
Project no. 609551
Project acronym: SyncFree
Project title: Large-scale computation without synchronisation

European Seventh Framework Programme

ICT call 10

Deliverable reference number and title: D.2.2.1
CRDTs and CRDT composition
in partial-replication setting

Due date of deliverable: April 1, 2015
Actual submission date: March, 2015

Start date of project: October 1, 2013
Duration: 36 months
Name and organisation of lead editor
for this deliverable: Technische Universität Kaiserslautern
Revision: 0.1
Dissemination level: PU

SyncFree Deliverable D.2.2.1(v0.1), March, 2015

CONTENTS

Contents

1 Executive summary 1

2 Milestones in the Deliverable 3

3 Contractors contributing to the Deliverable 4
3.1 KL . 4
3.2 INRIA . 4
3.3 Louvain . 4
3.4 Nova . 4
3.5 Trifork . 4

4 Results 5
4.1 Partial replication . 5
4.2 Causal consistency . 5
4.3 Causal consistency under partial replication 7

4.3.1 Implementing partial replication in Antidote 11
4.4 Adaptive replication . 11
4.5 Conflict-free Partially Replicated Data Structures 15
4.6 CRDTs for partially incremental computations 15
4.7 Final remarks . 17

5 Papers and publications 19

A Designing a causally consistent protocol for geo-distributed partial
replication 24

B An empirical perspective on causal consistency 29

C Adaptive Strength Geo-Replication Strategy 33

D Conflict-free Partially Replicated Data Types 38

E A Study of CRDTs that do computations 50

F Swiftcloud: Write fast, Read in the past: Causal consistency for
client-side applications 55

G Technical report: Charcoal - A causally consistent protocol for
geo-distributed partial replication 72

SyncFree Deliverable D.2.2.1(v0.1), March, 2015, Page 2

1 EXECUTIVE SUMMARY

1 Executive summary

The SyncFree project aims to enable large-scale distributed applications in geo-
replicated settings. To this end, we rely on replicated yet consistent data types
(CRDTs), which allow information dissemination and sharing without the need for
global synchronization.

Within the project, Work Package 2 (WP2) develops the core protocols and
algorithms for CRDT data stores in different topologies. The focus of the first year
of the project has been on architectures with full replication at the server side. This
scenario assumes a small number of replicas, a mostly-static topology, rare failures,
and powerful servers.

Moving towards highly-scalable distributed systems, the second deliverable for
WP2 puts a focus on mechanisms for scaling distributed data stores to a large
number of nodes. Partial replication plays a central role hereby: With the increas-
ing growth of data that is accumulated and transferred between nodes for high
accessibility and scalability, full replication for all data items becomes unfeasible
eventually – in particular, if data is not only replicated at DCs, but also at clients.

Hence, replicating only a subset of data items at each node results in less require-
ments regarding local space and computational power. However, partial replication
raises a number of questions which we address with our work. We give here a brief
overview of the results achieved during the reporting period.

Causal consistency under partial replication Causal consistency provides a
weak, but natural and expressive notion of consistency in replicated data stores.
Under causal consistency, updates can occur concurrently at different nodes and
are then propagated asynchronously to the other nodes in the system. An update
becomes observable at a node once the causal history has been delivered at this
node. Due to the transitivity of the causality relation between updates, this lo-
cally applied criterion might involve data items that are not replicated locally. We
have developed and implemented a protocol for causal consistency under partial
replication which allows for genuine partial replication. The key idea is to perform
dependency calculations at an origin DC based on the knowledge about the receiver
DC. Only when the origin DC has confirmation that the receiver DC has obtained
the causal dependencies for an update, this update is propagated. This scheme
reduces the amount of dependency checking, while slightly increasing the visibility
latency of updates at other nodes.

Conflict-free Partially Replicated Data Structures Replicating objects not
only on the server side, but also at clients asks for further refinements of partitioning
schemes. Instead of (vertically) dividing a data store into smaller groups, with
possibly overlapping subsets of data items, the data items themselves can be subject
to partitioning. Some of the replicated data items in our context, i.e. CRDTs, can
grow quickly in size. For example, a Set CRDT grows (at least) linearly in the
number of its elements. However, in many practical situations, users will be only
interested in few entries from a set; if the Set CRDT represents the posts from a
user in a social network, only the latest entries should be replicated to the client,
the other entries only on demand. In our work on Conflict-free Partially Replicated

SyncFree Deliverable D.2.2.1(v0.1), March, 2015, Page 1

1 EXECUTIVE SUMMARY

Data Structures (CPRDTs), we examined the potential of CRDTs for partitioning
of the payload and introduced a specification format for CPRDTs based on particles,
that constitute the basic building blocks for CPRDTs. We specified a few CPRDTs
and successfully evaluated a prototype implementation in a vote-based content-
sharing application.

Adaptive replication Under partial replication, data items are only replicated
at a selection of the nodes in the system. Choosing the nodes where a specific
data item is replicated has a huge influence on the access latencies and overall
performance of the data store. In a complimentary line of work, we investigated
the replication distribution such that replicas reside in DCs close to users while
reducing the network traffic and space requirements for keeping replicas up-to-
date and highly accessible. We have developed and implemented a prototypical
component for adaptive replication. The basic idea behind our approach is that a
high (relative) number of reads and write issued through a DC indicates a suitable
place for a replica (assuming that clients connect to the DC closest to them in
order to reduce latency). Each replica is associated with a strength factor that
is influenced by a number of factors (local read and writes, decay factor, writes
to other DCs). If the strength factor reaches an installation threshold, a replica
is locally installed; if it falls below the replication threshold, the local replica is
removed, subject to additional conditions such as guaranteeing availability of a
minimal number of replicas.

SyncFree Deliverable D.2.2.1(v0.1), March, 2015, Page 2

2 MILESTONES IN THE DELIVERABLE

2 Milestones in the Deliverable

WP2 has reached the following milestones:

Mil.
no

Milestone name WP Date
due

Actual
date

S1 CRDT consolidation in a static environ-
ment

WP2 M12 M12

S2 Extended guarantees and composition in
a dynamic environment

WP2 M24 M24

The corresponding tasks are:

Task
no

Task name Date
due

Actual
date

Leader

D.2.1.1 Protocols for CRDTs in small-scale full
replication

M6 M12 KL

D.2.1.2 Platform for CRDTs in small-scale full
replication

M6 M12 KL

D.2.2.1 Protocols for CRDTs and CRDT compo-
sition in partial-replication setting

M12 M18 KL

D.2.2.2 Platform for CRDTs and CRDT compo-
sition in partial-replication setting

M12 M18 KL

Shifting of milestones Several of the main developers on WP2 could only be
recruited and employed in February 2014, accounting to the delay of several months.
To allow for integration of tools and libraries provided by the industry partners (e.g.
riak core, riak bench, Quickcheck), we chose Erlang with its Open Telecom Platform
(OTP) as programming language and development platform. This led to another
delay of some weeks as the developers were not familiar with Erlang initially. Thus,
the design and development of Antidote has started effectively in March/April 2014.
The M6 and M12 deliverables for WP2 have therefore been moved by 6 months.
The executive board approved of this adjustment of the deliverable dates.

SyncFree Deliverable D.2.2.1(v0.1), March, 2015, Page 3

3 CONTRACTORS CONTRIBUTING TO THE DELIVERABLE

3 Contractors contributing to the Deliverable

The following contractors contributed to the deliverables

3.1 KL

Annette Bieniusa, Deepthi Akkoorath.

3.2 INRIA

Alejandro Tomsic, Tyler Crain, Marc Shapiro.

3.3 Louvain

Manuel Bravo, Zhongmiao Li.

3.4 Nova

Diogo Serra, Nuno Preguica, Valter Balegas.

3.5 Trifork

Amadeo Ascó.

SyncFree Deliverable D.2.2.1(v0.1), March, 2015, Page 4

4 RESULTS

4 Results

In this section, we present the results obtained for Task 2.2 during month 12 – 18.
Our research concentrated on two topics: causal consistency under partial replica-
tion and adaptive replication strategies. We first give an overview on challenges and
issues that arise under partial replication and elaborated our results in subsequent
sections.

4.1 Partial replication

The amount of data being processed in DCs keeps growing at enormous rate. At
the same time, DCs and data stores are moving closer towards the client in order to
reduce latency and increase accessibility. The resulting increase in the number of
replicas incurs additional cost in terms of coordination and memory usage. Repli-
cating all data items in all distributed instances of a data store thus will become
unfeasible.

Partial replication, i.e. replicating only subsets of the data items at a DC,
is a possible solution to approach this problem. Implementing such a solution is
particularly difficult when the system makes the placement of replicas transparent
and hides this complexity from the user.

Partial replication raises a number of challenges:

• Replication strategy : Where should replicas of some data item be placed?
How many replicas should exist in the system? How can replicas be located
and accessed?

• Update dependency tracking : How can the system prevent users observing
inconsistencies in the data? How can atomic updates across multiple keys
be performed when not all keys are present in a node? What meta-data can
encode the dependency of updates in an efficient and scalable manner? How
must updates be structured such that only the parts that are relevant for a
replica are forwarded and applied to this replica?

In our work, we addressed both challenges on different levels. In the following
sections, we discuss the aspects mentioned before and how we addressed them with
in our work.

4.2 Causal consistency

Causal consistency has proven to be the strongest consistency model under which
low-latency and high-availability can be achieved [28]. In addition, this model is
easier to reason about for programmers than eventual consistency, its previously
widely-adopted weaker counterpart.

In our work, we focus therefore on causal consistency as the preferred consis-
tency notion. Under causal consistency, updates can occur concurrently at different
nodes and are then propagated asynchronously to the other nodes. To reflect the
(potential) causality of updates, the reads-from order and session order between
reads and writes is tracked. An update is only observable at a node once the causal
history of the update has been delivered at this node.

SyncFree Deliverable D.2.2.1(v0.1), March, 2015, Page 5

4 RESULTS

In the past few years, many causally consistent systems have been developed [24,
22, 18, 5, 14]. These systems differ in their implementation due to the assumptions
and compromises they make. For instance, there are protocols that track potential
dependencies [24, 22, 18, 14]; defined by the happens-before relation [20] between
events, while others just track explicit dependencies [5]. Another important trade-
off is visibility latency vs. throughput [18]. In this line, most protocols use explicit
dependency check messages; which improves visibility [24, 22, 18, 5, 1, 14] while
others improve throughput by utilising a stabilisation mechanism [18] that slightly
penalises it.

Choosing among a large number of systems that provide causal consistency can
be hard. Even when protocols are well documented, the used vocabulary, nam-
ing conventions and perspectives vary. Moreover, design considerations, topology
assumptions and implementation differences further constrain the possibility of a
fair comparison. Finally, most protocols only compare to a few alternatives and/or
to an eventually- or strongly-consistent baseline. It thus remains complicated to
understand the important differences among causally-consistent protocols and to
make an objective, scientific comparison of their behaviour.

To gain a better understanding of the characteristics for the protocol, we have
started with a comparative study of the different implementations of causal con-
sistency. In recent work, Saeida Ardekani et al. [31] identified that there is a
family of strongly-consistent protocols that share a generic algorithmic structure,
called DUR (deferred update replication). Briefly, DUR protocols execute trans-
actions in two phases: an execution phase, were values are read and updates are
buffered; and a termination phase, where an atomic commit protocol decides on the
outcome of a transaction, and its effects are propagated across the system. Their
work introduced the G-DUR framework, a tool for implementing DUR protocols,
and an empirical comparison of well-known strongly consistent systems. Interest-
ingly, causally-consistent protocols also present a DUR structure. We also observed
that most implementations of causal consistency fall into a sub-category of DUR,
Asynchronous-DUR (ADUR).

A-DUR protocols present particular properties, namely: (i)they are topology
(data center) aware; (ii)transactions execute and commit locally: communication
only involves local replica(s) of each updated object (normally, the one(s) located
at the DC where the transaction is started); (iii)they only incur a termination
phase in the case of atomic writes, which never aborts a transaction, and, most
distinctively; (iv)they perform background asynchronous processing, which handles
tasks like propagating committed updates to remote DCs; checking dependencies,
resolving conflicts (i.e., causal+ convergence) and applying updates at remote DCs;
and/or making updates visible.

We have analysed two well-known causally-consistent protocols, Eiger [25] and
GentleRain [18], and plan to extend the analysis to other protocols [35]. To simplify
and stream-line comparison of these protocols, we will extend together with WP5
the G-DUR framework [3] for causally-consistent protocols.

SyncFree Deliverable D.2.2.1(v0.1), March, 2015, Page 6

4 RESULTS

4.3 Causal consistency under partial replication

Ensuring (causal) consistency under partial replication usually requires additional
communication between nodes which do not host a replica of some data item, thus
impeding scalability [31].

While protocols ensuring causal consistency are generally efficient when com-
pared to strongly consistent ones, they usually do not support partial replication
in a genuine way. Given the asynchrony of the system, updates might arrive in
different order at some replicas. Therefore, a dependency check must be performed
before they are applied to ensure the consistency of a client’s view. This check is
based on order-inducing metadata that is propagated along with the updates or
through separate messages [7].

A classical approach to causality checking is based on vector clocks [20] where
each participating node in the system is given a vector entry, and each of the updates
initiated through this node is assigned a unique increasing scalar value.

Since geo-replicated systems often involve a large number of nodes, these systems
build different, optimized representations of such vector clocks. For example, certain
protocols use vectors with one entry per DC [39], or one entry per partition of keys
[15], or vectors that can be trimmed based on update stability or the organisation of
the partitions of keys across DCs [15]. Different from vector clocks, there exist other
approaches including real time clocks [17], or tracking reads of memory locations
[23] or operations [26] up to the the last update performed by this client.

For correctness, all of these mechanisms create (over-)approximations of the
dependencies of each operation, i.e. from this metadata it is not possible to deduce
exactly what the causal dependencies for an operation are. For example, when using
a single vector entry per server, all operations from separate clients connected to
this server will be totally ordered even if they access disjoint sets of data.

The causal relation of operation is approximated primarily because precise track-
ing of dependencies would not scale as the size of the metadata would grow up to
the order of the number of objects or clients (depending on how dependencies are
tracked). However, the issue with over-approximating dependencies is that the
dependency check might lead to increased read latency. False dependencies can in-
troduce waiting on updates to be delivered than would be necessary for correctness.
Clients might therefore either be blocked or provided with stale data.

Approximating dependencies This approximate tracking of dependencies also
creates an unintended effect of making partial replication more costly.

To see why this happens, consider the example shown in figure 1 where a protocol
is used that tracks dependencies using a version vector with an entry per server.
Assume this protocol supports partial replication by only sending updates and meta-
data to the servers that replicate the concerned object. In this example there are
two DCs: DCA and DCB each with 2 servers: A1 and A2 at DCA and B1 and
B2 at DCB. Server A1 replicates objects x1 and x2, server B1 replicates objects
x2 and x3 while server A2 replicates objects y1 and y2 and server B2 replicates
objects y2 and y3. The system starts in an initial state where no updates have been
performed. Consider then that a client which performs an update u1 on object
x1 at server A1, resulting in the client having a dependency vector of [1, 0, 0, 0],

SyncFree Deliverable D.2.2.1(v0.1), March, 2015, Page 7

4 RESULTS

Client

B1

B2

A2

ok
, [
1,
0,
0,
0]
)

ch
ec
k(
A

1
, 1
)

safe, A
1 , 1

ge
t
de
p(
1)

safe, A
1 , 1

ok
, [
1,
1,
0,
0]

U
(x

1 , [0, 0, 0, 0])

U
(y

2 , [1, 0, 0, 0])

A1

Replicates keys: x1, x2

Replicates keys: x2, x3

Replicates keys: y1, y2

Replicates keys: y2, y3

replicate(y
2 , [1, 0, 0, 0])

Figure 1: An example showing the dependency checks needed in a system with
partial replication using version vectors with one entry per server for tracking de-
pendencies.

with the 1 in the first entry of the vector representing the update u1 at A1. Since
x1 is not replicated elsewhere, the update stays locally at A1. Next, the client
performs an update u2 on object y2 at server A2, returning a dependency vector
of [1, 1, 0, 0]. The update u2 is then propagated asynchronously to B2, where upon
arrival a dependency check is performed. Since the dependency vector includes a
dependency from A1, before applying the update, B2 must check with B1 that it
has received any updates covered by this dependency in case they were on a key
replicated by B1. This situation could occur when B1 has received an update, but
has not propagated the new dependency vector to B2, yet.

But since B1 has not heard from A1, it does not know if the update was delayed
in the network, or if the update involved an object it does not replicate. Thus B1

must send a request to A1 checking that is has received the necessary update. A1

will then reply that it is safe because u1 did not modify an object replicated by B1,
which will then be forwarded to B2 at which time u2 can be safely applied. Notice
that if dependencies were tracked precisely, this additional round of dependency
checks would not be necessary as the dependency included with u2 would let the
server know that it only depended on keys not replicated at DCB.

While this is a simple example that one could imagine easily fixing, different
workloads and topologies can create complex graphs of dependencies that are not
so easily avoided. Furthermore, current protocols designed for full replication do
not take any additional measures specifically to minimize this cost. Instead they
suggest to send the meta-data to every DC as if it was fully replicated, either in a
separate channel [7] or simply without the update payload. In effect, those protocols
do not use any specific design patterns to take advantage of partial replication.

We developed a protocol, Charcoal, to support causal consistency under partial
replication in a scalable and efficient way by minimising dependency metadata and

SyncFree Deliverable D.2.2.1(v0.1), March, 2015, Page 8

4 RESULTS

checks. The Charcoal protocol builds on a number of mechanisms already found in
many causally consistent protocols including the base version of Antidote, except
here they are extended to efficiently support partial replication.

• Update identification Vector clocks are the most common way to support
causality. To avoid linear growth of vector clocks in the number of (client)
replicas, we apply a similar technique as in the work of Zawirski et al.[39]
which is also used in the full replication version of Antidote. Each entry in
a vector represents a DC, or more precisely a cluster within a DC. Modified
versions of protocols such as ClockSI [16] or a DC- local service handing out
logical timestamps, such as a version counter, can be used to induce a total
order to the updates issued at this DC, which can then be represented in the
DC’s vector entry. Since the total ordering of updates is already provided
by the full replication version of Antidote, Charcoal reuses this part of the
protocol with small modifications to transparently support reads and writes
to non-replicated keys (described in the following paragraphs).

For causality tracking, each update is associated with its unique timestamp
given by its home DC, plus a vector clock describing its dependencies. To
provide session guarantees such as causally consistent reads when interacting
with clients, the client keeps a vector reflecting its previously observed val-
ues and writes. The system then ensures that clients may only read values
containing all dependencies given this vector. In our work on Swiftcloud [39],
we provide further details on extending session guarantees to the edge of the
system, thus ensuring consistency even when clients fail over to different DCs.

Given that in Charcoal a DC might not replicate all objects, certain reads
will have to be forwarded to other DCs where the object being read is repli-
cated. The receiving DC then uses the client’s dependency vector to generate
a consistent version of the object that is then forwarded to be cached at the
DC the client is connected to.

• Disjoint safe-time metadata In general, most protocols ensure causal con-
sistency by not making updates from external DCs visible locally to clients
until all updates causally preceding it have been received. In the fully repli-
cated version of Antidote given that objects are organized in fixed partitions
across DCs, an external update is visible when each local server has received
the updates from its corresponding server at the external DC up to the depen-
dent time. Unfortunately this cannot be done in the same way in Charcoal, as
in order to support partial replication each server and each cluster or DC can
replicate or not any partition of objects, thus requiring a different method for
making updates visible. A simple modification to the base Antidote protocol
to support partial replication would be to have each server to additionally
send dependency meta-data to every server whose set of replicated objects in-
tersects with its own set (see Figure 1 for an example of why these additional
checks would be needed), but this would result in an increased cost of run-
ning the protocol compared to full replication, as locating an object requires
additional communication steps.

SyncFree Deliverable D.2.2.1(v0.1), March, 2015, Page 9

4 RESULTS

To avoid these additional dependency checks and meta-data, the key insight
in Charcoal is to perform the dependency calculation at the origin DC and not
the receiving DCs. Updates are still sent directly to the other sibling replicas
at other DCs, but they are not made visible to readers at the receiving DC
until the origin DC confirms that its dependencies have been received. At
the origin DC, updates issued up to a time t are considered safe to apply
for a receiving DC when all the local servers have sent all their updates on
replicated data items up to time t. To keep track of this, a server at the
origin DC communicates with each local server, keeping track of the time of
the latest updates sent to external DCs. Once it has heard from each local
server that time t is safe, this information is propagated to the external DCs as
a single message, thus avoiding unnecessary cross-DC dependency checks and
meta-data propagation, saving computation and network bandwidth. Further,
transaction are never forced to block and wait when reading as data only
becomes visible after all causal dependencies have been satisfied.

The negative consequence of this is that the observable data at the receiving
DC might be slightly more stale than in the full replication case because the
receiving DC has to wait until the sending DC has let it know that this data
is safe. Such a delay can be seen as a consequence of tracking dependencies
approximately as seen in the example in Figure 1

• Local writes to non-replicated keys Given that causal consistency allows
for concurrent writes, in order to ensue low latency and high availability a DC
will accept writes for all objects, including those that it does not replicate.
Using the vector clocks and metadata as described above this can be done
without any additional synchronisation by just assigning unique timestamps
to these updates that are reflected in the vector of the local DC. These updates
can then be safely logged and made durable even in the case of network
partition.

• Atomic writes and snapshot reads Beyond simple key-value operations,
we provide a weak form of transactions which allows to group reads and up-
dates together and supporting CRDT objects. Just like in the full replication
version of Antidote, atomic writes can be performed at the local DC using a
2-phase commit mechanism without contacting the remote replicas in order
to allow for low latency and high availability. Following this approach, the
updates are then propagated to the other DCs using the totally ordered de-
pendency metadata described previously ensuring their atomicity. (Note that
atomic updates can include keys not replicated at the origin DC.) Causally
consistent snapshot reads can be performed at a local DC by reading values
according to a consistent vector clock, while read requests for data items not
replicated at the local DC are forwarded to another DC using the same vector
clock.

Using these mechanisms allow partial or full replication with causal consistency
while limiting the amount of redundant inter-DC metadata traffic. All DCs are
able to accept updates to any key, and causally consistent values can be read as
long as one replica is available and reachable. Additionally, the way the keys are

SyncFree Deliverable D.2.2.1(v0.1), March, 2015, Page 10

4 RESULTS

partitioned within a DC is transparent to other DCs, allowing this information to
be maintained locally.

Finally, it is important to note that while the Charcoal protocol helps miti-
gate some of the costs of implementing partial replication in previous protocols, it
does not provide an optimal solution to the problem. Charcoal still employs impre-
cise representation of dependencies which can lead to false dependencies (that are
checked locally within the sending DC) and can result in reading stale values not
including updates that might actually be safe to read. Further research needs to be
conducted in order to see whether these costs can be avoided entirely.

4.3.1 Implementing partial replication in Antidote

Charcoal has been designed to exist within the same framework as the full repli-
cation protocol that had already existed in the Antidote platform. While certain
components needed to be reimplemented, much of the core infrastructure is reused,
thus allowing the development of the platforms to not entirely diverge.

The main elements that had to be reimplemented were those that dealt with de-
pendency generation and validation and inter-DC replication. Additionally several
new components had to be developed including those to check where objects are
replicated and those to collect the meta-data at the local DC concerning the safety
of the update. Within a data center the components for executing transactions and
materializing objects were reused with small modifications to support reading and
writing to objects not replicated in the DC. Details regarding the platform and the
implementation can be found in the report accompanying the deliverable D2.2.2.

4.4 Adaptive replication

Most works in partial replication focus on the protocols and DC interaction, i.e.
on keeping the meta data and communication overhead small. The placement of
replicas is often assumed to be fixed a priori and to not change over time. State-of-
the-art systems [19] typically use consistent hashing to infer a random placement
strategy. This limitation renders the direct applicability of these protocols in prac-
tical real-world settings difficult.

Complementary to our work on causality tracking under partial replication,
we are therefore investigating adaptive replication strategies. Adaptive replication
deals with dynamic replication strategies where the creation and deletion of repli-
cas is directed by the users’ access pattern to the data [12]. An optimal replication
strategy minimizes the cost associated with network traffic and additional storage
while keeping the access latency for users low. Most proposals for replication strate-
gies focus on performance aspects, such as improving load balancing or reducing
network congestion [30], not taking non-functional aspects into account.

In practice, the replication scheme often is subject to additional constraints.
For example, the system should always provide a minimal number of replicas to
improve accessibility when the system is partitioned. Another practical constraint
might be that data items must not be replicated on certain nodes placed in other
countries due to legal restrictions.

The problem of finding an optimal replication schema in an arbitrary network

SyncFree Deliverable D.2.2.1(v0.1), March, 2015, Page 11

4 RESULTS

Figure 2: Replication strength and thresholds.

has been shown to be NP-complete for the static case [2, 37, 36]. Hence, there
is not known an efficient algorithm for locating a convergent optimal solution for
georeplicated systems. Given this theoretical limitation, we concentrate on a prac-
tically oriented solution which requires little computational overhead. We propose
a protocol based on Wolfson et al.’s adaptive algorithm [36] for replicating data in a
distributed system. The algorithm takes into account the changes in the read-write
pattern of the users in the network. It is based on the principles of Ant Colony
Optimisation algorithms, which are inspired by the behaviour of ant colonies when
deciding which path to follow when foraging [13].

Model We developed a formal system describing the algorithm in a precise way.
Each data item k in a data center d is associated with some strength factor Fkd.
A data item is replicated in a data center when its strength exceeds a replication
threshold T+

k , and is subject to removal when the strength drops below a deletion
threshold T−k . In the latter case, additional constraints are taken into account, e.g.
a minimum number of replicas should always be retained to prevent data loss. The
strength function is given by the following equation:

Fkd = max

0, min

Lk︸︷︷︸
max. strength

, rkd ∗∆rk︸ ︷︷ ︸
own reads

+wkd ∗∆wk︸ ︷︷ ︸
own writes

−
|DC|∑

i=1,i6=d

wki ∗∆wkdi

︸ ︷︷ ︸
other writes

−Xkd ∗ Γk︸ ︷︷ ︸
time decay

Here, Rk denotes the total number of replicas of data k which must be at least
Nk (minimum number of replicas). Xkd = 1 represent the existence of a replica of
some data item k in DC d, or its absence when Xkd = 0.

Interpreting this equation, the replication strength for the data k in DC d is
increased by the number of reads (rkd) and writes (wkd) issued at DC d, with inten-
sities ∆rk and ∆wk, respectively. It is weakened by the writes requested through
other DCs (wki) with intensity ∆wkdi. The strength is furthermore weakened by a
temporal decay factor Γk.

The decay factor Γk ensures that in absence of writes, if the reads are concen-
trated in a few DCs, then the replicas in other DCs will eventually be removed.
However, this removal must comply with the minimum number of replicas. Hence,
the decision about removing a replica once its strength goes below the replication
threshold depends not only on the strength, but on a number of additional factors.
Each DC must know about other DCs hosting replicas of the same data item in
order to forward updates or read requests or remove local replicas.

SyncFree Deliverable D.2.2.1(v0.1), March, 2015, Page 12

4 RESULTS

Protocol In this model, only DCs hosting a replica of the data will be penalised by
writes to other DCs and the pass of time. This reflects the cost of sending updates
to the DCs hosting a replica which should be minimised by the strategy. Reads
may increase the number of replicas while writes may strengthen the replication
in a DC, but may also potentially remove a replica from one of the other DCs, an
effect that is amplified by the temporal decay of the replication strength.

A read request to a DC, which does not have a replica of the data, will be
forwarded to the closest DC with a replica. The DC with a replica will not gain
strength from this read operation as the read was not initiated at this DC. The DC
where the read request originated from will then gain some knowledge about the
data access pattern even if it does not have a replica. This knowledge will be used
in subsequent reads/writes to the DC and eventually may lead to the placement of
a replica. Otherwise, the record will be discarded. Once the replication strength is
higher than the replication threshold (T+

k), this DC will notify all the DCs about
the existence of the new replica on this DC.

Information about the writes at other DCs is communicated between all DCs at
regular intervals, and can be even piggy-backed with update messages or forwarded
read requests.

The placement information is handled by an additional component which must
provide stronger consistency guarantees than the data store itself. When installing
a new replica, other DCs must be notified about the new replica such that up-
dates are forwarded also to this new replica. The information about new replica
installments can be maintained with weak consistency guarantees, such as eventual
consistency, as missing updates just increase staleness of data. On the other hand,
removing replicas requires strong consistency if a minimal number of replicas must
be guaranteed. However, this operation is not on a critical path and does not block
the data store.

Cost estimation For our model, we also derived a cost estimation for a time
interval (ti, ti+1).

Costk(ti, ti+1) =

|DC|∑

d=1

rkd(ti, ti+1) ∗ crkd(ti) + wkd(ti, ti+1) ∗ cwkd(ti)︸ ︷︷ ︸

direct cost

+

|DC|∑

j=1

wkd(ti, ti+1) ∗ cwkdj(ti) ∗Xkj(ti)

︸ ︷︷ ︸
update propagation cost

+ (1−Xkd(ti)) ∗ rkd(ti, ti+1) ∗ min
j∈Rk

(crkdj(ti))

︸ ︷︷ ︸
redirect reads cost

+ (1−Xkd(ti)) ∗ wkd(ti, ti+1) ∗ min
j∈Rk

(cwkdj(ti))

︸ ︷︷ ︸
redirect writes cost

+

|DC|∑

j=1,j 6=d

(1−Xkd(ti)) ∗Xkj(ti) ∗ ρkd(ti, ti+1) ∗ cr∗dj(ti)
︸ ︷︷ ︸

search cost

+

|DC|∑

j=1,
Xkj(ti)=1

X
′
kd(ti) ∗ (1−Xkd(ti)) ∗ cr∗kdj(ti)

︸ ︷︷ ︸
new replica cost

+

|DC|∑

j=1,j 6=d,
Xkj(ti)=1

(1−X ′
kd(ti)) ∗Xkd(ti) ∗ cr∗kdj(ti)

︸ ︷︷ ︸
remove replica cost

(1)

SyncFree Deliverable D.2.2.1(v0.1), March, 2015, Page 13

4 RESULTS

For the proposed algorithm, the cost is composed of a direct cost associated with
the total number of reads rkd and writes wkd executed for data k in DC d in the
time interval. The direct cost factors crkd and cwkd may vary for every DC and over
time. To simplify the presentation, we assume that they remain constant during
the respective time interval.

Next, there is a cost associated with local replicas due to updates that need to be
applied to all DCs hosting replicas of the data item. The reads (cost factor crkdj) and
writes (cost factor cwkdj) that are directed from DC d to j if DC d does not replicate
the data item incur at least the cost for retrieving or sending the information to
the closest DC j holding the replica.

For the search cost, the expression ρkd(ti, ti+1) is 1 when there exists an operation
between time ti to ti+1, i.e. rkd(ti, ti+1) + wkd(ti, ti+1) > 0, or zero otherwise. For
updates during this interval, information regarding the replica placement is needed
if requests have to be forwarded. This corresponds to querying the placement
information component.

Finally, X
′
kd denotes the new replication status after all the current operations

have been executed, with some cost per notification of cr∗kdj, and the cost of removing
a replica from a DC of cr∗kdj.

The total cost up to a time T is then given by

Costk(T) =
n−1∑

i=0

Costk (ti, ti+1) (2)

where the interval (0, T) is split into subintervals (ti, ti+1), with i ∈ [0, n], ti < ti+1,
t0 = 0, and tn = T .

Discussion The model and basic protocol we derived for Adaptive Replication
offers great flexibility as the influence of single terms can easily be prioritized by
adapting the strength and cost factors. Further, it fits the SyncFree approach:
Information about new replicas can be eventually propagated between the DCs,
such that updates eventually reach every DC and can be applied to each replica.
The deletion of replicas, however, requires stronger consistency and coordination
if a minimum number of replicas must be maintained (e.g. to handle faults or
network partitions, and to prevent data loss). 1 The placement information can be
maintained in a dictionary service where all update operations on the dictionary
are serialized. Queries on the dictionary do not need to be serialized. If a replica
has been removed before the request reached the node, the origin node has to again
query the dictionary. However, we expect replica removals to happen with low
frequency. Also, as the strongly consistent operations are not on any critical path
(i.e. blocking the highly frequent read and write operations to DC-local objects),
they will incur only a small latency increase on average.

To further evaluate the applicability of the approach for distributed data stores,
we implemented a prototype of our Adaptive Replication protocol in the Antidote
platform. Further information regarding this implementation can be found in De-
liverable D2.2.2, the accompanying report for the software deliverables.

1Similarly, strong consistency is also required for installing new replicas if a maximum number
of replicas should not be exceeded.

SyncFree Deliverable D.2.2.1(v0.1), March, 2015, Page 14

4 RESULTS

4.5 Conflict-free Partially Replicated Data Structures

Depending on their usage, CRDTs such as Set CRDTs or Map CRDTs can grow
quickly in size. Replicating large CRDTs in the clients can be a waste of resources,
of both storage and bandwidth. For example, in a social-network application, the
posts of a user wall can be stored in a Set CRDT. If the user is interested in only a
small subset of these posts, storing the complete state of the CRDT at client-side
is not necessary.

To address this issue, we have proposed a new abstraction, the Conflict-free
Partially Replicated Data Structures (CPRDTs)[8]. A CPRDT is a CRDT that
can be partitioned (or sharded) in multiple particles. We define particles as the
smallest meaningful elements of a CPRDT, i.e. the smallest element that can be
used for query and update operations. For instance, a particle in a grow-only set
would be any element that can be inserted or looked up in the set. Specifications
of CPRDTs require a definition of the particles that compose the CPRDT and the
operations on these particles.

Each replica of a CPRDT xi maintains a set of particles, shard(xi). The replica
only knows about the particles in shard(xi); therefore, it can only enable query and
update operations that require and affect those particles. Furthermore, the CPRDT
replica only needs to receive update operations that affect the particles in shard(xi)
for convergence.

For each operation, the specification is extended with the following properties:

• Affected particles The function affected(op) returns the set of particles that
may have their state affected after executing an update operation op.

• Required particles For an update or query operation op, required(op) de-
notes the set of particles needed by op to be properly executed. This means
that, for replica xi, an operation is enabled only if required(op) ⊆ shard(xi).
For example, for the lookup operation of a set, required(lookup(e)) = e where
e is an element of the set. In case e /∈ shard(xi), the replica will not be able
to know whether e is in the set.

These properties are needed in order to control the access to partially replicated
CPRDTs. We have defined G-Set (grow-only set), OR-Set (observe-removed set)
and a Tree CPRDT. The implementation of these CPRDTs has been evaluated on
SwiftCloud as Antidote was not yet available at this time.

Extending the initial version of the paper that was included in Deliverable 3.1, we
refined the causality and convergence criteria for CPRDTs. When constructing the
causal history for a CPRDT, only the locally replicated shard set introduces causal
dependencies. In particular, when merging CPRDT states of different replicas, only
the intersection of the shards is affected by updates. Our initial model only touched
on these topics, but missed a formal treatment.

4.6 CRDTs for partially incremental computations

Parallel to our work on CPRDTs, we developed an overview on computational
CRDTs, that is, a class of CRDTs whose state is the result of a computation over
the executed updates [29]. Most CRDTs proposed in literature are replicated forms

SyncFree Deliverable D.2.2.1(v0.1), March, 2015, Page 15

4 RESULTS

of collections. For such data types, a replica needs to maintain all data elements in
all replicas. Thus, a model where every data replica maintains the same state and
where all updates are propagated to all replicas is a natural fit.

In some cases, applications are not interested in actual elements or updates, but
instead in the result of a computation over them. For this computational CRDTs,
the state is the result of a computation over the executed updates. For example,
a counter CRDT [32] counts the number of times an increment operation has been
executed. In such cases, the replica does not need to maintain every individual
update, but can instead maintain an integer that counts the number of increments
executed at that replica. For synchronizing replicas, it suffices to propagate an
integer that summarizes a set of updates.

