7→ {False 7→ d}}, d ∪ dots(m(e))) where d = {nexti(c)}
clearδi ((m, c)) = ({}, dots(m))

elements((m, c)) = {e ∈ domm | False 6∈ domm(e)}

Fig. 16: δ-CRDT Remove-wins set, replica i.

will remove the entry from the resulting map. Concurrently created dots are pre-
served when joining. The clear delta mutator will put all dots from the dot store
in the causal context, to be removed when joining. As only non-empty entries
are kept in the map, the set of elements corresponds to the map domain.

Remove-Wins Set Under concurrent adds and removes of the same element,
a remove-wins set will make removes win. To obtain this behaviour, the imple-
mentation in Figure 16 uses a map from elements to a nested map from booleans
to sets of dots. For both adding and removing of a given entry, the corresponding
nested map is cleared (by the delta mutator inserting all corresponding dots into
the causal context), and a new mapping from either True or False, respectively,
to a singleton new dot is added.

When joining replicas, the nested map will collect the union of the respective
sets in the corresponding entry (for dots not seen by the other causal context). As
before, only non-bottom entries are kept, for both outer map (non-empty maps)
and nested map (non-empty DotSets). Therefore, an element is considered to be
in the set if it belongs to the outer map domain, and the corresponding nested
map does not contain a False entry; thus, concurrent removes will win over adds.

A Map Embedding Causal δ-CRDTs. Maps are important composition
tools for the construction of complex CRDTs. Although grow-only maps are
simple to conceive and have been used in early state based designs [10], the
creation of a map that allows removal of entries and supports recursive com-
position is not trivial. Riak 2.0 introduced a map design that provides a clear

ORMap〈K,Causal〈V 〉〉 = Causal〈DotMap〈K,V 〉〉
applyδi (o

δ
i , k, (m, c)) = ({k 7→ v}, c′) where (v, c′) = oδi ((m(k), c))

removeδi (k, (m, c)) = ({}, dots(m(k)))

clearδi ((m, c)) = ({}, dots(m))

Fig. 17: δ-CRDT Map embedding Causal δ-CRDTs, with observed removes,
replica i.

observed-remove semantics: a remove can be seen as an “undo” of all operations
leading to the embedded value, putting it in the bottom state, but remembering
those operations, to undo them in other replicas which observe it by a join. Key
to the design is to enable removal of keys to affect (and remember) the dots
in the associated nested CRDT, to allow joining with replicas that have con-
currently evolved from the before-removal point, or to ensure that re-creating
entries previously removed does not introduce anomalies.

In order to obtain the desired semantics it is not possible to simply map keys
to causal CRDTs having their own causal contexts. Doing so would introduce
anomalies when recreating keys, since old versions of the mappings in other
replicas could be considered more recent than newer mappings, since the causal
contexts of the re-created entries would start again at their bottom state. The
solution is to have a common causal context to the whole map, to be used for
all nested components, and never reset that single context.

For an arbitrary set of keys K and a causal δ-CRDT Causal〈V 〉 that we want
to embed (including, recursively, the map we are defining), the desired map
can be achieved through Causal〈DotMap〈K, V 〉〉, where a single causal context is
shared by all keys and corresponding nested CRDTs, as presented in Figure 17.
This map can embed any causal CRDT as values. For instance we can define
a map of type ORMap〈S,AWSet〈E〉〉, mapping strings S to add-wins sets of
elements E; or define a more complex recursive structure that uses a map within
a map ORMap〈N,ORMap〈S,MVReg〈E〉〉〉.

The map does not support a specific operation to add new entries: it starts
as an empty map, which corresponds to any key implicitly mapped to bottom;
then, any operation from the embedded type can be applied, through a higher-
order apply, which takes a delta mutator oδi to be applied, the key k, and the
map (m, c). This mutator fetches the value at key k from m, pairs it with the
shared causal context c, obtaining a value from the embedded type, and invokes
the operation over the pair; from the resulting pair, it extracts the value to
create a new mapping for that key, which it pairs with the resulting causal
context. Removing a key will recursively remove the dots in the corresponding
embedded value, while the clear operation will remove all dots from the store.
This simplicity was achieved by encapsulating most complexity in the join (and
also the dots function) of the embedded type.

8 Related Work

8.1 Eventually convergent data types.

The design of replicated systems that are always available and eventually con-
verge can be traced back to historical designs in [27,28], among others. More
recently, replicated data types that always eventually converge, both by reli-
ably broadcasting operations (called operation-based) or gossiping and merging
states (called state-based), have been formalized as CRDTs [9,10,4,5]. These are
also closely related to BloomL [29] and Cloud Types [30]. State join-semilattices
were used for deterministic parallel programming in LVars [31], where variables
progress in the lattice order by joining other values, and are only accessible by
special threshold reads.

8.2 Message size.

A key feature of δ-CRDT is message size reduction and coalescing, using small-
sized deltas. The general old idea of using differences between things, called
“deltas” in many contexts, can lead to many designs, depending on how ex-
actly a delta is defined. The state-based deltas introduced for Computational
CRDTs [32] require an extra delta-specific merge (in addition to the standard
join) which does not ensure idempotence. In [33], an improved synchronization
method for non-optimized OR-set CRDT [4] is presented, where delta informa-
tion is propagated; in that paper deltas are a collection of items (related to
update events between synchronizations), manipulated and merged through a
protocol, as opposed to normal states in the semilattice. No generic framework
is defined (that could encompass other data types) and the protocol requires sev-
eral communication steps to compute the information to exchange. Operation-
based CRDTs [4,5,34] also support small message sizes, and in particular, pure
flavors [34] that restrict messages to the operation name, and possible argu-
ments. Though pure operation-based CRDTs allow for compact states and are
very fast at the source (since operations are broadcast without consulting the
local state), the model requires more systems guarantees than δ-CRDT do, e.g.,
exactly-once reliable delivery and membership information, and impose more
complex integration of new replicas. The work in [35] shows a different trade-off
among state deltas and pure operations, by tagging operations and creating a
globally stable log of operations while allowing local transient logs to preserve
availability. While having other advantages, the creation of this global log re-
quires more coordination than our gossip approach for causally consistent delta
dissemination, and can stall dissemination.

8.3 Encoding causal histories.

State-based CRDT are always designed to be causally consistent [10,5]. Opti-
mized implementations of sets, maps, and multi-value registers can build on this
assumption to keep the meta-data small [16]. In δ-CRDT, however, deltas and

delta-groups are normally not causally consistent, and thus the design of join,
the meta-data state, as well as the anti-entropy algorithm used must ensure this.
Without causal consistency, the causal context in δ-CRDT can not always be
summarized with version vectors, and consequently, techniques that allow for
gaps are often used. A well known mechanism that allows for encoding of gaps is
found in Concise Version Vectors [36]. Interval Version Vectors [25], later on, in-
troduced an encoding that optimizes sequences and allows gaps, while preserving
efficiency when gaps are absent.

9 Conclusion

We introduced the new concept of δ-CRDTs and devised delta-mutators over
state-based datatypes which can detach the changes that an operation induces
on the state. This brings a significant performance gain as it allows only shipping
small states, i.e., deltas, instead of the entire state. The significant property in
δ-CRDT is that it preserves the crucial properties (idempotence, associativity
and commutativity) of standard state-based CRDT. In addition, we have shown
how δ-CRDT can achieve causal consistency; and we presented an anti-entropy
algorithm that allows replacing classical state-based CRDTs by more efficient
ones, while preserving their properties. As an application of our approach we
designed several novel δ-CRDT specifications, including a general framework for
causal CRDTs and composition in maps.

Our approach is more relaxed than classical state-based CRDTs, and thus,
can replace them without losing their power since δ-CRDT allows shipping delta-
states as well as the entire state. Another interesting observation is that δ-CRDT
can mimic the behavior of operation-based CRDTs, by shipping individual deltas
on the fly but with weaker guarantees from the dissemination layer.

