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1 EXECUTIVE SUMMARY

1 Executive summary
The purpose of WP4 is to design the programming principles and tools that we need to
program large-scale applications based on CRDTs. In the second year, this work package
has collaborated with all other work packages. WP4 has made significant progress in
four tracks, namely programming model, program specification, consistency properties
of programs, and program verification. We summarize the progress as follows:

• In the programming model track, we have designed and implemented Lasp, a pro-
gramming model that allows doing functional composition of CRDTs while keep-
ing the good convergence properties and the robust distributed implementation of
CRDTs. This allows building complete applications that retain the good proper-
ties of CRDTs. We have proved that Lasp is semantically equivalent to functional
programming, which makes it easy for programmers to use.

• In the consistency track, we have greatly extended the power of the work on expli-
cit consistency by defining a proof system, CISE, that allows to efficiently prove
data integrity invariants. We have also extended explicit consistency to do conflict
resolution using invariant repair instead of using reservations in the case of poten-
tial conflicts. This supports a powerful program development methodology where
the proof system is able to prove correctness of programs that have been fixed us-
ing invariant repair techniques. We are currently implementing the proof system in
Z3 and VCC.

• In the specification and verification tracks, we are now focusing on verifying ap-
plications written in Antidote, the project platform developed in WP2. For specific-
ation, we have formalized part of Antidote and we are using the Isabelle prover
to verify the specification of eventually consistent programs using CRDTs. For
verification, we are extending the Antidote system to do runtime verification of
applications written in Antidote.

In the following paragraphs we explain each of these tracks in more detail. This is fol-
lowed by five sections in the main body of the report that give more technical information
about the tracks. Finally, the appendices give all the papers published in these tracks dur-
ing year 2.

1.1 Software deliverable (Section 4)
The software deliverable D4.2.1 consists of three software packages: the first is the Lasp
programming model and the second and third are tool prototypes, respectively for static
and dynamic verification of Antidote applications.

1.2 Programming model (Section 5)
The Lasp programming model extends the Strong Eventual Consistency property of in-
dividual CRDT instances to the composition of CRDT instances using operators derived
from functional and database programming (map, filter, fold, product, union, and in-
tersection). A distributed program written in Lasp runs as a graph of CRDT instances
connected by replicated processes. We have proved that the execution of a Lasp program
is equivalent to a single sequence of states. This allows reasoning with Lasp programs
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1 EXECUTIVE SUMMARY

as functional programs. The resulting model has the following good properties: it is
confluent and referentially transparent (like functional programming), it supports non-
determinism and nonmonotonicity, and it has an efficient distributed and fault-tolerant
implementation.

We currently have two implementations of Lasp, where the same programming model
runs with a different distribution model (client/server on a data center using Riak Core,
and gossip using the Plumtree epidemic broadcast protocol). The first is a data-center
implementation running on a consistent-hashed ring (in Riak Core) with external clients
(see Appendix B). The second, called Selective Hearing, is a gossip-based implementa-
tion that uses the Plumtree epidemic broadcast algorithm to execute Lasp programs on
a set of nodes connected by gossip (see Appendix D). The second model is particularly
interesting since it targets edge computing, which is a major trend in Internet computing,
e.g., for Internet of Things, and which is one of the goals of SyncFree in the third year.
A prototype implementation of Lasp is available (see Section 4).

In the third year, we will extend Lasp to support specifying explicit causality and
transactions. We intend to use Antidote as a backend since it supports transactions. We
will also continue our work on applying Lasp ideas to edge computing.

1.3 Consistency (Section 6)
One of the goals of SyncFree is to understand how different consistency models can live
together in the same application. In the second year, we have made progress on this goal
by extending SyncFree’s work on consistency into a full-fledged programming meth-
odology, combining program proof with conflict resolution. We have defined a formal
proof system, CISE (’Cause I’m Strong Enough), that can efficiently prove correctness
of data integrity invariants in a distributed program. CISE is general enough to cover the
use of multiple consistency models in the same program (see Appendix I), including but
not limited to causal consistency, sequential consistency (a form of strong consistency),
and RedBlue consistency. CISE “operations” as mentioned in Section 6 are in fact full
transactions since they can consist of multiple primitive operations. We are currently im-
plementing and evaluating the CISE proof system through implementations done in the
Z3 and VCC theorem provers.

1.4 Explicit consistency using invariant repair (Section 7)
The Explicit Consistency approach was originally defined to use static analysis to pin-
point potential conflicting operations so they can be handled correctly at run-time. We
have now extended this approach to support invariant repair, which uses compensation
operations to avoid costly synchronization at run-time. This approach naturally com-
bines with the CISE proof system to support a program development methodology: the
CISE proof tool can prove correctness of programs that have been modified with invariant
repair.

1.5 Specification and static verification (Section 8)
We have extended the work on specification of eventually consistent applications using
CRDTs to use a formal model of part of Antidote and an interactive proof using the
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1 EXECUTIVE SUMMARY

Isabelle/HOL theorem prover, which is able to generate formal proofs of application
properties. The Antidote formalization includes causal consistency, eventually consistent
transactions, and data type semantics. In the third year we will explore how to combine
this work with the CISE proof system, to combine the flexibility of our model with the
automatic methods of CISE, and the work on run-time verification, so that developers
can test invariants before starting a formal proof. We intend for this to lead to a practical
tool that combines useful forms of specification, formal proof, and run-time verification.
A prototype of this tool is available (see Section 4).

1.6 Run-time (dynamic) verification (Section 9)
As a continuation of the work on verification, in the first year on CRDTs and now on
applications written with CRDTs, we have started work in the second year on a run-time
verification tool for Antidote that instruments the Antidote implementation and adds a
high-level command interface to support the development and debugging of CRDT-based
applications running on Antidote. Since they are written in Antidote, these applications
can use causal consistency and transactions. We are exploring early stage bug detection
and reproducibility, and support to help programmers write applications that avoid syn-
chronization operations. We expect this work to lead to a practical tool for developers
using Antidote. A prototype of this tool is available (see Section 4).
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2 MILESTONES IN THE DELIVERABLE

2 Milestones in the Deliverable
Milestone MS2 (M24) is on extended guarantees and composition in a dynamic environ-
ment. This concerns work packages WP2, WP3, WP4, and WP5. Task 4.2 has contrib-
uted to this milestone by focusing on the following goals, as stated in the description of
work:

T4.2 Extended programming model (transactions and garbage collection)
This task will extend the basic programming model with additional abilit-
ies according to application needs. Abilities to be added include transaction
support, causality management, stream-based dataflow, and garbage collec-
tion. Early experience shows the need for these abilities. For example, it is
important to provide efficient causality management for CRDT operations,
which depend on knowledge of causality. It is also important to provide
garbage collection, to remove no-longer-needed information while maintain-
ing CRDT monotonicity. The research question is how to add these abilities
to a CRDT-based framework while maintaining its good properties.
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4 SOFTWARE DELIVERABLE D4.2.1

4 Software Deliverable D4.2.1
The software deliverable D4.2.1 is presented as the following software package:

• Lasp programming model. Available in the repository:

https://github.com/lasp-lang/lasp

See Section 5. This repository contains the Riak Core prototype (see Appendix
B), the Plumtree (gossip) prototype (see Appendix D), the Ad Counter scenario, as
well as numerous tests.

In addition, we present also the current state of two tool prototypes:

• Prototype framework for verifying specifications of Antidote-based applications.
Available in the repository:

https://softech-git.informatik.uni-kl.de/zeller/
isabelle_crdt_apps

See Section 8. This repository contains the framework for specification and veri-
fication, implemented using the Isabelle proof assistant. This framework allows
verifying applications built on top of a causally consistent database and CRDTs,
which is a formalized subset of Antidote.

• Commander: a run-time verification prototype for Antidote-based applications.
Available in the repository:

https://github.com/SyncFree/antidote/tree/
scheduler_added

See Section 9. This repository contains the current version of the Commander tool
and an example based on a simple wallet application.
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5 PROGRAMMING MODEL

5 Programming model

5.1 Overview

A major result for programming models in the second year is the definition and imple-
mentation of the Lasp language, which allows defining programs that compose multiple
CRDTs, while keeping the good convergence properties of CRDTs (see Appendix B and
Appendix F).1 The DerflowL system of the first year allows to do dataflow programming
with single CRDT instances [7]; Lasp extends this by allowing to combine CRDT in-
stances using powerful operations inspired by functional and logic programming. Our
first implementation of Lasp is freely available as an Erlang library (see Section 4). To
show the expressiveness of this library, we have used it to implement the Ad Counter
scenario of WP1.

5.2 Motivation and basic principles

Traditional approaches to synchronization increasingly have problems when clients be-
come geographically distributed and more numerous. CRDTs solve the problem for the
case of single data structures. However, this is insufficient for distributed applications,
which consist of many data structures connected together, running in a distributed set-
ting. What is needed is the ability to write these applications while keeping the good
convergence properties of CRDTs. It has been shown that the arbitrary composition of
CRDTs is nontrivial [1, 13].

The Lasp programming model solves the composition problem for several important
CRDTs, in particular our first implementation uses Observed-Remove sets (OR-set), PN
Counters, and simpler versions of these CRDTs. The OR-set is powerful enough to ex-
press many realistic programming scenarios. Lasp allows deterministically composing
instances of OR-sets and other CRDTs into larger computations that observe the Strong
Eventual Consistency property. Available compositions include the higher-order com-
binators from functional programming, namely map, filter, and fold, and set-theoretic
operations from logic programming, namely product, union, and intersection.

Lasp programs do computation with data structures whose values appear nonmono-
tonic externally, while computing internally with the data structures’ monotonic metadata.
We recall that CRDTs are based on lattice operations and also do monotonic compu-
tations internally, even though the external values may be nonmonotonic. The Lasp
model connects CRDTs through active processes that compute with the CRDTs internal
metadata. We have made a prototype implementation of Lasp that leverages the CRDT
functionality of Basho Technologies, namely the riak dt library. We have made two
distributed implementations of Lasp. The first uses the Riak Core distributed systems
framework to give a data-center implementation of Lasp (published in PPDP 2015; see
Appendix B). The second uses the Plumtree epidemic broadcast protocol to give a com-
pletely decentralized gossip-based implementation of Lasp (published in WPSDS 2015;
see Appendix D).

1The name Lasp is inspired by the etymology of Lisp, whose name comes from the phrase List Pro-
cessing. Since our fundamental data structure is a lattice, we derive our name from the phrase Lattice
Processing.
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Figure 1: Eventually consistent advertisement counter. The dotted line represents the
monotonic flow of information for one counter.

5.3 Application scenario: Ad counter
As a first test case for Lasp, we implemented the Ad Counter scenario from Work Package
1. Imagine a provider of mobile games that sells advertisement space within their games.
In this scenario, the correctness criteria are twofold:

• Clients will go offline: consider mobile devices such as cellular phones that ex-
perience periods without connectivity. When the client is offline, advertisements
should still be displayable.

• Advertisements need to be displayed a minimum number of times. Additional
impressions are not problematic.

Figure 1 presents our initial design for an eventually consistent ad counter written in
Lasp. In this example, squares represent primitive CRDTs and circles represent CRDTs
that are maintained using Lasp operations. Additionally, Lasp operations are represented
as diamonds and edges represent the monotonic flow of information. Our advertisement
counter operates as follows:

• Advertisement counters are grouped by vendor.
• All advertisement groups are combined into one list of advertisements using a

union operation.
• Advertisements are joined with active “contracts” into a list of displayable advert-

isements using both the product and filter operations.
• Each client selects an advertisement to display from the list of active advertise-

ments.
• For each advertisement displayed, each client updates its local copy of the advert-

isement counter.
• Periodically, advertisement counters are merged upstream.
• When a counter hits at least 50,000 advertisement impressions, the advertisement

is “disabled” by removing it from the list of advertisements.

The implementation of this advertisement counter is completely monotonic and synchronization-
free. Adding and removing ads, adding and removing contracts, and disabling ads when
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5 PROGRAMMING MODEL

their contractual number of views is achieved are all modeled as the monotonic growth
of state in CRDTs connected by active processes. Programmer-visible nonmonotonicity
is represented by monotonic metadata in the CRDTs.

The full implementation of the advertisement counter is available in the Lasp source
code repository and consists of 213 LOC. In this example, transparent distribution and
failure handling is supported by the runtime environment, and not exposed to the de-
veloper. For brevity, we provide only two code samples: the advertisement counter
“server” process, that is responsible for disable advertisements when their threshold is
reached, and example use of the product and filter operations used for composing the
advertisements with their contracts.

5.4 Implementation
We have built two prototype implementations of Lasp based on quite different distribution
models. The first implementation is based on a consistent-hashed ring hosted in a data
center (see Section 5.4.1). The second implementation is based on gossip: an epidemic
broadcast algorithm on a dynamic network of nodes (see Section 5.4.2). It is remarkable
that the same programming model is able to support successfully such different distri-
bution structures. We consider this as evidence for the usefulness of the combination of
Lasp’s weak synchronization model and strong convergence properties, both inherited
from CRDTs. We give here an overview of both implementations; more information can
be found in Appendix B and Appendix D, and in the Lasp repository (see Section 4).

5.4.1 Data center implementation

The data center implementation distributes data using the Riak Core distributed systems
framework. The Riak Core library provides a framework for building applications in the
style of the original Dynamo system. Riak Core provides library functions for cluster
management, dynamic membership and failure detection.

Dynamo-style partitioning and hashing Lasp uses Dynamo-style partitioning of CRDTs:
consistent hashing and hash-space partitioning are used to distribute copies of CRDTs
across nodes in a cluster to ensure high availability and fault tolerance. Replication of
each CRDT is performed between adjacent nodes in a cluster. While the partitioning
mechanism and implementation is nuanced, it is sufficient to realize the collection of
CRDTs as a series of disjoint replica sets, of which the data is sharded across, with full
replication between the nodes in any given replica set.

Anti-Entropy Protocol We provide an active anti-entropy protocol built on top of Riak
Core that is responsible for ensuring all replicas are up-to-date. Periodically, a process
is used to notify replicas that contain CRDT replicas with the value of a CRDT from a
neighboring replica.

Quorum system operations In Section 5.5, we outline the three properties of our sys-
tem: crash-stop failures, anti-entropy, and correctness. While these properties are suffi-
cient to ensure confluence of computations, they do not guarantee that all updates will
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5 PROGRAMMING MODEL

be observed if a given replica of a CRDT fails before communicating its state to a peer
replica. Therefore, to guarantee safety and be tolerant to failures, both read and update
operations are performed against a quorum of replicas. This ensures fault tolerance: by
performing read and write operations against a majority, the system is tolerant to failures.
The system remains safe and does not make progress when the majority is not available.
Additionally, quorum operations can be used to increase liveness in the system: by writ-
ing back the merged value of the majority, we can passively repair objects during normal
system operation, improving anti-entropy.

Replication and Execution of Operations Given replication of the objects themselves,
to ensure fault-tolerance and high availability, our functional programming operations
and set-theoretic operations must be replicated as well. To achieve this, quorum replica-
tion is used to contact a majority of replicas near the output CRDT, which are responsible
for reading the input CRDT and performing the transformation. We spawn processes at
a majority of the output replicas of a CRDT which reads from an input CRDT.

To ensure forward progress of these computations, each of our operations uses the
strict version of the monotonic read operation to prevent from executing over stale values
when talking to replicas which are out-of-date. In the map example, the transformation is
performed for a given observation in the stream of updates to variable S1 with the output
written into the stream for variable S2, at which the process tail-recursively executes and
wait to observe a causally greater value than the previously observed S1 before proceed-
ing. This prevents duplication of already computed work and ensure forward progress at
each replica. Additionally, we can apply read repair and anti-entropy techniques to repair
the value of the output CRDT if it falls very far behind instead of relying on applying
operations from the input CRDT in order.

5.4.2 Gossip implementation

The gossip implementation consists of a set of nodes supporting Lasp operations that are
implemented using epidemic broadcast. Each node is uniquely identified and tracks a
monotonic counter that is incremented with each operation. Nodes can join or leave at
any time. Nodes fail by crashing and all messages in the system are eventually delivered
to all correct nodes by the epidemic broadcast protocol (reliable broadcast). Crashed
nodes disappear from the system; whenever a node recovers it chooses a new identifier
and reinitializes its monotonic counter at zero. We can therefore summarize the imple-
mentation model as consisting of two layers, which we call the Lasp layer and the gossip
layer. The Lasp layer implements Lasp processes as recursive functions that use the Lasp
operations provided by that layer on top of the epidemic broadcast.

The gossip layer implements the Plumtree epidemic broadcast protocol. Plumtree
is an efficient reliable broadcast protocol that combines the efficiency of a deterministic
tree-based broadcast with the resilience of a gossip algorithm [22]. It efficiently imple-
ments the broadcast operations required by the Lasp layer. The broadcast operations are
not ordered, i.e., a node may receive broadcasts in any order and different nodes may
receive them in different orders. Because of the Strong Eventual Consistency property
of CRDTs, this does not affect correctness. Furthermore, this allows an important op-
timization that reduces the computations needed to implement the bind operation. Bind
operations initiated on each node are numbered consecutively via a node-level monotonic
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5 PROGRAMMING MODEL

counter. Since each variable’s successive values are inflations of a lattice, a bind opera-
tion that is delivered on a node does not have to invoke local computation if another bind
with a greater value has already been delivered.

The Plumtree protocol relies on three properties for fault-tolerant message delivery:
(1) Each message can be uniquely identified: given the lazy push phase of the protocol
broadcasts only message identifiers, a node is required to know whether that message has
been received or not. (2) Nodes must store a history of all messages received. (3) When
receiving an identifier for a message, a node must be able to determine if it has already
been subsumed by a previous one.

To meet these requirements, we maintain a monotonic clock at each node and store
a version vector for each CRDT. This version vector is used to uniquely identify the
message when broadcast and allows us to identify messages that have been subsumed by
other messages without comparison of payload. By leveraging a per object version vector
that is incremented as mutations are performed to each object, we can store a history of
all messages received with vector as wide as the number of participating actors in the
system.

5.5 Fundamental theorem
How easy is programming in Lasp? Can it be as easy as programming in a non-distributed
language? Is it possible to ignore the replica-to-replica communication, distribution, and
failures of CRDTs? Because of the strong semantic properties of CRDTs, it turns out
that this is indeed possible. In Appendix B, we have formalized the distributed execution
of a Lasp program and proved that there is a centralized execution, i.e., a single sequence
of states, that produces the same result as the distributed execution. This allows us to
use the same reasoning and programming techniques as centralized programs. We have
also proved that failures have limited effect: in the worst case, a CRDT update is simply
ignored.

The programmer can reason about instances of CRDTs as monotonic data structures
linked by monotonic functions, which is a form of deterministic dataflow programming.
This model has the good properties of functional programming (e.g., confluence and
referential transparency) in a concurrent setting.

5.5.1 Assumptions

For our formalization, we assume the following properties.

Property 5.1. Fault model and repair We assume the following three conditions:

• Crash-stop failures: replicas fail by crashing and any replica may fail at any time.
• Anti-entropy: after every crash, a fresh replica is eventually created with state

copied from any correct replica.
• Correctness: at least one replica is correct at any instant.

The first condition is imposed by the environment. The second condition is the repair
action done by every CRDT when one of its replicas crashes. The third condition is what
must hold globally for the CRDT to continue operating correctly.
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Property 5.2. Weak synchronization For any execution of a CRDT instance, it is always
true that eventually every replica will successfully send a message to each other replica.2

Property 5.3. Determinism Given two executions of a CRDT instance with the same
sequence of updates but a different merge schedule, i.e., a different sequence of replica-
to-replica communication, replicas in the first execution that have delivered the same
updates as replicas in the second execution have equal state.

Since we intend Lasp programming to be similar to functional programming, it is im-
portant that computations are deterministic. We remark that SEC by itself is not enough
to guarantee this. To correctly use an OR-Set in Lasp, it is important to impose condi-
tions that ensure determinism. The following two conditions are sufficient to guarantee
determinism for all merge schedules:

• A remove(v) is only allowed if an add(v) with the same value has been done
previously at the same replica.

• An add(v) with the same value of v may not be done at two different replicas.

5.5.2 Fundamental theorem

We present our main formal result without proof; a proof can be found in Appendix B.

Definition 5.1. Simple Lasp program A simple Lasp program consists of either:

• A single CRDT instance, or
• A Lasp process withm inputs that are simple Lasp programs and one output CRDT

instance.

Theorem 5.1. A simple Lasp program can be reduced to a single state execution.

As a consequence of this theorem, it suffices to reason about single state executions.
Since Lasp processes are connected through functional operations, this reasoning corres-
ponds to the reasoning of functional programming. We note that this result holds for both
the data center implementation and the gossip implementation, as long as the fault prop-
erties hold. Given the Fault and Repair Model (Property 5.1), we have also proved that
any update to a CRDT in a simple Lasp program is eventually delivered to all replicas or
to no replicas. This means that the worst effect of faults is that an update may be ignored;
no other erroneous execution will occur.

5.6 Conclusions and future work
We introduced the Lasp programming model for large-scale synchronization-free com-
putation over replicated data. We have implemented two distribution models for the pro-
gramming model, namely a data-center-based model using Riak Core, and a gossip-based
model using Plumtree. We have implemented several scenarios, of which the largest is
the Ad Counter scenario from workpackage 1, to show the expressiveness of Lasp.

In the future, we intend to extend Lasp into a full-fledged language and system. We
will identify optimizations for more efficient state propagation, explore stronger consist-
ency models, and optimize distribution and replica placement for better fault tolerance

2The content of this message depends on the definition of the CRDT.
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and reduced latency. We also intend to extend Lasp to add synchronization where needed,
in particular causal consistency and transactions. For these extensions, we intend to use
the Antidote system as a backend, since it has both these abilities. We also intend to add
higher-order operations and abstractions for long-lived applications (deployment, recon-
figuration, and software rejuvenation), and to do realistic evaluations, in particular for
applications on edge computing. In the short term, we are working on extending Lasp for
rolling-window aggregation in a large sensor network, which is a typical edge computing
application.
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6 Consistency
In the work on consistency we present the first proof rule for establishing that a particular
choice of consistency over a replicated database is enough to ensure the preservation of
a data integrity invariant (see Appendix I). We call the resulting proof system CISE, an
acrynoym for ‘Cause I’m Strong Enough.

6.1 Overview

Recent research [5, 23, 31, 33] and commercial [2, 6, 26] databases provide hybrid con-
sistency models that allow the programmer to request stronger consistency for certain op-
erations, while other operations may execute without any synchronisation. For example,
a consistency model may execute some operations under causal consistency, and some
under strong consistency [23]. For example, to preserve the integrity invariant in a bank-
ing application when using this model, only withdrawal operations need to use strong
consistency, and hence, synchronise to ensure that the account is not overdrawn; deposit
operations may use causal consistency and hence proceed without synchronisation. More
recently, the Explicit Consistency model [5] allows the programmer to use sophisticated
multi-level locks and reservations to fine-tune consistency level of each operation (see
Section 7 for the current status of this work). Using this consistency model effectively is
far from trivial. Requesting stronger consistency in too many places may hurt perform-
ance and availability, and requesting it in too few places may violate correctness. Strik-
ing the right balance requires the programmer to reason about the application behaviour
on the subtle semantics of the consistency model, understanding which anomalies are
disallowed by a particular consistency strengthening and whether disallowing these an-
omalies is enough to ensure correctness. This difficulty is compounded by the perennial
challenge of reasoning about concurrency, present even with strong consistency—having
to consider the huge number of possible interactions between concurrently executing op-
erations.

To help programmers exploit hybrid consistency models, we proposed the first proof
rule and tool for proving integrity invariants of applications using replicated databases
with a range of hybrid models [19]. In more detail, we defined a generic hybrid consist-
ency model that is flexible enough to encode a variety of consistency models for replic-
ated databases proposed in the literature [5, 23, 25, 31]. It guarantees causal consistency
by default and allows the programmer to additionally specify which pairs of operations
may not execute without synchronisation by means of a special conflict relation.

Our key technical contribution is a proof rule for showing that a set of operations pre-
serves a given integrity invariant when executed on our consistency model with a given
choice of conflict relation. To avoid explicit reasoning about all possible interactions
between operations, our proof rule is modular: it allows us to reason about the behaviour
of every operation separately under some assumption on the behaviour of other opera-
tions, which takes into account the conflict relation. In this way, our proof rule allows
the programmer to reason precisely about how strengthening or weakening consistency
of certain operations affects correctness.

The modular nature of our proof rule allows it to reason in terms of states of a single
database copy, just like in proof rules for strongly consistent shared-memory concurrency.
In [19] we have proved that this simple reasoning is sound, despite the weakness of the
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consistency model.
We have also developed a tool that automates our proof rule by reducing checking its

obligations to SMT queries. Using the tool, we have verified several example applica-
tions that require strengthening consistency in nontrivial ways. These include a banking
application, an online auction service and a course registration system. In particular, we
were able to handle applications using replicated data types (aka CRDTs [29]), which en-
capsulate policies for automatically merging the effects of operations performed without
synchronisation at different replicas. The fact that we can reduce checking the correct-
ness properties of complex computations in our examples to querying off-the-shelf SMT
tools demonstrates the simplicity of reasoning required by our approach.

6.2 Consistency model
Even though this model is not implemented in its full generality by an existing database,
it can encode a variety of models that have in fact been implemented. In this section we
present the programming interface of our consistency model and describe its semantics
informally, from an operational perspective.

6.2.1 Causal consistency and its implementation

Our hybrid model guarantees at least causal consistency [25]. Therefore we start by
presenting informally how a typical implementation of a causally consistent database
operates. Let State be the set of possible states of the data managed by the database
system. We denote states by σ and let σinit be a distinguished initial state. Applications
define a set of operations Op = {o, . . .} on the data and interact with the database by
issuing these operations. For simplicity, we assume that an operation always terminates
and returns a single value from a set Val. We use a value ⊥ ∈ Val to model operations
that return no value. We do not consider operation parameters, since these can be part of
the operation name.

The database implementation consists of a set of replicas, each maintaining a com-
plete copy of the database state; we identify the replicas by r1, r2, . . . For the purposes
of the informal explanation, we assume that replicas never fail. A client operation is
initially executed at a single replica, which we refer to as its origin replica. At this rep-
lica, the execution of the operation is not interleaved with that of others. This execution
updates the replica state deterministically, and immediately returns a value to the client.
After this, the replica sends a message to all other replicas containing the effect of the
operation, which describes the updates done by the operation to the database state. The
replicas are guaranteed to receive the message at most once. Upon receipt, the replicas
apply the effect to their state.

We assume the semantics of operations is given by a function

F ∈ Op→ (State→ (Val× (State→ State))). (1)

To aid readability, for o ∈ Op we write Fo instead of F(o) and let

∀o, σ. Fo(σ) = (F val
o (σ),F eff

o (σ)).

Given a state σ of o’s origin replica, F val
o (σ) ∈ Val determines the return value of the

operation and F eff
o (σ) ∈ State → State its effect. The latter is a function, to be applied
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withdraw(100):
{τ}, ✔

query: 0query: 0

σinit = 100, τ ⋈ τ

withdraw(100):
{τ}, ✔

Figure 2: An illustration of an execution of Definition 1.

by every replica to its state to incorporate the operation’s effect: immediately at the origin
replica, and after receiving the corresponding message at all other replicas.

For example, consider a banking application where states are integers, representing
the account balance: State = Z. We define the semantics of operations for depositing an
amount a > 0, accruing a 5% interest and querying the balance:

Fdeposit(a)(σ) = (⊥, (λσ′. σ′ + a));

Finterest(σ) = (⊥, (λσ′. σ′ + 0.05 ∗ σ));
Fquery(σ) = (σ, skip),

(2)

where skip = (λσ′. σ′).
To ensure convergence, for now we require that the effects of all operations commute

(we relax this condition for conflicting operations). For example, commutativity holds of
the effects defined by (2). The requirement of commutativity can be addressed through
the use of ready-made replicated data types (aka CRDTs [29]). These encapsulate com-
mutative implementations of policies for merging concurrent updates to the database.

6.2.2 Strengthening consistency

The guarantees provided by causal consistency are too weak to ensure certain integrity
invariants. For example, in our banking application we would like the state at each replica
to satisfy the invariant

I = {σ | σ ≥ 0}. (3)

To ensure this, an operation for withdrawing an amount a > 0 could check whether the
account has sufficient funds and return X or 7 depending on the result:

Fwithdraw(a)(σ) = if σ ≥ a then (X, (λσ′. σ′ − a)) else (7, skip).

This is enough to maintain the invariant when all operations are processed at the same
replica, but not when they are processed asynchronously at different replicas.

The problem in this example arises because two particular operations update the data-
base concurrently, without being aware of each other. To address this, our consistency
model allows the programmer to strengthen causal consistency by specifying explicitly
which operations may not be executed in this way. Namely, the model is parameterised
by a token system T = (Token, ./), consisting of a set of tokens Token and a symmetric
conflict relation ./ ⊆ Token× Token. Tokens are ranged over by τ and their sets, by T .

Each operation may acquire a set of tokens. To account for this, we redefine the type
of F in (1) as

F ∈ Op→ (State→ (Val× (State→ State)× P(Token))) (4)
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Token = {τ}
./ = {(τ, τ)}

Fdeposit(a)(σ) = (⊥, (λσ′. σ′ + a), ∅)
Finterest(σ) = (⊥, (λσ′. σ′ + 0.05 ∗ σ), ∅)
Fquery(σ) = (σ, skip, ∅)

Fwithdraw(a)(σ) = if σ ≥ a then (X, (λσ′. σ′ − a), {τ})
else (7, skip, {τ})

Figure 3: Operation semantics for the banking application. Note that a > 0.

and let
∀o, σ.Fo(σ) = (F val

o (σ),F eff
o (σ),F tok

o (σ)).

Thus, F tok
o (σ) ∈ P(Token) gives the set of tokens acquired by the operation o when

executed in the state σ. Informally, our consistency model guarantees that operations
that acquire tokens conflicting according to ./ have to be causally dependent one way or
another: the origin replica of one operation must have incorporated the effect of the other
by the time the former operation executes. Ensuring this in implementations requires
replicas to synchronise [5, 23].

In our consistency model, we can guarantee the preservation of invariant (3) in the
banking application by defining operation semantics as in Figure 3. Thus, withdraw
acquires a token τ conflicting with itself, and all other operations do not acquire any
tokens. Then the scenario where two replicas make a withdraw without being aware of
each other cannot happen: one withdrawal would have to be aware of the other and would
therefore fail. However, deposits and interest accruals can be causally independent with
all operations, and replicas can therefore execute them without any synchronisation [5,
23]. In this example, the token τ is analogous to a mutual exclusion lock in shared-
memory concurrency. Our proof method establishes that this use of the token is indeed
sufficient to preserve the integrity invariant (3).

Since operations acquiring conflicting tokens have to be causally dependent, causal
message propagation ensures that all replicas see such operations in the same order. This
allows us to require commutativity only for operations that do not acquire conflicting
tokens.

6.3 Formal semantics

Next we define formal semantics of the consistency model. Our formalism does not refer
to implementation-level concepts, such as replicas or messages. We build on an approach
previously used to specify forms of eventual consistency [10]. Namely, our denotations
of database computations consist of a set of events, representing operation invocations
by clients, and a relation on events, describing abstractly how the database processes the
corresponding operations.

Assume a countably infinite set Event of events, ranged over by e, f, g. A relation is a
strict partial order if it is transitive and irreflexive. For a relation R we write (e, f) ∈ R
and e R−→ f interchangeably.
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DEFINITION 1. Given a token system T = (Token, ./), an execution is a tuple X =
(E, oper, rval, tok, hb), where:

• E is a finite subset of Event;
• oper : E → Op gives the operation whose invocation a given event denotes;
• rval : E → Val gives the return value of the operation;
• tok : E → P(Token) gives the set of tokens acquired by the operation;
• hb ⊆ E × E, called happens-before, is a strict partial order such that

∀e, f ∈ E. tok(e) ./ tok(f) =⇒ (e
hb−→ f ∨ f hb−→ e). (5)

Operationally, each event represents an invocation of an operation at its origin replica.
The applications of the operation’s effect at other replicas are not recorded in an execu-
tion explicitly. Instead, the happens-before relation records causal dependencies between
operations arising from such applications: e hb−→ f means that either the operations de-
noted by e and f were executed at the same replica in this order, or they were executed
at different replicas and the message containing the effect of e had been delivered to the
replica performing f before f was executed. Hence, if we have e hb−→ f , then the effect of
e is incorporated into the state to which f is applied and may influence its return value.

The condition (5) formalises the stronger consistency guarantee provided by tokens:
operations acquiring conflicting tokens have to be causally dependent. For example, since
the two withdraw operations in Figure 2 acquire a token τ with τ ./ τ , they have to be
related by happens-before. Finally, we require executions to contain only finitely many
events, because in this paper we are only concerned with safety properties of applications.

6.4 State-based proof rule
We consider the following verification problem: given a token system T = (Token, ./),
prove that operations F maintain an integrity invariant I ⊆ State over database states.
In [19] we established that any execution consistent with T and F evaluates to a state
satisfying I . For example, we show that any execution consistent with Figure 3 evaluates
to a state satisfying the invariant (3). Hence, a query operation will always return a non-
negative balance.

The key challenge of the above verification problem is the need to consider infinitely
many executions consistent with T and F . Our main technical contribution is the proof
rule for solving this problem that avoids considering all such executions explicitly. In-
stead, the proof rule is modular in that it allows us to reason about the behaviour of every
operation separately. Our proof rule is also state-based in that it reasons in terms of states
obtained by evaluating parts of executions or, from the operational perspective, in terms
of replica states.

We give our proof rule in Figure 4 and explain it from the operational perspective.
The rule assumes that the invariant I holds of the initial database state σinit (condition
S1). Consider a computation of the database implementation from Section 6.2 and a state
σ of a replica r at some point in this computation. The proof rule assumes that σ ∈ I and
aims to establish that executing any operation o at r will preserve the invariant I . This is
easy if we only consider how o’s effect changes the state of r, since this effect is applied
to the state σ where it was generated:

∀σ. (σ ∈ I =⇒ F eff
o (σ)(σ) ∈ I). (6)
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∃G0 ∈ P(State× State), G ∈ Token→ P(State× State)

such that

S1. σinit ∈ I
S2. G0(I) ⊆ I ∧ ∀τ. G(τ)(I) ⊆ I

S3. ∀o, σ, σ′. (σ ∈ I ∧ (σ, σ′) ∈ (G0 ∪G((F tok
o (σ))⊥))∗)

=⇒ (σ′,F eff
o (σ)(σ′)) ∈ G0 ∪G(F tok

o (σ))

Exec(T ,F) ⊆ eval−1F (I)

Figure 4: State-based proof rule for a token system T = (Token, ./). For T ⊆ Token we
let G(T ) =

⋃
τ∈T G(τ) and T⊥ = {τ | τ ∈ Token ∧ ¬∃τ ′ ∈ T. τ ./ τ ′}. We denote by

R∗ the reflexive and transitive closure of a relation R. For a relation R ∈ P(A×B) and
a predicate P ∈ P(A), the expression R(P ) denotes the image of P under R.

�0

r

�

r0

F e↵
o (�)

Figure 5: Graphical illustration of the state-based rule.

The difficulty comes from the need to consider how o’s effect changes the state of any
other replica r′ that receives it; see Figure 5(a). At the time of the receipt, r′ may be in a
different state σ′, due to operations executed at r′ concurrently with o. We can show that
it is sound to assume that this state σ′ also satisfies the invariant. Thus, to check that the
operation o preserves the invariant when applied at any replica, it is sufficient to ensure

∀σ, σ′. (σ, σ′ ∈ I =⇒ F eff
o (σ)(σ′) ∈ I). (7)

However, establishing this without knowing anything about the relationship between σ
and σ′ is a tall order. In the bank account example, both σ = 100 and σ′ = 0 satisfy the
integrity invariant (3). Then F eff

withdraw(100)(σ)(σ
′) = −100, which violates the invariant.

Condition (7) fails in this case because it does not take into account the tokens acquired
by withdraw.

The proof rule in Figure 4 addresses the weakness of (7) by allowing us to assume a
certain relationship between the state where an operation is generated (σ) and where its
effect is applied (σ′), which takes into account the tokens acquired by the operation. To
express this assumption, the rule uses a form of rely-guarantee reasoning [20]. Namely,
it requires us to associate each token τ with a guarantee relation G(τ), describing all
possible state changes that an operation acquiring τ can cause. Crucially, this includes
not only the changes that the operation can cause on the state of its origin replica, but
also any change that its effect causes at any other replica it is propagated to. We also
have a guarantee relation G0, describing the changes that can be performed by an opera-

SyncFree Deliverable D.4.2(v1), 28th September 2015, Page 19



6 CONSISTENCY

tion without acquiring any tokens. Condition S2 requires the guarantees to preserve the
invariant.

Like (7), condition S3 considers an arbitrary state σ of o’s origin replica r, assumed
to satisfy the invariant I . The condition then considers any state σ′ of another replica
r′ to which the effect of o is propagated. The conclusion of S3 requires us to prove
that applying the effect F eff

o (σ) of the operation o to the state σ′ satisfies the union of
the guarantees associated with the tokens F tok

o (σ) that the operation o acquires. By S2,
this implies that the effect of the operation preserves the invariant. Condition S3 further
allows us to assume that the state σ′ of r′ can be obtained from the state σ of r by applying
a finite number of changes allowed by G0 or the guarantees for those tokens that do not
conflict with any of the tokens acquired by the operation o, i.e., G0 ∪ G((F tok

o (σ))⊥).
Informally, acquiring a token denies other replicas permissions to concurrently perform
changes that require conflicting tokens.

We now use our proof rule to show that the operations in the banking application
(Figure 3) preserve the integrity invariant (3). We assume that the initial state σinit satisfies
the invariant. The guarantees are as follows:

G(τ) = {(σ, σ′) | 0 ≤ σ′ < σ};
G0 = {(σ, σ′) | 0 ≤ σ ≤ σ′}. (8)

Since withdrawals acquire the token τ , the guarantee G(τ) for this token allows decreas-
ing the balance without turning it negative; the guarantee G0 allows increasing a non-
negative balance. Then condition S2 is satisfied. We show how to check the condition S3
in the most interesting case of o = withdraw(a). Consider σ and σ′ satisfying the premiss
of S3:

σ ∈ I ∧ (σ, σ′) ∈ (G0 ∪G((F tok
o (σ))⊥))∗.

Since F tok
o (σ) = {τ}, we have that (F tok

o (σ))⊥ = ∅. Thus, (σ, σ′) ∈ G∗0. This and σ ∈ I
imply that

0 ≤ σ ≤ σ′. (9)

If σ < a, thenF eff
o (σ)(σ′) = σ′. Furthermore, σ′ ≥ 0 by (9). Thus, (σ′,F eff

o (σ)(σ′)) =
(σ′, σ′) ∈ G0, which implies the conclusion of S3.

If σ ≥ a, then F eff
o (σ)(σ′) = σ′ − a. Since σ ≤ σ′, by (9) we have σ′ ≥ a.

Thus, (σ′,F eff
o (σ)(σ′)) = (σ′, σ′ − a) ∈ G({τ}), which implies the conclusion of S3.

Operationally, in this case our proof rule establishes that, if there was enough money in
the account at the replica where the withdrawal was made, then there will be enough
money at any replica the withdrawal is delivered to. This completes the proof of our
example.

6.5 Courseware application
This example illustrates an integrity invariant and the use of replicated data types [29] to
construct commutative operations. Figure 6 shows a fragment of a courseware applica-
tion. We assume sets of courses Course and students Student. A client can add a course c
using addCourse(c) and register a student s using register(s). A registered student s can
be enrolled into a course c using enroll(s, c). In the application fragment we consider,
student registrations and enrollments cannot be cancelled. However, a course c that has
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State = P(Student)×RWset(Course)×P(Student×Course)
σinit = (∅, ∅RWset, ∅)
I = {(S,C,E) | E ⊆ P(S × contents(C))}

Token = {τe(c), τr(c) | c ∈ Course}
./ = {(τe(c), τr(c)), (τr(c), τe(c)) | c ∈ Course}

Fregister(s)((S,C,E)) =

(⊥, (λ(S ′, C ′, E ′). (S ′ ∪ {s}, C ′, E ′)), ∅)
FaddCourse(c)((S,C,E)) =

(⊥, (λ(S ′, C ′, E ′). (S ′, add(c, C ′), E ′)), ∅)
Fenroll(s,c)((S,C,E)) =

if (s 6∈ S ∨ c 6∈ contents(C)) then (7, skip, {τe(c)})
else (X, (λ(S ′, C ′, E ′). (S ′, C ′, E ′ ∪ {(s, c)})), {τe(c)})
FremCourse(c)((S,C,E)) =

if (c 6∈ contents(C) ∨ ∃s. (s, c) ∈ E)) then (7, skip, {τr(c)})
else (X, (λ(S ′, C ′, E ′). (S ′, remove(c, C ′), E ′)), {τr(c)})
Fquery((S,C,E)) = ((S, contents(C), E), skip, ∅)

RWset(Course) = P(Course)× P(Course)
∅RWset = (∅, ∅)

add(c, (A, T )) = (A ∪ {c}, T )
remove(c, (A, T )) = (A, T ∪ {c})
contents((A, T )) = A− T

Figure 6: A fragment of a courseware application.

addCourse
(Java) addCourse

(Java)
remCourse

(Java)

query: ?

(a)

addCourse
(Java)

enroll
(Carol, Java)

(b)

addStudent
(Carol)

remCourse
(Java)

query: ({Carol},∅,{(Carol, Java)})

Figure 7: Executions illustrating the need for (a) replicated data types and (b) tokens in
the courseware application.
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not secured any student enrollment can be removed using remCourse(c). As usual, we
also have a query operation.

A database state (S,C,E) consists of the set of students S, the set of courses C and
the enrollment relation E between students and courses. The set of courses is actually
not just an ordinary set, but a replicated remove-wins set RWset(Course), explained in the
following. The effects of operations are mostly as expected, with courses accessed using
special functions add, remove and contents on the replicated set. Note that the operation
enroll(c, s) takes effect only if the student s is registered and the course c exists. The
operation remCourse(c) removes the course c only when it exists and has no students
enrolled into it.

Using a replicated data type for the set of courses is needed to satisfy commutativity,
because additions to and removals from a usual set do not commute. To illustrate, con-
sider the execution in Figure 7(a). There Alice adds a course on Java and then changes her
mind and removes the course; concurrently, Bob adds the same Java course. If we main-
tained the information about courses using a usual set, then the outcome of the query in
the figure would depend on the order in which we evaluate the effects of the causally in-
dependent operations addCourse(Java) and remCourse(Java): the query would return ∅ if
the addition was evaluated before removal, and {Java} otherwise. In an actual database,
implementing the operations using ordinary sets would violate the replica convergence
property.

Replicated data types [29] provide implementations of operations on data structures
with commutative effects. They differ in the way in which they resolve conflicting up-
dates to the data structure, such as those in Figure 7(a): when using an add-wins set, the
query in the figure will return {Java}, and when using a remove-wins set, ∅ [28]. The
decision which data type to use ultimately depends on application requirements. To keep
presentation manageable, in our example we use one of the simplest set data types, which
provides a rudimentary version of the remove-wins semantics.

The data type represents the replicated set of courses using a pair of sets (A, T ). The
function add(c, ·) puts c into the set of A, and the function remove(c, ·) puts c into the
set T , called the tombstone set. To get the contents of the replicated set, we just take the
difference of A and T . The functions add(c, ·) and remove(c, ·) commute: even if the
removal is evaluated first, it will still cancel the subsequent addition.

The integrity invariant I we would like to maintain in this application is that the en-
rollment relation refers to existing courses and students only. This property is an instance
of referential integrity, which requires an object referenced in one part of the database
to exist in another. Without using tokens, the operations in our application can break the
invariant. This is illustrated by the execution in Figure 7(b). There a Java course initially
has no students enrolled. Then Alice removes the course and concurrently Bob enrolls
Carol into it, thinking that the course is still available. This results in Carol being enrolled
into a non-existent course.

To ensure that such situations do not happen, we use a pair of conflicting tokens for
each course c ∈ Course: τe(c) and τr(c). The operation enroll(s, c) acquires τe(c), and the
operation remCourse(c) acquires τr(c). Then for every pair of operations enroll(s, c) and
remCourse(c), either the enrollment operation is aware that the course has been removed,
or the removal is aware that there are still students enrolled into the course; in either
case the corresponding operation takes no effect. However, other pairs of operations can
be causally independent and, hence, do not have to synchronise. This includes pairs of
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operations enrolling students into courses and pairs of operations manipulating courses,
such as those in Figure 7(a). The above use of tokens is equivalent to associating every
course with a multi-level lock [5] that can be in one of two modes, one of which allows
enrolling students into a course (τe(c)) and the other removing the course (τr(c)). Unlike
in the auction application above, neither of the tokens τe(c) or τr(c) conflicts with itself,
and thus, neither of the above lock modes is exclusive.

Our proof rule can establish that the above consistency choice is sufficient to preserve
the integrity invariant.

6.6 Conclusions and future work
The work in this section was submitted near the end of year 2 in the paper [19] (see Ap-
pendix I). In this paper we present the first proof rule establishing that a given consistency
choice in a replicated database is sufficient to preserve a given integrity invariant. The
proof rule is modular and simple to use. This was demonstrated by verifying small but
nontrivial examples, and by reducing the verification conditions of the proof rule to SMT
checks. Despite this simplicity, the soundness of our proof rule is nontrivial: the rule fully
exploits the guarantees provided by our consistency model while correctly accounting for
anomalies it allows.

These results represent only an initial step in building an infrastructure of reasoning
methods for applications using modern replicated databases. They open several avenues
for future work. First, our generic consistency model is not implemented by any database
in its full generality; we use it only as a means to compactly represent a selection of more
specific models in existing implementations. However, in the future the generic model
can serve as a basis for exploring the space of possible hybrid consistency models. One
could also consider a database that implements our model in its general form. Second, we
will investigate how to combine CISE with the invariant repair techniques (see Section
7), to give a new and powerful program development methodology.
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7 Explicit consistency using invariant repair

7.1 Overview
Typically consistency models specify the allowed ordering of operations across in differ-
ent sites, forcing programmers to reason about the possible interleavings of operations
to analyze the correctness of the application. In the first year we proposed Explicit Con-
sistency [5], an alternative consistency model that allows operations to be executed by
any order in any replica as long as the application invariants are maintained when rep-
licas converge. This model has minimal constraints, however it is quite powerful when
combined with a static analysis tool. It would be too difficult for the programmer to
determine what concurrent executions would break the invariants of the application, but
with the help of a static analysis tool, the programmer can get that information and pre-
vent those executions with a few extra lines of code.

In the first year of the project we mainly focused on ensuring that applications re-
main correct without relying on coordinated update execution to preserve invariants. We
developed a concurrency control mechanism, called reservations, that allows replicas to
execute operations locally in many cases and yet preserve application invariants. Our pre-
vious approach is capable of providing low-latency operations in many cases, however it
is limited in terms of availability. The problem is that the execution of some operations
might depend on the acquisition of some lock that might be remote, therefore, when the
network is partitioned, it might be impossible to acquire that lock and the system becomes
unavailable to process that request.

In the second year we started thinking in improving the fault-tolerance properties of
the system and the usability of the tool, to make it easier to be adopted by programmers.
We present the new ideas that we are pursuing to provide better availability and present
a compelling example to explain them.

7.2 Prevention is not always better than cure
In the last year, we proposed controlling the execution of conflicting operations, i.e. that
their concurrent execution does not violate the application invariants, through a mech-
anism called Reservations. Reservations allow only certain instances of operations to
proceed locally if their execution is safe in respect to the invariants, otherwise the system
must acquire a reservation to enable their execution. We implemented two reservation
mechanisms:

• Escrow reservations: Based on the classical escrow-model [27], we devise a new
data-type that is capable of ensuring numerical invariants through resource alloca-
tion to each replica.

• Multi-level lock: A token that allows a unique or multiple clients to execute one
or various operations that are not conflicting in respect to each other and precludes
the execution of the conflicting.

Reservations can be exchanged outside the critical path of operation execution, hence
operation have low-latency, when the replica holds the reservations before the request
arrives.

We have identified two limitations with the reservation mechanisms that we propose:
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• Unavailability When some remote replica is down, it might be impossible for a
replica to acquire a reservation. This might prevent a replica from accepting some
client requests, therefore the system loses availability. All reservation mechan-
isms suffer this limitation, as a reservation is some sort of contract of what oper-
ations each replica can execute, therefore replicas need to coordinate to establish
the agreement.

• Multi-level lock convergence When locks exhibit good locality, i.e. client requests
are able to satisfy all necessary locks locally, the system performs well with low
latency. However, if the operation requires some lock to be free remotely, the
latency might become very high, because locks are exchanged in a peer-to-peer
fashion. Although one can provide better heuristics to exchange locks proactively,
conflicting operations need to wait for each other before proceeding.

Giving the limitations of the reservations technique we have started studying alternat-
ives that preserves availability at all time. The main idea is that the system cannot rely on
any form of coordination, even outside the critical path of execution, to ensure invariant
preservation. In order to accomplish that, we allow operations to execute optimistically,
in the local replica and fix invariant violations when they are detected.

7.3 Invariant repair technique
The invariant repair approach is based on the idea of compensations. When the system
arrives at some state that is not correct, it can automatically apply some effects to restore
the correctness of the database.

The Sagas model [17] proposes the use of compensations to improve the commit
rate of systems that must handle long-lived transactions. The idea is that long-lived
transactions can be split into smaller transactions to avoid holding locks for too long. But
if some transaction conflicts with any of of the smaller pieces of the chopped transaction,
the system might have to undo that transaction, by applying a compensating transactions
that revert the mutations that have already committed.

Bayou [32] is a replicated system that accepts write operations at each server and
performs semantic-level conflict resolutions, similar to what we want to do. The system
is composed by a number of servers that accept requests from local clients. When an
operation is sent by a client to the server, it enters in a tentative state: First, it might con-
flict with concurrent operations, in which case it might not be able to execute because the
state of the server does not respect the pre-conditions of the operation. When this occur,
a programmer-defined procedure is applied to solve the conflict. Second, more conflict-
ing updates might arrive later in which case the tentative updates might be reordered
and re-executed to establish a total ordering of updates. The effect of the operation only
becomes permanent after a primary server establishes the final ordering of this operation.

Both approaches have limitations in terms of scalability and availability: Sagas does
not address a replication context and therefore would need to be layered on top of some
sort of state-machine replication scheme; Bayou relies on a total order to make operations
stable, which is not highly-available. Also neither system addresses a partial replication,
which might impose extra coordination steps to execute the conflict detection and resol-
ution protocols.

We propose an alternative solution that addresses these concerns: 1. Operations have
immediate and permanent effect over the database state; 2. Operation effects can be
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propagated asynchronously to any replica with the guarantee that the invariants are pre-
served. 3. Database partitioning does not require any extra communication to detect for
invariant violations.

We are capable of handling non-idempotent conflicts as long as the resolution is idem-
potent, however we cannot provide non-idempotent conflict resolutions, this is because it
is necessary to enforce exactly-one execution, which requires coordination.

In the next sections we revisit the tournament application that we studied in Indigo
and present two examples of conflicts that can be solved by repairing the invariants.