We derived three generic designs that reduce the amount of information that
each replica maintains and propagates for synchronizations for computational CRDTs.
One of the designs deals with partially incremental computations.

Example An example of such an object is a top-K object for maintaining a high
score list where an element can also be deleted. This use case has been adapted from
an application in WP 1. Here, a value that does not belong to the top-K elements
may later become part of the top, after a top element is deleted. To address this
case, a possible approach is to use a Set CRDT to maintain the set of elements that
have not been deleted. In this case, all replicas maintain the complete set, and all
updates need to be propagated to all replicas. The top-K can be computed locally
on the value of each replica.

In [29], we presented an alternative approach, in which each replica maintains
all operations locally executed, and each replica only propagates to other replicas
the operations that might affect the computed result. Each replica maintains a set
of operations and the results of the computation performed at other sites — for
simplicity of notation, we assume that the result of the computation is a subset
of operations. An update operation updates the local set of operations. A read
operation performs the computation considering the local operations and the results
of the computation at the other replicas. For synchronizing replicas, a replica sends
the results of its computations to all replicas and the subset of operations known
locally that can affect the computed result at other replicas (in the top-K example,
the delete of an element that belongs to the top elements). When receiving the
state from a remote replica, the local replica is updated by merging the local set of
operations with the remote operations that may affect the result of the computation,
and by registering the most recent version of the computation for each site.

A top-K replicated data type that supports add
(
n, v
)

and del
(
n
)

operations
can be defined as follows:

V0 = {}
fun(s) = maxk

(
{o ∈ s : o = add(n, v) ∧ (6 ∃o′ ∈ s : o ≺ o′ ∧ o′ = del(n))}

)

where V0 denotes the initial state, fun the computation associated with the applica-
tion of an update, and maxk(s) a function that returns the k add

(
n, v
)

operations
with largest values for v.

This design enforces eventual consistency, assuming that replicas continue syn-
chronizing until they reach an equivalent state, i.e., a state where read operations

SyncFree Deliverable D.2.2.1(v0.1), March, 2015, Page 16

4 RESULTS

return the same result in every replica. However, this may not happen after the first
synchronization step. For example, consider a top-1 object replicated in two sites:
Site 1 executed operations {add(b, 15), add(a, 10)} and site 2 executed operations
{add(b, 16), add(c, 12)}. The two sites synchronize, with the top-1 element, (b, 16),
being known at both replicas. Later, del(b) executes at site 1, promoting (a, 10) to
the top at site 1. After the propagation of del(b) to site 2, (c, 12) is promoted to
the top at site 2. Only after the next synchronization step, the top at site 1 (a, 10)
is replaced by the same value as in site 2 (c, 12).

Our work on computational CRDTs was focused so far on their classification
and theoretical properties. Implementations for Counter CRDTs already exist in
Antidote and Riak. Other computational CRDTs have been specified (in collab-
oration with WP1 and WP3), but not yet integrated into the platforms. Further
examples for computational CRDTs are currently being developed in WP4 and will
be presented in the next deliverable for WP4.

4.7 Final remarks

Swiftcloud The task related to this deliverable says that we want to investigate
how “to support CRDTs in a large number of nodes with relatively stable con-
nectivity” on a “base platform with numerous nodes located near clients”. This
setting has been intensively studied in the context of the Swiftcloud platform [39].
The Swiftcloud platform and associated protocols have been described already in
Deliverable 2.1., where we focused on the server side aspects. Here, we only want
to highlight the partial replication aspects in the Swiftcloud platform (for further
detail see Appendix F with the most recent paper draft).

SwiftCloud ensures causally consistent, available, and convergent access to the
cloud database from client nodes. A flexible client-server topology both enables
small meta-data and ensures fault-tolerance.

Swiftcloud employs two types of replication strategies: Between DCs, full repli-
cation is used to propagate updates; for clients, only the data items requested (
recently) by a client are replicated at client-side. To this end, SwiftCloud uses
novel meta-data decoupling

• tracking causality with small vectors, sized in the number of DCs, referring
to DC-assigned timestamps, from

• unique identification of an update with client-assigned timestamps, which pro-
tect from duplicated update execution.

Thanks to funneling updates through DCs, the size of meta-data remains small and
stable, at the expense of staleness, but without affecting correctness.

Causal dependency under fail-over When a client switches to a different DC,
the state of the new DC may be unsafe, because some of the client ’s causal depen-
dencies are missing. Some geo-replication systems avoid creating dangling causal
dependencies by making synchronous writes to multiple data centres, at the cost of
high update latency [9]. Others remain asynchronous or rely on a single DC, but
after failover clients are either blocked or they violate causal consistency [22, 24, 21].

SyncFree Deliverable D.2.2.1(v0.1), March, 2015, Page 17

4 RESULTS

The former systems trade consistency for latency, the latter trade latency for con-
sistency or availability.

An alternative approach would be to store the dependencies on the client .
However, since causal dependencies are transitive, this might include a large part
of the causal history and a substantial part of the database.

Our approach is to make clients co-responsible for the recovery of missing session
causal dependencies at the new DC. SwiftCloud lets a client observe a remote update
only if it is stored in a number K > 1 of DCs. Such K-stable versions are likely to
be in other DCs. This does not harm consistency, because the client observes his
own earlier updates from the local replica.

Our protocols let a client observe only the union of:

• its own updates, in order to ensure the “read-your-writes” session guarantee
[33], and

• the K-durable updates made by other client s, to ensure other session guar-
antees, hence causal consistency.

In other words, the client depends only on updates that the client itself can send to
the new DC, or on ones that are likely to be found in a new DC. When failing over
to a new DC, the client helps out by checking whether the new DC has received
its recent updates, and if not, by repeating the commit protocol with the new DC.
SwiftCloud prefers to serve a slightly old but K-durable version, instead of a more
recent but more risky version. Instead of the consistency and availability vs. latency
trade-off of previous systems, SwiftCloud trades availability for staleness.

The work on Swiftcloud and Charcoal are complementary. It remains to show
whether the genuine partial replication protocol of Charcoal can be used for the
server-side replication in Swiftcloud.

Antidote In addition to the work on partial replication, there has been on-going
work on the Antidote platform. Recent changes include support for benchmarking
and the setup of a continuous integration server to facilitate development (in collab-
oration with WP5). In addition to the extended ClockSI protocol that we presented
in Deliverable 2.1, we now also support other protocols such as Eiger [26], COPS
[27] and GentleRain [18]. Antidote now also features bounded counters [6] that
have been developed in WP3 and described in Deliverable D3.1. Further, we sup-
port now a protocol buffer interface which simplifies the adaptation of applications
written for the Riak key-value store to the Antidote platform.

More details regarding the Antidote platform and the other software deliverables
can be found in the report accompanying Deliverable 2.2.2.

CRDT Composition The task description says that this deliverable deals also
with CRDT composition under partial replication. Both Antidote and Charcoal
provide transactions on CRDTs and hence a typical form of CRDT composition.
As the transactional interface and its semantics have been already covered in Deliv-
erable 2.1.1 and Deliverable 3.1. from WP 3, we do not cover them in this report.
Other forms of composition, such as Map CRDTs or general composition techniques
using inflations, have also been presented in detail in Deliverable 3.1.

SyncFree Deliverable D.2.2.1(v0.1), March, 2015, Page 18

5 PAPERS AND PUBLICATIONS

5 Papers and publications

The work performed in WP2 and in collaboration with other work packages has led
to several publications.

The following papers and technical reports relate to this deliverable:

• [35] Alejandro Zlatko Tomsic, Tyler Crain, and Marc Shapiro. An empirical
perspective on causal consistency. In Proceedings of the Workshop on Princi-
ples and Practice of Consistency for Distributed Data, PaPoC ’15, New York,
NY, USA, 2015. ACM

• [11] Tyler Crain and Marc Shapiro. Designing a causally consistent protocol
for geo-distributed partial replication. In Proceedings of the Workshop on
Principles and Practice of Consistency for Distributed Data, PaPoC ’15, New
York, NY, USA, 2015. ACM

• [10] Tyler Crain and Marc Shapiro. Charcoal: A causally consistent protocol
for geo-distributed partial replication. Technical report, INRIA, mar 2015

• [4] Amadeo Ascó and Annette Bieniusa. Adaptive strength geo-replication
strategy. In Proceedings of the Workshop on Principles and Practice of Con-
sistency for Distributed Data, PaPoC ’15, New York, NY, USA, 2015. ACM

• [29] David Navalho, Sérgio Duarte, and Nuno Preguiça. A study of crdts that
do computations. In Proceedings of the Workshop on Principles and Practice
of Consistency for Distributed Data, PaPoC ’15, New York, NY, USA, 2015.
ACM

The following paper is under submission:

• [8] Iwan Briquemont, Manuel Bravo, Zhongmiao Li, and Peter Van Roy.
Conflict-free partially replicated data types. Under submission

• [38]Marek Zawirski, Annette Bieniusa, Valter Balegas, Sérgio Duarte, Carlos
Baquero, Marc Shapiro, and Nuno Preguiça. Write fast, read in the past:
Causal consistency for client-side application. Under submission

All papers named here are attached to this report.

SyncFree Deliverable D.2.2.1(v0.1), March, 2015, Page 19

REFERENCES

References

[1] Sérgio Almeida, João Leitão, and Lúıs Rodrigues. Chainreaction: A causal+
consistent datastore based on chain replication. In Proceedings of the 8th ACM
European Conference on Computer Systems, EuroSys ’13, pages 85–98, New
York, NY, USA, 2013. ACM.

[2] Peter M. G. Apers. Data allocation in distributed database systems. ACM
Transactions on Database Systems, 13:263–304, 1988.

[3] Masoud Saeida Ardekani, Pierre Sutra, and Marc Shapiro. G-DUR: A mid-
dleware for assembling, analyzing, and improving transactional protocols. In
Int. Conf. on Middleware (MIDDLEWARE), pages 13–24, Bordeaux, France,
December 2014.

[4] Amadeo Ascó and Annette Bieniusa. Adaptive strength geo-replication strat-
egy. In Proceedings of the Workshop on Principles and Practice of Consistency
for Distributed Data, PaPoC ’15, New York, NY, USA, 2015. ACM.

[5] Peter Bailis, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. Bolt-on causal
consistency. In Int. Conf. on the Mgt. of Data (SIGMOD), pages 761–772,
New York, NY, USA, 2013.

[6] Valter Balegas, Diogo Serra, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues,
and Nuno M. Preguiça.

[7] N Belaramani, M. Dahlin, L. Gao, A. Nayate, A. Venkataramani, P. Yala-
gandula, and J. Zheng. PRACTI replication. In Networked Sys. Design and
Implem. (NSDI), pages 59–72, San Jose, CA, USA, May 2006. Usenix, Usenix.

[8] Iwan Briquemont, Manuel Bravo, Zhongmiao Li, and Peter Van Roy. Conflict-
free partially replicated data types. Under submission.

[9] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, Wilson C. Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi
Li, Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quin-
lan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christo-
pher Taylor, Ruth Wang, and Dale Woodford. Spanner: Google’s globally-
distributed database. In Thekkath and Vahdat [34], pages 261–264.

[10] Tyler Crain and Marc Shapiro. Charcoal: A causally consistent protocol for
geo-distributed partial replication. Technical report, INRIA, mar 2015.

[11] Tyler Crain and Marc Shapiro. Designing a causally consistent protocol for geo-
distributed partial replication. In Proceedings of the Workshop on Principles
and Practice of Consistency for Distributed Data, PaPoC ’15, New York, NY,
USA, 2015. ACM.

SyncFree Deliverable D.2.2.1(v0.1), March, 2015, Page 20

REFERENCES

[12] Xiaohua Dong, Ji Li, Zhongfu Wu, Dacheng Zhang, and Jie Xu. On dynamic
replication strategies in data service grids. In Object Oriented Real-Time Dis-
tributed Computing (ISORC), 2008 11th IEEE International Symposium on,
pages 155–161, May 2008.

[13] M. Dorigo. Optimization, Learning and Natural Algorithms. PhD thesis, Po-
litecnico di Milano, Italy, 1992.

[14] Jiaqing Du, Sameh Elnikety, Amitabha Roy, and Willy Zwaenepoel. Orbe:
Scalable causal consistency using dependency matrices and physical clocks. In
Proceedings of the 4th Annual Symposium on Cloud Computing, SOCC ’13,
pages 11:1–11:14, New York, NY, USA, 2013. ACM.

[15] Jiaqing Du, Sameh Elnikety, Amitabha Roy, and Willy Zwaenepoel. Orbe:
Scalable causal consistency using dependency matrices and physical clocks. In
Symp. on Cloud Computing, pages 11:1–11:14, Santa Clara, CA, USA, October
2013. Assoc. for Computing Machinery.

[16] Jiaqing Du, Sameh Elnikety, and Willy Zwaenepoel. Clock-SI: Snapshot iso-
lation for partitioned data stores using loosely synchronized clocks. In Symp.
on Reliable Dist. Sys. (SRDS), pages 173–184, Braga, Portugal, October 2013.
IEEE Comp. Society.

[17] Jiaqing Du, Calin Iorgulescu, Amitabha Roy, and Willy Zwaenepoel. Closing
the performance gap between causal consistency and eventual consistency,. In
W. on the Principles and Practice of Eventual Consistency (PaPEC), Amster-
dam, the Netherlands, 2014.

[18] Jiaqing Du, Calin Iorgulescu, Amitabha Roy, and Willy Zwaenepoel. Gen-
tlerain: Cheap and scalable causal consistency with physical clocks. In Ed La-
zowska, Doug Terry, Remzi H. Arpaci-Dusseau, and Johannes Gehrke, editors,
Proceedings of the ACM Symposium on Cloud Computing, Seattle, WA, USA,
November 03 - 05, 2014, pages 1–13. ACM, 2014.

[19] Avinash Lakshman and Prashant Malik. Cassandra, a decentralized structured
storage system. In W. on Large-Scale Dist. Sys. and Middleware (LADIS), vol-
ume 44 of Operating Systems Review, pages 35–40, Big Sky, MT, USA, October
2009. ACM SIG on Op. Sys. (SIGOPS), Assoc. for Computing Machinery.

[20] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558–565, July 1978.

[21] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno M. Preguiça,
and Rodrigo Rodrigues. Making geo-replicated systems fast as possible, con-
sistent when necessary. In Thekkath and Vahdat [34], pages 265–278.

[22] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Ander-
sen. Don’t settle for eventual: Scalable causal consistency for wide-area storage
with cops. In Proceedings of the Twenty-Third ACM Symposium on Operat-
ing Systems Principles, SOSP ’11, pages 401–416, New York, NY, USA, 2011.
ACM.

SyncFree Deliverable D.2.2.1(v0.1), March, 2015, Page 21

REFERENCES

[23] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Ander-
sen. Don’t settle for eventual: scalable causal consistency for wide-area storage
with COPS. In Symp. on Op. Sys. Principles (SOSP), pages 401–416, Cascais,
Portugal, October 2011. Assoc. for Computing Machinery.

[24] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Ander-
sen. Stronger semantics for low-latency geo-replicated storage. In Nick Feam-
ster and Jeffrey C. Mogul, editors, Proceedings of the 10th USENIX Symposium
on Networked Systems Design and Implementation, NSDI 2013, Lombard, IL,
USA, April 2-5, 2013, pages 313–328. USENIX Association, 2013.

[25] Wyatt Lloyd, Michael J Freedman, Michael Kaminsky, and David G Andersen.
Stronger semantics for low-latency geo-replicated storage. In NSDI, pages 313–
328, 2013.

[26] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Ander-
sen. Stronger semantics for low-latency geo-replicated storage. In Networked
Sys. Design and Implem. (NSDI), pages 313–328, Lombard, IL, USA, April
2013.

[27] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Ander-
sen. Don’t settle for eventual consistency. Commun. ACM, 57(5):61–68, May
2014.

[28] Prince Mahajan, Lorenzo Alvisi, and Mike Dahlin. Consistency, availability,
and convergence. Technical Report UTCS TR-11-22, Dept. of Comp. Sc., The
U. of Texas at Austin, Austin, TX, USA, 2011.

[29] David Navalho, Sérgio Duarte, and Nuno Preguiça. A study of crdts that
do computations. In Proceedings of the Workshop on Principles and Practice
of Consistency for Distributed Data, PaPoC ’15, New York, NY, USA, 2015.
ACM.

[30] João Paiva and Lúıs Rodrigues. On data placement in distributed systems.
Operating Systems Review, 49(1):126–130, 2015.

[31] Masoud Saeida Ardekani, Pierre Sutra, Marc Shapiro, and Nuno Preguia. On
the scalability of snapshot isolation. In Felix Wolf, Bernd Mohr, and Dieter
an Mey, editors, Euro-Par 2013 Parallel Processing, volume 8097 of Lecture
Notes in Computer Science, pages 369–381. Springer Berlin Heidelberg, 2013.

[32] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-
free replicated data types. In Stabilization, Safety, and Security of Distributed
Systems, pages 386–400. Springer, 2011.

[33] Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike Spreitzer, Marvin
Theimer, and Brent B. Welch. Session guarantees for weakly consistent repli-
cated data. In Proceedings of the Third International Conference on Parallel
and Distributed Information Systems (PDIS 94), Austin, Texas, September
28-30, 1994, pages 140–149. IEEE Computer Society, 1994.

SyncFree Deliverable D.2.2.1(v0.1), March, 2015, Page 22

REFERENCES

[34] Chandu Thekkath and Amin Vahdat, editors. 10th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2012, Hollywood, CA,
USA, October 8-10, 2012. USENIX Association, 2012.

[35] Alejandro Zlatko Tomsic, Tyler Crain, and Marc Shapiro. An empirical per-
spective on causal consistency. In Proceedings of the Workshop on Principles
and Practice of Consistency for Distributed Data, PaPoC ’15, New York, NY,
USA, 2015. ACM.

[36] Ouri Wolfson, Sushil Jajodia, and Yixiu Huang. An adaptive data replication
algorithm. ACM Trans. Database Syst., 22(2):255–314, June 1997.

[37] Ouri Wolfson and Amir Milo. The multicast policy and its relationship to
replicated data placement. ACM Trans. Database Syst., 16(1):181–205, March
1991.

[38] Marek Zawirski, Annette Bieniusa, Valter Balegas, Sérgio Duarte, Carlos Ba-
quero, Marc Shapiro, and Nuno Preguiça. Write fast, read in the past: Causal
consistency for client-side application. Under submission.

[39] Marek Zawirski, Annette Bieniusa, Valter Balegas, Sérgio Duarte, Carlos Ba-
quero, Marc Shapiro, and Nuno Preguiça. Swiftcloud: Fault-tolerant geo-
replication integrated all the way to the client machine. arXiv preprint
arXiv:1310.3107, 2013.

SyncFree Deliverable D.2.2.1(v0.1), March, 2015, Page 23

A DESIGNING A CAUSALLY CONSISTENT PROTOCOL FOR
GEO-DISTRIBUTED PARTIAL REPLICATION

A Designing a causally consistent protocol for

geo-distributed partial replication

SyncFree Deliverable D.2.2.1(v0.1), March, 2015, Page 24

Designing a causally consistent protocol
for geo-distributed partial replication

Tyler Crain
Inria Paris-Rocquencourt &

Sorbonne Universités, UPMC Univ Paris 06, LIP6
tyler.crain@lip6.fr

Marc Shapiro
Inria Paris-Rocquencourt &

Sorbonne Universités, UPMC Univ Paris 06, LIP6
marc.shapiro@acm.org

Abstract
Modern internet applications require scalability to millions
of clients, response times in the tens of milliseconds, and
availability in the presence of partitions, hardware faults and
even disasters. To obtain these requirements, applications
are usually geo-replicated across several data centres (DCs)
spread throughout the world, providing clients with fast ac-
cess to nearby DCs and fault-tolerance in case of a DC out-
age. Using multiple replicas also has disadvantages, not only
does this incur extra storage, bandwidth and hardware costs,
but programming these systems becomes more difficult.

To address the additional hardware costs, data is often
partially replicated, meaning that only certain DCs will keep
a copy of certain data, for example in a key-value store it
may only store values corresponding to a portion of the keys.
Additionally, to address the issue of programming these sys-
tems, consistency protocols are run on top ensuring different
guarantees for the data, but as shown by the CAP theorem,
strong consistency, availability, and partition tolerance can-
not be ensured at the same time. For many applications avail-
ability is paramout, thus strong consistency is exchanged for
weaker consistencies allowing concurrent writes like causal
consistency. Unfortunately these protocols are not designed
with partial replication in mind and either end up not sup-
porting it or do so in an inefficient manner. In this work we
will look at why this happens and propose a protocol de-

The research leading to these results has received funding from the Euro-
pean Union Seventh Framework Programme (FP7/2007-2013) under grant
agreement no. 609551.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PaPoC’15, April 21, 2015, Bordeaux, France.
Copyright c© 2015 ACM 978-1-4503-3238-5/15/04. . . $15.00.
http://dx.doi.org/10.1145/2745947.2745953

signed to support partial replication under causal consistency
more efficiently.

1. Partial replication
Partial replication is becoming essential in geo-replicated
systems to avoid spending uncescessary resources on stor-
age and networking hardware. Implementing partial repli-
cation is more difficult than deciding how many replicas to
have because protocols for data consistency must hide the
organisation of replicas so that the programmer sees the data
as a single continuous store. Furthermore ensuring consis-
tency with partial replication does not always easily scale,
as it often requires additional communication between nodes
not involved in the operations. For example, in [8], Saeida
shows that a scalable implementation of partial replication,
namely one that ensures genuine partial replication [9] is not
compatible with the snapshot-isolation consistency criterion.
Differently, this work focuses on causal consistency which
allows concurrent writes and uses meta-data propagation in-
stead of synchronisation to ensure consistency, but even in
this case, implementing partial replication in a scalable way
is not a straightforward.

1.1 Causal consistency and partal replication
While protocols ensuring causal consistency are generally
efficient when compared to strongly consistent ones, they of-
ten do not support partial replication by default or if they do,
limit scalability by requiring coordination with nodes that do
not replicate the values updated during propagation. Within
the standard structure of these protocols, updates are per-
formed locally, then propagated to all other replicas where
they are applied respecting their causal order, which is given
by session order and reads-from order or can be defined ex-
plicitly. Given the asynchrony of the system, propagated up-
dates might arrive out of causal order at external replicas,
thus before they are applied a dependency check must be per-
formed to to ensure the correctness. This check is based on
ordering meta-data that is propagated along with the updates
or through separate messages [2].

The best known structure of this meta-data are vector-
clocks where each totally-ordered participant is given a vec-
tor entry and each of their updates are assigned a unique in-
creasing scalar value. Since these geo-replicated systems can
have a large number of participants, they often use slightly
different representations of the vector-clocks. For example,
certain protocols use vectors with one entry per DC [13], or
one entry per partition of keys [3], or use vectors that can be
trimmed based on update stability or the organisation of the
partitions of keys across DCs [3]. Other than vector clocks
other approaches exist including real time clocks [5], or to
track reads of memory locations [6] or operations [7] up to
the the last update performed by this client.

Interestingly, all of these mechanisms create (over) ap-
proximations of the dependencies of each operation, i.e.
from this meta-data you cannot tell exactly what the causal
dependencies for this operation are, but for correctness they
cover at minimum all the dependencies. For example when
using a single vector entry per server, all operations from
separate clients connected to this server will be totally or-
dered even if they access disjoint sets of data.

Such systems use these approximations primarily be-
cause precise tracking of dependencies would not scale as
the size of the meta-data would grow up to the order of the
number of objects or users in the systems (depending on
how dependencies are tracked). The issue with over approx-
imating dependencies is that the dependency check might
have wait on more dependencies than necessary, allowing
the client to read stale versions of the data. Fortunately
though this does not block the progress of clients as updates
are replicated outside of the critical path.

1.2 Partial replication and approximate dependencies
This approximate tracking of dependencies also creates an
unintended effect of making partial replication more costly.

To see why this happens, consider the example shown in
figure 1 where a protocol is used that tracks dependencies
using a version vector with an entry per server. Assume this
protocol supports partial replication by only sending updates
and meta-data to the servers that replicate the concerned
object. In this example there are two DCs DCA and DCB

each with 2 servers: A1 and A2 at DCA and B1 and B2

at DCB . Server A1 replicates objects x1 and x2, server
B1 replicates objects x2 and x3 while server A2 replicates
objects y1 and y2 and server B2 replicates objects y2 and y3.
The system starts in an initial state where no updates have
performed. Consider then that a client performs an update
u1 on object x1 at server A1, resulting in the client having a
dependency vector of [1, 0, 0, 0], with the 1 in the first entry
of the vector representing the update u1 at A1. Since x1

is not replicated elsewhere the update stays locally at A1.
Following this, the client performs an update u2 on object
y2at server A2, returning a dependency vector of [1, 1, 0, 0].
The update u2 is then propagated asynchronously to B2,
where upon arrival a dependency check is performed. Since

the dependency vector inclues a dependency from A1, before
applying the update, B2 must check with B1 that it has
received any updates covered by this dependency in case
they were on a key replicated by B1. But since B1 has not
heard from A1 it does not know if the update was delayed
in the network, or if the update involved an object it does
not replicate. Thus B1 must send a request to A1 checking
that is has received the necessary update. A1 will then reply
that it is safe because u1 did not modify an object replicated
by B1, which will then be forwarded to to B2 at which
time u2 can be safely applied. Notice that if dependencies
were tracked precisely, this additional round of dependency
checks would not be necessary as the dependency included
with u2 would let the server know that it only depended on
keys not replicated at DCB .

While this is a simple example that one could imagine
easily fixing, different workloads and topologies can cre-
ate complex graphs of dependencies that are not so easily
avoided. Furthermore, current protocols designed for full
replication do not take any additional measures specifically
to minimize this cost, instead they suggest to send the meta-
data to every DC as if it was fully replicated either in a sep-
arate channel [2] or simply without the update payload. In
effect using no specific design patterns to take advantage of
partial replication.

2. An initial approach
The goal of this work then is to develop a protocol support-
ing partial replication and providing performance equal to
fully replicated protocols in a full replication setting, while
minimising dependency meta-data and checks in a partial
replication setting. We will now give a short description of
the main mechanisms used to design this algorithm. It should
be noted that these mechanisms are common to many pro-
tocols supporting causal consistency, except here they are
combined in a way with the goal of supporting partial repli-
cation.

• Update identification Vector clocks are the most com-
mon way to support causality. To avoid linear growth
of vector clocks in the number of (client) replicas, we
apply a similar technique as in the work of Zawirski et
al.[13]. Each entry in a vector represents a DC, or more
precisely a cluster within a DC. Modified versions of pro-
tocols such as ClockSI [4] or a DC- local service handing
out logical timestamps, such as a version counter, can be
used to induce a total order to the updates issued at this
DC, which can then be represented in the DC’s vector
entry.
For causality tracking, each update is associated with its
unique timestamp given by its home DC, plus a vec-
tor clock describing its dependencies. To provide session
guarantees such as causally consistent reads when inter-
acting with clients, the client keeps a vector reflecting its

Client

B1

B2

A2

ok
, [
1,
0,
0,
0]
)

ch
ec
k(
A

1
, 1
)

safe, A
1 , 1

ge
t
de
p(
1)

safe, A
1 , 1

ok
, [
1,
1,
0,
0]

U
(x

1 , [0, 0, 0, 0])

U
(y

2 , [1, 0, 0, 0])

A1

Replicates keys: x1, x2

Replicates keys: x2, x3

Replicates keys: y1, y2

Replicates keys: y2, y3

replicate(y
2 , [1, 0, 0, 0])

Figure 1: An example showing the possible dependency checks needed to ensure causality in a system with partial replication
using version vectors with one entry per server for tracking dependencies.

previously observed values and writes. The system then
ensures that clients may only read values containing all
dependencies given this vector.
Given that in partial replication a DC might not replicate
all objects, certain reads will have to be forwarded to
other DCs where the object being read is replicated. The
receiving DC then uses the client’s dependency vector to
generate a consistent version of the object that is then
forwarded to be cached at the DC the client is connected
to.

• Disjoint safe-time metadata In general, most protocols
ensure causal consistency by not making updates from
external DCs visible locally to clients until all updates
causally preceding it have been received. When objects
are replicated at all DCs this is fairly straightforward as
all dependent updates are expected to be received. This
is not always the case in partial replication since only
the replicated dependent operations should be received,
which could result in additional messages or dependency
checks (see figure 1 for an example of why these addi-
tional checks would be needed), something which we are
trying to avoid in order to have an efficient implementa-
tion.
To avoid these additional dependency checks and meta-
data, the key insight in this work is to perform the depen-
dency calculation at the origin DC and not the receiving
DCs. Updates are still sent directly to their sibling repli-
cas at other DCs, but they are not made visible to read-
ers at the receiving DC until the origin DC confirms that
its dependencies have been received i.e. the origin DC
tracks which of its updates are safe to make visible at the

receiver. At the origin DC, updates issued up to a time t
are considered safe to apply at a receiving DC when all
of the origin DC’s servers have sent all their updates on
the replicated objects of the receiver items up to time t.
To keep track of this, a server at the origin DC commu-
nicates with each local server, keeping track of the time
of the latest updates sent to external DCs, and once it has
heard from each local server that time t is safe, this infor-
mation is then propagated to the external DCs as a single
message. Doing this avoids unnecessary cross-DC depen-
dency checks and meta-data propagation, saving compu-
tation and network bandwidth. The negative consequence
of this is that the observable data at the receiving DC
might be slightly more stale than in the full replication
case because the receiving DC has to wait until the send-
ing DC has let it know that this data is safe. Such a delay
can be seen as a consequence of tracking dependencies
approximately as seen in the example in figure 1

• Local writes to non-replicated keys Given that causal
consistency allows for concurrent writes, in order to en-
sue low latency and high availability a DC will accept
writes for all objects, including those that it does not
replicate. Using the vector clocks and metadata as de-
scribed above this can be done without any additional
synchronisation by just assigning unique timestamps to
these updates that are reflected in the vector of the local
DC. These updates can then be safely logged and made
durable even in the case of network partition.

• Atomic writes and snapshot reads Beyond simple key-
value operations, the protocol provides a weak form of
transactions which allows to group reads and updates to-
gether and supporting CRDT objects [10]. Atomic writes

can be performed at the local DC using a 2-phase com-
mit mechanism without contacting the remote replicas in
order to allow for low latency and high availability. The
updates are then propagated to the other DCs using the
total ordered dependency metadata described previously
ensuring their atomicity. (Note that atomic updates can
include keys not replicated at the origin DC.) Causally
consistent snapshot reads can be performed at a local DC
by reading values according to a consistent vector clock,
where reads of data items not replicated at the local DC
are performed at another DC using the same vector clock.

Using these mechanisms allow partial or full replication
with causal consistency while limiting the amount of unnec-
essary inter-DC meta-data traffic. All DCs are able to ac-
cept writes to any key, and causally consistent values can be
read as long as one replica is available. Additionally the way
the keys are partitions within a DC is transparent to external
DCs, allowing this to be maintained locally.

An implementation of this protocol [12] is being devel-
oped within Antidote [11], the research platform for the
SyncFree FP7 project, which is built on top of Riak-core [1]
designed for testing scalable geo-replicated protocols.

Finally, it is important to note that while this protocol
helps mitigate some of the costs of implementing partial
replication in previous protocols, it does not completely
solve the problem. It still uses imprecise representation of
dependencies, which can still lead to false dependencies
(that are checked locally within the sending DC) and can
result in reading stale values that might otherwise be safe to
read. Further studies are still needed and novel approaches
using different mechanisms to see if these costs can be
avoided entirely.

References
[1] Basho. Riak-core. https://github.com/basho/riak_

core, 2015.

[2] N. Belaramani, M. Dahlin, L. Gao, A. Nayate, A. Venkatara-
mani, P. Yalagandula, and J. Zheng. PRACTI replica-
tion. In Networked Sys. Design and Implem. (NSDI),
pages 59–72, San Jose, CA, USA, May 2006. Usenix,
Usenix. URL https://www.usenix.org/legacy/event/

nsdi06/tech/belaramani.html.

[3] J. Du, S. Elnikety, A. Roy, and W. Zwaenepoel. Orbe: Scal-
able causal consistency using dependency matrices and phys-
ical clocks. In Symp. on Cloud Computing, pages 11:1–11:14,
Santa Clara, CA, USA, Oct. 2013. Assoc. for Computing Ma-
chinery. . URL http://doi.acm.org/10.1145/2523616.

2523628.

[4] J. Du, S. Elnikety, and W. Zwaenepoel. Clock-SI: Snap-
shot isolation for partitioned data stores using loosely syn-
chronized clocks. In Symp. on Reliable Dist. Sys. (SRDS),
pages 173–184, Braga, Portugal, Oct. 2013. IEEE Comp. So-
ciety. . URL http://doi.ieeecomputersociety.org/

10.1109/SRDS.2013.26.

[5] J. Du, C. Iorgulescu, A. Roy, and W. Zwaenepoel. Clos-
ing the performance gap between causal consistency and
eventual consistency,. In W. on the Principles and Practice
of Eventual Consistency (PaPEC), Amsterdam, the Nether-
lands, 2014. URL http://eventos.fct.unl.pt/papec/

pages/program.

[6] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen.
Don’t settle for eventual: scalable causal consistency for wide-
area storage with COPS. In Symp. on Op. Sys. Principles
(SOSP), pages 401–416, Cascais, Portugal, Oct. 2011. Assoc.
for Computing Machinery. .

[7] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G.
Andersen. Stronger semantics for low-latency geo-
replicated storage. In Networked Sys. Design and Im-
plem. (NSDI), pages 313–328, Lombard, IL, USA, Apr.
2013. URL https://www.usenix.org/system/files/

conference/nsdi13/nsdi13-final149.pdf.

[8] M. Saeida Ardekani, P. Sutra, M. Shapiro, and N. Preguia.
On the scalability of snapshot isolation. In F. Wolf, B. Mohr,
and D. an Mey, editors, Euro-Par 2013 Parallel Process-
ing, volume 8097 of Lecture Notes in Computer Science,
pages 369–381. Springer Berlin Heidelberg, 2013. ISBN 978-
3-642-40046-9. . URL http://dx.doi.org/10.1007/

978-3-642-40047-6_39.

[9] N. Schiper, P. Sutra, and F. Pedone. P-Store: Genuine par-
tial replication in wide area networks. In Symp. on Re-
liable Dist. Sys. (SRDS), pages 214–224, New Dehli, In-
dia, Oct. 2010. IEEE Comp. Society. URL http://doi.

ieeecomputersociety.org/10.1109/SRDS.2010.32.

[10] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski.
Conflict-free replicated data types. In X. Défago, F. Petit,
and V. Villain, editors, Int. Symp. on Stabilization, Safety,
and Security of Distributed Systems (SSS), volume 6976
of Lecture Notes in Comp. Sc., pages 386–400, Grenoble,
France, Oct. 2011. Springer-Verlag. . URL http://www.

springerlink.com/content/3rg39l2287330370/.

[11] SyncFree. Antidote reference platform. https://github.

com/SyncFree/antidote, 2015.

[12] SyncFree. Antidote reference platform - partial replica-
tion branch. https://github.com/SyncFree/antidote/
tree/partial_replication, 2015.

[13] M. Zawirski, A. Bieniusa, V. Balegas, S. Duarte, C. Baquero,
M. Shapiro, and N. Preguiça. Swiftcloud: Fault-tolerant geo-
replication integrated all the way to the client machine. arXiv
preprint arXiv:1310.3107, 2013.