References

1. Cribbs, S., Brown, R.: Data structures in Riak. In: Riak Conference (RICON),
San Francisco, CA, USA (oct 2012)

2. Terry, D.B., Theimer, M.M., Petersen, K., Demers, A.J., Spreitzer, M.J., Hauser,
C.H.: Managing update conflicts in Bayou, a weakly connected replicated storage
system. In: Symp. on Op. Sys. Principles (SOSP), Copper Mountain, CO, USA,
ACM SIGOPS, ACM Press (December 1995) 172–182

3. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s highly avail-
able key-value store. In: Symp. on Op. Sys. Principles (SOSP). Volume 41 of
Operating Systems Review., Stevenson, Washington, USA, Assoc. for Computing
Machinery (October 2007) 205–220

4. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: A comprehensive study of
Convergent and Commutative Replicated Data Types. Rapp. Rech. 7506, INRIA,
Rocquencourt, France (January 2011)

5. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Conflict-free replicated data
types. In Défago, X., Petit, F., Villain, V., eds.: Int. Symp. on Stabilization, Safety,

and Security of Distributed Systems (SSS). Volume 6976 of Lecture Notes in Comp.
Sc., Grenoble, France, Springer-Verlag (October 2011) 386–400

6. Peter Bourgon: Consistency without Consensus: CRDTs in Production at Sound-
Cloud. URL http://www.infoq.com/presentations/crdt-soundcloud (Re-
trieved 22-dec-2015)

7. Todd Hoff: How League of Legends Scaled Chat to 70 Million Players - It akes a
lot of Minions. URL http://highscalability.com/blog/2014/10/13 (Retrieved
22-dec-2015)

8. Michael Owen: Using Erlan, Riak and the ORSWOT CRDT at bet365. URL
http://www.erlang-factory.com/euc2015/michael-owen

9. Letia, M., Preguiça, N., Shapiro, M.: CRDTs: Consistency without concurrency
control. Rapp. Rech. RR-6956, INRIA, Rocquencourt, France (June 2009)

10. Baquero, C., Moura, F.: Using structural characteristics for autonomous operation.
Operating Systems Review 33(4) (1999) 90–96

11. Helland, P.: Idempotence is not a medical condition. Queue 10(4) (April 2012)
30:30–30:46

12. Brown, R., Cribbs, S., Meiklejohn, C., Elliott, S.: Riak dt map: A composable,
convergent replicated dictionary. In: Proceedings of the First Workshop on Princi-
ples and Practice of Eventual Consistency. PaPEC ’14, New York, NY, USA, ACM
(2014) 1:1–1:1

13. Almeida, P.S., Shoker, A., Baquero, C.: Efficient state-based crdts by delta-
mutation. In: Networked Systems - Third International Conference, NETYS 2015,
Agadir, Morocco, May 13-15, 2015. (2015)

14. Baquero, C.: Delta-enabled-crdts. URL http://github.com/CBaquero/delta-enabled-crdts

(Retrieved 22-dec-2015)
15. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order (2. ed.). Cam-

bridge University Press (2002)
16. Burckhardt, S., Gotsman, A., Yang, H., Zawirski, M.: Replicated data types:

specification, verification, optimality. In Jagannathan, S., Sewell, P., eds.: POPL,
ACM (2014) 271–284

17. Basho: Riak datatypes. URL http://github.com/basho (Retrieved 22-dec-2015)
18. Kemme, B., Schiper, A., Ramalingam, G., Shapiro, M.: Dagstuhl seminar review:

Consistency in distributed systems. SIGACT News 45(1) (March 2014) 67–89
19. Zeller, P., Bieniusa, A., Poetzsch-Heffter, A.: Formal specification and verification

of crdts. In Ábrahám, E., Palamidessi, C., eds.: Formal Techniques for Distributed
Objects, Components, and Systems - 34th IFIP WG 6.1 International Conference,
FORTE 2014, Held as Part of the 9th International Federated Conference on Dis-
tributed Computing Techniques, DisCoTec 2014, Berlin, Germany, June 3-5, 2014.
Proceedings. Volume 8461 of Lecture Notes in Computer Science., Springer (2014)
33–48

20. Kyle Kingsbury: The trouble with timestamps. URL
https://aphyr.com/posts/299-the-trouble-with-timestamps

21. Basho: Riak 1.4. URL https://github.com/basho/riak/blob/1.4/RELEASE-NOTES.md

(Retrieved 4-jan-2016)
22. Datatax: Whats New in Cassandra 2.1: Better Implementation of Counters. URL

http://www.datastax.com/dev/blog/whats-new-in-cassandra-2-1-a-better-implementation-of-counter

(Retrieved 4-jan-2016)
23. Bieniusa, A., Zawirski, M., Preguiça, N., Shapiro, M., Baquero, C., Balegas, V.,

Duarte, S.: An optimized conflict-free replicated set. Rapp. Rech. RR-8083, INRIA,
Rocquencourt, France (October 2012)

24. Parker, D.S., Popek, G.J., Rudisin, G., Stoughton, A., Walker, B.J., Walton, E.,
Chow, J.M., Edwards, D., Kiser, S., Kline, C.: Detection of mutual inconsistency
in distributed systems. IEEE Trans. Softw. Eng. 9(3) (May 1983) 240–247

25. Mukund, M., R., G.S., Suresh, S.P.: Optimized or-sets without ordering con-
straints. In: Proceedings ot the International Conference on Distributed Comput-
ing and Networking, New York, NY, USA, ACM (2014) 227241

26. Almeida, P.S., Baquero, C., Gonçalves, R., Preguiça, N.M., Fonte, V.: Scalable and
accurate causality tracking for eventually consistent stores. In Magoutis, K., Piet-
zuch, P., eds.: Distributed Applications and Interoperable Systems - 14th IFIP WG
6.1 International Conference, DAIS 2014, Held as Part of the 9th International Fed-
erated Conference on Distributed Computing Techniques, DisCoTec 2014, Berlin,
Germany, June 3-5, 2014, Proceedings. Volume 8460 of Lecture Notes in Computer
Science., Springer (2014) 67–81

27. Wuu, G.T.J., Bernstein, A.J.: Efficient solutions to the replicated log and dictio-
nary problems. In: Symp. on Principles of Dist. Comp. (PODC), Vancouver, BC,
Canada (August 1984) 233–242

28. Johnson, P.R., Thomas, R.H.: The maintenance of duplicate databases. Internet
Request for Comments RFC 677, Information Sciences Institute (January 1976)

29. Conway, N., Marczak, W.R., Alvaro, P., Hellerstein, J.M., Maier, D.: Logic and lat-
tices for distributed programming. In: Proceedings of the Third ACM Symposium
on Cloud Computing, ACM (2012) 1

30. Burckhardt, S., Fähndrich, M., Leijen, D., Wood, B.P.: Cloud types for eventual
consistency. In: ECOOP 2012–Object-Oriented Programming. Springer (2012)
283–307

31. Kuper, L., Newton, R.R.: Lvars: lattice-based data structures for deterministic
parallelism. In: Proceedings of the 2nd ACM SIGPLAN workshop on Functional
high-performance computing, ACM (2013) 71–84

32. Navalho, D., Duarte, S., Preguiça, N., Shapiro, M.: Incremental stream processing
using computational conflict-free replicated data types. In: Proceedings of the 3rd
International Workshop on Cloud Data and Platforms, ACM (2013) 31–36

33. Deftu, A., Griebsch, J.: A scalable conflict-free replicated set data type. In: Pro-
ceedings of the 2013 IEEE 33rd International Conference on Distributed Comput-
ing Systems. ICDCS ’13, Washington, DC, USA, IEEE Computer Society (2013)
186–195

34. Baquero, C., Almeida, P.S., Shoker, A.: Making operation-based CRDTs operation-
based. In: Proceedings of Distributed Applications and Interoperable Systems: 14th
IFIP WG 6.1 International Conference, Springer (2014)

35. Burckhardt, S., Leijen, D., Fahndrich, M.: Cloud types: Robust abstractions for
replicated shared state. Technical Report MSR-TR-2014-43 (March 2014)

36. Malkhi, D., Terry, D.: Concise version vectors in winfs. Distributed Computing
20(3) (2007) 209–219

7 SUBMITTED PAPERS

7.4 Seyed H. Haeri (Hossein), Peter Van Roy, Carlos Ba-
quero, and Christopher Meiklejohn. Deduction with
partial knowledge about causality. Submitted for pub-
lication, 2016.