7.4 A new perspective over the tournament example
The tournament example is a toy micro-service that could be used to support many com-
mon competition online games. The operations described here are based on a previous
version of the same example, first presented in [5]. We now describe the features of the
application.

Players participate in tournaments and compete against each other in matches. A tour-
nament has three phases: an enrollment phase where players can enroll in the tournament,
an active phase where there can be no modifications to the participants of the tournament
and a finished phase, when the tournament is concluded and a winner is elected, based
on the number of points achieved in each match. A tournament cannot be removed after
it starts and has a minimum and maximum number of participants. A tournament has
a leader that can start or remove the tournament, the leadership role can be shared with
other players. A player can deposit and spend credit anytime to buy items that are used
in-game to get advantage over the adversary. Items have limited availability.

7.4.1 Example 1: A matter of ordering

While a tournament does not start, players can enroll and disenroll, but the tournament
can only start after a minimum number of players have enrolled in the tournament. When
a partial ordering of execution is allowed, this constitutes a problem for invariant preser-
vation: a leader of the tournament can start the tournament because he observer, in the
local replica, that there is a minimum number of players enrolled, however, concurrently,
at a remote replica, a player might disenroll from the tournament, dropping the number
of players below minimum. This annomaly is preventend under serial execution, because
one of the operations will fail, i.e., either the player cannot disenroll from the tournament,
because it starts before, or the tournament cannot start because it does not have enough
players. Despite the fact that serialization ensures the applications invariants, program-
mers need to check that the preconditions of the operations are met before modifying the
state of the database.

Under partial ordering execution, the operations must also check the pre-conditions
of the operations before taking any action locally, but that does not preclude a concurrent
operation from interfering with this one. It might occur that a concurrent remote opera-
tion also satisfies its local dependencies but is conflicting with the current operation, and,
when both operations are delivered in the same replica, an invariant violation occurs.

Different strategies to repair the invariant violation are possible: we can apply a re-
pair function that makes none of the operations take effect; or the player is not disenrolled
from the tournament and the tournament can start, or the player is disenrolled from the
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tournament and the tournament is canceled. The first solution does not provide a good
user experience, because both users will see their actions retracted. The other two repair
functions provide a semantic equivalent to the serializable execution, i.e. operations ap-
pear to have executed one after the other. However, there is an important caveat with this
conflict resolution: more operations might depend on the operation being repaired, for
instance, a player might have participated a match after the tournament had started and
if we chose to cancel the tournament, that game should have not occurred. In this case
it is easy to stop invariant violation from contaminating other operations. We can chose
to remove the player from the tournament, in which case no other operation is affected
by this convergence policy because no other operation in the workload depends on the
player not being enrolled in the tournament to be able to execute.

In general, it might be necessary to analyze conflict resolution strategies in order to
prevent the generation of new conflicts. We intend to study static analysis to evaluate the
quality of repair strategies.

7.4.2 Example 2: When ordering is not enough

In some situations, invariant violations are not easily repaired. Consider that two play-
ers concurrently bought the last unit of an item in the application. For this conflict we
cannot apply a repair function that produces a state equivalent to one operation executing
after the other, because one of the requests would have different effects, i.e. the opera-
tion would fail because there are no available resources left. This situation occurs when
operations are not commutative, which means that we cannot arbitrate an ordering for
their execution without producing different effects. This is different from the previous
example because, in the first case, despite arbitrating the execution ordering of the pair
of operations, the effects of both operations appear to have been preserved.

In fact, a serial execution is what makes most sense in the real life, as it would be
impossible to duplicate resources. We could think of a service that allows items to be
sold in parallel and therefore overselling, but we cannot take more items then physically
available.

If this invariant is important for the application, we have no option then to use a
strong coordination mechanism to ensure that no user buys more resources then available.
However, some invariants, or lets say, application properties, are desirable properties and
not essential for correctness, in which case more solutions are possible. To not be unfair
with any player, the applications could allow the item to be sold twice which is equivalent
to the semantics of eventual consistency, or remove the item from one of the player’s
inventory and give back some credit. In this case, she might have used the item already
and that would create more conflicts. The developer can still make this choice, as long as
she is able to repair any operation that used the resource. The last alternative is to create
new items to compensate for the advantage that were given to both players.

Our conclusion is that some operations naturally require a coordinated execution,
but one can make an alternative version of the same algorithm that does not require
serialization and apply a compensation when things go wrong. This is how online stores
deal with exhausted stocks, or ATMs handle withdrawals that cannot read the actual
balance of an account [8], do in practice.
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7.5 How to make the tournament more available
In the previous section we discussed two examples of invariant violations and described
possible semantics to correct them. In this section, we are going to describe different
algorithms to implement those repairs.

7.5.1 Invariant-aware convergence rules

Consider that we repair the invariant violation of section 7.4.1 by keeping the player in
the tournament, when the player is disenrolled concurrently. We pursue a repair strategy
that does not impair the availability of the system, and that can be applied in a partitioned
databases.

The algorithm we propose is based on the convergence rules used in CRDTs [29].
CRDTs can ensure add-/remove-wins policies when concurrent add and remove opera-
tions execute over the same data-type. This means that we can select the outcome of
a concurrent add/remove operation of the same element to a set. In the example, the
pre-condigions to execute the begin operation is to check that the tournament has the
minimum number of players and then the operations changes the value of some flag to
true, meaning that the tournament has started. The concurrent disenroll operation re-
moves one element from the participants set, making its size smaller then the minimum
and when both operations are propagated to the same replica we end in a state with a set
of participants that is smaller than the required for the value of the flag being true.

To solve the violations, consider that the set of participants uses a add-wins strategy
for handling conflicting adds and removes. This allows to ensure that that the size of the
tournament does not decrease with any concurrent remove, because we can cancel the
effect of the remove with the add. In order to enforce this behavior, when starting the
tournament, we just add again, to the set of participants, all the players that belong to the
set of player in the moment the tournament starts. The merge strategy of the set enforces
that any concurrent remove will take no effect. Adding all the elements to the set again
can be done in an efficient way, to avoid processing overheads when the tournament is
large, we will address this by developing new CRDT data types.

The benefit of this strategy is that it does not require any additional mechanism to
detect conflicts, nor apply the repairs, as the execution of the operations automatically
addresses any possible conflict. Also, if is compatible with partial replication, since, if
the transaction has multiple effects over different objects, the conflict resolution of the
data-type automatically handles any conflicting update without further coordination. To
implement this strategy we require identifying the pre-conditions of the operations, i.e.
what are the conditions for the operation to execute, and instrument the code with the
extra updates to enforce those conditions upon operation delivery to a remote replica.
Also it is necessary to check that the transformation to the operations are compatible
regarding each other, thus not generating an infinite cycle of repairs. We intend to build
on the static analysis that we developed in year 1 to implement the new analysis.

7.5.2 Compensating for conflicts

In section 7.4.2, we describe an example where the invariant violation cannot be re-
paired, thus the system must handle it as part of an exception of the workload. To handle
those situations we want to apply some action that compensates for the occurrence. In
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the previous example, the solutions consist in doing nothing, remove the item from one
player’s item list, or create new resources. However, two things have to be taken into
consideration when writing compensations. First, does the compensation conflict with
any other invariant? Second, what happens if two different replicas compensate the same
action? To answer the first question we can consider a compensating action as part of
the workload and use the same tools to detect the conflicts of the application. Regarding
the second question, applying compensating actions is trivial when the operations are
idempotent, because they can execute at multiple machines without producing further
outputs. The problem with applying the compensating actions is when the operation is
non-idempotent, in which case, multiple executions of the same operation produce cu-
mulative effects. For instance, if the compensation was to create new resources, it could
create the resource multiple times.

The simplest way to implement the compensation mechanism is to use a central au-
thority that would guarantee that the compensating action only occurred once, or use a
consensus algorithm. We are still studying how can we handle these situations with better
availability. However, if we can make the compensations idempotent they can be applied
multiple times without violating the intention of the programmer, however it is important
to understand how does the reordering of compensations affect the intention of the user.

Another property of compensating that we might leverage is that they may not have
to be executed immediately, i.e., the system can delegate applying the fix to the future,
which can be convenient in some cases.

7.6 Conclusions and future work
We are currently studying invariant-repair as a way to implement Explicit Consistency.
The idea of invariant-repair is attractive as no-coordination is the only way to ensure true
high-availability. Since causally consistent key-value stores are limited in supporting
invariant preservation, it is important to study how can we leverage on the application
semantics to push the envelope without requiring extra coordination requirements. The
reservations approach was good to provide lower latencies with invariant preservation,
but now we want to further improve the availability and fault-tolerance of the system.

The work we are proposing has two main foci: one is the development of analytical
tools that can identify and fix invariant violations; the second is to efficiently implement
the repairs.

The analytical tools mainly need to detect and suggest conflict resolutions, either by
providing transformed conflicting operations or pin-pointing the changes that have to be
done. This has to take into account the semantics of the data-types and possible new
invariant violations that might arise from the transformations. We intend to extend the
current analysis we have in Indigo with a functionality that, for a given set of operations
transformations, detects that the database eventually converges and respects the invariants
that are defined for the application. n order to accomplish that, we need to take the merge
strategies defined per each data-type into account and iteratively test that the proposed
modifications do not conflict with other operations, or if they do, there is another repair
operation that fixes it and the process terminates.

The other research we need to do is how to efficiently implement the repair operations.
As explained in the first example, we may have to reproduce multiple effects to ensure
the invariant preservation, which can be very expensive in terms of processing. Also, at

SyncFree Deliverable D.4.2(v1), 28th September 2015, Page 29



7 EXPLICIT CONSISTENCY USING INVARIANT REPAIR

this point, it is not clear to to apply compensating action in an highly-available fashion.
We are also taking into consideration how to make the whole approach more auto-

matic, to reduce the effort for the programmer and make the model more attractive. The
natural step is to combine the invariant repair approach with the CISE proof system (see
Section 6). This can potentially lead to a new and powerful program development meth-
odology.
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8 Specification and static verification

8.1 Overview
In last years report we demonstrated different ways of specifying applications, which use
eventual consistent data stores. We also showed how these specifications can be related to
classical, sequential specifications. These specifications are one requirement for verify-
ing applications. Another requirement is a model of the underlying system on which the
application is running. We have created a simplified model of Antidote, which includes
the semantics of causal consistency, eventually consistent transactions, and data type se-
mantics. The model is formalized in the interactive theorem prover Isabelle/HOL, which
allows us to perform machine checked proofs of application properties. The checkable
properties go beyond simple invariants on the database state. We can also proof properties
about the history and reason about effects of concurrently executed calls.

We start with a motivating example in Section 8.2. Next we introduce our formalized
model in Section 8.3. Finally, Section 8.4 explains how we use the framework to reason
about program correctness.

8.2 Userbase example
To show the need to reason about causal consistency and the choice of data types we
consider a small application to manage user accounts. This application provides the
following API to clients:

• registerUser(name: String, email: String): Id

Creates a new user account with the given data and return the identifier of the new
user.

• removeUser(id: Id)

Removes a user from the database.
• updateMail(id: Id, newMail: String)

Updates the mail address of a user.
• getUser(id: Id): {name: String, email: String}

Returns the data of a user or Undef, if the user does not exist or was removed.

One difficulty in implementing this example on a weakly consistent data store is to
make removeUser work correctly. In particular a user that is removed should eventually
be removed on all replicas, and not reappear because of other operations being called.

When using CRDTs, eventual consistency and high availability come for free. How-
ever, a developer still has to ensure that the semantics of the chosen data types match
with the desired application level semantics. For example the following data type choices
would lead to problems:

• Last-writer-wins semantics could lead to a situation where updateMail wins over
removeUser because of a later timestamp, even without clock-skew.

• Similarly, with add-wins semantics the effects of registerUser or updateMail
could win over removeUser.

• If the update method would not check, whether the user is deleted and just does
a blind update, then even with remove-wins semantics a user could reappear after
being removed.
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def registerUser(name, mail) {
val result = newId()
atomic {

users[result]['id'].write(result)
users[result]['name'].write(name)
users[result]['mail'].write(mail)

}
return result

}

def removeUser(userId) {
users[userId].delete()

}

def updateMail(userId, newMail) {
atomic {

val exists = users[userId].exists()
if exists {

users[userId]['mail'].write(newMail)
}

}
}

def getUser(userId) {
atomic {

val exists = users[userId].exists()
val name = users[userId]['name'].read()
val mail = users[userId]['mail'].read()
return (if exists then {'name': name, 'mail': mail} else Undef)

}
}

Figure 8: Pseudocode implementation of example application to manage user accounts.

• If the identifier for an user was not generated in a way which guarantees unique-
ness, then a user could reappear as well.

A possible implementation of this example is given in Figure 8. The variable users

contains an instance of a map data type and maps user identifiers to another map con-
taining the user data. The inner map contains entries for id, name, and mail which all
are last-writer-wins registers. The registers provide write and read methods. The maps
allow to lookup a key (squared brackets syntax) and they allow to delete entries and to
check whether an entry exists.

8.3 A model for causally consistent data stores with CRDTs

Our model includes several aspects. There is a minimal language to model programs
written on top of the eventually consistent database. There is the database itself with
causally consistent semantics and support for transactions. Finally, there are data types
which can be composed to construct application specific types.
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datatype stmt =
Do "localState ⇒ localState ⇒ bool"

| Goto "localState ⇒ nat"
| CrdtCall string (generateOp:"localState ⇒ any")
| BeginAtomic
| EndAtomic

datatype procedure =
Procedure

(proc_name:string)
(proc_args:"string list")
(proc_body:"stmt list")

Figure 9: Language for modeling applications.

8.3.1 The language

The implementation language used in our model is very minimal. Control flow is based
on numbered statements and a single Goto statement, which calculates the next statement
based on the current local state. An abstract Do statement can transform the local state.

For interacting with the database layer, there is the CrdtCall statement, which gen-
erates an operation from the local state and stores the result of the call in a variable.
Transactions are supported via the BeginAtomic and EndAtomic statements.

A program consists of several procedures, and each procedure consists of a name, a
list of parameters, and a list of statements as the body.

8.3.2 The database model

Our model does not keep an explicit state, but instead defines the semantics based on a
history of all calls to the database. This follows the approach used in related work [10, 18]
as well as our previous work on verifying CRDTs [36]. By using a similar approach, we
can use the same kind of specifications for CRDTs, which we have previously verified.
Therefore we do not have to care about the low level implementation details of CRDTs
when verifying application level properties.

All parts of the state are shown in the record definition in Figure 10. Each call to
the database is identified by a callId and all calls are stored in the finite set calls. A
callId is just an integer, so that we also get a total order on calls that can be used for
arbitration, e.g. in last-writer-win-registers. For a call we can get the operation with
callOps, the returned result via callres, and the replica which executed the call via
callReplica.

A replica always sees a subset of all calls, which is stored in visibleCalls. The
subset of visible calls represents the operations which already have been synchronized
to the replica, so this set is monotonically growing over time. Calls are related by the
happensBefore relation, which is a partial order. Intuitively (a, b) ∈ happensBefore(s

), when operation b was executed with knowledge of operation a.
For modeling transactions, we store the current transaction for each replica in

CurrentTransaction and we maintain the equivalence relation sameTransaction which
relates calls which were executed in the same transaction.
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datatype config =
Running (pc_method:string) (pc_line:nat) localState

| Accept

record state =
state_calls :: "callId fset"
state_callOps :: "callId ⇒ any"
state_callRes :: "callId ⇒ any"
state_callReplica :: "callId ⇒ replicaId"
state_visibleCalls :: "replicaId ⇒ callId fset"
state_happensBefore :: "(callId × callId) set"
state_sameTransaction :: "(callId × callId) set"
state_local :: "replicaId ⇒ config"
state_currentTransaction :: "replicaId ⇀ callId fset"
state_knownIds :: "int fset"

Figure 10: The state

Also each replica has a local configuration which is either Accept when the replica
is waiting for function calls from clients, or it is Running when a method is currently
executed.

Finally, the state includes the finite set knownIds, which contains all identifiers known
to clients. This is necessary, so that we can for example prohibit clients from calling
removeUser(x) before the user x was even created and the identifier of x returned to the
client.

8.3.3 Execution model

We now explain the steps that the system can take. As shown in Figure 11 we distinguish
between different kinds of actions: calls from clients, responses to clients, replicas re-
ceiving data (pull), internal steps, and failures. The function step1 in Figure 12 defines
the effect of executing one single action.

In case of an Intern action, the current statement is determined based on the current
procedure and the program counter. The execution of a single statement is handled by
the definition execStmt shown in Figure 13.

The Do statement simply increments the program counter and allows updates of the
local state according to the given relation. The use of a relation allows to use this state-
ment for simple assignments, complex local calculations, and nondeterministic behavior.

The Goto statement is used to implement control flow in procedures. It simply calcu-
lates a new program counter based on the current local state and updates it accordingly.

The more interesting statements are the ones for handling interactions with the data-
base. A CrdtCall is handled by the function makeCall. It chooses a new identifier aId
for the call and uses the datatype semantics of the program (dtsem) to determine a valid
result for the call. Note that the determination is again handled by a relation, so that it is
possible for a datatype to be nondeterministic or block until some condition is met. We
discuss the modelling of datatype semantics in Section 8.3.4. The call is then stored in
the state and added to the visible calls on the current replica. The happens-before relation
is updated by adding (x, aId) to the relation, for all x visible at the current replica. If the

SyncFree Deliverable D.4.2(v1), 28th September 2015, Page 34



8 SPECIFICATION AND STATIC VERIFICATION

datatype action =
Intern (action_replica:replicaId)

| ClientCall (action_replica:replicaId) (action_method:string) (
action_args:"any list")

| ClientResponse (action_replica:replicaId) (action_result:any)
| Pull (action_replica:replicaId)
| Fail (action_replica:replicaId)

Figure 11: The actions

call happens in a transaction, the action is also added to the current transaction.
A transaction is started by the BeginAtomic statement. It just sets the current trans-

action to an empty set of calls. When EndAtomic is executed the current transaction is
set to None again and the equivalence relation sameTransaction is updated.

Transactions play an important role in the Pull action, which models the exchange
of calls between replicas. The set New is a set of calls which are visible after pulling. The
new set must at least include all previously visible calls and it must be causally consistent
according to the happens-before relation. Furthermore, the set cannot contain any calls
which are still part of a transaction. When one call of a transaction is in New, then also all
other calls have to be in New. Finally a Pull can only happen if the current replica is not
currently in a trasaction.

Another important aspect of the model is the Fail action, which also involves the
handling of transactions. When a replica fails the current transaction is undone by remov-
ing all calls in the transaction from the state. The local state and the current transaction
are reset to initial values, so that the replica can again accept new calls from clients.

This brings us to the last two actions, namely the handling of calls from clients and
responses to clients. If a replica is in the Accept state, a client can call any method
defined in the program. The number of parameters must be correct and the parameters
must only contain UIDs which previously have been exposed to the client via a response.
Otherwise no restrictions are made on the possible calls.

A response to the client is possible when control has reached the end of a procedure,
i.e. when the program counter is after the last statement. The local variable result

determines the result returned to the client. If the variable is not set, then Undef is
returned.

Discussion. The formal model differs from Antidote in some minor points. While An-
tidote allows one replica to process several requests concurrently, the model is limited to
one concurrent request at a time. However, from the view of the application this makes
no difference, since the same effect could be achieved with a higher number of replicas.
Therefore, if we prove an application correct for an arbitrary number of replicas, then it
is also correct for any number of concurrent connections to the database. The difference
is mainly in the implementation of Antidote, where concurrency on the same replica has
to be handled differently from concurrency on multiple replicas.

The model does also not make the distinction between concurrency between datacen-
ters and within a datacenter, as this is not important for correctness. The main difference
in the implementation is the delay between updates and corresponding pulls on other
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fun step1 :: "program ⇒ action ⇒ state ⇒ state ⇒ bool" where
"step1 prog (Intern r) s s' = (case state_local s r of

Accept ⇒ False
| Running proc pc ls ⇒ (case getStatement prog proc pc of

None ⇒ False
| Some stmt ⇒ execStmt prog r proc pc ls stmt s s'))"

| "step1 prog (Pull r) s s' = (∃New.
New |⊆| state_calls s
(* new visible calls at least contain old visible calls *)
∧ New |⊆| state_visibleCalls s r
(* pull causally consistent subset *)
∧ (∀x y. y |∈| New ∧ (x,y)∈ state_happensBefore s → y |∈| New)
(* do not pull changes which are still not committed *)
∧ (∀r trans. state_currentTransaction s r = Some trans

→ trans |∩| New = {||})
(* pull changes of complete transactions: *)
∧ (∀x y. x |∈| New ∧ (x,y)∈state_sameTransaction s → y |∈| New)
(* do not allow pull inside a transaction *)
∧ state_currentTransaction s r = None
∧ s' = sL

state_visibleCalls := (state_visibleCalls s)(r := New)
M)"

| "step1 prog (Fail r) s s' = (
let transaction = (case state_currentTransaction s r of

None ⇒ {||}
| Some tr ⇒ tr)

in s' = (sL
(* undo transaction *)
state_calls := state_calls s |-| transaction,
(* reset transactionstate *)
state_currentTransaction :=

(state_currentTransaction s)(r := None),
(* reset local state *)
state_local := (state_local s)(r := Accept),
state_happensBefore := {(x,y)∈state_happensBefore s.

x|/∈|transaction ∧ y|/∈|transaction},
state_visibleCalls :=

(state_visibleCalls s)
(r := state_visibleCalls s r - transaction)

M))"
| "step1 prog (ClientCall r proc args) s s' = (∃method.

state_local s r = Accept
∧ Some method = lookup_method prog proc
∧ (∀arg∈set args. includedUids arg |⊆| state_knownIds s)
∧ length (proc_args method) = length args
∧ (let ls = map_of (zip (proc_args method) args)

in s' = sL state_local := (state_local s)(r:=Running proc 0 ls)
M))"

| "step1 prog (ClientResponse r res) s s' = (∃proc method pc ls.
state_local s r = Running proc pc ls

∧ Some method = lookup_method prog proc
∧ pc ≥ length (proc_body method)
∧ res = (case ls ''result'' of Some res ⇒ res | None ⇒ Undef)
∧ s' = sL state_local := (state_local s)(r := Accept),

state_knownIds := state_knownIds s |∪| includedUids resM)"

Figure 12: Single step in the execution
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fun configUpdate :: "replicaId ⇒ (localState ⇒ localState ⇒ bool) ⇒
state ⇒ state ⇒ bool" where

"configUpdate r rel s s' = (∃ls'. case (state_local s r) of
Running proc pc ls ⇒ rel ls ls' ∧ s' = (sLstate_local :=

(state_local s)(r := Running proc (pc+1) ls')M)
| _ ⇒ False)"

fun makeCall :: "dataTypeSem ⇒ replicaId ⇒ string ⇒ any ⇒ state ⇒
state ⇒ bool" where

"makeCall dtsem r v args s s' = (∃aId res cfg'.
aId |/∈| state_calls s

∧ dtsem s r args res
∧ cfg' = (case state_local s r of

Running proc pc ls ⇒ Running proc (pc+1) (ls(v7→res)))
∧ s' = sL

state_calls := state_calls s |∪| {| aId |},
state_callOps := (state_callOps s) (aId := args),
state_callRes := (state_callRes s) (aId := res),
state_visibleCalls := (state_visibleCalls s)

(r := state_visibleCalls s r |∪| {| aId |}),
state_happensBefore := state_happensBefore s

∪ ({e. e |∈| state_visibleCalls s r} ×{aId}),
state_local := (state_local s)(r := cfg'),
state_callReplica := (state_callReplica s) (aId := r),
state_currentTransaction := (case state_currentTransaction s r of

Some transaction ⇒ (state_currentTransaction s)
(r := Some (transaction |∪| {| aId |}))

| None ⇒ state_currentTransaction s)
M)"

definition execStmt :: "program ⇒ replicaId ⇒ string ⇒ nat ⇒
localState ⇒ stmt ⇒ state ⇒ state ⇒ bool" where

"execStmt prog r proc pc ls stmt s s' ≡ (case stmt of
Do rel ⇒ configUpdate r rel s s'

| Goto line ⇒ s' = sL
state_local := (state_local s)(r := Running proc (line ls) ls)
M

| CrdtCall v args ⇒ makeCall (dataTypeSem prog) r v (args ls) s s'
| BeginAtomic ⇒ s' = sL

state_local := (state_local s)(r := Running proc (pc+1) ls),
state_currentTransaction :=

(state_currentTransaction s)(r := Some {||})
M

| EndAtomic ⇒ (∃tr. state_currentTransaction s r = Some tr
∧ s' = sL
state_local :=

(state_local s)(r := Running proc (pc+1) ls),
state_currentTransaction :=

(state_currentTransaction s)(r := None),
state_sameTransaction :=

state_sameTransaction s ∪ (fset tr × fset tr)
M))"

Figure 13: Executing a statement of the program
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replicas.
Another difference is that the model fixes the database schema and the application

code upfront, so no upgrades at runtime are possible. This aspect would go beyond the
current scope of the model.

There are some restrictions on the model with regards to what kind of properties can
be explored with the model. As the model uses finite traces for executions, and the model
does not include any guarantees about fairness, it is also not possible to reason about
liveness and fairness on the application level. Likewise statements about performance
are also not possible, except for simple metrics like number of calls to the database.

It would also have been possible to make the model more flexible with respect to
consistency levels. The causal consistency model is fixed in the system model. However,
it is still possible to model stronger consistency by using the data type semantics. The
following section describes how data types are integrated into the model.

8.3.4 Modeling data types

One of the most important parts of the model is the integration of data types. In general
the semantic of a data type is simply given by a relation of type state ⇒ replicaId ⇒
any ⇒ any ⇒ bool. Based on the current system state, the current replica and the given
operation of type any, the relation states whether a given result of type any is valid.

This approach is quite flexible and allows specifying data types which are not CRDTs.
For example it is possible to specify a register which provides sequential consistency.
There are still some restrictions, for example a linearizable register cannot be specified,
because the model does not keep track of absolute times.

While we allow more powerful data types in general, applications we are inter-
ested in mainly use CRDTs. A CRDT specification can be seen as a function of type
updateHistory ⇒ any ⇒ any, which takes the update history and an operation of type
any and deterministically returns a result of type any. The updateHistory is a restricted
view on the complete state. It only contains the calls visible on the current replica and
does not contain irrelevant information, like local state, transaction data, or the identifiers
known to clients. The restriction of the complete state to the updateHistory is done by
the function stateToUpdateHistory as shown in Figure 14. The fact that CRDTs are
deterministic from an internal view is captured by the fact that a crdtSpecification is a
function of the update history and the arguments.

As our model handles the whole database as one CRDT, we need some way to com-
pose several CRDTs into one. The most important primitive for composition is probably
the map. The simplest form of map does not have a remove operation for elements. It
simply forwards operations to embedded CRDTs depending on the given key. To handle
heterogeneous maps, we parameterize the map CRDT with a function, which selects a
crdtSpecification based on the key. For homogeneous maps this function is constant as
there is only one type of value. The semantics of this simple map can be defined as
follows:

fun map_semantics :: "(any ⇒ crdtSpecification) ⇒ crdtSpecification"
where

"map_semantics keyTypes H operation = (case operation of
:[key, operation] ⇒ (keyTypes key) (extractOperationsForKey key

H) operation
| _ ⇒ Undef)"
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record updateHistory =
updateHistory_calls :: "callId fset"
updateHistory_callOps :: "callId ⇒ any"
updateHistory_callRes :: "callId ⇒ any"
updateHistory_callReplica :: "callId ⇒ replicaId"
updateHistory_happensBefore :: "(callId × callId) set"

fun stateToUpdateHistory :: "state ⇒ replicaId ⇒ updateHistory" where
"stateToUpdateHistory s r = L
updateHistory_calls = state_visibleCalls s r,
updateHistory_callOps = restrictOn (state_visibleCalls s r) Undef (
state_callOps s),

updateHistory_callRes = restrictOn (state_visibleCalls s r) Undef (
state_callRes s),

updateHistory_callReplica = restrictOn (state_visibleCalls s r) 0 (
state_callReplica s),

updateHistory_happensBefore = {(x,y)∈state_happensBefore s. {|x,y|}
|⊆| state_visibleCalls s r}

M"

(* converts a crdt specification to a general data type semantics *)
fun crdtSpecification2dataTypeSem :: "crdtSpecification ⇒ dataTypeSem

" where
"crdtSpecification2dataTypeSem spec state replica args res = (spec (

stateToUpdateHistory state replica) args = res)"

Figure 14: Crdt semantics

When the operation is a tuple with a key and an operation, then the appropiate em-
bedded CRDT semantics is chosen based on the key. Then this CRDT semantics is used
with the given operation (not including the key) and an update history including only the
events relevant to the given key.

A more practical version of a map also provides an operation to delete an entry. We
model this with another CRDT semantics, a deletable CRDT which wraps one arbitrary
CRDT and adds a delete and exists operation. The following specification describes the
delete-wins variation, where only the updates that come after all deletes are effective.

definition deletable_crdt :: "crdtSpecification ⇒ crdtSpecification"
where

"deletable_crdt orig_crdt H operation = (case operation of
:delete ⇒ :ok

| :exists ⇒
Bool (∃aid. aid|∈|updateHistory_calls H

∧ updateHistory_callOps H aid 6= :delete
∧ updateHistory_callOps H aid 6= :exists
∧ (∀d. d|∈|updateHistory_calls H

∧ updateHistory_callOps H d = :delete
→ (d,aid) ∈ updateHistory_happensBefore H))

| other ⇒ let H' = HL
updateHistory_calls := ffilter

(λaid. updateHistory_callOps H aid 6= :delete
∧ updateHistory_callOps H aid 6= :exists
∧ (∀d. d|∈|updateHistory_calls H

∧ updateHistory_callOps H d = :delete
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definition userCrdt :: crdtSpecification where
"userCrdt = map_semantics (λkey. case key of

Atom ''id'' ⇒ lwwreg_semantics Undef
| Atom ''name'' => lwwreg_semantics Undef
| Atom ''mail'' => lwwreg_semantics Undef
| _ ⇒ error_crdt key)"

definition exampleProgramCrdt :: dataTypeSem where
"exampleProgramCrdt state r operation result = (

if operation = :newUID then
(* generate new unique id *)
result /∈ {res. ∃aId. aId |∈| state_calls state ∧ state_callOps
state aId = :newUID ∧ state_callRes state aId = res}

else
(crdtSpecification2dataTypeSem (map_semantics (λkey. case key of

Atom ''users'' ⇒ map_semantics (λk. deletable_crdt userCrdt)
| _ ⇒ error_crdt key

)) state r operation result))"

Figure 15: Crdt semantics of the example program

→ (d,aid) ∈ updateHistory_happensBefore H))
(updateHistory_calls H)

M in orig_crdt H' operation)"

The above setup allows us to easily specify custom CRDTs and compose existing
specifications. However, this does not imply that implementations can be composed in
the same way. The current state of the art allows only some CRDT implementations to
be composed efficiently.

8.4 Reasoning about program correctness

Based on the model described in the previous section, we can now use interactive proofs
in Isabelle to prove properties about programs. To show this we again consider our ini-
tial example of a user database (see Figure 8). A simple property which this application
should satisfy is that deleted users do no reappear. In the following definition we formal-
ize this property from the perspective of a client at a single replica:

definition "removeIsPermanent prog ≡ (∀s trace t1_call t1_res t2_call
t2_res r userId res1 res2.
steps prog trace initialState s

∧ t1_res < t2_call
∧ CallResponse r (CallEvent t1_call ''removeUser'' [userId])

(ResponseEvent t1_res res1)
∈ set (callResponsePairs trace 0)

∧ CallResponse r (CallEvent t2_call ''getUser'' [userId])
(ResponseEvent t2_res res2)

∈ set (callResponsePairs trace 0)
→ res2 = Undef)"

The basis for the specification are the traces, which describe the executions from
the view of a client. The property has to hold for every trace, such that executing the
program from the initialState leads to a state s. In the trace we look at two call-response
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pairs. One is a call to removeUser(userId) and another is getUser(userId) with result res2.
We assume that the call to getUser happens after the call to removeUser, formalized by
comparing the start- and end-times (t1 res < t2 call). If we have a situation like this, we
expect the result of the getUser call res2 to always be Undef.

This property not only depends on the program text in Figure 8, but also on the chosen
CRDTs. Figure 15 shows the CRDT semantics we use for the example. A user record
is modeled by a map pointing to last-writer-wins registers with start value Undef. The
data type for the whole program is not a CRDT, because it can generate globally unique
identifiers with the operation newUID. Other operations are forwarded to a map with
only one key named users. This map models global variables and could be extended
with other keys. Behind the key we have another map, which maps user identifiers to
user records. We wrap the userCrdt in a deletable crdt, to get a delete operation with
delete-wins semantics.

Using these semantics for the data type, we can argue (informally) why the program
behaves as intended and satisfies our property:

(1) When removeUser(id) has been called, then an operation users[id].delete() must
be in the database history for some point in time between the call and response.

(2) Moreover, there are no map update operations on a removed user, which happen
causally after the remove (except for other removes).

(a) The operations in the registerUser procedure cannot come afterwards, be-
cause newUID never returns an identifier known to clients. Therefore re-
moveUser(id) must happen at a point in time after registerUser and no happens-
before relation can exist which points into the past.

(b) The operations in updateMail cannot happen after a remove, because the pro-
cedure checks whether the user exists before doing any updates. Because the
code is packed in an atomic unit, the check and the map updates see the same
set of operations. So if the update operations were executed after a remove,
the existence check would have returned false.

(3) When getUser is called on the same replica sometime after remove, we get that
there is a database operation for deleting the user by property (1). We also know,
that this database operation happened before the operations in getUser, as this is
guaranteed by the session order guarantees of the database. By property (2) we
know that no database operation on the same user happens after the remove. There
can be concurrent updates, but since we used a remove-wins semantics for the map,
we always get the required result, that the user does not exist.

The first two properties are invariants, while the last property is a consequence of
the invariant and the data type semantics. Properties like the first one above have to be
used for most proofs, since we often want to express properties on the application level
in terms of traces, but have to reason about the data type semantics and histories on
the database level. To capture this, formalizations of our invariants maintain a mapping
between the database operations and the corresponding Intern steps in the traces. Based
on this it is also possible to link a call-response pair with the set of database operations
invoked during the call.

In summary, we have to find an invariant Inv(trace, state, mapping), which relates
the trace, the current state (which includes the history of database operations), and the
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mapping between trace and database history. Then first we have to show that the invariant
holds for the initial state with the empty trace and the empty mapping. Second we have
to show that each step (see Figure 12) maintains the invariant. Currently, this means that
the invariant also has to include information about local states. Therefore this process
can be quite tedious.

8.5 Future work
We hope to reduce the amount of manual work required for performing proofs in the
future by capturing more general properties in proof rules and by using more automation.
In particular we believe that it will be possible to handle atomic blocks as one single
step, which would significantly reduce the manual effort. The primitive proof rule we
currently use already helps with informal reasoning about program correctness. We hope
that developing more specialized proof rules will also lead to more insights for informal
reasoning and thus helps developers in writing correct applications.

For programs using locks, we hope to integrate the proof rules from CISE (see Section
6) into our framework, so that these cases become easier to handle. This would combine
the flexibility and expressiveness of our model with the easier and partially automatic
methods of CISE. We also hope to integrate our approach of reasoning with runtime veri-
fication techniques (see Section 8) so that developers can test invariants before starting
an expensive formal proof. The systematic exploration techniques would already give a
high confidence in the correctness of an invariant, which could be completed by formal
verification.

SyncFree Deliverable D.4.2(v1), 28th September 2015, Page 42



9 RUN-TIME (DYNAMIC) VERIFICATION

9 Run-time (dynamic) verification

9.1 Overview

One of the verification and validation activities within the SyncFree project is the de-
velopment of a runtime verification tool that supports programs written to run on the
Antidote framework. CRDT-based programming frameworks including Antidote allow
programmers to write highly available applications that avoid synchronization operations.
Weak consistency in general and CRDTs in particular are novel programming settings
and ensuring the correctness of programs in these settings is not straightforward and may
be a challenge for application programmers. By building a runtime verification tool for
Antidote programs, we aim to help programmers with this challenge. By going beyond
random testing, runtime verification and systematic exploration of Antidote program be-
haviors, especially different orderings of inter-replica message delivery with respect to
replica-local operations, we provide improved early stage bug detection and reproduc-
tion ability to programmers. In this section, we present the specifics of this activity and
contrast it with existing runtime verification work in the literature.

9.2 Antidote operation and specifying Antidote programs

As has been explored in work packages 1, 2 and 4 in the SyncFree project thus far, pro-
grammers naturally express desired program properties in the form of replica-local as-
sertions expressed as first-order logic formulas in terms of replica state, and as invariants
on the global state, which are also written as assertions expressed as first-order formulas
in terms of the final, converged state of a (and, in fact, all) replicas. Since Antidote guar-
antees strong eventual consistency and causality, this rather straightforward approach to
specifying application properties works well.

The checking of an assertion in terms of replica-local state variables is implemented
in a straighforward manner in Erlang by evaluating the boolean predicate in the assertion.
Replica-local assertions are written simply as program statements in the transactional
programs running at each replica in the Antidote program. Global invariants are also
Erlang statements, but their evaluation needs to wait for all messages to be delivered to
the replica on which the invariant will be evaluated, and for this replica to apply the effects
of all remote transactions to its state. The function computing the global invariant is thus
called only after the runtime verification tool sends a message to the replica indicating
that all remote transactions have been delivered to it, and after the replica has processed
all the remote transactions in its queues.

9.2.1 Systematic exploration of behaviors

Operational model for Antidote. We are concerned about only four different Erlang
processes running potentially concurrently on each Antidote node. These processes ex-
ecute and log replica-local transactions, and receive, process, and log the remote transac-
tions. For the simplicity, we call those processes respectively runner, receiver, updater,
and logger in the rest of this document. Process runner is responsible for executing
the transactions issued by a client attached to a replica. Runner processes also call the
logger processes to write transactions to the log. Other processes are responsible for
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Figure 16: Operational model for Antidote.

DC1 DC2Initial balance: $ 500

Default schedule: Local T1, Remote T1, Local T2

$ 500

$ 100

$ 500

$ 100

Local T1: withdraw $ 400

Remote T1: withdraw $ 400

Local T2: withdraw $ 300Is not allowed since balance < withdraw amount

Invariant: balance > 0

$ 100 Delayed

Remote T1: withdraw $ 400

Local T2: withdraw $ 300 $ 200

Remote T1: withdraw $ 400 $ -200
The executed transactions result in a negative balance 

Local T1: Debit $ 400

a)

b)

Figure 17: a) An ordering with no violation; b) Applying one delay in the ordering in (a)
that violates the invariant.

processing remote transactions. The receiver process receives the incoming transactions
from other replicas, and sends them to the updater process. Then, this process checks
the dependencies of received transactions one by one, and calls the logger process to log
the transaction, if its causal dependencies are satisfied. The timing of writing to the log
is non-deterministic. Intuitively speaking, programs on weakly consistent platforms, in-
cluding Antidote programs, are especially prone to property violations that arise from a
replica having a possibly stale view of the state of certain CRDTs and issuing operations
and transactions based on this stale view. This may lead to the execution and later com-
munication to other replicas of transactions that may cause invariant violations. Figure 17
illustrates one such simple case. As seen in this example, exploring different timings of
updates corresponding to transactions in remote replicas relative to the execution of the
transactions being issued at a particular replica will uncover such bugs. In the rest of this
section, we will refer to an atomic step a CRDT-based program (such as an Antidote)
program as an event and we will describe an execution of such a program as a linearly-
ordered sequence of events. Examples of events are the execution of a transaction at a
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replica, the delivery or receipt of a transaction to/from another replica, and updating the
replica state by incorporating into it the effect of a remote transaction. Since an Antidote
replica has choice over whether it processes a local transaction or applies the effects of
a remote one, and since there is timing non-determinism in when messages are delivered
through a network, we refer to an “interleaving” of events and speak of “schedules”. The
systematic exploration of all interleavings is thus the exploration of possible schedules
(interleavings) and is accomplished in our runtime verification tool by an algorithm that
explores a set of chosen schedules and enforces the events in the system to take place
according to the chosen schedule.

However, to detect such concurrency bugs, exhaustive exploration of all possible in-
terleaving of events is computationally too expensive. Runtime verification tools must
strike a compromise between coverage of behaviors and computational cost. One prom-
ising approach for a tunable compromise in the runtime verification literature is prior-
itized exploration of program behaviors and has been applied successfully to shared-
memory concurrent programs. These techniques have derived inspiration from the obser-
vation that many concurrency bugs can be triggered and explained by making reference
to the ordering of a small number of noteworthy events. Delay-bounded scheduling 18
is one way of performing prioritized, systematic exploration of event orderings within a
“neighborhood” of a given ordering, called the default ordering. Explored schedules for a
delay bound of K are allowed to deviate from the original, default schedule by delaying
(postponing to the end of the schedule) K tasks. Delay-bounded scheduling has been
shown to be effective in bug detection in concurrent shared-memory programs and has
been successfully adapted to asynchronous programs. In our runtime verification work
in the SyncFree project, we explore the generalization of delay-bounded scheduling to
CRDT-based, thus geo-replicated distributed programs. The next section elaborates on
this investigation.

9.2.2 Delay-bounded scheduling

The delay bounding approach [14] explores the program behaviors arising in executions
with a given scheduler S(K) parameterized by a ”delay bound” K ∈ N . S(0) is the
default chosen schedule. S(K) is a set of schedules, where the set is characterized by
the number of additional nondeterministic choices K. Ideally, for large enough K, S(K)
is the entire set of program interleavings for a given, fixed program. A delay-bounded
scheduler will explore all S(K) in increasing order of K. The approach has been shown
to work well (e.g. Emmi et al. [14]) for shared-memory concurrent programs, where an
efficiently-implementable ”depth-first” delaying scheduler DF(K) was shown empirically
to expose behaviors with few ordering dependencies using small values of K.

The main idea in delay-bounding approach is making a deterministic scheduler suffi-
ciently nondeterministic by delaying its next scheduled task. In other words, search space
in delay-bounding is parameterized by a deterministic scheduler S, and a delay boundK.
Delay-bounding is independent of the deterministic scheduler, and can be applied to any
scheduler such as round-robin, depth-first, and any other deterministic scheduler. So, in
the execution of a deterministic schedule, at the point a task is dispatched can be delayed
to execute later. An execution path is said to be K-delay-bounded if it contains at most
K delay operations in the path.
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T1 T2 T3 T4 T5

Default schedule

T1 T2 T3 T4 T5 T3

1-delay schedule

Figure 18: One-delay execution of a default schedule.

9.2.3 Generalizing delay bounding to CRDT-based programs

Delay-bounded scheduling [14] considers no dependency between the tasks. Figure 18
shows an one-delay schedule. Because of the dependency between operations in CRDT-
based programs, we adjust delay-bounded scheduling in this context, by considering the
causal dependency between operations. So, a transaction cannot be scheduled after the
transactions which are causally dependent on it. In other words, delaying a transaction
results in delaying all its causally dependent transactions, but this is counted as one delay.
In addition delaying local transactions after their corresponding remote transactions is not
allowed. Likewise, delaying a local transaction results in delaying its propagated version,
and totally is counted as one delay.

9.3 Tool design and implementation

9.3.1 Tool architecture

Record/replay systems are used for detecting and diagnosing concurrency errors. Since
concurrent and distributed systems have scheduling and timing non-determinism, it is
only possible to reproduce a bug if all the non-deterministic choices that occurred in
the buggy execution have been captured and can be repeated. Thus, record and replay
capability is crucial in a runtime verification tool for concurrent and distributed systems,
including CRDT-based ones.

We present a record/replay system, Commander, which targets the Geo-replicated ap-
plications, and reproduces their executions based on the interleaving non-determinism.
The executions are reproduced and a set of executions around the recorded one are ex-
plored using delay-bounded scheduling [14, 15].

Commander is composed of three components: (1) recorder; (2) scheduler; (3) re-
player. Figure 19 illustrates the architecture of the Commander tool. First, a default
scheduling of the riak test test is recorded using the recorder component. Scheduler then
loads the recorded trace and schedules a set of executions around the recorded trace, that
each is replayed by the replayer component. When a reproduced execution is replayed, it
is also recorded by the recorder. The recently recorded trace will be loaded by the sched-
uler later, when the previous set of the scheduled executions is replayed. Scheduling the
lately recorded trace can result in distinguished executions. So, in each pass, more ex-
ecutions are replayed. As an optimization, we will extend the scheduler later to check
if a scheduled execution has been replayed before. The following paragraphs give more
explanation of each component.

Recorder The recorder component records the default scheduling in the initial run.
It fills the trace which is sent to the scheduler component later as an input. To record
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Figure 19: Architecture of the Commander tool.

the default schedule in the initial run, Commander allows the requested DC to proceed
in the receiving order. Then before allowing any other DC to proceed, it waits for an
acknowledge, and required data from the DC to fill, and record a new trace.

Scheduler This component is in charge of reproducing an interleaving, using delay-
bounded technique, of the recorded trace to be explored. So, in each pass, the scheduler
loads the recorded trace, and generates an ordering of the events, which feeds the replayer
component.

Replayer The replayer is the component which plays back the scheduled interleaving.
It gets the scheduled trace from the Scheduler and allows only one replica to operate at
a time. Replayer also calls the recorder component to record the replayed scheduling.
To replay a scheduled trace, replayer reads events of the trace one-by-one, and it allows
the corresponding DC to proceed only if it is enabled. A DC is enabled, if it has already
requested for the scheduled event. Finally, Replayer waits for an acknowledgment, and
the required data from the DC, to update its state, and call the Recorder to fill, and record
a new trace using the received data.

Therefore, to enforce a schedule in CRDT-based programs, Commander allows only
one replica to operate at a time. Figure 20 depicts how the Commander orchestrates the
two Antidote nodes.

9.3.2 Implementation

The Commander implements the gen server behaviour, and its state is a record consisting
of the following fields: (1) phase, denotes the phase in which the Commander is running;
(2) device, the file that is used either in record or replay phase; (3) events, a sub-sequence
of the scheduled trace, that has not yet been replayed; (4) waiting requests, a set of all
received request that has not yet been responded; (5) current event, the current event
which is replaying; (6) tx mapping, a mapping from transactions’ previous identifiers
to their new identifiers which are generated in the replay phase. The events have been
categorized as local or remote events. Local events are transactions issued on a DC by
the client, whereas the remote transactions are those that has been received from other
DCs, and are applied on the received DC. All requests are processed sequentially in order
to have only one replica active at a time.

There is a separate module for the Recorder, Scheduler, and Replayer components,
that contains the specific functions for each of them. Regarding the phase in which
Commander is running, it calls the required functions of the appropriate module.
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Figure 20: Commander enforces only one replica to operate a time.

We integrate the Commander in Antidote by instrumenting the Antidote source code.
So, the instrumentation points are where a local transaction is about to execute, or a
remote transaction is written to the log. Figure 21 depicts two example of where to
instrument in the Antidote code. To delay a local transaction, the process in charge of
executing the transaction need to be killed, and the transaction will be start later when
it is scheduled. Delaying the remote transactions are straightforward, that the remote
transaction is popped and then re-inserted in the same queue.

9.4 Related work
The related work in the literature does not address our concern which is exploring differ-
ent possible behaviors of a CRDT-program. The most commonly used tool, QuickCheck
[3] is a property-based testing tool with support for model-based exploration as well. It
is based on data non-determinism, meaning that it generates the test cases for random
inputs, whereas we address the interleaving nondeterminism. Although PULSE [12] ad-
dresses the interleaving nondeterminism, to the best of our knowledge, it only detects
race conditions, and supports Erlang-level concurrency. The state-less model checker,
Concuerror [11], is also based on interleaving nondeterminism, that detects deadlock,
assertion violation, and abnormal termination. It explores possible executions system-
atically, and uses the partial order reduction techniques to reduce the state space size.
But it only supports the concurrency between processes on a single Erlang node. The
McErlang [16] model checker likewise the other model checking tools requires the de-
sired property to be specified. It replaces the concurrency and message passing in Erlang
runtime system. McErlang accepts an Erlang program as an input, and the properties can
be specified in both Erlang language using a callback module, or linear temporal logic.
Etomcrl [4] is a tool which translates the Erlang code to mcrl, a process algebraic lan-
guage, which then is checked by CADP toolset. Verification of the applications using
Etomcrl check a model of the program, that can be divergent from the program itself.
Another approach is model checking the abstract models of the CRDT-programs written
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clocksi_execute_tx(Operations) ->

%% - Send Request = {node(), Operations, self(), local} to the commander,

%% - Wait for a command

{ok, _} = clocksi_static_tx_coord_sup:start_fsm([self(), Operations]),

receive

EndOfTx ->

%% Call commander synchronously, and send record Record_data = 

%% {Dc_Id, node(), {{Tx_Id, ReadSet, CT}, Operations}, local} to be 

%% recorded

EndOfTx

end.

Local Transactions

check_and_update(SnapshotTime, Localclock, Transaction, Dc, DcQ, Ts,

StateData = #recvr_state{partition = Partition} ) ->

…

case check_dep(SnapshotTime, Localclock) of

true ->

%% - Send Request = {node(), Transaction, self(), remote} to the commander,

%% - Wait for a command

…

riak_core_vnode_master:command({Partition,node()}, calculate_stable_snapshot, 

vectorclock_vnode_master),

%% Call commander synchronously, and send record Record_data = 

%% {Dc_Id, node(), Transaction, remote} to be 

%% recorded

riak_core_vnode_master:command({Partition, node()}, {process_queue},

inter_dc_recvr_vnode_master),

NewState;

false ->

…

Remote Transactions

Figure 21: Commander enforces only one replica to operate a time.

in TLA+ using TLC, that already has been done by our group, and presented at deliver-
able D1.2. This approach is not practical for programmers developing Antidote programs
due to the divergence between the model and the program, and the need to write separate
TLA+ model of the program.

Our proposed tool reproduces the set of executions systematically using delay-bounding
technique. It supports features specific to CRDT-programs such as dependency between
different operations, whereas other related work in the literature takes only the Erlang
into consideration, thus could result in more false positives. It supports distributed Er-
lang, and does not require the program to be modeled. Invariants are checked using eunit
assertions, and no other knowledge than Erlang is required.

9.5 Conclusions and future work
Currently, we have implemented the recorder, and the scheduler for the default execution
trace. So, the initial run of a riak test test is recorded in the default ordering. Then,
scheduler returns the 0-delay-bound schedule. There was a few issues in implementing
the replayer component, that we are re-factoring its implementation to solve them.

After that, we will instrument the new version of the Antidote with pub-sub inter-
dc-replication layer to enable the communication between it and the Commander. Then,
extend the scheduler to reproduce a set of K-delay-bounded schedules. At this point, the
implementation of the replayer will not need any modification. But, later we will refactor
the replayer implementation to add the capability of recording any replayed execution.

So, our future direction is extending the Commander to:

1. Instrument the new version of the Antidote, to work with the Commander. In
the new version, there is a slight change in transaction execution interface, and
pretty much change in the inter-dc-replication layer. Although the protocol has
not been changed, because of the modifications in the code, we need to instrument
some different places in the Antidote source code to have the Antidote nodes been
orchestrated by the Commander.
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2. We will investigate how efficient using QuickCheck, and PULSE in replay phase
could be.