B AN EMPIRICAL PERSPECTIVE ON CAUSAL CONSISTENCY

B An empirical perspective on causal consistency

SyncFree Deliverable D.2.2.1(v0.1), March, 2015, Page 29

An empirical perspective on causal consistency

Alejandro Z. Tomsic
Inria Paris-Rocquencourt &

Sorbonne Universités, UPMC Univ Paris 06, LIP6
alejandro.tomsic@lip6.fr

Tyler Crain Marc Shapiro
Inria Paris-Rocquencourt &

Sorbonne Universités, UPMC Univ Paris 06, LIP6
tyler.crain@lip6.fr/marc.shapiro@acm.org

Abstract
Causal consistency is the strongest consistency model un-
der which low-latency and high-availability can be achieved.
In the past few years, many causally consistent storage sys-
tems have been developed. The long-term goal of this ini-
tial work is to perform a deep study and comparison of the
different implementations of causal consistency. We identify
that protocols that provide causal consistency share the well-
known DUR (deferred update replication) algorithmic struc-
ture and observe that existing implementations of causal
consistency fall into a sub-category of DUR that we name A-
DUR (Asynchronous-DUR). In this work, we present the A-
DUR algorithmic structure, the pseudocode for the instanti-
ation of two causally consistent protocols under the G-DUR
framework, and describe the empirical study we intend to
perform on causal consistency.

1. Introduction
The CAP theorem [7] proves that no distributed service
can provide strong consistency, availability and partition-
tolerance simultaneously; one must be sacrificed. In a dis-
tributed setting, network partitions are a given. As a con-
sequence, in the past years, there has been a big amount
of research destined to understand the tradeoffs between
consistency and availability. Causal consistency has proven
to be in the sweetest spot of this tradeoff, i.e., it is the
strongest consistency model under which low-latency and

The research leading to these results has received funding from the Euro-
pean Union Seventh Framework Programme (FP7/2007-2013) under grant
agreement no. 609551.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PaPoC’15, April 21, 2015, Bordeaux, France.
Copyright c© 2015 ACM 978-1-4503-3238-5/15/04. . . $15.00.
http://dx.doi.org/10.1145/2745947.2745949

high-availability can be achieved [13]. This model is easier
to reason about for programmers than eventual consistency,
its previously widely-adopted weaker counterpart.

In the past few years, many causally consistent systems
have been developed [4–6, 11, 12]. These systems differ
in their implementation due to the assumptions and com-
promises they make. For instance, there are protocols that
track potential dependencies [5, 6, 11, 12]; defined by the
happens-before relation [10] between events, while others
just track explicit dependencies [4, 9]. Another important
trade-off is visibility latency vs. throughput [3, 6]. In this
line, most protocols use explicit dependency check mes-
sages; which improves visibility [1, 4–6, 11, 12] while others
improve throughput by utilising a stabilisation mechanism
[6] that slightly penalises it.

Choosing among a large number of systems that pro-
vide causal consistency can be hard. Even when protocols
are well documented, the used vocabulary, naming conven-
tions and perspectives vary. Moreover, design considera-
tions, topology assumptions and implementation differences
further constrain the possibility of a fair comparison. Finally,
most protocols only compare to a few alternatives and/or
to an eventually- or strongly-consistent baseline. It thus re-
mains complicated to understand the important differences
among causally-consistent protocols and to make an objec-
tive, scientific comparison of their behaviour.

The long-term goal of this initial work is to perform a
deep comparative study of the different implementations of
causal consistency. As a first-step towards that goal, we need
an environment where to implement different protocols. In
recent work, Saeida Ardekani et al. [2] identified that there is
a family of strongly-consistent protocols that share a generic
algorithmic structure, called DUR (deferred update replica-
tion). Briefly, DUR protocols execute transactions in two
phases: an execution phase, were values are read and up-
dates are buffered; and a termination phase, where an atomic
commitment protocol decides on committing or aborting the
transaction, and its effects are propagated across the system.
Their work presented the G-DUR framework, a tool for im-
plementing DUR protocols, and a deep empirical compari-
son of relevant strongly consistent systems.

We identify that causally-consistent protocols also present
a DUR structure. Furthermore, we observe that most imple-
mentations of causal consistency fall into a sub-category of
DUR that we name A-DUR (Asynchronous-DUR) and ex-
plain in Section 2.

Based on the aforestated, we have decided to implement
the protocols for performing our study under G-DUR[2]. In
this work, we present the pseudocode for the G-DUR instan-
tiation of two causally consistent protocols[6, 12] (Section
2.1) and describe the empirical study we intend to perform
on causal consistency (Section 3).

2. The A-DUR property
A-DUR protocols present particular properties that are not
present in every DUR protocol: (i)they are topology (data
center) aware; (ii)transactions execute and commit locally:
communication only involves local replica(s) of each up-
dated object (normally, the one(s) located at the DC where
the transaction is started); (iii)they only incur a termina-
tion phase in the case of atomic writes, which never aborts a
transaction, and, most distinctively; (iv)they perform back-
ground asynchronous processing, which handles tasks like
propagating committed updates to remote DCs; checking de-
pendencies, resolving conflicts (i.e., causal+ convergence)
and applying updates at remote DCs; and/or making updates
visible.

2.1 A-DUR protocols under G-DUR
In this section, we present the G-DUR instantiation of two
systems that provide causal consistency: GentleRain and
Eiger. Namely, the G-DUR instantiation entitles defining the
implementations of the following functions: a function θ for
partially ordering transactions; choose, for choosing a con-
sistent value when reading an object; certifying_obj(Ti),
for determining which objects will be certified during termi-
nation phase of a transaction; commute(Ti, Tj), for deter-
mining if two transactions Ti and Tj commute; certify(Ti),
for deciding if a transaction is safe to be committed;
async_proc, for describing the asynchronous processing the
protocol performs; and dep_check(Ti), for checking the de-
pendencies of a transaction Ti at a remote DC. Note that
the last two functions are defined specifically for A-DUR in-
stantiations and replace the post_commit function present
in G-DUR. The rest of the code needed to fully implement
these protocols is given by the general G-DUR structure [2].

Eiger Eiger[12] (see Algorithm 1) tracks potential depen-
dencies and uses explicit dependency check messages to de-
cide when updates are made visible. Each version of an ob-
ject stores an identifier composed by a logical timestamp
plus a server identifier; and a set of one-hop dependencies
which determine causal ordering (line 1). In order to en-
sure causality, a read operation selects the latest version of
an object (Eiger’s one round read transaction). When the

latest version is not suitable for establishing a causally-
consistent snapshot, the read protocol incurs in a second
round of reads that selects a version using a timestamp pro-
vided by the transaction coordinator (line 2). In order to
provide atomic write operations, this protocol relies on a
two-phase commit with positive cohorts and indirection (ex-
plained elsewhere[12]) that never aborts and only involves
the replicas at the local DC (2PC-PCIlocal) holding an ob-
ject written by the transaction (lines 3-6). After a transaction
commits, its effects are sent in the background to the replicas
of the updated objects in remote DCs (line 7). At a receiving
DC, each server hosting an objected updated by Ti performs
a dependency check. It sends messages to the servers at its
datacenter in order to check that they have applied the oper-
ations identified in each updated object’s metadata (line 9).

Algorithm 1 G-DUR instantiation of Eiger

1: θ ≡ {TS}
2: choose ≡ chooselast_{TS} ∨ choosecons
3: AC ≡ 2PC-PCIlocal
4: certifying_obj(Ti) ≡ ws(Ti)
5: commute(Ti, Tj) ≡ true
6: certify(Ti) ≡ true
7: async_proc ≡ send(ws(Ti) ∪ θ(Ti))
8: to replicas(ws(Ti)) \ local_replicas(ws(Ti))
9: dep_check(Ti) ≡ ∀ tsi ∈ θ(Ti) :

10: appliedlocal(optsi.id)

GentleRain GentleRain[6] (see Algorithm 2) tracks poten-
tial dependencies and uses a global stabilisation protocol to
make object versions visible. Each version of an object is
identified by a physical timestamp, which is used to deter-
mine causally consistent snapshots (lines 1 and 2). This pro-
tocol does not incur in a termination phase as it does not
provide atomic writes. After an object is updated locally, the
update is sent in the background to the replicas of the up-
dated objects in remote DCs (line 5). Each server periodi-
cally exchanges its local physical clock (θ(p))with the rest
of the servers in the system to compute the GST (global sta-
ble time) that is used to make updates visible.

Algorithm 2 G-DUR instantiation of GentleRain

1: θ ≡ TS
2: choose ≡ choosecons
3: certify(Ti) ≡ true
4: async_proc1 ≡ send(θ(p)) to Π
5: async_proc2 ≡ send(ws(Ti) ∪ θ(Ti))
6: to replicas(ws(Ti)) \ local_replicas(ws(Ti))
7: dep_check(Ti) ≡ GST < θ(Ti)

3. Causal Consistency Study
In this section, we briefly describe the study we intend to
realise.

We will start by implementing causally consistent proto-
cols on top of the G-DUR framework, which we expect to
save us a significant amount of coding effort. As part of this
step, we plan to modify the framework itself in order to op-
timally support the A-DUR structure. Our study will focus
(not exclusively) on a comparison of the realised protocols,
an analysis of their bottlenecks and an assessment on the
processing and communication costs of causal consistency.
In particular, we will analyse the performance of protocols
by considering the following tradeoffs and design consider-
ations: potential vs. explicit causality tracking; dependency
check messages vs. global stabilisation protocols, provided
transactional API, metadata overhead, topology assumptions
(partitioning scheme, partial vs. full replication), inter DC
replication mechanisms, data staleness and type of causal+
convergence provided (or lack thereof). We plan to run our
experiments in Grid’5000 [8], under different configurations
and workloads.

With the results obtained from this study, we plan to iden-
tify the different flavours of causal consistency and to con-
clude on the costs of implementing them, when compared to
strong and weak consistency.

References
[1] S. Almeida, J. Leitão, and L. Rodrigues. ChainReaction: a

causal+ consistent datastore based on Chain Replication. Apr.
2013.

[2] M. S. Ardekani, P. Sutra, and M. Shapiro. G-dur: A mid-
dleware for assembling, analyzing, and improving transac-
tional protocols. In Proceedings of the 15th International
Middleware Conference, Middleware ’14, pages 13–24, New
York, NY, USA, 2014. ACM. ISBN 978-1-4503-2785-5.
. URL http://doi.acm.org/10.1145/2663165.
2663336.

[3] P. Bailis, A. Fekete, A. Ghodsi, J. M. Hellerstein, and I. Stoica.
The potential dangers of causal consistency and an explicit
solution. 2012.

[4] P. Bailis, A. Ghodsi, J. M. Hellerstein, and I. Stoica. Bolt-on
causal consistency. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, SIGMOD
’13, pages 761–772, New York, NY, USA, 2013. ACM. ISBN
978-1-4503-2037-5. . URL http://doi.acm.org/10.
1145/2463676.2465279.

[5] J. Du, S. Elnikety, A. Roy, and W. Zwaenepoel. Orbe: Scalable
causal consistency using dependency matrices and physical
clocks. pages 11:1–11:14, Santa Clara, CA, USA, Oct. 2013.
. URL http://doi.acm.org/10.1145/2523616.
2523628.

[6] J. Du, C. Iorgulescu, A. Roy, and W. Zwaenepoel. Gentlerain:
Cheap and scalable causal consistency with physical clocks.
In Proceedings of the ACM Symposium on Cloud Computing,
SOCC ’14, pages 4:1–4:13, New York, NY, USA, 2014. ACM.
ISBN 978-1-4503-3252-1. . URL http://doi.acm.
org/10.1145/2670979.2670983.

[7] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasi-
bility of consistent, available, partition-tolerant web services.
SIGACT News, 33(2):51–59, 2002. ISSN 0163-5700. .

[8] Grid’5000. Grid’5000, a scientific instrument [. . .]. https:
//www.grid5000.fr/, retrieved April 2013.

[9] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing
high availability using lazy replication. ACM Trans. Comput.
Syst., 10(4):360–391, Nov. 1992. URL http://dx.doi.
org/10.1145/138873.138877.

[10] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Commun. ACM, 21(7):558–565,
July 1978. URL http://doi.acm.org/10.1145/
359545.359563.

[11] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen.
Don’t settle for eventual: scalable causal consistency for wide-
area storage with COPS. pages 401–416, Cascais, Portugal,
Oct. 2011. .

[12] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. An-
dersen. Stronger semantics for low-latency geo-replicated
storage. pages 313–328, Lombard, IL, USA, Apr. 2013.
URL https://www.usenix.org/system/files/
conference/nsdi13/nsdi13-final149.pdf.

[13] P. Mahajan, L. Alvisi, and M. Dahlin. Consistency, avail-
ability, and convergence. Technical Report UTCS TR-11-22,
Dept. of Comp. Sc., The U. of Texas at Austin, Austin, TX,
USA, 2011.

C ADAPTIVE STRENGTH GEO-REPLICATION STRATEGY

C Adaptive Strength Geo-Replication Strategy

SyncFree Deliverable D.2.2.1(v0.1), March, 2015, Page 33

Adaptive Strength Geo–Replication Strategy

Amadeo Ascó Signes
Trifork Leeds

Leeds, UK
aas@trifork.com

Annette Bieniusa
Technische Universität Kaiserslautern

Kaiserslautern, Germany
bieniusa@cs.uni-kl.de

Abstract
The amount of data being processed in Data Centres (DCs)
keeps growing at an enormous rate so that full replication
may start being impractical. The application of replication
between DCs is used to increase data availability in the pres-
ence of site failures and to reduce latency by accessing the
data closely located, if possible. This means that replicating
the data only in some of the DCs is becoming more critical in
order to reduce the costs of keeping the data (weakly) con-
sistent while maintaining high availability (scalability) and
low access costs. When data read and write request patterns
change, then deciding which data should be replicated and
where needs to be made dynamically. Given that the prob-
lem of finding an optimal replication schema in a general
network has been shown to be NP-complete for the static
case, so it is unlikely that there exists a general algorithm for
an optimal solution to the dynamic problem.

We present here a new adaptive bio–inspired replication
strategy, which is completely decentralised, adaptive, and
event-driven, inspired on the Ant Colony algorithm.

Keywords Adaptive Replication, Geo–replication, Large–
Scale Database Replication, Accessibility

1. Introduction
The amount of data being processed in DCs keeps grow-
ing at enormous rate [5, 6, 16]. Some of the areas where the
amount of stored data already reach terabytes (TBs) and even
petabytess (PBs) are data mining, particle physics, climate
modelling, high energy physics and astrophysics, to name a
few, all including data which needs to be shared and anal-
ysed [10, 13, 14]. DCs are able to ensure that stored data
is highly accessible and scalable. But the location of a DC

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PaPoC’15, April 21, 2015, Bordeaux, France.
Copyright c© 2015 ACM 978-1-4503-3238-5/15/04. . . $15.00.
http://dx.doi.org/10.1145/2745947.2745950Reprinted from PaPoC’15, [Unknown
Proceedings], April 21, 2015, Bordeaux, France, pp. 1–4.

in respect of the client accessing the data has an impact on
availability, access times (latency – accessibility) and costs
derived from providing the data. Replicating subsets of the
data at multiple sites is a possible solution to reduce some of
these undesirable effects, [1, 4, 17]. An increase in the num-
ber of replicas may result in large bandwidth savings and
lead to a reduction in user response time on reads or writes
depending on the replication type, i.e. replication on read or
write. But keeping too many replicas of the data incurs an
extra cost, such as network traffic to keep all versions of the
data consistent, additional storage and computational power
[9, 15].

This means that finding an optimal replication distribu-
tion that minimises the amount of network traffic given cer-
tain read and write patterns for various objects should al-
leviate these extra costs when replicating [4, 11, 19]. Given
the volume of operations considered and the expected access
speed, any algorithm suitable to be applied to this constraint
optimisation problem must have a very fast execution time
or it will have a detrimental effect on the latency.

2. Classification of Strategies
Replication strategies can be grouped, based on their vari-
ability, into two types: static replication where a replica
persists until it is deleted by a user or its duration expires,
and dynamic replication where the creation and deletion of
replicas are managed automatically and normally directed
by the users access pattern to the data [7]. In static replica-
tion, the major drawback is the inability to adapt to changes
in the data access pattern.

Under partial replication a data item can be decom-
posed into several parts, which may be located in different
places in the overall system, i.e. DCs, within a DC in differ-
ent nodes or at the client-side [4, 4, 15], whereas the focus
of adaptive geo–replication is to decide what data, where
the data is located within the overall system of DCs and how
many replicas exist simultaneously, [1, 2, 10, 12, 18]. Both
of these types maybe be combined to obtain further perfor-
mance improvements.

1

3. Adaptive Strength
Geo–replication Strategies
The problem of finding an optimal geo–replication schema
in a general network has been shown to be NP-complete
for the static case [3, 20, 21]. Hence, there is no known
efficient geo–replication algorithm for locating a convergent
optimal solution dynamically. Given this, we propose an
algorithm based on Wolfson’s adaptive algorithm [19] for
replicated data in a distributed system. The algorithm takes
into account the changes in the read-write pattern of the
processors in the network. It is based on the principles of
the Ant Colony Optimisation algorithms, which are inspired
by the behaviour of ant colonies when deciding which path
to follow when foraging [8].

It should be noted that we consider here the main pur-
pose of replication not to be the recovery from disasters as
this should be the responsibility of special recovery data cen-
tres. Neither it is the DC responsibility to provide analyti-
cal services as these are provided by the data warehouse(s).
The main propose of the considered DCs is to provide op-
erational access to clients (operational DCs), which corre-
sponds to intensive read/write operations to the client’s most
recent data.

The general idea of the algorithm we propose is to decide
without the need of human intervention where and when to
replicate with the main objective of reducing the latency and
network traffic (reduce usage of bandwidth).

In general terms, any read operation in a DC reinforces
the need to have a replica of the data in this DC. Similarly,
but perhaps with a different degree, it happens with the write
operations, but write operations also reduce the likeliness for
a replica of the data in the other DCs as it incurs synchroni-
sation cost. Eventually, these DCs will not have any replica
of the data. Given that we do not want to keep replicas if it
is not necessary, the need for such a replica will decay as
time passes. However, it must be guaranteed that the data is
present (replicated) at least in a pre-set minimum number of
DCs.

Figure 1. Constraints.

For a formal model, we associate each data item k (Dk)
in DC d (DCd) with some strength factor Fkd. A data item
is replicated in a DC when its strength exceeds a threshold,
T+
k , whereas any record of data k with strength factor below

the deletion threshold, T−k , implies that the data should not
be replicated anymore in DC d, but only when the other
constrains are still kept, i.e. minimum number of replicas
needs to be guaranteed. A DC may maintain strength factors
of data without keeping a replica of the data item.

Equation 1 describes how read and write accesses influ-
ence a local strength factor. Let Xdk = 1 represent the exis-
tence of a replica of data k in DC d, or its absence Xdk = 0.
Rk denotes the number of replicas of data k which must be
at least Nk (minimum number of replicas).

Fkd = max

0, min

 Lk︸︷︷︸

max.
strength

, rkd ∗∆rk︸ ︷︷ ︸
own reads

+wkd ∗∆wk︸ ︷︷ ︸
own writes

−
|DC|∑

i=1,i6=d

wkd ∗∆wkdi

︸ ︷︷ ︸
other writes

−Xkd ∗ Γk︸ ︷︷ ︸
time decay

(1)

Equation 1 shows that the replication strength for the data
k in DC d is increased by the reads (∆rk) and writes (∆wk)
requested through DC d, with intensities ∆rk and ∆wk, re-
spectively. It is weakened by the writes requested through
other DCs than DC d, with intensity ∆wkdi. The strength is
furthermore weakened by a temporal decay (Γk , last term
in the equation). Equation 1 also states that only DCs with a
replica of the data, Dk, will be penalised by writes to other
DCs and the pass of time (Γk). This reflects the cost of send-
ing updates to the DCs keeping a replica which should be
minimised by the strategy. Reads may increase the number
of replicas where writes may strengthen the replication in a
DC, but may also potentially remove a replica from one of
the other DCs, an effect that it is strengthen by the temporal
decay of the replication strength.

Each DC with a replica of the data must know about the
other DCs having replicas of the same data item. If data item
k is only replicated in one DC d and a write is requested
using a different DC j than the one it is currently replicated
in, so that its replication strength in DC d is falling below
T−k , then the data will continue to be replicated in that DC
until a replica is placed in another DC as otherwise the data
item will be lost.

The decay factor Γk ensures that in absence of writes, if
the reads are concentrated in a few DCs then the replicas
in other DCs with replicas will eventually vanish. This also
must comply with the minimum number of replicas, so in
some cases, the temporal effect must be ignored to ensure
the data exists at least in the minimum number of DCs
stipulated.

A read request to a DC, which does not have a replica
of the data, will be forwarded to the closest DC with a
replica. The DC with a replica will not gain strength from

2

this read operation as the read was not initiated at this DC.
The DC where the read requested originated from will then
gain some knowledge about the data access pattern even if
it does not have a replica. This knowledge will be used in
subsequent reads/writes to the DC and eventually may lead
to the placement of a replica. Otherwise, the record will be
discarded. Once the replication strength is higher than the
replication threshold (T+

k), this DC will notify all the DCs
holding a replica about the existence of the new replica on
this DC.

3.1 Cost of Representation
The execution of an strategy incurs a cost. For the proposed
algorithm, the cost is composed of a direct cost associated
to the reads (crkd) and writes (cwkd) executed in the system
for the data k in the DC d. Also there is a cost associated
to the reads (crkdj , crkdd = 0) and writes (cwkdj , cwkdd = 0)
between DCs d and j for data k. X

′
kd is the new replication

state after all the current operations have been executed, with
a cost per notification of cr∗kdj , and the cost of removing a
replica from a DC per notification of cr∗kdj . ρkd(ti, ti+1) is
1 if exists an operation from time ti to ti+1, (rkd(ti, ti+1) +
wkd(ti, ti+1)) > 0, or zero otherwise.

Costk(ti, ti+1) =

|DC|∑

d=1

rkd(ti, ti+1) ∗ crkd(ti) + wkd(ti, ti+1) ∗ cwkd(ti)︸ ︷︷ ︸

direct cost

+

|DC|∑

j=1

wkd(ti, ti+1) ∗ cwkdj(ti) ∗Xkj(ti)

︸ ︷︷ ︸
update propagation cost

+ (1−Xkd(ti)) ∗ rkd(ti, ti+1) ∗ min
j∈Rk

(crkdj(ti))

︸ ︷︷ ︸
redirect reads cost

+ (1−Xkd(ti)) ∗ wkd(ti, ti+1) ∗ min
j∈Rk

(cwkdj(ti))

︸ ︷︷ ︸
redirect writes cost

+

|DC|∑

j=1,j 6=d

(1−Xkd(ti)) ∗Xkj(ti) ∗ ρkd(ti, ti+1) ∗ cr∗dj(ti)
︸ ︷︷ ︸

search cost

+

|DC|∑

j=1,Xkj=1

X
′
kd(ti) ∗ (1−Xkd(ti)) ∗ cr∗kdj(ti)

︸ ︷︷ ︸
new replica cost

+

|DC|∑

j=1,j 6=d,Xkj(ti)=1

(1−X ′
kd(ti)) ∗Xkd(ti) ∗ cr∗kdj(ti)

︸ ︷︷ ︸
remove replica cost

(2)

The cost between time ti and ti+1, where i ∈ [0, n] with
t0 = 0 and tn = T , is expressed by Equation 2 and the
minimum number of replicas is represented by Inequality 3
for time t.

|DC|∑

d=1

Xkd(t) ≥ Nk (3)

The cost in Equation 2 corresponds to the cost of the op-
erations for the reads and writes of data k in DC d, ‘direct
cost’, plus the cost of propagating the updates, ‘update prop-
agation cost’, plus the cost of redirecting the reads to the less
costly DC with a replica, ‘redirect reads cost’, plus the cost
of searching for a DC with a replica of the data k to for-
ward the request if the directly access DC does not have a
replica of such data, ‘search cost’, the cost of generating a
new replica, ‘new replica cost’, and finally the cost from re-
moving a replica, ‘remove replica cost’, from time ti to time
ti+1. The Equation 2 has a quadratic term that corresponds
to the ‘search cost’. The total cost up to a time T is expressed
in Equation 4.

Costk(T) =
n−1∑

i=0

Costk (ti, ti+1) (4)

The algorithm proposed does not consider that, when
the DC does not contain the requested data and a search is
started, only the first reply from the search is processed and
DCs with no replica of the data do not reply to the search
request. Also many received reads could be combined into
one, which read/write would also be finally forward to the
closest DC with a replica, which would reduce the cost.

3.2 Discussion
Adaptive replication fits naturally into settings where even-
tual consistency is used. Information about new replicas can
then be eventually propagated between the DCs, such that
updates eventually reach also this DC and be applied to the
new replica. The deletion of replicas requires strong consis-
tency, but as it is not on any critical path, it will not incur
latency increase.

In addition to the decay factor Γk, another temporal ef-
fect, the Time To Live (TTL), can be employed to enforce
that data items will be fully removed after a while. This
value may not be applied to data stored in recovery centres
and data warehouses which may have their own TTL. Also
it would be desirable for data that expires to be copied into
those data centres before it is removed from all the DCs.
The replication strategy can be further adapted to include
other constraints and objectives, some of which we are al-
ready considering.

The presented algorithm is optimal in the sense that, when
the access pattern stabilises, the total number of replicas
required for the reads and writes is minimal with respect to
the defined thresholds.

3

Acknowledgments
This work has been supported by the project SyncFree (co-
financed by the European Commission through the grant
agreement number 609551).

References
[1] C. L. Abad, Y. Lu, and R. H. Campbell. Dare: Adaptive data

replication for efficient cluster scheduling. In Proceedings of
the 2011 IEEE International Conference on Cluster Comput-
ing, CLUSTER ’11, pages 159–168, Washington, DC, USA,
2011. IEEE Computer Society. ISBN 978-0-7695-4516-5.
. URL https://wiki.engr.illinois.edu/download/attachments/
194990492/cluster11.pdf.

[2] S. Abdul-Wahid, R. Andonie, J. Lemley, J. Schwing, and
J. Widger. Adaptive distributed database replication through
colonies of pogo ants. In Parallel and Distributed Processing
Symposium, 2007. IPDPS 2007. IEEE International, pages
1–8, March 2007. . URL http://www.cwu.edu/∼andonie/
MyPapers/IPDPS%20Long%20Beach%202007%20final.pdf.

[3] P. M. G. Apers. Data allocation in distributed database sys-
tems. ACM Transactions on Database Systems, 13:263–304,
1988.

[4] I. Briquemont. Optimising client-side geo-replication with
partially replicated data structures. Master’s thesis, Louvain-
la-Neuve, September 2014. URL http://www.info.ucl.ac.be/
∼pvr/MemoireIwanBriquemont.pdf.

[5] A. Chanthadavong. Internet of things to drive ex-
plosion of useful data: Emc. Technical report,
ZDNet, April 2014. URL http://www.zdnet.com/
internet-of-things-to-drive-explosion-of-useful-data-emc-7000028376.

[6] Cisco. The zettabyte era-trends and analysis. Tech-
nical report, Cisco, June 2014. URL http://www.
cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/VNI Hyperconnectivity WP.
pdf.

[7] X. Dong, J. Li, Z. Wu, D. Zhang, and J. Xu. On dynamic
replication strategies in data service grids. In Object Oriented
Real-Time Distributed Computing (ISORC), 2008 11th IEEE
International Symposium on, pages 155–161, May 2008. .

[8] M. Dorigo. Optimization, Learning and Natural Algorithms.
PhD thesis, Politecnico di Milano, Italy, 1992.

[9] S. Goel and R. Buyya. Data replication strategies in wide area
distributed systems. In R. G. Qiu, editor, Enterprise Service
Computing: From Concept to Deployment, pages 211–241.
Idea Group Inc, 2006. URL http://www.cloudbus.org/papers/
DataReplicationInDSChapter2006.pdf.

[10] R. Kingsy Grace and R. Manimegalai. Dynamic replica place-
ment and selection strategies in data grids- a comprehensive
survey. J. Parallel Distrib. Comput., 74(2):2099–2108, Feb.
2013. ISSN 0743-7315. . URL http://dx.doi.org/10.1016/j.
jpdc.2013.10.009.

[11] A. Liu, Q. Li, and L. Huang. Quality driven web ser-
vices replication using directed acyclic graph coding. In
A. Bouguettaya, M. Hauswirth, and L. Liu, editors, Web In-
formation System Engineering – WISE 2011, volume 6997 of
Lecture Notes in Computer Science, pages 322–329. Springer

Berlin Heidelberg, 2011. ISBN 978-3-642-24433-9. . URL
http://dx.doi.org/10.1007/978-3-642-24434-6 28.

[12] T. Loukopoulos and I. Ahmad. Static and adaptive distributed
data replication using genetic algorithms. J. Parallel Distrib.
Comput., 64(11):1270–1285, Nov. 2004. ISSN 0743-7315.
. URL http://pdf.aminer.org/000/297/337/static and adaptive
data replication algorithms for fast information access.pdf.

[13] N. Mohd. Zin, A. Noraziah, A. Che Fauzi, and T. Herawan.
Replication techniques in data grid environments. In J.-S.
Pan, S.-M. Chen, and N. Nguyen, editors, Intelligent Infor-
mation and Database Systems, volume 7197 of Lecture Notes
in Computer Science, pages 549–559. Springer Berlin Hei-
delberg, 2012. ISBN 978-3-642-28489-2. . URL http:
//dx.doi.org/10.1007/978-3-642-28490-8 57.

[14] S. Naseera and K. M. Murthy. Agent based replica place-
ment in a data grid environement. Computational Intelligence,
Communication Systems and Networks, International Confer-
ence on, 0:426–430, 2009. .

[15] D. Serrano, M. Patino-Martinez, R. Jimenez-Peris, and
B. Kemme. Boosting database replication scalability
through partial replication and 1-copy-snapshot-isolation.
In Dependable Computing, 2007. PRDC 2007. 13th Pacific
Rim International Symposium on, pages 290–297, Dec
2007. . URL http://www.researchgate.net/publication/
200023090 Boosting Database Replication Scalability
through Partial Replication and 1-Copy-Snapshot-Isolation/
links/0deec520a3cdf6504e000000.

[16] K. Tolle, D. Tansley, and A. Hey. The fourth paradigm:
Data-intensive scientific discovery [point of view]. Proceed-
ings of the IEEE, 99(8):1334–1337, Aug 2011. ISSN 0018-
9219. . URL http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=
&arnumber=5958175.

[17] S. Venugopal, R. Buyya, and K. Ramamohanarao. A tax-
onomy of data grids for distributed data sharing, manage-
ment, and processing. ACM Comput. Surv., 38(1), June 2006.
ISSN 0360-0300. . URL http://www.cloudbus.org/reports/
DataGridTaxonomy.pdf.

[18] Z. Wang, T. Li, N. Xiong, and Y. Pan. A novel dynamic
network data replication scheme based on historical access
record and proactive deletion. J. Supercomput., 62(1):227–
250, Oct. 2012. ISSN 0920-8542. . URL http://dx.doi.org/10.
1007/s11227-011-0708-z.

[19] O. Wolfson. A distributed algorithm for adaptive replication
of data. Technical report, Department of Computer Science,
Columbia University, 1990. URL http://hdl.handle.net/10022/
AC:P:21285.

[20] O. Wolfson and A. Milo. The multicast policy and its relation-
ship to replicated data placement. ACM Trans. Database Syst.,
16(1):181–205, Mar. 1991. ISSN 0362-5915. . URL http:
//academiccommons.columbia.edu/catalog/ac%3A142996.

[21] O. Wolfson, S. Jajodia, and Y. Huang. An adaptive data
replication algorithm. ACM Trans. Database Syst., 22(2):255–
314, June 1997. ISSN 0362-5915. . URL http://www.cs.uic.
edu/∼wolfson/mobile ps/tods-adaptive-replication.pdf.

4

D CONFLICT-FREE PARTIALLY REPLICATED DATA TYPES

D Conflict-free Partially Replicated Data Types

SyncFree Deliverable D.2.2.1(v0.1), March, 2015, Page 38

Conflict-free Partially Replicated Data Types
Iwan Briquemont, Manuel Bravo, Zhongmiao Li and Peter Van Roy

Université catholic de Louvain, Belgium

Abstract—Designers of large user-oriented distributed appli-
cations, such as social networks and mobile applications, have
adopted measures to improve the responsiveness of their applica-
tions. Latency is a major concern as people are very sensitive to it.
Geo-replication is a commonly used mechanism to bring the data
closer to clients. Nevertheless, reaching the closest datacenter can
still be considerably slow. Thus, in order to further reduce the
access latency, mobile and web applications may be forced to
replicate data at the client-side. Nevertheless, fully replicating
large data structures may still be a waste of resources, specially
for thin-clients.

We propose a replication mechanism built upon conflict-free
replicated data types (CRDT) to seamlessly replicate parts of
large data structures. We define partial replication and give an
approach to keep the strong eventual consistency properties of
CRDTs with partial replicas. We integrate our mechanism into
SwiftCloud, a transactional system that brings geo-replication to
the client. We evaluate the solution with a content-sharing appli-
cation. Our results show improvements in bandwidth, memory,
and latency over both classical geo-replication and the existing
SwiftCloud solution.

I. INTRODUCTION

Globally accessible web applications, such as social net-
works, aim to provide low-latency access to their services.
Thus, data locality is a fundamental property of their systems.
Geo-replication is a common solution where data is replicated
in multiple datacenters [1]–[3]. In this scenario, user requests
are forwarded to the closest datacenter. Therefore, the latency
is reduced. Unfortunately, the latency, even when accessing
the closest datacenter, may still be considerable. It has been
proved that clients are sensitive to even small increases of
latency [4], [5].

Systems such as [6], [7] use caching techniques to yet
reduce latency even more. However, this can be challenging
and expensive. For instance, one could simply use client
caches for reading purposes. Nevertheless, in order to keep
some consistency guarantees and freshness of data, mecha-
nisms, such as cache invalidation, need to be used. Scaling
these kinds of techniques is difficult and directly affects the
performance. Moreover, one could let clients apply write
operations locally and eventually propagate them. However,
this can cause conflicts between replicas and potential rollback
situations.

The recently formalized CRDTs [8], [9] can serve to dimin-
ish the impact of some of the previously mentioned problems.
These data types are conflict-free by default; therefore, no
conflict resolution mechanisms need to be written by appli-
cation developers. SwiftCloud [10], a geo-replicated storage
system that ensures causal consistency, benefits from CRDT
semantics. It replicates CRDTs not only across datacenters,

but it also replicates them in clients. It allows read and
write operations to be directly executed in clients caches. In
consequence, SwiftCloud reduces latency, and enables off-line
mode during disconnection periods.

The current specifications of CRDTs do not allow them to
be partitioned. Thus, a CRDT replica is assumed to contain
the full data structure. We believe partitioned CRDTs can
be effectively used to address two relevant issues of current
systems:
• CRDTs can easily become heavy data structucture, such

as a CRDT that contains the posts of a user wall in
a Facebook-like application. In many cases, the user is
simply interested in the most relevant posts, according to
some criterium. For instance, one may only be interested
in reading the top-ten most voted posts of a Reddit-like
application. Thus, replicating the whole CRDT is a waste
of resources, of both storage and bandwidth. The former
can be critical when thin devices, such as smartphones,
are considered as clients. These types of clients have
limited memory resources; therefore, it is convenient
to avoid storing unnecessary data. On the other hand,
bandwidth is one of the most costly resources offered by
cloud providers such as Amazon S3 [11], Google Cloud
Storage (GCS) [12], and Microsoft Azure [13]; therefore,
it is beneficial to use it efficiently.

• The full replication of CRDTs in clients arises security
concerns. By partitioning the CRDTs, applications could
precisely decide which data each client stores. This could
keep malicious clients from storing sensitive data.

In this paper, we propose a new set of CRDTs that allow
partitioning. We call them “Conflict-free Partially Replicated
Data Types” (hereafter CPRDTs). We study how partitions
of the same CRDT can interact among each other and still
maintain its consistency guarantees. Furthermore, we revise
previously defined CRDT specifications and propose new
specifications that consider partitioning.