SyncFree Deliverable D.3.3(v0.1), March 23, 2016, Page 148

Worlds of Events

Deduction with Partial Knowledge about Causality

Seyed H. Haeri (Hossein)1, Peter Van Roy1, Carlos Baquero2, and
Christopher Meiklejohn1

1 Université catholique de Louvain, Belgium
2 Universidade do Minho, Portugal

Abstract. Interactions between internet users are mediated by their de-
vices and the common support infrastructure in data centres. Keeping
track of causality amongst actions, that take place in this distributed sys-
tem, is key to provide a seamless interaction where effects follow causes.
Tracking causality in large scale interactions is difficult due to the cost of
keeping large quantities of metadata; even more challenging when dealing
with resource-limited devices. In this paper, we focus on keeping partial
knowledge on causality and address deduction from that knowledge.
We provide the first proof-theoretic causality modelling for distributed
partial knowledge. We prove computability and consistency results. We
also prove that the partial knowledge gives rise to a weaker model than
classical causality. We provide rules for offline deduction about causality
and refute some related folklore. We define two notions of bisimilarity
between devices, using which we prove two important results. Namely,
no matter the order of addition/removal, two devices deduce similarly
about causality so long as: (1) the same causal information is fed to both.
(2) they start bisimilar and erase the same causal information. Thanks
to our establishment of bisimilarity, proofs of the latter two results work
by simple induction on length.

1 Introduction

Causality [15,19] is an essential for our perception of the physical world, and of
our relations to other entities. If one puts a cup on a table, and looks back at
it, one expects it to be there. One also expects to get a reply to one’s postcards,
after they were sent, and not before.

Given the fault-tolerance and high availability expected of internet-based ser-
vices today, distributed algorithms have become ubiquitous. One duty of these
algorithms is to order events totally across multiple replicas of a service. This to-
tal order is required to ensure computation determinism; given the requirement
of having multiple replicas appear as a single system, each replica must imple-
ment a state machine which observes the same events in the same order [18].
However, because of the amount of coordination required, a total order in the en-
tire distributed system is not always feasible while maintaining availability [12].

Given the intractability of a total order, techniques that favour a partial order
based on causality are explored for they express user’s intent. For a key-value

store, one’s writes may, e.g., be directed to one replica, and, subsequent reads
served from a replica which has not yet received those writes. If we consider the
canonical example of an access control list for viewing photos [16], one would
expect that a write operation removing Eve from having access to Alice’s photos
prior to Alice uploading a photo she did not want Eve to see, would be observed
in this order by Eve when performing read operations.

However, tracking causality can be very expensive in terms of metadata size;
more so when interactions amongst many distinct entities is targeted [7]. De-
vising scalable solutions to causality tracking is a demanding problem [16,20] to
the extent that some solutions even accept to lose causal information by pruning
metadata [8]. Be it because limited resource is available (say to an edge device)
or because a replica (say in a data centre) is temporarily out-of-sync, only a
partial view of the system causality might be available. There is not much study
on dealing with that partiality of knowledge, however. In this paper, we address
that problem via a proof-theoretic modelling for partial causality knowledge of
distributed systems. Partiality is not a loss in our model: What is not stored
might be deducible – acting in favour of metadata size reduction.

Contributions of this paper are as follows:

1. We model distributed causality such that the holistic system and the partial
causal knowledge of a device are categorically distinct (Definitions 1 and 2).

2. We offer rules for deducing causality when a device is online (Definition 4)
and prove its computability (Theorem 1) and consistency (Theorem 2).

3. We show that deduction of causality with partial knowledge is strictly less
accurate than the holistic causal knowledge (Lemma 2) and that the deduc-
tions of different devices do not conflict (Corollary 1).

4. We offer rules for a device to deduce causal information independent of
new causal data from outside, e.g., when offline (Definition 6) and prove its
consistency with the online rules (Lemmata 3 and 4). We also prove a related
folklore wrong (Lemma 5) using the latter machinery.

5. We craft a notion of bisimilarity (Definition 7) and prove that the order of
arrival of new causal data is insignificant for bisimilar devices (Theorem 4).

6. We craft another notion of bisimilarity (Definition 11) to prove that the order
of removal of causal data is insignificant for bisimilar devices (Theorem 7).

Unlike traditional approaches to causality modelling that store a partial order
of known causally related events and consider non related events as concurrent
events, we explicitly model concurrency information and provide a broader spec-
trum of relations amongst events.

2 Worlds of Events and Microcosms

Call a binary relation R a strict partial order on a set P when R is irreflexive,
asymmetric, and transitive. In such a case, we say that (P,R) is a strict poset.
For a strict poset (T,R), when R is also total, call (T,R) a strict chain. Let R be
a relation on a set S. For a subset U of S, the symbol R|U denotes R restricted

to U . We use “Y” for the exclusive or of mathematical logic. Throughout this
paper, “—” is our wild card; its usage expresses our lack of interest in the exact
details of what “—” has replaced.

Definition 1. Call W (<, ‖) a world of events when:

(W1) W is an infinitely countable set (i.e., |W | = ℵ0) of events that are ranged
over by e1, e2, . . . , e, e

′, . . . ,
(W2) < and ‖ are binary relations defined on W that are ranged over by r1, r2, . . . ,

r, r′, . . . ,
(W3) (W,<) is a strict poset,
(W4) ‖ is anti-reflexive and symmetric, and
(W5) e1 6= e2 iff e1 ‖ e2 Y e1 < e2 Y e2 < e1.

When e1 r e2 is known to hold for W , we write W � e1 r e2.

The relations < and ‖ denote the familiar happens-before and is-concurrent-
with, respectively [15]. For a world of events, we take the relation <> (read

is-causally-related-to) as a syntactic sugar for < ∪ <−1, namely, e1 <> e2
def
=

e1 < e2 ∨ e2 < e1. Hence, <> is symmetric.
Fix the set of accurate relations R = {<, ‖}. The relation <> is an in-

accurate relation in that it does not expose the exact known direction of <.
We now extend � to �∗ for when the inaccurate relation <> is also needed to
be taken into consideration. Write W �∗ e1 r e2 iff: W � e1 r e2; or, r = <>
and either W � e1 < e2 or W � e2 < e1. Note that, unlike �, not every dis-
tinct pair of events are attributed to a unique relation by �∗. In particular, for
every e1 and e2 such that W � e1 < e2, by definition, it is both the case that
W �∗ e1 < e2 and W �∗ e1 <> e2. We call e1 r e2 a correspondence, ranged over
by c1, c2, . . . , c, c

′, . . . For a world of events W , we also fix C∗W = {c | W �∗ c}.
For c = e1 r e2, we say c is an accurate correspondence when r is accurate. We
call c inaccurate otherwise.

Proposition 1. Every world of events W is consistent: W � e1 r e2 and W �
e1 r

′ e2 imply r = r′.