3. Do the record and replay iteratively. We will extend the current replayer imple-
mentation to record any replayed execution as well as the initial default execution.

4. Distribute the Commander. Currently, Commander runs on a single DC, separate
from other DCs. So, if it crashes, the system will fail. Finally, to prevent single
point of failure, we will distribute the Commander through all DCs, that will make
it more responsive as well.

To develop a more efficient runtime verification tool for the Antidote-based applic-
ations, a knowledge of the Antidote inner working is essential, since we instrument its
source code, and also take into account the causal dependency between operations cap-
tured by the Antidote, in reproducing the executions around one recorded execution. We
believe that having more collaboration with Antidote team, will speedup the progress of
the work. So, one member of our group will be visiting the Antidote team during the first
half of the last year of this project.
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10 Papers and publications
• Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Mahsa Najafz-

adeh, Marc Shapiro, and Nuno Preguiça. Towards Fast Invariant Preservation
in Geo-Replicated Systems. ACM SIGOPS Operating Systems Review, 49:1(5),
2015.

• Christopher Meiklejohn and Peter Van Roy. Lasp: A Language for Distributed
Coordination-free Programming. 17th ACM International Symposium on Prin-
ciples and Practice of Declarative Programming (PPDP 2015), Siena, Italy, July
14-16, 2015.

• Christopher Meiklejohn and Peter Van Roy. The Implementation and Use of a
Generic Dataflow Behaviour in Erlang. 14th ACM SIGPLAN Erlang Workshop,
Vancouver, BC, Sep. 4, 2015.

• Christopher Meiklejohn and Peter Van Roy. Selective Hearing: An Approach to
Distributed Eventually Consistent Edge Computation. Workshop on Planetary-
Scale Distributed Systems (W-PSDS 2015, colocated with SRDS 2015), Montréal,
Quebec, Sep. 28, 2015.

• Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Nuno Preguiça,
Mahsa Najafzadeh, and Marc Shapiro. Putting Consistency back into Eventual
Consistency. ACM SIGPLAN European Conference on Computer Systems (EuroSys
2015), Bordeaux, France, April 21-24, 2015.

• Christopher Meiklejohn and Peter Van Roy. Lasp: A Language for Distributed
Eventually Consistent Computations with CRDTs. Workshop on Principles and
Practice of Consistency for Distributed Data (PaPoC 2015, colocated with EuroSys
2015), Bordeaux, France, April 21, 2015.

• David Navalho, Sérgio Duarte, and Nuno Preguiça. A Study of CRDTs that do
Computations. Workshop on Principles and Practice of Consistency for Distributed
Data (PaPoC 2015, colocated with EuroSys 2015), Bordeaux, France, April 21,
2015.

• Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Nuno Preguiça,
Marc Shapiro, and Mahsa Najafzadeh. The Case for Fast and Invariant-Preserving
Geo-Replication. Workshop on Planetary-Scale Distributed Systems (W-PSDS
2014, colocated with SRDS 2014), Nara, Japan, Oct. 6, 2014.

Submission
We list this paper, even though it is still in submission, because it presents the CISE
formal proof system that is relevant to the Consistency work presented in Section 6.

• Alexey Gotsman, Hongseok Yang, Carla Ferreria, Mahsa Najafzadeh, and Marc
Shapiro. ’Cause I’m Strong Enough: Reasoning About Consistency Choices in
Distributed Systems. 32nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 2016), submitted for publication.
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[16] L.-Å. Fredlund and H. Svensson. McErlang: A model checker for a distributed
functional programming language. In ICFP. ACM, 2007.

[17] H. Garcia-Molina and K. Salem. Sagas. In Proceedings of the 1987 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’87, pages 249–259,
New York, NY, USA, 1987. ACM.

[18] Alexey Gotsman and Hongseok Yang. Composite replicated data types. In Jan
Vitek, editor, Programming Languages and Systems - 24th European Symposium on
Programming, ESOP 2015. Volume 9032 of Lecture Notes in Computer Science,
pages 585–609. Springer, 2015.

[19] A. Gotsman, H. Yang, C. Ferreira, M. Najafzadeh, and M. Shapiro. ‘Cause I’m
Strong Enough: Reasoning about consistency choices in distributed systems. Sub-
mitted for publication, 2015.

[20] C. B. Jones. Specification and design of (parallel) programs. In IFIP Congress.
North-Holland, 1983.

[21] L. Lamport. How to make a multiprocessor computer that correctly executes multi-
process programs. IEEE Trans. Comput., 28(9), 1979.

[22] J. Leitao, J. Pereira, and L. Rodrigues. Epidemic broadcast trees. In 26th IEEE In-
ternational Symposium on Reliable Distributed Systems (SRDS 2007). IEEE, 2007,
pp. 301–310.

[23] C. Li, D. Porto, A. Clement, R. Rodrigues, N. Preguiça, and J. Gehrke. Making
geo-replicated systems fast if possible, consistent when necessary. In OSDI, 2012.

[24] C. Li, J. a. Leitão, A. Clement, N. Preguiça, and R. Rodrigues. Minimizing coordin-
ation in replicated systems. In Proceedings of the First Workshop on Principles and
Practice of Consistency for Distributed Data, PaPoC ’15, pages 8:1–8:4, New York,
NY, USA, 2015. ACM.

[25] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Don’t settle for
eventual: scalable causal consistency for wide-area storage with COPS. In SOSP,
2011.

SyncFree Deliverable D.4.2(v1), 28th September 2015, Page 53



REFERENCES

[26] Microsoft. Consistency levels in DocumentDB.
http://azure.microsoft.com/en-us/documentation/articles/
documentdb-consistency-levels/, 2015.

[27] P. E. O’Neil. The escrow transactional method. ACM Trans. Database Syst.,
11(4):405–430, Dec. 1986.

[28] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. A comprehensive study
of Convergent and Commutative Replicated Data Types. Technical Report 7506,
INRIA, 2011.

[29] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. Conflict-free replicated data
types. In Proceedings of the 13th International Conference on Stabilization, Safety,
and Security of Distributed Systems (SSS’11), pages 386–400, Berlin, Heidelberg,
2011. Springer-Verlag.

[30] K. Sivaramakrishnan, G. Kaki, and S. Jagannathan. Declarative programming over
eventually consistent data stores. In Proceedings of the 36th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI 2015, pages
413–424, New York, NY, USA, 2015. ACM.

[31] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional storage for geo-
replicated systems. In SOSP, 2011.

[32] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer, and C. H.
Hauser. Managing update conflicts in Bayou, a weakly connected replicated storage
system. In Proceedings of the Fifteenth ACM Symposium on Operating Systems
Principles, SOSP ’95, pages 172–182, New York, NY, USA, 1995. ACM.

[33] D. B. Terry, V. Prabhakaran, R. Kotla, M. Balakrishnan, M. K. Aguilera, and
H. Abu-Libdeh. Consistency-based service level agreements for cloud storage. In
SOSP, 2013.

[34] W. Vogels. Eventually consistent. CACM, 52(1), 2009.

[35] Marek Zawirski. Dependable Eventual Consistency with Replicated Data Types.
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ABSTRACT
Today’s global services and applications are expected to
be highly available, scale to an unprecedented number of
clients, and offer reliable, low-latency operations. This can
be achieved through geo-replication, particularly when data
consistency is relaxed. There are, however, applications
whose data must obey global invariants at all times. Strong
consistency protocols easily address this issue, but require
global coordination among replicas and inevitably degrade
application throughput and latency.

While coordination is an inherent requirement for main-
taining global application invariants, there are instances where
coordination on a per operation basis can be avoided. In
particular, it has been shown that either moving coordina-
tion outside the critical path for executing operations, or
having one coordination round for multiple operations, are
both effective ways to maintain global invariants and avoid
most of the penalties of coordination. However, current geo-
replication protocols still have not taken advantage of these
observations.

In this paper, we review the design space of current so-
lutions for building geo-replicated applications and present
our guiding vision towards a general technique for providing
global application invariants under eventual consistency, as
a much cheaper alternative to strong consistency.

1. INTRODUCTION
The advent of global Internet-based services and appli-

cations has exposed the challenges of building distributed
applications targeting millions of users scattered across the
globe. Turning users into customers or potential customers
of a whole new economy of social networks and e-commerce
platforms has highlighted the importance of providing a
good user experience. In particular, a measure of quality
of service that users perceive directly is the responsiveness
of their interactions with the service. There is evidence from
major industry players [22] that even a slight degradation in
latency correlates with increased user dissatisfaction and,
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consequently, loss of revenue. In recent years, a great deal
of research and technology advances have been directed to
addressing this issue.

Geo-replication is a widely adopted technique to improve
the responsiveness of online services. It employs multiple
data centers, placed at strategic locations around the globe,
and attempts to redirect user requests to a nearby replica
of the service. Thus, the latency between end-users and the
servers can be significantly reduced, in addition to offering
improvements in system scalability and fault tolerance.

Under geo-replication, systems scale-out by partitioning
data requests [10, 9, 12]. However, the need to replicate
databases over high latency, intercontinental network links
forces system designers to choose between system availabil-
ity and data consistency, since it is not possible to have
both under network partitions [7]. Eventually consistent and
strongly consistent systems are at the opposite extremes of
that trade-off.

Eventually consistent systems forgo tight replica coordi-
nation to favor availability, allowing replicas to diverge un-
der network partitions [29]. Operations are executed locally
and their effects are replicated asynchronously. This allows
users to observe the immediate effects of their actions, but
can result in concurrency anomalies, due to conflicting oper-
ations performed at other sites. In order to maintain global
invariants, applications on top of eventually consistent data
stores require additional programming logic, thus complicat-
ing their design and development.

Strongly consistent systems, in contrast, are well suited
for applications that need to enforce global application in-
variants across replicas at all times [6]. In these systems,
data consistency is achieved by limiting concurrency, either
by funnelling all updates to a central site, or running some
consensus algorithm, such as Paxos, so that all sites agree
on some global order of operations. However, performing
this level of coordination every time the application state
is mutated is expensive, particularly in the case of replicas
that are far apart, as expected in geo-replication settings.
In either case, throughput and scalability are lower than in
eventual consistency.

In an attempt to bridge the gap between availability and
consistency, researchers sought to discern what guarantees
are attainable without impairing availability [2, 27, 28]. They
determined that, under some conditions, causality is the
strongest form of always-available consistency [2]. However,
this is insufficient for enforcing global application invariants,
such as ensuring non-negativity of an inventory counter un-
der concurrent decrements.



Others have pursued the approach of combining the best
aspects of eventual and strong consistency into systems that
choose the most appropriate consistency level for each op-
eration in a workload [26, 15]. Whether that choice is made
manually by the programmer (a potentially error prone pro-
cess) or by a tool [14, 8], it remains that the strongly consis-
tent execution path can still undermine the availability and
performance of the system if those operations are frequent.

In this paper, we propose to explore a new trade-off in this
tension between consistency and performance, which has the
potential to demonstrate that it is possible, in many cases,
to achieve the best of both worlds. Our ideas are based on
the following observation. While coordination is necessary
in general for enforcing global invariants under concurrency,
there are also many cases where operations only have the po-
tential to break invariants when particular limit conditions
are reached. For instance, when a non-negative counter is far
from zero, concurrent decrements do not produce anomalous
behaviour, regardless of the order in which they are commit-
ted to the database. In other cases, the frequency of unsafe
operations in a given workload may provide an opportunity
to save on coordination costs. For instance, if two types of
operations require coordination between each other, but one
is more frequent than the other, then treating these oper-
ations in the same way may miss chances for optimization.
In particular, by putting the burden of coordination in the
rare operation, it becomes possible to execute the more fre-
quent operations without any coordination, since these will
be notified in case a conflicting operation wants to execute.
These insights make it possible to improve geo-replication
performance in a principled way, by moving coordination
outside the critical execution path of operations, instead of
focusing on the ordering of operations – the approach that
is employed by most existing solutions.

The rest of the paper is structured as follows. In section 2,
we discuss the guarantees and limitations of eventual consis-
tency (EC). Section 3 presents prior work on using program
analysis to determine which operations require coordination
to ensure invariants; then, in Section 4 we review additional
techniques for enforcing invariants. Section 5 presents the
overall approach of our work for providing global applica-
tion invariants on top of eventual consistency. Section 6
concludes the paper.

2. PROS AND CONS OF EVENTUAL
CONSISTENCY

Eventual consistency guarantees that in the future, if up-
dates cease, all replicas will converge to the same value, be-
coming indistinguishable [29]. In systems that offer eventual
consistency, clients can access any replica, which allows the
system to provide high availability despite failures as long as
a single replica is available. Additionally, these systems tend
to achieve low latency, as the client can access the closest
replica. These advantages come at the price of allowing for
behaviors that depart from conventional semantics, and con-
sequently an increased complexity in application design [25].

In this section, we use a social network application to illus-
trate the anomalies that can occur in eventually consistent
systems and how to address them by requiring additional
guarantees from the system.

Many of the anomalies occur because a client is allowed ex-
ecute operations at any replica, without any guarantee that

subsequent operations reflect the state observed or written
by the current operation. Session guarantees [27] solve most
of these anomalies.

For instance, in social networks, users write posts that are
added to their own wall and to the walls of all their friends.
In this context, the monotonic reads guarantee ensures that,
after observing some post, subsequent read operations re-
turn a state that includes the post (unless it was explicitly
removed). To ensure that a user always reads her previous
post within a session, the system must provide the read your
writes guarantee. These properties are trivially satisfied if
a user always reads from and writes to the same server [2].

A system providing the writes follows reads guarantee en-
sures that a user always sees the posts that lead to a reply
she observes, which is particularly useful to keep conversa-
tions coherent. A system that enforces causality [13] pro-
vides the previous invariants. Many recent systems provide
causal consistency [17, 1, 18, 32].

The anomalies we previously described refer to operations
that execute one mutation at the time, but other operations
may have multiple effects. For example, in social network
systems, friendship is usually a bi-directional relation, i.e.,
if user A is a friend of user B, user B is also friend of user
A. As such, when a friend request is acknowledged, both
friend lists must be updated. Updating the friend lists with-
out atomicity may result in some user observing that A is
friend of B but B is not friend of A, or vice-versa. This vio-
lates the friendship relation invariant. To address this, some
geo-replicated systems provide atomicity for a sequence of
writes, while also enforcing causality [18, 32, 26].

All the above invariants can be provided with existing
causally consistent systems. Now we consider other more
complex invariants to show when eventual consistency falls
short of achieving the preservation of application invariants.
In a social network, users can join a group of users after
receiving the invitation from the administrator. This rule
is easily enforced by using causal consistency, which guar-
antees that the acceptance of an invitation will always fol-
low the invitation itself. However, stricter semantics would
be impossible to enforce relying only on causal consistency,
particularly when concurrent operations can lead to a state
where the invariant is violated. For example, it is impossi-
ble to guarantee that every member of the group is a friend
of the administrator of the group, since a friendship rela-
tionship could be cancelled while a user concurrently joins
the group. Generically, this is an instance of a referential
integrity invariant. This type of invariant can be repaired
after the violation is detected – e.g., by removing from the
group the members that are no longer friends of the admin-
istrator.

Other invariants may not have a trivial repair function
– consider that an award is given to a limited number of
users in the group. A system relying on causal consistency
could concurrently give out more awards than the limit. In
this case, there is no trivial solution to select the users that
should remain in the set of awardees, and the situation can
be particularly problematic in case the award emails have
been sent out.

The examples presented in this section show that there
are several additional guarantees that eventually consistent
systems should provide. However, in some cases these guar-
antees can be particularly difficult to enforce under eventual
consistency, even with the help of a repair function. As such,



to address these requirements, applications tend to adopt
strong consistency models (or at least provide support for
both weak and strong semantics [26, 15]).

3. MAKING THE RIGHT CHOICE
In the previous section we have seen that not all opera-

tions have the same consistency requirements. For this rea-
son, many existing systems take the approach of supporting
different levels of consistency, in order to make a more se-
lective use of strong consistency.

Gemini [15], BloomL [8], Walter [26] allow developers to
choose between different levels of consistency to ensure ap-
plication correctness. This approach enables using eventual
consistency when operations are compatible with any pos-
sible concurrent updates, and only using strong consistency
when concurrent operations can make the database incon-
sistent. This allows for fine tuning the consistency require-
ments of each operation. However, it poses a heavy bur-
den on the programmer, who must decide the correct level
of consistency to use: if the programmer is too conserva-
tive, this may lead to an inefficient application; if the pro-
grammer is too relaxed, due to incorrect reasoning about
the application semantics, this can lead to incorrect behav-
ior. Recent work proposed to identify the best consistency
level automatically, thus not requiring the programmer to
analyze the consequences different classification choices. In
particular, Sieve [14] determines the consistency level for
operations that run on top of Gemini, under RedBlue con-
sistency. It combines static and dynamic analyses to deter-
mine which operations are safe under causal consistency, and
which operations need serializability to maintain invariants.
The analysis considers a set of user-provided invariants and
small annotations that specify the convergence techniques
used for concurrent operations on the same objects.

The first step of the analysis, completed offline, gener-
ates abstract models that represent the space of possible
concurrent executions during runtime and, for each model,
determines the set of minimal pre-conditions for being safe
to execute the operation without coordination.

At runtime, an operation executes under causal consis-
tency if the minimal pre-conditions for weak execution de-
termined offline are matched. Otherwise, the operation ex-
ecutes under strong consistency.

For example, the offline algorithm would determine that
any operation that adds a negative value to a non-negative
stock is unsafe to be executed under eventual consistency
(as concurrent operations can lead the stock to become neg-
ative). At runtime, if an operation adds a positive value, it
will execute under eventual consistency; otherwise it needs
to execute under strong consistency.

BloomL[8] is a logic programming language for distributed
applications that maintains application invariants. It is based
on the observation that monotonic programs never retract
information that is previously known, and therefore they
converge regardless the delivery order of messages in differ-
ent replicas. A total order of messages is only required for
non-monotonic operations. An important part of BloomL is
the CALM analysis that allows for identifying which parts
of the program are non-monotonic.

The BloomL language provides a library of semi-lattice
constructs that ensure convergence, similar to CRDTs[23].
The language supports non-monotonic operators: operators
that may give different results depending on the arrival order

of remote messages. For executing a non-monotonic oper-
ator, a coordination protocol must be executed, to ensure
that the result of the non-monotonic operation is equivalent
in all replicas.

Both strategies identify which operations may break in-
variants, and then only enforce coordination among replicas
to execute those operations. This strategy is conservative,
as in many executions it is safe to execute the operations
without coordination. For instance, in the stock example,
coordination is only necessary when the number of available
units becomes low, but the system is forced to coordinate
on every request because it does not take the current level
of the stock into account.

When determining if an operation can execute without
coordination, BloomL looks only at the code of operations,
while Sieve takes into consideration both the code of the
operation and the value of parameters. In the latter case,
the final decision on whether coordination is necessary or
not is determined in runtime. We argue that it is possi-
ble to extend this approach by considering also the state of
the database. This has the potential to reduce, or in some
executions even completely avoid the cost of global coordina-
tion by extending conflict analysis with runtime information
about the database and the participants.

In the literature, some proposals use an estimate of replica
divergence to avoid coordination [31, 11], either by using de-
terministic or stochastic models. However, these techniques
cannot be applied to general invariants and only give an es-
timate of the divergence, allowing invariants to be broken in
certain scenarios.

4. OLD TECHNIQUES REVISITED
In this section, we revisit two proposals that we build on:

the escrow transactional method [19] and the demarcation
protocol [5]. Then, in the next section, we discuss how to
use these protocols to provide the invariants from Section 2
without using strong consistency, or global replica coordina-
tion in the general case.

The escrow model [19] was proposed to allow long-lived
transactions to commit without interfering with other on-
going transactions. The key idea is to divide resources into
escrows that can be used concurrently by different nodes. If
the client has enough resources in its escrow, it can execute
the operation without coordination and release the remain-
ing resources on commit, or abort.

In the example of the limited number of awards, consider
that each group has a limit of K awards. Each node i that
holds a copy of group G grants awards up to a limit Yi such

that
n∑

i=1

Yi ≤ K, where n is the number of copies of G.

While the number of given awards do not exceed the local
limit Yi, each node can execute the operations locally with
low latency.

This model has been extended to support different parti-
tionable data types [30] and operations [20, 24], but all these
implementations rely on a central component to manage es-
crows.

The demarcation protocol [5] has a similar insight to the
escrow model, but enforces invariants over multiple vari-
ables. For each variable, the protocol defines a limit for
its value. The combination of the defined limits for all vari-
ables guarantees that the invariants remain valid. Thus,



operations are safe if the updates do not exceed the defined
limits.

If an operation requires a variable to exceed its limit,
then the node executing the operation must exchange its
limit with another peer to make that operation safe: the
requester node sends a request with the change in the limit
it requires; the node that accepts the request adjust its own
limits and notifies the requester of the change; the requester
then increase its safety limits with the received delta and
the operation proceeds locally.

Changing the limits with point-to-point communication
can be fast when nodes know enough information about the
other peers. When the resources are scarce and nodes change
the limits more frequently some requests might fail, lead-
ing to multiple point-to-point messages. Additionally, the
point-to-point protocol needs to enforce exactly-once deliv-
ery, otherwise the limits may become more restrictive than
necessary.

The authors have used this protocol to maintain a numeric
invariant over resources distributed in multiple machines,
to enforce uniqueness invariants, and to provide referential
integrity constraints.

A referential integrity constraint is modeled by a logical
implication: predicate(A)⇒ predicate(B), where each node
stores a boolean value for each predicate, A and B. The idea
is to enforce that whenever a node updates a predicate to
a value that may turn the expression false (unsafe), it must
enforce that the other nodes changes the value of their other
predicate to maintain the expression true. In our example,
we have JoinGroup(A,G)⇒ isFriend(A,B), where A is a
user, B the administrator and G a group of users. Making
JoinGroup(A,G) true is unsafe because that value is only
allowed if isFriend(A,B) is true, otherwise the expression
is false. Therefore the node requests the peer holding the
predicate isFriend(A,B) to change the minimum value for
that predicate to true. The converse must also be ensured:
to make isFriend(A,B) false, the node must ask the peer
holding the value for predicate JoinGroup(A,G) to enforce
that it becomes false.

More recently, MDCC [12] uses a variation of the demar-
cation protocol to extract more concurrency from commuta-
tive operations that maintain numerical constraints invari-
ants. The homeostasis protocol [21] also extends the demar-
cation protocol, but requires a new set of conditions to be
computed and installed in all replicas using two-phase com-
mit. Warranties [16] provide guarantees that some proper-
ties of the state will not change optimizing read operations
in centralized strong consistency architectures. We argue
that it is possible to leverage these existing ideas in modern
geo-replicated settings, relying only on peer-to-peer and un-
reliable asynchronous communication protocols. The next
section shows how this can be achieved.

5. LOW-COST INVARIANTS
In the previous sections, we showed techniques that allow

for the maintenance of database invariants in two different
ways: the first is to identify the operations that are unsafe,
and resort to strong consistency to execute them, and the
second is to enforce local constraints to ensure that opera-
tions are safe, even while replicas diverge. We argue that
a combination of these techniques can be used to provide
a principled approach to execute operations that maintain
invariants without coordination in the general case.

We envision a system that identifies operations that re-
quire strong consistency, but use an efficient protocol to
guarantee that local executions are safe instead of using
global coordination. The system would exchange the nec-
essary resources outside the critical path of execution, to at-
tempt to guarantee that operations execute locally while en-
suring safety. Furthermore, the system can resort to strong
consistency when those requirements are not met.

The high level idea is to perform an analysis of the code,
along the lines of that done by the Sieve system, to de-
termine the weakest preconditions to accept a set of facts,
computed during runtime, to enable the execution of opera-
tions locally. For instance if the weakest precondition to ex-
ecute joingroup(A,G) is that isFriend(A,B) is true, then
we could add a fact that gives the local replica the exclusive
right to modify that predicate, which would ensure that it
does not become false. At runtime, if the current replica
holds that guarantee, it can execute the operation without
coordination because it knows that the value of that predi-
cate can only change locally. Otherwise, it should resort to
strong consistency to execute the operation.

We have previously presented a preliminary design of a
data-type that maintains numerical invariants [4], which can
be seen as a special case of that approach. Our data-type
maintains the full state of the invariant, which allows the
current value to be queried by a client. This is unlike the
demarcation protocol, which may require contacting multi-
ple nodes before knowing the actual value of the inequality.
This is a first step towards providing data-types that are
able to preserve the demarcation protocol invariants in a
replicated system.

Our approach is able to maintain different forms of invari-
ants, and we already have a data-type that enforces numer-
ical invariants. However, the extent of invariants that we
can express remains an open question. Bailis et al. [3] con-
ducted a survey of the typical invariants in benchmarks and
concluded that the most common invariants have the form of
referential integrity, numerical constraints and uniqueness,
which can all be implemented with the demarcation proto-
col.

To our knowledge, none of the previous approaches can
be directly applied to implement our vision. None of the
previous prposals addresses all the key points in building
geo-replicated databases: either they only capture limited
forms of invariants, do not deal with data replication, rely on
a central components to manage resources, or do not provide
low latency, fault tolerance and scalability to a large number
of clients.

6. CONCLUSION
Current systems give up low latency and availability for

consistency when invariants are essential to applications. At
best, only those invariants that are compatible with eventual
consistency can be enforced with low latency. For the rest,
the default has been to rely on strong consistency. To help
figure out which consistency level to use, recent research has
produced techniques that help programmers sort out which
parts of a program are unsafe under concurrency and which
need global coordination.

In this paper, we propose to build on existing research to
further avoid paying the full cost of coordination while en-
forcing global invariants on top of eventual consistency. To
the best of our knowledge, no current implementations are



tailored to harness these techniques on cloud infrastructures.
This paper conducts a literature review, to motivate that

our proposed approach applies to the most frequent appli-
cation invariants. Furthermore, we gave initial steps in this
research direction, by designing a data-type that maintains
numerical invariants with low latency. We are now adapt-
ing these protocols to be deployed in geo-replicated systems,
and exploring the use of program analysis to determine when
our optimizations can be applied.
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Abstract
We propose Lasp, a new programming model designed to sim-
plify large-scale distributed programming. Lasp combines ideas
from deterministic dataflow programming together with conflict-
free replicated data types (CRDTs). This provides support for com-
putations where not all participants are online together at a given
moment. The initial design presented here provides powerful prim-
itives for composing CRDTs, which lets us write long-lived fault-
tolerant distributed applications with nonmonotonic behavior in a
monotonic framework. Given reasonable models of node-to-node
communications and node failures, we prove formally that a Lasp
program can be considered as a functional program that supports
functional reasoning and programming techniques. We have im-
plemented Lasp as an Erlang library built on top of the Riak Core
distributed systems framework. We have developed one nontrivial
large-scale application, the advertisement counter scenario from the
SyncFree research project. We plan to extend our current prototype
into a general-purpose language in which synchronization is used
as little as possible.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming; E.1 [Data Structures]: Dis-
tributed data structures

Keywords Eventual Consistency, Commutative Operations, Er-
lang

1. Introduction
Synchronization of data across systems is becoming increasingly
expensive and impractical when running at the scale required by
“Internet of Things” [29] applications and large online mobile
games.1 Not only does the time required to coordinate with an ever
growing number of clients increase with each additional client, but
techniques that rely on coordination of shared state, such as Paxos

1 Rovio, developer of the popular “Angry Birds” game franchise reported
that during the month of December 2012 they had 263 million active users.
This does not account for users who play the game on multiple devices,
which is an even larger number of devices requiring some form of shared
state in the form of statistics, metrics, or leaderboards. [3]
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and state-machine replication, grow in complexity with partial
replication, dynamic membership, and unreliable networks. [14]

This is further complicated by an additional requirement for
both of these applications: each must tolerate periods without con-
nectivity while allowing local copies of replicated state to change.
For example, mobile games should allow players to continue to ac-
cumulate achievements or edit their profile while they are riding in
the subway without connectivity; “Internet of Things” applications
should be able to aggregate statistics from a power meter during a
snowstorm when connectivity is not available, and later synchro-
nize when connectivity is restored. Because of these requirements,
the burden is placed on the programmer of these applications to en-
sure that concurrent operations performed on replicated data have
both a deterministic and desirable outcome.

For example, consider the case where a user’s gaming profile
is replicated between two mobile devices. Concurrent operations,
which can be thought of as operations performed during the period
where both clients are online but without communication, can mod-
ify the same state: the burden is placed on the application developer
to write application logic that resolves these conflicting updates.
This is true even if the changes commute: for instance, concurrent
modifications to the user profile where client A modifies the profile
photo and client B modifies the profile’s e-mail address.

Recently, a formalism has been proposed by Shapiro et al. for
supporting deterministic resolution of individual objects that are
acted upon concurrently in a distributed system. These data types,
referred to as Conflict-Free Replicated Data Types (CRDTs), pro-
vide a property formalized as Strong Eventual Consistency: given
all updates to an object are eventually delivered in a distributed
system, all copies of that object will converge to the same state.
[32, 33]

Strong Eventual Consistency (SEC) results in deterministic res-
olution of concurrent updates to replicated state. This property is
highly desirable in a distributed system because it no longer places
the resolution logic in the hands of the programmer; programmers
are able to use replicated data types that function as if they were
their sequential counterparts. However, it has been shown that arbi-
trary composition of these data types is nontrivial. [6, 13, 15, 26]

To achieve this goal, we propose a novel programming model
aimed at simplifying correct, large-scale, distributed programming,
called Lasp.2 This model provides the ability to use operations from
functional programming to deterministically compose CRDTs into
larger computations that observe the SEC property; these applica-
tions support programming with data structures whose values ap-
pear nonmonotonic externally, while computing internally with the
objects’ monotonic metadata. This model builds on our previous
work, Derflow and DerflowL [12, 27], which provide a distributed,

2 Inspired by LISP’s etymology of “LISt Processing”, our fundamental data
structure is a join-semilattice, hence Lasp.



fault-tolerant variable store powering a deterministic concurrency
programming model.

This paper has the following contributions:

• Formal semantics: We provide the formal semantics for Lasp:
the monotonic read operation; functional programming opera-
tions over sets, including map, filter, and fold; and set-theoretic
operations, including product, union, and intersection.
• Formal theorem: We formally prove that a distributed exe-

cution of a Lasp program can be considered a functional pro-
gram that supports functional reasoning and programming tech-
niques.
• Prototype implementation: We provide a prototype imple-

mentation [1] of Lasp, implemented as an Erlang library using
the Riak Core [22] distributed systems framework.
• Initial evaluation: We perform an initial evaluation of Lasp

by prototyping the eventually consistent advertisement counter
scenario from the SyncFree project [4] and improve on the
design of the Bloom KVS presented by Conway et al. [15]

This paper is an extension of the previously published work-in-
progress report on Lasp [28] and is structured as follows: Section 2
motivates the need for Lasp. Section 3 defines Lasp’s semantics
and operations. Section 4 defines and proves the fundamental the-
orem of Lasp execution. Section 5 explains the implementation of
our prototype. Section 6 evaluates the expressiveness of our proto-
type by showing how to implement two nontrivial distributed ap-
plications. Section 7 explains how Lasp is related to other work on
models and languages for distributed programming. Section 8 out-
lines the extensions that we are planning for the Lasp prototype.
Section 9 gives a brief conclusion.

2. Motivation
In this section, we motivate the need for Lasp.

2.1 Conflict-Free Replicated Data Types
Conflict-Free Replicated Data Types [32, 33] (CRDTs) are dis-
tributed data types that are designed to support temporary diver-
gence at each replica, while guaranteeing that once all updates are
delivered to all replicas of a given object they will converge to the
same state. There are CRDT designs for commonly used sequential
data types: counters, registers, sets, flags, dictionaries, and graphs;
however, each of these data structures, while guaranteeing to con-
verge, will observe a predetermined bias on how to handle concur-
rent operations, given that behavior is undefined in its sequential
counterpart.

RA

RB

1

3

2

?

?

set(1) set(2)

set(3)

Figure 1: Example of divergence due to concurrent operations on
replicas of the same object. In this case, it is unclear which update
should win when replicas eventually communicate with each other.

We provide an example in Figure 1. In this example, concurrent
operations on a replicated register result in divergence at each
replica: replica A (RA) is set to the value 2 whereas replica B (RB)
is set to the value 3. How do we reconcile this divergence?

Two major strategies have been used in practice by several pro-
duction databases [18, 25]: “Last-Writer-Wins”, where the last ob-
ject written based on wall clock time wins, or “Semantic Resolu-
tion” where both updates are stored at each replica, and the burden
of resolving the divergence is placed on the developer.

Both of these strategies have deficiencies:

• “Last-Writer-Wins” ultimately results in some valid operations
being dropped during merge operations based solely on the
scheduling of operations.
• “Semantic Resolution” places the burden on the application

developer to provide a deterministic merge function.3

CRDTs solve this problem by formalizing a series of data types
that fulfill two major goals: capturing causal information about
updates that have contributed to their current state, and providing
a deterministic merge operation for combining the state across
multiple replicas.

Figure 2 shows one possible way to define a merge function
that is deterministic regardless of ordering of messages: if we
take advantage of the order of natural numbers using the max
operation, we ensure that all replicas will eventually converge to
a correct, equivalent state once they have observed all updates.
While this is one very simple example of a distributed data structure
with a deterministic merge function, Shapiro et al. outline different
designs for registers, sets, counters, and graphs [33].

We will now formalize the Observed-Remove Set CRDT to
explore problems of composition with CRDTs that have visible
nonmonotonic behavior.

RA

RB

1

3

2

3

3

set(1) set(2)

set(3)

max(2,3)

max(2,3)

Figure 2: Example of resolving concurrent operations with a type of
state-based CRDT based on a natural number lattice where the join
operation computes max.

2.2 Observed-Remove Set CRDT
We take a moment to introduce the Observed-Remove Set CRDT
(OR-Set), which will be used as the basis for the formalisms in
this paper. We focus on the OR-Set because it is the least complex
CRDT which serves as a general building block for applications.4

We start with a description of lattices, which are used as the
basis of state-based CRDTs, one of the two major types of CRDTs.

Definition 2.1. A bounded join-semilattice is a partially ordered
set that has a binary operation called the join . The join is associa-
tive, commutative, and idempotent, and induces a partial order over
a nonempty finite subset such that the result given any two elements

3 When described by DeCandia et al. in 2007 [18], this mechanism results
in “concurrency anomalies”, where updates seem to reappear due to con-
current operations in the network; this is the main focus of the the CRDT
work as presented by Shapiro et al. in [32, 33].
4 For instance, the Grow-Only Set (G-Set) does not allow removals, the
Two-Phase Set (2P-Set) only allows one removal of a given item, and the
OR-Set Without Tombstones (ORSWOT) adds additional complexity in the
form of optimizations, which lie outside of the core semantics.



is the least upper bound of the input with respect to the partial order.
The semilattice is bounded, as it contains a least element. [16]

Definition 2.2. A replicated triple (S,M,Q) where S is a bounded
join-semilattice representing the state of each replica, M is a set of
functions for mutating the state, and Q is a set of functions for
querying the state, is one type of state-based CRDT. [5]

Functions for querying and mutating the CRDT can always be
performed as they are executed on the replica’s local state and
the entire state is propagated to other replicas in the replica set.
When a replica receives a state from another replica, the received
state is merged into the local state using the join operation. Given
the algebraic properties of the join operation, once updates stop
being issued, a join across all replicas produces equivalent state;
the merge function is deterministic given a finite set of updates.

Mutations at a given replica always return a monotonically
greater state as defined by the partial order of the lattice, therefore
any subsequent state always subsumes a previous state. We refer to
these mutations as inflations.

Definition 2.3. A stream s is an infinite sequence of states of
which only a finite prefix of length n is known at any given time.

s = [si | i ∈ N] (1)

The execution of one CRDT replica is represented by a stream
of states, each of which is an element of the lattice S. The execution
of a full CRDT instance with n replicas is represented by n streams.

Definition 2.4. Updates performed on a given state are inflations;
for any mutation, the state generated from the mutation will always
be strictly greater than the state generated by the previous mutation.

m ∈M ∧ si ∈ S ∧ si v m(si) (2)

The Observed-Remove Set CRDT models arbitrary nonmono-
tonic operations, such as additions and removals of the same ele-
ment, monotonically in order to guarantee convergence with con-
current operations at different replicas.

Definition 2.5. The Observed-Remove Set (OR-Set) is a state-
based CRDT whose bounded join-semilattice is defined by a set of
triples, where each triple has one value v, and extra information
(called metadata) in the form of an add set a and a remove set r.
At most one triple may exist for each possible value of v.

si = {(v, a, r), (v′, a′, r′), . . .} (3)

The OR-Set has two mutations, add and remove. The metadata
is used to implement both mutations monotonically.

Definition 2.6. The add function on an OR-Set generates a unique
constant u for each invocation. Given this constant, add u to the
add set a for value v, if the value already exists in the set, or add a
new triple containing v, an add set {u} and a remove set {}.
add(si, v) = si − {(v, , )}

∪ {(v, a ∪ {u}, r) | (v, a, r) ∈ si ∧ u = unique()}
∪ {(v, {u}, {}) | ¬(v, , ) ∈ si ∧ u = unique()}

(4)

Definition 2.7. The remove function on an OR-Set for value v
unions all values in the add set for value v into the remove set for
value v.
remove(si, v) = si − {(v, , )} ∪ {(v, a, a ∪ r) | (v, a, r) ∈ si}

(5)

The OR-Set has one query function that returns the current
contents of the set: query.

Definition 2.8. The query function for an OR-Set returns values
which are currently present in the set. Presence of a value v in a

given state si is determined by comparison of the remove set r
with the add set a. If the remove set r is a proper subset of the add
set a, the value v is present in the set.

query(si) = {v | (v, a, r) ∈ si ∧ r ⊂ a} (6)

The Observed-Remove Set is one instance of a CRDT that has
a query function that is nonmonotonic: the data structure allows
arbitrary additions and removals of elements in a set. It is impor-
tant to distinguish between the external representation of the set
(the output of a query, which is nonmonotonic) and the internal
representation (the result of add and remove operations, which are
monotonic).

2.3 Composition
The convergence properties of CRDTs are highly desirable for
computation in distributed systems: these data structures are re-
silient to update reordering, duplication, and message delays, all
of which are very relevant problems for computation on an unre-
liable asynchronous network. However, these convergence proper-
ties only hold for individual replicated objects and do not extend to
computations that compose more than one CRDT.

RA {1}

(1, {a}, {})

{1}

(1, {a, b}, {a})

RB {1}

(1, {b}, {})

{1}

(1, {a, b}, {a})

{}

(1, {a}, {a})

F(RA) {2} ?{}

F(RB) {2} {2}

add(1) remove(1)

add(1)

Figure 3: Example of CRDT composition. In this example, there
are two replicas of a CRDT, RA and RB; a function F , defined
as λx.2x, is applied to each element in the set at each replica
using the map function. Without properly mapping the metadata, the
convergence property does not hold for the result of the function
application.

In Figure 3, we see an example where the internal state of both
replicas A and B (RA and RB) allows us to reason about state that
reflects visible nonmonotonic behavior, additions and removals of
the same element, by modeling the state changes monotonically.
However, if we apply a function to the external representation of
the value then we sacrifice the convergence property.

This example describes a case where the output of a function F ,
defined as λx.2x, applied to each element at replica A (F (RA)) us-
ing the map function receives state from the same function applied
to the elements at replica B (F (RB)). It is unclear how to merge
the incoming state given we can not determine if the incoming state
has been previously observed or not.5

3. Lasp
We now present the API and semantics of Lasp, a programming
model designed for building convergent computations by compos-
ing CRDTs.

5 Technically, in this naive mapping the state and value are the same.



3.1 API
Lasp’s programming model is provided as a library in the Erlang
programming language. This library implements the core semantics
of Lasp and provides a distributed runtime for executing Lasp
applications. The primary data type of Lasp is the CRDT. Given
a CRDT instance of type t, the Lasp API is designed as follows:

Core API Core functions are responsible for defining variables,
setting their values and reading the result of variable assignments.

• declare(t): Declare a variable of type t.6

• bind(x, v): Assign value v to variable x. If the current value of
x is w, this assigns the join of v and w to x.
• update(x, op, a): Apply op to x identified by constant a.
• read(x, v): Monotonic read operation; this operation does not

return until the value of x is greater than or equal to v in the
partial order relation induced over x at which time the operation
returns the current value of x.
• strict read(x, v): Same as read(x, v) except that it waits until

the value of x is strictly greater than v.

Functional Programming API Functional programming primi-
tives define processes that never terminate; each process is respon-
sible for reading subsequent values of the input and writing to the
output. Figure 4 shows use of the map function.

• map(x, f, y): Apply function f over x into y.
• filter(x, p, y): Apply filter predicate p over x into y.
• fold(x, op, y): Fold values from x into y using operation op.

Set-Theoretic API Set-theoretic functions define processes that
never terminate; each process is responsible for reading subsequent
values of the input and writing to the output.

• product(x, y, z): Compute product of x and y into z.
• union(x, y, z): Compute union of x and y into z.
• intersection(x, y, z): Compute intersection of x and y into z.

3.2 Processes
The previously introduced Lasp operations, functional and set-
theoretic, create processes that connect all replicas of two or more
CRDTs. Each process tracks the monotonic growth of the internal
state at each replica and maintains a functional semantics between
the state of the input and output instances. Each process correctly
transforms the internal metadata of the input CRDTs to compute
the correct mapping of value and metadata for the output CRDT.7

For example, the Lasp map operation can be used to connect two
instances of the Observed-Remove Set CRDT.

In the map example seen in Figure 4, whenever an element e is
added or removed from the input set, the mapped version f(e) is
correctly added or removed from the output set. The other opera-
tions provided by Lasp are analogous: the user visible behavior is
the normal result of the functional or set-theoretic function.

3.3 Variables
As we will prove in Section 4, each state-based CRDT in Lasp has
the appearance of a single state sequence that evolves monotoni-
cally over time as update operations are issued; this is similar to the

6 Given the Erlang programming library does not have a rich type system, it
is required to declare CRDTs with an explicit type at initialization time.
7 The internal metadata of each CRDT is responsible for ensuring correct
convergence; the transformation is therefore required to be deterministic.

1 %% Create initial set S1.
2 {ok, S1} = lasp:declare(riak_dt_orset),
3

4 %% Add elements to initial set S1 and update.
5 {ok, _} = lasp:update(S1, {add_all, [1,2,3]}, a),
6

7 %% Create second set S2.
8 {ok, S2} = lasp:declare(riak_dt_orset),
9

10 %% Apply map operation between S1 and S2.
11 {ok, _} = lasp:map(S1, fun(X) -> X * 2 end, S2).

Figure 4: Map function applied to an OR-Set using the Erlang API
of our Lasp prototype. We ignore the return values of the functions,
given the brevity of the example.

definition of inflation provided earlier (Definition 2.4). The current
state of the CRDT is stored in a variable; successive values of the
variable form the CRDT’s state sequence.

We now formally define variables in Lasp and invariants the
Lasp system preserves for each variable.

3.4 Monotonic Read
The monotonic read operation ensures that read operations always
read an equivalent or greater value when provided with the result of
a previous read. This behavior is very important to our system when
dealing with replicated data to ensure forward progress. Consider
the following example:

• Variable a is replicated three times, on three nodes: a1, a2, a3.
• Application reads variable a from replica a1.
• Application modifies replica a1; state is then asynchronously

propagated to replicas a2 and a3.
• Application reads variable a from replica a2, because replica
a1 is temporarily unreachable.

In this example, it is possible for replica a2 to temporarily have
previous state than replica a1, given message delays, failures, and
asynchronous replication.8 The monotonic read operation ensures
that the read will not complete until an equivalent or greater state
as defined over the partial order for a’s lattice is available at a given
replica based on a trigger value.

Formally, we define the monotonic read operations as follows:

Definition 3.1. The monotonic read operation defines a process
that reads the known elements of the input stream s and waits until
some si is equal to or monotonically greater than se. At this point,
si is returned.

read(s, se) = ∃i. si ∈ s ∧ se v si
[tj | tj = (j ≥ i⇒ si;⊥)]

(7)

We also provide a strict version of the monotonic read oper-
ation, which does not return until a strict inflation of a previous
read has been observed. This allows us to build recursive functions,
such as our functional programming operations and set-theoretic
operations, in terms of tail-recursive processes which continuously
observe increasing state.

We define the strict version of the monotonic read operation as
follows:

8 This is a core idea behind eventual consistency and replication strategies
such as optimistic replication. Eventually consistent systems ensure updates
are eventually visible (i.e., in finite time), but make no guarantees about
when the updates will be visible. [18, 31]



Definition 3.2. The monotonic strict read operation defines a
process that reads the known elements of the input stream s and
waits until some si is monotonically greater than se. At this point,
si is returned.9

strict read(s, se) = ∃i. si ∈ s ∧ se @ si

[tj | tj = (j ≥ i⇒ si;⊥)]
(8)

3.5 Functional Programming
We now look at the semantics for functional programming primi-
tives that are lifted to operate over CRDTs: map, filter, and fold.
We formalize them as follows:

Definition 3.3. The map function defines a process that never
terminates, which reads elements of the input stream s and creates
elements in the output stream t. For each element, the value v is
separated from the metadata, the function f is applied to the value,
and new metadata is attached to the resulting value f(v). If two
or more values map to the same f(v) (for instance, if the function
provided to map is surjective), the metadata is combined into one
triple for all values of v.

F (si, f) = {f(v) | (v, , ) ∈ si}
A(si, f, w) =

⋃
{a | (v, a, ) ∈ si ∧ w = f(v)}

R(si, f, w) =
⋃
{r | (v, , r) ∈ si ∧ w = f(v)}

map′(si, f) = {(w,A(si, f, w), R(si, f, w)) | w ∈ F (si, f)}
map(s, f) = t = [map′(si, f) | si ∈ s]

(9)

Figure 4 provides an example of applying the map function to
an OR-Set. In this example, the user does not need to know the
internal data structure of each CRDT, but only the nonmonotonic
external representation, as the Lasp runtime handles the metadata
mapping automatically.

Definition 3.4. The filter function defines a process that never
terminates, which reads elements of the input stream s and creates
elements in the output stream t. Values for which p(v) does not
hold are removed by a metadata computation, to ensure that the
filter is a monotonic process.

filter ′(si, p) = {(v, a, r) | (v, a, r) ∈ si ∧ p(v)}
∪ {(v, a, a ∪ r) | (v, a, r) ∈ si ∧ ¬p(v)}

filter(s, p) = t = [filter ′(si, p) | si ∈ s]
(10)

Definition 3.5. The fold function defines a process that never
terminates, which reads elements of the input stream s and cre-
ates elements in the output stream t. Given query(si) = V =
{v0, ..., vn−1} and an operation op of t’s type with neutral element
e, this should return the state ti = e op v0 op v1 · · · op vn−1. If
remove(vk) is done on si, then vk is removed from V , so vk must
be removed from this expression in order to calculate ti+1. The dif-
ficulty is that this must be done through a monotonic update of ti’s
metadata. We present a correct but inefficient solution below; we
are actively working on more efficient solutions.

fold ′(si, op) = Op(v,a,r)∈si(Opu∈av op Op′u∈rv)

fold(s, op) = t = [fold ′(si, f) | si ∈ s]
(11)

This solution assumes that op is associative, commutative, and has
an inverse denoted by op′. Note that the elements u of a are not
used directly; they serve only to ensure that the operation op(v) is
repeated |a| times (and analogously for op′(v) which is repeated

9 This waits for a strict inflation in the lattice, as opposed to an inflation,
which triggers when the value does not change.

|r| times). Since a and r grow monotonically, it is clear that the
computation of fold ′(si, op) also grows monotonically.

3.6 Set-Theoretic Functions
We now look at the semantics for the set-theoretic functions that are
lifted to operate over CRDTs: product, union, and intersection.
We formalize them as follows:

Definition 3.6. The product function defines a process that never
terminates, which reads elements of the input streams s and u,
and creates elements in the output stream t. A new element is
created on t for each new element read on either s and u. Metadata
composition ensures that if vs is removed from s or vu is removed
from u, then all pairs containing vs or vu are removed from t.10

product ′(si, uj) = {((v, v′), a× a′, a× r′ ∪ r × a′)
| (v, a, r) ∈ si, (v′, a′, r′) ∈ uj}

product(s, u) = t = [product ′(si, uj) | si ∈ s, uj ∈ u]
(12)

Definition 3.7. The union function defines a process that never
terminates, which reads elements of the input streams s and u, and
creates elements in the output stream t. A new element is created
on t for each new element read on either s or u. We combine
the metadata for elements that exist in both inputs, similar to the
definition of the map operation.
un1(si, uj) = {(v, a, r) | (v, a, r) ∈ si ⊕ (v, a, r) ∈ uj}
un2(si, uj) = {(v, a ∪ a′, r ∪ r′) | (v, a, r) ∈ si, (v, a′, r′) ∈ uj}
union(s, u) = t = [un1(si, uj) ∪ un2(si, uj) | si ∈ s, uj ∈ u]

(13)

Definition 3.8. The intersection function defines a process that
never terminates, which reads elements of the input streams s and
u, and creates elements in the output stream t. A new element is
created on t for each new element read on either s and u. We
combine the metadata such that only elements that are in both s
and u appear in the output.

inter ′(si, uj) = {(v, a× a′, a× r′ ∪ r × a′)
| (v, a, r) ∈ si, (v, a′, r′) ∈ uj}

intersection(s, u) = t = [inter ′(si, uj) | si ∈ s, uj ∈ u]
(14)

4. Fundamental Theorem of Lasp Execution
How easy is programming in Lasp? Can it be as easy as program-
ming in a non-distributed language? Is it possible to ignore the
replica-to-replica communication and distribution of CRDTs? Be-
cause of the strong semantic properties of CRDTs, it turns out that
this is indeed possible. In this section we formalize the distributed
execution of a Lasp program and we prove that there is a centralized
execution, i.e., a single sequence of states, that produces the same
result as the distributed execution. This allows us to use the same
reasoning and programming techniques as centralized programs.

The programmer can reason about instances of CRDTs as
monotonic data structures linked by monotonic functions, which
is a form of deterministic dataflow programming. It has the good
properties of functional programming (e.g., confluence and refer-
ential transparency) in a concurrent setting.11

4.1 Formal Definition of a CRDT Instance
We provide a formal definition of a CRDT instance and its dis-
tributed execution. For reasons of clarity, we borrow the notations
of the original report on CRDTs [32].

10 When r = a or r′ = a′ then a× r′ ∪ r× a′ = a× a′, and when r ⊂ a
and r′ ⊂ a′ then a× r′ ∪ r × a′ ⊂ a× a′.
11 See chapter 4 of [34] for a detailed presentation of deterministic dataflow.



Notation for Replication and Method Executions Assume a
replicated object with n replicas and one state per replica. We
use the notation ski for the state of replica i after k method execu-
tions. The vector (sk0

0 , · · · , skn−1
n−1 ) of the states of all replicas is

called the object’s configuration. A state is computed from the pre-
vious state by a method execution, which can be either an update
or a merge. We have ski = sk−1

i ◦ fk
i (a) where fk

i (a) is the k-th
method execution at replica i. An update is an external operation
on the data structure. A merge is an operation between two replicas
that transfers state from one to another. A method execution that
is an update is denoted uk

i (a) (it updates replica i with argument
a). A method execution that is a merge is denoted mk

i (s
k′
i′ ) (where

i 6= i′; it merges state sk
′

i′ into replica i).