The major contributions of this paper are the following:
• The definition of the new CPRDTs. This includes revis-

iting the specifications of previously defined CRDTs.
• Extension of SwiftCloud to integrate CPRDTs.
• Extensive evaluation of the performance improvements

of CPRDTs in SwiftCloud. This includes the imple-
mentation of a Reddit-like [14], [15] application, called
SwiftLinks, on top of SwiftCloud.

The remainder of the paper is organized as follows: Section
II introduces previous work that we consider relevant to un-
derstand this paper; Section III presents a formal definition of

the partitioned CRDTs and the specifications of some of them;
Section IV discusses how CPRDTs could be practically used;
Section V presents an extensive evaluation of the SwiftCloud
extension that includes CPRDTs; Section VI briefly describes
preceding related work; finally, Section VII discusses future
work and concludes the paper.

II. BACKGROUND

A. CRDTs

Conflict-free Replicated Data Types (CRDTs) are a set of
data structures that allow replicas to be updated concurrently
and guarantee all replicas will eventually converge to the same
state [8], [9]. Traditional approaches include user interference
[7], which is cumbersome for users, or basic last-write-wins
semantics [16]. Based on different propagation models, there
are two types of CRDTs, namely operation-based and state-
based.

For operation-based CRDTs, a replica propagates its ap-
plied operations to other replicas. Concurrent operations are
designed to be commutative, so replicas can deliver concurrent
updates in different order and will converge to the same state,
without the risk of having conflict. Causal delivery is usually
required.

On the other hand, for state-based CRDTs, a replica ships
its whole internal state to the rest. Upon arrival, replicas
merge both the local and the received states. The merge
operation of state-based CRDTs is idempotent, commutative
and associative. Therefore, state-based CRDTs have less re-
quirement for the delivery channel compared to op-based
CRDTs: messages can be lost, duplicated or out-of-order, but
replicas will converge to the same state as long as they have
seen the latest states from each other.

B. SwiftCloud

SwiftCloud is a geo-replicated cloud storage system that
stores CRDTs and caches data at clients [10]. It consists of
several datacenters that fully replicate data. Clients communi-
cate with the closest datacenter and cache accessed data in its
local cache.

SwiftCloud provides transactional causal+ consistency.
Transactions are firstly executed and committed in the client
side, then propagated to the datacenters. For fault tolerance
purposes, committed transactions are only visible after they
have been seen by K datacenters.

III. CONFLICT-FREE PARTIALLY REPLICATED DATA TYPES

In this section we present the Conflict-free Partially Repli-
cated Data Types. These new data types are CRDTs that can
be partitioned. We believe that partitioning permits a more
efficient usage of resources such as memory and bandwidth.
This may be critical when thin clients, such as mobile devices
or embedded computers, cache the data structures. On the
other hand, we believe CPRDTs have other applications. For
instance, CPRDTs can be used to enforce fine-grained security
policies. Furthermore, they can also be used to provide a way

to support data with multiple fidelity requirements to accom-
modate resource-limited devices while keeping consistency
between the fidelity levels [17]. This can be achieved by not
replicating less important information on mobile devices.

This poses new challenges: all operations are not enabled
on partial replicas, which means new preconditions must be
added to ensure correct usage. However, these conditions must
not interfere with the convergence of the replicas. Care must
be taken as a partial replica may change over time. A partial
replica could change the parts it keeps, by choosing to replicate
more parts. This has to be carefully done without losing data
and still achieving convergence between replicas.

A. Example of use

Let us use an example to illustrate the advantages of
CPRDTs: the user wall of a social network. We can model
a user’s wall as a set. In this example, there are four users
that interact: Alice, Bob, Charlie and an anonymous user. Bob
is a friend of Alice, while Charlie is a friend of Bob, but not of
Alice. Participating users may want to read or post something
in Alice’s wall. We make two assumptions:
• Users maintain a full replica of their wall.
• A user X that reads or posts in user’s Y wall replicates

user’s Y wall locally.
Each post contains a date, an author, and a message. Each

user is allowed to read a subset of other users walls, depending
on their relationship. For instance, Bob can read all the posts
of Alice’s wall because they are friends. Nevertheless, Charlie
can only read public and Bob’s posts (friends of friends).
Finally, any other user can only read public posts.

CPRDTs have two applications in this scenario: (i) limiting
the size of the wall to be replicated, which can lead to a better
usage of memory and bandwidth; and (ii) enforcing security
policies.

We can assume that Alice has been using the social network
for a few years and there are a considerable number of
posts on her wall. It seems natural that a user should not
have to replicate the whole wall to simply read the latest
posts. Nevertheless, this is what presumably may occur in a
fully-replicated scenario, where the data structures cannot be
partitioned and we still want to replicate data in clients-side.

One solution is to manually split the data structure according
to some criteria (e.g. by date, author or privacy setting).
However, developers should anticipate how users will use
the application. While possible in some cases, it makes the
application more cumbersome to write. Furthermore, it would
be difficult to achieve optimal results since each client may
behave differently.

On the other hand, CPRDTs abstract the partitioning from
the application. Thus, from the point of view of the program-
mer, there will only be one logical data structure per wall.
We strongly believe this eases developers task. Moreover, this
allows a more efficient and fine-grained partitioning adapted
to the needs of a particular client in a specific point of time.
For instance, Bob might want to look at the posts that Alice
and himself made during the last week. On the other hand,

Charlie may want to see all the posts of the last two years.
These two requests will end up with completely different parts
of the same set. Only with CPRDTs, optimal results can be
achieved.

The second application of CPRDTs is related to the en-
forcement of security policies. We may want users to only
replicate posts that they are allowed to see. For instance, an
anonymous user should only replicate public posts. This would
keep malicious users from storing sensitive data locally.

B. Definitions

Before defining CPRDTs, we have to clarify some concepts
that we will use throughout the paper.

An object is a named instance of a CRDT or CPRDT
in our case. Each participating process replicates a set of
objects. The objects can be read using query operations and
modified using update operations. The query operations return
the abstract state of the object, that we call the data of
the object. Nevertheless, additional data, which we refer as
metadata, is kept internally to ensure convergence.

An update operation can have preconditions that capture its
safety requirements. In consequence, an operation is said to
be enabled at a replica, if it satisfies its preconditions. For
instance, the remove operation of a set is enabled only if the
element to be removed is present in the set.

Previous definitions fit into both CRDTs and CPRDTs.
Nevertheless, for CPRDTs, we further consider that a process
might replicate an object partially: it only has access to a part
of data, thus the process only keeps the metadata required for
that given part. Intuitively, this means that only part of the data
structure is replicated: some elements of a set, a subgraph of
a graph, or a slice of a sequence. CRDTs that only have one
element, such as counters and registers, can not be partitioned
and therefore do not need to be specified as CPRDTs.
particle We define a particle as an element of a collection.
For instance, a particle in a set would be any element that can
be added to the set.

Apart from the definition of particles, we need to introduce
three concepts to understand CPRDTs: shard set, required, and
affected.
shard set Each replica of a CPRDT xi has associated a set of
particles, namely shard set in analogy to the databases concept.
Respectively, shard(xi) is a function that returns the shard
set of xi. The replica only knows the state of the particles in
shard(xi); therefore, it can only enable query operations that
require those particles. Furthermore, the CPRDT replica only
needs to receive update operations that affect the particles in
shard(xi) in order to converge.

There are two special cases: a full replica and a hollow
replica. When shard(xi) = π then we say that xi is a full
replica, and it is equivalent to a normal CRDT. On the other
hand, when shard(xi) = ∅, then xi is a hollow replica (as
named in [18]). A hollow replica does not maintain any state.
Nevertheless, it can still handle updates, as explained in section
III-C2.

required For an operation op with its arguments, required(op)
is the set of particles needed by op to be properly executed.
This means that, for replica xi, an operation is enabled only if
required(op) ⊆ shard(xi). E.g. for the lookup operation of a
set, required(lookup(e)) = {e} where e is an element of the
set. In case e /∈ shard(xi), the replica will not be able to know
whether e is in the set because it has not kept a state for it.
This implies that updates affecting e have not been necessarily
seen by xi.
affected The function affected(op) tells a particle that may
have its state affected after executing an update operation. We
assume that an update can only affect one particle. This may
not be true for complex data structures, however it is always
possible to split an operation into several ones that each only
affects one particle. For example, for a graph, an operation
for removing a vertex will remove the vertex as well as all
its edges. It can be split into several sub-operations that firstly
remove all edges of the vertex and then remove the vertex.

C. Replication

As for the original CRDTs, we consider two equivalent
replication techniques: state-based and operation-based. Al-
lowing partitioning introduces changes in the way these repli-
cation techniques work. Furthermore, concepts such as causal
history and convergence have to be revisited. The following
definitions are based on the ones in [8] for fully-replicated
CRDTs.

To simplify our definitions, we assume that the shard set of
a CPRDT is fixed. However, in practice, it can be necessary
to dynamically change it. Nevertheless, definitions apply if
we consider that changing the shard set is equivalent to the
creation of a new CPRDT replica.

Since the abstract state of a CPRDT may change after
applying an update, we denote the abstract states of a CPRDT
replica (xi) by an increasing numbered sequence as sk(xi),
such as s0(xi), s1(xi)... sk(xi)...

Now we define when two replicas are equivalent.

Definition 1 (Equivalence between replicas). xi and xj have
equivalent abstract states if all query operations q, for which
required(q) ⊆ (shard(xi) ∩ shard(xj)), return the same
values.

Different replicas of the same CPRDT might have different
shard sets. Thus, we define intersecting abstract state as the
abstract state for the particles in the intersection of shard sets.

Definition 2 (Intersecting abstract state). For a replica xi
with its current state sk(xi), sk(xi|xj) denotes the state for
particles ∈ shard(xi) ∩ shard(xj).

The requirement for replicas to converge is that they ap-
ply, directly or indirectly, the same update operations. We
can informally define the causal history of a replica, de-
noted by Ck(xi), as the applied update operations. While
xi applies each operation, its causal history goes through
a sequence of states C0(xi), C1(xi), ..., Ck(xi), We also
define the intersecting causal history as Ck(xi|xj) = {f ∈

Ck(xi)| affected(f) ∈ (shard(xi) ∩ shard(xj))}. Intuitively,
it includes updates from the causal history of xi that affects
the particles of xj .

Now, we are ready to formally define convergence in the
context of CPRDTs:

Definition 3 (Eventual Convergence of Partial Replicas). Two
partial replicas xi and xj of an object x converge eventually
if the following conditions are met:

• Safety: ∀i, j : ∀k, k′, if Ck(xi|xj) = Ck′(xj |xi), then
sk(xi|xj) = sk′(xj |xi).

• Liveness: ∀i, j : ∀k, if f ∈ Ck(xi) and affected(f) ∈
shard(xj), then ∃k′ that f ∈ Ck′(xj).

1) State-based partial replication: State-based replication
is an interesting propagation mechanism because it poses
almost no communication requirements, as explained in II.
Nevertheless, it may be expensive to always ship the full
internal state. CPRDTs can optimize this technique since only
parts of the state need to be sent and received.

We define the causal history of a replica for state-based
replication as follows:

Definition 4 (Causal History on Partial Replicas - state-based).
For any replica xi of x:
• Initially, C0(xi) = ∅.
• Before executing update operation f ,

if affected(f) ∈ shard(xi) then execute f and
Ck+1(xi) = Ck(xi) ∪ {f},
otherwise Ck+1(xi) = Ck(xi).

• After executing merge against states xi, xj , Ck+1(xi) =
Ck(xi) ∪ {f ∈ Ck′(xj)| affected(f) ∈ shard(xi)}

The merge method used by a replica must only merge the
intersection state of its particles with the remote replica and
ignore the others.

To achieve convergence with state-based replication on
partial replicas, updates operations cannot be applied if it
affects a particle that is not in that replica’s shard set. This
would violate the liveness property of convergence as that
update might not be added to the causal history of another
replica when merging. Thus, an operation f is disabled if
affected(f) 6∈ shard(xj).

Since the replicas only converge on their common parts, a
replica xi just needs to send to another, xj , the state of the
intersection of their shards (shard(xi) ∩ shard(xj)).

2) Operation-based partial replication: As with classical
CRDTs, the update operations are divided into two phases:
prepare and downstream phase. The former is done at the
source replica and does not have any side-effect. The latter is
applied at all replicas and it affects the state of the replica.

In contrast to CRDTs, CPRDTs only have to broadcast
updates to the replicas interested in the particles affected by
the update. Therefore, an update u is broadcasted to xi if
affected(u) ∈ shard(xi).

This poses an interesting situation. A CPRDT replica can
complete the first phase of the update operation without

necessarily complete the second phase. For instance, a replica
xi, whose shard(xi) are particles a and b, receives an update
operation that affects particle c. In this situation xi can com-
plete the prepare phase, broadcast the downstream operation
to the interested replicas, and discard it locally. We named
this scenario blind updates. It is important to highlight that
this cannot happen in state-based replication. Hollow replicas,
which have an empty shard, can only do blind updates.

Definition 5 (Causal History on Partial Replicas - op-based).
For any replica xi of x:
• Initially, C0(xi) = ∅.
• After executing the downstream phase of operation f

at replica xi,
if affected(f) ∈ shard(xi) then Ck+1(xi) = Ck(xi) ∪
{f},
otherwise Ck+1(xi) = Ck(xi).

D. Specification

In this section, we extend the CRDT specification models.
1) Creation of a new partial replica: The creation of new

replicas in CRDTs is rather straightforward. The CRDT can
simply be copied in its entirety. Nevertheless, in the context
of CPRDTs, we want to choose which particles to copy.

In order to solve this problem, we propose a new operation,
called fraction, that allows us to create new partial replicas
from a subset of a given replica. The subset we want to copy in
the new replica is defined by a set of particles. More formally,
fraction can be defined as follows:
xj = fraction(xi, Z), where Z is the set of particles we want
to take. The operations ensures that shard(xj) = shard(xi)∩
Z.

Notice that using a set of particles is the canonical form to
define the subset. In practice, it can be defined by using a more
high-level query language. For instance, an application could
issue a query in the form of “give me the first 10 elements of
your sorted set”, which can then be transformed into a set of
particles. We further discuss this in Section IV-A.

This operation is also useful to simplify the specifications of
state-based CRDTs: when merging two partial states, we only
want to merge the state of the common particles since the
rest can be ignored. However, putting this in the specification
is cumbersome. Instead, we assume that the merge operation
merges the complete payloads, regardless of their shard. We
can then limit the growth of the replica to its own shard as
such: if replica xj receives the payload of replica xi, xj should
do:
xk = fraction(merge(xi, xj), shard(xj))
Thus shard(xk) = shard(xj) and, in consequence, the replica
does not grow. In practice, the fraction operation can be
applied before sending the state in order to save bandwidth.

2) Specification model: The specifications are similar to
the CRDT specifications, with some added notations. Each
operation must define which particles it involves (required par-
ticles and affected particles). Note that the conditions given in
section III-B (required(op) ⊆ shard(xi), and affected(op) ∈

shard(op(xi)) for state-based replication), regarding whether
an operation is enabled or not, are not explicitly included in
the specification. Nevertheless, it must be enforced.

Specification 1 and Specification 2 show the template of
specifications for state-based and operation-based CPRDTs
respectively. Examples of CPRDTs can be found in the ap-
pendix.

Specification 1 State-based CPRDTs specification
1: particle definition Informal definition of what is a particle
2: payload type
3: initial Initial value
4: query query(arguments) : returns
5: required particles Set of required particles
6: pre Precondition
7: let Evaluate synchronously, no side effects
8: update update(arguments) : returns
9: required particles Set of required particles

10: affected particle The particle that can be affected
11: pre Precondition
12: let Evaluate at source, synchronously
13: merge (value1, value2) : payload mergedV alues
14: Least Upper Bound merge of value1 and value2
15: shard(mergedV alues) = shard(value1)∪ shard(value2)

must be true
16: fraction (particles selection) : payload partialReplica
17: Copies the particles selection into partialReplica so that

shard(partialReplica) = selection ∩ shard(self)

Specification 2 Op-based CPRDTs specification
1: particle definition Informal definition of what is a particle
2: query query(arguments) : returns
3: required particles Set of required particles
4: pre Precondition
5: let Evaluate synchronously, no side effects
6: update Global update(arguments) : returns
7: prepare (arguments) : intermediate value(s) to pass down-

stream
8: required particles Set of required particles to prepare
9: pre Precondition

10: let 1st phase: synchronous, at source, no side effects
11: effect (arguments passed downstream)
12: required particles Set of required particles to apply
13: affected particles The particle that can be affected
14: pre Precondition against downstream state
15: let 2nd phase: asynchronous, side effects
16: fraction (particles selection) : payload partialReplica
17: Copies the particles selection into partialReplica so that

shard(partialReplica) = selection ∩ shard(self)

IV. PRACTICAL USAGE

In this section, we describe some practical issues of
CPRDTs . This takes us to discuss three things: (i) how shard
can be practically defined, (ii) how replicas of CPRDTs are
created and modified through shard queries, and (iii) how the
shard can be managed in a real system. The last part of the
section discusses a system model that aim to simplify and ease
the integration of CPRDTs.

A. Shard definition

In Section III, we defined the shard of a replica as a set
of particles. This set can be infinite; therefore, all elements of
the set are not explicitly kept in practice as we only need to
know whether a particle is in the shard or not. A shard can
be then defined as a range of particles. For instance, on a set
of integers, we can define it as [0, 2] for particles {0, 1, 2}, or
even (0,+∞) for strictly positive integers. Similarly, it can be
defined as all the particles that satisfy a specific property. For
example, the odd integers.

B. Shard query

A shard query defines the set of particles that satisfy a
particular criterium. Thus, in practice, shard queries can be
used for two reasons: (i) creation of new CPRDTs from the
returned set of particles, and (ii) shrinking or expanding the
shard set. The latter is discussed in more detail in IV-C.

Shard queries bridge the gap between the application se-
mantics and the function fraction, introduced in III-D1. Thus,
it adds expressiveness to the usage of CPRDTs.

We identify two types of shard queries: state-independent
and state-dependent queries. The former only depends on the
properties of the particles, and not in the state of CPRDT.
In contrast, the latter depends on the current version of the
CPRDT. For instance, a state-independent query over a set
of integers could be “integers greater than 0”. On the other
hand, a state-dependent query could be “10 highest integers in
the set”. The state-independent query does not depend on the
state of the CPRDT, and the result of the query will always
be the set (0,+∞). Nevertheless, the state-dependent query
will have a different result depending on which elements have
been already added, and removed, on the version considered.

State-independent queries are easier to work with: they
are comparable. One could determine which query is more
specific without having to know the state of the CPDRT they
apply to. While with state-dependent queries, one can only
compare queries if they apply to the same version of the object.
Nevertheless, we believe both types are needed in order to
make CPRDTs usable. In IV-D, we describe a system model
that can simplify the integration of state-dependent of queries.

C. Dynamic shard set

Dynamic shard set refers to the capability of a partial replica
to modify, either shrink or expand, its shard set. We believe
this capability is very useful in practice. For instance, a client
may become interested in new parts. Having dynamic shard
set, the replica does not need to be re-created, only the missing
state needs to be grabbed.

Nevertheless, maintaining convergence in some scenarios
can become challenging. On one hand, a partial replica can
easily shrink its shard set without compromising convergence
in the operation-based scenario. The replica only needs to take
into consideration two things: (i) updates prepared locally have
been already broadcasted, and (ii) the data to be dropped
is replicated by some other replica; therefore, data do not
disappear. On the other hand, expanding a partial replica is

more tricky. For instance, in an operation-based scenario, the
following situation can easily occur:
• A replica’s (xi) shard set is a, c.
• xi did not receive updates that affect b for a while.
• Suddenly, xi becomes interested in b and starts accepting

updates on b.
• Unfortunately, the replica will not converge since updates

have been missed.
In the previous scenario, extra communication between repli-
cas would be needed in order to recover dropped updates. This
is clearly not easy to achieve.

In state-based replication, shrinking or expanding the shard
set is simpler. In one hand, a replica only needs to broadcast
its state before expanding its shard set. On the other hand, a
replica that wants to expand its shard set only needs to merge
its current state with the state of a replica that contains the
new particles.

D. Authority system model

We have not specified a system model up to now. We
have only said that processes storing objects propagate either
states or operations to reach convergence. CPRDTs are not
biased to any specific system model. Nevertheless, we believe
that certain system models might considerably simplify the
managment of partial replicas.

We propose a system model where there is at least one
entity, namely authority, holding a full replica. This model
poses several advantages in comparison to an ad-hoc architec-
ture where no authority is assumed. Firstly, clients can discard
their (partial) replicas at will as long as their updates have been
reliably sent to the authority. Secondly, a client can request any
fraction to the authority in order to either get a new partial
replica, or to expand its own shard set. Notice that having
an authority also simplifies the integration of state-dependent
shard queries in the system, very difficult and costly otherwise.
Finally, the authority could store which particles each partial
replica has in his shard set. Thus, it could only propagate
operations to the interested replicas, saving bandwidth.

V. EVALUATION

In this section, we report the results of our experimental
evaluation. This study aims at evaluating the benefits of
CPRDTs in terms of memory, bandwidth and latency. Effi-
cient resources usage positively impacts the performance. In
our study we compare three approaches: (i) classical geo-
replicated system where data is exclusively stored in dat-
acenters, (ii) SwiftCloud, and (iii) our modified version of
SwiftCloud that integrates CPRDTs.
SwiftLinks In order to compare the three systems, we imple-
mented a new application, namely SwiftLinks, on top of Swift-
Cloud. SwiftLinks is a vote-based content-sharing application
based on Reddit. In few words, the application allows users to
create forums where they can publish posts. Then, users can
vote positively or negatively posts. As a consequence, posts
get ranked according to the votes. In addition, users can add
comments to posts and to other comments. Users can also vote

comments, and consequently the comments get ranked (more
information [14], [15]).

SwiftLinks is modeled with three CRDTs: (i) OR-Set for fo-
rums, (ii) a novel Remove-once Tree CRDT for comments, and
(iii) Last-Writer-Wins Registers for votes. The application uses
both types of queries: state-independent and state-dependent.
The former is mostly used for reading single comments or
posts. The latter is used for reading raking of posts and
comments.
Warm-up We used Reddit’s API to fetch data to warm up our
system. For each benchmark, we create 10000 posts over 20
forums (so an average of 500 posts per forum). Each post has
20 comments on average. Moreover, each post has an average
of 170 votes, while comments an average of 13 votes.
Workload Our workloads are composed by read and update
operations. Read operations are executed over posts and com-
ments. On the other hand, there are three types of update
operation: (i) new post, (ii) new comment, and (iii) new vote.

For most of the experiments, 20% of the operation are
updates and 80% are read operations. Furthermore, 90% of
the operations are biased to previously accessed objects. This
means that they are likely to hit the cache. The rest (10%) is
done on randomly selected posts and comments.

A. Experimental setup

SwiftLinks was evaluated using three Amazon EC2 servers
as datacenters: one in Ireland and two in the USA (east and
west coast). The EC2 instances are equivalent to a single core
64-bit 2.8 GHz Intel Xeon virtual processor (4 ECUs) with 7.5
GB of RAM. The clients run in 15 PlanetLab nodes located
near the DCs. These nodes have heterogeneous configurations
with varying processing power and RAM. We set up five
SwiftLinks users running concurrently per node. Each client
performs an operation per second.

There are three main configurations for clients to run the
application: cloud, non-lazy, and lazy.

In the cloud configuration, operations are applied syn-
chronously at one datacenter and replicated asynchronously to
the rest of datacenters. This simulates a typical geo-replicated
system. In this case, the client does not cache any data.

The other two configurations adopt the SwiftCloud approach
of caching data on clients side. We limit the capacity of
the cache in our experiments, using 64MB as default size.
If the cache size exceeds this limit, the least recently used
object is dropped. This simulates memory restrictions on thin
clients. In this configurations, non-lazy and lazy, if the cache
contains the required data, the operations are run locally, and
asynchronously propagated to the closest datacenter.

The difference between non-lazy and lazy is that the latter
benefits from the partial replication mechanism described in
the paper. This means that objects are fetched in parts as
needed, so the cache can hold parts of an object. For instance,
a query for the top ten posts of a forum would only replicate
those ten posts in clients cache. On the other hand, for the
non-lazy configuration, the objects are only fully replicated

in clients side, as in SwiftCloud. Therefore, the same top ten
posts query would replicate the whole forum.

B. Latency

We evaluated the perceived latency for various operations
with and without partial object replication. Figure 1 shows
the cumulative distribution functions of different operations’
latency with a 64MB cache size limit. These results are
obtained after a warm-up phase for the cache. This means
that the cache is pre-filled with objects that will be used by
the operations present in the workload. For the non-lazy and
lazy mode, there are always a percentage of operations with
a very low latency. We can conclude that it is the percentage
of operations that hit the cache.
Read operations Figure 1a shows that the non-lazy mode has
greater cache hit rate (35%) than the lazy mode. Nevertheless,
the hit rate is not optimal due to the limit in the cache size:
the cache cannot hold full replicas of all the forums and thus
sometimes need to fetch them again. Figure 2 shows the results
of a similar experiment but without any cache size limit. In
that case, the cache hit rate, for the non-lazy mode, is 90%,
which corresponds to our ratio of biased operations, and it
confirms the previous results with a social network application
of the SwiftCloud paper [10]. On the other hand, in lazy mode,
the cache hit rate is lower, with only 20% in both experiments
(figures 1a and 2), because the cache only holds partial replicas
which gives it less chance of having all the parts needed for
hitting the cache in subsequent operations. However, it has the
advantage of a lower maximum latency: if an operation does
not hit the cache, it only needs to fetch some parts, instead
of the full object. In that scenario, it induces a delay similar
to the cloud solution, around 200 to 300 ms, while without
lazy fetching, the delay is increased to around 500 to 700 ms
by having to replicate a full object. This poses a trade-off
between the cache hit rate and the maximum latency. While
fully replicating an object will provide more cache hits, a cache
miss is more costly.

For the latency of reading comments of a post, shown in
Figure 1b, the situation is a bit different. Clients are less likely
to read the same comment tree multiple times; therefore, this
affects the cache hit ratio. As the figure shows, the hit ratio
is less than 5% in both lazy and non-lazy fetching. But again,
lazy fetching has the advantage of reducing the impact of a
cache miss as it only replicates the comments required by the
operation instead of the full comment tree. In consequence, the
lazy approach has a slightly better latency, close to the cloud
mode. The cloud mode performs better because it does never
need to fetch any data, which means the returned messages
are considerable smaller. Notice that the difference between
non-lazy and lazy mode has been reduced in this experiment
because the involved objects are smaller.
Update operations Caching modes (lazy and non-lazy) are
more beneficial with update operations. The reason is that
update operations are typically applied on objects, or parts of
objects, that have already been read by the client. In addition,
the update operations only use state-independent queries to

 0

 20

 40

 60

 80

 100

 10 100 1000

C
um

ul
at

iv
e

O
cu

rr
en

ce
s

[%
]

Latency [ms]

Cloud
Lazy fetch
Non−lazy fetch

(a) Reads of pages of links

 0

 20

 40

 60

 80

 100

 10 100

C
um

ul
at

iv
e

O
cu

rr
en

ce
s

[%
]

Latency [ms]

Cloud
Lazy fetch

Non−lazy fetch

(b) Reads of comments of a link

 60

 65

 70

 75

 80

 85

 90

 95

 100

 1 10 100 1000

C
um

ul
at

iv
e

O
cu

rr
en

ce
s

[%
]

Latency [ms]

Cloud
Lazy fetch

Non−lazy fetch

(c) Updates: posting a link, comment-
ing, voting a link, and voting a comment

Fig. 1: Perceived latency of SwiftLinks at one site with
medium (64MB) cache size limit and a warmed up cache.

 0

 20

 40

 60

 80

 100

 10 100 1000

C
um

ul
at

iv
e

O
cu

rr
en

ce
s

[%
]

Latency [ms]

Cloud
Lazy fetch

Non−lazy fetch

Fig. 2: Reads of pages of links with unlimited cache which is
already warmed up.

fetch their missing part, which substantially simplifies the
comparison of partial objects in the cache. Figure 1c proves
experimentally our reasoning. While the cloud mode has an
almost constant latency for all operations of a round-trip time,
with caching modes, most of the operations (almost 90%) have
no latency. Again, the lazy mode has the advantage of reducing
the latency when the cache is not hit, as it only needs to fetch
the part of the object that needs to be updated, instead of
the full object. Moreover, some updates can be done blindly,
therefore, they are completed locally.

In particular, Figure 3 shows the benefit of updates when
posting comments, which almost always only requires particles
already present in the cache. One can see that with lazy
fetching, all the operations have almost no latency, as they can
be done completely asynchronously. In contrast, in non-lazy
mode, there can be a large delay when the tree of comments

 80

 85

 90

 95

 100

 1 10 100 1000

C
um

ul
at

iv
e

O
cu

rr
en

ce
s

[%
]

Latency [ms]

Lazy fetch
Non−lazy fetch

Fig. 3: Perceived latency of commenting on a post, at all sites,
with medium (64MB) cache size limit.

is not in the cache, as it needs to be fetched from the store.
As in previous scenarios, even if an operation cannot be done
completely locally in lazy mode, the client only has to fetch
part of the tree to complete the update.

C. Impact of cache size limit

In this section we look at how the application performance
changes with various cache size limits (16MB, 64MB, and
128MB).

1) Impact on latency: We have already proved that the non-
lazy mode performs better without cache limit when reading
links. We run the same experiments showed in Figure 1 setting
the cache size limit to 16MB and 128MB. We do not show
the plot due to space restrictions.

The experiments show that a smaller cache (16MB) size
limit has a big latency impact on reading links and updates
in non-lazy mode. Nevertheless, its impact is considerable
smaller in lazy mode. With a small cache, the cache hit rate
of non-lazy mode of reading links becomes worse than in lazy
mode. This is caused because only few objects can fit in the
cache at a given time; therefore, clients need to fetch objects
more frequently. This results in a lower fraction of operations
having no latency, about 5% against the 35% obtained with a
64MB cache. There is also an impact for the lazy mode, but
it is considerable lower: it only drops to 13% from 20%. The
same applies for update operations.

Reads of comments are almost not impacted by the cache
size limit: the operations have a low cache locality, so most
operations need to fetch an object from the datacenter.

With a 128MB cache size limit, the non-lazy mode has a
large portion of zero latency operations when reading links,
as more link sets can be kept in the cache. It however still
performs worse than lazy fetch for operations that do not hit
the cache. The latency of update operations is also improved
for the non-lazy mode with a bigger cache, but the lazy mode
still outperforms it for the same reasons.

2) Impact on cache miss rate: The size limit imposed on
the cache has an impact on the cache hit rate. Figure 4a
shows that the lazy mode is less impacted by the cache size
limit than the non-lazy mode. With the three cache limits,

(a) Number of cache misses with
different cache size limits.

(b) Total number of objects kept in
the cache.

Fig. 4: Impact of cache size limit in lazy and non-lazy modes

Fig. 5: Average bandwidth usage to fetch objects with a
128MB cache limit, with the cache already warmed up.

the lazy mode shows a rather stable number of cache misses,
about 180. Nevertheless, this does not apply to the non-lazy
mode, where the number of caches misses increases as the
cache size limit is reduced. As in previous experiments, the
number of cache misses is always greater in the lazy mode.
Nevertheless, we have already proved that the latency in lazy
mode, is always smaller in average.

3) Impact on number of objects in the cache: Another
impact of the cache size limit is the number of objects that
can be kept in the cache. Notice that for partial replication,
only one object is counted even if multiple parts of it have
been fetched over time.

Figure 4b shows the difference between both modes: lazy
and non-lazy. In the lazy mode, many more objects can fit in
the cache at any moment, since only parts of the object are
kept. 64MB is enough to keep all the objects needed by the
application, while in the non-lazy mode, even 128MB is not
enough. This leads us to determine that the lazy mode makes
a more intelligent use of the cache, allowing more object to
coexist at the same time.

D. Bandwidth usage

In order to measure the bandwidth usage, we measure the
average bandwidth usage of one client over one minute, with
the cache already warmed up. Figure 5 compares the lazy and
the non-lazy modes. As the figure shows, the lazy reduces
significantly the bandwidth used by a client.

 0

 20

 40

 60

 80

 100

 10 100 1000

C
um

ul
at

iv
e

O
cu

rr
en

ce
s

[%
]

Latency [ms]

Lazy fetch
Non−lazy fetch

(a) Reads of pages of links

 0

 20

 40

 60

 80

 100

 1 10 100

C
um

ul
at

iv
e

O
cu

rr
en

ce
s

[%
]

Latency [ms]

Lazy fetch
Non−lazy fetch

(b) Reads of comments of a link

Fig. 6: Perceived latency of SwiftLinks at one site during cache
warm up.

E. Cache warm up

The results shown previously are taken with the cache
warmed. In practice, this will not always be the case. The
following experiments compare both lazy and non-lazy modes
latencies when the cache is still cold, i.e. no objects are stored
in the client side.

Figure 6 shows the latency of operations during the first
10 seconds of running the application, with a cold cache. In
this case, the lazy mode produces lower latencies as it does
not need to replicate the full object. The difference is more
noticeable for links reading operations, as shown in Figure 6a,
as the set of links are large objects. But even for smaller
objects, such as comment trees, the lazy mode outperforms
the non-lazy one (Figure 6b). It is important to notice that the
cache size limit is not impacting these experiments, since after
10 seconds, the cache does not get full.

F. Discussion

We have seen that lazy fetching has advantages over full
replication of objects. It sets an upper bound on the latency of
operations by limiting the amount of data that is fetched from
the store. Plus, blind update operations gain the additional
benefit of being applied locally even if the object is not in the
cache.

The cache is more efficiently used, which allows more
objects to be kept locally even with a small cache size limit.
This is useful for memory-thin devices, and to work on very
large data structures with a low memory usage.

Partial replication also allows to reduce the bandwidth usage
of the application by a factor of 8, which can be especially
valuable on mobile wireless connections, such as EDGE or
3G.

The last advantage is a lower cost of filling the cache
when starting the application. When the cache is empty all
operations induce a cache miss, which is especially costly if a
large object has to be fetched. Lazy fetching limits this issue
by only replicating the parts of the object that are actually
needed.

Unfortunately, lazy fetching has one main drawback, it lim-
its the cache hit rate, as an object is not fully replicated right
away, and non-replicated parts may be needed by subsequent
operations. Therefore, the lazy mode should be used depending

on the workload and the cost of a cache miss. Nevertheless, a
trade-off is possible between the two: instead of only fetching
the parts needed by the operations, we could fetch more parts
of the object in order to improve the cache hit rate. This
would however increase bandwidth and cache size utilisation.
Latency could be kept low by doing this additional fetch
asynchronously, when the user is not doing any operation.

VI. RELATED WORK

Optimizing memory and bandwidth usage for CRDTs
Bandwidth and space usage of CRDTs is a concern in the
research community. Burckhardt et al. [19] formally calculate
the space requirements for different replicated data types, such
a state-based counter and a state-based set.

On the other hand, Bieniusa et al. proposed an optimization
for CRDT sets that can avoid the use of tombstone by using
vector clock to capture causal history [20]. Thus, the state kept
by the CRDT is considerably reduce.

Finally, Almeida et al. proposed Delta-state conflict-free
replicated data types [21] that allows state-based CRDT to
only propagate partial states instead of the whole state. While
this approach improves bandwidth usage, it does not reduce
the storage space for CRDTs.
Partial replication PRACTI [22] allows clients to select a
subset of objects to replicate. Clients only receive updates on
objects of their selected subset. However, clients are forced to
keep some metadata about objects that they are not interested.

Polyjuz [23] stores objects consisting of a set of fields.
Clients can decide which fields of each object to replicate.
Each subset of fields is denoted as fidelity level. Clients can
select different fidelity levels according to the space or network
limitations of the device where the objects are replicated.
Polyjuz transparently handles the replication of an object in
different fidelity levels.