Definition 2. Let W (<, ‖) be a world of events. Call M(I, E) a microcosm of
W (write M CW) when:

(M1) I ⊂W and |I| < ℵ0,
(M2) (I,<|I) is a strict chain,
(M3) E ⊂ C∗W and |E| < ℵ0,
(M4) e1 r e2 ∈ E implies that there is no chain of events e′1, . . . , e

′
n in M such

that e1 < e′1 < · · · < e′n < e2.

Accordingly, call W the enclosing world of M and let MW = {M |M CW}.

For an M(I, E), we refer to I as the internal events of M , and, to E as
the set of external correspondences known to it. When appropriate, we use
the alternative notions I(M) and E(M), respectively. Write e1 < e2 ∈ I when

e1, e2 ∈ I and W � e1 < e2. Besides, write e1 r e2 ∈ M , when e1 r e2 ∈ I or
e1 r e2 ∈ E. Write e ∈ E when ∃e′ ∈W. e — e′ ∈ E ∨ e′ — e ∈ E. Finally, write
e ∈ M when e ∈ I or e ∈ E. That is how we formalise the notion of microcosm
membership informally used in (M4).

M
◦
e1 r e2 where r ∈ R ∪ {<>}

e1 r e2 ∈M
(Init)

M
◦
e1 r e2

M
◦
e1 < e2 M

◦
e2 < e3

(In-Tr)
M

◦
e1 < e3

Fig. 1: Microcosm Initial Judgements

Microcosms are our abstraction
for a generic device. The enclosing
world of events of a microcosm is
the abstraction we use for the ecosys-
tem in which a device lives. Certain
events can take place locally for a de-
vice; in which case, they are stored
in the internal events of the respec-
tive microcosm. The correspondence
between certain events can also be dis-
closed to a device by the ecosystem; in which case, they are stored in the external
correspondences of the respective microcosm. In our model, devices do not get
to communicate directly with one another. The ecosystem sits between devices
in that news from other devices in the same ecosystem arrives via the ecosystem
(as opposed to the other devices themselves).

Note that, unlike a world of events, for a microcosm, the relation <> is not a
syntactic sugar. To the latter, an <> instance is all the information that is given
for the respective pair of events. In that case, whilst no stronger information
about the given pair is provided to the microcosm, the enclosing world of events
is aware of the exact < direction between the pair. It, nevertheless, follows from
anti-reflexiveness of < that <> is anti-reflexive too – both for worlds of events
and their microcosms.

We now introduce the first sort of deduction for microcosms (Definition 3).
The idea is that such a deduction is for a microcosm to decree on the corre-
spondences it knows of. Later in Section 3, we will generalise deduction for a
microcosm to also conclude that it does not know the correspondence between
a given pair of events.

Definition 3. Let M be a microcosm. Judgements of the form M
◦
e1 r e2 are

called the initial judgements of M when they are derived using the rules (Init)

and (In-Tr) in Figure 1. Write M 6 ◦ e1 r e2 when M
◦
e1 r e2 is not true.

Note that with “—” being existential in nature, the negation acts universally.
In particular, M 6 ◦ e1 — e2 stipulates the lack of any initial correspondence
between e1 and e2 in M .

Here is an informal account of the rules in Fig. 1: (Init) states that every
piece of information that is initially provided to a microcosm is reliable in the
initial judgements made inside that microcosm. (In-Tr) legislates transitivity of
< for initial judgements (regardless of whether the premises come from internal
or external knowledge of a microcosm or a combination of those).

In this paper, we let Π,Π ′, . . . ,Π1, Π2, . . . range over derivation trees. For a
derivation tree Π, we write lr(Π) for the last rule used in Π.

There are two possible ways a microcosm can evolve upon receipt of new
information: (Section 3 gives more details about the intuition and the semantics
of the two evolution mechanisms.)

<>

M

e1 e2

e1 e2

e’1 e’2

(a) Addition of e1 < e2 to
M violates (M4).

<>

<>

M

e1 e2

e1 e2

e’1 e’2

(b) Updating M with
e1 < e2 violates (M4).

Fig. 2: Illegal for e′1 < e1 <
e2 < e′2 whilst e′1 <> e′2 ∈M

For a microcosm M , when M 6 ◦ e1 — e2,
write (M + e1 r e2) for the microcosm M with
the additional information e1 r e2. We assume
that e1 r e2 is known to be internal or external
to the resulting microcosm. Likewise, when M

◦

e1 <> e2 (or M
◦
e2 <> e1), define M [e1 < e2]

for the microcosm M in which e1 < e2 replaces
e1 <> e2 (or e2 <> e1). For both addition –
namely, (M + e1 r e2) – and update – namely,
M [e1 < e2] – we assume that the change will not
violate (M4). See Fig. 2a and 2b for when careless
addition and update violate (M4).

3 Online Decision Making

This section provides an algorithm for a micro-
cosm to issue its verdict on the relation it can
deduce, to the best of its knowledge, to hold be-
tween a queried pair of (distinct) events. This
algorithm (manifested in Fig. 3) is called the on-
line decision making procedure. The idea is that the decision accuracy keeps
improving using this procedure upon the inflow of the new or updated corre-
spondences. In crude terms, this is the situation where the device is connected
and thus online. Contrast this with what comes in Section 4. We prove com-
putability (Theorem 1) and consistency (Theorem 2) of the online decision mak-
ing. We show that the causal knowledge of a microcosm is strictly less than its
enclosing world of events (Lemma 2), there is no conflict between the verdict of
two microcosms of the same world of events – even when they do not issue the
exact same correspondence (Corollary 1).

Definition 4. Define the online decision making procedure of a microcosm using
the rules of the scheme M ` e1 r e2 shown in Fig. 3, where r ∈ R ∪ {<>, ?}.

In Fig. 3, a judgement M ` e1 ? e2 stipulates the lack of knowledge “in
M” about the correspondence between the pair of events e1 and e2. As such, ?
(read is-unknown-to) is another inaccurate relation. Note that, unlike <>, the
relation ? is only available for microcosms. Recall that, as axiomatised by (W5),
the correspondence between every two distinct pair of events is known to their
enclosing world of events.

Here is an informal account of the rules in Fig. 3:
(In-OK) says online decision making approves of every initial judgement.

The rest of the first row as well as the next two rows concern when a microcosm

M ` e1 r e2 where r ∈ R ∪ {<>, ?}

M
◦
e1 r e2

(In-OK)
M ` e1 r e2

M ` e1 r e2 M ` e2 r e3
r ∈ {‖, <>, ?} M 6 ◦ e1 — e3

(Un-1)
M ` e1 ? e3

M 6 ◦ e1 — e2 @e′ ∈ M. (M ` e1 — e′) ∧ (M ` e′ — e2)
(Un-3)

M ` e1 ? e2

M ` e1 r e2 M ` e2 ? e3
r ∈ R ∪ {<>} M 6 ◦ e1 — e3

(Un-2)
M ` e1 ? e3

e /∈ M e 6= e′

(Un-4)
M ` e ? e′

M ` e1 ‖ e2
(Co-Sym)

M ` e2 ‖ e1

M ` e1 <> e2
(CR-Sym)

M ` e2 <> e1

M ` e1 ? e2
(Un-Sym)

M ` e2 ? e1

M ` e1 ? e2 M CW W �∗ e1 r e2
(Strng)

(M + e1 r e2) ` e1 r e2

M ` e1 r e2 r 6= ? M CW W �∗ e′1 r′ e′2
(Weak)

(M + e′1 r′ e′2) ` e1 r e2

M CW M ` e1 <> e2 W � e1 < e2
(Up-S)

M [e1 < e2] ` e1 < e2

M CW W � e1 < e2 M ` e1 <> e2 M ` e′1 r′ e′2 r′ 6= ?
(Up-W)

M [e1 < e2] ` e′1 r′ e′2

Fig. 3: Online Decision Making

judges two events as unknown to one another. (Un-1) decrees so when there is
an intermediate event e2 that has the same correspondence r with both e1 and
e3 (in different orders albeit). Of course, given the transitivity of <, in the case
of (Un-1), r cannot be <. (Un-2) is similar except that, in the microcosm of
discourse, the intermediate event e2 is unknown to e3. Then, (Un-3) decrees for
e1 and e2 to be unknown to one another when there is no intermediate event in
the microcosm that is in correspondence with both e1 and e2. The last rule of the
group, i.e., (Un-4) declares the correspondence between an event that is not in a
microcosm to be unknown with any other event. Note that all the (Un-*) rules
except (Un-4) assume that the microcosm has no initial judgements between
the two events. It can be shown that such a premise is not required for (Un-4).