Definition 4.1. Causal order of method executions Method ex-
ecutions fk

i (a) have a causal order ≤H (H for happens before)
defined by the following three rules:

1. fk
i (a) ≤H fk′

i (a′) for all k ≤ k′ (causal order at each replica)
2. fk′

i′ (a) ≤H mk
i (s

k′
i′ ) (causal order of replica-to-replica merge)

3. fk
i (a) ≤H fk′

i′ (a
′) if there exists fk′′

i′′ (a
′′) such that fk

i (a) ≤H

fk′′
i′′ (a

′′) and fk′′
i′′ (a

′′) ≤H fk′
i′ (a

′) (transitivity)

Definition 4.2. Delivery Using causal order we define the concept
of delivery: an update uk

i (a) is delivered to a replica i at state sk
′

i′

if uk
i (a) ≤H fk′

i′ (a).

Definition 4.3. State-based CRDT A CRDT is a replicated object
that satisfies the following conditions:

• Basic structure: It consists of n replicas where each replica
has an initial state, a current state, and two methods query and
update that each executes at a single replica.
• Eventual delivery: An update delivered at some correct replica

is eventually delivered at all correct replicas.
• Termination: All method executions terminate.
• Strong Eventual Consistency (SEC): All correct replicas that

have delivered the same updates have equal state.

This definition is slightly more general than the definition of
report [32]. In that report, an additional condition is added: that
each replica will always eventually send its state to each other
replica, where it is merged using a join operation. We consider that
this condition is too strong, since there are many ways to ensure that
state is disseminated among the replicas so that eventual delivery
and strong eventual consistency are guaranteed. In its place, we
assume a weak synchronization model, Property 4.2, that is not
part of the CRDT definition, and we allow each CRDT to send the
merge messages it requires to satisfy the CRDT properties.

Theorem 4.1. Monotonic semilattice condition for CRDTs A
replicated object is a state-based CRDT instance (in short, a
CRDT instance), if the following three conditions hold:

1. The set of possible values of a state ski forms a semilattice
ordered by v.

2. Merging state s with state s′ computes the Least Upper Bound
(join) of the two states s ◦ s′.

3. The state is monotonically non-decreasing across updates: s v
s ◦ u for any update u.

We say that any CRDT instance satisfying this theorem is a mono-
tonic semilattice object.

Proof Proof is given in [32].

Definition 4.4. SEC state From the commutativity and associa-
tivity of the join operator ◦, it follows that for any execution of a

monotonic semilattice object, if updates U = {u0, ..., un−1} are
all delivered in state s, then (u0 ◦ u1 ◦ · · · ◦ un−1) v s, that is, s
is an inflation of the join of all updates in U . It is not necessarily
equal since other updates may have occurred during the execution.
We call (u0 ◦ u1 ◦ · · · ◦ un−1) the SEC state of updates U .

4.2 Formal Definition of a Lasp Process
We provide a formal definition of a Lasp process.

Definition 4.5. Monotonicm-ary function Given anm-ary func-
tion f between states such that s = f(s0, s1, · · · , sm−1). Then
f is a monotonic function if ∀i : si v s′i ⇒ f(· · · , si, · · · ) v
f(· · · , s′i, · · · ).
Definition 4.6. Lasp process A Lasp process is a pair of a se-
quence of m CRDT instances and one monotonic m-ary function
f , written as ([C0, · · · , Cm−1], f). The process defines its output
as n states where each state is the result of applying f on the cor-
responding replicas of the input CRDTs.

4.3 System Properties
The following properties are needed to prove the fundamental the-
orem.

Property 4.1. Fault model and repair We assume the following
three conditions:

• Crash-stop failures: replicas fail by crashing and any replica
may fail at any time.
• Anti-entropy: after every crash, a fresh replica is eventually

created with state copied from any correct replica.
• Correctness: at least one replica is correct at any instant.

The first condition is imposed by the environment. The second
condition is the repair action done by every CRDT when one of its
replicas crashes. The third condition is what must hold globally for
the CRDT to continue operating correctly.

Property 4.2. Weak synchronization For any execution of a
CRDT instance, it is always true that eventually every replica will
successfully send a message to each other replica.12

Property 4.3. Determinism Given two executions of a CRDT in-
stance with the same sequence of updates but a different merge
schedule, i.e., a different sequence of replica-to-replica communi-
cation, replicas in the first execution that have delivered the same
updates as replicas in the second execution have equal state.

Since we intend Lasp programming to be similar to functional
programming, it is important that computations are deterministic.
We remark that SEC by itself is not enough to guarantee that; we
provide a simple counterexample with the OR-Set:

Assume that replica A (RA) does an add(1) followed by a
remove(1) and replica B (RB) does an add(1). When all replicas
have delivered these three updates, the state of the OR-Set will
either contain 1 or not contain 1. It will not contain 1 if the second
add(1) is in the causal history of the remove(1). In the other case,
it will contain 1. Both situations are possible depending on whether
or not the merge schedule communicates the state of replica B
to replica A after its add(1) and before the remove(1). Figure 5
illustrates this scenario.

Therefore, to correctly use an OR-Set in Lasp, it is important
to impose conditions that ensure determinism. The following two
conditions are sufficient to guarantee determinism for all merge
schedules:

12 The content of this message depends on the definition of the CRDT.
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Figure 5: Example of nondeterminism introduced by different
replica-to-replica merge schedules. In the top example, merging after
the remove results in the item remaining in the set, where merging
before the remove results in the item being removed.

• A remove(v) is only allowed if an add(v) with the same value
has been done previously at the same replica.
• An add(v) with the same value of v may not be done at two

different replicas.

4.4 Lemmas
Lemma 4.2. Eventual delivery for faulty execution Each update
in a CRDT instance execution that satisfies Property 4.1 and Prop-
erty 4.2, and for which the messages in Property 4.2 are delivered
according to a continuous probability distribution is eventually de-
livered at all replicas or at no replicas, with probability 1.

Proof According to Property 4.1, a replica may crash and be
replaced by a new replica with state copied from any live replica. In
any configuration of a CRDT execution, there will be m ≤ n live
replicas of whichm′ ≤ m have delivered the update. Initially when
the update is done,m′ = 1. Crash of a replica that has delivered the
update will decrease m′. Replica-to-replica communication will
increase m′ if done from a replica that has delivered the update to
a replica that has not. Otherwise it will not affectm′. As the CRDT
instance continues its execution, Property 4.1 implies that one of
two situations will eventually happen: either all live replicas deliver
the update, or no live replicas deliver the update. Once one of these
situations happens, the third condition of Property 4.1 ensures it
will continue indefinitely.

The continuous probability distribution ensures that all infi-
nite non-converging executions have probability zero. For example,
given three replicas RA, RB , RC , and only RC has delivered. It is
possible that RA crashes just after RC delivers to it, followed by
a new replica RA′ created from RB . This can repeat indefinitely
while satisfying Property 4.1 and Property 4.2. With a continuous
probability distribution, each repetition multiplies the probability
by a number less than 1, so the infinite execution has probability
zero.

Definition 4.7. Compatibility Given a CRDT instance execution
and a finite set U of updates in this execution. We say that a state is
compatible with U in the CRDT execution if it consists of the join
of all updates in U inflated with any subset of the other updates
occurring before the state.

Compatibility makes precise the notion that all replicas reach
the same state if no other updates occur (SEC) but that other
updates might occur in the meantime. All the replica states are not
necessarily the same, but they are all inflations of the SEC state.

Lemma 4.3. Reduction of CRDT execution to a single state
execution For any CRDT instance execution, there exists a single
state execution such that any finite set U of updates from the CRDT
execution is eventually delivered to the single state execution and
gives a state that is compatible with U in the CRDT execution.

Proof Define a single state execution whose updates are a topo-
logical sort of the updates in the CRDT execution that respects the
causal order ≤H of these updates. The resulting execution satisfies
all four properties of Definition 4.3. In particular, for eventual de-
livery, it is clear that the single state execution eventually delivers
all updates in U . All other updates occurring before this state are
either causally before or concurrent with an update in U .

Lemma 4.4. Reduction of Lasp process to a CRDT execution A
Lasp process behaves as if it were a single CRDT instance with n
replicas. Each replica state consists of an (m+1)-vector of the m
states of the input CRDT instances and the corresponding state of
the output as defined by f applied to the m input states.

Proof The execution of the Lasp process satisfies all four proper-
ties of Definition 4.3. In particular, for strong eventual consistency
is clear that each CRDT instance will eventually deliver its updates
to all its replicas, resulting in a state compatible with these updates.
When this happens for all CRDT instances, then all n replicas of
the output state will be equal.

4.5 Fundamental Theorem
We present the fundamental theorem of Lasp.

Definition 4.8. Simple Lasp program A simple Lasp program
consists of either:

• A single CRDT instance, or
• A Lasp process with m inputs that are simple Lasp programs

and one output CRDT instance.

Theorem 4.5. A simple Lasp program can be reduced to a single
state execution.

Proof This is straightforward to prove by induction. We construct
the program in steps starting from single CRDTs. By Lemma 4.3,
a single CRDT instance can be reduced to a single state execution.
For each Lasp process, we replace it by a single CRDT instance
whose updates are the updates of all its input CRDT instances. By
Lemma 4.4, this is correct. We continue until we have constructed
the whole program. By Lemma 4.2, if there are faults then the worst
that can happen is that some updates are ignored.

5. Implementation
Our prototype of Lasp is implemented as an Erlang library. We
leverage the riak dt [2] library from Basho Technologies, Inc.,
which provides an implementation of state-based CRDTs in Erlang.

5.1 Distribution
Lasp distributes data using the Riak Core distributed systems
framework [22], which is based on the Dynamo system [18].

Riak Core The Riak Core library provides a framework for build-
ing applications in the style of the original Dynamo system. Riak
Core provides library functions for cluster management, dynamic
membership and failure detection.



Dynamo-style Partitioning and Hashing Lasp uses Dynamo-
style partitioning of CRDTs: consistent hashing and hash-space
partitioning are used to distribute copies of CRDTs across nodes in
a cluster to ensure high availability and fault tolerance. Replication
of each CRDT is performed between adjacent nodes in a cluster.
While the partitioning mechanism and implementation is nuanced,
it is sufficient to realize the collection of CRDTs as a series of
disjoint replica sets, of which the data is sharded across, with full
replication between the nodes in any given replica set.

Anti-Entropy Protocol We provide an active anti-entropy proto-
col built on top of Riak Core that is responsible for ensuring all
replicas are up-to-date. Periodically, a process is used to notify
replicas that contain CRDT replicas with the value of a CRDT from
a neighboring replica.13

Quorum System Operations In Section 4, we outline the three
properties of our system: crash-stop failures, anti-entropy, and cor-
rectness. While these properties are sufficient to ensure confluence
of computations, they do not guarantee that all updates will be ob-
served if a given replica of a CRDT fails before communicating its
state to a peer replica. Therefore, to guarantee safety and be tol-
erant to failures, both read and update operations are performed
against a quorum of replicas. This ensures fault tolerance: by per-
forming read and write operations against a majority, the system
is tolerant to failures. The system remains safe and does not make
progress when the majority is not available. Additionally, quorum
operations can be used to increase liveness in the system: by writ-
ing back the merged value of the majority, we can passively repair
objects during normal system operation, improving anti-entropy.14

Replication and Execution of Operations Given replication
of the objects themselves, to ensure fault-tolerance and high-
availability, our functional programming operations and set-theoretic
operations must be replicated as well. To achieve this, quorum
replication is used to contact a majority of replicas near the out-
put CRDT, which are responsible for reading the input CRDT and
performing the transformation.

Given the map example in Figure 4, we spawn processes at
a majority of the output CRDT replicas, S2, which read from the
input replicas of S1.

To ensure forward progress of these computations, each of our
operations uses the strict version of the monotonic read operation
to prevent from executing over stale values when talking to replicas
which are out-of-date. In the map example, the transformation
is performed for a given observation in the stream of updates to
variable S1 with the output written into the stream for variable S2,
at which the process tail-recursively executes and wait to observe
a causally greater value than the previously observed S1 before
proceeding. This prevents duplication of already computed work
and ensure forward progress at each replica.

Additionally, we can apply read repair and anti-entropy tech-
niques to repair the value of S2 if it falls very far behind instead of
relying on applying operations from S1 in order.

6. Evaluation
In this section, we look at two applications that can be implemented
with Lasp.

13 We plan to design an optimized version, similar to the Merkle tree based
approach in [18]; our current protocol is sufficient to ensure progress.
14 In [18], this process is referred to as read repair.

6.1 Advertisement Counter
One of the use cases for our model is supporting clients that need
to operate without connectivity. For example, imagine a provider of
mobile games that sells advertisement space within their games.

In this example, the correctness criteria are twofold:

• Clients will go offline: consider mobile devices such as cellular
phones that experience periods without connectivity. When the
client is offline, advertisements should still be displayable.
• Advertisements need to be displayed a minimum number of

times. Additional impressions are not problematic.

Figure 6 presents one design for an eventually consistent adver-
tisement counter written in Lasp. In this example, squares repre-
sent primitive CRDTs and circles represent CRDTs that are main-
tained using Lasp operations. Additionally, Lasp operations are
represented as diamonds and edges represent the monotonic flow
of information.

Our advertisement counter operates as follows:

• Advertisement counters are grouped by vendor.
• All advertisement groups are combined into one list of adver-

tisements using a union operation.
• Advertisements are joined with active “contracts” into a list of

displayable advertisements using both the product and filter
operations.
• Each client selects an advertisement to display from the list of

active advertisements.
• For each advertisement displayed, each client updates its local

copy of the advertisement counter.
• Periodically, advertisement counters are merged upstream.
• When a counter hits at least 50,000 advertisement impressions,

the advertisement is “disabled” by removing it from the list of
advertisements.

The implementation of this advertisement counter is completely
monotonic and synchronization-free. Adding and removing ads,
adding and removing contracts, and disabling ads when their con-
tractual number of views is achieved are all modeled as the mono-
tonic growth of state in CRDTs connected by active processes.
Programmer-visible nonmonotonicity is represented by monotonic
metadata in the CRDTs.

The full implementation of the advertisement counter is avail-
able in the Lasp source code repository and consists of 213 LOC.
In this example, transparent distribution and failure handling is sup-
ported by the runtime environment, and not exposed to the devel-
oper. For brevity, we provide only two code samples: the adver-
tisement counter “server” process, that is responsible for disable
advertisements when their threshold is reached, and example use
of the product and filter operations used for composing the adver-
tisements with their contracts.

Figure 7 provides an example of the advertisement counters
server process: this process is responsible for performing a block-
ing read on each counter that will disable the counter by removing
it from the set once the threshold is reached. One server is launched
per counter to manage its lifecycle.

Figure 8 provides an example of the advertisement counters
dataflow: both of the product and filter operations spawn pro-
cesses that continuously compute the composition of both the set
of advertisements and the set of counters as each data structure in-
dependently evolves.
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Figure 6: Eventually consistent advertisement counter. The dotted line represents the monotonic flow of information for one counter.

1 %% @doc Server for the advertisement counter.
2 server({#ad{counter=Counter}=Ad, _}, Ads) ->
3 %% Blocking monotonic read for 50,000
4 {ok, _} = lasp:read(Counter, 50000),
5

6 %% Remove the advertisement.
7 {ok, _} = lasp:update(Ads, {remove, Ad}, Ad),
8

9 lager:info("Removing ad: ~p", [Ad]).

Figure 7: Example use of the monotonic read operation in the adver-
tisement counter application. A process is spawned that blocks until
the advertisement counter reaches 50,000 impressions, after which it
removes itself from the list of advertisements.

1 %% Compute the Cartesian product of both
2 %% ads and contracts.
3 {ok, AdsContracts} = lasp:declare(?SET),
4 ok = lasp:product(Ads, Contracts, AdsContracts),
5

6 %% Filter items by join.
7 {ok, AdsWithContracts} = lasp:declare(?SET),
8 FilterFun = fun({#ad{id=Id1},
9 #contract{id=Id2}}) ->

10 Id1 =:= Id2
11 end,
12 ok = lasp:filter(AdsContracts,
13 FilterFun,
14 AdsWithContracts),

Figure 8: Example use of dataflow operations in the advertisement
counter application. These operations together compute a join be-
tween a set of advertisements and a set of counters to compute a list
of displayable advertisements.

6.2 BloomL Replicated Key-Value Store
We provide an example of a replicated key-value store (KVS)
similar to the key-value store example presented by Conway et al.
[15]. In this example, we show how our model supports writing this
replica in a easy to reason about functional manner.

Our key-value store is a simple recursive function that receives
three types of messages from clients: get, put, and remove.

• get: Retrieve a value from the KVS by name.
• put: Store a value in the KVS by name, computing the join of

the new value and the current value.
• remove: Remove observed values in the KVS by key.

Figure 9 contains the code for a single server replica. A
riak dt map, a composable, convergent map, [13] is used for mod-
eling the store. Given this data structure supports the composition
of state-based CRDTs, we assume the values for all keys will be
mergeable given the lattice defined by the data type stored.

1 receiver(Map, ReplicaId) ->
2 receive
3 {get, Key, Client} ->
4 {ok, {_, MapValue0, _}} = lasp:read(Map),
5 MapValue = riak_dt_map:value(MapValue0),
6 case orddict:find(Key, MapValue) of
7 error ->
8 Client ! {ok, not_found};
9 Value ->

10 Client ! {ok, Value}
11 end,
12 receiver(Map, ReplicaId);
13 {put, Key, Value, Client} ->
14 {ok, _} = lasp:update(Map,
15 {update,
16 [{update, Key,
17 {add, Value}}]},
18 ReplicaId),
19 Client ! ok,
20 receiver(Map, ReplicaId);
21 {remove, Key, Client} ->
22 {ok, _} = lasp:update(Map,
23 {update,
24 [{remove, Key}]},
25 ReplicaId),
26 Client ! ok,
27 receiver(Map, ReplicaId)
28 end.

Figure 9: Simple replicated key-value store in Lasp. This tail-
recursive process is responsible for receiving messages from client
processes, and processes them in serial order.



In our example, we use a simple recursive process for modeling
the key-value store. This process is responsible for responding
to both get and put messages: when a message is received the
appropriate action is performed on the given key. When a put
message arrives, the map is updated by performing two actions:
first, merging the current value with the provided value in the map,
second, merging the updated map back into the variable store with
the new map. This operation is done atomically by Lasp using the
update operation. When a get message arrives, we return the current
value from the map for the provided key. Multiple instances of the
replicated KVS can merge state by periodic exchange of their maps.

We improve on the BloomL KVS by supporting concurrent re-
moval operations: removals observed at a replica remove all ob-
served values for a key while concurrent additions for the same key
win against concurrent removals. Lasp’s programming model re-
moves the restrictions placed on lattices having external monotonic
behavior by using CRDTs as the primary programming abstraction,
while additionally providing a familiar functional programming se-
mantics to simplify distributed programming.

7. Related Work
In the following section, we identify related work.

7.1 Distributed Oz
Distributed Oz [19, 34] provides an extension of the Oz program-
ming model allowing for asynchronous communication and mobile
processing. Distributed Oz formalizes this by extending the Oz cen-
tralized execution semantics with semantics for distributed execu-
tion. Distributed Oz has a functional core that performs distributed
unification over rational trees [35]. For unifications without con-
flicting bindings, this satisfies the definition of a CRDT.

Lasp’s use of CRDTs solves the problem of conflicting bind-
ings: for each type of CRDT, there is always a merge function that
can resolve concurrent operations in a deterministic manner. In ad-
dition, Lasp provides deterministic dataflow over general CRDTs,
whereas Distributed Oz provides deterministic dataflow over just
one CRDT, namely rational trees. Finally, Lasp uses metadata com-
putation to support nonmonotonic operations in a functional set-
ting.

7.2 FlowPools
FlowPools [30] provide a lock-free deterministic concurrent dataflow
abstraction for the Scala programming language. FlowPools are es-
sentially a lock-free collection abstraction that support a concurrent
append operation and a set of combinators and higher-order opera-
tions. FlowPools are designed for multi-threaded computation, not
distributed computation.

While higher-order operations such as foreach and aggregate
function similarly to the map and fold operations in Lasp, namely
they execute once for each element that will eventually exist in the
FlowPool, these operations are somewhat limited. Each FlowPool
can only be appended to, and each element is single-assignment.
Computations using the aggregate operation require that the Flow-
Pool be sealed before the result of the aggregation is realized.

7.3 Derflow and DerflowL

Derflow and DerflowL are direct precursors to Lasp. Derflow [12]
defines a fault-tolerant single-assignment data store. It implements
deterministic dataflow programming [34] on the Dynamo-inspired,
Riak Core distributed systems framework. [18, 22]

DerflowL [27] extends Derflow to join-semilattices. DerflowL
relies on user-specified composition of CRDTs. While this model
is sufficient for composition of less complex CRDTs, it fails to
scale to the more complex and efficient CRDTs since it requires
the programmer to explicitly handle the composition of metadata.

7.4 BloomL

BloomL [15] provides Datalog-style operations over monotoni-
cally growing lattices in a distributed environment. Applications
in BloomL can be analyzed to identify locations where nonmono-
tonic operations occur, where coordination can be used to enforce
order. Differences in the programming abstraction notwithstanding,
we highlight two differences between BloomL and Lasp:

Retraction of Information Retraction of information in BloomL

is nonmonotonic, and therefore not confluent. By using composi-
tion of OR-Sets, Lasp can offer an eventually consistent (mono-
tonic and confluent) mechanism for the retraction of information,
but can not guarantee when the update might be visible.

Sealing Lattices used by the BloomL system lack causal informa-
tion, which places the requirement on monotone functions to, once
satisfied, freeze, or seal, their values. [7]

For instance, consider the case of a monotonic mapping between
two booleans, a to b: once a becomes true, b becomes true. Once the
condition is met in a, and b is set to true; the property is considered
“satisfied” and can no longer become “unsatisfied”. This prevents
the situation where an earlier version of an update is delivered to the
system and prevents the condition from observing nonmonotonic
behavior. Lasp can detect these scenarios using metadata in the
form of logical clocks which can be tracked through morphisms,
preventing an earlier update from causing the regression of the
value.

7.5 LVars
LVars [24] formalizes lattice variables for use in parallel computa-
tions in single machine settings that enforce determinism. While
LVars shares a similar functional programming core with Lasp,
each system differs in its distribution and failure modes given they
were designed to solve different problems. We also believe the
threshold read operation formalized in the LVars work is insuffi-
cient for use with advanced types of CRDTs.

We discuss both of these issues below:

Differences in Design: LVars vs. Lasp Focusing on single ma-
chine computations, LVars is aimed at running computations in par-
allel, over shared state, while preserving determinism in an other-
wise functionally pure application. Focusing on distributed compu-
tations, Lasp is aimed at running fault-tolerant applications, which
are designed to diverge and later converge deterministically, given
periods of time where processes may not be able to communicate.

Threshold Reads vs. Monotonic Reads The threshold read
operation, both originally formalized over lattices and later re-
formalized over state-based CRDTs15 [23] by Kuper and Newton,
makes two assumptions: a priori knowledge of the internal state of
a CRDT to properly threshold on the value, and that the queryable
value of a CRDT is monotone.

For example, the Grow-Only Set CRDT (G-Set) observes both
of these properties: when writing a deterministic computation over
a known stream, you are able to satisfy both conditions. First, the
internal representation of the CRDT requires only storage of the
set structure itself; concurrent operations can potentially add the
same element, however, the join operation between two sets will
remove duplicates and advance the data structure in the partial
order. Second, the value of the set will always be increasing and
therefore is monotone.

However, when dealing with a design like the Observed-
Remove Set CRDT (OR-Set), which allows the repeated addition

15 The citation refers to these as “CvRDTs”, convergent replicated data
types, a legacy name for the more recent nomenclature, “state-based.”



and removal of arbitrary elements, individual operations on the data
structure must be uniquely identified for correct semantics, even if
they represent the concurrent addition of the same element at two
different replicas. This prevents the first property from being ful-
filled: a priori knowledge of the unique constant identifiers given
multiple executions of the same program under different interleav-
ings is not possible. The second property cannot be fulfilled either:
the Observed-Remove Set has a nonmonotonic query function be-
cause elements can be removed.

Lasp is designed to specifically address the two previously dis-
cussed problems: the problem of threshold reads given CRDTs
with nondeterministic internal state, and the problem of properly
composing these data types, while preserving the internal knowl-
edge required for correct convergence.

7.6 Discretized Streams
Discretized Streams (D-Streams) [37] is a programming model for
stream processing that supports efficient parallel recovery of faults.
D-Streams realize infinite streams as a series of small immutable
batches over which deterministic computations can be done, as
typically seen in the MapReduce model. [17] The major contribu-
tion of this work is efficient parallel recovery during faults; instead
of replicating the computations of the streams or using upstream
backup, [8, 20] lost computations can be recomputed in parallel.

The model exploits the immutable nature of the individual
events in infinite streams; D-Streams assume that a batch is con-
sidered sealed at a given time and events are grouped into batches
based on when the event arrives at the ingestion point. On the other
hand, Lasp assumes that individual data structures, along with com-
positions of these data structures, will monotonically evolve over
time while preserving determinism.

7.7 Summingbird
Summingbird [11] is an open-source domain specific language for
integrating online and batch computations into a single program-
ming abstraction. Summingbird can be used to build complex DAG
workflows, where processing is performed between sources and
sinks, with the additional ability to persist both partial and final
results to a data store such as MySQL or HBase.

In enabling correct, efficient aggregation of computations, op-
erations in the “reduce” phase are restricted to commutative semi-
groups. This prevents incorrect operation in the event of network or
processing anomalies such as out-of-order message delivery.

Lasp’s primary programming abstraction is the state-based
CRDT: a convergent data structure formalized with a bounded
join-semilattice. Given a semilattice is a commutative idempotent
semigroup, and a bounded join-semilattice forms a commutative
idempotent monoid which induces a partial order using the join
operation, this allows Lasp to handle both the network anomalies
of duplicated and reordered messages, as well as to reason about
the ordering of updates to a given item.

8. Current and Future Work
In the following section, we identify current and future work.

8.1 General Concepts
Currently, Lasp is a first-order model that allows defining data
structures and operations performed on them. Future extensions
will add abstraction mechanisms and other concepts, as they are
needed by the application scenarios that we intend to implement.
The concepts will be designed according to the needs of expres-
siveness and efficiency explained in the following two sections.

8.2 Invariant Preservation
Some computations require the preservation of invariants between
sets of replicated CRDTs. One such example is the students and
teams example posed by Conway et al. [15] when discussing the
“scope problem” of CRDTs. In this scenario, removing a student
from the set of active students should also remove the student from
any teams they were participating in.

We envision a way to specify these invariants between CRDTs
as contracts: these contracts would be enforced by a mechanism at
runtime given an allowed amount of divergence. We look at two
examples of where contracts would be useful:

• In the advertisement counter example (Figure 6), clients can
locally increment their counter, and either synchronize with
the server side advertisement counter for a given advertisement
after every impression or after a given number of impressions.
How often a client chooses to synchronize is a measure of how
much we allow this counter to diverge.
• In the students and teams example, we may want to enforce

the invariant locally at each replica, but allow the system to
temporarily diverge to reduce the amount of synchronization.

We believe we can leverage recent work in contract enforce-
ment and invariant preservation in eventually consistent systems,
specifically “invariant-based programming” by Balegas et al. [9]
and Quelea by Kaki et al. [21].

8.3 Optimizations
We plan to explore optimizing the Lasp programming model
through the use of metadata reduction, reduced state propagation,
and intermediate tree elimination.

Metadata Reduction Lasp currently has limited support for the
Optimized Conflict-Free Replicated Set (ORSWOT) as described
by Bieniusa et al. [10]. This set contains a novel algorithm for
avoiding the requirement of tracking tombstones (i.e., it does not
need garbage collection of metadata). This makes it an ideal data
structure for use in production systems. This data structure is also
the basis for the convergent, conflict-free replicated map, as de-
scribed by Brown et al. [13].

Reduced State Propagation We would like to explore meth-
ods for reducing the amount of computation needed to propagate
state changes through the graph. Two such approaches for this are
Operation-based CRDTs [33], which propagate commutative op-
erations through a reliable channel instead of the full state, and
δ−state CRDTs [5], which propagate minimal state representing
the delta derived by applying the operation locally.

Distributed Intermediate Tree Elimination Computations in
Lasp are formed using a very small subset of a functional language:
this results in very large tree structures, where the intermediate
computations might not be necessary. This is a side effect of the
functional programming style. We imagine that techniques such as
Wadler’s “deforestation” can be used to eliminate these structures
in a distributed fashion for more efficient computation, resulting in
less network communication. [36]

9. Conclusions
We introduced the Lasp programming model and motivated its use
for large-scale computation over replicated data. Our future plans
for Lasp include extending it to become a full-fledged language and
system, identifying optimizations for more efficient state propaga-
tion, exploring stronger consistency models, and optimizing distri-
bution and replica placement for better fault tolerance and reduced
latency. We also plan to evaluate the Lasp system and to test our



hypothesis that Lasp’s weak synchronization model is well-suited
for scalable and high-performance applications, in particular in set-
tings with intermittent connectivity such as mobile applications and
“Internet of Things”. Our ultimate goal is for Lasp to become a
general purpose language for building large-scale distributed appli-
cations in which synchronization is used as little as possible.
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Abstract
We propose a new “generic” abstraction for Erlang/OTP that aids in
the implementation of dataflow programming languages and mod-
els on the Erlang VM. This abstraction simplifies the implemen-
tation of “processing elements” in dataflow languages by provid-
ing a simple callback interface in the style of the gen server and
gen fsm abstractions. We motivate the use of this new abstraction
by examining the implementation of a distributed dataflow pro-
gramming variant called Lasp.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming; E.1 [Data Structures]: Dis-
tributed data structures

Keywords Dataflow Programming, Erlang, Concurrent Program-
ming

1. Introduction
The dream of dataflow programming [18, 19] is to simplify the act
of writing declarative applications that can easily be parallelisable
but do not introduce any accidental nondeterminism. Not only does
dataflow programming alleviate the need for the developer to rea-
son about the difficulties in concurrent programming: shared mem-
ory, thread-safety, reentrancy, and mutexes; dataflow programming
provides a declarative syntax focused around data and control flow.
By design, dataflow programs lend themselves well to analysis and
optimization, preventing the developer from having to explicitly
handle parallelism in a safe and correct manner.

While the power of Erlang/OTP is in its highly concurrent,
shared-nothing actor system, this only increases the potential con-
currency in the system making it difficult to prevent the introduc-
tion of accidental nondeterminism in computations. Erlang pro-
vides a solution for this problem with the Open Telecom Platform
(OTP) “generic” abstractions.1 These abstractions aim to simplify

1 When we refer to the Erlang/OTP “generic” abstractions we are referring
to the set of behaviours provided: gen server, gen fsm, gen event and
supervisor.
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concurrent programming: developers author code that adheres to a
specific “behaviour”2 and these abstractions then provide a com-
mon way to supervise, manage, and reason about processing con-
current messages to a single actor.

We propose a new Erlang/OTP “generic” abstraction for dataflow
programming on the Erlang VM called gen flow. This abstraction
allows for the arbitrary composition of stateful actors into larger
dataflow computations. This abstraction is sufficiently generic to
aid in the implementation of an arbitrary dataflow language in
Erlang/OTP: we motivate the use of gen flow through the im-
plementation of a deterministic distributed dataflow variant called
Lasp. [14, 15]

This paper contains the following contributions:

• gen flow abstraction: We propose gen flow, a new abstrac-
tion in the style of the “generic” abstractions provided by Er-
lang/OTP for building dataflow “processing elements.”

• Lasp integration: We motivate the use of this new abstraction
in building the Erlang-based, Lasp programmming model for
distributed computing.

2. The gen flow Abstraction
We first discuss an example of how the gen flow abstraction can
be used to build a dataflow application and then discuss its imple-
mentation.

2.1 Overview
We propose gen flow, a new abstraction for representing “pro-
cessing elements” in dataflow programming. This abstraction is
presented in Erlang/OTP as a behaviour module with a well de-
fined interface and set of callback functions, similar to the existing
gen server and gen fsm abstractions provided by Erlang/OTP.

Consider the example in Figure 1. In this example, our process-
ing graph contains three data nodes: two input sets, and one output
set, and one function that is computing the intersection of the two
sets. When either of the input sets change independently, the output
set should be modified to reflect the change in the input.

The goal of this abstraction is to enable the trivial composition
of dataflow components to build larger dataflow applications on
the Erlang VM. Figure 2 provides the Erlang code to implement
the design in Figure 1. The abstraction focuses around two major
components: a function that will be responsible for performing the
arbitrary computation given some inputs, and a list of anonymous
functions that are used to derive the value of the inputs.

2 Behaviours are essentially interfaces specifying callback functions that a
module must implement.



{1,2,3}

{3,4,5}

Intersection {3}

Figure 1: Dataflow example of computing the intersection of
two sets. As the input sets change independently, the output
is updated to reflect the change.

1 -module(gen_flow_example).
2 -behaviour(gen_flow).
3

4 -export([start_link/1]).
5 -export([init/1, read/1, process/2]).
6

7 -record(state, {pid}).
8

9 start_link(Args) ->
10 gen_flow:start_link(?MODULE, Args).
11

12 init([Pid]) ->
13 {ok, #state{pid=Pid}}.
14

15 read(State) ->
16 ReadFuns = [
17 fun(_) -> sets:from_list([1,2,3]) end,
18 fun(_) -> sets:from_list([3,4,5]) end
19 ],
20 {ok, ReadFuns, State}.
21

22 process(Args, #state{pid=Pid}=State) ->
23 case Args of
24 [undefined, _] ->
25 ok;
26 [_, undefined] ->
27 ok;
28 [X, Y] ->
29 Set = sets:intersection(X, Y),
30 Pid ! {ok, sets:to_list(Set)},
31 ok
32 end,
33 {ok, State}.

Figure 2: Example use of the gen flow behaviour. This mod-
ule is initialized with a process identifier in the init function,
spawns two functions to read the inputs to the process func-
tion, via the read function. The process function sends a
message to the pid once both ReadFuns have returned an ini-
tial value.

2.2 Behaviour
The gen flow behaviour requires three callback functions (as de-
picted in Figure 2):

• Module:init/1: Initializes and returns state.
• Module:read/1: Function defining how to issue requests

to read inputs; takes the current state and returns a list of

ReadFuns along with an updated state. ReadFuns should be
arity 1 functions that take the previously read, or cached, value.

• Module:process/2: Function defining how to process a re-
quest; takes the current state and an argument list of the values
read, and returns the new state.

In our example, Module:init/1 is used to initialize state local
to the process: this state should be used in the same fashion that
the local state is used by gen server and gen fsm. Here, the local
state is used to track the process identifier that should receive the
result of the dataflow computation. Module:init/1 is triggered
once at the start of the process.

Module:read/1 is responsible for returning a list of ReadFuns:
these functions are responsible for retrieving the current state of the
input value. In our example, we have these functions return imme-
diately with a value of the input. However, in a pratical application,
these functions would most likely talk to another process, such as
a gen server or gen fsm, to retrieve the current state of another
dataflow element.

Module:process/2 is called every time one of the input values
becomes available. This function is called with the current local
state and a list of arguments that are derived from the input values
returned from Module:read/1. In our example, once we have one
value for both inputs, we compute a set intersection and send the
result via Erlang message passing.

To summarize, each instance of gen flow spawns a tail-
recursive process that performs the following steps:

1. Launches a process for each argument in the argument list
that executes that argument’s ReadFun. This is returned by
the Module:read/1 function. This process then waits for a
response from the ReadFun and replies back to the coordinator
the result of the value. Each of these processes are linked to the
coordinator process, so if any of them die, the entire process
chain is terminated and restarted by the supervisor.

2. As soon as the coordinator receives the first response, it updates
a local cache of read values for each argument in the argument
list.

3. The coordinator executes the Module:process/2 function
with the latest value for each argument in the argument list
from the cache. In the event that one of the argument values is
not available yet, a bottom value is used; in Erlang, the atom
undefined is used as the bottom value.

4. Inside Module:process/2, the user chooses how to propagate
values forward. In our example, we used normal Erlang mes-
sage passing.

Figure 3 diagrams one iteration of this process. Requests are
initially made, from gen flow, to read the current value of the
inputs; once the values are known and sent back to the gen flow
process, the result of the function is evaluated; finally, the result is
written to some output.

This model of computation is similar to how push-based func-
tional reactive programming languages (FRP) [20] operate. In these
systems, discrete changes to data items, either referred to as events
or the more general concept of signals [7], notify any “process-
ing elements” of changes to their value which triggers changes to
propagate through the graph.3

Specifally in push-based FRP, the topology is static and events
are pushed through the graph as signals change. We can imagine the
gen flow ReadFuns as establishing a just-in-time topology: they

3 We purposely avoid the discussion of behaviors in FRP, given our system
focuses on Erlang’s basic data structures, none of which observe continuous
changes in value.



gen_server

gen_server

gen_flow gen_server

1.

2.

3.

4.

Figure 3: One iteration of the gen flow abstraction. State is
first read from inputs, computed locally, and sent to outputs.
In this example, we use the gen server abstraction for stor-
age of state.

essentially ask the inputs to notify the coordinator in the event of
a value change.

2.3 Reading from Inputs
When reading from input values, the gen flow process spawns a
set of linked processes to perform each read. These processes are
linked to the gen flow process, to ensure if any of them happen
to fail, the entire process is crashed (and restarted, if supervised.)
Additionally, each request is designated with its position in the
argument list, to ensure that when responses arrive, gen flow
knows how to properly map the response from the read operation
to the correct argument. We see the implementation of this in
gen flow below.

1 lists:foreach(fun(X) ->
2 ReadFun = lists:nth(X, ReadFuns),
3 CachedValue = orddict:fetch(X, DefaultedCache),
4 spawn_link(fun() ->
5 Value = ReadFun(CachedValue),
6 Self ! {ok, X, Value}
7 end)
8 end,
9 lists:seq(1, length(ReadFuns))).

For each argument to the function, a process is spawned to
execute the arguments ReadFun given the previously read value
taken from the local cache.

2.4 Cache
Additionally, given that the Module:process/2 function might re-
sult in the composition of the arguments, if only one input, of many,
happen to change, we need to be able to recompute the function
without having to retrieve a value we have already observed for the
other inputs. To facilitate this, a local cache is kept at the gen flow
process and updated as the value of inputs change. This cache is
maintained using an orddict local to the gen flow process. We
see the implementation of gen flow where it performs the update
of this cache and executes Module:process/2 with the most re-
cent values below.

1 receive
2 {ok, X, V} ->
3 Cache = orddict:store(X, V, Cache0),
4 RealizedCache = [Value || {_, Value}
5 <- orddict:to_list(Cache)],
6 {ok, State} = Module:process(RealizedCache,
7 State0)
8 end.

2.5 Usage
We envision that gen flow can be combined with the existing
“generic” abstractions provided by Erlang/OTP to build large,
declarative, concurrent dataflow applications in Erlang/OTP.

Both the Erlang/OTP abstractions gen server and gen fsm
have shown to be very powerful in practice for the management
of state: gen server representing a “generic” server process that
receives and responds to messages from clients and gen fsm repre-
senting a finite state machine that transitions based on the messages
it receives.

Figure 3 outlines an example of how we imagine these facilities
can be combined together. In this example, an instance of gen flow
is used to built a dataflow composition between state stored in two
gen server instances.

3. Lasp
We now motivate the use of gen flow using Lasp.

3.1 Overview
Lasp is a distributed, fault-tolerant, dataflow programming model,
with a prototypical implementation provided as a library for use
in Erlang/OTP. At its core, Lasp uses distributed, convergent data
structures, formalized by Shapiro et al. as Conflict-Free Replicated
Data Types (CRDTs) [17], as the primary data abstraction for
the developer. Lasp allows users to compose these data structures
into larger applications that also observe the same properties that
individual CRDTs do.

3.2 Conflict-free Replicated Data Types
Conflict-free Replicated Data Types (CRDTs) are data structures
designed for use in replicated, distributed computations. These data
types come in a variety of flavors: maps, sets, counters, regis-
ters, flags, and provide a programming interface that is similar to
their sequential counterparts. These data types are designed to cap-
ture concurrency properly: for example, guaranteeing deterministic
convergence after concurrent additions of the same element at two
different replicas of a replicated set.

One variant of these data structures is formalized in terms of
bounded join-semilattices. Regardless of the type of mutation per-
formed on these data structures and whether that function results in
a change that is externally non-monotonic, state is always mono-
tonically increasing and two states are always joinable via a binary
operation that computes a supremum, or least-upper-bound. To pro-
vide an example, adding to a set is always monotonic, but removing
an element from a set is non-monotonic. CRDT-based sets, such as
the Observed-Remove Set (OR-Set)4 used in our example, model
non-monotonic operations, such as the removal of an item from a
set, in a monotonic manner. To properly capture concurrent oper-
ations that occur at different replicas of the same object, individ-
ual operations, as well as the actors that generate those operations,
must be uniquely identified in the state.

The combination of monotonically advancing state, in addition
to ensuring that replicas can converge via a deterministic merge op-
eration, provides a strong convergence property: with a determinis-
tic replica-to-replica communication protocol that guarantees that
all updates are eventually seen by all replicas, multiple replicas of
the same object are guaranteed to deterministically converge to the
same value. Shapiro et al. have formalized this property as Strong
Eventual Consistency (SEC) in [17].

To demonstrate this property, we look at three examples. In
each of these examples, a circle represents an operation at a given

4 The riak dt orset used in our examples is a purely functional imple-
mentation of the Observed-Remove Set (OR-Set) in Erlang.



replica and a dotted line represents a message sharing that state
with another replica, where it is merged in with its current state.

RA

RB

1

3

2

?

?

set(1) set(2)

set(3)

Figure 4: Example of divergence due to concurrent opera-
tions on replicas of the same object. In this case, it is unclear
which update should win when replicas eventually communi-
cate with each other.
Figure 4 diagrams an example of a distributed register. In this

example, concurrent operations happen at each replica resulting in
a question of how to handle the merge operation when performing
replica-to-replica communication. In this example, it is up to the
developer to decide how to resolve a concurrent update.

RA

RB

1

3

2

3

3

set(1) set(2)

set(3)

max(2,3)

max(2,3)

Figure 5: Example of resolving concurrent operations with a
type of state-based CRDT based on a natural number lattice
where the join operation computes max.
Figure 5 diagrams a simple state-based CRDT for a max value

register, which extends our example in Figure 4. This data structure
supports concurrent operations at each replica. In this example,
concurrent operations occur where each replica sets the value to
a different value (2 vs. 3). However, the CRDT ensures that the
objects converge to the correct value: in this case, the max function,
here used as the merge, is deterministic and monotonic.

RA

RB

RC

{1}

(1, {a}, {})

{1}

(1, {b}, {})

{}

(1, {b}, {b})

{1}

{1}

{1}

(1, {a, b}, {b})

(1, {a, b}, {b})

(1, {a, b}, {b})

add(1)

add(1) remove(1)

Figure 6: Example of resolving concurrent operations with
an Observed-Remove Set (OR-Set). In this example, concur-
rent operations are represented via unique identifiers at each
replica.
Finally, Figure 6 provides an example of the Observed-Remove

Set (OR-Set) CRDT, a set that supports the arbitrary addition and
removal of the same element repeatedly. In this set, state at each
replica is represented as a set of triples, (v, a, r), where v represents

the value, a is a set of unique identifiers for each addition, and r is
a subset of a for each addition that has been removed. When each
addition to the set is performed, the replica performing the addition
generates a unique identifier for that operation; when a removal is
done, the unique identifiers in the addition set are unioned into the
remove set. Presence in a set for a given value is determined on
whether the remove set r is a proper subset of a.

This allows the set to properly capture addition and removal
operations in a monotonic fashion, supporting the removal and re-
addition of the same element multiple times. One caveat does apply,
however: when removing an element, removals remove all of the
“observed” additions, so under concurrent additions and removals,
the set biases towards additions. This is a result of attempting to
provide a distributed data structure that has a sequential API. The
OR-Set is just one type of CRDT that can model externally non-
monotonic behaviour as monotonic growth of internal state.

Lasp is a programming model that uses CRDTs as the primary
data abstraction. Lasp allows programmers to build applications
using CRDTs while ensuring that the composition of the CRDTs
also observed the same strong convergence properties (SEC) as
the individual objects do. Lasp provides this by ensuring that the
monotonic state of each object maintains a homomorphism with
the program state.

3.3 API
Lasp provides five core operations over CRDTs:

• declare(t): Declare a variable of type t.5

• bind(x, v): Assign value v to variable x. If the current value of
x is w, this assigns the join of v and w to x.

• update(x, op, a): Apply op to x identified by constant a. op is
a data structure that performs an operation that is known to t.

• read(x, v): Monotonic read operation; this operation does not
return until the value of x is greater than or equal to v at which
time the operation returns the current value of x.

• strict read(x, v): Same as read(x, v) except that it waits until
the value of x is strictly greater than v.

Lasp provides functional programming primitives for transforming
CRDT sets:

• map(x, f, y): Apply function f over x into y.
• filter(x, p, y): Apply filter predicate p over x into y.
• fold(x, op, y): Fold values from x into y using operation op.

Lasp provides set-theoretic functions for composing CRDT sets:

• product(x, y, z): Compute product of x and y into z.
• union(x, y, z): Compute union of x and y into z.
• intersection(x, y, z): Compute intersection of x and y into z.

Figure 7 provides the code for a simple Lasp application. In
this application, two sets (S1 and S2) are initially created. The first
set (S1) is updated to contain three elements, and then the values
of the first set (S1) are composed into the second set (S2) via a
higher-order map operation. This application is visually depicted
in Figure 8.

Each of the functional programming primitives and set-theoretic
functions are modeled as Lasp processes: as the values of the input
CRDTs to these functions change, the value of the output CRDT
resulting from applying the function also changes. Lasp processes

5 Given the Erlang programming library does not have a rich type system, it
is required to declare CRDTs with an explicit type at initialization time.



1 %% Create initial set.
2 {ok, S1} = lasp:declare(riak_dt_orset),
3

4 %% Add elements to initial set and update.
5 {ok, _} = lasp:update(S1, {add_all, [1,2,3]}, a),
6

7 %% Create second set.
8 {ok, S2} = lasp:declare(riak_dt_orset),
9

10 %% Apply map operation between S1 and S2.
11 {ok, _} = lasp:map(S1, fun(X) -> X * 2 end, S2).

Figure 7: Example Lasp application that defines two sets and
maps the value from one into the other. We ignore the return
values of the functions, given the brevity of the example.

{1,2,3} Map {2,4,6}

Figure 8: Dataflow graph representing the flow of informa-
tion described by Figure 7.

are an instance of the gen flow abstraction. This will be discussed
in Section 3.5.

3.4 Distribution
Before discussing Lasp processes, it is important to discuss the
implementation of Lasp’s distributed runtime.6

By default, Lasp provides a centralized runtime that is used for
taking single instances of CRDTs on a local machine and compos-
ing them into larger applications as discussed in Section 3.3.

In order for Lasp to support highly-available and fault-tolerant
distributed computations, Lasp provides a distributed runtime for
the execution of Lasp applications. The distributed runtime for
Lasp ensures that variables are replicated across a cluster of nodes
and operations are performed against a majority quorum of these
replicas; this ensures that Lasp applications can tolerate a number
of failures while still making progress. The CRDTs that Lasp uses
as the primary data abstraction provide safety: even under failures
and message re-orderings or duplication, computations will deter-
ministically converge to the correct result once all messages are
delivered.

If we return to Figure 8, it is important to realize that all objects
in this graph are replicated: there are three copies of the input, three
copies of the output, and three copies of the computation running
in a distributed cluster at the same time. Additionally, each node
in this graph may or may not be running on the same node in the
cluster. This is visually depicted in Figure 9.

In Figure 9, it is also important to realize that some replicas may
temporarily lag behind, or contain earlier values, given failures in
the network. We rely on majority quorums to ensure that we can
tolerate failures, in addition to an anti-entropy protocol to ensure
that all replicas eventually receive all messages. Under failure con-
ditions, Lasp operations, like map, may need to talk to a replica
that contains earlier state.

6 The implementation of Lasp’s distributed runtime is out of scope for
this paper. However, the reader is referred to our previous work [4] for a
discussion on building a distributed deterministic dataflow variant on top of
the Erlang-based, Riak Core [12] distributed systems framework.

{1,2,3} Map {2,4,6}

{}

{1,2,3}

Map

Map

{}

{2,4,6}

Figure 9: Replicated execution of Figure 8. In this example,
since majority quorums are used to perform update opera-
tions, some replicas may lag behind until receiving state from
another replica due to failures in the network. In the event of
a failure, functional operations like the map may need to talk
to a replica that contains earlier state.

3.5 Execution
As discussed in Section 3.3, all of Lasp’s functional programming
primitives and set-theoretic functions are implemented in terms of
Lasp processes. Lasp processes are recursive processes that wait
for changes in any of their inputs, compute a function over those
inputs, and produce and output based on the functions execution.
Lasp processes are implemented in terms of gen flow.

Lasp’s runtime can operate in two modes: centralized and dis-
tributed. The distributed runtime is the default for Lasp: variables
are replicated across a cluster of nodes. The centralized runtime
is provided for testing the semantics of Lasp independently of the
distribution layer.

In the centralized runtime, Lasp’s variables are stored locally in
either a LevelDB instance [5] or in an ETS (Erlang Term Storage)
table. The centralized runtime is used for the execution of our
QuickCheck [6] model which verifies that the semantics are correct.
Additionally, the centralized runtime can be used as the basis for
another distribution layer.

In the distributed runtime, Lasp’s variables are distributed
across a cluster of nodes. Each node, because of Lasp’s imple-
mentation as a Riak Core application, uses a single Erlang process
for managing access to the variables at that node. In Riak Core,
this process is referred to as a instance of the riak core vnode
behaviour; this behaviour is nothing more than a wrapped gen fsm
behaviour with some additional operations focused around distri-
bution of the state and how to route requests in the cluster.

In both of these cases, the ability to provide specific ReadFuns
to gen flow, as discussed in Section 2.2, has proven very valuable.
Let us look at two examples:

Centralized Execution When testing the transformation of state
with our QuickCheck model, we want to avoid routing requests
through the distribution layer. The primary reasons for this are
twofold: distribution adds latency to each operation, and distribu-
tion makes it harder to reason about when messages may be deliv-
ered. In this model, at compile time, we use an Erlang macro to
override the ReadFun of our “processing elements” to operate lo-
cally on an ETS table and return immediately. This allows for faster
execution and the ability to test language semantics separately from
the distributed runtime.



Distributed Execution In the distributed execution, we have two
concerns that do not appear in the centralized execution. First, repli-
cas may become unavailable and stale replicas may be contacted, as
depicted in Figure 9. In this case, we want to ensure that the func-
tions we provide as ReadFuns only read forward: Lasp provides a
read operation that only returns if the objects state is monotonically
greater than a previously observed state; this is commonly referred
to as a session guarantee in distributed systems literature. Finally,
in the event that replicas may exist on remote nodes, the ReadFuns
should contain information on how to route the request based on its
location.