In Cimbiosys [24], objects are grouped into collections.
Users can use filter expressions to only replicate objects that
satisfy some criteria. For example, a user can group his emails
in a collection and choose only to replicate emails from his
university in his phone. While in the first two systems, users
choose the object or fields to replicate based on their name or
type, in Cimbiosys user can define replication criteria based
on the value of some properties of objects.

VII. CONCLUSION AND FUTURE WORK

We have introduced and formalized a new set of CRDTs
called Conflict-free Partially Replicated Data Types, an exten-
sion of CRDTs which allows replicas to hold parts of data
structures. We have explained how state-based and operation-
based replication mechanisms should be adapted to support
partial replicas. We have also shown how to specify CPRDTs
by building upon previous work. Moreover, we have given
examples of CPRDTs such as a state-based grow-only set and
a grow-only tree.

In order to evaluate our solution, we have integrated CPRDT
into SwiftCloud, a geo-replicated storage system that replicates
CRDTs on client-side in order to reduce latency. We have also

implemented a Reddit-like application, called SwiftLinks, on
top of the modified version of SwiftCloud. In our evaluation,
we have compared three scenarios: classical geo-replicated
storage system, SwiftCloud and SwiftCloud with CPRDTs.

Our extensive evaluation has shown that CPRDTs can
improve the bandwidth and memory usage of replicas by only
replicating parts needed by clients, specially in the presence of
large data structures. The experimental study has also shown
that CPRDTs reduce the latency in average in comparison
to the full replication scenario. However, CPRDTs have a
negative impact on the cache hit rate, which has to be weighted
against the upper bound on the latency that provides.

We plan to extend this work in several directions. Firstly,
we want to evaluate CPRDTs in different scenarios. This
would imply implementing different kind of applications on
top. This would help us to get an even better view of its
benefits and drawbacks. Secondly, as we already mentioned in
the introduction of the paper, partial replication can be used
as a security mechanism to avoid replicating sensitive data by
restricting access with finely grained rules. We believe is an
interesting way of exploiting CPRDTs. Finally, we want to
study how predictive caching techniques could still improve
bandwidth usage and consequently reduce latency even more.

The code of our modified version of SwiftCloud can be
found in XXX.

ACKNOWLEDGMENT

We thank Marek Zawirski for his help integrating CPRDTs
into SwiftCloud. This work was partially funded by the
XXX project in the European Seventh Framework Programme
(XXX) under Grant Agreement no XXX and by the XXX
under Grant Agreement XXX.

REFERENCES

[1] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J.
Furman, S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild,
W. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik,
D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito,
M. Szymaniak, C. Taylor, R. Wang, and D. Woodford, “Spanner:
Google’s globally distributed database,” ACM Trans. Comput.
Syst., vol. 31, no. 3, pp. 8:1–8:22, Aug. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2491245

[2] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen,
“Don’t settle for eventual: Scalable causal consistency for wide-
area storage with cops,” in Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, ser. SOSP ’11. New
York, NY, USA: ACM, 2011, pp. 401–416. [Online]. Available:
http://doi.acm.org/10.1145/2043556.2043593

[3] A. Lakshman and P. Malik, “Cassandra: A decentralized structured
storage system,” SIGOPS Oper. Syst. Rev., vol. 44, no. 2, pp. 35–40, Apr.
2010. [Online]. Available: http://doi.acm.org/10.1145/1773912.1773922

[4] E. Schurman and J. Brutlag, “The user and business impact of server
delays, additional bytes, and http chunking in web search,” in Velocity
Web Performance and Operations Conference, June 2009.

[5] C. Jay, M. Glencross, and R. Hubbold, “Modeling the effects of delayed
haptic and visual feedback in a collaborative virtual environment,” ACM
Trans. Comput.-Hum. Interact., vol. 14, no. 2, Aug. 2007. [Online].
Available: http://doi.acm.org/10.1145/1275511.1275514

[6] M. Satyanarayanan, J. Kistler, P. Kumar, M. Okasaki, E. Siegel, and
D. Steere, “Coda: a highly available file system for a distributed
workstation environment,” IEEE Transactions on Computers, vol. 39,
no. 4, p. 447459, Apr 1990.

[7] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer,
and C. H. Hauser, Managing update conflicts in Bayou, a weakly
connected replicated storage system. ACM, 1995, vol. 29. [Online].
Available: http://dl.acm.org/citation.cfm?id=224070

[8] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “A
comprehensive study of Convergent and Commutative Replicated Data
Types,” INRIA, Rapport de recherche RR-7506, Jan. 2011. [Online].
Available: http://hal.inria.fr/inria-00555588

[9] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, “Conflict-
free replicated data types,” in Stabilization, Safety, and Security of
Distributed Systems, ser. Lecture Notes in Computer Science, X. Dfago,
F. Petit, and V. Villain, Eds. Springer Berlin Heidelberg, 2011, vol.
6976, pp. 386–400. [Online]. Available: http://dx.doi.org/10.1007/978-
3-642-24550-3 29

[10] M. Zawirski, A. Bieniusa, V. Balegas, S. Duarte, C. Baquero,
M. Shapiro, and N. M. Preguiça, “Swiftcloud: Fault-tolerant geo-
replication integrated all the way to the client machine,” CoRR, vol.
abs/1310.3107, 2013.

[11] “Amazon S3,” http://aws.amazon.com/s3.
[12] “Google cloud storage,” http://cloud.google.com/storage.
[13] “Windows Azure,” http://www.microsoft.com/windowsazure.
[14] reddit inc, “About reddit,” http://www.reddit.com/about/, accessed: 2014-

06-02.
[15] ——, “reddit source code,” https://github.com/reddit/reddit, accessed:

2014-04-08.
[16] W. Vogels, “Eventually consistent,” Commun. ACM, vol. 52,

no. 1, pp. 40–44, Jan. 2009. [Online]. Available:
http://doi.acm.org/10.1145/1435417.1435432

[17] K. Veeraraghavan, V. Ramasubramanian, T. L. Rodeheffer, D. B. Terry,
and T. Wobber, “Fidelity-aware replication for mobile devices,” in
Mobisys 2009: Proceedings of the 7th international conference on
Mobile systems, applications, and services. Association for Computing
Machinery, Inc., June 2009.

[18] D. Navalho, S. Duarte, N. Preguiça, and M. Shapiro, “Incremental stream
processing using computational conflict-free replicated data types,” in
Proceedings of the 3rd International Workshop on Cloud Data and
Platforms, ser. CloudDP ’13. New York, NY, USA: ACM, 2013, pp. 31–
36. [Online]. Available: http://doi.acm.org/10.1145/2460756.2460762

[19] S. Burckhardt, A. Gotsman, H. Yang, and M. Zawirski, “Replicated
data types: Specification, verification, optimality,” in 41st Symposium
on Principles of Programming Languages (POPL). ACM SIGPLAN,
January 2014.

[20] A. Bieniusa, M. Zawirski, N. Preguiça, M. Shapiro, C. Baquero, V. Bale-
gas, and S. Duarte, “An optimized conflict-free replicated set,” ArXiv
e-prints, Oct. 2012.

[21] P. S. Almeida, A. Shoker, and C. Baquero, “Efficient state-based
crdts by decomposition,” in Proceedings of the First Workshop on
Principles and Practice of Eventual Consistency, ser. PaPEC ’14.
New York, NY, USA: ACM, 2014, pp. 3:1–3:2. [Online]. Available:
http://doi.acm.org/10.1145/2596631.2596634

[22] N. Belaramani, M. Dahlin, L. Gao, A. Nayate, A. Venkataramani,
P. Yalagandula, and J. Zheng, “Practi replication,” in Proceedings
of the 3rd Conference on Networked Systems Design &
Implementation - Volume 3, ser. NSDI’06. Berkeley, CA,
USA: USENIX Association, 2006, pp. 5–5. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1267680.1267685

[23] K. Veeraraghavan, V. Ramasubramanian, T. L. Rodeheffer, D. B.
Terry, and T. Wobber, “Fidelity-aware replication for mobile devices,”
in Proceedings of the 7th International Conference on Mobile
Systems, Applications, and Services, ser. MobiSys ’09. New
York, NY, USA: ACM, 2009, pp. 83–94. [Online]. Available:
http://doi.acm.org/10.1145/1555816.1555826

[24] V. Ramasubramanian, T. L. Rodeheffer, D. B. Terry, M. Walraed-
Sullivan, T. Wobber, C. C. Marshall, and A. Vahdat, “Cimbiosys:
A platform for content-based partial replication,” in Proceedings
of the 6th USENIX Symposium on Networked Systems Design
and Implementation, ser. NSDI’09. Berkeley, CA, USA:
USENIX Association, 2009, pp. 261–276. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1558977.1558995

[25] I. Briquemont, “Optimising client-side geo-replication with partially
replicated data structures,” Sep. 2014.

APPENDIX
CPRDTS EXAMPLES

In this section we propose the specifications for some
CPRDTs. We mostly adapt the CRDT specifications proposed
by Shapiro et al ([8], [9]). We also introduce a tree CPRDT.
To the best of our knowledge, a tree CRDT has never been
formally specified before. More CPRDTs specifications can be
found in [25].
Grow-Only set Specification 3 gives a simple state-based
grow only set, which only supports the add operation).

Specification 3 State-based Grow-Only Set (G-set) with Par-
tial Replication

1: particle definition A possible element of the set.
2: payload set A
3: initial ∅
4: query lookup(element e) : boolean b
5: required particles {e}
6: let b = e ∈ A
7: update add(element e)
8: required particles ∅
9: affected particles {e}

10: A := A ∪ {e}
11: merge (S, T) : payload U
12: let U.A = S.A ∪ T.A
13: fraction (particles Z) : payload D
14: let D.A = A ∩ Z

Grow-only tree A state-based grow-only tree is specified in
Specification 4. A node is defined by its path and its content
in a recursive way, which is noted as (parent, nodeContent),
where parent is defined similarly. The root is represented by
empty: (). For instance, a node (((), 1), 2) has content 2 and
parent ((), 1). This allows to make a grow-only tree that is
very similar to a set, with only the added precondition that
the parent must exist when adding a node. It also means that
adding nodes which have the same value and the same parent
result in one node in the tree.

The particles for this tree are the nodes, i.e. their parents
and their content.

Specification 4 State-based Grow-Only Tree (G-tree) with
Partial Replication.

1: particle definition A node of the tree.
2: payload set A
3: initial ∅
4: query lookup(node n) : boolean b
5: required particles {n}
6: let b = n ∈ A
7: update add(node (parent, content))
8: required particles {parent} (if parent is not the root)
9: affected particles {(parent, content)}

10: pre parent ∈ A
11: A := A ∪ {(parent, content)}
12: merge (S, T) : payload U
13: let U.A = S.A ∪ T.A
14: fraction (particles Z) : payload D
15: let D.A = A ∩ Z

Observed-Removed set
In the Specification 5, we show the CPDRT specification

of an Observed-Removed set (its original formalization can
be found in [8]). It is an operation-based specification that
assumes causal delivery of its operations to optimise the
metadata size. A particle is defined as an element of the
set. Each added element is internally uniquely tagged. When
removing an element, only associated unique tags observed at
the source replica are removed, so a remove operation does
not affect a concurrent add operation.

Notice that the add operation can be a blind update: it does
not require any particle in the prepare phase, and it can thus be
prepared by a replica which does not have the element to be
added in its shard. The remove operation requires the particle
of the element it removes, as it needs to send the added (e, u)
pairs it observed to the other replicas.

Specification 5 Op-based Observed-Remove Set (OR-set) with
Partial Replication

1: particle definition A possible element of the set.
2: payload set S
3: initial ∅
4: query lookup(element e) : boolean b
5: required particles {e}
6: let b = ∃u : (e, u) ∈ S

7: update add(element e)
8: prepare (e) : α
9: let α = unique()

10: effect (e, α)
11: affected particles {e}
12: S := S ∪ {e, α}
13: update remove(element e)
14: prepare (e) : R
15: required particles {e}
16: pre lookup(e)
17: let R = {(e, u)|∃u : (e, u) ∈ S}
18: effect (R)
19: affected particles {e}
20: pre ∀(e, u) ∈ R : add(e, u) has been delivered
21: S := S \R
22: fraction (particles Z) : payload D
23: let D.S = {(e, u) ∈ S|e ∈ Z}

E A STUDY OF CRDTS THAT DO COMPUTATIONS

E A Study of CRDTs that do computations

SyncFree Deliverable D.2.2.1(v0.1), March, 2015, Page 50

A Study of CRDTs that do Computations

David Navalho Sérgio Duarte Nuno Preguiça
NOVA LINCS, FCT, Universidade NOVA de Lisboa

Abstract
A CRDT is a data type specially designed to allow instances
to be replicated and modified without coordination, while
providing an automatic mechanism to merge concurrent
updates that guarantees eventual consistency. In this paper
we present a brief study of computational CRDTs, a class
of CRDTs whose state is the result of a computation over
the executed updates. We propose three generic designs that
reduce the amount of information that each replica maintains
and propagates for synchronizations. For each of the designs,
we discuss the properties that the function being computed
needs to satisfy.

1. Introduction
Cloud infrastructures, composed of multiple data centers
spread across the globe, have become central for the deploy-
ment of novel Internet services, from social networks to busi-
ness applications. A large number of cloud databases have
been developed in recent years, providing different level of
consistency, from strong [5] to eventual consistency [2, 6, 7].

In this paper we focus on cloud databases that provide
eventual consistency only. When using an eventually con-
sistent database, applications can be made highly available
by replicating the application code and data in multiple data
centers and allowing a user to access any of these data centers.
Low latency is achieved by routing the client requests to the
closest data center and executing the request in the data center
without coordinating with other data centers.

In such settings, concurrent updates may be executed in
different replicas. Systems must provide a mechanism to han-
dle concurrent updates and enforce eventual convergence of
all replicas. CRDTs [10] have been proposed as a technique
for helping application programmers to deal with concurrent
updates. They provide eventual consistency with well defined
semantics and thus make these systems more amenable to
programmers. CRDTs have been adopted as a key feature

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PaPoC’15, April 21–24, 2015, Bordeaux, France.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3537-9/15/04. . . $15.00.
http://dx.doi.org/10.1145/2745947.2745948

in a leading cloud database, Riak, and are used in multi-
ple large-scale systems, such as SoundCloud and Twitter’s
Summingbird[3].

Most CRDTs proposed in literature are replicated forms
of collections. In such data types, a replica needs to maintain
all data elements in all replicas. Thus, a model where every
data replica maintains the same state and where all updates
are propagated to all replicas is natural.

In some cases, applications are not interested in actual
elements or updates, but instead on the result of a computation
over them. We call computational CRDTs to the class of
CRDTs whose state is the result of a computation over
the executed updates. For example, a counter CRDT [10]
counts the number of times an increment operation has
been executed. In such cases, each replica does not need to
maintain every individual update, but can instead maintain for
each replica an integer that counts the number of increments
executed at that replica. For synchronizing replicas, it also
suffices to propagate an integer that summarizes a set of
updates.

In the remaining of this paper we present a brief study
of the properties of computational CRDTs. In particular, we
propose three generic designs that minimize the data that
needs to be maintained in each replica and that needs to be
propagated for synchronizing replicas. We study the prop-
erties of functions suitable to each of the designs. Notably,
our last design departs from the strict model of state-based
CRDTs by the fact that the state of each replica does not need
to converge, although the result of all queries executed in
every replica is the same.

1.1 Related work
Aggregation techniques have been studied extensively in
different settings, such as as sensor networks [11]. Our work
can build on the proposed algorithms for creating replicated
data types that perform computations in a cloud database.

The techniques used to model CRDTs have been used
to express a distributed deterministic dataflow model for
concurrent communication between processes [8]. They have
also been used to provide algebraic structures for integration
between batch and stream processing of aggregations [3]
and to support incremental computations [9]. Unlike these
works, this paper studies CRDTs that can be integrated in
a cloud database as an elementary abstraction to perform
computations without requiring additional support from the
system.

The problem of optimizing information propagated for
synchronizing replicas has been studied by Almeida et. al
[1], who have proposed a principled approach to merge the
changes produced by multiple operations and use this infor-
mation to update a remote replica. In our work, the infor-
mation propagated to synchronize replicas also summarizes
multiple updates. However, all information is handled in the
context of the CRDT. Additionally, our last design departs
from the strict state-based CRDT model by allowing replicas
to maintain different state.

2. System model
We adopt the CRDT state-based model [10], where replicas
synchronize in a peer-to-peer way, by sending their state
to other replicas, where the received state is merged with
the current state. A CRDT has an interface that includes
update operations that modify the state of the object. In
our presentation, we define an event as an invocation of an
update operation. For simplicity, we consider a single read-
only operation that returns the state of the object. A CRDT
includes an additional operation, merge, to merge a copy of a
remote replica with the current replica state. In one design,
we extend this model to allow a replica to send only a subset
of its state to other replicas.

For fault-tolerance, we assume a crash-recovery model,
where a replica that fails recovers with its state intact. In a
typical cloud deployment, each data center can be seen as a
single replica, although internally an object is replicated in a
quorum of replicas.

3. Design 1: Incremental Computations
Our first design considers computations that can be done
incrementally. In this case, computing the function over two
disjoint sets of events and combining the results is equal
to computing the function over the union of the two sets.
Formally, a computation is incremental if there is a function
fun, such that:

Ffun(E1 [E2, hbE1[E2
) =

fun(Ffun(E1, hbE1), Ffun(E2, hbE2))

where E1 and E2 are disjoint sets of events (operation
invocations), hbE is a partial causality order on E1, and
Ffun is the function that defines the state of a CRDT that
computes fun over the observed events (following loosely
the formalization proposed by Burckhardt et. al.[4]).

For example, a counter with a single update operation for
increment, inc, can be defined as follows:

F+
ctr(E, hb) = | {e 2 E : e = inc} |

F+
ctr(E1 [E2, hb) = F+

ctr(E1, hb) + F+
ctr(E2, hb)

For these computations, Figure 1 presents a generic
CRDT design that is parameterized by the following ele-

1 For simplicity of presentation, we drop the subscripts of hb in the rest of
the paper.

ments: (i) V0, the initial state associated with a replica;
(ii) fun(o), the value of the computation for a single opera-
tion o; (iii) fun(s1, s2), the function to compose two partial
results; and (iv) funmax(v1, v2), that returns the latest of two
values.

In this design, each replica computes its contribution to
the final value of the CRDT independently. Each replica
maintains a map for the contributions of each replica. When
executing an update operation, a replica updates its contribu-
tion by using function fun to combine the previous computed
contribution and the contribution of the new operation (with
s[i 7! fun

�
s[i], fun(op)

�
] representing the replacement in

s of the value of entry i by the new computed value). When
merging two replicas, for the partial result of each replica,
the most recently computed result must be kept, which is
returned by funmax. If the values are monotonic, it is imme-
diate to know what is the most recent version. Otherwise, it
might be necessary to maintain this information explicitly.
The value of a replica is computed by applying the function
fun to the contributions of all replicas.

As an example, a positive-negative counter, with an incre-
ment and a decrement operations can be defined by making:

V0 = (0, 0)
fun(inc) = (1, 0)
fun(dec) = (0, 1)

fun((p, m), (p0, m0)) = (p + p0, m + m0)
funmax((p, m), (p0, m0)) = (max(p, p0), max(m, m0))

A CRDT that computes the average of values added to
an object, which could be used for example to present the
average rating in a web application, can be defined by making:

V0 = (0, 0)
fun(add(x)) = (x, 1)

fun((s, c), (s0, c0)) = (s + s0, c + c0)
funmax((s, c), (s0, c0)) = (s, c), iff c > c0

(s0, c0), iff c c0

The average is computed as s/c, with (s, c) the result of
the read defined in the generic CRDT design.

Other CRDTs can be defined using a similar approach,
including a CRDT that computes a histogram.

4. Design 2: Incremental Idempotent
Computations

In some cases, the computation to be performed besides being
incremental is also idempotent. In this case, computing the
function over two (potentially overlapping) sets of events
and combining the results is equal to computing the function
over the union of the two sets. Formally, a computation is
incremental and idempotent if there is a function fun, such
that for any sets of events E1 and E2 we have:

Ffun(E1 [E2, hb) = fun(Ffun(E1, hb), Ffun(E2, hb))

Replica state ⌃ = I ! V
Initial state �0

i = V0

Update op at replica i opi

�
s
�

= s[i 7! fun
�
s[i], fun(op)

�
]

Read at replica i opi

�
s
�

= fun
�
s[i], 8i

�

Merge replica states deliver
�
s, s0

�
= s[i 7! funmax

�
s[i], s0[i]

�
], 8i

Figure 1: Generic CRDT for incremental computation.

Replica state ⌃ = V
Initial state �0

i = V0

Update op at replica i opi

�
s
�

= fun
�
s, fun(op)

�

Read at replica i opi

�
s
�

= s
Merge replica states deliver

�
s, s0

�
= fun(s, s0)

Figure 2: Generic CRDT for incremental idempotent computation.

For these computations, Figure 2 presents a generic CRDT
design. In this case, it is possible to keep in each replica only
the computed result that is modified when executing update
and merge operations.

A computation that obeys these conditions is computing
the maximum of the values added to an object, which could be
used in a game application for keeping the highest score. This
data type could be implemented, keeping a name associated
with the highest score, with names totally ordered, by making:

V0 = (�,minimum value)
fun(add(n, v)) = (n, v)

fun((n, v), (n0, v0)) = (n, v), iff v>v0 _ (v=v0 ^ n>n0)
(n0, v0), otherwise

A generalization of the maximum CRDT is a top-K CRDT
that keeps the K players with highest scores, which can be
used to maintain a leaderboard in a game application. This
CRDT can be implemented by making:

V0 = {}
fun(add(n, v)) = {(n, v)}

fun(s, s0) = maxk
�
{(n, v) 2 (s [s0) :

6 9(n, v1) 2 (s [s0) : v1 > v}
�

with maxk(s) a function that returns the k largest elements
(n, v) 2 s, with the elements ordered using the total order
defined previously.

In general, this approach can be used to create CRDTs that
compute a filter over the values added to the object, for which
an element that does not match the filter at some moment will
not match the filter at a later moment.

5. Design 3: Partially Incremental
Computations

We now consider computations that are only partially incre-
mental, in the sense that some updates observe the incre-
mental property previously defined, while others do not. An
example of such an object is a top-K object where an element
can be deleted. In such cases, a value that does not belong to

the top-K elements may later become part of the top, after a
top element is deleted.

To address this case, a possible approach is to use a Set
CRDT to maintain the set of elements that have not been
deleted. In this case, all replicas maintain the complete set,
and all updates need to be propagated to all replicas. The
top-K can be computed locally on the value of each replica.

In Figure 3 we present an alternative approach, in which
each replica maintains all operations locally executed, and
each replica only propagates to other replicas the operations
that might affect the computed result. Each replica maintains
a set of operations and the results of the computation per-
formed at other sites — for simplicity of notation, we assume
that the result of the computation is a subset of operations.
An update operation updates the local set of operations. A
read operation makes the computation considering the local
operations and the results of the computation at the other
replicas. For synchronizing replicas, a replica sends the re-
sults of the computations to all replicas and the subset of
operations known locally that can affect the computed result
at other replicas (in the top-k example, a delete of an element
that belongs to the top elements). When receiving the state
from a remote replica, the local replica is updated by merging
the local set of operations with the remote operations that
may affect the result of the computation, and by registering
the most recent version of the computation for each site.

A top-k replicated data type that supports an add
�
n, v

�

and del
�
n
�

operations can be defined as follows:

V0 = {}
fun(s) = maxk

�
{o 2 s : o = add(n, v)^

(6 9o0 2 s : o � o0 ^ o0 = del(n))}
�

with maxk(s) a function that returns the k add
�
n, v

�
opera-

tions with largest values (n, v) for different values of n and
elements ordered using the total order defined previously.
funmax can be defined by assigning a monotonic integer to
the result computed in each replica, and using this integer to
decide which value is the most recent.

Replica state ⌃ =
�
P(op), I ! V

�

Initial state �0
i =

�
{}, i ! V0

�

Update op at replica i opi

�
(s, m)

�
=

�
s [{op}, m

�

Read at replica i opi

�
(s, m)

�
= fun

�
s
S
8j

m[j]
�

State to send from replica i diff
�
s, m

�
= ({o 2 s : fun

�
o
S
8j

m[j]
�
6= fun

�S
8j

m[j]
�
}, m[i ! fun(s

S
8j

m[j])]
�

Merge replica states deliver
�
(s, m), (s0, m0)

�
=

�
s [s0, m[j 7! funmax(m[j], m0[j])]8j

�

Figure 3: Generic replicated data type for partially incremental computation.

This design enforces eventual consistency, assuming that
replicas continue synchronizing until they reach an equiva-
lent state, i.e., a state where read operations return the same
result in every replica. However, this may not happen af-
ter the first synchronization step. For example, consider a
top-1 object replicated in two sites: Site 1 executed opera-
tions {add(b, 15), add(a, 10)} and site 2 executed operations
{add(b, 16), add(c, 12)}. The two sites synchronize, with the
top-1 element, (b, 16), being known at both replicas. After
this, del(b) executes at site 1, promoting (a, 10) to the top
at site 1. After the propagation of del(b) to site 2, (c, 12) is
promoted to the top at site 2. After the next synchronization
step, the top at site 1 (a, 10) is replaced by the same value as
in site 2 (c, 12).

6. Final remarks
In this paper we have proposed three generic designs for
replicated data types that perform a computation on the
operations executed by users. These designs can be used in
a system that maintains CRDT replicas at multiple sites and
synchronizes them using a state-based model. We present the
properties that computations must obey in order to use each
of the designs. These designs try to minimize the information
that each replica has to maintain and propagate to other
replicas for synchronization.

The last proposed design departs from the strict CRDT
state-based model, while still enforcing eventual consistency.
We are currently formalizing the new model and studying
the relations between replicated data types implemented
using this design and state-based CRDTs that implement
the same functionality. In the future, we intend to study how
to integrate these designs in an eventually consistent cloud
database, such as Riak.

Acknowledgments
This research is supported in part by FCT scholarship SFRH
/ BD / 65070 / 2009, FCT projects PTDC/ EEI-SCR/ 1837/
2012 and PEst-OE/ EEI/ UI0527/ 2014 and EU FP7 SyncFree
project (609551).

References
[1] P. S. Almeida, A. Shoker, and C. Baquero. Efficient state-based

crdts by delta-mutation. In Proc. of the Third International

Conference on Networked Systems (NETYS) (to appear), May
2015.

[2] S. Almeida, J. a. Leitão, and L. Rodrigues. Chainreaction: A
causal+ consistent datastore based on chain replication. In Proc.
of the 8th ACM European Conference on Computer Systems,
EuroSys ’13, pages 85–98, 2013. ACM.

[3] O. Boykin, S. Ritchie, I. O’Connell, and J. Lin. Summingbird:
A framework for integrating batch and online mapreduce
computations. Proc. VLDB Endow., 7(13):1441–1451, Aug.
2014.

[4] S. Burckhardt, A. Gotsman, H. Yang, and M. Zawirski. Repli-
cated data types: Specification, verification, optimality. In Proc.
of the 41st ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’14, pages 271–284, 2014.
ACM.

[5] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, et. al. Span-
ner: Google’s globally-distributed database. In Proc. of the
10th USENIX Conference on Operating Systems Design and
Implementation, OSDI’12, pages 251–264, 2012. USENIX
Association.

[6] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lak-
shman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vo-
gels. Dynamo: Amazon’s highly available key-value store. In
Proc. of Twenty-first ACM SIGOPS Symposium on Operating
Systems Principles, SOSP ’07, pages 205–220, 2007. ACM.

[7] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen.
Don’t settle for eventual: Scalable causal consistency for wide-
area storage with cops. In Proc. of the Twenty-Third ACM
Symposium on Operating Systems Principles, SOSP ’11, pages
401–416, 2011. ACM.

[8] C. Meiklejohn and P. Van Roy. Lasp: A Language for Dis-
tributed, Eventually Consistent Computations with CRDTs. In
Proc. of the Workshop on Principles and Practice of Consis-
tency for Distributed Data, Apr. 2015.

[9] D. Navalho, S. Duarte, N. Preguiça, and M. Shapiro. Incre-
mental stream processing using computational conflict-free
replicated data types. In Proc. of the 3rd International Work-
shop on Cloud Data and Platforms, CloudDP ’13, pages 31–36,
2013. ACM.

[10] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski.
Conflict-free replicated data types. In Proc. of the 13th In-
ternational Conference on Stabilization, Safety, and Security of
Distributed Systems, SSS’11, pages 386–400, 2011. Springer-
Verlag.

[11] J. Yick, B. Mukherjee, and D. Ghosal. Wireless sensor network
survey. Comput. Netw., 52(12):2292–2330, Aug. 2008.

F SWIFTCLOUD: WRITE FAST, READ IN THE PAST: CAUSAL
CONSISTENCY FOR CLIENT-SIDE APPLICATIONS

F Swiftcloud: Write fast, Read in the past: Causal

consistency for client-side applications

SyncFree Deliverable D.2.2.1(v0.1), March, 2015, Page 55

Write Fast, Read in the Past: Causal
Consistency for Client-side Applications

Marek Zawirski
Inria Paris-Rocquencourt &

Sorbonne Universités,
UPMC Univ Paris 06, LIP6

Nuno Preguiça
Sérgio Duarte

U. Nova de Lisboa

Annette Bieniusa
U. of Kaiserslautern

Valter Balegas
U. Nova de Lisboa

Marc Shapiro
Inria Paris-Rocquencourt & Sorbonne Universités,

UPMC Univ Paris 06, LIP6

Abstract

Client-side (e.g., mobile or in-browser) apps need local
access to shared cloud data, but current technologies ei-
ther do not provide fault-tolerant consistency guarantees, or
do not scale to high numbers of unreliable and resource-
poor clients, or both. Addressing this issue, we describe
the SwiftCloud distributed object database, which supports
high numbers of client-side partial replicas. SwiftCloud of-
fers fast reads and writes from a causally-consistent client-
side cache. It is scalable, thanks to small and bounded meta-
data, and available, tolerating faults and intermittent con-
nectivity by switching between data centres. The price to
pay is a modest amount of staleness. This paper present the
SwiftCloud algorithms, design, and experimental evaluation,
which shows that client-side apps enjoy the same guarantees
as a cloud data store, at a small cost.

1. Introduction

Client-side applications, such as in-browser and mobile
apps, are poorly supported by the current technology for
sharing mutable data over the wide-area. App developers re-
sort to ad-hoc application-level caching and buffering imple-
mentations, in order to avoid slow, costly and sometimes un-
available round-trips to a data centre, but they cannot solve
system issues such as fault tolerance or session guarantees
[41]. Recent application frameworks such as Google Drive
Realtime API [17], TouchDevelop [15] or Mobius [18] sup-
port client-side access at a small scale, but do not provide
system-wide consistency and/or fault tolerance guarantees.
Algorithms for geo-replication [5, 7, 22, 30, 31] or for man-
aging database replicas on clients [12, 33] ensure some of
the right properties, but were not designed to support high
numbers of client replicas.

Our thesis is that the system should be ensuring correct
and scalable database access to client-side applications, ad-
dressing the (somewhat conflicting) requirements of consis-
tency, availability, and convergence [32], at least as well as
server-side systems. Concurrent updates (which are unavoid-
able if updates are to be always available) should not be lost,
nor cause the database to diverge permanently. Under these
requirements, the strongest consistency model is causal con-
sistency with convergent objects (CRDTs) [30, 32, 39].

Supporting thousands or millions of client-side replicas
challenges classical assumptions. To track causality pre-
cisely, per client, creates unacceptably fat metadata; but the
more compact server-side metadata management has fault-
tolerance issues. Additionally, full replication at high num-
bers of resource-poor devices would be unacceptable [12];
but partial replication of data and metadata could cause
anomalous message delivery or unavailability. Furthermore,
it is not possible to assume, like many previous systems
[5, 22, 30, 31], that fault tolerance or consistency is solved,
because the application is located inside the data centre
(DC), or has a sticky session to a single DC [8, 41].

This work addresses these challenges. We present the al-
gorithms, design, and evaluation of SwiftCloud, the first dis-
tributed object store designed for a high number of replicas.
It efficiently ensures consistent, available, and convergent
access to client nodes, tolerating failures. To enable both
small metadata and fault tolerance, SwiftCloud uses a flexi-
ble client-server topology, and decouples reads from writes.
The client writes fast into the local cache, and reads in the
past (also fast) data that is consistent, but occasionally stale.
Our approach involves two major techniques:

Cloud-backed support for partial replicas (Section 3) A
DC serves a consistent view of the database to the client,
which the client merges with its own updates. In some failure

1 2015/3/27

situations, a client may connect to a DC that happens to be
inconsistent with its previous DC. Because the client does
not have a full replica, it cannot fix the issue on its own. We
leverage “reading in the past” to avoid this situation in the
common case, and provide control over the inherent trade-
off between staleness and unavailability. A client observes a
remote update only if it is stored in some number K ≥ 1 of
DCs [33]. The higher the value of K, the more likely that a
K-stable version is in both DCs, but the higher the staleness.

Protocols with decoupled, bounded metadata (Section 4)
Thanks to funnelling communication through DCs and to
“reading in the past,” SwiftCloud leverages decoupled meta-
data [28] separating tracking causality, which uses small
vectors assigned in the background by DCs, from unique
identification, based on client-assigned scalar timestamps.
Consequently, the metadata is small and bounded in size.
Furthermore, a DC can prune its log independently of
clients, replacing it with a summary of delivered updates.

We implement SwiftCloud and demonstrate experimen-
tally that our design reaches its objective, at a modest stale-
ness cost. We evaluate SwiftCloud in Amazon EC2, against a
port of WaltSocial [40] and against YCSB [19]. When data is
cached, response time is two orders of magnitude lower than
for server-based protocols with similar availability guaran-
tees. With three DCs (servers), the system can accommo-
date thousands of client replicas. Metadata size does not de-
pend on the number of clients, the number of failures, or
the size of the database, and increases only slightly with the
number of DCs: on average, 15 bytes of metadata overhead
per update, compared to kilobytes for previous algorithms
with similar safety guarantees. Throughput is comparable to
server-side replication, and improved for high locality work-
loads. When a DC fails, its clients switch to a new DC in
under 1000 ms, and remain consistent. Under normal condi-
tions, 2-stability causes fewer than 1% stale reads.

The paper is organised as follows. In Section 2, we state
the problem by motivating the system model and the require-
ments of client-side database access. In Section 3, we present
the design principles of SwiftCloud, and its concrete proto-
cols in Section 4. In Section 5 we present our experimental
results, followed by discussion of related work in Section 6.

2. Problem overview
We consider support for a variety of client-side applications,
sharing a database of objects that the client can read and
update. We aim to scale to thousands of clients, spanning
the whole internet, and to a database of arbitrary size.

Figure 1 illustrates our system model. A cloud infras-
tructure connects a small set (say, tens) of geo-replicated
data centres, and a large set (thousands) of clients. A DC
has abundant computational, storage and network resources.
Similarly to Sovran et al. [40], we abstract a DC as a pow-
erful sequential process that hosts a full replica of the

DC#

DC#

DC# C#

C#

C#

C#

C#

C#
notification

A"
P"
I"

C# C#

C#

A"
P"
I"

A"
P"
I"

App#

App#

App#

geo-replication

transfer
fail-over!

Figure 1. System components (Application processes,
Clients, Data Centres), and their interfaces.

database.1 DCs communicate in a peer-to-peer way. A DC
may fail (e.g., due to disaster, power outage, WAN partition
or misconfiguration [6, 27]) and recover with its persistent
memory intact.