The rules in the fourth row are routine and legislate the symmetry of ‖, <>,
and ? for microcosms.

Next two rules concern when a microcosm is supplied with new event in-
formation. With such a supply, the microcosm of discourse evolves into a new
one. To this latter microcosm, one (and only one) more initial correspondence
is available than the old microcosm. (Strng) states that, when two events are
judged to be unknown to one another by a microcosm, the judgement will be
changed accordingly when the respective information from the enclosing world
of event evolves the microcosm. (Weak) says the supply of new event infor-

mation from the enclosing world of events preserves every event correspondence
decreed earlier not to be unknown. Note that the supply of new information is
only possible through the enclosing world of event.

Finally, the last two rules are on update of<> instances. (Up-S) (for strength-
ening) and (Up-W) (for weakening) are the update counterparts (Strng) and
(Weak). The difference is that, for the former pair of rules, the total number
of correspondences initially known to the old microcosm and the new one are
equal. Yet, in (Up-S) and (Up-W), one and only one <> in the old microcosm
is replaced by exactly one < in the new microcosm. The respective microcosm
judgements are updated consequently.

The following lemma will later be used in Lemma 5.

Lemma 1. Suppose that M ` e1 r e2, where r ∈ R∪{<>}. Then, M
◦
e1 r e2.

For a derivation Π of the form

Π1 Π2 Πn

M — c′

we write c /∈ Π when c 6= c′ and c /∈ Π1, c /∈ Π2, . . . , c /∈ Πn. (The “—” in

“M — c′” above can be “
◦

”, “`”, and “`∗.” See Definition 6 for the latter.)
Fundamental results about online decision making follow. Theorem 1 is on

its computability. Then, Theorem 2 proves consistency. At last, Lemma 2 and
Corollary 1 focus on the relative accuracy of online decision making.

Theorem 1. The online decision making algorithm is computable: For every
distinct pair of events e1 and e2 and microcosm M , in finite number of steps,
the relation r for which M ` e1 r e2 can be found, if any.

Theorem 2. Online decision making is consistent: M ` e1 r e2 and M `
e1 r

′ e2 imply r = r′.

Proof. Let Π = M ` e1 r e2 and Π ′ = M ` e1 r′ e2. The proof is by rule-based
induction on Π, namely, by case analysis of lr(Π):

– (Un-n) for n ∈ {1, 2, 3}. In all those cases, as a part of the hypotheses,

M 6 ◦ e1 e2. Hence, lr(Π ′) 6= (In-OK). Furthermore, lr(Π ′) 6= (Up-S)

(because, then, r′ =< and M
◦
e1 < e2) and lr(Π ′) 6= (Up-W) (because,

then, r′ 6= ?, and, by Lemma 1, M
◦
e1 r

′ e2). Likewise, lr(Π ′) 6= (Strng)

either because, then, M
◦
e1 r

′ e2 for M = (— + e1 r
′ e2). We claim that

the last rule in M ` e1 r′ e2 cannot be (Weak) either, and, the result follows
because all the remaining rules imply that r′ = ?.
We now prove our last claim. If the last rule in M ` e1 r′ e2 is to be
(Weak), there exists a microcosm M ′ such that M = (M ′ + e′1 — e′2) and

M ′ ` e1 r′ e2. Besides, r′ 6= ?, which, by Lemma 1, implies M ′ ◦ e1 r′ e2.

This is, however, a contradiction because, then M
◦
e1 r

′ e2 as well.

– (Un-4). When e /∈M and e 6= e′, there essentially is no other rule that can
apply than (Un-4). That is, the last rule for M ` e1 r′ e2 too needs to be
(Un-4) and r′ = ?.

We drop the remaining cases due to space restrictions. ut

We now introduce our measure for when a correspondence carries more ac-
curate information about a pair of events than another. The measurement is
based on a comparison between the accuracy of the respective relations the two
correspondences attribute to a given pair of events.

Definition 5. For a pair of relations r, r′ ∈ R∪{<>, ?}, write r < r′ – for r is
less accurate than r′ – when: (i) r′ 6= ? and r = ?, (ii) r′ = < and r =<>,
(iii) r′ = <−1 and r = <>, (iv) r = r′ = <, and (v) r = r′ = ‖. Write v
for the reflexive closure of <.

The following result states that a microcosm always approximates its en-
closing world of event: For every pair of events, when the relation a microcosm
attributes to the pair does not exactly coincide with that of its enclosing world
of events, the microcosm is only less accurate. This is the essence of our model
being weaker than the mainstream practice where every device is exactly as
accurate as its enclosing ecosystem.

Lemma 2. Let M C W . Suppose also that W � e1 rW e2 and M ` e1 rM e2.
Then, rM < rW .

Here is what the following result stipulates: When two microcosms of the
same world of events do not agree on a given pair of events, it only is that one
of the two is more accurate than the other. In other words, two microcosms of
the same world of events will never attribute conflicting relations to any given
pair of events.

Corollary 1. Let M C W and M ′ C W . Suppose also that M ` e1 r e2 and
M ′ ` e1 r′ e2. Then, r v r′ or r′ v r.

4 Offline Decision Making

The algorithm presented in this section enables a microcosm to make new de-
cisions without depending on new supply from the enclosing world of events.
As such, it suits a device required to perform offline computation. Hence, the
naming “offline.” Unlike our online algorithm that exclusively proves correspon-
dences, our offline algorithm is based on cancelling possibilities. That is, deducing
it that certain correspondences cannot possibly hold between the given pair of
events. We say that the online decision making confirms, whereas the offline one
(mostly) refutes.

Sometimes, cancelling enough possibilities out will prove the only remaining
correspondence (e.g., Fig. 4b). But, even if that is not quite the case, cancelling

one or more correspondences out is still useful (e.g., Fig. 4a): It conveys the
information that the given pair of events are not unknown to one another. (See
Lemma 5.) Most particularly, in such a scenario, it would be wrong to consider
the pair parallel. That is in exact contrast with the common causality folklore
that: ‘when one cannot confirm any correspondence between two events, one can
safely [sic] consider them parallel.’

In Fig. 4a, given that e1 ‖ e2 and e2 < e3, it cannot be that e3 < e1. This
is because, then, by transitivity of happens-before, e2 < e3 and e3 < e1, imply
e2 < e1, contradicting e1 ‖ e2. Fig. 4b rules e3 < e1 out similarly. But, then, given
that e1 <> e3, the implication is e1 < e3. Note that the only correspondences
that were available prior to concluding e3 6< e1 (in Fig. 4a) and e1 < e3 (in
Fig. 4b) were the black lines between e1, e2, and e3. No new correspondence was
supplied over the arguments either. The important observation to make, hence,
is that such arguments do not depend on new supply from the enclosing world
of events. Offline decision making (Definition 6) enables such arguments.