3.6 Example
Figure 10 shows Lasp’s use of gen flow. In this example, the Lasp
function and its inputs are passed in through the gen flow initial-
ization function and stored in local state. The ReadFuns supplied
use the Lasp monotonic read operation: we ensure that given the
previous value observed from the cache, we always read forward
in causal time. This prevents the observance of earlier values in the
event of failures.

4. Evaluation
We have found that having a generic abstraction for dataflow pro-
gramming has allowed us to greatly simplify the implementation of
three dataflow variants: Derflow [4], DerflowL [13], and Lasp [14].

Our previous work on Derflow provides a distributed, determin-
istic, single-assignment dataflow programming model for Erlang
that was later extended to operate over bounded join-semilattices
with DerflowL. Both of these models are direct precursors to Lasp
and during the implementation of Lasp we were able to greatly
simplify the dataflow “processing elements” by using the generic
abstraction presented in this paper. This greatly reduced the com-
plexity and code duplication of the implementation of Lasp; for
example, the implementation of an operation that applies identity
from one input to an output was reduced from 455 LOC to 128
LOC. Similar results exist for the other operations in Lasp. Addi-
tionally, using gen flow enabled us to test the implementation of
the CRDT transformation independently of the distribution layer,
which was not possible with Derflow and DerflowL.

5. Related Work
In the following section, we identify related work.

5.1 Kahn Process Networks
Kahn process networks (KPNs) [11] present a general model of
parallel computation where processes are used to compose data
that arrives on input channels into output channels. KPNs are both
deterministic and monotonic and are modeled around processes
that never terminate.

The gen flow abstraction is both influenced by, and can be used
to build applications in the style of, KPNs. Supervised instances of
gen flow can be used to model a computing process in a KPN;
each of these instances of gen flow never terminates unless in-
structed to by the application or terminated as a result of a fault in
the system. Similar to the binding of the formal parameters at the
call site where processes in a KPN are instantiated, functions for
reading inputs and producing outputs with gen flow can be pro-
vided at runtime or compile time, as seen in Figure 10.

5.2 Functional Reactive Programming
We acknowledge the relationship with Functional Reactive Pro-
gramming [9, 20], but focus on libraries providing dataflow abstrac-
tions that can be combined with idiomatic programming in the host

1 -module(lasp_process).
2 -behaviour(gen_flow).
3 -export([start_link/1]).
4 -export([init/1, read/1, process/2]).
5 -record(state, {read_funs, function}).
6

7 start_link(Args) ->
8 gen_flow:start_link(?MODULE, Args).
9

10 %% @doc Initialize state.
11 init([ReadFuns, Function]) ->
12 {ok, #state{read_funs=ReadFuns,
13 function=Function}}.
14

15 %% @doc Return list of read functions.
16 read(#state{read_funs=ReadFuns0}=State) ->
17 ReadFuns = [gen_read_fun(Id, ReadFun) ||
18 {Id, ReadFun} <- ReadFuns0],
19 {ok, ReadFuns, State}.
20

21 %% @doc Computation to execute when inputs change.
22 process(Args, #state{function=Function}=State) ->
23 case lists:any(fun(X) -> X =:= undefined end,
24 Args) of
25 true ->
26 ok;
27 false ->
28 erlang:apply(Function, Args)
29 end,
30 {ok, State}.
31

32 %% @doc Generate ReadFun.
33 gen_read_fun(Id, ReadFun) ->
34 fun(Value0) ->
35 Value = case Value0 of
36 undefined ->
37 undefined;
38 {_, _, V} ->
39 V
40 end,
41 {ok, Value1} = ReadFun(Id, {strict, Value}),
42 Value1
43 end.

Figure 10: Lasp’s use of gen flow. In this example, inputs
and the Lasp function are passed as arguments to gen flow
and stored in local state. The ReadFuns supplied take the pre-
viously observed value from the cache and perform a mono-
tonic read: this ensures we only ever read forward in causal
time.

language instead of the traditional approach with domain specific
languages.

5.3 FlowPools
FlowPools [16] provide a lock-free, deterministic, concurrent
dataflow abstraction for the Scala programming language. Flow-
Pools are essentially a lock-free collection abstraction that support
a concurrent append operation and a set of combinators and higher-
order operations. FlowPools are designed for multi-threaded com-
putation, but not distributed computation.

FlowPools have a similar abstraction to gen flow, but are fo-
cused around connecting collections together using combinators.
FlowPools allow lock-free append operations to be performed to
add elements to the collection and on these collections support two
types of functional transformations: foreach and aggregate. As
elements are added, the foreach operation asynchronously exe-
cutes and applies a transformation to a given collection: to guar-



antee determinism when functions provided to the foreach may
contain side-effects, FlowPools ensure that the function supplied
to foreach is only called once for each element in the collection.
aggregate is similar to a fold in functional programming: to en-
sure determinism a collection must be “sealed” before completing
the fold operation across the collection.

5.4 Javelin
Javelin [1] is a Clojure library for performing spreadsheet-like, cell-
based dataflow programming. Javelin lets you declare “cells”: a
“cell” is given an arbitrary S-expression with arguments of other
“cell”s. As the value of the source “cell”s change, the S-expression
is re-evaluated with the current value of the inputs.

Javelin is unique in that it leverages Clojure’s IWatchable in-
terface: types that implement IWatchable execute a list of func-
tions, stored in the object’s metadata, whenever the object’s value
changes. Our solution uses Erlang behaviours, given that Erlang
does not have a way to extend the type system in a similar fashion.

5.5 Luke and Riak Pipe
Riak Pipe [10] and its predecessor, Luke [2] are both Erlang li-
braries for performing “pipeline processing” developed by Basho
Technologies. Both of these libraries focus around creating acyclic
processing graphs and provide a similar behaviour interface.

Both of these libraries focus on fixed topologies; the system
can not create a new node in the graph once the topology has
been instantiated and processing has began. This is a conscious
design decision; these frameworks were originally designed for
MapReduce [8] style processing in Riak Core [12] based systems
where a “pipeline” is established to process a finite set of data
with a set group of “phases”, or “processing elements.” By design,
if either of the “phases” happen to fail, the entire “pipeline” is
collapsed and an error returned to the caller.

Riak Pipe and Luke also rely on Erlang message passing to de-
liver output results to the next stage of processing. Riak Pipe syn-
chronizes on the mailbox size, through a series of acknowledge-
ments from the receiver, to support a backpressure mechanism to
prevent overloading slow “phases”. This is similar to the design
outlined by Welsh et al. in their work on SEDA. [21]

We believe that the gen flow abstraction is generic enough to
support the implementation of Riak Pipe and Luke. We plan to
explore an implementation of Riak Pipe that uses gen flow.

6. Conclusion
We have presented a new “generic” abstraction for Erlang/OTP to
support the implementation of dataflow programming languages
called gen flow. We have motivated the use of this new abstraction
through the implementation of a distributed, deterministic dataflow
programming model called Lasp. We have demonstrated that use of
this new abstraction has helped reduce code duplication and made
it easier to reason about computations in dataflow programming in
Erlang/OTP, as well as provided a way to integrate dataflow “pro-
cessing elements” with the existing Erlang/OTP “generic” abstrac-
tions.

A. Source Code Availability
Lasp and gen flow are available on GitHub under the Apache 2.0
License at http://github.com/lasp-lang/lasp.
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Abstract—We present a new programming model for large-
scale mobile and “Internet of Things” style distributed applica-
tions. The model consists of two layers: a language layer based
on the Lasp language with a runtime layer based on epidemic
broadcast. The Lasp layer provides deterministic coordination-
free computation primitives based on conflict-free replicated
data types (CRDTs). The epidemic broadcast layer is based on
the Plumtree protocol. It provides a communication framework
where clients may only have a partial view of membership and
may not want to participate in or have knowledge of all active
computations. We motivate the new model with a nontrivial
mobile application, a distributed ad counter, and we give the
model’s formal semantics.

I. INTRODUCTION

Traditional approaches to synchronization increasingly
have problems when clients become geographically distributed
and more numerous. Specifically, they do not operate within
the acceptable latency requirements of most consumer-facing
applications.1 This problem is further complicated by the
recent addition of two new classes of large-scale Internet
applications: “Internet of Things” sensor networks and mobile
applications. “Internet of Things” sensor networks rely on
tiered aggregation networks that leverage devices with limited
connectivity, limited power, and limited local storage capacity.
Mobile applications usually operate with replicated state and
allow offline modifications to this state, placing the onus on
the application developer to resolve concurrent modifications
to replicated data items.

In previous work, we have proposed a solution to the prob-
lem of large-scale, coordination-free programming, namely
the Lasp programming model [2], [3]. Lasp uses functional
programming operations to deterministically compose conflict-
free replicated data types (CRDTs) [4]. CRDTs are guaranteed
to converge under concurrent operations to replicated state.
The composition of CRDTs into larger applications preserves
these convergence properties. This means that applications can
make progress while offline, propagating their state upstream
as connectivity becomes available, and are resilient to both
re-ordering and replay of messages. We have implemented
the Lasp programming model on a consistent-hashed ring in
a datacenter (see Section II-C). However, this architecture is
inappropriate for edge computing because ring management
is increasingly difficult for growing numbers of limited nodes
with intermittent connectivity.

1For example, Amazon estimated that every 100ms in latency resulted in a
1% sales loss [1].

This paper proposes a new programming model for edge
computing applications such as Internet of Things and mobile
applications. The model combines an execution layer based
on Lasp with a gossip layer based on epidemic broadcast.
These two layers work well together: gossip is adapted to
loosely coupled systems and Lasp is adapted to the properties
of the gossip layer. Using gossip provides improved placement
of application state and computations with that state across
a large and variable set of nodes. Using Lasp provides an
inherent ability to continue computing despite frequent node
disconnections, node failures, and message reordering. The
gossip layer is based on previous work on epidemic broadcast
trees [5], which provides the efficient and reliable delivery
of messages to clusters containing large and dynamically
variable numbers of nodes. This paper presents and motivates
the programming model and gives a formal semantics of its
execution. We are currently implementing and evaluating the
model. To our knowledge, this paper is the first to articulate a
general purpose programming model using epidemic broadcast
as the basis for the language’s runtime.

The paper is structured as follows. Section II introduces
the concepts we build on: CRDTs, Lasp and its ring-based
implementation, and epidemic broadcast trees. Section III gives
a motivating example, namely a distributed ad counter for mo-
bile applications. Section IV presents Selective Hearing, which
combines the Lasp execution model with a new distribution
model based on gossip. Section V gives the formal semantics
that defines Lasp execution on the gossip layer. Section VI
relates our new model with other models of group management
and execution. Section VII concludes and explains how we
intend to continue this work.

II. BACKGROUND

In this section we review Conflict-free Replicated Data
Types, Lasp, and Epidemic Broadcast Trees.

A. Conflict-free Replicated Data Types (CRDTs)

CRDTs are data structures designed for use in replicated,
distributed computations. They come in a variety of flavors,
such as maps, sets, counters, registers, and flags, and they pro-
vide a programming interface that is similar to their sequential
counterparts. They are designed to capture concurrency prop-
erly: for example, by guaranteeing deterministic convergence
after concurrent additions of the same element at two different
replicas of a replicated set.



One variant of these data structures is formalized in terms
of bounded join-semilattices. Regardless of the type of muta-
tion performed on these data structures and whether that func-
tion results in a change that is externally non-monotonic, state
is always monotonically increasing and two states are always
join-able via a binary operation that computes a supremum, or
least upper bound. To provide an example, adding to a set is
always monotonic, but removing an element from a set is non-
monotonic. CRDT-based sets, such as the Observed-Remove
Set (OR-Set) used in our example, model non-monotonic
operations, such as the removal of an item from a set, in a
monotonic manner. To properly capture concurrent operations
that occur at different replicas of the same objet, individual
operations, as well as the actors that generate those operations,
must be uniquely identified in the state.

The combination of monotonically advancing state, in
addition to ensuring that replicas can converge via a determin-
istic merge operation, provides a strong convergence property:
with a deterministic replica-to-replica communication protocol
that guarantees that all updates are eventually seen by all
replicas, multiple replicas of the same object are guaranteed
to deterministically converge to the same value. Shapiro et al.
have formalized this property as Strong Eventual Consistency
(SEC) in [4].

To demonstrate this property, we look at an example. In
this example, a small circle represents an operation at a given
replica and a dotted line represents a message sharing that state
with another replica, where it is merged in with its current
state.

RA

RB

RC

{1}

(1, {a}, {})

{1}

(1, {b}, {})

{}

(1, {b}, {b})

{1}

{1}

{1}

(1, {a, b}, {b})

(1, {a, b}, {b})

(1, {a, b}, {b})

add(1)

add(1) remove(1)

Figure 1: Example of resolving concurrent operations with
an Observed-Remove Set (OR-Set). In this example, concurrent
operations are represented via unique identifiers at each replica.

Figure 1 is an example of the Observed-Remove Set (OR-
Set) CRDT. This set uses unique identifiers derived at each
replica and represents state at each replica as a triple of values,
a set of unique identifiers for each element addition and a set of
unique identifiers for each element removal. When removing
an element, removals remove all of the “observed” additions,
so under concurrent additions and removals, the set biases
towards additions.

B. Lasp

Lasp is a programming model that uses CRDTs as its
primary data type [2], [3]. Lasp allows programmers to build
applications using CRDTs while ensuring that the composition
of the CRDTs also observes the same strong convergence
properties (SEC) as the individual objects do. Lasp provides

this by ensuring that the monotonic state of each object
maintains a homomorphism with the program state.2

The relevant contribution of the Lasp programming model
is the process. In Lasp, processes are used to connect two or
more instances of CRDTs. One example of a Lasp process
is the filter operation over sets: as the input set is mutated,
the filter function is reevaluated, resulting in a new value for
the output. Lasp processes ensure this transformation is both
monotonic and deterministic.

C. Ring-Based Distribution Model for Lasp

The Lasp programming model was initially designed and
implemented in Erlang [6] using the Riak Core distributed
systems library. The Riak Core library provides a framework
for building applications in the style of the original Dynamo
system as described by DeCandia et al. in 2007 [1]. Riak Core
provides library functions for cluster management, dynamic
membership, failure detection and state management.

This Lasp implementation uses Dynamo-style partitioning
of application state and computations: consistent hashing and
hash-space partitioning are used to distribute copies of each
variable and Lasp process across nodes in a cluster to en-
sure high availability and fault tolerance. Replication of each
variable’s state, and the instantiation of Lasp processes, are
performed between adjacent nodes in a cluster and quorum-
based operations are used to read and modify variables and
the result of computations in the system. Additionally, an
anti-entropy protocol is deployed alongside the quorum-based
operations to ensure reliable delivery of all messages in the
system.

While this model of distribution is designed for fault-
tolerance and high-availability, it is inherently skewed towards
clusters where both the work and latency distribution across
the cluster is uniform.

D. Epidemic Broadcast Trees

Epidemic Broadcast Trees [5], or more specifically the
Plumtree protocol, is an efficient, reliable broadcast protocol.
This approach combines techniques from two previous ap-
proaches to reliable broadcast: deterministic tree-based broad-
cast protocols that have low complexity in message size and
are therefore less fault-tolerant, and gossip protocols that have
higher complexity in message size but are tolerant to faults.

To achieve efficient and fault-tolerant reliable broadcast,
the protocol implements a hybrid approach for each message
that is composed of two phases: given a unique identifier for
the message, first push the message identifier and payload to
nodes contained by the leaves of the broadcast tree, known as
the eager push phase; then, push only the message identifier to
a random sampling of other nodes known by the peer service,
known as the lazy push phase. If any of the nodes do not
receive a message they have learned about through the lazy
push phase within a designated timeout period, they request
this message by identifier from a randomly picked peer in the
overlay network.

2For more information about how this transformation is performed and
maintained, the reader is referred to [2], [3] and [6].



The Plumtree protocol starts off with a random sampling
of nodes, selected from a peer service, placed in the eager set.
As the protocol evolves, nodes are moved from the eager set to
the lazy set as duplicate messages are received. This process
of pruning the eager set is how the protocol computes the
spanning tree that will be used for the eager phase of message
broadcast.

III. MOTIVATING EXAMPLE

We now present an application scenario to motivate our
programming model. Figure 2 visualizes an eventually con-
sistent advertisement counter written in Lasp as originally
presented in [2], [3]. In this example, shaded circles represent
primitive CRDTs and white circles represent CRDTs that
are maintained through composition using Lasp operations.
Additionally, Lasp operations are represented as diamonds, and
directed edges represent the monotonic flow of information in
the Lasp application.

Our advertisement counter operates as follows:

• Advertisement counters are grouped by vendor and
combined into one list of advertisements using a union
operation.

• Advertisements are joined with active “contracts” into
a list of displayable advertisements using both the
product and filter operations.

• Each client periodically reads the list of active adver-
tisements from the server and stores a copy locally.
When displaying an advertisement, clients choose an
advertisement from this local list and increment the
counter. This allows clients to make progress while
offline, but still correctly capture the number of ad-
vertisement impressions.

• Clients periodically synchronize their counters with
the server. As a counter hits 50,000 advertisement im-
pressions, the advertisement is “disabled” by removing
it from the list of active advertisements.

A. Selection of Consistency Protocol

Our original Lasp design focused on the replication of all
objects across a hash-space partitioned ring using consistent
hashing. This design is problematic for the advertisement
counter. In the advertisement counter, not all objects may want
to adhere to the same consistency protocol. We examine two
cases in Figure 2.

Advertisement Counters Each advertisement counter stored
at the client is a local copy that is mutated when advertisements
are viewed locally. In this case, we do not want to replicate
this object at the client or across other clients; we may want
to only store a single copy of this counter and periodically
synchronize with the server accepting that any impressions
between synchronization periods may be lost. In this example
fault-tolerance is provided through periodic synchronization
periods with the server.

Advertisement Transformations At the server, the transfor-
mation using union, product, filter is performed on a weakly
consistent store with quorum-based operations. In this case, an

administrator may want to use state-machine replication tech-
niques via a system like Zookeeper, or a traditional RDMBS,
such as PostgreSQL to store this information.

Given the desired flexibility, we propose that single nodes
in the gossip model of this paper can themselves be imple-
mented either as Dynamo-style rings with quorum operations,
state-machine replication, or a single register.

IV. SELECTIVE HEARING

We now present our new distribution model for Lasp,
called Selective Hearing. This algorithm supports large-scale
computation with Lasp where clients can incrementally con-
tribute results to computations and selectively receive results
of computations as needed. The semantics for this algorithm
removes the notion of “replicas” as previously presented in [2],
[3] and reasons about a single copy of a data item. This “single
copy” is an abstraction over the consistency protocol used to
maintain it; for example, it may be maintained with state-
machine replication, quorum-based operations on a weakly
consistent store, or operations on a single register.

The system model consists of a set of nodes supporting
Lasp operations that are implemented using epidemic broad-
cast. Each node is uniquely identified and tracks a monotonic
counter that is incremented with each operation. Nodes can
join or leave at any time. Nodes fail by crashing and all
messages in the system are eventually delivered to all correct
nodes by the epidemic broadcast protocol (reliable broadcast).
Crashed nodes disappear from the system; whenever a node
recovers it chooses a new identifier and reinitializes its mono-
tonic counter at zero. We can therefore summarize the system
model as two layers:

A. Lasp Layer

Each node can initiate one of the following operations:

• declare(t): Given type information t, return a new
unique variable identifier i that contains the type
information and broadcasts this identifier to all nodes.
We do not specify in more detail how t is encoded.

• read(i, p, c): Test whether variable i’s value v satisfies
predicate p(v). If so, call the continuation c(v). If
not, add (p, c) to the interest set for variable i. This
information will be used by the bind operation when
the variable is bound.

• bind(i, v): Broadcast value v, which is then merged
with the existing value of variable i on all nodes that
have an interest set for i. For these nodes, test all
predicates and invoke the corresponding continuation
for each predicate that succeeds.

Both predicate p and continuation c have one argument v. Any
standard semantics for predicates (i.e., boolean functions) and
continuations may be used; for brevity we do not give these
semantics since they are not a contribution of this paper. Note
that these three operations are designed to commute pairwise
for any variable i (see Section V-C). This is an essential
property since the gossip layer cannot guarantee delivery order.
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B. Gossip Layer

The gossip layer implements the Plumtree epidemic broad-
cast protocol. It efficiently implements the broadcast operations
required by the Lasp layer. The broadcast operations are not
ordered, i.e., a node may receive broadcasts in any order and
different nodes may receive them in different orders. Because
of the Strong Eventual Consistency property of CRDTs, this
does not affect correctness. Furthermore, this allows an im-
portant optimization that reduces the computations needed to
implement the bind operation.

Bind operations initiated on each node are numbered
consecutively via a node-level monotonic counter. Since each
variable’s successive values are inflations of a lattice, a bind
operation that is delivered on a node does not have to invoke
local computation if another bind with a greater value has
already been delivered.

The Plumtree protocol relies on three properties for fault-
tolerant message delivery: (1) Each message can be uniquely
identified: given the lazy push phase of the protocol broadcasts
only message identifiers, a node is required to know whether
that message has been received or not. (2) Nodes must store
a history of all messages received. (3) When receiving an
identifier for a message, a node must be able to determine
if it has already been subsumed by a previous one.

To meet these requirements, we maintain a monotonic
clock at each node and store a version vector for each CRDT.
This version vector is used to uniquely identify the message
when broadcast and allows us to identify messages that have
been subsumed by other messages without comparison of
payload. By leveraging a per object version vector that is
incremented as mutations are performed to each object, we
can store a history of all messages received with vector as
wide as the number of participating actors in the system.

V. SEMANTICS

We give the formal semantics of the operations in the Lasp
layer in terms of the gossip layer’s broadcast operation.

A. Node State

The system consists of a set of nodes, where the state of
each node is a three-tuple (σ, δi, δv). Here, σ is the known
variables set, δi is the interest set, and δv is the known values
set. The execution of each node is a sequence of states:

(σ(0), δ
(0)
i , δ(0)v ) =

({}, {}, {})→ · · · → (σ(k), δ
(k)
i , δ(k)v )→ · · ·

(1)

The sets are initially empty; the k-th state is denoted by
superscript (k). We now define the content of each set.

The known variables set σ contains the unique variable iden-
tifiers known at the node:

σ = {i0, i1, . . .} (2)

The interest set δi contains information about the variables
that the node is interested in, i.e., for which a read operation
has been invoked but not yet resolved by the arrival of a new
value that satisfies the read predicate. For each variable, the
set contains the variable identifier i and a set of pairs of a one-
argument predicate p and a one-argument continuation c. When
the node receives a new value, then each predicate is evaluated,
and for those that succeed the continuation is invoked.

δi = {(i0, {(p0, c0), . . .}), (i1, {(p1, c1), . . .}), . . .} (3)

The known values set δv contains a set of pairs (i, v) of variable
identifiers i and their highest values v observed on the node:

δv = {(i0, v0), (i1, v1), . . .} (4)

B. Basic Invariants on Node State

We assume that node states obey the following invariants:

• The known variables set σ and the known values set
δv both grow monotonically: variables will only be
added and never removed to both sets.

σ(k) ⊆ σ(k+1) δ(k)v ⊆ δ(k+1)
v (5)



• For any interest set δi and known values set δv , their
identifiers will be contained in some future state of
σ3.

∀k. ∃n. n > k ⇒ πi(δ
(k)
i ) ⊆ σ(n)

∀k. ∃n. n > k ⇒ πi(δ
(k)
v ) ⊆ σ(n)

(6)

C. Operations

All Lasp operations are initiated on one node and may
have effects on all nodes; we denote the initiating node by a
subscript k. We specify what each operation does on a node
state (σ, δi, δv) to compute the subsequent state (σ′, δ′i, δ

′
v); any

set that is not mentioned does not change value. In addition
to local operations, some operations do a broadcast using the
gossip layer; we assume the broadcast message is delivered to
all nodes including the sending node. We specify what each
receiving operation does.

declare The operation i = declare(t) returns a new unique
variable identifier i. The operation has the following local
specification:

i = declarek (t) : u = unique() ∧ i = (u, t) (7)

The variable identifier is a pair of a unique constant u and type
information t. The operation then broadcasts the variable iden-
tifier with the following specification (the notation declarej

k(i)
means that node k broadcasts to node j). This adds the variable
identifier to the known variables σ:

declarej
k(i) : σ

′ = σ ∪ {i} (8)

read The operation read(i, p, c) tests whether p(v) holds for
the current value v of variable i. If it does, the continuation
is invoked as c(v). If not, (p, c) is added to the interest set
of variable i, which will delay the invocation until a binding
arrives that sufficiently increases i’s value.

readk (i , p, c) : (∃v.(i, v) ∈ δv ∧ p(v)⇒ c(v)

; (∃s.(i, s) ∈ δi ⇒
sn = s ∪ {(p, c)}; sn = {(p, c)})

δ′i = δi \ {(i, )} ∪ {(i, sn)}
σ′ = σ ∪ {i})

(9)

bind The operation bind(i, v) updates the current value stored
in δv by doing a join with v. The operation has the following
local specification:

bindk (i , v) : true (10)

The operation is then broadcast and has the following specifi-
cation on all other nodes:

bind j
k (i , v) : (∃v′.(i, v′) ∈ δv ⇒ vn = v t v′; vn = v)

δ′v = δv \ {(i, )} ∪ {(i, vn)}
σ′ = σ ∪ {i}
∃s.(i, s) ∈ δi ⇒
ssat = {(p, ) ∈ s | p(vn)}
δ′i = δi \ {(i, )} ∪ {(i, s \ ssat)}
∀( , c) ∈ ssat : c(vn)

(11)

3We define π as the standard projection.

In variable i’s interest set, all pending read operations (all
pairs (p, c) in s) are checked. Those for which p succeeds
are removed from s and their continuation c is invoked.

D. Processes

A Lasp process is defined as a recursive function that uses
the Lasp operations. Figure 3 shows the execution of a Lasp
process running the filter operation. The example runs on four
nodes, (1), (2), (3), and (4).

Subfigure (a) is a Lasp program that creates two instances
of the Grow-Only Set (G-Set) CRDT and applies the filter
operation with predicate λx.odd(x) from A to B. This Lasp
program has four instructions, each of which executes on a
different node. The executing node is written to the left of
each instruction.

Subfigure (b) is a Lasp program that defines the filter
operation: a recursive function that repeatedly reads new values
of A and computes new values of B. Each iteration executes a
read on A that waits for predicate P to be satisfied, at which
time the continuation C is executed.

Subfigure (c) shows the operations executed and the state
at each node.

This example executes as follows:

1) The declare1 operation is executed on node 1 which
locally generates the unique identifier A. This oper-
ation results in a declarej

1(A) message broadcast to
all members of the cluster.

2) The declare2 operation is executed on node 2 which
locally generates the unique identifier B. This oper-
ation results in a declarej

2(B) message broadcast to
all members of the cluster.

3) The filter operation is executed on node 3. This
operation results in a read3 (A,P ,C ).

4) The bind4 (A, {1 , 2 , 3}) operation is issued on node
4. This operation results in a bind j

4 (A, {1 , 2 , 3})
message broadcast to all members of the cluster;
however, only node 3 is waiting for a value of A.
Given the predicate is satisfied, the continuation is
invoked on node 3, trigging a local bind3 (B , {1 , 3})
operation and a broadcast of a bind j

3 (B , {1 , 3})
message. Given no nodes are waiting for a value of
B, the message is not processed.

VI. RELATED WORK

We examine related work in programming languages and
sensor networks.

A. Process Groups and Programming Languages

The earliest known use of a publish/subscribe model was
by Birman and Thomas in 1987 with the ISIS Toolkit [7]. In
ISIS, process groups were used to handle the replication of an
object using reliable broadcast.

The Quicksilver system described by Ostrowski et al. [8]
presents the design of a “live” distributed objects system
that has pluggable communication substrates. This system
places the onus on the communication layer for managing
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Figure 3: Execution of a Lasp process over gossip with four nodes. Subfigure (a) shows an example program with the nodes selected
for the execution of each Lasp operation; subfigure (b) shows the definition of a Lasp filter process; subfigure (c) shows where each
operation executes and where each broadcast message arrives along with the final state at each node at the end of the execution.

consistency, replication, and propagation of events. While a
gossip protocol version is mentioned as future work, no further
details of how it would manage object state are provided.

B. Directed Diffusion and Digest Diffusion

Directed diffusion [9] is an efficient protocol for perform-
ing realtime dissemination of “interests”, metadata describing
information that should be collected, and “samples”, collec-
tions of information coming from the sensors in the network.

Directed diffusion shares many common traits with Selec-
tive Hearing: a publish/subscribe paradigm, use of a broadcast
protocol, and a API that supports aggregation of information.
However, directed diffusion’s primary focus is on capturing
immutable samples in a large-scale sensor network, whereas
Selective Hearing focuses on general computations over shared
state using a declarative, functional programming approach.

Digest diffusion [10] presents a energy-efficient model of
computation, where operations that are idempotent can be
decomposed and distributed in a network so that nodes will
converge to a correct value. This work outlines the problems
of performing operations that are not idempotent, but can be
decomposed: for example, even under ideal network condi-
tions a count operation can exhibit anomalies from message
duplication.

Our use of the Lasp programming model yields computa-
tions that can be decomposed and distributed by design; all
of the variables in the language are CRDTs: data structures
designed to be resilident to replay and re-ordering of messages.

VII. CONCLUSION

This paper presents a new distribution model for Lasp
based on combining a Lasp execution layer with an epidemic
broadcast communication layer. Since the Lasp semantics
obeys strong eventual consistency, it can use a communication
layer that does not provide ordering guarantees. The model
is designed to operate with two new classes of applications:
mobile gaming with shared state, and “Internet of Things” style
applications. We believe this is the first programming model
to use an epidemic broadcast protocol as a core component of
its runtime system. We are in the process of implementing this

model and evaluating it. We plan to continue improving the
design and distribution of Lasp by modeling several industrial
applications, including the industrial use cases of SyncFree
partner Rovio Entertainment, a mobile gaming provider [11].
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Abstract
Geo-replicated storage systems are at the core of current In-
ternet services. The designers of the replication protocols
used by these systems must choose between either support-
ing low-latency, eventually-consistent operations, or ensur-
ing strong consistency to ease application correctness. We
propose an alternative consistency model, Explicit Consis-
tency, that strengthens eventual consistency with a guaran-
tee to preserve specific invariants defined by the applica-
tions. Given these application-specific invariants, a system
that supports Explicit Consistency identifies which opera-
tions would be unsafe under concurrent execution, and al-
lows programmers to select either violation-avoidance or
invariant-repair techniques. We show how to achieve the for-
mer, while allowing operations to complete locally in the
common case, by relying on a reservation system that moves
coordination off the critical path of operation execution. The
latter, in turn, allows operations to execute without restric-
tion, and restore invariants by applying a repair operation
to the database state. We present the design and evaluation
of Indigo, a middleware that provides Explicit Consistency
on top of a causally-consistent data store. Indigo guarantees
strong application invariants while providing similar latency
to an eventually-consistent system in the common case.

1. Introduction
To improve user experience in services that operate on a
global scale, from social networks and multi-player online
games to e-commerce applications, the infrastructure that
supports these services often resorts to geo-replication [9,
10, 12, 25, 27, 28, 41], i.e., maintains copies of applica-
tion data and logic in multiple datacenters scattered across
the globe. This ensures low latency, by routing requests to
the closest datacenter, but only when the request does not
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require cross-datacenter synchronization. Executing update
operations without cross-datacenter synchronization is nor-
mally achieved through weak consistency. The downside of
weak consistency models is that applications have to deal
with concurrent operations, which can lead to non-intuitive
and undesirable semantics.

These semantic anomalies do not occur in systems that
enforce strict serializability, i.e., serialize all operations in
real-time order. Weaker models, such as serializability or
snapshot isolation, relax synchronization, but still require
frequent coordination among replicas, which increases la-
tency and decreases availability. A promising alternative is
to try to combine the strengths of both approaches by sup-
porting both weak and strong consistency, depending on the
operation [25, 41, 43]. In this approach, operations requiring
strong consistency still incur high latency and are unavail-
able when the system partitions. Additionally, these systems
make it harder to design applications, as operations need to
be correctly classified to guarantee the correctness of the ap-
plication.

In this paper, we propose Explicit Consistency as an al-
ternative consistency model, in which an application speci-
fies the invariants, or consistency rules, that the system must
maintain. Unlike models defined in terms of execution or-
ders, Explicit Consistency is defined in terms of application
properties: the system is free to reorder execution of opera-
tions at different replicas, provided that the specified invari-
ants are maintained.

In addition, we show that it is possible to implement
explicit consistency while mostly avoiding cross-datacenter
coordination, even for critical operations that could poten-
tially break invariants. To this end, we propose a three-
step methodology to derive a safe version of the applica-
tion. First, we use static analysis to infer which operations
can be safely executed without coordination. Second, for the
remaining operations, we provide the programmer with a
choice of invariant-repair [38] or violation-avoidance tech-
niques. Finally, application code is instrumented with the
appropriate calls to our middleware library.

Violation-avoidance extends escrow and reservation ap-
proaches [15, 17, 32, 35, 39]. The idea is that a replica coor-
dinates in advance, to pre-allocate the permission to execute
some collection of future updates, which (thanks to the reser-



vation) will require no coordination. This amortizes the cost
and moves it off the critical path.

Finally, we present the design of Indigo, a middleware for
Explicit Consistency built on top of a geo-replicated key-
value store. Indigo is designed in a way that is agnostic to
the details of the underlying key-value store, only requiring
it to ensure properties that are known to be efficient to imple-
ment, namely per-key, per-replica linearizability, causal con-
sistency, and transactions with weak semantics [2, 27, 28].

In summary, we make the following contributions:

• Explicit Consistency, a new consistency model for appli-
cation correctness, centered on the application semantics,
and not on the order of operations.
• A methodology to derive an efficient reservation system

for enforcing Explicit Consistency, based on the set of
invariants associated with the application.
• Indigo, a middleware system implementing Explicit Con-

sistency on top of a causally consistent geo-replicated
key-value store.

The remainder of the paper is organized as follows: Sec-
tion 2 introduces Explicit Consistency. Section 3 gives an
overview of our approach. Section 4 presents the analysis
for detecting unsafe concurrent operations. Section 5 details
the techniques for handling these operations. Section 6 dis-
cusses the implementation of Indigo and Section 7 presents
an evaluation of the system. Related work is discussed in
Section 8. Finally, Section 9 concludes the paper.

2. Explicit Consistency
In this section we define precisely the consistency guaran-
tees that Indigo provides. We start by defining the system
model, and then how Explicit Consistency restricts the set of
behaviors allowed by that model.

To illustrate the concepts, we use as running example the
management of tournaments in a distributed multi-player
game. The game maintains information about players and
tournaments. Players can register and de-register from the
game. Players compete in tournaments, for which they can
enroll and disenroll. A set of matches occurs for each tour-
nament. Each tournament has a maximum capacity. In some
cases, e.g., when there are not enough participants, a tour-
nament can be canceled before it starts. Otherwise a tourna-
ment’s life cycle is creation, start, and end.

2.1 System Model and Definitions
We consider a database composed of a set of objects in a
typical cloud deployment, where data is fully replicated in
multiple datacenters, and partitioned inside each datacenter.

Applications access and modify the database by issu-
ing high-level operations. These operations consist of a se-
quence of read and write operations enclosed in transac-
tions. An application submits a transaction to a replica; its
reads and writes execute on a private copy of the replica

state. If the transaction commits, its writes are applied to
the local replica (local transaction), and propagate asyn-
chronously to remote replicas, where they are also applied
(remote transaction). If the transaction aborts, it has no ef-
fect.

We denote by t(S) the state after applying the write oper-
ations of committed transaction t to some state S. We define
a database snapshot, Sn, as the state of the database after a
sequence of committed transactions t1, . . . , tn from the ini-
tial database state, Sinit, i.e., Sn = tn(. . . (t1(Sinit))). The
state of a replica results from applying both local and remote
transactions, in the order received.

The transaction set T (S) of a database snapshot S
is the set of transactions included in S, e.g., T (Sn) =
{t1, . . . , tn}. We say that a transaction ta executing in a
database snapshot Sa happened-before tb executing in Sb,
ta ≺ tb, if ta ∈ T (Sb). Two transactions ta and tb are
concurrent, ta ‖ tb, if ta 6≺ tb ∧ tb 6≺ ta [24].

For a given set of transactions T , the happens-before
relation defines a partial order among them, O = (T,≺). We
say O′ = (T,<) is a valid serialization of O = (T,≺) if O′

is a linear extension of O, i.e., < is a total order compatible
with ≺.

Transactions can execute concurrently, with each replica
executing transactions according to a different valid seri-
alization. We assume the system guarantees state conver-
gence, i.e., all valid serializations of (T,≺) lead to the
same database state. Different techniques can be used to this
end, from a simple last-writer-wins strategy to more com-
plex approaches based on conflict-free replicated data types
(CRDTs) [38, 41].

2.2 Explicit Consistency
Explicit Consistency is a novel consistency semantics for
replicated systems, where programmers define the applica-
tion-specific correctness rules that should be met. These
rules are expressed as invariants over the database state.

Even if each replica maintains some invariant locally,
concurrent updates might still cause violation. Consider for
instance a tournament with a maximum capacity, limiting the
cardinality of the set of enrolled players. Two replicas could
concurrently enroll players into the same tournament, each
one respecting the capacity. However, if the merge function
is the union of the two sets of players, the capacity might be
exceeded nonetheless.

Our formal definition starts with the helper definition of
an invariant I , as a logical condition over the state of the
database. We say that state S is an I-valid state if I holds in
S, i.e., if I(S) = true.

Definition 2.1 (I-valid serialization). Given a set of trans-
actions T and its associated happens-before partial order ≺,
Oi = (T,<) is an I-valid serialization of O = (T,≺) if Oi

is a valid serialization of O, and I holds in every state that
results from executing some prefix of Oi.



We can now formally define the conditions that a system
must uphold to ensure Explicit Consistency.

Definition 2.2 (Explicit consistency). A system provides
Explicit Consistency if all serializations of O = (T,≺)
are I-valid serializations, where T is the set of transactions
executed in the system and ≺ their associated partial order.

This concept is related to the I-confluence of Bailis et al.
[5]. I-confluence defines the conditions under which opera-
tions may execute concurrently, while still ensuring that the
system converges to an I-valid state. The current work gen-
eralizes this to cases where coordination is needed, and fur-
thermore proposes efficient solutions.

3. Overview
Given application invariants, our approach for Explicit Con-
sistency has three steps: (i) Detect the sets of operations
that may lead to invariant violation when executed concur-
rently, called I-offender sets. (ii) Select an efficient mecha-
nism for handling I-offender sets. (iii) Instrument the appli-
cation code to use the selected mechanism on top of a weakly
consistent database system.

The first step consists of discovering I-offender sets. This
analysis is based on a model of the effects of operations. This
information is provided by the application programmer, as
annotations specifying the changes performed by each oper-
ation. Using this information, combined with the application
invariants, static analysis infers the sets of operation invoca-
tions that, when executed concurrently, may lead to invariant
violation (I-offender sets). Conceptually, the analysis con-
siders all reachable database states and, for each state, all
sets of operation invocations that can execute in that state;
it checks if executing these operations concurrently might
cause an invariant violation. Obviously, it is not feasible to
exhaustively consider all database states and operation sets;
instead, a practical approach is to use static verification tech-
niques, which are detailed in Section 4.

In the second, the developer decides which approach to
use to handle the I-offender sets. There are two options.
With the first, invariant repair, operations are allowed to
execute concurrently, and the conflict resolution rules that
merge their outputs should include code to restore the invari-
ants. One example is a graph data structure that supports op-
erations to add and remove vertices and edges; if one replica
adds an edge while concurrently another replica removes
one of the edge’s vertices, the merged state might ignore the
hanging edge to ensure the invariant that an edge connects
two vertices [38]. A similar approach applies to trees [30].

The second option, violation avoidance, consists of re-
stricting concurrency sufficiently to avoid the invariant vio-
lation. We propose a number of techniques to allow a replica
to execute such operations safely, without coordinating fre-
quently with the others. Consider for instance the enrollment
invariant (if a player is enrolled in a tournament, both the

player and the tournament must exist). Any replica is al-
lowed to execute the enrollTournament operation without
coordination, as long as all replicas are forbidden to run
removePlayer and removeTournament. This reservation may
apply to a particular subset of players and tournaments.

Our reservation mechanisms support such functionality
with reservations tailored to the different types of invariants,
as detailed in Section 5.

In the third step, the application code is instrumented to
use the conflict-repair and conflict-avoidance mechanisms
selected by the programmer. This involves extending oper-
ations to call the appropriate API functions supported by In-
digo.

4. Determining I-offender sets
In this section we detail the first step of our approach.

4.1 Defining invariants and post-conditions
Defining application invariants An application invariant
is described by a first-order logic formula. More formally,
we assume the invariant is an universally quantified formula
in prenex normal form1

∀x1, · · · , xn, ϕ(x1, · · · , xn).

First-order logic formulas can express a wide variety of con-
sistency constraints; we give some examples in Section 4.2.

An invariant can use predicates such as player(P ) or
enrolled(P, T ). A user may interpret them to mean that
P is a player and that P is enrolled in tournament T ; but
technically the system depends only on their truth values and
on the formulas that relate them. The application developer
needs only to specify the effects of operations on the truth
values of the terms used in the invariant.

Similarly, numeric restrictions can be expressed through
the use of functions. For example, we may use nrPlayers(T )
(the number of players in tournament T ) to limit the size of
a tournament: ∀T,nrPlayers(T ) ≤ 5.

An application must satisfy the conjunction of all invari-
ants.

Defining operation postconditions To express the side ef-
fects of operations, postconditions state the properties that
are ensured after the execution of an operation that modi-
fies the database. There are two types of side effect clauses:
predicate clauses, which describe a truth assignment for a
predicate (stating whether the predicate is true or false af-
ter execution of the operation); and function clauses, which
define the relation between the initial and final function val-
ues. To give some examples, operation removePlayer(P ),
which removes player P , has a postcondition with pred-
icate clause ¬player(P ), stating that predicate player is
false for player P . Operation enrollTournament(P, T ),

1 Formula ∀x, ϕ(x) is in prenex normal form if clause ϕ is quantifier-free.
Every first-order logic formula has an equivalent prenex normal form.



which enrolls player P into tournament T , has a postcondi-
tion with two clauses, enrolled(P, T ) and nrPlayers(T ) =
nrPlayers(T ) + 1. If the player is already enrolled, the op-
eration produces no side effects.

The syntax for postconditions is given by the grammar:

post ::= clause1 ∧ clause2 ∧ · · · ∧ clausek
clause ::= pclause | fclause
pclause ::= p(o1, o2, · · · , on) | ¬p(o1, o2, · · · , on)
fclause ::= f(o1, o2, · · · , on) = opr | opr ⊕ opr
opr ::= n | f(o1, o2, · · · , on)
⊕ ::= + | − | ∗ | . . .

where p and f are predicates and functions respectively, over
objects o1, o2, · · · , on.

Although we impose that a postcondition is a conjunc-
tion, it is possible to deal with operations that have alterna-
tive side effects, by splitting the alternatives between mul-
tiple dummy operations. For example, an operation ϕ with
postcondition ϕ1 ∨ ϕ2 could be replaced by operations op1
and op2 with postconditions ϕ1 and ϕ2, respectively.

4.2 Expressiveness of Application Invariants
Despite the simplicity of our model, it can express significant
classes of invariants, as discussed next.

4.2.1 Restrictions Over The State
An application can define the set of valid application states,
using invariants that define conditions that must be satisfied
in every database state. By combining user-defined predi-
cates and functions, it is possible to address a wide range of
application semantics.

Numeric constraints Numeric constraints refer to numeric
properties of the application and set lower or upper bounds
to data values. Often, they control the use or access to
a limited resource. For example, to ensure that a player
does not overspend her (virtual) budget: ∀P, player(P ) ⇒
budget(P ) ≥ 0. Disallowing an experienced player from
participating in a beginner tournament can be expressed as:
∀T, P, enrolled(P, T ) ∧ beginners(T ) ⇒ score(P ) ≤ 30.
By using user-defined functions in the constraints, it is pos-
sible to express complex conditions over the database state.
We have previously shown how to limit the number of en-
rolled players in a tournament by using a function that counts
the enrolled players. The same approach can be used to
limit the number of elements in the database that satisfy
any generic condition.

Uniqueness, a common correctness property, may also
be expressed using a counter function. For example, the
formula ∀P, player(P ) ⇒ nrPlayerId(P ) = 1, states that
P must have a unique player identifier. Whereas, the formula
∀T, tournament(T ) ⇒ nrLeaders(T ) = 1 states that a
collection has exactly one leader.

Integrity constraints An integrity constraint specifies the
relationships between different objects, such as the foreign

key constraint in databases. A typical example is the one at
the beginning of this section, stating that enrollment must
refer to existing players and tournaments. If the tournament
application had a score table for players, another integrity
constraint might be that every table entry must belong to an
existing player: ∀P, hasScore(P )⇒ player(P ).

General constraints over the state An invariant may also
capture general constraints. For example, consider an ap-
plication to reserve meetings, where two meetings must not
overlap in time. Using predicate time(M,S,E) to mean that
meeting M starts at time S and ends at time E, we could
write this invariant as follows: ∀M1,M2, S1, S2, E1, E2,
time(M1, S1, E1) ∧ time(M2, S2, E2) ∧ M1 6= M2 ⇒
E2 ≤ S1 ∨ S2 ≥ E1.

4.2.2 Restrictions Over State Transitions
In addition to conditions over database state, we support
some forms of temporal specifications, i.e., restrictions over
state transitions. Our approach is to turn this into an invariant
over the state of the database, by augmenting the database
with a so-called history variable that records its state in a
given moment in the past [1, 33].

In our running example, we might want to state, for
instance, that players may not enroll or drop from an ac-
tive tournament, i.e., between the start and the end of the
tournament. For this, when a tournament starts, the ap-
plication stores the list of participants, which can later be
checked against the list of enrollments. If participant(P, T )
asserts that player P participates in active tournament T ,
and active(T ) asserts that tournament T is active, the
above rule can be specified as follows: ∀P, T, active(T ) ∧
enrolled(P, T )⇒ participant(P, T ).

An alternative is to use a logic with support for tempo-
ral logic expressions, which allow for writing expressions
that specify rules over time [24, 34]. Such approach would
require more complex specification for programmers and a
more complex analysis. We decided to forgo temporal logic,
since our experience showed that our simpler approach was
sufficient for specifying common application invariants.

4.2.3 Existential quantifiers
Some properties require existential quantifiers, for instance
to state that tournaments must have at least one player en-
rolled: ∀T, tournament(T ) ⇒ ∃P, enrolled(P, T ). This
can be easily handled, since the existential quantifier can be
replaced by a function, using the technique called skolemiza-
tion. For this example, we may use function nrPlayers(T )
as such: ∀T, tournament(T )⇒ nrPlayers(T ) ≥ 1.

4.2.4 Uninterpreted predicates and functions
The fact that predicates and functions are uninterpreted im-
poses limitations to the invariants that can be expressed. It
implies, for example, that it is not possible to express reacha-
bility properties or other properties over recursive data struc-
tures. To encode invariants that require such properties, the



@Invariant(” f o r a l l ( P : p , T : t ) :− e n r o l l e d ( p , t ) =>
pl a y e r ( p ) and tournament ( t ) ”)
@Invariant(” f o r a l l ( P : p ) :− budget ( p ) >= 0”)
@Invariant(” f o r a l l (T : t ) :− nrPlayers ( t ) <= Capacity ”)
@Invariant(” f o r a l l (T : t ) :− a c t i v e ( t )
=> nrPlayers ( t ) >= 1”)
@Invariant(” f o r a l l (T : t , P : p ) :− a c t i v e ( t ) and
e n r o l l e d ( p , t ) => p a r t i c i p a n t ( p , t ) ”)
p u b l i c i n t e r f a c e ITournament {
@True(” p l a y e r ( $0 ) ”)
void addPlayer(P p);

@False(” p l a ye r ( $0 ) ”)
void removePlayer(P p);

@True(” tournament ( $0 ) ”)
void addTournament(T t);

@False(” tournament ( $0 ) ”)
void removeTournament(T t);

@True(” e n r o l l e d ( $0 , $1 ) ”)
@False(” p a r t i c i p a n t ( $0 , $1 ) ”)
@Increments(” nrP layers ( $1 , 1 ) ”)
@Decrements(” budget ( $0 , 1 ) ”)
void enrollTournament(P p, T t);

@False(” e n r o l l e d ( $0 , $1 ) ”)
@Decrements(” nrP layers ( $1 , 1 ) ”)
void disenrollTournament(P p, T t);

@True(” a c t i v e ( $0 ) ”)
@True(” p a r t i c i p a n t ( , $0 ) ”)
void beginTournament(T t);

@False(” a c t i v e ( $0 ) ”)
void endTournament(T t);

@Increments(” budget ( $0 , $1 ) ”)
void addFunds(P p, i n t amount);

}

Figure 1. Invariant specification for the tournament appli-
cation in Java (excerpt)

programmer has to express predicates that encode coarser
statements over the database, which lead to a conservative
view of safe concurrency. For example, instead of specify-
ing some property over a branch of a tree, the programmer
can define the property over the whole tree.

4.2.5 Example
In Figure 1 shows how to express the invariants for the
tournament application in our Java prototype. The invariants
in the listing are a subset of the examples just discussed.
Application invariants are entered as Java annotations to the
application interface (or class), and operation side-effects as
annotations to the corresponding methods. Our notation was
defined to be simple to convert to the language of the Z3
theorem prover, used in our prototype.

4.3 Algorithm
To identify the sets of concurrent operations that may lead
to an invariant violation, we perform static analysis of oper-
ation postconditions against invariants. This analysis focuses
on the case where operations execute concurrently from the
same state. Although we assume that in a sequential execu-
tion, the invariants hold2 , nonetheless, concurrently execut-

2 This can be achieved by having a precondition such that an operation
produces no side effects, if its sequential execution against a state that does
not meet that precondition would violate invariants.

ing operations at different replicas may cause an invariant
violation, which we call a conflict.

First, we check whether concurrent operations may result
in opposite postconditions (e.g., p(x) and ¬p(x)), break-
ing the generic (implicit) invariant that a predicate cannot
have two different values. For instance, consider operations
addPlayer(P ) with effect player(P ), vs. removePlayer(P )
with effect ¬player(P ). These operations conflict, since ex-
ecuting them concurrently with the same parameter P leaves
unclear whether player P exists or not in the database. The
developer may address this convergence violation by using a
conflict resolution policy such as add-wins or remove-wins.

The remainder of the analysis consists in checking the
effect of executing pairs of operations concurrently on the
invariant. Our approach is based on Hoare logic [18], where
the triple {I ∧ P} op {I} expresses that the execution of
operation op, in a state where precondition P holds, pre-
serves invariant I . To determine if a set of operations are
safe, we substitute their effects on the invariant, obtaining
I ′, and check that the formula I ′ is valid given that the pre-
conditions to execute the operations hold.

Considering all pairs of operations is sufficient to detect
all invariant violations. The intuition why this is correct is
that the static analysis considers all possible initial states
before executing each concurrent pair, and therefore adding
a third concurrent operation is equivalent to modifying the
initial state of the two other operations.