Clients do not communicate directly, but only via DCs.
Normally, a client connects to a single DC; in case of failure
or roaming, to zero or more. A client may fail and recover
(e.g., disconnection during a flight) or permanently (e.g.,
destroyed phone) without prior warning. We consider only
non-byzantine failures.2

Client-side apps require high availability and respon-
siveness, i.e., to be able to read and update data quickly and
at all times. This can be achieved by replicating data locally,
and by synchronising updates in the background. However,
a client has limited resources; therefore, it hosts a cache that
contains only the small subset of the database of current in-
terest to the local app. It should not have to receive messages
relative to objects that it does not currently replicate [37]. Fi-
nally, control messages and piggy-backed metadata should
have small and bounded size.

Since a client replica is only partial, there cannot be a
guarantee of complete availability. The best we can expect is
partial availability, whereby an operation returns without
remote communication if the requested data is cached; and
after retrieving the data from a remote node (DC) otherwise.
If the data is not there and the network is down, the operation
may be unavailable, i.e., it either blocks or returns an error.

2.1 Consistency with convergence

Application programmers wish to observe a consistent view
of the global database. However, with availability as a re-
quirement, consistency options are limited [24, 32].

Causal consistency The strongest available and convergent
model is causal consistency [3, 32].

DEFINITION 1 (Causal order, causal consistency). Let an
execution E be a set of sequences (one per application

1 We refer to prior work for the somewhat orthogonal issues of parallelism
and fault-tolerance within a DC [5, 22, 30, 31].
2 Possible scalable approaches for Byzantine clients include admission con-
trol, and the Fork Join Causal Consistency protocol [33] to protect metadata,
at the DC perimeter.

2 2015/3/27

process) of operation invocations with their return values.
Operations a and b are potentially causally-related in E,
noted a→ b and called causal order:

1. An application process invoked b after it invoked a.
2. Read b observed update a on the same object.
3. There exists an operation c ∈ E such that a→ c→ b.

An executionE is causally consistent if every read operation
in E observes all the updates that causally precede the read,
applied in some linear extension of causal order.

Informally, under causal consistency, every process ob-
serves a monotonically non-decreasing set of updates that
includes its own updates, in an order that respects the
causality between operations.3 The following well-known
example illustrates [30]. In a social network, Bob sets per-
missions to disallow his boss Alice from viewing his photos.
Some time later, Bob posts a questionable photo of himself.
Without causal consistency, Alice may view the bad photo,
delivered before the new permissions. Under causal consis-
tency, the change of permission is guaranteed to be delivered
before the post, and Alice cannot view the photo.

More generally, if an application process reads x, and
later reads y, and if the state of x causally-depends on some
update u to y, then the state of y that it reads will include
update u. When the application requests y, we say there is
a causal gap if the local replica has not yet received u. A
consistent system must detect such a gap, and wait until u is
delivered before returning y, or avoid it in the first place. If
not, inconsistent reads expose both programmers and users
to anomalies caused by gaps [30, 31].

We consider a transactional variant of causal consistency
to facilitate multi-object operations: all the reads of a causal
transaction come from a same database snapshot, and either
all its updates are visible as a group, or none is [9, 30, 31].

Convergence Applications require convergence, which
consists of liveness and safety properties: (i) At-least-once
delivery: an update that is delivered (i.e., is visible by the
app) at some node, is delivered to all interested nodes after a
finite number of message exchanges; (ii) Confluence: nodes
that delivered the same set of updates read the same value.

Causal consistency does not guarantee confluence, as two
replicas might receive the same updates in different orders.
For confluence, we rely on CRDTs, high-level data types
with rich confluent semantics [16, 39]. An update on a high-
level object is not just an assignment, but is a method asso-
ciated with the object’s type. For instance, a Set object sup-
ports add(element) and remove(element); a Counter sup-
ports increment() and decrement().

CRDTs include primitive last-writer-wins register
(LWW) and multi-value register (MVR) [1, 21, 26], but
also higher level types such as Sets, Lists, Maps, Graphs,

3 This subsumes the well-known session guarantees [16].

Counters, etc. [2, 38–40]. Registers are simple to implement
[22, 30, 31], but cumbersome to use. For instance, the
implementation of LWW needs to store only the “last”
update and has idempotent updates, but looses some con-
current assignments. Higher level types, such as Counter
or Set, do not lose updates and are easier to use, but their
implementation is more demanding. The implementation
of high-level objects is eased by adequate support from the
system. For instance, an object’s value may be defined not
just by the last update, but also depend on earlier updates;
causal consistency is helpful, by ensuring that they are not
lost or delivered out of order. However, safety also demands
at-most-once delivery, as high-level updates are often not
idempotent (consider for instance increment()).

Although each of these requirements may seem familiar
or simple in isolation, the combination with scalability to
high numbers of nodes and database size is a new challenge.

2.2 Metadata design

Metadata serves to identify updates and to ensure correct
delivery. Metadata is piggy-backed on update messages, in-
creasing the cost of communication.

One common metadata design assigns each update a
timestamp as soon as it is generated on some originating
node. The causality data structures tend to grow “fat.” For
instance, dependency lists [30] grow with the number of up-
dates [22, 31, §3.3], whereas version vectors [12, 33] grow
with the number of clients. (Indeed, our experiments here-
after show that their size becomes unreasonable). We call
this the Client-Assigned, Safe but Fat approach.

An alternative delegates timestamping to a small number
of DC servers [5, 22, 31]. This enables the use of small vec-
tors, at the cost of losing some parallelism. However, this is
not fault tolerant if the client does not reside in a DC failure
domain. For instance, it may violate at-most-once delivery.
Consider a client transmitting update u to be timestamped
by DC1. If it does not receive an acknowledgement, it re-
tries, say with DC2 (failover). This may result in u receiv-
ing two distinct timestamps, and being delivered twice. Du-
plicate delivery violates safety for many confluent types, or
otherwise complicates their implementation [4, 16, 31]. We
call this the Server-Assigned, Lean but Unsafe approach.

Clearly, neither “fat” nor “unsafe” is satisfactory.

2.3 Causal consistency with partial replication is hard

Since a partial replica receives only a subset of the updates,
and hence of metadata, it could miss some causal depen-
dencies [12]. Consider the following example: Alice posts
a photo on her wall in a social network application (up-
date a). Bob sees the photo and mentions in a message to
Charles (update b), who in turn mentions it to David (update
c). When David looks at Alice’s wall, he expects to observe
update a and view the photo. However, if David’s machine

3 2015/3/27

does not cache Charles’ inbox, it cannot observe the causal
chain a → b → c and might incorrectly deliver c without
a. Metadata design should protect from such causal gaps,
caused by transitive dependency over absent objects.

Failures complicate the picture even more. Suppose
David sees Alice’s photo, and posts a comment to Alice’s
wall (update d). Now a failure occurs, and David’s machine
fails over to a new DC. Unfortunately, the new DC has not
yet received Bob’s update b, on which comment d causally
depends. Therefore, it cannot deliver the comment, i.e., ful-
fill convergence, without violating causal consistency. David
cannot read new objects from the DC for the same reason.4

Finally, a DC logs an individual update for only a limited
amount of time, but clients may be unavailable for unlimited
periods. Suppose that David’s comment d is accepted by
the DC, but David’s machine disconnects before receiving
the acknowledgement. Much later, after d has been executed
and purged away, David’s machine comes back, only to retry
d. This could violate at-most-once delivery; some previous
systems avoid this with fat version vectors [12, 33] or depend
on client availability [28].

3. The SwiftCloud approach
We now describe an abstract design that addresses the above
challenges, first in the failure-free case, and next, how we
support DC failure. Our design demonstrates how to apply
principles of causally consistent algorithms for full replica-
tion systems to build a cloud-based support for partial client
replicas. Later, in Section 4, we present a concrete protocol
implementing our design.

3.1 Causal consistency at full DC replicas

Ensuring causal consistency at fully-replicated DCs is a
well-known problem [3, 22, 30, 31]. Our design is log-based,
i.e., SwiftCloud stores updates in a log and transmits them
incrementally; it includes optimisations, where the full log is
occasionally replaced by the state of an object, called check-
point [12, 35]. We discuss checkpoints only where relevant.

A database version is any subset of updates, noted U ,
ordered by causality. A version maps object identifiers to
object state, by applying the relevant subsequence of the log;
the value of an object is exposed via the read API.

We say that a version U has a causal gap, or is inconsis-
tent if it is not causally-closed, i.e., if ∃u, u′ : u→ u′ ∧ u 6∈
U ∧ u′ ∈ U . As we illustrate shortly, reading from an incon-
sistent version should be avoided, because, otherwise, sub-
sequent accesses might violate causality. On the other hand,
waiting for the gap to be filled would increase latency and
decrease availability. To side-step this conundrum, we adopt
the approach of “reading in the past” [3, 30]. Thus, a DC
exposes a gapless but possibly delayed state, noted V .

4 Note that David can still perform updates, but they cannot be delivered,
thus the system does not converge.

x.add(1) x.add(3)

V1 V2

y.add(2) y.add(1)

U1

(a) Initial configuration

x.add(1) x.add(3)

V1 V2

y.add(2) y.add(1)

x.add(4)

UC

read x
{1,3}

(b) Continuation from 2(a) to risky configuration

x.add(1)
x.add(3)

V1 V2

y.add(2) y.add(1)

x.add(4)
read x

{1}

UC

(c) Read-in-the-past: continuation from 2(a) to conservative con-
figuration

Figure 2. Example evolution of configurations for two
DCs, and a client. x and y are Sets; box = update; arrow
= causal dependence (an optional text indicates the source
of dependency); dashed box = named database version/state.

To illustrate, consider the example of Figure 2(a). Objects
x and y are of type Set. DC 1 is in state U1 that includes
version V1 ⊆ U1, and DC 2 in a later state V2. Versions
V1 with value [x 7→ {1}, y 7→ {1}] and V2 with value
[x 7→ {1, 3}, y 7→ {1, 2}] are both gapless. However, version
U1, with value [x 7→ {1, 3}, y 7→ {1}] has a gap, missing
update y.add(2). When a client requests to read x at DC 1

in state U1, the DC could return the most recent version,
x : {1, 3}. However, if the application later requests y, to
return a safe value of y requires to wait for the missing
update from DC 2. By “reading in the past” instead, the same
replica exposes the older but gapless version V1, reading
x : {1}. Then, the second read will be satisfied immediately
with y : {1}. Once the missing update is received from DC 2,
DC 1 may advance from version V1 to V2.

A gapless algorithm maintains a causally-consistent,
monotonically non-decreasing progression of replica states
[3]. Given an update u, let us note u.deps its set of causal
predecessors, called its dependency set. If a full replica, in
some consistent state V , receives u, and its dependencies are
satisfied, i.e., u.deps ⊆ V , then it applies u. The new state is
V ′ = V ⊕ {u}, where we note by ⊕ a log merge operator
that filters out duplicates, further discussed in Section 4.1.
State V ′ is consistent, and monotonicity is respected, since
V ⊆ V ′.

If the dependencies are not met, the replica buffers u until
the causal gap is filled.

4 2015/3/27

3.2 Causal consistency at partial client replicas

As a client replica contains only part of the database and
its metadata, this complicates consistency [12]. To avoid the
complexity, we leverage the DC’s full replicas to manage
large part of gapless versions for the clients.

Given some interest set of objects the client is inter-
ested in, its initial state consists of the projection of a DC
state onto the interest set. This is a causally-consistent state,
as shown in the previous section. Client state can change
either because of an update generated by the client itself,
called an internal update, or because of one received from
a DC, called external. An internal update obviously main-
tains causal consistency. If an external update arrives, with-
out gaps, from the same DC as the previous one, it also main-
tains causal consistency.

More formally, consider some recent DC state, which we
will call the base version of the client, noted VDC . The
interest set of client C is noted O ⊆ x, y, The client
state, noted VC , is restricted to these objects. It consists
of two parts. One is the projection of base version VDC

onto its interest set, noted VDC |O. The other is the log of
internal updates, noted UC . The client state is their merge
VC = VDC |O ⊕ UC |O. On cache miss, the client adds the
missing object to its interest set, and fetches the object from
base version VDC , thereby extending the projection.

Base version VDC is a monotonically non-decreasing
causal version (it might be slightly behind the actual cur-
rent state of the DC due to propagation delays). By induc-
tion, internal updates can causally depend only on internal
updates, or on updates taken from the base version. There-
fore, a hypothetical full version VDC⊕UC would be causally
consistent. Its projection is equivalent to the client state:
(VDC ⊕ UC)|O = VDC |O ⊕ UC |O = VC .

This approach ensures partial availability. If a version is
in the cache, it is guaranteed causally consistent, although
possibly slightly stale. If it misses in the cache, the DC
returns a consistent version immediately. Furthermore, the
client replica can write fast, because it does not wait to com-
mit updates, but transfers them to its DC in the background.

Convergence is ensured, because the client’s base version
and log are synchronized with the DC in the background.

3.3 Failover: the issue with causal dependency

The approach described so far assumes that a client connects
to a single DC. In fact, a client can switch to a new DC at
any time, in particular in response to a failure. Although
each DC’s state is consistent, an update that is delivered
to one is not necessarily delivered in the other (because
geo-replication is asynchronous, to ensure availability and
performance at the DC level [10]), which may create a causal
gap in the client.

To illustrate the problem, return to the example of Fig-
ure 2(a). Consider two DCs: DC 1 is in (consistent) state V1,

and DC 2 in (consistent) state V2; DC 1 does not include two
recent updates of V2. ClientC, connected to DC 2, replicates
object x only; its state is V2|{x}. Suppose that the client reads
the Set x : {1, 3}, and performs update u = add(4), transi-
tioning to the configuration shown in Figure 2(b).

If this client now fails over to DC 1, and the two DCs
cannot communicate, the system is not live:

(1) Reads are not available: DC 1 cannot satisfy a request
for y, since the version read by the client is newer than
the DC 1 version, V2 6⊆ V1.

(2) Updates cannot be delivered (divergence): DC 1 cannot
deliver u, due to a missing dependency: u.deps 6⊆ V1.

Therefore, DC 1 must reject the client (i.e., withhold his
requests) to avoid creating the gap in state V1 ⊕ UC .5

3.3.1 Conservative read: possibly stale, but safe

To avoid such gaps that cannot be satisfied, the insight is
to depend only on K-stable updates that are likely to be
present in the failover DC, similarly to Mahajan et al. [33].

A version V is K-stable if every one of its updates is
replicated in at leastK DCs, i.e., |{i ∈ DC | V ⊆ Vi}| ≥ K,
whereK ≥ 1 is a threshold configured w.r.t. expected failure
model, and DC is a set of all data centers. To this effect, our
system maintains a consistent K-stable version V Ki ⊆ Vi,
which contains the updates for which DC i has received
acknowledgements from at least K − 1 distinct other DCs.

A client’s base version must be K-stable, i.e., VC =
V KDC |O ⊕ UC |O, to support failover. In this way, the client
depends, either on external updates that are likely to be
found in any DC (V KDC), or internal ones, which the client
can always transfer to the new DC (UC).

To illustrate, let us return to Figure 2(a), and consider
the conservative progression to Figure 2(c), assuming K =
2. The client’s read of x returns the 2-stable version {1},
avoiding the dangerous dependency via an update on y. If
DC 2 is unavailable, the client can fail over to DC 1, reading
y and propagating its update remain both live.

By the same arguments as in Section 3.2, a DC ver-
sion V KDC is causally consistent and monotonically non-
decreasing, and hence the client’s version as well. Note that
a client observes his internal updates immediately, even if
not K-stable.

Parameter K can be adjusted dynamically without im-
pacting correctness. Decreasing it has immediate effect. In-
creasing K has effect only for future updates, to preserve
montonicity.

5 The DC may accept to store client’s updates to improve durability, but it
cannot deliver them or offer notifications.

5 2015/3/27

3.3.2 Causal consistency and partial replication:
discussion

The source of the problem is an indirect causal dependency
on an update that the two replicas do not both know about
(y.add(2) in our example). As this is an inherent issue, we
conjecture a general impossibility result, stating that gen-
uine partial replication, causal consistency, partial availabil-
ity and timely at-least-once delivery (convergence) are in-
compatible. Accordingly, the requirements must be relaxed.

Note that in many previous systems, this impossibility
translates to a trade-off between consistency and availability
on the one hand, and performance on the other [20, 30, 40]
By “reading in the past,” we displace this to a trade-off
between freshness and availability, controlled by adjusting
K. A higherK increases availability, but updates take longer
to be delivered;6 in the limit, K = N ensures complete
availability, but no client can deliver a new update when
some DC is unavailable.A lower K improves freshness, but
increases the probability that a client will not be able to fail
over, and that it will block until its original DC recovers.
In the limit, K = 1 is identical to the basic protocol from
Section 3.2, and is similar to blocking session-guarantee
protocols [41].

K = 2 is a good compromise for deployments with three
or more DCs that covers common scenarios of a DC failure
or disconnection [20, 27]. Our evaluation withK = 2 shows
that it incurs a negligible staleness.

Network partitions Client failover between DCs is safe
and generally live, except when the original set of K DCs
were partitioned away from both other DCs and the client,
shortly after they delivered a version to the client. In this
case, the client blocks. To side-step this unavoidable possi-
bility, we provide an unsafe API to read inconsistent data.

When a set of fewer thanK DCs is partitioned from other
DCs, the clients that connect to them do not deliver their mu-
tual updates until the partition heals. To improve liveness in
this scenario, SwiftCloud supports two heuristics: (i) a par-
titioned DC announces its “isolated” status, automatically
recommending clients to use another DC, and (ii) clients
who cannot reach another DC that satisfies their dependen-
cies can use the isolated DCs with K temporarily lowered,
risking unavailability if another DC fails.

Precision vs. missing dependencies. The probability of a
client blocked due to an unsatisfied transitive causal de-
pendency depends on many factors, such as workload- and
deployment-specific ones. Representation of dependencies
also contributes. SwiftCloud uses coarse-grained represen-
tation of dependencies, at the granularity of the complete
base version used by the client. This may cause a spuri-

6 The increased number of concurrent updates that this causes is not a big
problem, thanks to confluent types.

ous missing dependency, when a DC rejects a client be-
cause it misses some update that is not an actual dependence.
Finer-grained dependency representation, such as in causal-
ity graphs [30], or resorting to application-provided explicit
dependencies under a weaker variant of causal consistency
[7], avoid some spurious dependencies at the expense of
fatter metadata. However, the missing dependency issue re-
mains under any dependency precision. Thus, our approach
is to fundamentally minimize the chances of any missing de-
pendency, both genuine and spurious.

4. Implementation
We now describe a metadata and concrete protocols imple-
menting the abstract design.

4.1 Timestamps, vectors and log merge

The SwiftCloud approach requires metadata: (1) to uniquely
identify an update; (2) to encode its causal dependencies;
(3) to identify and compare versions; (4) and to identify all
the updates of a transaction. We now describe a type of
metadata, which fulfils the requirements and has a low cost.
It combines the strengths of the two approaches outlined in
Section 2.3, and is both lean and safe.

A timestamp is a pair (i, k) ∈ (DC∪C)×N, where i iden-
tifies the node that assigned the timestamp (either a DC or a
client) and k is a sequence number. Similarly to the solution
of Ladin et al. [28], our metadata assigned to some update u
combines both: (i) a single client-assigned timestamp u.tC
that uniquely identifies the update, and (ii) a set of zero or
more DC-assigned timestamps u.TDC . Before being deliv-
ered to a DC, the update has no DC timestamp; it has one
thereafter; it may have more than one in case of DC failover.
Nodes can refer to an update via any of its timestamps to tol-
erate failures. The updates in a transaction all have the same
timestamp(s), to ensure all-or-nothing delivery [40].

We represent a version or a dependency as a version
vector [34]. A vector is a partial map from node ID to
integer, e.g., VV = [DC 1 7→ 1,DC 2 7→ 2], which we
interpret as a set of timestamps. For example, when VV
is used as a dependency for some update u, it means that
u causally depends on {(DC 1, 1), (DC 2, 1), (DC 2, 2)}. In
SwiftCloud protocols, every vector has at most one client
entry, and multiple DC entries; thus, its size is bounded by
the number of DCs, limiting network overhead. In contrast to
a dependence graph, a vector compactly represents transitive
dependencies and can be evaluated locally by any node.

Formally, the timestamps represented by a vector VV are
given by a function T :

T (VV) = {(i, k) ∈ dom(VV)× N | k ≤ VV (i)}

Similarly, the version decoding function V of vector VV on
a state U selects every update in U that matches the vector

6 2015/3/27

(V is defined for states U that cover all timestamps of VV):

V(VV , U) = {u ∈ U | (u.TDC ∪ {u.tC}) ∩ T (VV) 6= ∅}

For the purpose of the decoding function V , a given up-
date can be flexibly referred through any of its timestamps.
Moreover, V is stable with growing state U . This is useful to
identify a version on a large state that undergoes concurrent
log appends; formally, ∀VV , U, U ′ : U ⊂ U ′ ∧ T (VV) ⊆⋃
u∈U

(u.TDC ∪ {u.tC}) =⇒ V(VV , U) = V(VV , U ′).

The log merge operator U1 ⊕ U2, which eliminates du-
plicates, is defined using client timestamps. Two updates
u1 ∈ U1, u2 ∈ U2 are identical if u1.tC = u2.tC . The merge
operator merges their DC timestamps into u ∈ U1⊕U2, such
that u.TDC = u1.TDC ∪ u2.TDC .

4.2 Protocols

We now describe the protocols of SwiftCloud by following
the lifetime of an update, and with reference to the names in
Figure 1.

State A DC replica maintains its state UDC in durable stor-
age. The state respects causality and atomicity for each in-
dividual object, but due to internal concurrency, this may
not be true across objects. Therefore, the DC also has
a vector VVDC that identifies a safe, monotonically non-
decreasing causal version in the local state, which we note
VDC = V(VVDC , UDC). Initially, UDC contains no up-
dates, and vector VVDC is zeroed.

A client replica stores the commit log of its own updates
UC , and the projection of the base version from the DC, re-
stricted to its interest set O, VDC |O, as described previously
in Section 3.2. It also stores a copy of vector VVDC that
describes the base version.

Client-side execution When the application starts a trans-
action τ at client C, the client initialises it with an empty
buffer of updates τ.U = ∅ and a snapshot vector of the cur-
rent base version τ.depsVV = VVDC ; the DC can update
the client’s base version concurrently with the transaction
execution. A read in transaction τ is answered from the ver-
sion identified by the snapshot vector, merged with recent in-
ternal updates, τ.V = V(τ.depsVV , VDC |O)⊕UC |O⊕τ.U .
If the requested object is not in the client’s interest set,
x 6∈ O, the clients extends its interest set, and returns the
value once the DC updates the base version projection.

When the application issues internal update u, it is ap-
pended to the transaction buffer τ.U ← τ.U ⊕ {u}, and in-
cluded in any later read. To simplify the notation, we assume
hereafter that a transaction performs at most one update.7

The transaction commits locally at the client and never fails.

7 This can be easily extended to multiple updates, by assigning the same
timestamp to all the updates of the same transaction, ensuring the all-or-
nothing property [40].

If the transaction made update u ∈ τ.U , the client replica
commits it locally as follows: (1) assign it client timestamp
u.tC = (C, k), where k counts the number of updates at
the client; (2) assign it a dependency vector initialised with
the transaction snapshot vector u.depsVV = τ.depsVV ;
(3) append it to the commit log of local updates on stable
storage UC ← UC ⊕ {u}. This terminates the transaction;
the client can start a new one, which will observe the com-
mitted updates.

Transfer protocol: Client to DC The transfer protocol
transmits committed updates from a client to its current DC,
in the background. It repeatedly picks the first unacknowl-
edged committed update u from the log. If any of u’s internal
dependencies has recently been assigned a DC timestamp, it
merges this timestamp into the dependency vector. Then, the
client sends a copy of u to its current DC. The client expects
to receive an acknowledgement from the DC, containing the
timestamp(s) T that the DC assigned to update u. If so, the
client records the timestamps in the original update record
u.TDC ← T . In a failure-free case, T is a singleton.

The client may now transfer the next update in the log.

A transfer request may fail for three reasons:

(a) Timeout: the DC is suspected unavailable; the client con-
nects to another DC (failover) and repeats the protocol.

(b) The DC reports a missing internal dependency, i.e., it
has not received some update of the client, as a result
of a previous failover. The client recovers by marking
as unacknowledged all internal updates starting from the
oldest missing dependency, and restarting the transfer
protocol from that point.

(c) The DC reports a missing external dependency; this is
also an effect of failover. In this case, the client tries
yet another DC. The approach from Section 3.3.1 avoids
repeated failures.

Upon receiving update u, the DC verifies if its dependen-
cies are satisfied, i.e., if T (u.depsVV) ⊆ T (VVDC). (If
this check fails, it reports an error to the client, indicating
either case (b) or (c)). If the DC has not received this update
previously, as determined by client timestamps, i.e., ∀u′ ∈
UDC : u′.tC 6= u.tC , the DC does the following: (1) Assign
it a DC timestamp u.TDC ← {(DC ,VVDC (DC) + 1))},
(2) store it in its durable state UDC ⊕ {u}, (3) make the
update visible in the DC version VDC , by incorporating its
timestamp(s) into VVDC . This last step makes u available
to the geo-replication and notification protocols, described
hereafter. If the update has been received before, the DC
looks up its previously-assigned DC timestamps. In either
case, the DC acknowledges the transfer to the client with the
DC timestamp(s). Note that some of these steps can be par-
allelised between transfer requests received from different
client replicas, e.g., using batched timestamp assignment.

7 2015/3/27

Geo-replication protocol: DC to DC The geo-replication
protocol relies on a uniform reliable broadcast across DCs.
An update enters the geo-replication protocol when a DC
accepts a fresh update during the transfer protocol. The ac-
cepting DC broadcasts it to all other DCs. The broadcast im-
plementation stores an update in a replication log until every
DC receives it. A DC that receives a broadcast message con-
taining u does the following: (1) If the dependencies of u are
not met, i.e., if T (u.depsVV) 6⊆ T (VVDC), buffer it until
they are; and (2) incorporate u into durable state UDC ⊕{u}
(if u is not fresh, the duplicate-resilient log merge safely
unions all timestamps), and incorporate its timestamp(s) into
the DC version vector VVDC . This last step makes it avail-
able to the notification protocol. The K-stable version V KDC

is maintained similarly.

Notification protocol: DC to Client A DC maintains a
best-effort notification session, over a FIFO channel, to each
of its connected clients. The soft state of a session includes
a copy of the client’s interest set O and the last known base
version vector used by the client, VVDC

′. The DC accepts
a new session only if its own state is consistent with the
base version provided by the client, i.e., if T (VVDC

′) ⊆
T (VVDC). Otherwise, the client is redirected to another
DC, since the DC would cause a causal gap with the client’s
state (the solution from Section 3.3.1 avoids repeated rejec-
tions).

The DC sends over each channel a causal stream of up-
date notifications.8 Notifications are batched according to ei-
ther time or to rate [12]. A notification packet consists of a
new base version vector VVDC , and a log of all the updates
U∆ to the objects of the interest set, between the client’s pre-
vious base vector VVDC

′ and the new one. Formally, Uδ =
{u ∈ UDC |O | u.TDC∩(T (VVDC)\T (VVDC

′)) 6= ∅}. The
client applies the newly-received updates to its local state,
described by the old base version: VDC |O ← VDC |O ⊕ Uδ ,
and assumes the new vector VVDC . If any of received up-
dates is a duplicate w.r.t. to the old version or to a local
update, the log merge operator handles it safely. Note that
transaction atomicity is preserved, since all updates of a
transaction share a common timestamp, thus either all fit in
a batch Uδ or none does.

When the client detects a broken channel, it reinitiates the
session, possibly on a new DC.

The interest set can change dynamically. When an object
is evicted from the cache, the notifications are lazily unsub-
scribed to save resources. When it is extended with object
x, the DC responds with the current version of x, which in-
cludes all updates to x up to the base version vector. To avoid
races, a notification includes a hash of the interest set, which
the client checks.

8 Alternatively, the client can ask for invalidations instead, trading respon-
siveness for lower bandwidth utilization and higher DC throughput.

4.3 Object checkpoints and log pruning

Update logs contribute to substantial storage and, to smaller
extent, network costs. To avoid unbounded growth, pruning
protocol periodically replaces the prefix of a log by a check-
point. In the common case, a checkpoint is more compact
than the corresponding log of updates; for instance, a log
containing one thousand increments to a Counter object and
their timestamps, can be replaced by a checkpoint containing
just the number 1000, and a version vector.

4.3.1 Log pruning in the DC

The log at a DC provides (a) protection from duplicated
update delivery implemented with ⊕ operator, as explained
earlier, and (b) the capability to compute different versions,
for application processes reading at different causal times.
A log entry for update u can be replaced with a checkpoint
once all of its duplicates have been filtered out, and once u
has been delivered to all interested application processes.

Precise evaluation of expendability condition would re-
quire access to the client replica states. In practice, we need
to prune aggressively, but without violating correctness. In
order to reduce the risk of pruning a version not yet delivered
to an interested application (which could force it to restart
an ongoing transaction), we prune only a delayed version
VV ∆

DC , where ∆ is a real-time delay [30, 31]. If this heuris-
tic fails, the consequences are not fatal: an ongoing client
transaction may need to restart and repeat prior reads or re-
turn inconsistent data if desired, but the committed updates
are never aborted.

To avoid duplicates, we extend DC metadata as follows.
DC i maintains an at-most-once guard Gi : C → N, which
records the sequence number of each client’s last pruned up-
date. The guard is local to and shared at a DC. Whenever
the DC receives a transfer request or a geo-replication mes-
sage for update u with client timestamp (C, k) and cannot
find it in its log, it checks the at-most-once guard Gi(C) en-
try. If the DC recognises that the update is a duplicate of a
pruned update (Gi(C) ≥ k), it ignores the update, except
that it advances version vector to include all of the u’s DC
timestamps; for a transfer request, the DC replies with a vec-
tor VV i, which is an overapproximation of the (discarded)
information about the exact set of u’s DC timestamps.

The notification protocol also uses checkpoints. On a
client cache miss, instead of a complete log, the DC sends
an equivalent checkpoint of the object, together the client’s
guard entry, so that the client can merge it with his log safely.

4.3.2 Pruning the client’s log

Managing the log at a client is simpler. A client logs his
own updates UC , which may include updates to object that
is currently out of his interest set. This enables the client to
read its own updates, and to propagate them lazily to a DC

8 2015/3/27

YCSB [19] SocialApp [40]
Type of objects LWW Map Set, Counter, Register
Object payload 10× 100 bytes variable

Read txns
read fields read wall†(80%)

(A: 50% / B: 95%) see friends (8%)

Update txns
update field message (5%)

(A: 50% / B:5%) post status (5%)
add friend (2%)

Objects / txn 1 (non-txnal) 2–5

Database size 50,000 objects
50,000 users

(400,000 objects)
Object popularity uniform / Zipfian uniform
Session locality 40% (low) / 80% (high)

† Read wall is an update if page view statistics are enabled.

Table 1. Characteristics of applications/workloads.

when connected and convenient. An update u can be dis-
carded as soon as it appears in K-stable base version V KDC ,
i.e., when the client becomes dependent on the presence of
u at a DC. The client discards the corresponding updates:
UC ← UC \ V(VVK

i , UC).

5. Evaluation
We implement SwiftCloud and evaluate it experimentally,
in comparison to alternatives. We show that SwiftCloud
serves: (i) fast response, under 1 ms for both reads and
writes to cached objects (Section 5.3); (ii) throughput scala-
bility of with the number of DCs, and support for thousands
of clients with small metadata size, linear in the number
of DCs (Section 5.4); (iii) fault-tolerance w.r.t. client churn
(Section 5.5) and DC outages (Section 5.6); and (iv) low stal-
eness, under 3% of stale reads (Section 5.7).

5.1 Implementation and applications

SwiftCloud and the benchmark applications are imple-
mented in Java.9 SwiftCloud uses an extendable library of
CRDT types [39, op-based], in-memory storage,10 Kryo for
data marshalling, and a custom RPC implementation. A
client cache has a fixed size and uses an LRU eviction policy.
More elaborate approaches, such as object prefetching [12],
are feasible.

Our client API resembles both production object stores,
such as Riak 2.0 or Redis [2, 36], and prototype causal
transactional stores, such as COPS or Eiger [30, 31]:11

begin_transaction() read(object) : value
commit_transaction() update(object, method(args . . .))

The actual API also includes caching options omitted here.

9 https://github.com/SyncFree/SwiftCloud
10 Our prototype can use BerkeleyDB for durable storage, but it was turned
off in the present experiments.
11 Unlike COPS or Eiger, we consider interactive transactions, i.e., accessed
objects do not need to be predefined.

Along the lines of previous studies of causally-consistent
systems [5, 7, 31, 40], we use two different benchmarks,
YCSB and SocialApp, summarized in Table 1.

YCSB [19] serves as a kind of micro-benchmark, with
simple requirements, measuring baseline costs and specific
system properties in isolation. It has a simple key-field-value
object model, implemented as a LWW Map type, using a
default payload size of ten fields of 100 bytes each. YCSB
issues single-object reads and writes. We use two of the
standard YCSB workloads: update-heavy Workload A, and
read-dominated Workload B. The object access pattern can
be set to either uniform or Zipfian. YCSB does not rely on
transactional semantics or high-level data types.

SocialApp is a social network application modelled after
WaltSocial [40].12 It employs high-level data types such as
Sets, for friends and posts, LWW Register for profile infor-
mation, Counter for counting profile visits, and object refer-
ences. Many SocialApp objects grow in size over time (e.g.,
sets of posts). We are not concerned about this growth; a
recent work of Briquemont [14] demonstrates how to imple-
ment object sharding in a SwiftCloud-like system. Social-
App accesses multiple objects in a causal transaction to en-
sure that operations such as reading a wall page and profile
information behave consistently. Percentage in parantheses
indicate the frequency of each operation in the workload.
The SocialApp workload is read-dominated, but the ostensi-
bly read-only operation of visiting a wall actually increments
the wall visit counter when statistics are enabled, in metadata
experiments. The user popularity distribution is uniform.

We use a 50,000-user database for both applications, ex-
cept for smaller 10,000 users database for metadata experi-
ments, to increase the stability of measurements.

We are not aware of any realistic benchmark for large-
scale client-side replication designed for thousands of clients
that would define a workload with long client sessions. We
evaluate the system with short client sessions issuing more
frequent operations than we expect in realistic workloads.
The system behaviour under such a condensed workload is
our proxy for the behaviour with more clients running slower
sessions of longer duration.

In order to model the locality behaviour of a client, both
YCSB and SocialApp are augmented with a facility to con-
trol access locality, mimicking social network access pat-
terns [13]. Within a client session, a workload generator
draws uniformly from a pool of session-specific objects with
either 40% (low locality) or 80% (high locality) probability.
For SocialApp, the pool contains objects of user’s friends.
Objects not drawn from this local pool are drawn from the
global (uniform or Zipfian) distribution described above.
The local pool can fit in the client’s cache.

12 SocialApp does not implement WaltSocial’s user registration operation,
as it would that would require additional support for strong consistency.

9 2015/3/27

5.2 Experimental setup

We run three DCs in geographically distributed Ama-
zon EC2 availability zones (Europe, Virginia, and Oregon),
and a pool of distributed clients. Round-Trip Times (RTTs)
between nodes are as follows:

Oregon DC Virginia DC Europe DC
nearby clients 60–80 ms 60–80 ms 60–80 ms

Europe DC 177 ms 80 ms
Virginia DC 60 ms

Each DC runs on a single m3.m EC2 instance, cheap virtual
hardware, equivalent to a single core 64-bit 2.0 GHz Intel
Xeon processor (2 ECUs) with 3.75 GB of RAM, and Open-
JDK7 on Linux 3.2. Objects are pruned at random intervals
between 60–120 s, to avoid bursts of pruning activity. We de-
ploy 500–2,500 clients on a separate pool of 90 m3.m EC2
instances. Clients load DCs uniformly and use the closest
DC by default, with a client-DC RTT ranging in 60–80 ms.