Legend: Two parallel lines between
e and e′ depicts e ‖ e′. Dotted ar-
rows show hypothesised happens-
before. Red lines show what goes
wrong as a result of the hypothe-
ses. Green arrow shows happens-
before that was proved offline.

e1

e2

e3

(a) [(e1 ‖ e2) ∧ (e2 <
e3)] ⇒ e3 6< e1

e1

e2

e3<>

(b) [(e1 ‖ e2)∧(e2 < e3)∧
(e3 <> e2)] ⇒ e1 < e3

Fig. 4: Two Useful Offline Deductions

Before we can delve into offline decision making itself, we need to introduce
a couple of notations. For a microcosm M and a pair of distinct events e1 and e2
such that M 6` e1 — e2, write (M +? e1 r e2) for a microcosm that is structurally
the same as (M+e1 r e2). Despite their same structure, the former is meant to be
used only when e1 r e2 is not supplied by the enclosing world of events; it rather
is M with the hypothesis that e1 r e2 was also known by M . That is, “+?” is like
the blue arrow in Fig. 4a. Note the additional requirement of the former over the
latter. The latter only requires thatM 6 ◦ e1 — e2. In contrast, the former requires
that M 6` e1 — e2. (By definition, the requirement for (M +? e1 r e2) implies the
requirement of (M + e1 r e2) too. Hence, (M +? e1 r e2) is well-defined.) Note
also that, by Theorem 1, satisfiability of M 6` e1 — e2 is computable. Define
M [e1 r e2]

?
similarly for a microcosm that is structurally like M [e1 r e2]; yet

e1 r e2 is not supplied by the enclosing world of events but is only hypothesised.
That is, “[.]

?
” is like the blue arrow in Fig. 4b.

Definition 6. Define the offline decision making process of a microcosm using
the rules in Fig. 5, where the judgements take the form M `∗ e1 r̃ e2, and
r̃ ::= r |6 r.

The rules in Fig. 5 are fairly self-explanatory and we drop explanation to save
space, except for the two key rules: (Cntrd) and (Up-Cntrd). If a hypothetical
correspondence between a pair of events leads to two different conclusions about
a single (possibly different) pair of events, we have come to a contradiction, and,
conclude the hypothesis to be false.

The online and offline decisions on the same pair of events will not conflict.
That is, online and offline decision making are consistent:

Lemma 3. Let M be a microcosm and e1 and e2 a pair of distinct events.
Then: (i) M ` e1 r e2 implies M 6`∗ e1 6 r e2, and (ii) M `∗ e1 6 r e2 implies
M 6` e1 — e2, in particular, M 6` e1 r e2.

M `∗ e1 r̃ e2 where r̃ ::= r |6 r

M ` e1 r e2
(Onl-OK)

M `∗ e1 r e2

M `∗ e1 6 r e2 r ∈ R
(Not-R)

M `∗ e1 6 ? e2

M `∗ e1 ��<> e2
(Not-CR)

M `∗ e1 ‖ e2

M `∗ e1 6 ‖ e2
(Not-Co)

M `∗ e1 <> e2

(M +? e1 r e2) `∗ e′1 r′1 e′2 (M +? e1 r e2) `∗ e′1 r′2 e′2 r1 6= r2
(Cntrd)

M `∗ e1 6 r e2

M [e1 r e2]? `∗ e′1 r′1 e′2 M [e1 r e2]? `∗ e′1 r′2 e′2 r1 6= r2
(Up-Cntrd)

M `∗ e1 6 r e2

M `∗ e1 <> e2 M `∗ e1 6< e2
(Not-HB)

M `∗ e2 < e1

M `∗ e1 6< e2 M `∗ e2 6< e1
(No-HBs)

M `∗ e1 ��<> e2

M `∗ e1 6 ? e2
(NU-Sym)

M `∗ e2 6 ? e1

M `∗ e1 ��<> e2
(NCR-Sym)

M `∗ e2 ��<> e1

M `∗ e1 6 ‖ e2
(NCo-Sym)

M `∗ e2 6 ‖ e1

Fig. 5: Offline Decision Making

Lemma 4. Let M be a microcosm and e1 and e2 a pair of distinct events. If
M ` e1 r e2 and M `∗ e1 r′ e2, then r = r′.

The offline decision making can be used, for example, to mechanically con-
clude in the case of Fig. 4a that M `∗ e3 6 ? e1:

Lemma 5. Let M ` e1 ‖ e2 and M ` e2 < e3 but M 6` e3 — e1. Then,
M `∗ e3 6 ? e1.

Proof. Here is the mechanical proof:

1 Introduction

M ` e1 ‖ e2
(Weak)

(M +? e3 < e1) ` e1 ‖ e2
(Co-Sym)

(M +? e3 < e1) ` e2 ‖ e1
(Onl-OK)

(M +? e3 < e1) `∗ e2 ‖ e1

M ` e2 < e3 (∗)
M

◦
e2 < e3

e3 < e1 ∈ (M +? e3 < e1)
(Init)

(M +? e3 < e1)
◦
e3 < e1

(In-Tr)
(M +? e3 < e1)

◦
e2 < e1

(In-OK)
(M +? e3 < e1) ` e2 < e1

(Onl-OK)
(M +? e3 < e1) `∗ e2 < e1

M ` e1 ‖ e2
(Weak)

(M +? e3 < e1) ` e1 ‖ e2
(Co-Sym)

(M +? e3 < e1) ` e2 ‖ e1
(Onl-OK)

(M +? e3 < e1) `∗ e2 ‖ e1

M ` e2 < e3
(∗)

M
◦

e2 < e3

e3 < e1 ∈ (M +? e3 < e1)
(Init)

(M +? e3 < e1)
◦

e3 < e1
(In-Tr)

(M +? e3 < e1)
◦

e2 < e1
(In-OK)

(M +? e3 < e1) ` e2 < e1
(Onl-OK)

(M +? e3 < e1) `∗ e2 < e1
(Cntrd)

M `∗ e3 6< e1
(Not-R)

M `∗ e3 6 ? e1

Fig. 1: Sample Refutation using Offline Decision Makingwhere the derivation labelled (∗) is Lemma 1. ut

5 Forward Bisimilarity

In this section, we present our first notion of microcosm bisimilarity. We start by
defining microcosm analogy (Definition 7), namely, what exactly we mean when
we say two microcosms agree on every correspondence. Then, we show that such
microcosms will evolve likewise when supplied with the exact same new single
correspondence (Theorem 3), i.e., they are forward bisimilar (Definition 9). The
most important result of this section is Theorem 4, which proves it that the order
of arrival of causal information is irrelevant so long as the same correspondences
are available to a pair of bisimilar microcosms. Finally, Theorem 5 establishes
the bisimilarity of analogy. We call the bisimilarity of this section forward to
contrast it with that of next section (Definition 11), which we call backward.

Definition 7. Call microcosms M and M ′ analogous – write M ≈M ′ – when:
∀e1, e2. M ` e1 r e2 ⇔M ′ ` e1 r e2.

In words, two microcosms are analogous when they ‘agree on the correspon-
dence between every pair of events.’ That can, for instance, be two replicas of
a single data centre that are in the same state. As another example consider
a copy taken from a device before it temporarily dies. As soon as the original
device comes back to life, the original device and the copy would be analogous.
Interestingly enough, the order of arrival of the causal information to the original
device is completely sporadic to the copy. Note that Definition 7 has even no
explicit mention of the enclosing worlds of events of the two microcosms.

Definition 8. Define
c→ for the transition system TF (W) = (MW , C∗W ,

.→)

such that M
c→ M ′ when M ′ = (M + c) for some c ∈ C∗W . Call TF (W) the

forward transition system of W .

The above definition formalises our understanding of a microcosm evolving
forward with the arrival of new supply to it. The following two lemmata explore
two different scenarios for forward evolution: when the new supply is not used
for deriving the correspondence between a given pair of events (Lemma 6) and
when it is (Lemma 7). Those two pave the road for Theorem 3.

Lemma 6. Suppose that M ≈ M ′ and M
c→ (M + c). Then, Π = (M + c) `

e1 r e2 implies (M ′ + c) ` e1 r e2 when c /∈ Π.