To illustrate this process, we consider our tournament
application, with the following invariant I:

I = ∀P, T, enrolled(P, T )⇒ player(P ) ∧ tournament(T )
∧
nrPlayers(T ) ≤ 5

For simplicity of presentation, let us examine each of the
conjuncts defined in invariant I separately. First, we consider
the numeric restriction: ∀T,nrPlayers(T ) ≤ 5, to illustrate
how to check if multiple instances of the same operation are
self-conflicting. In this case, one of the operations we need
to take into account is enrollTournament(P, T ) whose out-
come affects nrPlayers(T ). This operation has precondition
nrPlayers(T ) ≤ 4, the weakest precondition that ensures
the sequential execution does not break the invariant (see
Footnote 2). To determine if this may break the invariant,
we substitute the effects of running the enrollTournament
operation twice into invariant I . We then check whether this
results in a valid formula, when considering also the weakest
precondition. In this example, this corresponds to the follow-
ing derivation (where notation I〈f〉 describes the application
of effect f in invariant I):

I 〈nrPlayers(T )← nrPlayers(T ) + 1〉
〈nrPlayers(T )← nrPlayers(T ) + 1〉

nrPlayers(T ) ≤ 5 〈nrPlayers(T )← nrPlayers(T ) + 1〉
〈nrPlayers(T )← nrPlayers(T ) + 1〉

nrPlayers(T ) + 1 ≤ 5 〈nrPlayers(T )← nrPlayers(T ) + 1〉
nrPlayers(T ) + 1 + 1 ≤ 5



Algorithm 1 Algorithm for detecting unsafe operations.
Require: I : invariant; O : operations.

1: C←∅ {subsets of unsafe operations}
2: for op ∈ O do
3: if self-conflicting(I, {op}) then
4: C ← C ∪ {{op}}
5: for op, op′ ∈ O do
6: if opposing(I, {op, op′}) then
7: C ← C ∪ {{op, op′}}
8: for op, op′ ∈ O : {op, op′} 6∈ C do
9: if conflict(I, {op, op′}) then

10: C ← C ∪ {op, op′}}
11: return C

The resulting assertion I ′ = nrPlayers(T ) + 1 + 1 ≤ 5
is not ensured when both the initial invariant and the weak-
est precondition nrPlayers(T ) ≤ 4 hold. This shows that
concurrent executions of enrollTournament(P, T ) conflict
and enrollTournament is a self-conflicting operation.

The second clause of I is ∀P, T, enrolled(P, T ) ⇒
player(P )∧ tournament(T ). This case illustrates a conflict
between different operations. In this case, we check whether
concurrent enrollTournament(P, T ) and removePlayer(P )
may violate the invariant. Again, we substitute the effects of
these operations into the invariant and check whether the re-
sulting formula is valid, assuming that initially the invariant
and the preconditions of the two operations hold.

I 〈enrolled(P, T )← true〉 〈player(P )← false〉
enrolled(P,T )⇒player(P )∧tournament(T ) 〈enrolled(P,T )← true〉

〈player(P )←false〉
true ⇒ player(P )∧tournament(T ) 〈player(P )←false〉

true ⇒ false

false

As the resulting formula is not valid, another pair of I-
offenders is identified: {enrollTournament , removePlayer}.

We now present the complete logic to detect I-offender
sets in Algorithm 1. This algorithm statically determines the
pairs of operation that are conflicting, which are defined as
follows.

Definition 4.1 (Conflicting operations). Operations op1,
op2, · · · , opn conflict with respect to invariant I if, assum-
ing that I is initially true and the preconditions for op1 and
op2 to produce side effects are initially true, the result of
substituting the postconditions of both operations into the
invariant is not a valid formula.

The core of the algorithm is made of auxiliary functions,
which use the satisfiability modulo theory (SMT) solver
Z3 [11] to verify the validity of the logical formulas used
in Definition 4.1. Function self-conflicting(I, {op}) deter-
mines whether op is self-conflicting, i.e., if concurrent ex-
ecutions of op with the same or different arguments may
break the invariant. Function opposing(I, {op, op′}) deter-
mines whether op and op′ have opposing postconditions.
Function conflict(I, {op, op′}) determines whether the pair
of operations break invariant I , by making it false under con-

current execution. They use the solver to check the validity
of a set of formulas, namely the invariant, the preconditions
for producing effects, and the updated invariant after substi-
tuting the effects of both operations.

Algorithm 1 uses these functions for computing I-offender
sets in three steps. The initial step (line 2) determines self-
conflicting operations. The second step (line 5) determines
opposing operations by detecting contradictory predicate as-
signments for any pair of operations. The last step (line 8)
determines other I-offender sets by checking if combining
the effects of any two distinct operations raises an invariant
violation. If it leads to a conflict, it adds the pair to the set of
I-offender sets.

The number of test cases generated is polynomial in the
number of operations, O(|O|2). However, the satisfiability
problem to be solved in each auxiliary function is, in the
general case, NP-complete [19]. Z3 relies on heuristics to
analyze formulas efficiently, in most cases. The results pre-
sented in Section 7.1.1 suggest that it is fast enough to be
practical.

5. Handling I-offender sets
The previous step identifies I-offender sets. These sets are
reported to the programmer, who decides how each situation
should be addressed. We now discuss the techniques that are
available to the programmer in Indigo.

5.1 Invariant Repair
One approach is to allow the conflicting operations to ex-
ecute concurrently, and to repair invariant violations after
the fact. Indigo has only limited support for this approach,
since it can only address invariants defined in the context
of a single database object (even though the object can be
complex, such as a tree or a graph). To this end, Indigo
provides a library of objects that repair invariants automat-
ically using techniques proposed in the literature, e.g., sets,
maps, graphs, trees with different conflict resolution policies
[30, 38].

Application developers may extend this library, in order
to support additional invariants. For instance, the program-
mer might want to extend the unbounded set provided by
the library, to implement a set with bounded capacity n. She
could modify queries such that they ignore excess elements
from the underlying unbounded set; however, she must take
care to use a deterministic and monotonic algorithm to select
the elements to ignore [31].

5.2 Invariant-Violation Avoidance
The alternative approach is to avoid the concurrent execu-
tion of operations that would lead to an invariant violation
when combining their effects. Indigo provides a set of basic
techniques for achieving this, which extend previous ideas
from the literature [17, 32, 35, 39, 44]. In comparison to
the previous work, we not only combine these ideas in the



same system, but we also propose a new implementation,
which is optimized for a geo-replicated setting by requiring
only peer-to-peer communication, and relying on CRDTs to
manage information [38].

5.2.1 Reservations
We now discuss the high-level semantics of the techniques
used to restrict the concurrent execution of updates. The next
section discusses their implementation in weakly consistent
stores.

UID generator: A very common invariant is uniqueness
of identifiers [5, 25]. This problem can be easily solved,
without coordination, by statically splitting the space of
identifiers per replica. Indigo provides this service by ap-
pending a replica-specific suffix to a locally-unique identi-
fier.

Multi-level lock reservation: The multi-level lock reser-
vation (or simply multi-level lock) is our base mechanism
to restrict the concurrent execution of operations that can
break invariants. A multi-level lock can provide the follow-
ing rights: (i) shared forbid, giving the shared right to forbid
some action to occur; (ii) shared allow, giving the shared
right to allow some action to occur; (iii) exclusive allow, giv-
ing the exclusive right to execute some action.

When a replica holds one of the above rights, no other
replica holds rights of a different type. For instance, if a
replica holds a shared forbid, no other replica has any form
of allow. We now show how to use this knowledge to control
the execution of I-offender sets.

In the tournament example, {enrollTournament(P, T ),
removePlayer(P )} is an I-offender set. To avoid the vio-
lation of invariants, we can associate an appropriate multi-
level lock to each of the operations, for specific values of
the parameters. For example, we can have a multi-level lock
associated with removePlayer(P ), for each value of P . For
executing removePlayer(P ), it is necessary to obtain the
right shared allow on the reservation for removePlayer(P ).
For executing enrollTournament(P, T ), it is necessary
to obtain the shared forbid right on the reservation for
removePlayer(P ). This guarantees that enrolling some
player will not execute concurrently with deleting the same
player. However, concurrent enrolls or concurrent removes
are allowed. In particular, if all replicas hold the shared for-
bid right on removing players, the most frequent enroll op-
eration can execute in any replica, without coordination with
other replicas.

The exclusive allow right, in turn, is necessary when an
operation is incompatible with itself, i.e., when executing
concurrently the same operation may lead to an invariant
violation.

Multi-level locks are a form of lock [17] that can be used
to restrict the concurrent execution of operations in any I-
offender sets. It would be possible to enforce any application
invariants using only multi-level locks. However, in some

cases it is possible to provide additional concurrency while
enforcing invariants, by using the following reservations.

Multi-level mask reservation: For invariants of the form
P1 ∨ P2 ∨ . . . ∨ Pn, the concurrent execution of any pair
of operations that makes two different predicates false may
lead to an invariant violation if all other predicates were
originally false. In our analysis, each of these pairs is an I-
offender set.

Using simple multi-level locks for every pair of opera-
tions is too restrictive, as getting a shared allow on one oper-
ation would prevent the execution of all operations that could
make any of the other predicates false. The reason why this
is overly pessimistic is that, in this case, for executing an
operation that makes some predicate false it suffices to guar-
antee that some other predicate remains true, which can be
done by only forbidding the operations that make it false.

To allow for this, Indigo includes a multi-level mask
reservation that can be seen as a vector of multi-level locks.
For the invariant P1∨P2∨ . . .∨Pn, a multi-level mask with
n entries is created, with entry i used to control operations
that may make Pi false.

When a replica obtains a shared allow right in one entry,
it must obtain a shared forbid right in some other entry.
For example, an operation that may make Pi false needs to
obtain the shared allow right on the ith entry and a shared
forbid right on an entry j for which the predicate is true. At
runtime, to find an entry to forbid, it is only necessary to
evaluate the current value of the predicate associated with
each entry that can be locked.

Escrow reservation: For numeric invariants of the form
x ≥ k, we include an escrow reservation for allowing some
decrements to execute without coordination [32]. Given an
initial value for x = x0, there are initially x0 − k rights to
execute decrements. These rights can be split dynamically
among replicas. For executing x.decrement(n), the opera-
tion must acquire and consume n rights to decrement x in
the replica it is submitted. If not enough rights exist in the
replica, the system will try to obtain additional rights from
other replicas. If this is not possible, the operation will fail.
Executing x.increment(n) creates n rights to decrement n,
initially assigned to the replica in which the operation that
executes the increment is submitted.

A similar approach is used for invariants of the form x ≤
k, with increments consuming rights and decrements creat-
ing new rights. For invariants of the form x+y+. . .+z ≥ k,
a single escrow reservation is used, with decrements to any
of the involved variables consuming rights and increments
creating rights. If a variable x is involved in more than one
invariant, several escrow reservations will be affected by a
single increment/decrement operation on x.

The variant called escrow reservation for conditions
checks a count of elements against some condition; for in-
stance, the number of participants in a tournament in the
invariant nrP layers(T ) < k. In this case, if the same user



is enrolled twice concurrently, two rights are consumed, al-
though the number of participants increases by only one.
This is conservative, but “leaks” rights. However, if the same
user is disenrolled twice concurrently, then the number of
users increases by only one; creating two rights might later
let the invariant be violated.

Our escrow reservation for conditions addresses this
problem using the following approach (considering invari-
ant c ≥ k). A decrement operation requires rights, just as
a normal escrow reservation. However, an increment opera-
tion does not create rights immediately, but instead tags the
reservation to be reevaluated. One of the replicas, marked
as the primary for the reservation, is entrusted with recre-
ating rights. To do so, it evaluates the distance between the
current state and the threshold, taking into account the ag-
gregate number of outstanding rights. More precisely, given
the current value for c = c1 and the number k1 of outstand-
ing rights (i.e., rights assigned to a replica and still not used,
as known by the primary replica), c1− k− k1 rights are cre-
ated and assigned initially to the primary replica. This can be
done either when the reservation is marked for reevaluation,
or when new rights are needed.

Partition lock reservation: For some invariants, it is
desirable to have the ability to reserve part of a partitionable
resource. For example, consider the invariant that forbids
two tournaments to overlap in time. Two operations that
schedule different tournaments will break the invariant if
the time periods overlap. Using a multi-level lock, it would
be necessary to obtain an exclusive allow for executing any
operation to schedule a new tournament.

However, no invariant violation arises if the time periods
of concurrent operations do not overlap. To address this case,
we provide a partition lock that allows a replica to obtain
an exclusive lock on an interval of real values.3 Replicas can
obtain locks on multiple intervals, given that no two intervals
reserved by different replicas overlap.

In our example, time would be mapped to a real num-
ber. To execute the operation that schedules a tournament, a
replica would have to obtain a lock on an interval that in-
cludes the time from the start to the end of the tournament.

5.2.2 Using Reservations
The analysis from Section 4 outputs I-offender sets and the
corresponding invariant violated. A programmer, electing to
use the conflict avoidance approach, must select the type of
reservation to be used to avoid invariant violations. Figure 1
presents a default mapping between types of invariants and
the corresponding reservations. Conservatively, it is always
possible to resort to multi-level locks to enforce any invari-
ant, at the expense of admissible concurrency, as discussed
earlier.

3 Partition locks are a simplified version of partitionable objects [44] and
slot reservations [35].

Invariant type Formula (example) Reservation
Numeric x < K Escrow(x)

Referential p(x)⇒ q(x) Multi-level lock
Disjunction p1 ∨ . . . ∨ pn Multi-level mask
Overlapping t(s1, e1) ∧ t(s2, e2)⇒ Partition lock

s1 ≥ e2 ∨ e1 ≤ s2
Default — Multi-level lock

Table 1. Default mapping from invariants to reservations.

When using multi-level locks to prevent the concur-
rent execution of I-offender sets, it is possible to use
different sets of reservations. We call this a reservation
system. For example, consider our tournament applica-
tion with the following two I-offender sets, which fol-
low from the integrity constraint associated with enroll-
ment: {enrollTournament(P, T ), removePlayer(P )} and
{enrollTournament(P, T ), removeTournament(P )}.

Given these I-offender sets, two alternative reservation
systems can be used. The first system includes a single multi-
level lock associated with enroll(P, T ), where this opera-
tion would have to obtain a shared allow right to execute,
while both removePlayer(P ) and removeTournament(T )
would have to obtain the shared forbid right to execute.
The second system includes two multi-level locks associ-
ated with removePlayer(P) and removeTournament(T ),
where enroll would have to obtain the shared forbid right in
both locks to execute.

A simple optimization process is used to decide which
reservations to use. As generating all possible combinations
of reservation types may take too long, this process starts
by generating a small number of systems using the follow-
ing heuristic algorithm: (i) select a random I-offender set;
(ii) decide the reservation to control the concurrent execu-
tion of operations in the set, and associate the reservation
with the operation: if a reservation already exists for some
of the operations, use the same reservation; otherwise, gen-
erate a new reservation from the type previously selected by
the user; (iii) select the remaining I-offender set, if any, that
has the most operations controlled by existing reservations,
and repeat the previous step.

For each generated combination of reservations, Indigo
computes the expected frequency of reservation operations
needed, using as input the expected frequency of operations.
The optimization process tries to minimize this expected
frequency of reservation operations.

After deciding which reservation system will be used,
each operation is extended to acquire the appropriate rights
before executing its code, and to release appropriate rights
afterwards. For escrow locks, an operation that consumes
rights will acquire rights before its execution (and these
rights will not be released when the operation ends). Con-
versely, an operation that creates rights will create these
rights after its execution. For multi-level masks, the pro-



grammer must provide the code that verifies the values of the
predicate associated with each element of the disjunction.

6. Implementation
In this section, we discuss the implementation of Indigo as
a middleware running on top of a causally consistent store.
We first explain the implementation of reservations and how
they are used to enforce Explicit Consistency. We conclude
by explaining how Indigo is designed to use an existing geo-
replicated store.

6.1 Reservations
Indigo maintains information about reservations as objects
stored in the underlying causally consistent storage system.
For each type of reservation, a specific object class exists.
Each reservation instance maintains information about the
rights assigned to each of the replicas; in Indigo, each data-
center is considered a single replica, as explained later.

The escrow lock object maintains the rights currently as-
signed to each replica, and the following operations modify
its state: escrow consume depletes rights assigned to the lo-
cal replica; escrow generate generates new rights assigned
to the local replica; and escrow transfer transfers rights from
the local replica to some given replica. For example, for an
invariant x ≥ K, escrow consume must be used by an oper-
ation that decrements x and escrow generate by operations
that increment x. For the escrow lock for conditions variant,
a replica is tagged as the primary. The escrow generate only
creates rights in the primary.

When escrow consume and escrow transfer operations
execute in a replica, if that replica has insufficient rights, the
operation fails and it has no side effects. Otherwise, the state
of the replica is updated accordingly and the side effects
are asynchronously propagated to the other replicas, using
the normal replication mechanisms of the underlying stor-
age system. As operations only deplete rights of the replica
where they are submitted, it is guaranteed that every replica
has a conservative view of the rights assigned to it: all op-
erations that have consumed rights are known, but opera-
tions that transferred new rights from some other replica may
still have to be received. Given that the execution of opera-
tions is serialized by the replica, this approach guarantees
the correctness of the system in the presence of any number
of concurrent updates in different replicas and asynchronous
replication, as no replica will ever consume more rights than
those assigned to it.

The multi-level lock object maintains which right (exclu-
sive allow, shared allow, shared forbid) is assigned to each
replica, if any. Rights are obtained for executing operations
with some given parameters. For instance, in the tournament
example, for removing player P the replica needs a shared
allow right for player P . Thus, a multi-level lock object man-
ages the rights for the different parameters independently.
Each replica can then hold a given right for a specific value

of the parameters or a subset of the parameter values. For
simplicity, in our description, we assume that a single pa-
rameter exists.

The following operations can be submitted to modify the
state of the multi-level lock object: mll giveRight gives a
right to some other replica; a replica with a shared right can
give the same right to some other replica; a replica that is the
only one with some right can change the right type and give
it to itself or to some other replica; mll freeRight revokes
a right assigned to the local replica. As a replica can have
been given rights by multiple concurrent mll giveRight oper-
ations executed in different replicas, mll freeRight internally
encodes which mll giveRight operations are being revoked.
This is necessary to guarantee that all replicas converge to
the same state.

As with escrow lock objects, each replica has a conser-
vative view of the rights assigned to it, as all operations that
revoke the local rights are always executed initially in the
local replica. Additionally, assuming causal consistency, if
the local replica shows that it is the only replica with some
right, that information is correct system-wide. This condition
holds despite concurrent operations and the asynchronous
propagation of updates, as any mll giveRight executed in
some replica is always propagated before a mll freeRight in
that replica. Thus, if the local replica shows that no other
replica holds any right, that is because no mll giveRight has
been executed (without being revoked).

The multi-level mask object is implemented using a vec-
tor of multi-level lock objects, with operations specifying
which multi-level lock must be modified.

The partition lock object maintains which replica owns
each interval. When it is created, a single replica holds the
complete interval of values. A single operation modifies the
state of the object: pol giveRight, which transfers part of the
interval owned by the local replica to some other replica.
Using the same reasoning as in the previous cases, it is clear
that the local replica always has a conservative view of the
intervals it owns.

6.2 Indigo Middleware
We have built a prototype of Indigo on top of a geo-
replicated data store with the following properties: (i) causal
consistency; (ii) support for transactions that access a database
snapshot and merge concurrent updates using CRDTs [38];
(iii) linearizable execution of operations for each object in
each datacenter. There are at least two systems that sup-
port all these functionalities: SwiftCloud [46] and Walter
[41]. Given that SwiftCloud has a more extensive support
for CRDTs, which are fundamental for invariant-repair, we
decided to build the Indigo prototype on top of SwiftCloud.

Storing reservations Reservation objects are stored in the
underlying storage system and they are replicated in all dat-
acenters. Reservation rights are assigned to datacenters in-
dividually, which keeps the information small. As discussed



in the previous section, the execution of operations in reser-
vation objects at a given datacenter must be linearizable (to
guarantee that two concurrent transactions do not consume
the same rights).

The execution of an operation in the replica where it is
submitted has three phases: i) the reservation rights needed
for executing the operation are obtained; if not all rights can
be obtained, the operation fails; ii) the operation executes,
reading and writing the objects of the database; iii) the used
rights are released (except for escrow reservations, where
the rights that are consumed are not released); new rights
are created in this step. After the local execution, the side
effects of the operation in the data and reservation objects are
propagated and executed in other replicas asynchronously
and atomically.

Note that reservations guarantee that operations that can
lead to invariant violation do not execute concurrently, but
they do not guarantee that the preconditions for the operation
to generate side effects hold. For example, in the tournament,
before removing a tournament it is necessary to disenroll all
players, thus guaranteeing that no player in enrolled.

Reservations manager The reservations manager is a ser-
vice that runs in each datacenter and is responsible for ex-
changing reservations between datacenters, tracking reser-
vations in use by local clients, and providing clients the
database snapshot information to access the underlying stor-
age. For correctness, it is necessary to enforce that updates
of an operation are atomic and that reads are causally consis-
tent with the current rights at each replica. In Indigo, these
properties are guaranteed directly by the underlying storage
system.

An example shows why these properties are necessary. In
our tournament application, to enroll a player it is necessary
to obtain the right that allows the enroll (by forbidding the
removal of both the player and the tournament). After the en-
roll completes, the right is released and can be obtained by
an operation that wants to remove the tournament. The prob-
lem is that if the state observed by the remove tournament
operation did not include the previous enrollment, the appli-
cation could end up deleting the tournament without disen-
rolling the students, leading to an invariant violation.

Obtaining reservation rights The first and last phases of
operation execution obtain and free the rights needed for
operation execution. Indigo provides API functions for ob-
taining and releasing a list of rights. Indigo tries to obtain
the necessary rights locally using ordered locking to avoid
deadlocks. If other datacenters need to be contacted for ob-
taining some reservation rights, this process is executed be-
fore starting to obtain rights locally. Unlike the process for
obtaining rights in the local datacenter, Indigo tries to ob-
tain the needed rights from remote datacenters in parallel
for minimizing latency. This approach is prone to deadlocks;
therefore, if some remote right cannot be obtained, we use an

exponential backoff approach that frees all rights and tries to
obtain them again after an increasing amount of time.

When it is necessary to contact other datacenters to ob-
tain some right, the latency of operation execution can be
severely affected. Therefore, reservation rights are obtained
proactively using the following strategy. Escrow lock rights
are divided among datacenters, with a datacenter asking for
additional rights to the datacenter it believes has more rights
(based on local information). The primary of an escrow lock
for conditions creates new rights by computing the number
of missing rights whenever either it runs out of rights or
the object is marked for reevaluation. Multi-level lock and
multi-level mask rights are pre-allocated to allow executing
the most common operations (based on the expected fre-
quency of operations), with shared allow and forbid rights
being shared among all datacenters. In the tournament ex-
ample, shared forbid for removing tournaments and players
can be owned in all datacenters, allowing the more frequent
enroll operation to execute locally. Partition lock rights are
initially assigned to a single replica, and transferred when
needed.

The reservations manager maintains a cache of reserva-
tion objects and allows concurrent operations to use the same
shared (allow or forbid) right. While some ongoing opera-
tion is using a shared or exclusive right, the right cannot be
revoked. The information about ongoing operations is main-
tained in soft-state. If the machine where the reservations
manager runs fails, the ongoing operation will fail when try-
ing to release the obtained rights.

6.3 Fault tolerance
Indigo builds on the fault tolerance of the underlying stor-
age system. In a typical geo-replicated store, data is repli-
cated inside a datacenter using quorums or a state-machine
replication algorithm. Thus, the failure of a machine inside a
datacenter does not lead to any data loss. This also applies to
the machine running the reservations manager: as explained
before, ongoing transactions will fail in this case; committed
changes to the reservation objects are stored in the underly-
ing storage system.

If a datacenter (fails or) gets partitioned from other dat-
acenters, it is impossible to transfer rights from and to the
partitioned datacenter. In each partition, operations that only
require rights available in the partition can execute normally.
Operations requiring rights not available in the partition will
fail. When the partition is repaired (or the datacenter recov-
ers with its state intact), normal operation is resumed.

In the event that a datacenter fails losing its internal state,
the rights held by that datacenter are lost. As reservation
objects maintain the rights held by all replicas, the procedure
to recover the rights lost by the datacenter failure is greatly
simplified: it is only necessary to guarantee that recovery
is executed only once with a state that reflects all updates
received from the failed datacenter.



7. Evaluation
This section presents an evaluation of Indigo. The main
question our evaluation tries to answer is how does Explicit
Consistency compares against causal consistency and strong
consistency in terms of latency and throughput with different
workloads. Additionally, we try to answer the following
questions:

• Can the algorithm for detecting I-offender sets be used
with realistic applications?
• What is the impact of an increasing the amount of con-

tention in objects and reservations?
• What is the impact of using an increasing number of

reservations in each operation?
• What is the behavior when coordination is necessary for

obtaining reservations?

7.1 Applications
To evaluate Indigo, we used the following two applications.

Ad counter The ad counter application models the infor-
mation maintained by a system that manages ad impressions
in online applications. This information needs to be geo-
replicated for allowing the fast delivery of ads. For maximiz-
ing revenue, an ad should be impressed exactly the number
of times the advertiser is willing to pay for. This invariant can
be easily expressed as nrImpressions(Ai) ≤ Ki, where Ki

is the maximum number of times ad Ai should be impressed
and the function nrImpressions(Ai) returns the number of
times it has been impressed.

Advertisers will typically require ads to be impressed a
minimum number of times in some countries. For instance,
ad A should be impressed exactly 10,000 times, with at least
4,000 impressions in the US and another 4,000 impressions
in the EU. This example is modeled through the following
invariants for specifying the limits on the number of impres-
sions (where nrImpressionsOther counts the sum of the
number of impressions in datacenters other than those two
with the impressions in excess of 4, 000 in the EU or the
US):

nrImpressionsEU (A) ≤ 4, 000
nrImpressionsUS(A) ≤ 4, 000

nrImpressionsOther(A) ≤ 2, 000

We modeled this application by having one counter for
each ad and region pair. Invariants were defined with the tar-
get limits stored in the database: nrImpressions(R,A) ≤
targetImpressions(R,A) A single update operation that in-
crements the ad tally was defined, which increments the
function nrImpressions . Our analysis shows that two incre-
ment operations for the same counter can lead to an invariant
violation, but increments on different counters are indepen-
dent. Invariants can be enforced by relying on escrow lock
reservations for each ad.

Our experiments used workloads with a mix of: a read
only operation that returns the value of a set of counters

selected randomly; an operation that reads and increments
a randomly selected counter. Our default workload included
only increment operations.

Tournament management This is a version of the applica-
tion for managing tournaments described in Section 2 (and
used throughout the paper as our running example), ex-
tended with read operations for browsing tournaments. The
operations defined in this application are similar to opera-
tions that one would find in other management applications
such as courseware management.

As detailed throughout the paper, this application has a
rich set of invariants, including uniqueness rules for assign-
ing ids; generic referential integrity rules for enrollments;
and numeric invariants for specifying the capacity of each
tournament. This leads to a reservation system that uses
both escrow lock for conditions and multi-level lock reser-
vation objects. There are three operations that do not require
any right to execute: add player, add tournament and disen-
roll tournament, although the latter accesses the escrow lock
object associated with the capacity of the tournament. The
other update operations involve acquiring rights before they
can execute.

In our experiments we have run a workload with 82%
of read operations (a value similar to the TPC-W shopping
workload), 4% of update operations requiring no rights for
executing, and 14% of update operations requiring rights
(8% of the operations are enrollment and disenrolments).

7.1.1 Performance of the Analysis
We implemented in Java the algorithm described in Sec-
tion 4 for detecting I-offender sets, relying on the satisfi-
ability modulo theory (SMT) solver Z3 [11] for verifying
invariants. As discussed in Section 4, our algorithm relies on
the efficiency of Z3 to be able to analyze programs in rea-
sonable time.

Our prototype was was able to find the existing I-offender
sets in the applications we have implemented. The average
running time of this process in a recent MacBook Pro laptop
was 19 ms for the ad counter applications and 730 ms for the
more complex tournament application.

For the evaluation of the analysis, we additionally mod-
eled TPC-W, so that we get results for a standard benchmark
application. This application has less invariants to check than
our custom applications, but has more operations. The run-
ning time for detecting I-offender sets was in this case 320
ms. These results show that although the running time in-
creases with the number of invariants and operations, our
algorithm can process realistic applications in reasonable
times.

7.2 Experimental Setup
We compare Indigo against three alternative approaches:

Causal Consistency (Causal) As our system was built on
top of the causally consistent SwiftCloud system [46],



we have used unmodified SwiftCloud as representative
of a system providing causal consistency. We note that
this system cannot enforce invariants. This comparison
allows us to measure the overhead introduced by Indigo.

Strong Consistency (Strong) We have emulated a strongly
consistent system by running Indigo in a single DC and
forwarding all operations to that DC. We note that this
approach allows more concurrency than a typical strong
consistency system as it allows updates on the same ob-
jects to proceed concurrently and be merged if they do
not violate invariants.

RedBlue consistency (RedBlue) We have emulated a sys-
tem with RedBlue consistency [25] by running Indigo in
all DCs and having red operations (those that may vio-
late invariants and require reservations) execute in a mas-
ter DC, while blue operations execute in the closest DC,
while respecting causal dependencies.

Our experiments comprised 3 Amazon EC2 datacenters,
US-East, US-West and EU, with inter-datacenter latency
presented in Table 2. In each DC, Indigo servers run in a
single m3.xlarge virtual machine with 4 vCPUs and 8 ECUs
of computational power, and 15GB of memory available.
Clients that issue transactions run in up to three m3.xlarge
machines. Where appropriate, we placed the master DC in
the US-East datacenter to minimize the overall communica-
tion latency and this way optimize the performance of that
configuration.

RTT (ms) US-E US-W
US-West 81 –
EU 93 161

Table 2. RTT Latency among datacenters in Amazon EC2

7.3 Latency and Throughput
We start by comparing the latency and throughput of Indigo
with alternative deployments for both applications.

We ran the ad counter application with 1000 ads and a sin-
gle invariant for each ad. The maximum number of impres-
sions was set sufficiently high to guarantee that the limit is
not reached. The workload included only update operations
for incrementing the counter. This allowed us to measure the
peak throughput when operations were able to obtain reser-
vations in advance. The results are presented in Figure 2, and
show that Indigo achieves throughput and latency similar to
a causally consistent system. Strong and RedBlue results are
similar to each other, as all update operations are red and
execute in the master DC in both configurations.

Figure 3 presents the results when running the tournament
application with the default workload. As before, results
show that Indigo achieves throughput and latency similar to
a causally consistent system. In this case, as most operations
are either read-only or otherwise can be classified as blue
and thus execute in the local datacenter, the throughput of
RedBlue is only slightly worse than that of Indigo.

Figure 4 details these results, presenting the latency
per operation type (for selected operations) in a run with
throughput close to the peak value. The results show that In-
digo exhibits lower latency than RedBlue for red operations.
These operations can execute in the local DC in Indigo, as
they require either no reservation or reservations that can be
shared and are typically locally available.

Two other results deserve some discussion: Remove tour-
nament requires canceling shared forbid rights acquired by
other DCs before being able to acquire the shared allow right
for removing the tournament, which explain the high latency.
Sometimes latency is very high (as shown by the line with
the maximum value). This is a result of the asynchronous
algorithms implemented and the approach for requesting re-
mote DCs to cancel their rights, which can fail when a right
is being used.

Add player has a surprisingly high latency in all configu-
rations. Analyzing the situation, we found out that the reason
for this lies in the fact that this operation manipulates very
large objects used to maintain indexes, causing all configu-
rations to have a fixed overhead.

7.4 Micro-benchmarks
Next, we examine the impact of key parameters.

Increasing contention Figure 5(a) shows the throughput
of the system with increasing contention in the ad counter
application, by varying the number of counters in the experi-
ment. As expected, the throughput of Indigo decreases when
contention increases as several steps require executing oper-
ations sequentially. Furthermore, the results reflect the fact
that our middleware introduces an additional level of con-
tention, because operations have to contact the reservation
manager.

Increasing number of invariants Figure 5(b) presents the
results of the ad counter application with an increasing num-
ber of invariants involved in each operation: the operation
reads 5 counters (R5) and updates one to three counters (W1
to W3). In this case, the results show that the peak through-
put for Indigo decreases while latency keeps constant. The
reason for this is that for escrow locks, each invariant has
an associated reservation object. Thus, when increasing the
number of invariants, the number of updated objects also
increases, with an impact on the operations that each data-
center needs to execute. To verify our explanation, we ran
a workload with operations that access the same number
of counters in the weak consistency configuration. The pre-
sented results show the same pattern of decreased through-
put.

Impact when transferring reservations Figure 5(c) shows
the latency of individual operations executed in the US-
W datacenter in the ad counter application, for a workload
where increments reach the invariant limit for multiple coun-
ters and where the rights were initially assigned to a single
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Figure 5. Micro-benchmarks.

datacenter. When rights do not exist locally, Indigo cannot
mask the latency imposed by coordination, in this case, for
obtaining additional rights from the remote datacenters. This
explains the high latency operations close to the start of the
experiment. As a bulk of rights is obtained, the following op-
erations execute with low latency until it is necessary to ob-
tain additional rights. When a replica believes that no other
replica has available rights in an escrow lock object, it does
not contact replicas. Instead, the operation fail locally, lead-
ing to low latency.

In Figure 4, we showed the impact of obtaining a multi-
level lock shared right that requires revoking rights present
in all other replicas. We have discussed this problem and a
possible solution in Section 7.3. Nevertheless, it is important
to note that such impact in latency is only experienced when
it is necessary to revoke shared forbid rights in all replicas
before acquiring the needed shared allow right. The posi-
tive consequence of this approach is that enroll operations
requiring the shared forbid right that was shared by all repli-
cas can execute with latency close to zero. The maximum
latency line in enroll operation shows the maximum latency
experienced when a replica acquires a shared forbid right
from a replica already holding such right.

8. Related Work
Geo-replicated storage systems Many cloud storage sys-
tems supporting geo-replication emerged in recent years.
Some offer variants of eventual consistency, where opera-
tions return right after being executed in a single datacenter,
usually the closest one, so that end-user response times are
improved [2, 12, 23, 27, 28]. These variants target different
requirements, such as: reading a causally consistent view of
the database (causal consistency) [2, 3, 14, 27]; supporting
limited transactions where a set of updates are made visible
atomically [4, 28]; supporting application-specific or type-
specific reconciliation with no lost updates [7, 12, 27, 41],
etc. Indigo is built on top of a geo-replicated store support-
ing causal consistency, a restricted form of transactions and
automatic reconciliation; it extends those properties by en-
forcing application invariants.

Eventual consistency is insufficient for some applications
that require (some operations to execute under) strong con-
sistency for correctness. Spanner provides strong consis-
tency for the whole database, at the cost of incurring co-
ordination overhead for all updates [10]. Transaction chains
support transaction serializability with latency proportional
to the latency to the first replica that is accessed [47]. MDCC
[22] and Replicated Commit [29] propose optimized ap-
proaches for executing transactions but still incur in inter-
datacenter latency for committing transactions.



Some systems combine the benefits of weak and strong
consistency models by supporting both. In Walter [41] and
Gemini [25], transactions that can execute under weak con-
sistency run fast, without needing to coordinate with other
datacenters. Bayou [42] and Pileus [43] allow operations to
read data with different consistency levels, from strong to
eventual consistency. PNUTS [9] and DynamoDB [40] also
combine weak consistency with per-object strong consis-
tency relying on conditional writes, where a write fails in the
presence of concurrent writes. Indigo enforces Explicit Con-
sistency rules, exploring application semantics to let (most)
operations execute in a single datacenter.

Exploring application semantics Several works have
explored the semantics of applications (and data types)
for improving concurrent execution. Semantic types [16]
have been used for building non serializable schedules that
preserve consistency in distributed databases. Conflict-free
replicated data types [38] explore commutativity for en-
abling the automatic merge of concurrent updates, which
Walter [41], Gemini [25] and SwiftCloud [46] use as the ba-
sis for providing eventual consistency. Indigo goes further
by exploring application semantics to enforce application
invariants.

Escrow transactions [32] offer a mechanism for enforc-
ing numeric invariants under concurrent execution of trans-
actions. By enforcing local invariants in each transaction,
they can guarantee that a global invariant is not broken.
This idea can be applied to other data types, and it has
been explored for supporting disconnected operation in mo-
bile computing [35, 39, 44]. The demarcation protocol [6] is
aimed at maintaining invariants in distributed databases. Al-
though its underlying protocols are similar to escrow-based
approaches, it focuses on maintaining invariants across dif-
ferent objects. Warranties [15] provide time-limited asser-
tions over the database state, which can improve latency of
read operations in cloud storages.

Indigo builds on these works, but it is the first to pro-
vide an approach that, starting from application invariants
expressed in first-order logic, leads to the deployment of
the appropriate techniques for enforcing such invariants in
a geo-replicated weakly consistent data store.

Other related work Bailis et al. [5] studied the possi-
bility of avoiding coordination in database systems and still
maintain application invariants. Our work complements that,
addressing the cases that cannot entirely avoid coordination,
yet allow operations to execute immediately by obtaining the
required reservations in bulk and in anticipation.

Others have tried to reduce the need for coordination by
bounding the degree of divergence among replicas. Epsilon-
serializability [36] and TACT [45] use deterministic algo-
rithms for bounding the amount of divergence observed by
an application using different metrics: numerical error, order
error and staleness. Consistency rationing [21] uses a statis-
tical model to predict the evolution of replica state and al-

lows applications to switch from weak to strong consistency
upon the likelihood of invariant violation. In contrast to these
works, Indigo focuses on enforcing invariants efficiently.

The static analysis of code is a standard technique used
extensively for various purposes, including in a context sim-
ilar to ours [8, 13, 20]. Sieve [26] combines static and dy-
namic analysis to infer which operations should use strong
consistency and which operations should use weak consis-
tency in a RedBlue system [25]. Roy et al. [37] present an
analysis algorithm that describes the semantics of transac-
tions. These works are complementary to ours, since the pro-
posed techniques could be used to automatically infer appli-
cation side effects. The latter work also proposes an algo-
rithm to allow replicas to execute transactions independently
by defining conditions that must be met in each replica.
Whenever an operation cannot commit locally, a new set
of conditions is computed and installed in all replicas using
two-phase commit. In Indigo, replicas can exchange rights
in a peer-to-peer manner.

9. Conclusions
This paper proposes an application-centric consistency model
for geo-replicated services, Explicit Consistency, where pro-
grammers specify the consistency rules that the system must
maintain as a set of invariants. We describe a methodol-
ogy that helps programmers decide which invariant-repair
and violation-avoidance techniques to use to enforce Ex-
plicit Consistency, extending existing applications. We also
present the design of Indigo, a middleware that can enforce
Explicit Consistency on top of a causally consistent store.
The results show that the modified applications have per-
formance similar to weak consistency for most operations,
while being able to enforce application invariants. Some rare
operations that require intricate rights transfers exhibit high
latency. As future work, we intend to improve the algorithms
for exchanging reservation rights on those situations.
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Abstract
We propose Lasp, a novel programming model aimed to simplify
correct, large-scale, distributed programming. Lasp leverages ideas
from distributed dataflow programming extended with convergent
data types. This provides support for computations where not all
participants are online together at a given moment through Lasp’s
“convergent by design” applications. Lasp provides a familiar func-
tional programming semantics, built on top of distributed systems
infrastructure, targeted at the Erlang runtime system.

The initial Lasp design presented in this report supports syn-
chronization free programming using convergent data types. It
combines the expressiveness of these data types together with pow-
erful primitives for composing them. This design lets us write long-
lived fault-tolerant distributed applications with non-monotonic
behavior. We show how to implement one nontrivial large-scale
application, the ad counter scenario from the SyncFree project.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming; E.1 [Data Structures]: Dis-
tributed data structures

Keywords Eventual Consistency, Commutative Operations, Er-
lang

1. Introduction
Synchronization of data across systems is becoming increasingly
expensive and impractical when running at the scale required by
“Internet of Things” [12] applications and large online mobile
games.1 Not only does the time required to coordinate with an
ever growing number of clients increase with each additional client,
but techniques that rely on coordination of shared state, such as

1 Rovio, developer of the popular “Angry Birds” game franchise reported
that during the month of December 2012 they had 263 million active users.
This does not account for users who play the game on multiple devices,
which is an even larger number of devices requiring some form of shared
state in the form of statistics, metrics, or leaderboards. [2]
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Paxos and state-machine replication, grow in complexity with par-
tial replication, dynamic membership, and unreliable networks. [7]

This is further complicated by an additional requirement for
both of these applications: each must tolerate periods without con-
nectivity while allowing local copies of replicated state to change.
For example, mobile games should allow players to continue to ac-
cumulate achievements or edit their profile while they are riding in
the subway without connectivity; “Internet of Things” applications
should be able to aggregate statistics from a power meter during a
snowstorm when connectivity is not available, and later synchro-
nize when connectivity is restored. Because of these requirements,
burden is placed on the programmer of these applications to ensure
that concurrent operations performed on replicated data have both
a deterministic and desirable outcome.

Recently, a formalism has been proposed by Shapiro et al. for
supporting deterministic resolution of individual objects that are
acted upon concurrently in a distributed system. These data types,
referred to as conflict-free replicated data types (CRDTs), provide
a property formalized as Strong Eventual Consistency: given all
updates to a given object are eventually delivered in a distributed
system, all copies of that object will converge to the same state.
[13]

While strong eventual consistency is a highly desirable prop-
erty for a distributed system because operations may arrive at a
given replica reordered or duplicated without negatively affecting
convergence, it has been demonstrated that the composition of ar-
bitrary CRDTs is non-trivial. [4, 6, 8, 10]

To achieve this goal, we propose a novel programming model
aimed at simplifying correct, large-scale, distributed programming,
called Lasp2. [1] This model provides the ability to use opera-
tions from functional programming to deterministically compose
CRDTs into larger computations that observe the strong eventual
consistency property. This model builds on our previous work, Der-
flow and DerflowL [5, 11], a system that provides a distributed,
fault-tolerant lattice variable store powering a deterministic con-
currency programming model.

We propose the following contributions:

• Monotonic read: We provide a read operation for CRDTs,
which ensures that once a given value is read, all future read
operations observe a value causally equivalent or later than the
previous read.

• Functional programming operations: We provide standard
functional programming operations lifted to operate over
CRDTs: map, filter, and fold.

2 Inspired by LISP’s etymology of “LISt Processing”, our fundamental data
structure is a join-semilattice, hence Lasp.



• Set-theoretic operations: We provide set-theoretic opera-
tions lifted to operate over CRDTs: product, union, and
intersection.

• Prototype implementation: We also provide a prototype im-
plementation of Lasp, implemented as an Erlang library using
the Riak Core [9] distributed systems framework.

2. Lasp
Lasp operations create processes that connect all replicas of two or
more CRDTs.

Each of these processes track the monotonic growth of the
internal CRDT state at each replica, and maintain a functional
semantics between the state of the input and output instances.
The process correctly transforms the internal metadata of the input
CRDT to compute the metadata of the output CRDT.3

For example, the Lasp map operation can be used to connect two
instances of the Observed-Remove Set CRDT. [13] The Observed-
Remove Set CRDT models arbitrary non-monotonic operations,
such as additions and removals of the same element, monotonically,
in order to guarantee convergence with concurrent operations at
different replicas.4

In this example, whenever an element e is added or removed
from the input set, the mapped version f(e) is correctly added
or removed from the output set. The other operations provided by
Lasp are analogous: the user visible behavior is the normal result
of the function or set-theoretic operation.

2.1 Semantics
In this report, we provide an example of the semantics of Lasp: the
semantics of the map operation over the Observed-Remove Set. We
focus on the Observed-Remove Set because it is the least-complex
CRDT which serves as a general building block for applications.5

Each CRDT in Lasp has the appearance of a single CRDT which
evolves monotonically over time as update operations are issued.
This single CRDT forms a stream of indefinite length, of which a
prefix of length n is known, with s′ representing future values of
the stream. Each value of s is the state of a state-based CRDT.

Definition 2.1 (Streams). A stream is a sequence of infinite length
of which only a finite prefix n is known at any given time, while s′

represents future values of the stream.

s = s0|s1|s2| . . . |sn−1|s′

Definition 2.2 (Observed-Remove Set). The Observed-Remove
Set state is a set of triples, where each triple has one value v, with
metadata consisting of add set a and remove set r.

si = {(v, a, r), (v′, a′, r′), . . .}
Additionally, we formalize the query function over the Observed-

Remove Set, which returns the user-visible value of the data struc-
ture, removing all metadata.

Definition 2.3 (Query Operation of an Observed-Remove Set).
Presence of a value v in a given Observed-Remove Set, si, is
determined by comparison of the remove set with the add set. If

3 The internal metadata of each CRDT is responsible for ensuring correct
convergence; this requires that this transformation be deterministic at each
replica.
4 It is paramount that the metadata transformation is performed correctly, or
replicas of the map operation will not converge correctly.
5 For instance, the Grow-Only Set does not allow removals, the Two-Phase
Set only allows one removal of a given item, and the Observed-Remove Set
without tombstones adds additional complexity in the form of optimiza-
tions, which lie outside of the core language semantics.

the remove set is a subset of the add set, the value is in the set.

{v | ∀(v, a, r) ∈ si, r ⊂ a}
Definition 2.4 (Map). The map procedure defines a process that
never terminates, which reads elements of the input stream s and
creates elements in the output stream t. For each element, the value
is separated from the metadata, the function f is applied to the
value, and the metadata is attached to the resulting value, f(v).

Algorithm 1 Map algorithm

procedure MAP(s, f, t)
for all si ∈ s do

e← {}
for all (v, a, r) ∈ si do

fv ← f(v)
if ∃a′, r′.(fv, a′, r′) ∈ e then

e← e \ {(fv, a′, r′)} ∪ {(fv, a ∪ a′, r ∪ r′}
else

e← e ∪ {(fv, a, r)}
end if

end for
ti ← e

end for
end procedure

Figure 1 provides an example of applying the map function to
an Observed-Remove Set. In this example, the user does not need
to program against the internal data structure of each CRDT, only
the non-monotonic external representation, as the Lasp runtime
handles the metadata mapping automatically.

1 %% Create initial set.
2 {ok, S1} = lasp:declare(riak_dt_orset),
3

4 %% Add elements to initial set and update.
5 {ok, _} = lasp:update(S1, {add_all, [1,2,3]}, a),
6

7 %% Create second set.
8 {ok, S2} = lasp:declare(riak_dt_orset),
9

10 %% Apply map operation between S1 and S2.
11 {ok, _} = lasp:map(S1, fun(X) -> X * 2 end, S2).

Figure 1: Map operation applied to an Observed-Remove Set. In
this example, the application developer does not have to program
using the internal structure of the CRDT, given the Lasp map
operation is lifted to operate over the internal state. We ignore the
return values of these functions, given the brevity of the example.

3. Advertisement Counter Example
One of the use cases for our language is supporting clients that need
to operate without connectivity. For example, imagine a provider of
mobile games that sells advertisement space within their games.

In this example, the correctness criteria is such:

• Clients will go offline: consider mobile devices such as cellular
phones that experience periods without connectivity. In the
event the client is offline, advertisements should still be able
to be displayed to the user.

• Advertisements need to be displayed a minimum number of
times, additional impressions, within a certain bound, is not
problematic.
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Figure 2: Eventually consistent advertisement counter. In this example, the dotted line represents the monotonic flow of information for one
counter.

Figure 2 visualizes an eventually consistent advertisement
counter written in Lasp. In this example, squares represent prim-
itive CRDTs, where circles represent CRDTs that are maintained
through composition using Lasp operations. Additionally, Lasp
operations are represented as diamonds, and edges represent the
monotonic flow of information in the Lasp application.

Our advertisement counter operates as follows:

• Advertisement counters are grouped by vendor.
• All advertisement groups area combined into one list of adver-

tisements using a union operation.
• Advertisements are joined with active “contracts” into a list

of displayable advertisements using both the product and
filter operations.

• Each client reads the list of active advertisements when display-
ing an advertisement.

• For each advertisement displayed, each client updates the asso-
ciated advertisement counter.

• As a counter hits five advertisement impressions, the advertise-
ment is “disabled” by removing it from the list of advertise-
ments.

The implementation of this advertisement counter is completely
monotonic and synchronization-free. Adding and removing ads,
adding and removing contracts, and disabling ads when their con-
tractual number of views is achieved are all modeled as the mono-
tonic growth of state in CRDTs connected by active processes.
Programmer-visible non-monotonicity is represented by monotonic
metadata in the CRDTs. The initial Lasp design, which supports
only programming with zero synchronization and optimistic repli-
cation, has sufficient functionality to model this application.

4. Conclusion and Future Work
We introduced the Lasp programming model and motivated its use
for large-scale computation over replicated data. Our future plans
for Lasp include identifying optimizations for more efficient state
propagation, exploring stronger consistency models, and optimiz-

ing distribution, and replica placement for better fault-tolerance and
reduced latency in computations. Our ultimate goal is for Lasp to
become a general purpose language for building large-scale dis-
tributed applications in which synchronization is used as little as
possible.

A. Code Availability
All of the code discussed will be available on GitHub under
the Apache 2.0 License at http://github.com/cmeiklejohn/
lasp.
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Abstract
A CRDT is a data type specially designed to allow instances
to be replicated and modified without coordination, while
providing an automatic mechanism to merge concurrent
updates that guarantees eventual consistency. In this paper
we present a brief study of computational CRDTs, a class
of CRDTs whose state is the result of a computation over
the executed updates. We propose three generic designs that
reduce the amount of information that each replica maintains
and propagates for synchronizations. For each of the designs,
we discuss the properties that the function being computed
needs to satisfy.

1. Introduction
Cloud infrastructures, composed of multiple data centers
spread across the globe, have become central for the deploy-
ment of novel Internet services, from social networks to busi-
ness applications. A large number of cloud databases have
been developed in recent years, providing different level of
consistency, from strong [5] to eventual consistency [2, 6, 7].

In this paper we focus on cloud databases that provide
eventual consistency only. When using an eventually con-
sistent database, applications can be made highly available
by replicating the application code and data in multiple data
centers and allowing a user to access any of these data centers.
Low latency is achieved by routing the client requests to the
closest data center and executing the request in the data center
without coordinating with other data centers.

In such settings, concurrent updates may be executed in
different replicas. Systems must provide a mechanism to han-
dle concurrent updates and enforce eventual convergence of
all replicas. CRDTs [10] have been proposed as a technique
for helping application programmers to deal with concurrent
updates. They provide eventual consistency with well defined
semantics and thus make these systems more amenable to
programmers. CRDTs have been adopted as a key feature

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PaPoC’15, April 21–24, 2015, Bordeaux, France.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3537-9/15/04. . . $15.00.
http://dx.doi.org/10.1145/2745947.2745948

in a leading cloud database, Riak, and are used in multi-
ple large-scale systems, such as SoundCloud and Twitter’s
Summingbird[3].

Most CRDTs proposed in literature are replicated forms
of collections. In such data types, a replica needs to maintain
all data elements in all replicas. Thus, a model where every
data replica maintains the same state and where all updates
are propagated to all replicas is natural.