For comparison, we provide three protocol modes:
(i) SwiftCloud mode (default) with client cache replicas of
256 objects, and refreshed with notifications at a rate≤1 s by
default; (ii) Safe But Fat metadata mode with cache, but with
client-assigned metadata only (modelled after PRACTI, or
Depot without cryptography [12, 33]), (iii) server-side repli-
cation mode without client caches. In this mode, a read in-
curs one RTTs to a DC, whereas an update incurs two RTTs
to a DC, modelling the cost of a synchronous write to a quo-
rum of servers to ensure fault-tolerance comparable to Swift-
Cloud.

5.3 Response time and throughput

We run several experiments to compare SwiftCloud’s client-
side caching, with reference to the locality potential and
server-side geo-replication without caching. For each work-
load we evaluate the system stimulated with different rates
of aggregated incoming transactions, until it becomes sat-
urated. We use a number of clients that is throughput-
optimised for each pair of workload and protocol mode. We
report aggregated statistics for all clients.

Figure 3 shows response times for YCSB, comparing
server-only (left side) with client replication (right side),
under low (top) and high locality (bottom), when the sys-
tem is not overloaded. Recall that in server-only replication,
a read incurs a RTT to the DC, whereas an update incurs
2 RTTs. We expect SwiftCloud to provide much faster re-
sponse, at least for cached data. Indeed, the figure shows that
a significant fraction of operations respond immediately in
SwiftCloud mode, and this fraction tracks the locality of the
workload (marked “locality potential” on the figure), within
a ±7.5 percentage-point margin attributable to caching pol-
icy artefacts.13 The remaining operations require one round-
trip to the DC, indicated as 1 RTT. As our measurements for

13 A detailed analysis reveals the sources of this error margin. The default
Zipfian object access distribution of YCSB increases the fraction of local

Server replicas only SwiftCloud w/client replicas

0
R

T
T

1
R

T
T

2
R

T
T

locality potential

locality potential

0
R

T
T

1
R

T
T

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

Low
 locality

H
igh locality

0 50 100 150 200 250 0 50 100 150 200 250
operation response time [ms]

C
D

F
 fo

r
al

l s
es

si
on

s

read

update

Figure 3. Response time for YCSB operations (workload
A, Zipfian object popularity) under different system and
workload locality configurations, aggregated for all clients.

+107%

+7%
+14%

+102%

+128%

+9% −11%−14%

+39% +1%

High locality workload Low locality workload

0

5000

10000

15000

20000

25000

Soc
ial

App

YCSB A

YCSB A
, u

nif
or

m

YCSB B

YCSB B
, u

nif
or

m

Soc
ial

App

YCSB A

YCSB A
, u

nif
or

m

YCSB B

YCSB B
, u

nif
or

m

m
ax

. t
hr

ou
gh

pu
t [

tx
n/

s]

SwiftCloud w/client replicas
server replicas only

Figure 4. Maximum system throughput for different work-
loads and protocols. Percentage over bars indicates the in-
crease/decrease in throughput for SwiftCloud compared to
server-side replication.

SocialApp show the same message, we do not report them
here. These results demonstrate that the consistency guaran-
tees and the rich programming interface of SwiftCloud do
not affect responsiveness of read and update of cached data.

In the next study, we saturate the system to determine its
maximum aggregated throughput. Figure 4 compares Swift-
Cloud with server-side replication for all workloads.

Client-side replication is a mixed blessing: client replicas
absorb read requests that would otherwise reach the DC, but
on the other hand require additional work at the DC to main-
tain client replicas. The cost of client replicas pays off for
read-dominated high locality workloads. SwiftCloud con-
sistently delivers higher throughput for high locality work-
loads, by 7 % up to 128 %, and for read-heavy workloads
in particular. In constrast, low locality workloads show no
clear trend; depending on the workload, throughput either
increases by up to 38 %, or decreases by to up 11 %.

accesses due to added “global" locality (up to 82,% local accesses for target
80% of workload session locality). On the other hand, low locality workload
decreases amount of local accesses, due to magnified imperfections of LRU
cache eviction algorithm (down to 34,% local accesses for target 40%).

10 2015/3/27

YCSB A (50% updates) YCSB B (5% updates)

1

10

100

1000

1

10

100

1000

Z
ipfian distrib.

uniform
 distrib.

1250 2500 5000 5000 10000 20000
throughput [txn/s]

re
sp

on
se

 ti
m

e
[m

s]

server replicas only, 70th percentile of response time (exp. local)
client replicas, 70th percentile of response time (exp. local)
server replicas only, 95th percentile of respone time (remote)
client replicas, 95th percentile of respone time (remote)

Figure 5. Throughput vs. response time for different system
configurations running variants of YCSB.

Our next experiment studies how response times vary
with server load and with the staleness settings. The results
show that, as expected, cached objects respond immediately
and are always available, but the responsiveness of cache
misses depends on server load. For this study, Figure 5 plots
throughput vs. response time, for YCSB A (left side) and B
(right side), both for the Zipfian (top) and uniform (bottom)
distributions. Each point represents the aggregated through-
put and latency for a given transaction incoming rate, which
we increase until reaching the saturation point. The curves
report two percentiles of response time: the lower (70 th per-
centile) line represents the response time for requests that hit
in the cache (the session locality level is 80%), whereas the
higher (95 th percentile) line represents misses, i.e., requests
served by a DC.

As expected, the lower (cached) percentile consistently
outperforms the server-side baseline, for all workloads and
transaction rates. A separate analysis, not reported in detail
here, reveals that a saturated DC slows down its rate of
notifications, increasing staleness, but this does not impact
response time, as desired. In contrast, the higher percentile
follows the trend of server-side replication response time,
increasing remote access time.

Varying the target notification rate (not plotted) between
500 ms and 1000 ms, reveals the same trend: response time
is not affected by the increased staleness. At a lower refresh
rate, notification batches are less frequent but larger. This
increases throughput for the update-heavy YCSB A (up to
tens of percent points), but has no effect on the throughput of
read-heavy YCSB B. We expect the impact of refresh rate to
be amplified for workloads with smaller rate of notification
updates.

●
●

● ●

● ● ●
●

● ● ● ● ●● ● ● ● ●
/ limit

●

● ●

●

●

●

●
●

●
●

●

●
●

● ●
●

●

●

/ limit

● ● ●
● ●

● ● ● ● ●

● ●
● ● ●●

● ● ● ●

YCSB A, uniform YCSB B, uniform SocialApp

0

5000

10000

15000

20000

25000

500 1500 2500 500 1500 2500 500 1500 2500
#client replicas

m
ax

. t
hr

ou
gh

pu
t [

tx
n/

s] ●●

●●

refresh rate 1s
refresh rate 10s

3 DC replicas
1 DC replica

Figure 6. Maximum system throughput for a variable num-
ber of client and DC replicas.

YCSB A, uniform YCSB B, uniform SocialApp w/stats

max. notification data max. notification data max. notification data

10

100

1K

10K

100K

500 1500 2500500 1500 2500500 1500 2500
#client replicas

no
tif

ic
at

io
n

m
et

ad
at

a
[B

]

1 DC replica
3 DC replicas

SwiftCloud metadata
Safe But Fat metadata (Depot*)

Figure 7. Size of metadata in notification message for a
variable number of replicas, mean and standard error. Nor-
malised to a notification of 10 updates.

5.4 Scalability

Next, we measure how well SwiftCloud scales with increas-
ing numbers of DC and of client replicas. Of course, per-
formance is expected to increase with more DCs, but most
importantly, the size of metadata should be small, should in-
crease only marginally with the number of DCs, and should
not depend on the number of clients. Our results support
these expectations.

In this experiment, we run SwiftCloud with a variable
number of client (500–2500) and server (1–3) replicas. We
report only on the uniform object distribution, because under
the Zipfian distribution different numbers of clients skew
the load differently, making any comparison meaningless.
To control staleness, we run SwiftCloud with two different
notification rates (every 1 s and every 10 s).

Figure 6 shows the maximum system throughput on the
Y axis, increasing the number of replicas along the X axis.
The thin lines are for a single DC, the bold ones for three
DCs. Solid lines represent the fast notification rate, dashed
lines the slow one. The figure shows, left to right, YCSB
Workload A, YCSB Workload B, and SocialApp.

11 2015/3/27

The capacity of a single DC in our hardware configu-
ration peaks at 2,000 active client replicas for YCSB, and
2,500 for SocialApp. Beyond that, the DC drops sessions.

The wisdom of server-side replication applies in a new
way to SwiftCloud: additional DC replicas increase the sys-
tem capacity for operations that can be performed at only
one replica. These traditionally include only read operations,
but in the case of SwiftCloud, also sending notification mes-
sages (maintaining active clients). Whereas a single Swift-
Cloud DC supports at most 2,000 clients. With three DCs
SwiftCloud supports at least 2,500 clients for all workloads.
Unfortunately, as we ran out of resources for client machines
at this point, we cannot report an upper bound.

For some fixed number of DCs, adding client replicas
increases the aggregated system throughput, until a point of
approximately 300–500 clients per DC, where the cost of
maintaining client replicas up to date saturates the DCs, and
further clients do not absorb enough reads to overcome that
cost. Note that the lower refresh rate can reduce the load at
a DC by 5 to 15%.

In the same experiment, Figure 7 presents the distribution
of metadata size in notification messages. (Notifications are
the most common and the most costly messages sent over
the network.) We plot the size of metadata (in bytes) on
the Y axis, varying the number of clients along the X axis.
Left to right, the same workloads as in the previous figure.
Thin lines are for one DC, thick lines for three DCs. A solid
line represents SwiftCloud “Lean and Safe” metadata, and
dotted lines the classical “Safe But Fat” approach. Note that
our Safe-but-Fat implementation includes the optimisation
of sending vector deltas rather than the full vector [33],
as in Depot or PRACTI [12, 33] Vertical bars represent
standard error across clients. As notifications are batched,
we normalise metadata size to a message carrying exactly
10 updates, corresponding to under approx. 1 KB of data.

This plot confirms that the SwiftCloud metadata is small
and constant, at 100–150 bytes/notification (10–15 bytes per
update); data plus metadata together fit inside a single stan-
dard network packet.14 It is independent both from the num-
ber of client replicas and from the workload, as well as from
the number of objects in the database, as an additional ex-
periment (not plotted) validates. Increasing the number of
DC replicas from one to three causes a negligible increase in
metadata size, of under 10 bytes. We attribute some variabil-
ity to the data encoding and inaccuracies of measurements,
including the normalisation process.

In contrast, the classical Safe-but-Fat metadata grows lin-
early with the number of clients and exhibits higher vari-
ability. Its size reaches approx. 1 KB for 1,000 clients in all

14 The size of metadata does not exceed 100–150 bytes per notification
with 10 updates, which matches our back of the envelope computations: 2–
4 entries in a vector, plus 10 pairs of timestamps (one for each update) yields
approximately 24 timestamps in total, with potential duplicates encoded
more efficiently.

YCSB − all objects SocialApp − stats counters

● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

1K

10K

100K

1M

10M

100M

0 1000 2000 3000 4000 0 1000 2000 3000 4000
#unavailable client replicas

st
or

ag
e

oc
cu

p.
 [B

]

●

SwiftCloud
(SwiftCloud's at−most−once guard only)
Lean But Unsafe approach w/o at−most−once guarantees

Figure 8. Storage occupation at one DC in reaction to client
churn, for SwiftCloud and Lean-but-Unsafe alternative.

workloads, and 10 KB for 2,500 clients. Clearly, metadata
being up to 10× larger than the actual data this represents a
substantial overhead.

5.5 Tolerating client churn

We now turn to fault tolerance. In the next experiment,
we evaluate SwiftCloud under client churn, by periodically
disconnecting client replicas and replacing them with a new
set of clients. At any point in time, there are 500 active
clients and a variable number of disconnected clients, up to
5000. Figure 8 illustrates the storage occupation of a DC for
representative workloads, which is also a proxy for the size
of object checkpoints transferred. We compare SwiftCloud’s
log compaction to a protocol without at-most-once delivery
guarantees (Lean But Unsafe).

SwiftCloud storage size is approximately constant thanks
to the aggressive log compaction. This is safe thanks to the
at-most-once guard table per DC. Although the size of the
guard (bottom curve) grows with the number of clients, it
requires orders of less storage than the actual database itself.

A protocol without at-most-once delivery guarantees uses
Lean-but-Unsafe metadata, without SwiftCloud’s at-most-
once guard. However this requires more complexity in each
object’s implementation, to protect itself from duplicates.
This increases the size of objects, impacting both storage and
network costs. As is visible in the figure, the cost depends
on the object type: none for YCSB’s LWW-Map, which is
naturally idempotent, vs. linear in the number of clients for
SocialApp’s Counter objects.

We conclude that the cost of maintaining SwiftCloud’s
at-most-once guard is negligible, and easily amortized by its
stable behaviour and possible savings.

5.6 Tolerating DC failures

The next experiment studies the behaviour of SwiftCloud
when a DC disconnects. The scatterplot in Figure 9 shows
the response time of a SocialApp client application as the
client switches between DCs. The client runs on a private
machine outside of EC2. Each dot represents the response
time of an individual transaction. Starting with a cold cache,
response times quickly drops to near zero for transactions

12 2015/3/27

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 10 20 30 40 50 60 70 80

re
sp

on
se

 ti
m

e
[m

s]

time [s]

/ transient DC failure /

Figure 9. Response time for a client that hands over be-
tween DCs during a 30 s failure of a DC.

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 0 5000 10000 15000 20000 25000

st
al

e
re

ad
s

[%
]

#users in SocialApp

transactions
individual reads

Figure 10. K-stability staleness overhead.

hitting in the cache, and to around 110 ms for misses. Some
33 s into the experiment, the current DC disconnects, and
the client is diverted to another DC in a different continent.
Thanks to K-stability the failover succeeds, and the client
continues with the new DC. Response time for cache misses
reflects the higher RTT to the new DC. At 64 s, the client
switches back the initial DC, and performance smoothly
recovers.

Recall that a server-side geo-replication system with
similar fault-tolerance incurs high response time (cf. Sec-
tion 5.3, or [20]) and does not ensure at-most-once delivery.

5.7 Staleness cost

The price to pay for our read-in-the-past approach is an in-
crease in staleness. We consider a read stale if a version more
recent (but not K-stable) than the one it returns exists at the
current DC of a client that performed the read; a transaction
is stale if any of its reads is stale. In the experiments so far,
we observed a negligible number of stale reads and transac-
tions, below 1 %. In another experiment, we artificially in-
crease the probability of staleness by various means, e.g.,
using a smaller database, and setting cache size to zero. We
run the SocialApp benchmark with 1000 clients in Europe
connected to the Ireland DC and replicated in the Oregon
DC.

Figure 10 shows that stale reads and stale transactions re-
main under 1% and 2.5% respectively. This shows that even
under high contention, accessing a slightly stale snapshot has
very little impact on the data read by transactions.

6. Related work
We now briefly discuss related results on consistency (Sec-
tion 6.1), and compare similar systems and protocols in de-
tails (Section 6.2).

6.1 Consistency model and availability

Mahajan et al. [32] prove that no stronger consistency model
than causal consistency is available and convergent, under
full replication. We conjecture that these properties are not
simultaneously achievable under partial replication, and we
show how to weaken one of the liveness properties. Bailis
et al. [8] also study variants of weak consistency models,
and formulate a similar impossibility for a client switching
server replicas. However, they do not take into account the
capabilities of a client replica, leveraged by our solution.

Some operations or objects of application may require
stronger consistency, which requires synchronous protocols
[24]. For instance, we observe that our social network ap-
plication port would benefit from strongly consistent sup-
port for user registration or a password change. Prior work
demonstrates that combining strong and weak consistency
is possible on shared data [29, 40]. Such techniques are ap-
plicable to SwiftCloud. Notably, Balegas et al. [11] propose
protocols for preservation of consistency invariants as a mid-
dleware layer on top of SwiftCloud.

6.2 Existing systems

Several systems support consistent, available and convergent
data access, at different scales. For the most related causally-
consistent systems, we compare their metadata in Table 2.
The columns indicate: (i) the extent of support for par-
tial replication; (ii) which nodes assign timestamps; (iii) the
worst-case size of causality metadata; (iv) the scope of va-
lidity of metadata representing a database version (is it valid
only in a local replica or anywhere); (v) whether it ensures
at-most-once delivery; (vi) whether it supports general con-
fluent types (CRDTs).

6.2.1 Replicated databases for client-side apps

PRACTI [12] is a seminal work on causal consistency un-
der partial replication. PRACTI uses Safe-but-Fat client-
assigned metadata and an ingenious log-exchange proto-
col that supports flexible communication topologies and op-
tions. While the generality of PRACTI has advantages, it
is not viable for large-scale client-side replication deploy-
ment: (i) Its fat metadata approach (version vectors sized
as the number of clients) is prohibitively expensive (see Fig-
ure 7), and (ii) any replica can easily make another unavail-
able, because of the indirect dependence issue discussed in
Section 3.3.2. Our cloud-backed support of client-side repli-
cation addresses these issues at the cost of lower flexibility
in communication topology. We are considering support for
a limited form of peer-to-peer communication that would not
cause these issues, e.g., between devices of a same user or a
local group of collaborators.

Our high availability techniques are similar to Depot [33],
a causally-consistent storage for client-side, built on top of
untrusted cloud replicas. Depot tolerates Byzantine cloud

13 2015/3/27

System
Partial replication Timestamp Causality metadata Version metadata ≤ 1 CRDTs

support assignment size O(#entries) validity delivery support

Safe PRACTI [12] arbitrary, no sharding any replica #replicas ≈ 104–105 global yes possibly yes

but Depot [33] partial data at client any replica #replicas ≈ 104–105 global yes possibly yes

Fat COPS-GT [30] DC sharding database client |causality subgraph| local (DC) yes possibly yes

Bolt-on [7] external sharding DC server |explicit causality subgraph| local (DC) no LWW only

Lean Eiger [31] DC sharding DC server (shard) #objects ≈ 106 local (DC) yes‡ counter, LWW

but Orbe [22] DC sharding DC server (shard) #servers ≈ 102–103 global† no LWW only

Unsafe ChainReaction [5] DC sharding DC (full replica) #DCs ≈ 100–101 local (DC) no LWW only

Walter [40] arbitrary, no sharding DC #DCs ≈ 100–101 global no LWW only

Lean
Lazy Replication [28] no partial replication

DC (full replica) #DCs ≈ 100–101
global yes single object

and + client + 1 client entry

Safe
SwiftCloud

no DC sharding, DC (full replica) #DCs ≈ 100–101
global yes yes

partial at client + client replica + 1 client entry
† not live during DC failures
‡ only for server-side replicas

Table 2. Qualitative comparison of metadata used by the most related causally consistent systems. “Timestamp assignment”
indicates which nodes assign timestamps. “Causality metadata” indicates the type and maximum cardinality of entries in
causality metadata, given as the expected order of magnitude (e.g., we expect hundreds to thousands servers). “Version
metadata” indicates if a metadata to represent a consistent version is valid only in a local replica (DC), or globally; for the
latter, if it is fault-tolerant or not. “≤ 1 delivery” indicates at-most-once delivery support.

behavior using cryptographic metadata signatures, in order
to detect misbehavior, and fat metadata, in order to support
direct client-to-client communication. Conservatively, De-
pot either exposes updates signed by K different servers or
forces clients to receive all transitive causal dependencies of
their reads. This is at odds with genuine partial replication.
Under no failures, a client receives metadata of every up-
date; under failures, it may also receive their body. In con-
trast, SwiftCloud relies on DCs to compute K-stable consis-
tent versions with lean metadata. In the event of an extensive
failure involvingK DCs, SwiftCloud provides the flexibility
to decrease K dynamically or to weaken consistency.

Both Practi and Depot systems use Safe-but-Fat meta-
data, as indicated in Table 2. They support only LWW regis-
ters, but their rich metadata could conceivably accommodate
high-level CRDTs too.

Lazy Replication (LR) protocols [28] support multiple
consistency modes for client-side apps executing operations
on server replicas. Under causal consistency, LR provides
high availability with asynchronous read and write requests
to multiple servers. As suggested by Ladin et al. [28], LR
could also read stable updates for availability on failover, but
that would force its clients to execute updates synchronously.
The implementation of LR uses safe and lean metadata
similar to SwiftCloud, involving client- and server-assigned
timestamps together with version vector summaries. A log
compaction protocol relies on client replicas availability and
loosely-synchronised clocks for progress.

SwiftCloud structures the database into smaller CRDT
objects, which allows it to provide partial client replicas,
whereas LR considers only global operations. We show that
client replicas can offer higher responsiveness on cached
objects, instead of directing all operations to the server side
as in LR, and that local updates can be combined with K-
stable updates into a consistent view, avoiding slow and
unavailable synchronous updates of LR. The log compaction
technique of LR is complementary to ours, and optimises for
the average case. SwiftCloud’s aggressive pruning relies on
at-most-once guard table, optimising for failure scenarios.

Recent web and mobile application frameworks, such as
TouchDevelop [15], Google Drive Realtime API [17], or
Mobius [18] support replication for in-browser or mobile
applications. These systems are designed for small objects
[17], database that fits on a mobile device [15], or a database
of independent objects [18]. It is unknown if/how they sup-
port multiple DCs and fault tolerance. This is in contrast with
SwiftCloud’s support for large consistent database, and fault
tolerance. TouchDevelop provides a form of object composi-
tion, and offers integration with strong consistency [15]. We
are looking into ways of adapting similar mechanisms.

6.2.2 Geo-replicated databases for server-side systems

A number of geo-replicated systems offer available causally
consistent data access inside a DC with excellent scale-out
by sharding [5, 7, 22, 23, 30, 31].

14 2015/3/27

Table 2 shows that server-side systems use variety of
types of Lean-but-Unsafe metadata. COPS [30] assigns
metadata directly at database clients, and uses explicit de-
pendencies (a graph). Later work show that this approach is
costly, and assigns metadata at object/shard replicas instead
[22, 31], or on a designated node in the DC [5, 40]. The
location of assignment directly impacts the size of causal-
ity metadata. In most systems, it varies with the number of
reads, with the number of dependencies, and with the stabil-
ity conditions in the system. When fewer nodes assign meta-
data, it tends to be smaller (as in SwiftCloud), but this may
limit throughput. Recent work of Du et al. [23] make use
of full stability, a special case of K-stability, to remove the
need for dependency metadata in messages, thereby improv-
ing throughput.

Server-side designs do not easily extend beyond the scope
and the failure domain of a DC, because (i) their protocols
do not tolerate external client failures and DC outages, either
blocking or violating safety (due to inadequate metadata, and
the causal dependence issue); (ii) as they assume that data is
updated by overwriting, implementing high-level confluent
data types that work on the client-side is complex and costly
(see Figure 8); (iii) their metadata can grow with database
size.

SwiftCloud’s support for sharding is limited compared
to the most scalable decentralized server-side designs. Rec-
onciling client-side replication with a more decentralized
sharding support, and small metadata size, is future work.
We believe this is possible to achieve by, once again, trading
data freshness for performance, i.e., by managing a slightly
stale consistent version at a high throughput, with small
metadata [23].

7. Conclusion
We presented the design of SwiftCloud, the first object
database that offers client-side apps a local access to partial
replica with the guarantees of geo-replicated systems.

Our experiments show that the design of SwiftCloud is
able to provide immediate and consistent response for reads
and updates on local objects, and to maintain the through-
put of a server-side geo-replication, or better. SwiftCloud’s
metadata allows it to scale safely to thousands of clients with
3 DCs, with small size objects, and metadata at the level of
15 bytes per update, independent of the number of connected
and disconnected clients. Our fault-tolerant protocols handle
failures nearly transparently, at a low staleness cost.

SwiftCloud’s design leverages a common principle that
helps to achieve several goals: client buffering and con-
trolled staleness can absorb the cost of scalability, availabil-
ity, and consistency.

Several aspects remain open for improvement and inves-
tigation. Our DC implementation is not sharded — we wish
to combine modern sharded DC protocols with SwiftCloud,

ideally without increasing the size of metadata. Practical ap-
plications require security mechanisms; we expect to adapt
Depot’s support for Byzantine clients, and additional access
control and privacy mechanisms at the object level. We are
also looking to better integration with programming model,
in particular in terms of support for mixed weak and strong
consistency, and for object composition [25].

Acknowledgments We would like to thank Carlos Ba-
quero, Peter Bailis, Allen Clement, Alexey Gotsman, Ma-
soud Saeida Ardekani, João Leitão, Vivien Quéma, and Luís
Rodrigues for their comments that helped to improve this
work. This research is supported in part by ANR (France)
project ConcoRDanT (ANR-10-BLAN 0208), by Google
Europe Fellowship in Distributed Computing 2010 awarded
to Marek Zawirski, and by European FP7 project SyncFree
(project 609 551, 2013–2016).

References
[1] Riak, 2010. http://basho.com/riak/.
[2] Introducing Riak 2.0: Data types, strong consistency, full-

text search, and much more, Oct. 2013. http://basho.com/
introducing-riak-2-0/.

[3] M. Ahamad, J. E. Burns, P. W. Hutto, et al. Causal memory. In
Proc. 5th Int. Workshop on Distributed Algorithms, pp. 9–30,
Delphi, Greece, Oct. 1991.

[4] P. S. Almeida and C. Baquero. Scalable eventually consistent
counters over unreliable networks. Number arXiv:1307.3207,
July 2013.

[5] S. Almeida, J. Leitão, and L. Rodrigues. ChainReaction: a
causal+ consistent datastore based on Chain Replication. In
Euro. Conf. on Comp. Sys. (EuroSys), Apr. 2013.

[6] P. Bailis and K. Kingsbury. The network is reliable: An
informal survey of real-world communications failures. ACM
Queue, 2014.

[7] P. Bailis, A. Ghodsi, J. M. Hellerstein, et al. Bolt-on causal
consistency. In Int. Conf. on the Mgt. of Data (SIGMOD), pp.
761–772, New York, NY, USA, 2013.

[8] P. Bailis, A. Davidson, A. Fekete, et al. Highly Available
Transactions: Virtues and limitations. In Int. Conf. on Very
Large Data Bases (VLDB), Riva del Garda, Trento, Italy,
2014.

[9] P. Bailis, A. Fekete, A. Ghodsi, et al. Scalable atomic visibility
with RAMP transactions. In ACM SIGMOD Conference,
2014.

[10] P. Bailis, A. Fekete, M. J. Franklin, et al. Coordination avoid-
ance in database systems. In Int. Conf. on Very Large Data
Bases (VLDB), Kohala Coast, Hawaii, 2015. To appear.

[11] V. Balegas, N. Preguiça, R. Rodrigues, et al. Putting the
consistency back into eventual consistency. In Euro. Conf.
on Comp. Sys. (EuroSys), p. (To appear), Bordeaux, France,
Apr. 2015.

[12] N. Belaramani, M. Dahlin, L. Gao, et al. PRACTI replication.
In Networked Sys. Design and Implem. (NSDI), pp. 59–72,
San Jose, CA, USA, May 2006.

15 2015/3/27

[13] F. Benevenuto, T. Rodrigues, M. Cha, et al. Characterizing
user behavior in online social networks. In Internet Measure-
ment Conference (IMC), 2009.

[14] I. Briquemont. Optimising Client-side Geo-replication with
Partially Replicated Data Structures. Master’s thesis, Uni-
versite Catholique de Louvain, Louvain-la-Neuve, Belgium,
2014.

[15] S. Burckhardt. Bringing TouchDevelop to the cloud. Inside
Microsoft Research Blog, Oct. 2013. http://blogs.technet.
com/b/inside_microsoft_research/archive/2013/10/28/
bringing-touchdevelop-to-the-cloud.aspx.

[16] S. Burckhardt, A. Gotsman, H. Yang, et al. Replicated data
types: Specification, verification, optimality. In Symp. on
Principles of Prog. Lang. (POPL), pp. 271–284, San Diego,
CA, USA, Jan. 2014.

[17] B. Cairns. Build collaborative apps with Google Drive
Realtime API. Google Apps Developers Blog, Mar.
2013. http://googleappsdeveloper.blogspot.com/2013/
03/build-collaborative-apps-with-google.html.

[18] B.-G. Chun, C. Curino, R. Sears, et al. Mobius: Unified
messaging and data serving for mobile apps. In Int. Conf.
on Mobile Sys., Apps. and Services (MobiSys), pp. 141–154,
New York, NY, USA, 2012.

[19] B. F. Cooper, A. Silberstein, E. Tam, et al. Benchmarking
cloud serving systems with YCSB. In Symp. on Cloud Com-
puting, pp. 143–154, Indianapolis, IN, USA, 2010.

[20] J. C. Corbett, J. Dean, M. Epstein, et al. Spanner: Google’s
globally-distributed database. In Symp. on Op. Sys. Design
and Implementation (OSDI), pp. 251–264, Hollywood, CA,
USA, Oct. 2012.

[21] G. DeCandia, D. Hastorun, M. Jampani, et al. Dynamo: Ama-
zon’s highly available key-value store. In Symp. on Op. Sys.
Principles (SOSP), volume 41 of Operating Systems Review,
pp. 205–220, Stevenson, Washington, USA, Oct. 2007.

[22] J. Du, S. Elnikety, A. Roy, et al. Orbe: Scalable causal
consistency using dependency matrices and physical clocks.
In Symp. on Cloud Computing, pp. 11:1–11:14, Santa Clara,
CA, USA, Oct. 2013.

[23] J. Du, C. Iorgulescu, A. Roy, et al. GentleRain: Cheap and
scalable causal consistency with physical clocks. In Symp. on
Cloud Computing, 2014.

[24] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasi-
bility of consistent, available, partition-tolerant web services.
SIGACT News, 33(2):51–59, 2002. ISSN 0163-5700.

[25] A. Gotsman and H. Yang. Composite replicated data types. In
Euro. Symp. on Programming (ESOP), London, UK, 2015.

[26] P. R. Johnson and R. H. Thomas. The maintenance of du-
plicate databases. Internet Request for Comments RFC 677,
Information Sciences Institute, Jan. 1976.

[27] A. Kansal, B. Urgaonkar, and S. Govindan. Using dark fiber
to displace diesel generators. In Hot Topics in Operating
Systems, Santa Ana Pueblo, NM, USA, 2013.

[28] R. Ladin, B. Liskov, and L. Shrira. Lazy replication: Exploit-
ing the semantics of distributed services. Operating Systems
Review, 25(1):49–55, Jan. 1991.

[29] C. Li, D. Porto, A. Clement, et al. Making geo-replicated
systems fast as possible, consistent when necessary. In Symp.
on Op. Sys. Design and Implementation (OSDI), pp. 265–278,
Hollywood, CA, USA, Oct. 2012.

[30] W. Lloyd, M. J. Freedman, M. Kaminsky, et al. Don’t settle
for eventual: scalable causal consistency for wide-area storage
with COPS. In Symp. on Op. Sys. Principles (SOSP), pp. 401–
416, Cascais, Portugal, Oct. 2011.

[31] W. Lloyd, M. J. Freedman, M. Kaminsky, et al. Stronger se-
mantics for low-latency geo-replicated storage. In Networked
Sys. Design and Implem. (NSDI), pp. 313–328, Lombard, IL,
USA, Apr. 2013.

[32] P. Mahajan, L. Alvisi, and M. Dahlin. Consistency, avail-
ability, and convergence. Technical Report UTCS TR-11-22,
Dept. of Comp. Sc., The U. of Texas at Austin, Austin, TX,
USA, 2011.

[33] P. Mahajan, S. Setty, S. Lee, et al. Depot: Cloud storage
with minimal trust. Trans. on Computer Systems, 29(4):12:1–
12:38, Dec. 2011.

[34] J. Parker, D.S., G. J. Popek, G. Rudisin, et al. Detection of
mutual inconsistency in distributed systems. IEEE Trans. on
Soft. Engin., SE-9(3):240–247, May 1983.

[35] K. Petersen, M. J. Spreitzer, D. B. Terry, et al. Flexible update
propagation for weakly consistent replication. In Symp. on
Op. Sys. Principles (SOSP), pp. 288–301, Saint Malo, Oct.
1997.

[36] Redis. Redis is an open source, BSD licensed, advanced key-
value store. http://redis.io/, May 2014.

[37] N. Schiper, P. Sutra, and F. Pedone. P-Store: Genuine partial
replication in wide area networks. In Symp. on Reliable Dist.
Sys. (SRDS), pp. 214–224, New Dehli, India, Oct. 2010.

[38] M. Shapiro, N. Preguiça, C. Baquero, et al. A comprehen-
sive study of Convergent and Commutative Replicated Data
Types. Number 7506, Rocquencourt, France, Jan. 2011.

[39] M. Shapiro, N. Preguiça, C. Baquero, et al. Conflict-free
replicated data types. In Int. Symp. on Stabilization, Safety,
and Security of Distributed Systems (SSS), volume 6976 of
Lecture Notes in Comp. Sc., pp. 386–400, Grenoble, France,
Oct. 2011.

[40] Y. Sovran, R. Power, M. K. Aguilera, et al. Transactional
storage for geo-replicated systems. In Symp. on Op. Sys.
Principles (SOSP), pp. 385–400, Cascais, Portugal, Oct. 2011.

[41] D. B. Terry, A. J. Demers, K. Petersen, et al. Session guar-
antees for weakly consistent replicated data. In Int. Conf. on
Para. and Dist. Info. Sys. (PDIS), pp. 140–149, Austin, Texas,
USA, Sept. 1994.

16 2015/3/27

G TECHNICAL REPORT: CHARCOAL - A CAUSALLY CONSISTENT
PROTOCOL FOR GEO-DISTRIBUTED PARTIAL REPLICATION

G Technical report: Charcoal - A causally consis-

tent protocol for geo-distributed partial repli-

cation

SyncFree Deliverable D.2.2.1(v0.1), March, 2015, Page 72

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
00

00
--

FR
+E

N
G

RESEARCH
REPORT
N° 0000
March 2015

Project-Teams Regal

Charcoal: A causally
consistent protocol for
geo-distributed partial
replication
Tyler Crain , Marc Shapiro

RESEARCH CENTRE
PARIS – ROCQUENCOURT

Domaine de Voluceau, - Rocquencourt
B.P. 105 - 78153 Le Chesnay Cedex

Charcoal: A causally consistent protocol for
geo-distributed partial replication

Tyler Crain ∗, Marc Shapiro ∗

Project-Teams Regal

Research Report n° 0000 — March 2015 — 17 pages

Abstract: Modern internet applications require scalability to millions of clients, response times
in the tens of milliseconds, and availability in the presence of partitions, hardware faults and even
disasters. To obtain these requirements, applications are usually geo-replicated across several data
centres (DCs) spread throughout the world, providing clients with fast access to nearby DCs and
fault-tolerance in case of a DC outage. Using multiple replicas also has disadvantages, not only
does this incur extra storage, bandwidth and hardware costs, but programming these systems
becomes more difficult.
To address the additional hardware costs, data is often partially replicated, meaning that only
certain DCs will keep a copy of certain data, for example in a key-value store it may only store
values corresponding to a portion of the keys. Additionally, to address the issue of programming
these systems, consistency protocols are run on top ensuring different guarantees for the data, but
as shown by the CAP theorem, strong consistency, availability, and partition tolerance cannot be
ensured at the same time. For many applications availability is paramout, thus strong consistency
is exchanged for weaker consistencies allowing concurrent writes like causal consistency. Unfor-
tunately these protocols are not designed with partial replication in mind and either end up not
supporting it or do so in an inefficient manner. In this work we propose a protocol designed to
support partial replication under causal consistency more efficiently.

Key-words: distributed systems, causal consistency, partial replication

The research leading to these results has received funding from the European Union Seventh Framework
Programme (FP7/2007-2013) under grant agreement no. 609551.

∗ Inria Paris-Rocquencourt & Sorbonne Universités, UPMC Univ Paris 06, LIP6

Résumé : Un protocole pour la géo-réplication, la cohérence causale, et la réplication partielle.