Lemma 7. Suppose that M ≈ M ′ and M
c→ (M + c). Then, Π = (M + c) `

e1 r e2 implies (M ′ + c) ` e1 r e2 when c ∈ Π.

Proof. Induction on the size of Π by case distinction on lr(Π).

We next define our notion of forward bisimulation (and bisimilarity) and
prove that analogy is a bisimulation.

Definition 9. Call a binary relation R onMW a bisimulation for TF (W) when
for every microcosms M1 and M2 of W such that M1 R M2, the following hold:

– M1
c→M ′1 ⇒ ∃M ′2 CW. (M2

c→M ′2) ∧ (M ′1 R M ′2), and
– M2

c→M ′2 ⇒ ∃M ′1 CW. (M1
c→M ′1) ∧ (M ′1 R M ′2).

Write ∼F for the bisimilarity of TF (W), i.e., the largest bisimulation for TF (W).

Theorem 3. For every W , the relation ≈ is a bisimulation for TF (W).

Proof. Let M,M ′ C W and M ≈ M ′. Suppose that M
c→ (M + c) and Π =

(M + c) ` e1 r e2. When c /∈ Π, by Lemma 6, (M + c) ` e1 r e2. When c ∈ Π,
by Lemma 7, (M + c) ` e1 r e2. The result follows by symmetry. ut

Now that we are armed with Theorem 3, it is easy to prove Theorem 4. We
would like to draw the reader’s attention to the small length of the proof and
the simple technique used for it. Such a comfort is a consequence of bisimulation
being such a strong concept.

For a given n, write c for c1, c2, . . . , cn and n = |c|. Extend
.→, accordingly,

to
.� where

c� abbreviates
c1→ ◦ c2→ ◦ · · · ◦ cn→. Furthermore, write c′ = p(c) when

c′ is a permutation of c.

Theorem 4. Suppose that M0 ≈ M ′0. Suppose also that M0
c� M and M ′0

c′�
M ′, where c′ = p(c). Then, M ≈M ′.
Proof. We proceed by strong induction on n, where n = |c|:
– n = 1. By Theorem 3.
– n = k. Suppose that the theorem is correct for every n < k. The case

when c = c′ is immediate. Otherwise, let k0 be the first position where c

and c′ disagree. That is, M0

cl� Mk0−1
ck0→ Mk0

cr� M and M ′0
c′l� M ′k0−1

c′k0→

M ′k0

c′r� M ′ such that cl = c′l, ck0
6= c′k0

, and c′r = p(cr). Then, Mk0
≈ M ′k0

is immediate from Theorem 3. And, given that |ck0
cr| = |c′k0

c′r| < k, by the
inductive hypothesis, M ≈M ′.

The result follows. ut
Theorem 5. For W , the relation ≈ is the bisimilarity of TF (W), i.e., ≈=∼F .

6 Backward Bisimilarity

Only limited resources are available to devices, especially the edge devices. Emp-
tying the disk or memory of such a device is routine then. To that end, usually,
one removes the outdated data to come to a new manageable state. This section
deals with when (causal) information is to be removed from devices, say due to
resource limitation or outdatedness. That too can be seen as an evolution for a
microcosm, albeit backward (Definition 10). We show that microcosm analogy
(Definition 7) gives rise to a bisimilarity for backward evolution as well (Theo-
rem 8). Besides, this section presents the backward counterpart of Theorem 4
that proves: The order of removal of causal information from bisimilar devices
does not matter in that they will again be bisimilar once they are both done
with the set of correspondences (Theorem 7).

Definition 10. Define
c← for the transition system TB(W) = (MW , C∗W ,

.←)

such that M
c← M ′ when M = (M ′ + c) for some c ∈ C∗W . Call TB(W) the

backward transition system of W .

The notation M
c← M ′ is indeed intended to be read from left to right to

denote getting from M to M ′ by the removal of c.

Definition 11. Call a binary relation R on MW a bisimulation for TB(W)
when for every microcosms M1 and M2 of W such that M1 R M2, the following
hold:

– M1
c←M ′1 ⇒ ∃M ′2 CW. (M2

c←M ′2) ∧ (M ′1 R M ′2), and

– M2
c←M ′2 ⇒ ∃M ′1 CW. (M1

c←M ′1) ∧ (M ′1 R M ′2).

Write ∼B for the bisimilarity of TB(W), i.e., the largest bisimulation for TB(W).

Theorem 6. For every W , the relation ≈ is a bisimulation for TB(W).

We extend
.←, like

.� to
.� where

c� abbreviates
c1← ◦ c2← ◦ · · · ◦ cn←. In words,

the following theorem states that the order of removal is irrelevant so long as
the same set of correspondences are removed from analogous microcosms.

Theorem 7. Suppose that M0 ≈ M ′0. Suppose also that M0
c� M and M ′0

c′�
M ′, where c′ = p(c). Then, M ≈M ′.

Proof. Similar to Theorem 4. ut

Theorem 8. For W , the relation ≈ is the bisimilarity of TB(W), i.e., ≈=∼B.

7 Related Work

The partial knowledge of a microcosm w.r.t. its enclosing world of events resem-
bles the classical “knowledge vs common knowledge” model [14,11]. The latter
works, however, take an algorithmic approach. Ben-Zvi and Moses [5,4] take
the same approach to coin the Syncausality as an extension to happens-before
for synchronised computations. Gonczarowski and Moses [13] too generalise the
classic model to characterise the interactive epistemic state when temporal con-
straints must be met. The final work in this thread [1] extends the classic model
for reasoning about trust in distributed settings.

Burckhardt [6] takes a novel approach to define causal consistency not just in
terms of happens-before, but also w.r.t. arbitration order and visibility order. The
gain is a more precise definition of how causality is used to ensure consistency.
In addition to being model theoretic, unlike our work, his approach is not based
on explicit causality [3].

One particular motivation for confining the universal knowledge of a world of
events to microcosms is scalability. Systems that reduce the overhead of main-
taining scalable causal consistency in wide-area replicated key-value stores in-
clude Orbe [9], COPS [16], Eiger [17], and ChainReaction [2]. COPS, in particu-
lar, defines causal+ consistency, which extends causal consistency with conver-
gent conflict handling. This ensures that replicas that see concurrent updates
will be updated in a consistent fashion. The systems mentioned above can in-
cur significant overhead (in computation, storage, network load, and latency) to
maintain causal consistency in scalable fashion. Du et. al [10] explain the perfor-
mance overhead of causal consistency vs. eventual consistency. They introduce
a protocol to reduce this overhead.

8 Conclusion and Future Work

We provide the first proof theoretic modelling of causality in distributed systems,
with special emphasis on partiality of causal knowledge. In our model, a device
has strictly less causal information than a holistic causality store (Lemma 2).
We offer rules for deducing causal information both when a device is online
and offline (Definitions 4 and 6). We prove properties of our deductions, which
are both theoretically attractive and practically valuable (Theorems 1, 2, Corol-
lary 1, and Lemmata 3 and 4). We refute a causality folklore using a mechanical
proof (Lemma 5). We define two notions of bisimilarity (Definitions 9 and 11)
to prove that the order of addition or removal of causal data is irrelevant for
bisimilar devices (Theorems 4 and 7, respectively).

Our modelling does not take it into consideration that information about
concurrent events might arrive not at the same time. That lag makes a device
observe an internal ordering for concurrent events. The interplay between the
concurrency and the internal order becomes more interesting when relaying the
concurrency to the next device in the vicinity. A future work for us is the study of
that. We anticipate that a new set of proof systems will be required, their status
w.r.t. the ones in this paper also requires dedicated study. Another related future
work is to take arbitration and visibility into account.