In some cases, applications are not interested in actual
elements or updates, but instead on the result of a computation
over them. We call computational CRDTs to the class of
CRDTs whose state is the result of a computation over
the executed updates. For example, a counter CRDT [10]
counts the number of times an increment operation has
been executed. In such cases, each replica does not need to
maintain every individual update, but can instead maintain for
each replica an integer that counts the number of increments
executed at that replica. For synchronizing replicas, it also
suffices to propagate an integer that summarizes a set of
updates.

In the remaining of this paper we present a brief study
of the properties of computational CRDTs. In particular, we
propose three generic designs that minimize the data that
needs to be maintained in each replica and that needs to be
propagated for synchronizing replicas. We study the prop-
erties of functions suitable to each of the designs. Notably,
our last design departs from the strict model of state-based
CRDTs by the fact that the state of each replica does not need
to converge, although the result of all queries executed in
every replica is the same.

1.1 Related work
Aggregation techniques have been studied extensively in
different settings, such as as sensor networks [11]. Our work
can build on the proposed algorithms for creating replicated
data types that perform computations in a cloud database.

The techniques used to model CRDTs have been used
to express a distributed deterministic dataflow model for
concurrent communication between processes [8]. They have
also been used to provide algebraic structures for integration
between batch and stream processing of aggregations [3]
and to support incremental computations [9]. Unlike these
works, this paper studies CRDTs that can be integrated in
a cloud database as an elementary abstraction to perform
computations without requiring additional support from the
system.



The problem of optimizing information propagated for
synchronizing replicas has been studied by Almeida et. al
[1], who have proposed a principled approach to merge the
changes produced by multiple operations and use this infor-
mation to update a remote replica. In our work, the infor-
mation propagated to synchronize replicas also summarizes
multiple updates. However, all information is handled in the
context of the CRDT. Additionally, our last design departs
from the strict state-based CRDT model by allowing replicas
to maintain different state.

2. System model
We adopt the CRDT state-based model [10], where replicas
synchronize in a peer-to-peer way, by sending their state
to other replicas, where the received state is merged with
the current state. A CRDT has an interface that includes
update operations that modify the state of the object. In
our presentation, we define an event as an invocation of an
update operation. For simplicity, we consider a single read-
only operation that returns the state of the object. A CRDT
includes an additional operation, merge, to merge a copy of a
remote replica with the current replica state. In one design,
we extend this model to allow a replica to send only a subset
of its state to other replicas.

For fault-tolerance, we assume a crash-recovery model,
where a replica that fails recovers with its state intact. In a
typical cloud deployment, each data center can be seen as a
single replica, although internally an object is replicated in a
quorum of replicas.

3. Design 1: Incremental Computations
Our first design considers computations that can be done
incrementally. In this case, computing the function over two
disjoint sets of events and combining the results is equal
to computing the function over the union of the two sets.
Formally, a computation is incremental if there is a function
fun, such that:

Ffun(E1 ∪ E2, hbE1∪E2
) =

fun(Ffun(E1, hbE1),Ffun(E2, hbE2))

where E1 and E2 are disjoint sets of events (operation
invocations), hbE is a partial causality order on E1, and
Ffun is the function that defines the state of a CRDT that
computes fun over the observed events (following loosely
the formalization proposed by Burckhardt et. al.[4]).

For example, a counter with a single update operation for
increment, inc, can be defined as follows:

F+
ctr(E, hb) = | {e ∈ E : e = inc} |

F+
ctr(E1 ∪ E2, hb) = F+

ctr(E1, hb) + F+
ctr(E2, hb)

For these computations, Figure 1 presents a generic
CRDT design that is parameterized by the following ele-

1 For simplicity of presentation, we drop the subscripts of hb in the rest of
the paper.

ments: (i) V0, the initial state associated with a replica;
(ii) fun(o), the value of the computation for a single opera-
tion o; (iii) fun(s1, s2), the function to compose two partial
results; and (iv) funmax(v1, v2), that returns the latest of two
values.

In this design, each replica computes its contribution to
the final value of the CRDT independently. Each replica
maintains a map for the contributions of each replica. When
executing an update operation, a replica updates its contribu-
tion by using function fun to combine the previous computed
contribution and the contribution of the new operation (with
s[i 7→ fun

(
s[i], fun(op)

)
] representing the replacement in

s of the value of entry i by the new computed value). When
merging two replicas, for the partial result of each replica,
the most recently computed result must be kept, which is
returned by funmax. If the values are monotonic, it is imme-
diate to know what is the most recent version. Otherwise, it
might be necessary to maintain this information explicitly.
The value of a replica is computed by applying the function
fun to the contributions of all replicas.

As an example, a positive-negative counter, with an incre-
ment and a decrement operations can be defined by making:

V0 = (0, 0)
fun(inc) = (1, 0)
fun(dec) = (0, 1)

fun((p,m), (p′,m′)) = (p+ p′,m+m′)
funmax((p,m), (p′,m′)) = (max(p, p′),max(m,m′))

A CRDT that computes the average of values added to
an object, which could be used for example to present the
average rating in a web application, can be defined by making:

V0 = (0, 0)
fun(add(x)) = (x, 1)

fun((s, c), (s′, c′)) = (s+ s′, c+ c′)
funmax((s, c), (s′, c′)) = (s, c), iff c > c′

(s′, c′), iff c ≤ c′

The average is computed as s/c, with (s, c) the result of
the read defined in the generic CRDT design.

Other CRDTs can be defined using a similar approach,
including a CRDT that computes a histogram.

4. Design 2: Incremental Idempotent
Computations

In some cases, the computation to be performed besides being
incremental is also idempotent. In this case, computing the
function over two (potentially overlapping) sets of events
and combining the results is equal to computing the function
over the union of the two sets. Formally, a computation is
incremental and idempotent if there is a function fun, such
that for any sets of events E1 and E2 we have:

Ffun(E1 ∪ E2, hb) = fun(Ffun(E1, hb),Ffun(E2, hb))



Replica state Σ = I→ V
Initial state σ0

i = V0

Update op at replica i opi
(
s
)

= s[i 7→ fun
(
s[i], fun(op)

)
]

Read at replica i opi
(
s
)

= fun
(
s[i], ∀i

)

Merge replica states deliver
(
s, s′

)
= s[i 7→ funmax

(
s[i], s′[i]

)
],∀i

Figure 1: Generic CRDT for incremental computation.

Replica state Σ = V
Initial state σ0

i = V0

Update op at replica i opi
(
s
)

= fun
(
s, fun(op)

)

Read at replica i opi
(
s
)

= s
Merge replica states deliver

(
s, s′

)
= fun(s, s′)

Figure 2: Generic CRDT for incremental idempotent computation.

For these computations, Figure 2 presents a generic CRDT
design. In this case, it is possible to keep in each replica only
the computed result that is modified when executing update
and merge operations.

A computation that obeys these conditions is computing
the maximum of the values added to an object, which could be
used in a game application for keeping the highest score. This
data type could be implemented, keeping a name associated
with the highest score, with names totally ordered, by making:

V0 = (−,minimum value)
fun(add(n, v)) = (n, v)

fun((n, v), (n′, v′)) = (n, v), iff v>v′ ∨ (v=v′ ∧ n>n′)
(n′, v′), otherwise

A generalization of the maximum CRDT is a top-K CRDT
that keeps the K players with highest scores, which can be
used to maintain a leaderboard in a game application. This
CRDT can be implemented by making:

V0 = {}
fun(add(n, v)) = {(n, v)}

fun(s, s′) = maxk
(
{(n, v) ∈ (s ∪ s′) :

6 ∃(n, v1) ∈ (s ∪ s′) : v1 > v}
)

with maxk(s) a function that returns the k largest elements
(n, v) ∈ s, with the elements ordered using the total order
defined previously.

In general, this approach can be used to create CRDTs that
compute a filter over the values added to the object, for which
an element that does not match the filter at some moment will
not match the filter at a later moment.

5. Design 3: Partially Incremental
Computations

We now consider computations that are only partially incre-
mental, in the sense that some updates observe the incre-
mental property previously defined, while others do not. An
example of such an object is a top-K object where an element
can be deleted. In such cases, a value that does not belong to

the top-K elements may later become part of the top, after a
top element is deleted.

To address this case, a possible approach is to use a Set
CRDT to maintain the set of elements that have not been
deleted. In this case, all replicas maintain the complete set,
and all updates need to be propagated to all replicas. The
top-K can be computed locally on the value of each replica.

In Figure 3 we present an alternative approach, in which
each replica maintains all operations locally executed, and
each replica only propagates to other replicas the operations
that might affect the computed result. Each replica maintains
a set of operations and the results of the computation per-
formed at other sites — for simplicity of notation, we assume
that the result of the computation is a subset of operations.
An update operation updates the local set of operations. A
read operation makes the computation considering the local
operations and the results of the computation at the other
replicas. For synchronizing replicas, a replica sends the re-
sults of the computations to all replicas and the subset of
operations known locally that can affect the computed result
at other replicas (in the top-k example, a delete of an element
that belongs to the top elements). When receiving the state
from a remote replica, the local replica is updated by merging
the local set of operations with the remote operations that
may affect the result of the computation, and by registering
the most recent version of the computation for each site.

A top-k replicated data type that supports an add
(
n, v

)

and del
(
n
)

operations can be defined as follows:

V0 = {}
fun(s) = maxk

(
{o ∈ s : o = add(n, v)∧

(6 ∃o′ ∈ s : o ≺ o′ ∧ o′ = del(n))}
)

with maxk(s) a function that returns the k add
(
n, v

)
opera-

tions with largest values (n, v) for different values of n and
elements ordered using the total order defined previously.
funmax can be defined by assigning a monotonic integer to
the result computed in each replica, and using this integer to
decide which value is the most recent.



Replica state Σ =
(
P(op), I→ V

)

Initial state σ0
i =

(
{}, i→ V0

)

Update op at replica i opi
(
(s,m)

)
=

(
s ∪ {op},m

)

Read at replica i opi
(
(s,m)

)
= fun

(
s
⋃
∀j
m[j]

)

State to send from replica i diff
(
s,m

)
= ({o ∈ s : fun

(
o
⋃
∀j
m[j]

)
6= fun

(⋃
∀j
m[j]

)
},m[i→ fun(s

⋃
∀j
m[j])]

)

Merge replica states deliver
(
(s,m), (s′,m′)

)
=

(
s ∪ s′,m[j 7→ funmax(m[j],m′[j])]∀j

)

Figure 3: Generic replicated data type for partially incremental computation.

This design enforces eventual consistency, assuming that
replicas continue synchronizing until they reach an equiva-
lent state, i.e., a state where read operations return the same
result in every replica. However, this may not happen af-
ter the first synchronization step. For example, consider a
top-1 object replicated in two sites: Site 1 executed opera-
tions {add(b, 15), add(a, 10)} and site 2 executed operations
{add(b, 16), add(c, 12)}. The two sites synchronize, with the
top-1 element, (b, 16), being known at both replicas. After
this, del(b) executes at site 1, promoting (a, 10) to the top
at site 1. After the propagation of del(b) to site 2, (c, 12) is
promoted to the top at site 2. After the next synchronization
step, the top at site 1 (a, 10) is replaced by the same value as
in site 2 (c, 12).

6. Final remarks
In this paper we have proposed three generic designs for
replicated data types that perform a computation on the
operations executed by users. These designs can be used in
a system that maintains CRDT replicas at multiple sites and
synchronizes them using a state-based model. We present the
properties that computations must obey in order to use each
of the designs. These designs try to minimize the information
that each replica has to maintain and propagate to other
replicas for synchronization.

The last proposed design departs from the strict CRDT
state-based model, while still enforcing eventual consistency.
We are currently formalizing the new model and studying
the relations between replicated data types implemented
using this design and state-based CRDTs that implement
the same functionality. In the future, we intend to study how
to integrate these designs in an eventually consistent cloud
database, such as Riak.
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Abstract—Cloud storage systems showcase a range of consis-
tency models, from weak to strong consistency. Weakly consis-
tent systems enable better performance, but cannot maintain
strong application invariants, which strong consistency trivially
supports. This paper takes the position that it is possible to
both achieve fast operation and maintain application invariants.
To that end, we propose the novel abstraction of invariant-
preserving CRDTs, which are replicated objects that provide
invariant-safe automatic merging of concurrent updates. The
key technique behind the implementation of these CRDTs is to
move replica coordination outside the critical path of operations
execution, to enable low normal case latency while retaining
the coordination necessary to enforce invariants. In this paper
we present ongoing work, where we show different invariant-
preserving CRDTs designs and evaluate the latency of operations
using a counter that never goes negative.

I. INTRODUCTION

To improve the user experience in services that operate on
a global scale, from social networks and multi-player online
games to e-commerce applications, the infrastructure that
supports those services often resorts to geo-replication [9], [7],
[17], [18], [16], [26], [8], i.e., maintains copies of application
data and logic in multiple data centers scattered across the
globe, providing improved scalability and lower latency. But
not always the advantages of geo-replication are exploited by
worldwide services, because, when services need to maintain
invariants over the data, they have to synchronize with remote
data centers in order to execute some operations, which
negatively impacts operations’ latency. In a geo-replicated
scenario, latency may amount to hundreds of milliseconds.

The impact of high latency in the user’s experience is well
known [22], [11] and has motivated the academia [7], [1], [9]
and industry [13], [5], [25] to use weaker consistency models
with low-latency operations at the trade of data consistency.

When running applications under such weak consistency
models, applications in different data centers execute opera-
tions concurrently over the same set of data leading to tem-
porary divergence between replicas and potentially counter-
intuitive and undesirable user-perceived semantics.

This research is supported in part by European FP7 project 609 551

SyncFree (2013—2016) , Fundação para a Ciência e Tecnologia
SFRH/BD/87540/2012 and PEst-OE/EEI/UI0527/2014.

Good user-perceived semantics are trivially provided by
systems that use strong-consistency models, namely those that
serialize all updates, and therefore preclude that two operations
execute without seeing the effects of one another [8], [16]. Not
all operations require strong guarantees to execute, and some
systems provide both strong and weak consistency models for
different operations [26], [16].

In this paper, we claim that it is possible to achieve the best
of both worlds, i.e., that fast geo-replicated operations can
coexist with strong application invariants without impairing
the latency of operations. To this end, we propose novel
abstract data types called invariant-preserving CRDTs. These
are replicated objects that, like conventional CRDTs [23],
automatically merge concurrent updates, but, in addition, they
can maintain application invariants. Furthermore, we show
how these CRDTs can be efficiently implemented in a geo-
replicated setting by moving the replica coordination that is
needed for enforcing invariants outside the critical path of
operation execution.

In this paper, we discuss cloud consistency models (§II);
present the concept of InvCRDT (§III), abstract data types that
offer invariant-safe operations; discuss the implementation of
these ADTs (§IV); discuss invariants that span multiple objects
(§V-B ); Present the practical benefits of InvCRDTs (§VI) and,
finally, we briefly review related work (§VII) and present our
conclusions (§VIII).

II. DECOMPOSING CONSISTENCY REQUIREMENTS

Recent cloud systems [8], [12], [26], [16] have adopted
strong consistency models to avoid concurrency anomalies.
These models rely on a serializable (or even linearizable)
execution order for operations to provide the illusion that a
single replica exists. They do so at the expense of lower
availability on failures and increased latency for operations
- a direct consequence of the CAP theorem [6], which states
that there is a trade-off between availability and consistency
in systems prone to partitioning.

We argue that enforcing strong consistency is not mandatory
for fulfilling the requirements of most applications. We use the
example of an e-commerce site to motivate such statement, by
identifying three central requirements of this application.

First, users of the application must not observe a past
version of any given data item after observing a more recent



one – e.g., after adding some item to her shopping cart, the
user does not want to observe a shopping cart where the item
is not present. A way to achieve this without per-operation
replica synchronization is to support causal consistency, as
found in several cloud systems [17], [18].

Second, when concurrent updates exist, data replicas cannot
be allowed to diverge permanently. This requires some form
of automatic reconciliation that deals with concurrent updates
identically in all sites, leading to a consistency model that has
been recently coined as causal+ consistency [17] or fork-join-
causal consistency [19]. For example, after two users add two
different items to a shopping cart, both items should be in the
reconciled version of the shopping cart.

Finally, the e-commerce application has crucial integrity
constraints that must be preserved despite concurrent updates
– e.g., the stock of a product should be greater or equal to
zero, thus avoiding that the store sells more items than what
it has in stock.

In current systems, invariants as the stock example are usu-
ally preserved by running such application (or operations that
can break the invariant [26], [16]) under a strong consistency
model. Instead, we propose to run such applications under
a consistency model that provides the following properties:
causal consistency; automatic reconciliation; and invariant
preservation. We call this consistency model causal+invariants
consistency.

It seems straightforward that enforcing invariants usually
requires some form of coordination among nodes of the system
– e.g., to ensure that a product stock does not go negative, it
is necessary that replicas coordinate so that the number of
successful sales do not exceed the number of items in stock.
However, unlike the solution adopted by strong consistency,
in many situations this coordination can be executed outside
of the critical execution path of operations. In the previous
example, the rights to use the available stock can be split
among the replicas, allowing a purchase to proceed without
further coordination provided replica where the operation is
submitted has enough rights [20], [21].

III. THE CASE FOR INVARIANT-PRESERVING CRDTS

Conflict-free replicated data-types (CRDT [23]) are data
types that leverage the commutativity of operations to auto-
matically merge concurrent updates in a sensible way. Several
CRDT specifications have been proposed for some of the
most commonly used data types, such as lists, sets, maps and
counters, allowing rapid integration in existing applications.
CRDTs provide convergence by design and, when combined
with a replication protocol that delivers operations in causal
order, they trivially provide causal+ consistency [17], [26].

A. The concept of InvCRDTs

In this paper, we propose the concept of invariant-preserving
CRDT (InvCRDT), a conflict-free data type that maintains a
given invariant even in the presence of concurrent operations –
the BoundedCounter [under submission] implements a counter
that cannot be negative.

Some CRDTs already maintain invariants internally by re-
pairing the state – e.g., in the graph CRDT [23], when one user
adds an arc between two nodes and other user concurrently
removes one of the nodes, the graph CRDT does not show
the arc. However, unlike these solutions, InvCRDTs maintain
invariants by explicitly disallowing the execution of operations
that would lead to the violation of an invariant. By having
immediate feedback that an operation cannot be executed, an
application can give that feedback to the users – e.g., in an
e-commerce application, an order will fail if some product
has no stock available, since the operation of decrementing
the stock of the product, aborts when implemented with a
BoundedCounter.

For achieving this functionality, a replica of an InvCRDT
includes both the state of the object and information about
the rights the replica holds. These rights allow the execution
of operations that potentially break invariants without coor-
dination while guaranteeing that the invariants will not be
broken. The union of the rights granted to each of the existing
replicas guarantees that the invariants defined will be preserved
despite any concurrent operation. The set of initial rights will
depend on the initial value of the object. For example, in a
BoundedCounter with initial value 10 and two replicas, each
replica has the rights to increment the counter at any moment
and the rights to execute five decrement operations.

The rights each replica holds are consumed or extended
when an operation is submitted locally – e.g., in the previous
example, a decrement will consume the rights to decrement
by one, and an increment will increase the local rights to
decrement by one. If enough rights exist locally, it is assured
that the execution of the operation in other replicas will
not break the defined invariant. If not enough rights exist
locally, the execution of the method aborts (in our Java-based
implementation, by throwing an exception) and it has no side-
effects in any replica. Optionally, when not enough rights
exist locally, the system may try to obtain additional rights by
transferring them from some other replica(s). In this case, the
method execution blocks until the necessary communication
with other replicas is done. In this case, the overhead of
operation execution will tend to be similar to the overhead
of providing strong consistency.

This model for InvCRDTs is general enough to allow
different implementations, as discussed in the next section.
An important property on InvCRDTs that must be highlighted
is that InvCRDTs do not eliminate the need of coordination
among replicas: they only allow the coordination to be exe-
cuted outside the critical path of execution of an application
request, through the exchange of rights. Next we discuss
the common invariants in applications and how they can be
addressed using InvCRDTs.

B. Using InvCRDTs in applications

There are many examples in the literature of applications
with integrity constraints that are good candidates for using
InvCRDTs.

Li et. al. [16] report that two invariants must be considered



in TPC-W. First, the stock of a product must be non-negative.
This can be addressed by the BoundedCounter previously
mentioned. Second, the system must guarantee that unique
identifiers are generated in a number of situations where
new data items are created. To address this requirement, the
space of possible identifiers could be partitioned among the
replicas (for example, using the replica identifier as a suffix).
InvCRDT versions of containers (e.g., set, maps) can be
created, where each replica maintains rights for assigning new
unique identifiers to elements added to the object. The authors
also report that similar invariants must be preserved for Rubis.

Cooper et. al. [7] discuss several applications, among them,
one that maintains an hierarchical namespace. Although they
do not explicitly discuss invariants, it is clear to see that
there are two important invariants that should be preserved:
no two objects have the same name; and no cycles exist in
the presence of renames. For the first invariant, we use rights
that preclude two replicas from generating identical names –
a replica must acquire rights to generate identifiers with some
prefix). Maintaining the second invariant is more complex and
requires obtaining the exclusive right to modify the path of
directories from the first common ancestor of the original and
destination names for supporting renames (section V-A). This
can be implemented by extending our graph CRDT [23] with
these rights.

Other applications have invariants on the cardinality of
containers (e.g., a meeting must have at least K members), on
the properties of elements present in containers (e.g., at least
one element of each gender), etc. These invariants can also be
preserved by having InvCRDT versions of those containers.

More recently, Bailis et al.[2] have studied OLTP systems
and summarized typical invariants that show up in applica-
tions. Some of them are instantiations of the ones described
above, while other require more elaborate mechanisms as
discussed in section IV.

IV. SUPPORTING INVCRDTS

We assume a typical cloud computing environment com-
posed by clients and data centers. Data centers run application
servers for handling client requests and a replicated storage
system to persist application data. The effects of client requests
are persisted by modifying the data stored in the system,
represented as InvCRDTs. Finally, a replication protocol that
delivers operations in causal order is used to achieve our
proposed causal+invariants consistency model.

One possible design would consist of managing the rights
associated with InvCRDTs through a centralized server. In this
case, each replica would obtain these rights by contacting such
central entity (as in [20], [21]). We propose an alternative
approach, where the rights associated with an InvCRDT are
maintained in a decentralized way, completely inside the
InvCRDT.

Our generic solution consists in modelling application data
as resources and by keeping the rights of each replica as a vec-
tor of (replicaId ⇒ value) entries for each resource type in all
InvCRDT replicas. Each operation is modelled as consuming

or creating resources. For example, in the BoundedCounter,
a single resource type exists, and a resource corresponds to
one unit in the counter; an increment creates one resource; a
decrement consumes one resource. In an InvCRDT that needs
to generate unique identifiers, the reserved resources are a
subset of the identifiers (e.g., a chunk of consecutive identifiers
or a subset of identifiers ended in the reserved suffix).

Operations that modify the rights vector – consume (sub-
tract), extend (add), transfer (atomically subtract from one
entry and add to another) – are commutative. Thus, they can
be supported in a convergent data-type style, where operations
only need to execute in causal order in the different replicas 1.
Consume and extend operations affect the rights of the replica
where the operations are initiated. The transfer operation must
be initiated in the replica from which the rights are to be
transferred from.

This execution model guarantees that in any given replica
i, the rights that are known to exist for replica i are a
conservative view when considering all operations that can
have been executed. The reason for this is that all operations
that decrement the rights of a given replica, consume and
transfer, are submitted locally, while a remote transfer that
is not yet known may increase the local rights. This property
guarantees the correctness of our approach.

V. DISCUSSION

A. InvCRDT data-types

In section III-A we briefly presented the design of the
BoundedCounter CRDT. We are studying other data-types that
can share the same philosophy of maintaining the state of
the object as well as the rights to execute operations. The
BoundedCounter is a fairly simple example to understand,
however the same idea can be applied to other data-types.

We give the intuition for a few other data-types and what
invariants they can preserve:

Tree Each node in a tree has a unique parent node. This
invariant can be broken by concurrently moving a node and
putting it under two different nodes. A possible solution to
prevent the violation of this invariant consists in associating
to each node a right to modify its subtree. When a replica
acquires rights over a node it automatically acquires the rights
to modify any descendent of that node. The replica that holds
rights over a portion of the tree may give permission to another
replica to modify some subtree, losing the permission itself to
modify any node under that subtree. This strategy enforces a
replica executing a rename operation to hold rights over the
origin and destination names, which prevents any concurrent
operation from creating a cycle.

Graph To implement a graph that is always consistent, i.e.,
an edge always connect to an existing node, without using the
automatic convergence mechanism of the graph CRDT, we
associate rights to each node, which have to be acquired in
order to remove it, or connect an edge. When a new node is

1As with CRDTs, it is possible to design an equivalent solution based on
state propagation.



created it has rights associated to the replica that created the
node. Preventing cycles in a graph is more complex than in
trees and we have not addressed that so far.

Map Two concurrent puts in a map may end up associating
different element to the same key. To prevent this situation,
we can associate rights to ranges of keys which have to be
acquired in order to execute a put operation. This guarantees
that two different replicas cannot execute a conflicting put
operation. The strategy of key domain partitioning can be used
to provide unique identifiers.

We aim to provide a library of InvCRDTs that support most
of the invariants that are common in applications, however
we are still investigating an easy way to provide them to
programmers.

B. Multi-object invariants

InvCRDTs enforce invariants in a single object. However,
application invariants can often span multiple objects – e.g.,
a user can only checkout a shopping cart if all items are in
stock.

Supporting these invariants requires enforcing some type
of operation grouping. Recently, weakly consistent storage
systems have provided support for some form of transactions
[18], [26]. We could build on this type of support to maintain
invariants over multiple objects – e.g., in the previous example,
a transaction would succeed only if the data center where it
was submitted holds rights to consume all the necessary stock
units of each item.

Some other invariants establish relations that must be main-
tained among multiple objects – e.g., in a courseware appli-
cation, a student can only be part of a course student group
if he or she is enrolled in the course. This invariant can be
maintained either by repairing (e.g., if the students enrolment
in the course is cancelled, the membership in the course
student group is also cancelled) or avoiding the invariant
violation. It seems clear that these types of invariants can
be preserved by restricting concurrent operations in multiple
objects (e.g., avoiding the concurrent creation of a group
and removal of a student involved). However, we are still
studying the best approach to represent them as InvCRDTs.
Additionally, it is also not obvious what is the best way to
define invariant repairing solutions in these cases. Addressing
these issues is also left as future work.

VI. PRELIMINARY EVALUATION

We conducted some preliminary experiments to evaluate the
latency of InvCRDT operations. We made an Erlang prototype
that extends Riak [5] with support for InvCRDTs. Basically the
prototype is a middleware component that is stacked between
the application server and the storage system. The middle-
ware’s main function is to exchange rights between replicas,
so that when operation are executed rights are available locally
and the operation succeed without contacting any remote data
center.

We implemented a micro-benchmark that simulates the
manipulation of items’ stock on purchases in an e-commerce

application: Decrement operations are submitted to a counter
in multiple data centers and the value of the counter cannot
go negative, regardless the operations propagation frequency
between data centers.

We implemented the BoundedCounter and the policies to
exchange rights between replicas. These exchange of rights
occur in the background and try to prevent rights from being
exhausted locally. When a replica runs out of rights and
executes a decrement, it tries to fetch the rights from a remote
data center, which potentially has high latency.

We compare the solution using InvCRDT (BCounter)
against an weak consistency (WeakC) solution that uses a con-
vergent counter and a solution that provides strong consistency
(StrongC) by executing all operations on the same data center.
Riak natively support these features: the convergent counter
is an implementation of the PN-Counter CRDT [23] and the
strong consistency solution uses a consensus algorithm based
on the Paxos algorithm [14].

We did not implemented true causality in our prototype,
instead the middleware provides key-linearizability, which
is sufficient because in the experiments all operations are
executed in a single-object. Key-linearizibility is necessary to
avoid concurrent requests to use the same rights within the
same data center.

A. Experimental Setup

Our experiments comprised 3 Amazon EC2 data centers
distributed across the globe. We installed a Riak data store
in each EC2 availability zone (US-East, US-West, EU). Each
Riak cluster is composed by three m1.large machines, with
2 vCPUs, producing 4 ECU2 units of computational power,
and with 7.5GB of memory available. We use Riak 2.0.0pre5
version.

a) Operations latency: Figure 1 details these results by
showing the CDF of latency for operation execution. As
expected, the results show that for StrongC, remote clients
experience high latency for operation execution. This latency
is close to the RTT latency between the client and the DC
holding the data. For StrongC, each step in the line consists
mostly of operations issued in different DCs.

Both BCounter and WeakC experience very low latency. In
a counter-intuitive way, the latency of BCounter is sometimes
even better than the latency of WeakC. This happens because
our middleware caches the counters, requiring only one access
to Riak for processing an update operation when compared
with two accesses in WeakC (one for reading the value of the
counter and another for updating the value if it is positive).

Figure 2 furthers details the behaviour of our middleware,
by presenting the latency of operations over time. The results
show that most operations take low latency, with a few peak
of high latency when a replica runs out of rights and needs to
ask for additional rights from other data centers. The number
of peaks is small because most of the time the pro-active

21 ECU corresponds is a relative metric used to compare instance types in
the AWS platform
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mechanism for exchanging rights is able to provision a replica
with enough rights before all rights are used.

VII. RELATED WORK

A large number of cloud storage systems supporting geo-
replication have been developed in recent years. Some of these
systems [9], [17], [18], [1], [13] provide variants of eventual
consistency, where operations return immediately after being
executed in a single data center. This approach has the lowest
latency possible for end-users, but since the guarantees they
provide are so weak, a handful of other systems try to provide
better semantics for the user and still avoid cross data center
coordination, such as those that provide causal consistency
[17], [1], [10], [3]. We target to provide similar ordering
guarantees of messages but improve over these systems by
maintaining applications invariants that require some form of
coordination.

Systems that provide strong consistency[8] incur in coor-
dination overhead that increases latency of operations. Some
systems tried to combine the benefits of weak and strong
consistency models by supporting both models. In Walter [26]
and Gemini [16], transactions that can execute under weak
consistency run fast, without needing to coordinate with other
data centers.

More recently, Sieve [15] automates the decision between
executing some operation in weak or strong consistency. Bailis
et al. [2] have also studied when it is possible to avoid co-
ordination in database systems, while maintaining application
invariants. Our work is complimentary, by providing solutions
that can be used when coordination cannot be avoided.

Escrow transactions [20] have been proposed as a mech-
anism for enforcing numeric invariants while allowing con-
current execution of transactions. The key idea is to enforce
local invariants in each transaction that guarantee that the
global invariant is not broken. The original escrow model is
agnostic to the underlying storage system and in practice was
mainly used to support disconnected operations [24], [21] in
mobile computing environments, using a centralized solution
to handle reservations.

The demarcation protocol [4] is an alternative that has been
proposed to maintain invariants in distributed databases and
recently applied to optimize strong-consistency protocols [12].
Although the underlying protocol are similar to escrow-based
solutions, the demarcation protocol focus on maintaining in-
variants across different objects.

We aim to combine these different mechanism to provide
an unified framework that programmers can use to improve
the consistency of applications given the same assumptions as
in weak consistency systems.

VIII. CONCLUSION

This paper presents a weak consistency model, extended
with invariant preservation for supporting geo-replicated ser-
vices. For supporting the causal+invariants consistency model,
we propose a novel abstraction called invariant-preserving
CRDTs, which are replicated objects that provide both sensible
merge of concurrent updates and invariant preservation in
the presence of concurrent updates. We outline the design of
InvCRDTs that can be deployed on top of systems providing
causal+ consistency only. Our approach provides low latency
for most operations by moving the necessary coordination
among nodes outside of the critical path of operation exe-
cution.

The next steps in our work are to build a library of CRDTs
that programmers can use to maintain application invariants as
well as providing a programming model that ease the use of
these data-types in applications. One possibility would be to
categorize invariants and have specific data-types to preserve
each of them with low-latency. We are also still studying how
to maintain invariants that span multiple objects and what
guarantees does the replication model must provide in order
to maintain them.

The preliminary evaluation showed that it is possible to



maintain invariants under weak consistency by relying on
a proactive rights exchange mechanism to transfer rights
between replicas.
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Abstract
Large-scale distributed systems often rely on replicated databases
that allow a programmer to request different data consistency guar-
antees for different operations, and thereby control their perfor-
mance. Using such databases is far from trivial: requesting stronger
consistency in too many places may hurt performance, and request-
ing it in too few places may violate correctness. To help program-
mers in this task, we propose the first proof rule for establishing
that a particular choice of consistency guarantees for various oper-
ations on a replicated database is enough to ensure the preservation
of a given data integrity invariant. Our rule is modular: it allows
reasoning about the behaviour of every operation separately under
some assumption on the behaviour of other operations. This leads
to simple reasoning, which we have automated in an SMT-based
tool. We present a nontrivial proof of soundness of our rule and
illustrate its use on several examples.

1. Introduction
To achieve availability and scalability, many modern distributed
systems rely on replicated databases, which maintain multiple
replicas of shared data. Clients can access the data at any of the
replicas, and these replicas communicate changes to each other
using message passing. For example, large-scale Internet services
use data replicas in geographically distinct locations, and applica-
tions for mobile devices keep replicas locally to support offline use.
Ideally, we would like replicated databases to provide strong con-
sistency, i.e., to behave as if a single centralised replica handles
all operations. However, achieving this ideal usually requires syn-
chronisation among replicas, which slows down the database and
even makes it unavailable if network connections between replicas
fail [3, 24].

For this reason, modern replicated databases often eschew syn-
chronisation completely; such databases are commonly dubbed
eventually consistent [44]. In these databases, a replica performs
an operation requested by a client locally without any synchronisa-
tion with other replicas and immediately returns to the client; the
effect of the operation is propagated to the other replicas only even-
tually. This may lead to anomalies—behaviours deviating from
strong consistency. One of them is illustrated in Figure 1(a). Here
Alice makes a post while connected to a replica r1, and Bob, also
connected to r1, sees the post and comments on it. After each of the
two operations, r1 sends a message to the other replicas in the sys-
tem with the update performed by the user. If the messages with the
updates by Alice and Bob arrive to another replica r2 out of order,
then Carol, connected to r2, may end up seeing Bob’s comment,
but not Alice’s post it pertains to. The consistency model of a repli-
cated database restricts the anomalies that it exhibits. For example,
the model of causal consistency [31], which we consider in this pa-
per, disallows the anomaly in Figure 1(a), yet can be implemented
without any synchronisation. The model ensures that all replicas in
the system see causally dependent events, such as the posts by Al-
ice and Bob, in the order in which they happened. However, causal
consistency allows different replicas to see causally independent

events as occurring in different orders. This is illustrated in Fig-
ure 1(b), where Alice and Bob concurrently make posts at r1 and
r2. Carol, connected to r3 initially sees Alice’s post, but not Bob’s,
and Dave, connected to r4, sees Bob’s post, but not Alice’s. This
outcome cannot be obtained by executing the operations in any to-
tal order and, hence, deviates from strong consistency.

Such anomalies related to the ordering of actions are often ac-
ceptable for applications. What is not acceptable is to violate cru-
cial well-formedness properties of application data, called integrity
invariants. Consistency models that do not require any synchroni-
sation are often too weak to ensure these. For example, consider a
toy banking application where the database stores the balance of a
single account that clients can make deposits to and withdrawals
from. In this case, an integrity invariant may require the account
balance to be always non-negative. Consider the database compu-
tation in Figure 1(c), allowed by causal consistency. Initially all
replicas store the same balance of 100. Alice and Bob, connected
to r1 and r2, both withdraw 100, thinking that there are sufficient
funds available. Once the two replicas exchange the updates, the
balance becomes �100, violating the integrity invariant. To ensure
the integrity invariant in this example, we have to introduce syn-
chronisation between replicas, and, since synchronisation is expen-
sive, we would like to introduce it sparingly. To allow this, some
research [10, 30, 40, 41] and commercial [7, 11, 33] databases now
provide hybrid consistency models that allow the programmer to
request stronger consistency for certain operations and thereby in-
troduce synchronisation. For example, a consistency model may
execute some operations under causal consistency, and some under
strong consistency [30]. To preserve the integrity invariant in our
banking application when using this model, only withdrawal op-
erations need to use strong consistency, and hence, synchronise to
ensure that the account is not overdrawn; deposit operations may
use causal consistency and hence proceed without synchronisation.
Requesting stronger consistency in hybrid models is similar to the
use of fences in weak memory models of shared-memory multipro-
cessors and programming languages [12] (see §7 for a comparison).

Even though hybrid consistency models allow the programmer
to fine-tune consistency level, using these models effectively is far
from trivial. Requesting stronger consistency in too many places
may hurt performance and availability, and requesting it in too few
places may violate correctness. Striking the right balance requires
the programmer to reason about the application behaviour on the
subtle semantics of the consistency model, understanding which
anomalies are disallowed by a particular consistency strengthen-
ing and whether disallowing these anomalies is enough to ensure
correctness. This difficulty is compounded by the perennial chal-
lenge of reasoning about concurrency, present even with strong
consistency—having to consider the huge number of possible in-
teractions between concurrently executing operations.

To help programmers exploit hybrid consistency models, we
propose the first proof rule and tool for proving integrity invariants
of applications using replicated databases with a range of hybrid
models. In more detail, our first contribution is a generic hybrid
consistency model (§2) that is flexible enough to encode a variety
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Figure 1. Illustrations of replicated database computations.
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Figure 2. Examples illustrating Definition 1. We omit return values when they are ? and token sets when they are empty.

of consistency models for replicated databases proposed in the lit-
erature [10, 30, 31, 40]. It guarantees causal consistency by default
and allows the programmer to additionally specify which pairs of
operations may not execute without synchronisation by means of a
special conflict relation. For example, to ensure the non-negativity
of balances in the banking application, the conflict relation may re-
quire any pair of withdrawals to synchronise, so that one of them
was aware of the effect of the other. This is equivalent to execut-
ing withdrawals under strong consistency. In general, different in-
stances of the conflict relation correspond to different interfaces
for strengthening consistency proposed in the literature. Our proof
rule is developed for the generic consistency model and, hence,
applies to existing models that can be represented as its instanti-
ations. We specify our consistency model formally (§3) using the
approach previously proposed for specifying variants of eventual
consistency [16]. In this approach, a database computation is de-
noted by a partial order on client operations, representing causality,
and the conflict relation imposes additional constraints on this or-
der.

Our next, and key, technical contribution is a proof rule for
showing that a set of operations preserves a given integrity invari-
ant when executed on our consistency model with a given choice of
conflict relation (§4). For example, we can prove that withdrawals
and deposits preserve the non-negativity of balances when executed
with the conflict relation described above. To avoid explicit reason-
ing about all possible interactions between operations, our proof
rule is modular: it allows us to reason about the behaviour of every
operation separately under some assumption on the behaviour of
other operations, which takes into account the conflict relation. In
this way, our proof rule allows the programmer to reason precisely
about how strengthening or weakening consistency of certain oper-
ations affects correctness.

The modular nature of our proof rule allows it to reason in
terms of states of a single database copy, just like in proof rules for
strongly consistent shared-memory concurrency. We have proved
that this simple reasoning is sound, despite the weakness of the
consistency model (§5). As part of this proof we have identified
a more general event-based rule that reasons directly in terms
of partial orders on events representing database computations,
instead of database states that these events lead to. The soundness
of the original state-based rule is proved by compiling it into the
event-based one. In this way, the event-based rule explicates the
reasons for the soundness of the state-based rule.

We have also developed a tool that automates our proof rule
by reducing checking its obligations to SMT queries (§6). Using
the tool, we have verified several example applications that require
strengthening consistency in nontrivial ways. These include an ex-
tension of the above banking application, an online auction ser-
vice and a course registration system. In particular, we were able to
handle applications using replicated data types (aka CRDTs [38]),
which encapsulate policies for automatically merging the effects of
operations performed without synchronisation at different replicas.
The fact that we can reduce checking the correctness properties of
complex computations in our examples to querying off-the-shelf
SMT tools demonstrates the simplicity of reasoning required by
our approach.

2. Consistency Model, Informally
We start by presenting our generic consistency model. Even though
this model is not implemented in its full generality by an existing
database, it can encode a variety of models that have in fact been
implemented. In this section we present the programming interface
of our consistency model and describe its semantics informally,
from an operational perspective. We give a formal semantics in §3.

2.1 Causal Consistency and Its Implementation
Our hybrid model guarantees at least causal consistency [31], al-
ready mentioned in §1. We therefore start by presenting informally
how a typical implementation of a causally consistent database op-
erates. Let State be the set of possible states of the data managed
by the database system. We denote states by � and let �init be a
distinguished initial state. Applications define a set of operations
Op = {o, . . .} on the data and interact with the database by issu-
ing these operations. For simplicity, we assume that an operation
always terminates and returns a single value from a set Val. We use
a value ? 2 Val to model operations that return no value. We do
not consider operation parameters, since these can be part of the
operation name.

The database implementation consists of a set of replicas, each
maintaining a complete copy of the database state; we identify the
replicas by r1, r2, . . . For the purposes of the informal explanation,
we assume that replicas never fail. A client operation is initially ex-
ecuted at a single replica, which we refer to as its origin replica. At
this replica, the execution of the operation is not interleaved with
that of others. This execution updates the replica state determinis-
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Figure 3. (a) An illustration of a database computation; (b) the
corresponding execution of Definition 1. We assume �init = 100.

tically, and immediately returns a value to the client. After this, the
replica sends a message to all other replicas containing the effect
of the operation, which describes the updates done by the opera-
tion to the database state. The replicas are guaranteed to receive the
message at most once. Upon receipt, the replicas apply the effect to
their state.

In this paper, we abstract from a particular language in which
operations may be written and assume that their semantics is given
by a function

F 2 Op! (State! (Val⇥ (State! State))). (1)

To aid readability, for o 2 Op we write Fo instead of F(o) and let

8o,�. Fo(�) = (F val
o (�), F e↵

o (�)).

Given a state � of o’s origin replica, F val
o (�) 2 Val determines the

return value of the operation and F e↵
o (�) 2 State ! State its

effect. The latter is a function, to be applied by every replica to its
state to incorporate the operation’s effect: immediately at the origin
replica, and after receiving the corresponding message at all other
replicas.

For example, states in the toy banking application of §1 are
integers, representing the account balance: State = Z. We define
the semantics of operations for depositing an amount a > 0,
accruing a 5% interest and querying the balance:

Fdeposit(a)(�) = (?, (��0.�0 + a));

Finterest(�) = (?, (��0.�0 + 0.05 ⇤ �));

Fquery(�) = (�, skip),

(2)

where skip = (��0.�0). Figure 3(a) illustrates a database compu-
tation involving these operations. Note that interest first computes
the interest 0.05 ⇤� based on the balance � at the origin replica; its
effect then adds the resulting amount to the balance at each replica.
In particular, in Figure 3(a) interest at r2 does not take into account
the deposit made at r1. This behaviour is the price to pay for avoid-
ing synchronisation between replicas. The good news is that, once
the replicas r1 and r2 exchange the effects of deposit and interest,
they converge to the same balance, which is returned by the query
operations.

Such convergence is not guaranteed for arbitrary operations. For
example, we could implement interest so that its effect multiplied
the balance by 1.05 at each replica where it is applied:

F e↵
interest(�) = (��0. (1.05 ⇤ �0)). (3)

In the scenario in Figure 3(a), this would lead the query operations
to return different values, 126 at r1 and 125 at r2. In this case,
even after all messages are delivered, replicas end up in different
states. This is undesirable for database users: we would like the
implementation to be convergent, i.e., such that two replicas that
see the same set of operations are in the same state. In particular,
if users stop performing updates to the database, then once all
outstanding messages are delivered, all replicas should reach the
same state [44]. To ensure convergence, for now we require that the

effects of all operations commute (we relax this condition slightly
in §2.2):

8o1, o2,�1,�2. F e↵
o1

(�1) � F e↵
o2

(�2) = F e↵
o2

(�2) � F e↵
o1

(�1). (4)

For example, this condition holds of the effects defined by (2). The
requirement of commutativity is not very taxing: as we elaborate
in §6, to satisfy (4), programmers can exploit ready-made repli-
cated data types (aka CRDTs [38]). These encapsulate commuta-
tive implementations of policies for merging concurrent updates to
the database.

As we explained in §1, asynchronous operation processing may
lead to anomalies, and causal consistency disallows some of them.
It ensures that message propagation between replicas is causal: if a
replica sends a message containing the effect of an operation o2

after it sends or receives a message containing the effect of an
operation o1, then no replica will receive the message about o2

before the it receives the one about o1. In this case we say that the
invocation of o2 causally depends on that of o1. Causal propagation
disallows the computation in Figure 1(a), but allows the one in
Figure 1(b).

2.2 Strengthening Consistency
The guarantees provided by causal consistency are too weak to
ensure certain integrity invariants. For example, in our banking
application we would like the state at each replica to satisfy the
invariant

I = {� | � � 0}. (5)
To ensure this, an operation for withdrawing an amount a > 0
could check whether the account has sufficient funds and return X
or 7 depending on the result:

Fwithdraw(a)(�) = if � � a then (X, (��0.�0 � a)) else (7, skip).

This is enough to maintain the invariant when all operations are
processed at the same replica, but not when they are processed
asynchronously at different replicas. This is illustrated by the com-
putation in Figure 1(c), already explained in §1.

The problem in this example arises because two particular op-
erations update the database concurrently, without being aware of
each other. To address this, our consistency model allows the pro-
grammer to strengthen causal consistency by specifying explic-
itly which operations may not be executed in this way. Namely,
the model is parameterised by a token system T = (Token, ./),
consisting of a set of tokens Token and a symmetric conflict re-
lation ./ ✓ Token ⇥ Token. Tokens are ranged over by ⌧ and
their sets, by T . For sets T1 and T2 of tokens we let T1 ./ T2

if there exists a pair of conflicting tokens coming from these sets:
9⌧1 2 T1. 9⌧2 2 T2. ⌧1 ./ ⌧2.

Each operation may acquire a set of tokens. To account for this,
we redefine the type of F in (1) as

F 2 Op! (State! (Val⇥ (State! State)⇥ P(Token)))
(6)

and let

8o,�. Fo(�) = (F val
o (�), F e↵

o (�), F tok
o (�)).

Thus, F tok
o (�) 2 P(Token) gives the set of tokens acquired by

the operation o when executed in the state �. Informally, our con-
sistency model guarantees that operations that acquire tokens con-
flicting according to ./ have to be causally dependent one way or
another: the origin replica of one operation must have incorpo-
rated the effect of the other by the time the former operation ex-
ecutes. Ensuring this in implementations requires replicas to syn-
chronise [10, 30].

In our consistency model, we can guarantee the preservation of
invariant (5) in the banking application by defining operation se-
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Token = {⌧}
./ = {(⌧, ⌧)}

Fdeposit(a)(�) = (?, (��0.�0 + a), ;)
Finterest(�) = (?, (��0.�0 + 0.05 ⇤ �), ;)
Fquery(�) = (�, skip, ;)

Fwithdraw(a)(�) = if � � a then (X, (��0.�0 � a), {⌧})

else (7, skip, {⌧})

Figure 4. Operation semantics for the banking application. Note
that a > 0.

mantics as in Figure 4. Thus, withdraw acquires a token ⌧ con-
flicting with itself, and all other operations do not acquire any to-
kens. Then the scenario in Figure 1(c) cannot happen: one with-
drawal would have to be aware of the other and would therefore
fail. However, deposits and interest accruals can be causally inde-
pendent with all operations, and replicas can therefore execute them
without any synchronisation [10, 30]. In this example, the token ⌧
is analogous to a mutual exclusion lock in shared-memory concur-
rency. Our proof method (§4) establishes that this use of the token
is indeed sufficient to preserve the integrity invariant (5).

Since operations acquiring conflicting tokens have to be
causally dependent, causal message propagation (§2.1) ensures that
all replicas see such operations in the same order. This allows us to
weaken (4) to require commutativity only for operations that do not
acquire conflicting tokens:

8o1, o2,�1,�2. (F tok
o1

(�1) ./ F tok
o2

(�2)) _
(F e↵

o1
(�1) � F e↵

o2
(�2) = F e↵

o2
(�2) � F e↵

o1
(�1)). (7)

As we show in §3, this is sufficient to ensure the property of con-
vergence that we introduced in §2.1. For example, the operations
in Figure 4 satisfy (7). Furthermore, if all operations except query
acquired the token ⌧ , then we would be able to implement interest
by the effect given by (3) without compromising convergence.

3. Formal Semantics
We now formally define the semantics of our consistency model,
i.e., the set of all client-database interactions it allows. To keep
the presentation as simple as possible, we define the semantics
declaratively: our formalism does not refer to implementation-level
concepts, such as replicas or messages, even though we do use
these concepts in informal explanations. We build on an approach
previously used to specify forms of eventual consistency [16].
Namely, our denotations of database computations consist of a
set of events, representing operation invocations by clients, and a
relation on events, describing abstractly how the database processes
the corresponding operations.

Assume a countably infinite set Event of events, ranged over
by e, f, g. A relation is a strict partial order if it is transitive and
irreflexive. For a relation R we write (e, f) 2 R and e

R�! f
interchangeably.

DEFINITION 1. Given a token system T = (Token, ./), an execu-
tion is a tuple X = (E, oper, rval, tok, hb), where:

• E is a finite subset of Event;
• oper : E ! Op gives the operation whose invocation a given

event denotes;
• rval : E ! Val gives the return value of the operation;
• tok : E ! P(Token) gives the set of tokens acquired by the

operation;

• hb ✓ E ⇥ E, called happens-before, is a strict partial order
such that

8e, f 2 E. tok(e) ./ tok(f) =) (e
hb�! f _ f

hb�! e). (8)

Operationally, each event represents an invocation of an opera-
tion at its origin replica. The applications of the operation’s effect at
other replicas are not recorded in an execution explicitly. Instead,
the happens-before relation records causal dependencies between
operations arising from such applications: e

hb�! f means that ei-
ther the operations denoted by e and f were executed at the same
replica in this order, or they were executed at different replicas and
the message containing the effect of e had been delivered to the
replica performing f before f was executed. Hence, if we have
e

hb�! f , then the effect of e is incorporated into the state to which
f is applied and may influence its return value. We give examples of
executions in Figures 2 and 3(b). The ones in Figures 2(b) and 3(b)
model the computations of the database informally illustrated in
Figures 1(b) and 3(a), respectively.

The transitivity of hb in Definition 1 reflects the guarantee
of causal message propagation in implementations explained in
§2.1 [16]. For example, in the execution of Figure 2(a), the tran-
sitivity of hb mandates the edge between the addition of a post
and the query (cf. Figure 1(a)). The condition (8) formalises the
stronger consistency guarantee provided by tokens: operations ac-
quiring conflicting tokens have to be causally dependent. For ex-
ample, since the two withdraw operations in Figure 2(c) acquire a
token ⌧ with ⌧ ./ ⌧ , they have to be related by happens-before.
Finally, we require executions to contain only finitely many events,
because in this paper we are only concerned with safety properties
of applications.

We write Exec(T ) for the set of all executions over the token
system T . In the following, we denote components of X and
similar structures as in X.E. We let Xinit be the unique execution
with Xinit.E = ;.