The ability to reason about partial causal information suggests positive in-
teraction with causal+ consistency: replicas that are actually causal but for
which the causality is not known yet will remain consistently updated as the
known causality increases (i.e., updates do not have to be redone as knowledge
increases). This is an important property for causal+ consistency can be a use-
ful model to use together with the deduction systems introduced in this paper.
Future work will reveal how the ability to deduce causality can increase the
efficiency of COPS (and its counterparts) by reducing the overhead.

References

1. A. Abdul-Rahman, A Framework for Decentralised Trust Reasoning, Ph.D. thesis,
U. London, 2005.

2. S. Almeida, J. Leitão, and L. E. T. Rodrigues, ChainReaction: A Causal+ Consis-
tent Datastore Based on Chain Replication, 8th EuroSys (Z. Hanzálek, H. Härtig,
M. Castro, and M. F. Kaashoek, eds.), ACM, April 2013, pp. 85–98.

3. P. Bailis, A. Fekete, A. Ghodsi, J. M. Hellerstein, and I. Stoica, The Potential
Dangers of Causal Consistency and an Explicit Solution, 3rd SOCC (M. J. Carey
and S. Hand, eds.), ACM, October 2012, pp. 22–1–22–7.

4. I. Ben-Zvi, Causality, Knowledge and Coordination in Distributed Systems, Ph.D.
thesis, Technion, 2010.

5. I. Ben-Zvi and Y. Moses, Beyond Lamport’s Happened-Before: On the Role of Time
Bounds in Synchronous Systems, 24th DISC (N. A. Lynch and A. A. Shvartsman,
eds.), LNCS, vol. 6343, Springer, September 2010, pp. 421–436.

6. S. Burckhardt, Principles of Eventual Consistency, FTPL 1 (2014), no. 1-2, 1–150.
7. B. Charron-Bost, Concerning the Size of Logical Clocks in Distributed Systems,

Inf. Proc. Lett. 39 (1991), no. 1, 11–16.
8. G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,

S. Sivasubramanian, P. Vosshall, and W. Vogels, Dynamo: Amazon’s Highly Avail-
able Key-Value Store, 21st SOSP, October 2007, pp. 205–220.

9. J. Du, S. Elnikety, A. Roy, and W. Zwaenepoel, Orbe: Scalable Causal Consis-
tency using Dependency Matrices and Physical Clocks, SOCC (G. M. Lohman,
ed.), ACM, October 2013, pp. 11:1–11:14.

10. J. Du, C. Iorgulescu, A. Roy, and W. Zwaenepoel, Closing the Performance Gap
between Causal Consistency and Eventual Consistency, 1st PaPEC, no. EPFL-
CONF-198281, ACM, April 2014.

11. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi, Common Knowledge Revisited,
Knowledge Contributors (V. F. Hendricks, K. F. Jørgensen, and S. A. Pedersen,
eds.), Synthese Library, vol. 322, Springer Netherlands, 2003, pp. 87–104.

12. Seth Gilbert and Nancy Lynch, Brewer’s Conjecture and the Feasibility of Con-
sistent Available Partition-Tolerant Web Services, In ACM SIGACT News, 2002,
p. 2002.

13. Y. A. Gonczarowski and Y. Moses, Timely common knowledge, 14th TARK (B. C.
Schipper, ed.), January 2013.

14. J. Y. Halpern and Y. Moses, Knowledge and Common Knowledge in a Distributed
Environment, JACM 37 (1990), no. 3, 549–587.

15. L. Lamport, Time, Clocks, and the Ordering of Events in a Distributed System,
Commun. ACM 21 (1978), no. 7, 558–565.

16. W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen, Don’t Settle for
Eventual: Scalable Causal Consistency for Wide-Area Storage with COPS, 23rd

SOSP (New York, NY, USA), ACM, 2011, pp. 401–416.
17. , Stronger Semantics for Low-Latency Geo-Replicated Storage, 10th NSDI

(N. Feamster and J. C. Mogul, eds.), USENIX, April 2013, pp. 313–328.
18. F. B Schneider, Implementing Fault-Tolerant Services using the State Machine

Approach: A Tutorial, ACM CSUR 22 (1990), no. 4, 299–319.
19. R. Schwarz and F. Mattern, Detecting Causal Relationships in Distributed Com-

putations: In Search of the Holy Grail, Dist. Comp. 7 (1994), no. 3, 149–174.
20. P. Sérgio Almeida, C. Baquero, R. Gonçalves, N. M. Preguiça, and V. Fonte, Scal-

able and Accurate Causality Tracking for Eventually Consistent Stores, 14th IFIP
DAIS, June 2014, pp. 67–81.

	Executive Summary
	Milestones in the Deliverable
	Status of the work

	Contractors Contributing to the Deliverable
	KL
	INRIA
	Louvain
	Nova
	Basho
	Trifork

	Results
	Security
	Access control in weakly consistent systems
	Secure dissemination

	Invariants
	Enforcing Numeric Invariants
	Explicit Consistency

	Extensions to Works Previously Reported
	Quality-of-data
	Delta State-based CRDTs
	Efficient Support of Large CRDTs in Riak
	Causality with partial knowledge
	Other works

	Publications
	Published papers
	Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh, and Marc Shapiro. ’Cause I’m strong enough: Reasoning about consistency choices in distributed systems. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016, pages 371– 384, New York, NY, USA, 2016. ACM.
	Iwan Briquemont, Manuel Bravo, Zhongmiao Li, and Peter Van Roy. Conflict- free partially replicated data types. In Proceedings of the 7th IEEE Interna- tional Conference on Cloud Computing Technology and Science (CloudCom 2015). IEEE, Nov 2015.
	Carlos Baquero and Nuno Preguiça. Why logical clocks are easy. Queue, January 2016. ACM.
	Carlos Baquero and Nuno Preguiça. Why logical clocks are easy. Commun. ACM, April 2016. ACM.
	Valter Balegas, Cheng Li, Mahsa Najafzadeh, Daniel Porto, Allen Clement, Sérgio Duarte, Carla Ferreira, Johannes Gehrke, João Leitão, Nuno Preguiça, Rodrigo Rodrigues, Marc Shapiro, and Viktor Vafeiadis. Geo-replication: Fast if possible, consistent if necessary. IEEE Data Engineering Bulletin (to appear), 2016.
	Valter Balegas, Sérgio Duarte, Carla Ferreira, Nuno Preguiça, and Rodrigo Rodrigues. Making Weak Consistency Great Again. In Proceedings of the Second Workshop on Principles and Practice of Consistency for Distributed Data (to appear), PaPoC ’16. ACM, 2016.
	Carlos Baquero, Paulo Sérgio Almeida, and Carl Lerche. The problem with embedded CRDT counters and a solution. In Proceedings of the Second Workshop on Principles and Practice of Consistency for Distributed Data (to appear), PaPoC ’16. ACM, 2016.
	Albert van der Linde, João Leitão, and Nuno Preguiça. -CRDTs: Making -CRDTs Delta-Based. In Proceedings of the Second Workshop on Principles and Practice of Consistency for Distributed Data (to appear), PaPoC ’16. ACM, 2016.
	Mahsa Najafzadeh, Alexey Gotsman, Hongseok Yang, Carla Ferreira, and Marc Shapiro. The CISE Tool: Proving Weakly-Consistent Applications Correct. In Proceedings of the Second Workshop on Principles and Practice of Consistency for Distributed Data (to appear), PaPoC ’16. ACM, 2016.

	Submitted papers
	Mathias Weber, Annette Bieniusa, and Arnd Poetzsch-Heffter. Access control for weakly consistent cloud-storage systems. Submitted for publication, 2016.
	Christopher Meiklejohn. Loquat: A partially replicated, secure, broadcast protocol for edge computation. Submitted for publication, 2016.
	Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. Delta state replicated data types. Submitted for publication, 2016.
	Seyed H. Haeri (Hossein), Peter Van Roy, Carlos Baquero, and Christopher Meiklejohn. Deduction with partial knowledge about causality. Submitted for publication, 2016.