We now define the semantics of our consistency model as the
set of all executions X 2 Exec(T ) over a token system T whose
return values X.rval and token sets X.tok are computed using F as
informally described in §2. To define this set, we first let the context
of an event e in an execution X be

ctxt(e, X) = (E, (X.oper)|E , (X.rval)|E , (X.tok)|E , (X.hb)|E),

where E = (X.hb)�1(e) and ·|E is the restriction to events in E.
Operationally-speaking, the context consists of those events whose
effects have been incorporated into the state of the replica where
the operation X.oper(e) executes; it is these events that influence
the outcomes of e—the return value X.rval(e) and the token set
X.tok(e). For example, the context of each of the query events in
Figure 3(b) consists of the deposit and interest events. This reflects
the events that the corresponding replica has seen before executing
query in Figure 3(a).

It is technically convenient for us to initially formulate
definitions without assuming effect commutativity (7). In this
case, X.rval(e) and X.tok(e) are not determined by ctxt(e, X)
uniquely. In operational terms, this is because the state that a replica
will be in after seeing the events in ctxt(e, X) depends on the order
in which the replica finds out about these events: although causal
message propagation ensures that messages about causally depen-
dent events in ctxt(e, X) will be delivered to the replica in the order
consistent with X.hb, messages about causally independent events
may be delivered in arbitrary order. We therefore first define a func-
tion

eval†F : Exec(T )! P(State)

that yields the set of all possible states that a replica may end up
in after seeing the events in a given execution, such as ctxt(e, X).
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For an execution Y , we define eval†F (Y ) inductively on the size of
Y.E. If Y.E = ;, then eval†F (Y ) = {�init}. Otherwise,

eval†F (Y ) = {F e↵
Y.oper(e)(�

0)(�) | e 2 max(Y ) ^
� 2 eval†F (Y |Y.E�{e}) ^ �0 2 eval†F (ctxt(e, Y ))},

where

max(Y ) = {e 2 Y.E | ¬9f 2 Y.E. (e, f) 2 Y.hb}. (9)

Thus, to compute eval†F (Y ) for a non-empty Y , we choose an hb-
maximal event e in Y . Operationally, this is the event whose effect
is incorporated last by the replica r whose state we are determining.
We then pick a state � that r could be in right before incorporating
the effect of e. The set of such states is obtained by invoking eval†F
on the execution Y |Y.E�{e}, describing the events r knew about
when it incorporated e. To determine the effect of e’s operation,
we pick a state �0 that the replica r0 that generated e could be in
at the time of this generation. The set of such states is computed
by invoking eval†F on the execution ctxt(e, Y ), describing the
events that replica r0 knew about when it generated e. Then the
effect of e’s operation is F e↵

Y.oper(e)(�
0), and we determine the

state of the replica r after e by applying this effect to the state �:
F e↵

Y.oper(e)(�
0)(�).

To illustrate eval†F , consider the execution Y consisting of the
deposit and interest events in Figure 3(b) and the operation se-
mantics F in Figure 4. Recall that in this case �init = 100. We
can evaluate Y in two ways, corresponding to the orders in which
replicas r1, respectively r2, apply the effects of the events in the
computation in Figure 3(a):

eval†F (Y ) = {F e↵
interest(�init)(F e↵

deposit(20)(�init)(�init)),

F e↵
deposit(20)(�init)(F e↵

interest(�init)(�init))}
= {100 + 20 + 5, 100 + 5 + 20} = {125}.

Both ways of evaluation lead to the same outcome. This would not
be the case if we used a function F 0 identical to F , but with the
effect of interest defined by (3), which violates (7). In this case,

eval†F0(Y ) = {100 + 20 + 6, 100 + 5 + 20} = {126, 125},

which corresponds to the diverging database computation we ex-
plained in §2.1.

We note that, for notational convenience, eval†F takes as a pa-
rameter a whole execution including return values (rval) and token
sets (tok) associated with its events. However, the function as we
defined it does not depend on these: the state is determined solely
based on the operations performed (oper) and happens-before rela-
tionships among them (hb).

DEFINITION 2. An execution X 2 Exec(T ) is consistent with T
and F , denoted X |= T , F , if

8e 2 X.E. 9� 2 eval†F (ctxt(e, X)).

(X.rval(e) = F val
X.oper(e)(�)) ^ (X.tok(e) = F tok

X.oper(e)(�)).

We let Exec(T , F) = {X | X |= T , F} be the set of executions
allowed by our consistency model.

PROPOSITION 3.

8X 2 Exec(T , F). 8e 2 X.E. (ctxt(e, X) 2 Exec(T , F)).

Operationally, X |= T , F means that the outcomes in X can be
produced by the database implementation sketched in §2 with some
order of message delivery. The executions in Figures 2 and 3(b)
are consistent with the parameters in Figure 4 or the expected
semantics of operations on posts and comments. In particular, the
execution in Figure 2(c) is consistent because the context of the

right-hand-side withdraw includes the left-hand-side withdraw.
Evaluating this context yields a zero balance, which causes the
right-hand-side withdraw to generate skip as its effect.

LEMMA 4. If X |= T , F , then eval†F (X) is a singleton set. Fur-
thermore, so is eval†F (ctxt(e, X)) for any e 2 X.E.

The lemma shows that in Definition 2 it does not matter how
we choose the order of evaluation in eval†F . When viewed oper-
ationally, this independence implies the convergence property from
§2.1: two replicas that see the same events will end up in the same
state. The proof of Lemma 4, given in [2, §A], exploits proper-
ties (7) and (8). This proof is subtle because (7) does not require
commutativity for the effects of pairs of operations that acquire
conflicting tokens.

Motivated by Lemma 4, we define the evaluation of consistent
executions

evalF : Exec(T , F)! State

as follows: evalF (X) is the unique � such that eval†F (X) = {�}.
To illustrate the flexibility of our consistency model, we show

how it can represent some of the existing models; we provide more
instantiations in §6 and [2, §B].

Causal consistency [17, 31] is the baseline model we obtain
without using any tokens: Token = ; and 8o,�. F tok

o (�) = ;.
Then (8) is a tautology and (7) is equivalent to (4), so that all effects
have to commute.

Sequential consistency [27] is a form of strong consistency and
the strongest consistency model we can obtain from ours. It re-
quires every operation to acquire a mutual exclusion token:

Token = {⌧}; ./ = {(⌧, ⌧)}; 8o,�. F tok
o (�) = {⌧}.

Then in any execution X 2 Exec((Token, ./), F), the happens-
before X.hb is total, and each event in X is aware of the effects of
all events preceding it in X.hb.

RedBlue consistency [30] is a hybrid consistency model that
classifies operations as either red or blue: Op = Opr ] Opb.
Red operations are guaranteed sequential consistency, and blue
operations, only causal consistency. To express this in our model,
we again use a mutual exclusion token: Token = {⌧} and ./ =
{(⌧, ⌧)}. Red operations acquire ⌧ , and blue operations acquire no
tokens:

(8o 2 Opr. 8�. F tok
o (�) = {⌧}) ^ (8o 2 Opb. 8�. F tok

o (�) = ;).
Then red operations are totally ordered by happens-before, and blue
ones are ordered only partially. The token assignment in our bank-
ing application (Figure 4) is an instance of the RedBlue consis-
tency, where withdraw operations are red, and all others are blue.

4. State-based Proof Rule
We consider the following verification problem: given a token
system T = (Token, ./), prove that operations F maintain an
integrity invariant I ✓ State over database states. Formally, we
establish that any execution consistent with T and F evaluates to a
state satisfying I:

Exec(T , F) ✓ eval�1
F (I).

By Proposition 3 this implies that the return value of every event
in an execution X 2 Exec(T , F) can be obtained by applying its
operation to a state satisfying I:

8e 2 X.E. 9� 2 I. (X.rval(e) = F val
X.oper(e)(�)).

For example, we show that any execution consistent with Fig-
ure 4 evaluates to a state satisfying the invariant (5). Hence, a query
operation will always return a non-negative balance.
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9G0 2 P(State⇥ State), G 2 Token! P(State⇥ State)
such that

S1. �init 2 I

S2. G0(I) ✓ I ^ 8⌧. G(⌧)(I) ✓ I

S3. 8o,�,�0. (� 2 I ^ (�,�0) 2 (G0 [G((F tok
o (�))?))⇤)

=) (�0, F e↵
o (�)(�0)) 2 G0 [G(F tok

o (�))

Exec(T , F) ✓ eval�1
F (I)

Figure 5. State-based proof rule for a token system T =
(Token, ./). For T ✓ Token we let G(T ) =

S
⌧2T G(⌧) and

T? = {⌧ | ⌧ 2 Token ^ ¬9⌧ 0 2 T. ⌧ ./ ⌧ 0}. We denote by R⇤

the reflexive and transitive closure of a relation R. For a relation
R 2 P(A ⇥ B) and a predicate P 2 P(A), the expression R(P )
denotes the image of P under R.
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Figure 6. Graphical illustrations of (a) the state-based rule; and (b)
the event-based rule.

The key challenge of the above verification problem is the
need to consider infinitely many executions consistent with T and
F . Our main technical contribution is the proof rule for solving
this problem that avoids considering all such executions explicitly.
Instead, the proof rule is modular in that it allows us to reason
about the behaviour of every operation separately. Our proof rule
is also state-based in that it reasons in terms of states obtained by
evaluating parts of executions or, from the operational perspective,
in terms of replica states.

We give our proof rule in Figure 5 and explain it from the op-
erational perspective. The rule assumes that the invariant I holds
of the initial database state �init (condition S1). Consider a compu-
tation of the database implementation from §2 and a state � of a
replica r at some point in this computation. The proof rule assumes
that � 2 I and aims to establish that executing any operation o at r
will preserve the invariant I . This is easy if we only consider how
o’s effect changes the state of r, since this effect is applied to the
state � where it was generated:

8�. (� 2 I =) F e↵
o (�)(�) 2 I). (10)

The difficulty comes from the need to consider how o’s effect
changes the state of any other replica r0 that receives it; see Fig-
ure 6(a). At the time of the receipt, r0 may be in a different state
�0, due to operations executed at r0 concurrently with o. We can
show that it is sound to assume that this state �0 also satisfies the
invariant. Thus, to check that the operation o preserves the invariant
when applied at any replica, it is sufficient to ensure

8�,�0. (�,�0 2 I =) F e↵
o (�)(�0) 2 I). (11)

However, establishing this without knowing anything about the re-
lationship between � and �0 is a tall order. In the bank account
example, both � = 100 and �0 = 0 satisfy the integrity invari-
ant (5). Then F e↵

withdraw(100)(�)(�0) = �100, which violates the

invariant. Condition (11) fails in this case because it does not take
into account the tokens acquired by withdraw.

The proof rule in Figure 5 addresses the weakness of (11) by al-
lowing us to assume a certain relationship between the state where
an operation is generated (�) and where its effect is applied (�0),
which takes into account the tokens acquired by the operation. To
express this assumption, the rule uses a form of rely-guarantee rea-
soning [26]. Namely, it requires us to associate each token ⌧ with a
guarantee relation G(⌧), describing all possible state changes that
an operation acquiring ⌧ can cause. Crucially, this includes not only
the changes that the operation can cause on the state of its origin
replica, but also any change that its effect causes at any other replica
it is propagated to. We also have a guarantee relation G0, describing
the changes that can be performed by an operation without acquir-
ing any tokens. Condition S2 requires the guarantees to preserve
the invariant.

Like (11), condition S3 considers an arbitrary state � of o’s
origin replica r, assumed to satisfy the invariant I . The condition
then considers any state �0 of another replica r0 to which the effect
of o is propagated. The conclusion of S3 requires us to prove that
applying the effect F e↵

o (�) of the operation o to the state �0 satisfies
the union of the guarantees associated with the tokens F tok

o (�) that
the operation o acquires. By S2, this implies that the effect of the
operation preserves the invariant. Condition S3 further allows us
to assume that the state �0 of r0 can be obtained from the state
� of r by applying a finite number of changes allowed by G0 or
the guarantees for those tokens that do not conflict with any of
the tokens acquired by the operation o, i.e., G0 [G((F tok

o (�))?).
Informally, acquiring a token denies other replicas permissions to
concurrently perform changes that require conflicting tokens.

We now use our proof rule to show that the operations in the
banking application (Figure 4) preserve the integrity invariant (5).
We assume that the initial state �init satisfies the invariant. The
guarantees are as follows:

G(⌧) = {(�,�0) | 0  �0 < �};

G0 = {(�,�0) | 0  �  �0}.
(12)

Since withdrawals acquire the token ⌧ , the guarantee G(⌧) for this
token allows decreasing the balance without turning it negative;
the guarantee G0 allows increasing a non-negative balance. Then
condition S2 is satisfied. We show how to check the condition S3
in the most interesting case of o = withdraw(a). Consider � and
�0 satisfying the premiss of S3:

� 2 I ^ (�,�0) 2 (G0 [G((F tok
o (�))?))⇤.

Since F tok
o (�) = {⌧}, we have that (F tok

o (�))? = ;. Thus,
(�,�0) 2 G⇤

0. This and � 2 I imply that

0  �  �0. (13)

If � < a, then F e↵
o (�)(�0) = �0. Furthermore, �0 � 0 by

(13). Thus, (�0, F e↵
o (�)(�0)) = (�0,�0) 2 G0, which implies the

conclusion of S3.
If � � a, then F e↵

o (�)(�0) = �0� a. Since �  �0, by (13) we
have �0 � a. Thus, (�0, F e↵

o (�)(�0)) = (�0,�0 � a) 2 G({⌧}),
which implies the conclusion of S3. Operationally, in this case
our proof rule establishes that, if there was enough money in the
account at the replica where the withdrawal was made, then there
will be enough money at any replica the withdrawal is delivered to.
This completes the proof of our example.

In a banking application with multiple accounts, we could en-
sure non-negativity of balances by associating every account c with
a token ⌧c such that ⌧c ./ ⌧c, but ⌧c 6./ ⌧c0 for another account
c0. Thus, withdrawals from the same account would have to syn-
chronise, while withdrawals from different accounts could proceed
without synchronisation. Our proof rule easily deals with this gen-
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deposit(20)

(a)

query:
-20

σinit = 0

withdraw(20):
{τ}, ✔

deposit(20)

withdraw(126):
{τ}, ✔

interest

(b) σinit = 100

query:
-1

Figure 7. Executions illustrating the unsoundness of the state-
based proof rule on weaker consistency models.

eralisation by associating every token ⌧c with a guarantee describ-
ing the changes to the corresponding account. As we elaborate in
§6, the banking application we verify with the aid of our tool allows
multiple accounts. There we also provide more complex examples
of using our proof rule. For now, it is instructive to see how the
proof rule is specialised for some of the simpler instantiations of
our consistency model from §3.

Sequential consistency. Recall that for sequential consistency,
./ = {(⌧, ⌧)} and we always have F tok

o (�) = {⌧}, so that
(F tok

o (�))? = ;. Let G0 = ;, so that we always have � = �0

in S3. Then S2 and S3 require us to find G(⌧) such that

G(⌧)(I) ✓ I ^ 8o,�. (� 2 I =) (�, F e↵
o (�)(�)) 2 G(⌧)).

It is easy to show that we can find such a G(⌧) if and only if (10)
holds for all o. Thus, in this case it is sufficient to check that the
effect of an operation preserves the invariant when applied to the
same state where it was generated.

Causal consistency. We have Token = ; and the conditions S2
and S3 become equivalent to

G0(I) ✓ I ^ (8o,�,�0. (� 2 I ^ (�,�0) 2 G⇤
0)

=) (�0, F e↵
o (�)(�0)) 2 G0).

In this case the effects of all operations are described by a single
guarantee relation G0. We need to show that every operation satis-
fies this guarantee while assuming that concurrently executing op-
erations at other replicas do. Note that (11), for all o, is a special
case of the above obligation for G0 = I ⇥ I . Thus, (11) is an
invariant-based version of the above rely-guarantee proof rule.

As we elaborate in §7, our proof rule bears a lot of similar-
ity to proof rules for strongly consistent shared-memory concur-
rency [21, 26, 34]. The reasons for the soundness of our proof in the
setting of weak consistency are subtle. Its soundness relies crucially
on the fact that our consistency model guarantees at least causal
consistency and on the commutativity of operation effects (7). For
example, some consistency models do not guarantee the transitiv-
ity of happens-before [9, 44] and thus allow the execution in Fig-
ure 7(a), which uses the operations in Figure 4. Here a withdrawal
hb-follows a deposit; a query sees only the withdrawal, thus vio-
lating the integrity invariant (5). Since we have proved these op-
erations to preserve the invariant using our proof rule, this rule is
unsound over a consistency model allowing the execution in Fig-
ure 7(a). We note that the obligation (11), for all o, establishes the
invariant I even for a consistency model where hb is only acyclic,
but not necessarily transitive.

To illustrate that our rule becomes unsound if we drop the re-
quirement of effect commutativity (7), consider the operations in
Figure 4, but with the effect of interest defined by (3). It is easy
to show that the premiss of the rule holds for the invariant (5) even
with this change. At the same time, the execution in Figure 7(b)
violates the invariant, yet is consistent with the operations in Fig-
ure 4 according to Definition 2. This is because the evaluation de-
termining the effect of withdraw(126) can order deposit(20) be-
fore interest, whereas the evaluation determining the outcome of

9G 2 P(Exec(T )⇥ Exec(T )) such that

E1. Xinit 2 I
E2. G(I) ✓ I
E3. 8X, X 0, X 00. 8e 2 X 00.E.

(X 2 I ^X 0 = X 00|X00.E�{e} ^X 00 2 Exec(T , F) ^
e 2 max(X 00) ^X = ctxt(e, X 00) ^ (X, X 0) 2 G⇤)

=) (X 0, X 00) 2 G
Exec(T , F) ✓ I

Figure 8. Event-based proof rule.

query can order these operations the other way round, resulting in
a smaller balance. Again, the obligation (11) establishes the invari-
ant even without (7): it ensures

8X 2 Exec(T , F). eval†F (X) ✓ I.

5. Event-based Proof Rule and Soundness
We now prove the soundness of the state-based proof rule. To this
end, we present an event-based proof rule (Figure 8), from which
the state-based one is derived. This event-based rule highlights the
reasons for the soundness of the state-based one. Instead of rea-
soning about replica states, the event-based rule reasons about ex-
ecutions describing the events that replicas know about; the eval-
uation of the corresponding effects yields the replica states in the
state-based rule. In particular, we specify the desired integrity in-
variant as a predicate on executions: I ✓ Exec(T ). The event-
based rule establishes that any execution consistent with given
T = (Token, ./) and F belongs to I: Exec(T , F) ✓ I.

As before, we explain the event-based rule from the operational
perspective. The rule again uses rely-guarantee reasoning, but with
the guarantee G represented by a relation on executions. The guar-
antee describes the change to a replica’s knowledge brought on by
the replica executing a new operation or receiving the effect of an
operation originally executed elsewhere.

Conditions E1 and E2 are similar to S1 and S2: E1 requires
the invariant I to allow an empty execution Xinit (§3), which eval-
uates to the initial database state �init; E2 requires the guarantee
to preserve the invariant. Condition E3 is graphically illustrated in
Figure 6(b). Similarly to S3, the condition E3 considers any op-
eration, denoted by an event e, and checks that the change to the
database state made by the operation satisfies the guarantee. This
check is done not only at the origin replica r of e, but also at any
other replica r0 that receives its effect. The execution X can be
thought of as describing the events known to the replica r when
it executed the operation denoted by e. We assume that the ex-
ecution X satisfies the invariant I. The execution X 0 describes
the events known to the replica r0 just before it receives the ef-
fect of e; X 00 describes the events known to r0 after this, so that
X 0 = X 00|X00.E�{e}. The execution X 00 is consistent with T and
F ; the conditions in the proof rule imply that so are X and X 0. The
condition e 2 max(X 00) (see (9)) reflects the fact that e is the latest
event received by r0. The condition X = ctxt(e, X 00) ensures that
X is a part of X 0 = X 00|X00.E�{e}. This reflects the guarantee of
causal message propagation: when r0 receives the effect of e, this
replica is guaranteed to know about all the events that the replica r
knew about when it executed e.

Even though the rule allows us to assume that X is part of X 0,
the latter may contain additional events that the replica r0 found
out about by the time it received the effect of e. The rule allows
us to assume that the changes in the knowledge of r0 brought
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on by adding these events satisfy the guarantee: (X, X 0) 2 G⇤.
In exchange, the rule requires us to ensure that adding the event
e to the knowledge of replica r0 will also satisfy the guarantee:
(X 0, X 00) 2 G.

In the following, we use the fact that the premiss of the impli-
cation in E3 entails that all events in X 0.E � X.E are causally
independent with e.

PROPOSITION 5. For all X, X 0, X 00 and e 2 X 00.E,

(X 0 = X 00|X00.E�{e} ^ e 2 max(X 00) ^X = ctxt(e, X 00))

=) ¬9f 2 (X 0.E �X.E). (e
X00.hb����! f _ f

X00.hb����! e).

PROOF. Consider f 2 (X 0.E �X.E). Since e 2 max(X 00), we

cannot have e
X00.hb����! f . If f

X00.hb����! e, then f 2 X.E due to
X = ctxt(e, X 00). But this contradicts f 2 (X 0.E �X.E). ut

We now give the proof of soundness of the event-based rule and
sketch the derivation of the state-based one (we give a full proof of
the latter in [2, §A]).

Let v be the following partial order on executions:

X v X 0 () (X = X 0|X.E ^ ((X 0.hb)�1)(X.E) ✓ X.E).
(14)

When X v X 0, we say that X is a causal cut of X 0; any event
is included into X together with its causal dependencies in X 0.
Operationally, X v X 0 means that X and X 0 can describe the
knowledge of a replica at different points in the same database
computation.

PROPOSITION 6.

8X 2 Exec(T , F). 8Y. (Y v X =) Y 2 Exec(T , F)).

THEOREM 7. The event-based proof rule in Figure 8 is sound.

PROOF. Assume E1-E3 hold. We prove that

8X 00 2 Exec(T , F). 8Y. (Y v X 00 =) (Y, X 00) 2 G⇤), (15)

i.e., that the guarantee G allows us to transition into a consistent
execution X 00 from any of its causal cuts Y . The desired conclusion
Exec(T , F) ✓ I follows from (15): it implies (Xinit, X

00) 2 G⇤,
but Xinit 2 I (E1) and G preserves I (E2).

The proof of (15) is done by induction on the size of X 00.
In the base case, we must have Y = X 00 = Xinit, which im-
plies (Y, X 00) 2 G⇤. In the induction step, we consider X 00 2
Exec(T , F) and Y v X 00 such that Y 6= X 00. We pick an event
e 2 (X 00.E � Y.E) such that e 2 max(X 00) and define X and X 0

as in E3:

X = ctxt(e, X 00) ^X 0 = X 00|X00.E�{e}.

Then
Y v X 0 ^X v X 0. (16)

By Proposition 6 we have X, X 0 2 Exec(T , F). Thus, we can
apply the induction hypothesis to X 0 and its causal cuts X and Y ,
as well as to X and its causal cut Xinit, getting:

(Y, X 0) 2 G⇤ ^ (X, X 0) 2 G⇤ ^ (Xinit, X) 2 G⇤.

By E1 and E2, (Xinit, X) 2 G⇤ implies X 2 I. Together with
(X, X 0) 2 G⇤, this allows us to apply E3 and obtain (X 0, X 00) 2
G. This and (Y, X 0) 2 G⇤ imply (Y, X 00) 2 G⇤, as required. ut

In operational terms, the statement (15) established in the proof
ensures that any sequence of changes in the knowledge of a replica
during a database computation is described by G⇤. The above proof
relies crucially on the fact that our consistency model guarantees
at least causal consistency. For example, in (16) we can deduce
X v X 0 from X = ctxt(e, X 00) because happens-before is
transitive.

COROLLARY 8. The state-based proof rule in Figure 5 is sound.

PROOF SKETCH. Assume a state-based invariant I ✓ State. We
construct the corresponding event-based invariant I as the set of all
executions that evaluate to a state in I: I = eval�1

F (I). Then the
conclusion Exec(T , F) ✓ I of the event-based rule implies the
conclusion Exec(T , F) ✓ eval�1

F (I) of the state-based rule.
We now show that the premiss of the state-based rule implies

that of the event-based rule. Assume state-based guarantees G0 and
G that satisfy S1-S3. We construct the corresponding event-based
guarantee G by describing the change to the knowledge of a replica
brought on by incorporating the effect of an operation satisfying
the state-based guarantees G0 and G:

G = {(X, Y ) | 9e. (Y.E �X.E) = {e} ^X v Y ^
(evalF (X), evalF (Y )) 2 G0 [G(Y.tok(e))}. (17)

Thus, the guarantee G consists of pairs (X, Y ), where Y extends
X by a single event e representing the operation, and the two
executions evaluate to a pair of states in G0 or G(⌧) for some token
⌧ acquired by e.

It remains to prove that the event-based guarantee G satisfies
conditions E1-E3. Conditions E1 and E2 trivially follow from con-
ditions S1 and S2; we thus only need to show that S3 implies E3.
Assume that for some X, X 0, X 00 and e 2 X 00.E, the premiss of
E3 holds:

X 2 I ^X 0 = X 00|X00.E�{e} ^X 00 2 Exec(T , F) ^
e 2 max(X 00) ^X = ctxt(e, X 00) ^ (X, X 0) 2 G⇤. (18)

Let � = evalF (X), �0 = evalF (X 0) and o = X 00.oper(e). We
now show that the premiss of S3 holds:

� 2 I ^ (�,�0) 2 (G0 [G((F tok
o (�))?))⇤. (19)

First of all, � 2 I follows from X 2 I by the definition of I.
Furthermore, by Proposition 5, all events in (X 0.E � X.E) are
unrelated to e in (X 00.hb [ (X 00.hb)�1). But then by (8), they
cannot acquire tokens that conflict with the ones acquired by e:

8f 2 (X 0.E �X.E). ¬(X 00.tok(e) ./ X 00.tok(f)).

Using this fact, (X, X 0) 2 G⇤ given by (18) and the definition of
G given by (17), we can show that

(�,�0) = (evalF (X), evalF (X 0)) 2 (G0 [G((X 00.tok(e))?))⇤

= (G0 [G((F tok
o (�))?))⇤,

thus establishing (19). Then the conclusion of S3 yields
(�0, F e↵

o (�)(�0)) 2 G0 [G(F tok
o (�)), so that

(evalF (X 0), evalF (X 00)) = (�0, F e↵
o (�)(�0))

2 G0 [G(F tok
o (�))

= G0 [G(X 00.tok(e)).

(20)

This implies the conclusion of E3: (X 0, X 00) 2 G. ut
The above proof relies crucially on Lemma 4, which allows us

to define evalF . The lemma guarantees that, when evaluating exe-
cutions, choosing different orders for causally independent events
does not affect the resulting state. In (20) this allows us to choose a
particular convenient order of evaluating X 00 that applies the oper-
ation o last. Lemma 4 holds due to the commutativity condition (7),
and this illustrates the importance of this condition for the sound-
ness of the state-based rule.

6. Examples and Automation
We have developed a tool that automates the state-based proof rule
by reducing its obligations to SMT queries. Using the tool, we

8



Application # ops # tokens # invariants time (ms)
Banking 5 1 1 385
Auction 14 9 12 5297

Courseware 5 5 2 512

Figure 9. Characteristics of the applications verified and the time
taken by the tool. The numbers of operations are given ignoring op-
eration parameters. The numbers of tokens are similarly given with-
out taking into account tokens associated with different instances of
the same object, such as different bank accounts. The tool was run
on a Mac Mini, 3 GHz Intel Core i7.

State = P(N)⇥ (N [ {?})

�init = (;,?)

I = {(B, w) | w 6= ? =) B 6= ; ^ w = max(B)}
Token = {⌧c, ⌧p}

./ = {(⌧c, ⌧c), (⌧c, ⌧p), (⌧p, ⌧c)}
Fplace(b)((B, w)) = if w 6= ? then (7, skip, {⌧p})

else (X, (�(B0, w0). (B0 [ {b}, w0)), {⌧p})

Fclose((B, w)) = if (w 6= ? _B = ;) then (7, skip, {⌧c})

else (X, (�(B0, w0). (B0, max(B))), {⌧c})

Fquery((B, w)) = ((B, w), skip, ;)
Figure 10. A fragment of an auction application.

have verified three applications: an extended version of the banking
application in Figure 4, an auction service and a course registration
system. Our results are summarised in Figure 9. In the following,
we first show more sophisticated uses of our proof rule using
fragments of the auction and courseware applications. We then
present our automation approach and the complete applications that
we verified.

Auction service. Figure 10 shows a fragment of an auction appli-
cation. An auction can be either open or closed. While the auction is
open, a client can place a bid with the amount b using the place(b)
operation. A client can also close the auction at any time using
the close operation, which declares the winner. Finally, clients can
query the database state using query.

The database state is of the form (B, w). Here B consists of the
amounts of the bids placed; for simplicity, we do not distinguish
two bids with the same amount. The component w is either ?,
signifying that the auction is still open, or the winning bid. A
successful place(b) operation has the effect of adding b to B. The
close operation writes the winning bid into w. Note that the effects
of two close operations do not commute. To satisfy (7), and to
ensure that clients can only close the auction once, we let close
operations acquire a token ⌧c such that ⌧c ./ ⌧c.

The integrity invariant I we would like to maintain in the
courseware application is that, if the auction is closed, then the win-
ning bid is the maximal of all the bids placed. Without using any
other tokens than ⌧c, this invariant can be violated: Alice can close
the auction and declare the winner, e.g., 100, without being aware
of a higher bid 105 placed concurrently by Bob. A query aware of
both operations will return the bid set containing 105 and 100 but
mark 100 as the winning bid in the set.

To preserve the invariant in the RedBlue consistency model
(§3), we would have to use strong consistency for both place and
close operations, i.e., let them acquire the mutually exclusive token
⌧c. To address this inefficiency, Balegas et al. [10] proposed a
hybrid model where consistency can be strengthened using multi-
level locks, analogous to readers-writer locks from shared memory.
In our example, we represent such a lock by a pair of tokens: ⌧c,

introduced before, and ⌧p. Each close operation acquires ⌧c, and
each place operation, ⌧p. We have ⌧c ./ ⌧p. Hence, for every pair of
close and place(b) operations, either close is aware of the bid b and
takes it into account when computing the winner, or the place(b)
operation is aware that the auction has been closed and, hence, does
not place the bid. However, we do not have ⌧p ./ ⌧p and, hence,
bid placements can be causally independent. In our analogy with
a readers-writer lock, bid placements play the role of readers and
closing the auction, the role of a writer.

Balegas et al. [10] show how to implement multi-level locks so
that a replica can place a bid without any synchronisation; only an
operation closing the auction has to synchronise with other replicas
to make sure that no bids are placed concurrently. Thus, the most
frequent operation of bid placement is the least expensive.

We now use our proof rule to show that the above consistency
choice is indeed sufficient to preserve the invariant I . Let

G0 = {((B, w), (B, w)) | (B, w) 2 I};

G(⌧p) = {((B,?), (B0,?)) | B ⇢ B0};

G(⌧c) = {((B,?), (B, max(B))) | B 6= ;}.

Then the condition S2 in Figure 5 is satisfied. We show how to
check the condition S3 in the most interesting case of o = place(b).

Consider � = (B, w) and �0 = (B0, w0) satisfying the premiss
of S3. Then � 2 I . Also, since

(�,�0) 2 (G0 [G((F tok
o (�))?))⇤

and (F tok
o (�))? = {⌧p}, we get

w0 = w ^B ✓ B0 ^ (w 6= ? =) B0 = B). (21)

If w 6= ?, then F e↵
o (�)(�0) = �0 and, by (21), � = �0. Since

� 2 I , we have

(�0, F e↵
o (�)(�0)) = (�0,�0) = (�,�) 2 G0.

This implies the conclusion of S3.
If w = ?, then F e↵

o (�)(�0) = (B0 [ {b}, w0). In this case (21)
implies w0 = w = ?. Thus,

(�0, F e↵
o (�)(�0)) = ((B0, w0), (B0 [ {b}, w0)) 2 (G0 [G(⌧p)),

the desired conclusion of S3. Operationally, our proof rule estab-
lishes that, if the auction was open at the replica where the bid was
placed, then it will be open at any replica the bid is delivered to.

Similarly to our banking application (§4), we can deal with mul-
tiple auctions by using a pair of tokens (⌧c, ⌧p) for every auction.
The above proof generalises straightforwardly to this case.

Courseware. Our next example illustrates a different kind of an
integrity invariant and the use of replicated data types [38] to
construct commutative operations. Figure 11 shows a fragment of
a courseware application. We assume sets of courses Course and
students Student. A client can add a course c using addCourse(c)
and register a student s using register(s). A registered student s
can be enrolled into a course c using enroll(s, c). In the application
fragment we consider, student registrations and enrollments cannot
be cancelled. However, a course c that has not secured any student
enrollment can be removed using remCourse(c). As usual, we also
have a query operation.

A database state (S, C, E) consists of the set of students S, the
set of courses C and the enrollment relation E between students
and courses. The set of courses is actually not just an ordinary
set, but a replicated remove-wins set RWset(Course), explained
in the following. The effects of operations are mostly as expected,
with courses accessed using special functions add, remove and
contents on the replicated set. Note that the operation enroll(c, s)
takes effect only if the student s is registered and the course c exists.
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State = P(Student)⇥RWset(Course)⇥P(Student⇥Course)

�init = (;, ;RWset, ;)
I = {(S, C, E) | E ✓ P(S ⇥ contents(C))}

Token = {⌧e(c), ⌧r(c) | c 2 Course}
./ = {(⌧e(c), ⌧r(c)), (⌧r(c), ⌧e(c)) | c 2 Course}

Fregister(s)((S, C, E)) =

(?, (�(S0, C0, E0). (S0 [ {s}, C0, E0)), ;)
FaddCourse(c)((S, C, E)) =

(?, (�(S0, C0, E0). (S0, add(c, C0), E0)), ;)
Fenroll(s,c)((S, C, E)) =

if (s 62 S _ c 62 contents(C)) then (7, skip, {⌧e(c)})

else (X, (�(S0, C0, E0). (S0, C0, E0 [ {(s, c)})), {⌧e(c)})

FremCourse(c)((S, C, E)) =

if (c 62 contents(C) _ 9s. (s, c) 2 E)) then (7, skip, {⌧r(c)})

else (X, (�(S0, C0, E0). (S0, remove(c, C0), E0)), {⌧r(c)})

Fquery((S, C, E)) = ((S, contents(C), E), skip, ;)
RWset(Course) = P(Course)⇥ P(Course)

;RWset = (;, ;)
add(c, (A, T )) = (A [ {c}, T )

remove(c, (A, T )) = (A, T [ {c})

contents((A, T )) = A� T

Figure 11. A fragment of a courseware application.

addCourse
(Java) addCourse

(Java)
remCourse

(Java)

query: ?

(a)

addCourse
(Java)

enroll
(Carol, Java)

(b)

addStudent
(Carol)

remCourse
(Java)

query: ({Carol},∅,{(Carol, Java)})

Figure 12. Executions illustrating the need for (a) replicated data
types and (b) tokens in the courseware application.

The operation remCourse(c) removes the course c only when it
exists and has no students enrolled into it.

Using a replicated data type for the set of courses is needed to
satisfy (7), because additions to and removals from a usual set do
not commute. To illustrate, consider the execution in Figure 12(a).
There Alice adds a course on Java and then changes her mind and
removes the course; concurrently, Bob adds the same Java course. If
we maintained the information about courses using a usual set, then
the outcome of the query in the figure would depend on the order
in which we evaluate the effects of the causally independent op-
erations addCourse(Java) and remCourse(Java): the query would
return ; if the addition was evaluated before removal, and {Java}
otherwise (see Definition 2). In an actual database, implementing
the operations using ordinary sets would violate the replica conver-
gence property (§2.1).

Replicated data types [38] provide implementations of opera-
tions on data structures with commutative effects. They differ in the
way in which they resolve conflicting updates to the data structure,
such as those in Figure 12(a): when using an add-wins set, the query
in the figure will return {Java}, and when using a remove-wins set,
; [37]. The decision which data type to use ultimately depends on

application requirements. To keep presentation manageable, in our
example we use one of the simplest set data types, which provides
a rudimentary version of the remove-wins semantics.

The data type represents the replicated set of courses using
a pair of sets (A, T ). The function add(c, ·) puts c into the set
of A, and the function remove(c, ·) puts c into the set T , called
the tombstone set. To get the contents of the replicated set, we
just take the difference of A and T . The functions add(c, ·) and
remove(c, ·) commute: even if the removal is evaluated first, it will
still cancel the subsequent addition1. This ensures that the effects
of all operations in Figure 11 commute and thus satisfy (7).

The integrity invariant I we would like to maintain in this appli-
cation is that the enrollment relation refers to existing courses and
students only. This property is an instance of referential integrity,
which requires an object referenced in one part of the database to
exist in another. Without using tokens, the operations in our appli-
cation can break the invariant. This is illustrated by the execution
in Figure 12(b). There a Java course initially has no students en-
rolled. Then Alice removes the course and concurrently Bob enrolls
Carol into it, thinking that the course is still available. This results
in Carol being enrolled into a non-existent course.

To ensure that such situations do not happen, we use a pair
of conflicting tokens for each course c 2 Course: ⌧e(c) and
⌧r(c). The operation enroll(s, c) acquires ⌧e(c), and the operation
remCourse(c) acquires ⌧r(c). Then for every pair of operations
enroll(s, c) and remCourse(c), either the enrollment operation is
aware that the course has been removed, or the removal is aware
that there are still students enrolled into the course; in either case
the corresponding operation takes no effect. However, other pairs
of operations can be causally independent and, hence, do not have
to synchronise. This includes pairs of operations enrolling students
into courses and pairs of operations manipulating courses, such as
those in Figure 12(a). The above use of tokens is equivalent to as-
sociating every course with a multi-level lock [10] that can be in
one of two modes, one of which allows enrolling students into a
course (⌧e(c)) and the other removing the course (⌧r(c)). Unlike in
the auction application above, neither of the tokens ⌧e(c) or ⌧r(c)

conflicts with itself, and thus, neither of the above lock modes is
exclusive.

Our proof rule can establish that the above consistency choice is
sufficient to preserve the integrity invariant. To this end, we use the
following guarantees, associating changes with tokens as expected:

G0 = (I ⇥ I) \ {((S, C, E), (S0, C0, E)) |
S ✓ S0 ^ contents(C) ✓ contents(C0)};

G(⌧e(c)) = (I ⇥ I) \ {((S, C, E), (S, C, E0)) |
9s. E0 = E ] {(s, c)}};

G(⌧r(c)) = (I ⇥ I) \ {((S, C, E), (S, C0, E)) |
contents(C) = contents(C0) ] {c}}.

The actual proof is similar to that of the auction application above
and is omitted.

Parallel snapshot isolation. In [2, §B] we provide an additional
example illustrating the versatility of our consistency model and
proof rule. We show that the consistency model can encode the
recently-proposed model of parallel snapshot isolation [36, 40],
which takes a different approach to strengthening consistency from
the models we have considered so far. This encoding exploits the
fact that an operation in our consistency model may acquire a
different set of tokens depending on the state it is executed in

1 In fact, once an element was removed, it can never be successfully added
again, which may not be a desirable behaviour. There are replicated sets that
provide a more sophisticated semantics [37].
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9G0 2 P(State⇥ State), G 2 Token! P(State⇥ State)
such that

T1. �init 2 I

T2. G0(I) ✓ I ^ 8⌧. G(⌧)(I) ✓ I

T3. 8o. 9T. 9P1, . . . , Pn, Q1, . . . , Qn 2 P(State).

T3a. T =
T{F tok

o (�) | � 2 I} ^
T3b. I ✓ Sn

i=1 Pi ^
T3c. 8i = 1..n. Pi ✓ Qi ^
T3d. (G0 [G(T?))(Qi) ✓ Qi ^
T3e. (Qi ⇥ (F e↵

o (Pi)(Qi))) ✓ (G0 [G(T ))

Exec(T , F) ✓ eval�1
F (I)

Figure 13. Proof rule used by our tool. We assume a token system
T = (Token, ./) and use the same notation as in Figure 5. We let
F e↵

o (Pi)(Qi) = {F e↵
o (�)(�0) | � 2 Pi ^ �0 2 Qi}.

(cf. (6)). In [2, §B] we also provide a specialisation of the state-
based proof rule for parallel snapshot isolation.

Automation. Our tool uses the proof rule in Figure 13, which
is derived from the one in Figure 5 and is more amenable to
automation. The premisses T1 and T2 are identical to S1 and S2;
T3 changes S3 in two ways. A minor change is motivated by the
fact that our tool currently handles only operations that acquire
the same set of tokens regardless of the state they are executed
in. Hence, T3 precomputes the set of tokens T acquired by an
operation o (T3a). The key way in which T3 changes S3 is that
it eliminates the transitive closure of the guarantees, which is hard
to automate. Whereas S3 quantifies over states � where the effect of
an operation o is generated and �0 where it is applied, T3 considers
properties of these states, respectively denoted by predicates Pi and
Qi, i = 1..n. T3b requires the predicates Pi to cover all possible
states in which o can be executed. T3c requires Qi to cover Pi,
reflecting the fact that the effect of o can be applied in a state
different from the one where it was generated. T3d requires Qi to
be stable under the changes allowed by the guarantees [26]. Finally,
T3e checks that if an effect of o is generated in a state satisfying Pi,
then applying this effect to a state satisfying Qi is consistent with
the guarantees. Note that the constraints T3c and T3d have the same
effect as relating the states � and �0 in S3 by a transitive closure of
guarantees.

For example, consider the operation o = withdraw(a) from
the banking application in Figure 4. We let T = {⌧} and use the
guarantees (12). We use two predicates:

P1 = {� | � � a}; P2 = {� | 0  � < a}.

These are motivated by the condition of the if-then-else in F e↵
o , as

well as the invariant I . We then let Q1 = P1 and Q2 = I . It is easy
to check that the obligations in T3 are fulfilled.

Our tool accepts as input a token system T , the semantics of
operations F and an integrity invariant I , the latter two in the
SMT-LIB format (we leave a programming language for writing
operations as future work). The tool generates predicates Pi from
preconditions of branches in F . As Qi, the tool takes either Pi or
the invariant I . Finally, the tool generates guarantees G0 and G
by intersecting the semantics of operations F with the invariant
I . The required obligations are then discharged using the Z3 SMT
solver [1].

Applications verified. The applications verified using our tool
(Figure 9) are more realistic versions of the examples we discussed
before (Figures 4, 10 and 11).

The banking application extends the one in Figure 4 by con-
sidering multiple accounts and allowing clients to transfer money
between accounts. We preserve the non-negativity of all balances
by associating a mutual exclusion token with each account, as de-
scribed in §4.

The auction application extends the one in Figure 10 by addi-
tionally maintaining information about buyers, sellers and prod-
ucts, and by allowing clients to sell multiple product items in a
single auction. Buyers and sellers can register and unregister. Reg-
istered buyers can bid in open auctions, and registered sellers can
add products, create auctions consisting of these and close auctions.
The complex data model of this application requires multiple in-
tegrity invariants, including referential integrity constraints span-
ning multiple parts of the database. This makes it nontrivial to see
if enough synchronisation has been added to the application to pre-
serve these invariants, and our tool copes with this task.

The courseware application extends the one in Figure 11 by
allowing clients to cancel student registrations and enrollments. It
also imposes an additional integrity invariant limiting the number
of students that can register for a course; maintaining this invariant
requires extra synchronisation.

The above case studies demonstrate the feasibility of applying
our proof rule to realistic applications.

7. Related Work
Reasoning in strongly consistent shared memory. Our state-
based proof rule interprets tokens as permissions to perform certain
state changes. Such interpretations have been used in various logics
for strongly consistent shared memory [20, 21, 34]. For example,
such a logic could allow threads to modify the memory in a partic-
ular way only when holding a mutual exclusion lock, similar to our
use of a token in the banking application (§4).

This similarity suggests that existing work in shared memory
may be helpful in exploring the novel area of replicated databases.
However, the distributed and weakly consistent setting in which
our proof rule is applied makes the reasons for its soundness sub-
tle. In this setting, we do not have an illusion of a single copy of the
database state and a global notion of time this copy would evolve
with: as Figure 1(b) illustrates, different processes can see events as
occurring in different orders. The usual justification for the sound-
ness of the proof rules for strong consistency relies on the con-
cepts of global time and state: when considering a thread holding a
mutex lock, such proof rules reason that no other thread can hold
the lock at the same time and, hence, modify the memory state in
the way associated with the lock. In this setting, locks constrain
the global order on events. In contrast, tokens in our consistency
model provide a more subtle guarantee (8), only constraining the
partial happens-before relation.

Reasoning about consistency in distributed systems and
databases. Several papers have considered reasoning about cor-
rectness properties on weak consistency models of replicated and
centralised databases.

Bailis et al. [8] have proposed a criterion for checking when an
integrity invariant is preserved by running operations without using
any synchronisation at all. But they do not provide guidelines on
how to introduce synchronisation if the invariant is violated.

Li et al. [29, 30] have proposed a static analysis that uses the
proof rule (11) to check if executing operations on causal con-
sistency preserves a given integrity invariant. In case when (11)
fails for some operation o, the analysis suggests to execute o under
strong consistency in the RedBlue consistency model (§3). How-
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ever, the analysis does not check that the result will indeed validate
the invariant, and our proof rule fills this gap.

Sivaramakrishnan et al. [39] have proposed a static analysis that
automatically chooses consistency levels in a replicated database
given programmer-supplied contracts. However, these contracts are
more low-level than our invariants, since they typically constrain
the happens-before relation. For example, in the banking applica-
tion (Figure 4) their contract requires happens-before to totally or-
der all withdrawal operations. The static analysis then ensures that
the contract is followed, but not that it ensures the integrity invari-
ant (5).

Lu et al. [32] proposed proof rules for establishing correctness
properties of transactions running on non-hybrid weak consistency
models of classical relational databases, such as snapshot isola-
tion [13]. In contrast, we concentrate on hybrid consistency models
of modern replicated databases, which are more sophisticated.

Fekete [22] considered a hybrid consistency model for relational
databases where some transactions execute under snapshot isola-
tion [13] and some under serialisability, a form of strong consis-
tency. He proposed conditions determining which transactions in
an application need to execute under serialisability for the whole
application to be robust, i.e., produce only behaviours that would be
obtained by executing all transactions under serialisability. In con-
trast, our proof rule only checks integrity invariants while allow-
ing the application to produce weakly consistent behaviours and,
hence, benefit from the resulting performance gains.

Weak memory models. Strong consistency is forgone not only
by modern databases, but also by shared-memory multiprocessors
and programming languages, which provide weak memory models.
All such models used in practice are hybrid, in that they allow
the programmer to strengthen consistency on demand, e.g., using
memory fences. However, weak memory models usually provide
only a limited number of operations on data, such as reads, writes
and compare-and-swaps on single memory cells. Concurrent writes
to the same memory cell result in one value being overwritten by
the other. In contrast, we deal with arbitrary operations (6) that
merge concurrent updates in a user-defined way.

That said, in the future there may be a fruitful exchange of ideas
between program logics for applications using weakly consistent
databases and those running on weak memory models. In particular,
there have been recent proposals of program logics for the “release-
acquire” fragment of the C/C++ memory model [42, 43]. This frag-
ment is analogous to causal consistency, with the above caveats
about the allowed operations. However, the published logics do not
meaningfully handle operations requesting the stronger “sequen-
tially consistent” level of C/C++. Reasoning about on-demand re-
quests of stronger-than-causal consistency is precisely the goal of
the present paper.

Several papers [4–6, 14, 18, 19] have verified application cor-
rectness on weak memory models using model checkers and
abstract interpreters. These papers thus explore verification ap-
proaches different from the one considered in this paper. Addi-
tionally, most of the papers have focussed on models similar to
TSO [4, 14, 18, 19], which is stronger than the causal consistency
model we consider as a baseline. As the target correctness property,
papers on weak memory models have often considered robustness
(see above), which is too strong a requirement for our setting. On
the other hand, some of the papers [4, 5, 14, 19] automatically in-
ferred fences required to satisfy a correctness property. We do not
address the inference of consistency choices, although in the future
our state-based proof rule can serve as a basis for this.

Consistency models. Our conflict relations are similar to those
used by Pedone and Schiper [35] to specify constraints on message
delivery in a broadcast algorithm. We use the conflict relations

to define a high-level consistency model, which abstracts from a
message-based database implementation.

In a position paper, Li et al. [28] independently proposed an
idea of a hybrid consistency model similar to ours. Their model
does not have a formal semantics and is less flexible than ours,
since their analogue of the conflict relation is defined directly on
operations, instead of indirectly using tokens. This does not allow
the synchronisation mandated for an operation to depend on the
state it is executed in and, hence, does not allow expressing parallel
snapshot isolation (§6 and [2, §B]).

Specifying consistency models. The formal specification of our
consistency model (§3) builds on a framework previously proposed
to specify forms of eventual consistency [16]. Despite this simi-
larity, we take a somewhat different approach to specifying the se-
mantics of operations. Previous work [16] specified the return value
of an event by an arbitrary function of its context in the execution
(§3). In contrast, our Definition 2 uses a particular function eval†F ,
itself constructed from more primitive functions F e↵

o , operating on
states. This choice allows us to define the semantics of operations in
terms of states, as opposed to events, which can then be used in our
state-based proof rule. The use of states also allows to use off-the-
shelf SMT solvers to discharge the required verification conditions.
However, it is likely that our event-based rule may be adapted to the
operation specifications used in [16].

8. Conclusion and Future Work
We presented the first proof rule establishing that a given consis-
tency choice in a replicated database is sufficient to preserve a given
integrity invariant. Our proof rule is modular and simple to use. We
demonstrated this by small but nontrivial examples, and by reduc-
ing the verification conditions of the proof rule to SMT checks. De-
spite this simplicity, the soundness of our proof rule is nontrivial:
the rule fully exploits the guarantees provided by our consistency
model while correctly accounting for anomalies it allows.

Our results represent only an initial step in building an infras-
tructure of reasoning methods for applications using modern repli-
cated databases. They open several avenues for future work. First,
our generic consistency model is not implemented by any database
in its full generality; we use it only as a means to compactly rep-
resent a selection of more specific models in existing implementa-
tions. However, in the future the generic model can serve as a basis
for exploring the space of possible hybrid consistency models. One
could also consider a database that implements our model in its
general form.

Second, the soundness of our proof rule relies on the fact that
our consistency model guarantees at least causal consistency (§4).
Even though causal consistency can be implemented without any
synchronisation between replicas, this model has its cost [15]. In
the future, we plan to propose proof rules for weaker models where
causality preservation is not guaranteed for all operations. We also
hope to generalise our methods to more expressive correctness
properties than integrity invariants.

Third, in this paper we used the event-based proof rule just to
structure the proof of soundness of the state-based one. However,
the event-based rule is also interesting in its own right. In the future
it can be used in cases when to prove a correctness property, we
need to maintain information about the computation history. For
example, this is often necessary when reasoning about shared-
memory concurrency [23, 25].

Finally, we have concentrated on checking that a particular
choice of a conflict relation and tokens acquired by operations is
sufficient to preserve a given integrity invariant. We hope that in
the future our state-based proof rule can serve as a basis for tools
that infer these parameters automatically.
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