Mots-clés : systèmes distribués, la cohérence causale, la réplication partielle

1 PARTIAL REPLICATION

1 Partial replication

Partial replication is becoming essential in geo-replicated systems to avoid spending uncesces-
sary resources on storage and networking hardware. Implementing partial replication is more
difficult than deciding how many replicas to have because protocols for data consistency must
hide the organisation of replicas so that the programmer sees the data as a single continuous
store. Furthermore ensuring consistency with partial replication does not always easily scale, as
it often requires additional communication between nodes not involved in the operations. For
example, in [8], Saeida shows that a scalable implementation of partial replication, namely one
that ensures genuine partial replication [9] is not compatible with the snapshot-isolation con-
sistency criterion. Differently, this work focuses on causal consistency which allows concurrent
writes and uses meta-data propagation instead of synchronisation to ensure consistency, but even
in this case, implementing partial replication in a scalable way is not a straightforward.

1.1 Causal consistency and partal replication

While protocols ensuring causal consistency are generally efficient when compared to strongly
consistent ones, they often do not support partial replication by default or if they do, limit
scalability by requiring coordination with nodes that do not replicate the values updated during
propagation. Within the standard structure of these protocols, updates are performed locally,
then propagated to all other replicas where they are applied respecting their causal order, which
is given by session order and reads-from order or can be defined explicitly. Given the asynchrony
of the system, propagated updates might arrive out of causal order at external replicas, thus
before they are applied a dependency check must be performed to to ensure the correctness.
This check is based on ordering meta-data that is propagated along with the updates or through
separate messages [2].

The best known structure of this meta-data are vector-clocks where each totally-ordered
participant is given a vector entry and each of their updates are assigned a unique increasing
scalar value. Since these geo-replicated systems can have a large number of participants, they
often use slightly different representations of the vector-clocks. For example, certain protocols
use vectors with one entry per DC [13], or one entry per partition of keys [3], or use vectors that
can be trimmed based on update stability or the organisation of the partitions of keys across
DCs [3]. Other than vector clocks other approaches exist including real time clocks [5], or to
track reads of memory locations [6] or operations [7] up to the the last update performed by this
client.

Interestingly, all of these mechanisms create (over) approximations of the dependencies of each
operation, i.e. from this meta-data you cannot tell exactly what the causal dependencies for this
operation are, but for correctness they cover at minimum all the dependencies. For example
when using a single vector entry per server, all operations from separate clients connected to this
server will be totally ordered even if they access disjoint sets of data.

Such systems use these approximations primarily because precise tracking of dependencies
would not scale as the size of the meta-data would grow up to the order of the number of objects
or users in the systems (depending on how dependencies are tracked). The issue with over
approximating dependencies is that the dependency check might have wait on more dependencies
than necessary, allowing the client to read stale versions of the data. Fortunately though this
does not block the progress of clients as updates are replicated outside of the critical path.

3

1.2 Partial replication and approximate dependencies 1 PARTIAL REPLICATION

Client

B1

B2

A2

ok
, [
1,
0,
0,
0]
)

ch
ec
k(
A

1
, 1
)

safe, A
1 , 1

ge
t
de
p(
1)

safe, A
1 , 1

ok
, [
1,
1,
0,
0]

U
(x

1 , [0, 0, 0, 0])

U
(y

2 , [1, 0, 0, 0])

A1

Replicates keys: x1, x2

Replicates keys: x2, x3

Replicates keys: y1, y2

Replicates keys: y2, y3

replicate(y
2 , [1, 0, 0, 0])

Figure 1: An example showing the possible dependency checks needed to ensure causality in
a system with partial replication using version vectors with one entry per server for tracking
dependencies.

1.2 Partial replication and approximate dependencies

This approximate tracking of dependencies also creates an unintended effect of making partial
replication more costly.

To see why this happens, consider the example shown in figure 1 where a protocol is used
that tracks dependencies using a version vector with an entry per server. Assume this protocol
supports partial replication by only sending updates and meta-data to the servers that replicate
the concerned object. In this example there are two DCs DCA and DCB each with 2 servers:
A1 and A2 at DCA and B1 and B2 at DCB . Server A1 replicates objects x1 and x2, server B1

replicates objects x2 and x3 while server A2 replicates objects y1 and y2 and server B2 replicates
objects y2 and y3. The system starts in an initial state where no updates have performed.
Consider then that a client performs an update u1 on object x1 at server A1, resulting in
the client having a dependency vector of [1, 0, 0, 0], with the 1 in the first entry of the vector
representing the update u1 at A1. Since x1 is not replicated elsewhere the update stays locally
at A1. Following this, the client performs an update u2 on object y2at server A2, returning a
dependency vector of [1, 1, 0, 0]. The update u2 is then propagated asynchronously to B2, where
upon arrival a dependency check is performed. Since the dependency vector inclues a dependency
from A1, before applying the update, B2 must check with B1 that it has received any updates
covered by this dependency in case they were on a key replicated by B1. But since B1 has
not heard from A1 it does not know if the update was delayed in the network, or if the update
involved an object it does not replicate. Thus B1 must send a request to A1 checking that is has
received the necessary update. A1 will then reply that it is safe because u1 did not modify an
object replicated by B1, which will then be forwarded to to B2 at which time u2 can be safely
applied. Notice that if dependencies were tracked precisely, this additional round of dependency
checks would not be necessary as the dependency included with u2 would let the server know
that it only depended on keys not replicated at DCB .

4

2 PROTOCOL OVERVIEW

While this is a simple example that one could imagine easily fixing, different workloads and
topologies can create complex graphs of dependencies that are not so easily avoided. Furthermore,
current protocols designed for full replication do not take any additional measures specifically
to minimize this cost, instead they suggest to send the meta-data to every DC as if it was fully
replicated either in a separate channel [2] or simply without the update payload. In effect using
no specific design patterns to take advantage of partial replication.

2 Protocol Overview

The goal of this work then is to develop a protocol supporting partial replication and providing
performance equal to fully replicated protocols in a full replication setting, while minimising
dependency meta-data and checks in a partial replication setting. We will now give a short
description of the main mechanisms used to design this algorithm. It should be noted that these
mechanisms are common to many protocols supporting causal consistency, except here they are
combined in a way with the goal of supporting partial replication.

• Update identification Vector clocks are the most common way to support causality. To
avoid linear growth of vector clocks in the number of (client) replicas, we apply a similar
technique as in the work of Zawirski et al.[13]. Each entry in a vector represents a DC, or
more precisely a cluster within a DC. Modified versions of protocols such as ClockSI [4] or
a DC- local service handing out logical timestamps, such as a version counter, can be used
to induce a total order to the updates issued at this DC, which can then be represented in
the DC’s vector entry.

For causality tracking, each update is associated with its unique timestamp given by its
home DC, plus a vector clock describing its dependencies. To provide session guarantees
such as causally consistent reads when interacting with clients, the client keeps a vector
reflecting its previously observed values and writes. The system then ensures that clients
may only read values containing all dependencies given this vector.

Given that in partial replication a DC might not replicate all objects, certain reads will
have to be forwarded to other DCs where the object being read is replicated. The receiving
DC then uses the client’s dependency vector to generate a consistent version of the object
that is then forwarded to be cached at the DC the client is connected to.

• Disjoint safe-time metadata In general, most protocols ensure causal consistency by
not making updates from external DCs visible locally to clients until all updates causally
preceding it have been received. When objects are replicated at all DCs this is fairly
straightforward as all dependent updates are expected to be received. This is not always
the case in partial replication since only the replicated dependent operations should be
received, which could result in additional messages or dependency checks (see figure 1 for
an example of why these additional checks would be needed), something which we are
trying to avoid in order to have an efficient implementation.

To avoid these additional dependency checks and meta-data, the key insight in this work
is to perform the dependency calculation at the origin DC and not the receiving DCs.
Updates are still sent directly to their sibling replicas at other DCs, but they are not made
visible to readers at the receiving DC until the origin DC confirms that its dependencies
have been received i.e. the origin DC tracks which of its updates are safe to make visible
at the receiver. At the origin DC, updates issued up to a time t are considered safe to
apply at a receiving DC when all of the origin DC’s servers have sent all their updates on

5

3 CHARCOAL PROTOCOL DESCRIPTION

the replicated objects of the receiver items up to time t. To keep track of this, a server
at the origin DC communicates with each local server, keeping track of the time of the
latest updates sent to external DCs, and once it has heard from each local server that
time t is safe, this information is then propagated to the external DCs as a single message.
Doing this avoids unnecessary cross-DC dependency checks and meta-data propagation,
saving computation and network bandwidth. The negative consequence of this is that the
observable data at the receiving DC might be slightly more stale than in the full replication
case because the receiving DC has to wait until the sending DC has let it know that this data
is safe. Such a delay can be seen as a consequence of tracking dependencies approximately
as seen in the example in figure 1

• Local writes to non-replicated keys Given that causal consistency allows for concurrent
writes, in order to ensue low latency and high availability a DC will accept writes for all
objects, including those that it does not replicate. Using the vector clocks and metadata as
described above this can be done without any additional synchronisation by just assigning
unique timestamps to these updates that are reflected in the vector of the local DC. These
updates can then be safely logged and made durable even in the case of network partition.

• Atomic writes and snapshot reads Beyond simple key-value operations, the protocol
provides a weak form of transactions which allows to group reads and updates together and
supporting CRDT objects [10]. Atomic writes can be performed at the local DC using a
2-phase commit mechanism without contacting the remote replicas in order to allow for low
latency and high availability. The updates are then propagated to the other DCs using the
total ordered dependency metadata described previously ensuring their atomicity. (Note
that atomic updates can include keys not replicated at the origin DC.) Causally consistent
snapshot reads can be performed at a local DC by reading values according to a consistent
vector clock, where reads of data items not replicated at the local DC are performed at
another DC using the same vector clock.

Using these mechanisms allow partial or full replication with causal consistency while limiting
the amount of unnecessary inter-DC meta-data traffic. All DCs are able to accept writes to any
key, and causally consistent values can be read as long as one replica is available. Additionally
the way the keys are partitions within a DC is transparent to external DCs, allowing this to be
maintained locally. The following section presents the design of the protocol in detail.

3 Charcoal Protocol description

Charcoal is a modification of Antidote’s [11] transaction protocol to allow for flexible replica-
tion and partitioning while still ensuring causal consistency. Specifically, there are two main
differences from Antidote’s original protocol: First is that instead of each DC having the same
partition scheme for distributing keys between nodes, each DC can have a different partition
scheme (the requirement still holds that their is at most one (primary) replica of each key-value
pair per DC). Second is that each DC does not need to replicate the entire key space, thus
allowing for partial replication. An interesting affect of these differences is that it allows a DC
to be broken down into multiple groups, each separately running the full protocol and having
their own entry in the vector. This property could be advantageous for example in a large DC
with multiple clusters each partially replicating different portions of the key-space.

As in the full replication version, the transaction protocol here consists of two components.

6

3 CHARCOAL PROTOCOL DESCRIPTION

• The first component handles the transaction management within a DC. These transactions
are totally ordered using a modified version of the Clock-SI protocol [5], which assigns
transactions growing scalar values using physical time-stamps creating the total order of
transactions per DC. An important point of this protocol is that only the nodes of the
partitions who replicate keys accessed by a transaction will participate in the transaction.
This property, sometimes called disjoint access parallelism is important for scalability as
it allows transactions who access disjoint portions of the key-space to execute in parallel.
While the original protocol implements snapshot-isolation, which ensures a total order of
writes with the DC, this modified version allows concurrent-writes as it is designed to work
with CRDT objects and causal consistency. This is done by simply not validating the
writes, thus avoiding unnecessary aborts and increasing concurrency.

• The second component is responsible for eventually (or asynchronously) replicating the
updates from a transaction to other DCs. Both of them together guarantee that the
transactions are causally consistent across all replicas of all objects.

The following data structures contain the meta-data required for causally consistent transac-
tions.

Meta-data per Partition

• The physical clock pckj is the current physical clock of partition k in DC j. It issues totally
ordered time-stamps for this partition and is loosely synchronized with clocks for the other
partitions in the same DC.

• Each partition has a queue queue that is stores incoming transactions as they are being
received from other DCs.

• A vector sentClockkj is kept at each partition storing time-stamps, with the number of
entries equal to the number of DCs in the system. This vector keeps track of the most
recent transaction time that this partition have sent to each external DC. For example a
value of sentClockkj [m] = 10, means that partition k at DC j partition l at DC j has sent
all messages up to time 10 to DC m.

• Each partition has a vector safeToReadkj , which stores time-stamps and same number of
entries as the number of DCs. This vector keeps track of the time-stamps of updates from
external DCs that are safe to be read by transactions executing at this DC. For example a
value of safeToReadkj [l] = 20 means that all updates from DC j up to time 20 have been
received at DC l and can be read by transactions. One thing that is important to note
is that at any given time certain partitions within a DC may have smaller values in their
safeToRead vector than other partitions in the same DC, but given the way the protocol
is designed, the maximum of these is actually safe at all partitions. This is important
because if a transaction is given a snapshot with one of the larger values, it does not end
up blocking in case another partition has not received this larger value yet.

• Each partition stores locally a map called the partitoinTable that maps a key to the DCs
where this key is located. This is used so that a partition knows which DCs to send its
update.

7

3 CHARCOAL PROTOCOL DESCRIPTION

Meta-data per Transaction

• The vector snapshot time vs denotes a snapshot derived at the starting point of the trans-
action. The transaction executes on this consistent snapshot identified by vs.

• The identifier dc denotes the DC at which the transaction was originally executed and
committed.

• The locations updated by a transaction are stored in its write set WS, including the key
and modification done by the update operation.

• The commit time c of a transaction is a vector clock with entries for each DC. If a trans-
action T committed in DC d, then T.c = C implies that T has committed at time C[d],
where C[d] is derived from physical clocks of the partitions involved in the transaction (see
below). All other entries are taken from the vector snapshot time vs.

Meta-data per Client

• Each client keeps a client vector clock cc with an entry corresponding to each DC. It keeps
track of dependencies for client operations throughout a given session. All read and update
operations should be executed on a snapshot with cc ≤ vs. Normally this will be stored at
an application server and will be given as input when starting a new transaction.

8

3 CHARCOAL PROTOCOL DESCRIPTION

Algorithm 1 Transaction coordinator TC in partition l, DC j

1: function GetSnapshotTime(Clock cc)
2: for all i← 0..D − 1, i 6= j do
3: vs[i]← max(safeClocklj [i], cc[i])
4: end for
5: vs[j]← max(pclj , cc[j])
6: return vs
7: end function
8:
9: function StartTransaction(Transaction T , Clock cc)

10: T.vs← GetSnapshotTime(cc)
11: T.dc← j
12: return T
13: end function
14:
15: function Update(Transaction T , Key k, Operation u)
16: T.WS ← T.WS ∪ {〈k, u〉}
17: end function
18:
19: function Read(Transaction T , Key k)
20: {〈k, u〉} ← T.WS ∩ {〈k,_〉}
21: 〈p, d〉 ← partition(k)
22: val← send 〈ReadKey, T.vs, k, u, j〉 to p at DC d
23: return val
24: end function
25:
26: function DistributedCommit(T)
27: for all 〈K,U〉 ∈ T .WS do
28: 〈p〉 ← partition(K)
29: if p = ⊥ then p← l
30: end if
31: 〈T,U, p, d, timestamp〉 ← send 〈Prepare, T,K,U〉 to p
32: T .UpdatedPartitions ← T .UpdatedPartitions ∪{〈p, d〉}
33: end for
34: CommitTime ← max(received timestamps)
35: if CommitTime < 0 then
36: 〈T,⊥, p, d, timestamp〉 ← send 〈Prepare, T,⊥,⊥〉 to l at DC j
37: T .UpdatedPartitions ← T .UpdatedPartitions ∪{〈p, d〉}
38: CommitTime ← timestamp
39: end if
40: T.commitT ime← CommitTime
41: for all 〈p, d〉 ∈ T .UpdatedPartitions do
42: send 〈Commit, T 〉 to p at DC d
43: end for
44: toPropagatelj .add(T)
45: end function

9

3.1 Intra-DC transaction Protocol 3 CHARCOAL PROTOCOL DESCRIPTION

3.1 Intra-DC transaction Protocol

The following described the protocol that is responsible for executing causally consistent trans-
actions within a DC. It is a modified version of the fully replicated Antidote protocol and based
on Clock-SI.

Transaction Coordinator A transaction coordinator whose behavior is described in Algo-
rithm 1 is responsible for executing a transaction within a DC on behalf of clients. A client can
contact any node in a DC and start a transaction coordinator TC. The client then issues update
and read operations via TC.

Start Transaction When transaction T starts, it is assigned a vector time-stamp vs, this vec-
tor is used as the causally consistent snapshot time for the reads performed by this transactions.
This vector has as many entries as they are for DCs, with each entry describing which updates
to read from that DC. When a key is read, all updates performed at each DC up to the time
given by vs have to be observed when performing the read operations of the transaction.

When assigning the values for this vector the client can provide a client clock cc, which is the
last observed snapshot by the client. If a client clock cc is provided, the transaction coordinator
must assign a vs that is at least as large as the provided values. Thus, using a client clock cc
guarantees that a client always observes monotonic snapshots even when connecting to other
DCs.

Furthermore, values in this vector should be as large as possible to include the most recent
updates, but not too big so that reads may have to block waiting for updates to be received.
Thus, each location in the vector is assigned the maximum value for which all updates have been
received from the corresponding external DC by using values from safeClock. The procedure for
increasing safeClock is part of the intra-DC replication protocol (described in section 3.2) and
is shown in Algorithms 4 and 6. The safeClock vector is increased when an external DC sends
a message to the local DC letting it know that all updates up to the time have been received.

Since the clocks of partitions within the same DC are less likely to be out of sync for a long
time we can assign vs[j] (where j is the DC where this transaction is being executed) to be the
physical clock of the partition running the transaction coordinator, allowing T to observed the
latest committed transactions in DC j This may then require a short amount waiting to occur
at during operations of the transaction that are performed at other partitions in the same DC
in case the clocks are out of sync, but safety is not violated. On the other hand, given that the
protocol supports partial replication, reads to keys that are not replicated at the home DC must
be performed at external DCs and use the same vs, meaning that the external DC must also
have received all updates described by this vector. If there are frequent reads of keys that are
not replicated at the transaction’s home DC vs[j] can be assigned a slightly older time to avoid
waiting when performing these reads at external DCs.

After the transaction snapshot time is assigned, the client can issue read and update opera-
tions.

Update For update operations, the protocol simply logs the update locally in the write set
WS of the transaction.

Read The Read operation is called at the coordinator, which forwards a ReadKey request
to the partition replicating the key requested. If the key has already been updated by the
transaction (i.e. is in the write set), the update is returned directly. Otherwise, when performing
the ReadKey operation, T.vs is used to choose the version to read. This version is safe to read

10

3 CHARCOAL PROTOCOL DESCRIPTION 3.1 Intra-DC transaction Protocol

Algorithm 2 Transaction execution at partition m, DC j

1: function ReadKey(Transaction T , Key K, Update U , DC fromDC)
2: if a transaction in the prepared list has a smaller time then wait
3: if fromDC = j then
4: return snapshot(K, T.vs, U)
5: else
6: Wait until all deps satisfied for fromDC, upto T.vs[fromDC]
7: return snapshot(K, T.vs, U)
8: end if
9: end function

10:
11: function Prepare(Transaction T , Key K, Update U)
12: log U
13: 〈T2, prepareTime 〉 ← preparedTransactionsmj .get(T)
14: if T2 = ⊥ then
15: prepareTime ← pcmj
16: if T.dc 6= j then prepareTime ← ⊥
17: end if
18: preparedTransactionsmj .add(T , prepareTime)
19: end if
20: send 〈T,U,m, j, prepareTime〉 to T ’s coordinator
21: end function
22:
23: function Commit(transaction T)
24: log (commit, T.c, T.vs, T.commitT ime)
25: preparedTransactionsmj .remove(T)
26: end function

because it was assigned using the safeT ime described in section 3.2, which guarantees that
all partitions have received all updates from external DCs required by T ’s snapshot. The read
operation then only has to check if the updates from T ′s home DC j required for the snapshot
are available in the partition. To ensure this, the protocol waits for the physical clock of the
partition to increase past T.vs[j] any for transactions who are in the process of committing with
a prepare time smaller than than T.vs[j] to commit.

Given that the local DC might not contain all keys that are read by this transaction, a read
might need to be performed at an external DC. In this case the main difference is that at the
external DC, before the snapshot of the object to be read is generated, the protocol has to
ensure that all updates from the transaction’s home DC have been received at the external DC
(including all of the external dependencies from these updates). Notice that in the case of a
network partition, some of the external dependencies may never be received thus causing the
transaction to block, but this a consequence of not having full replication.

Distributed Commit When a transaction has finished, the commit operation is called, which
executes in two rounds or phases at the local DC to ensure the atomicity of updates, following
this the updates are sent asynchronously to the external DCs who replicate any of the keys
updated by the transaction. During the first phase, the coordinator requests prepare time-
stamps from partitions involved in the transaction. It does this by going through the write set of
the transaction, sending prepare requests containing the update operations of the transactions

11

3.2 Intra-DC Replication Protocol 3 CHARCOAL PROTOCOL DESCRIPTION

to the partitions with the key being modified.
Because of partial replication, certain keys updated by the transaction might not be replicated

by the local DC. In this case, instead of involving an external DC that does replicate the key,
the prepare for these keys is performed at the coordinator. This is done in order to to ensure
the high availability and low latency of update operations. In order to ensure the update is not
lost it is still logged at the coordinator, but can be garbage collected as soon as it is propagated
to all replicas.

Each of the partitions involved in the prepare add the transaction to the local queue preparedTransactions
and return the current physical time at the node. Once the coordinator has received all the times
returned by the partitions involved in prepare it assigns maximum of these values as the commit-
time of the transaction. This time is then sent to all participating partitions who then log it
along with the updates. The two rounds ensure that the updates are atomic within the local
DC because all reads of a transaction use the same vs and reads are delayed in case a commit
is in progress that might be assigned a smaller time. Finally the transaction is added to the
toPropagate queue at the coordinator. The intra-DC replication part of the protocol is then
responsible for propagating this transaction to other DCs asynchronously.

3.2 Intra-DC Replication Protocol
The intra-DC replication protocol is responsible for replicating transactions committed in one DC
to other DCs. Given the asynchronous nature of the system, ensuring updates are propagated
to all their replicas is not enough to ensure casual consistency, instead each operation must
be performed in the order given by its reads-from and client session order. In addition to
causality, we introduce following two additional requirements that are needed specifically for our
high-availability geo-replicated system before describing the replication protocol in detail. The
additional requirements are as follows:

• Don’t block waiting for dependencies Consider that an update u1 is received at a DC
and is immediately read by a client c, now u1 might causally depend on an update u0 to
key k which has not yet been received by d, so if c wants to then read k it must wait until
u0 arrives. Since a primary goal of causal consistency is high availability, making clients
wait until an update is received must be avoided, thus the first requirement is to ensure all
causal dependencies have arrived before making a propagated update observable.

• Include all previous updates For certain applications it is enough that an update over-
writes a previous one for example when using last-writer-wins (LWW). In such systems
often only the value with the latest time-stamp is kept and other writes with smaller time-
stamps are discarded. For this work we want to avoid automatically discarding any data as
many applications prefer to keep all updates, which is sometimes needed for certain imple-
mentations of objects using causal+ consistency and is necessary for the implementation
of several CRDTs. Thus when a value is read, all updates ordered causally before the read
must have been received at the server performing the read.

The above requirements are ensured by the following condition

• A transaction T from pmi is applied (made visible to reading transactions) in pnj (i 6= j),
only if T ’s causal dependencies are satisfied locally in pmj . To ensure this, an update is only
made visible when all updates from DC j with time less than or equal to the commit time
of the transaction have been received at DC i. This is done by having DC j wait to let DC
i know these updates are available until the partitions of DC j know that they have sent
all preceding updates to DC i.

12

3 CHARCOAL PROTOCOL DESCRIPTION 3.2 Intra-DC Replication Protocol

The following section will describe the intra-DC replication protocol in detail.

3.2.1 Protocol operations

Algorithm 3 Replication Algorithm at the sender, running in partition m at DC i
1: function ReplicateToDC(j)
2: loop
3: time← pcmj
4: timePrepared← max prepared time in preparedTransactionsmj
5: time← max(time, timePrepared)
6: Transactions ← toPropagatemj .removeAll()
7: for all parallel T in Transactions do
8: for all parallel D in DCs do
9: if T.ws ∩ replicationSet(D) 6= ∅ then

10: send T to D
11: wait for ACK
12: if timeout then
13: sentToDC[D]← false
14: toPropagatemj .add(T)
15: end if
16: end if
17: end for
18: end for
19: for all D in DC where sentToDC[D] = true do
20: sentClock[D]← time
21: end for
22: end loop
23: end function

The sending protocol consists of two procedures, ReplicateToDC described in Algorithm 3
which runs on each partition and is responsible for sending the transactions and SendSafeTime
described in Algorithm 6 which runs on a single server per DC and is responsible for informing
the receiving DC when it can safely make visible updates to read up to a given time (i.e. meaning
that all updates ordered before this time at the sending DC have been received).

The receiver protocol also consists of two procedures. ReceiveTransaction described in
Algorithm 4 which is run at each partition and receives transactions from external DCs, logs
them, and in case the transaction updates other partitions in the DC, forwards them to those
partitions. The second procedure, InformSafeExternal, runs on a single server per DC and
receives safe times from the external DCs, letting the transaction protocol know when it is safe
for local transactions to read updates that have been propagated from external DCs by updating
the safeT ime vector.

Replicating updates Each partition runs a background process repeatably calling the Repli-
cateToDC procedure to send locally committed transactions to external DCs that replicate keys
updated by the transactions. It starts by recording the minimum of the partitions physical clock
and any transactions that are in the prepare phase of commit at this partition, any transaction
that is not in the to_propagatemj at this point will be given a larger commit time than time.
The protocol then goes through each transaction in the to_propagatemj queue, checking at which

13

3.2 Intra-DC Replication Protocol 3 CHARCOAL PROTOCOL DESCRIPTION

DCs replicate its updates then sends to transaction to those DCs. Any DC that does not return
an ACK for a sent transaction is recorded to keep track of which DCs did not receive all updates.
For those DCs that did receive all updates, the sent_clock is updated, this vector has one entry
per external DC and keeps track of the latest time for which all updates have been sent to the
corresponding DC.

Calculating the safe to read time At each DC, there is a single server running that re-
peatably calls the SendSafeTime procedure. Each loop of this procedure requests the latest
sent_clock vector from each partition in the DC. After collecting all these vectors, the procedure
takes the minimum of these from each DC, and sends this value to the corresponding DC. This
is the time at which the external DC has received all updates from this DC, meaning that the
receiving DC can safely assign snapshots to new transactions that include updates up to this
time.

Algorithm 4 Replication Algorithm at the receiver, running in partition m at DC j

1: function ReceiveTransaction(Transaction T, DC i)
2: . This function is repeatedly called to process transactions from DC i
3: for all 〈K,U〉 ∈ T .WS do
4: 〈p, d〉 ← partition(K)
5: send 〈LogTransaction,T,K〉 to partition p at DC j
6: end for
7: end function
8:
9: function LogTransaction(Transaction T , Key K)

10: if T 6∈ log then
11: log T
12: end if
13: end function
14:
15: function InformSafeExternal(DC d, Clock c)
16: send 〈InformSafeLocal, d, safeClockmj [d]〉 to all partition in DC m
17: end function
18:
19: function InformSafeLocal(DC d, Clock c)
20: safeClockmj [d]← max(safeClockmj [d], c)
21: end function

Processing received transactions When a transaction is received from an external DC the
ReceiveTransaction procedure is called. This procedure simply goes through the keys that
are updated by the transaction, forwarding the transaction to the partitions that replicate them.
When received at these partitions the transaction is logged. Note that when updates are then
applied at the receiving DC, they cannot be read by new transactions until they have received
all dependencies otherwise risking violating causal consistency. To prevent this, the receiving
DC does not update the safeT ime until the previously received transactions have been safely
logged. It is then the responsibility of the sending DC to let the receiver know when it is safe to
read these times.

14

3 CHARCOAL PROTOCOL DESCRIPTION 3.3 Dynamic Changing Replicas

Receiving safe times As soon as a partition in DC j receives a message from an external DC
i saying a time c is safe in procedure InformSafeExternal, it means that all updates from
i up to this time have been received at j. This time c is then gossiped around DC i through
InformSafeLocal to ensure all partitions know that updates with time equal to or smaller
than c from DC i are safe to read without violating causality and can be included in future
snapshots.

Algorithm 5 Helper functions for keeping the local safe-time up to date at DC m at DC j

1: function UpdateClocks
2: if preparedTransactionsmj 6= ∅ then
3: timestamps = Get prepare timestamps in preparedTransactionsmj
4: safeClockmj [j]← min(timestamps)− 1
5: else
6: safeClockmj [j]← pcmj
7: end if
8: end function
9:

10: function UpdateSafe(DC d, Clock c)
11: safeClockmj [d]← max(safeClockmj [d], c)
12: end function
13:
14: function GetSafe
15: reply 〈safeClockmi [i]〉
16: end function

Algorithm 6 Sending safe times from DC j

1: function SendSafeTime
2: loop
3: sentClocks← empty list
4: for all parallel partition m in DC j do
5: sentClockm ← send 〈GetSafeClock〉 to m
6: sentClocks.add(sentClockm)
7: end for
8: for all parallel DC i in DCs do
9: safeToAcki ← mink∈partitionssentClockmj [i][k]

10: send 〈InformSafeExternal, j, safeToAcki〉 to DC i
11: end for
12: end loop
13: end function

3.3 Dynamic Changing Replicas

Currently this document only contains descriptions of the transactional and intra-DC replication
protocols. Future revisions will add the additional feature of allowing the partitioning and
replication scheme during execution. It should be noted that the current protocol makes no
specific requirements on how data is partitioned or replicated or not, thus adding these new

15

3.4 Implementation REFERENCES

features will not largely change the protocols, but instead will focus on preventing data races
when modifying the layout.

3.4 Implementation

An implementation of this protocol [12] is being developed within Antidote [11], the research
platform for the SyncFree FP7 project, which is built on top of Riak-core [1] designed for testing
scalable geo-replicated protocols.

Acknowledgements
The research leading to these results has received funding from the European Union Seventh
Framework Programme (FP7/2007-2013) under grant agreement no. 609551. The Charcoal
protocol builds upon the design and reuses many parts of the implementation of the Antidote
protocol whose code is available at https://github.com/SyncFree/antidote/ and whose con-
tributors including Deepthi Akkoorath, Annette Bieniusa, Manuel Bravo, Zhongmiao Li, Christo-
pher Meiklejohn, and Alejandro Zlatko Tomsic should be thanked for their help with developing
Charcoal.

References
[1] Basho. Riak-core. https://github.com/basho/riak_core, 2015.

[2] N. Belaramani, M. Dahlin, L. Gao, A. Nayate, A. Venkataramani, P. Yalagandula, and
J. Zheng. PRACTI replication. In Networked Sys. Design and Implem. (NSDI), pages
59–72, San Jose, CA, USA, May 2006. Usenix, Usenix. URL https://www.usenix.org/
legacy/event/nsdi06/tech/belaramani.html.

[3] J. Du, S. Elnikety, A. Roy, and W. Zwaenepoel. Orbe: Scalable causal consistency using
dependency matrices and physical clocks. In Symp. on Cloud Computing, pages 11:1–11:14,
Santa Clara, CA, USA, Oct. 2013. Assoc. for Computing Machinery. doi: 10.1145/2523616.
2523628. URL http://doi.acm.org/10.1145/2523616.2523628.

[4] J. Du, S. Elnikety, and W. Zwaenepoel. Clock-SI: Snapshot isolation for partitioned data
stores using loosely synchronized clocks. In Symp. on Reliable Dist. Sys. (SRDS), pages
173–184, Braga, Portugal, Oct. 2013. IEEE Comp. Society. doi: 10.1109/SRDS.2013.26.
URL http://doi.ieeecomputersociety.org/10.1109/SRDS.2013.26.

[5] J. Du, C. Iorgulescu, A. Roy, and W. Zwaenepoel. Closing the performance gap be-
tween causal consistency and eventual consistency,. In W. on the Principles and Prac-
tice of Eventual Consistency (PaPEC), Amsterdam, the Netherlands, 2014. URL http:
//eventos.fct.unl.pt/papec/pages/program.

[6] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Don’t settle for eventual:
scalable causal consistency for wide-area storage with COPS. In Symp. on Op. Sys. Princi-
ples (SOSP), pages 401–416, Cascais, Portugal, Oct. 2011. Assoc. for Computing Machinery.
doi: http://doi.acm.org/10.1145/2043556.2043593.

[7] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Stronger semantics for
low-latency geo-replicated storage. In Networked Sys. Design and Implem. (NSDI), pages

16

REFERENCES REFERENCES

313–328, Lombard, IL, USA, Apr. 2013. URL https://www.usenix.org/system/files/
conference/nsdi13/nsdi13-final149.pdf.

[8] M. Saeida Ardekani, P. Sutra, M. Shapiro, and N. PreguiÃ§a. On the scalability of snapshot
isolation. In F. Wolf, B. Mohr, and D. an Mey, editors, Euro-Par 2013 Parallel Process-
ing, volume 8097 of Lecture Notes in Computer Science, pages 369–381. Springer Berlin
Heidelberg, 2013. ISBN 978-3-642-40046-9. doi: 10.1007/978-3-642-40047-6_39. URL
http://dx.doi.org/10.1007/978-3-642-40047-6_39.

[9] N. Schiper, P. Sutra, and F. Pedone. P-Store: Genuine partial replication in wide area
networks. In Symp. on Reliable Dist. Sys. (SRDS), pages 214–224, New Dehli, India, Oct.
2010. IEEE Comp. Society. URL http://doi.ieeecomputersociety.org/10.1109/SRDS.
2010.32.

[10] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. Conflict-free replicated data types. In
X. Défago, F. Petit, and V. Villain, editors, Int. Symp. on Stabilization, Safety, and Security
of Distributed Systems (SSS), volume 6976 of Lecture Notes in Comp. Sc., pages 386–400,
Grenoble, France, Oct. 2011. Springer-Verlag. doi: 10.1007/978-3-642-24550-3_29. URL
http://www.springerlink.com/content/3rg39l2287330370/.

[11] SyncFree. Antidote reference platform. https://github.com/SyncFree/antidote, 2015.

[12] SyncFree. Antidote reference platform - partial replication branch. https://github.com/
SyncFree/antidote/tree/partial_replication, 2015.

[13] M. Zawirski, A. Bieniusa, V. Balegas, S. Duarte, C. Baquero, M. Shapiro, and N. Preguiça.
Swiftcloud: Fault-tolerant geo-replication integrated all the way to the client machine. arXiv
preprint arXiv:1310.3107, 2013.

17

RESEARCH CENTRE
PARIS – ROCQUENCOURT

Domaine de Voluceau, - Rocquencourt
B.P. 105 - 78153 Le Chesnay Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Executive summary
	Milestones in the Deliverable
	Contractors contributing to the Deliverable
	KL
	INRIA
	Louvain
	Nova
	Trifork

	Results
	Partial replication
	Causal consistency
	Causal consistency under partial replication
	Implementing partial replication in Antidote

	Adaptive replication
	Conflict-free Partially Replicated Data Structures
	CRDTs for partially incremental computations
	Final remarks

	Papers and publications
	Designing a causally consistent protocol for geo-distributed partial replication
	An empirical perspective on causal consistency
	Adaptive Strength Geo-Replication Strategy
	Conflict-free Partially Replicated Data Types
	A Study of CRDTs that do computations
	Swiftcloud: Write fast, Read in the past: Causal consistency for client-side applications
	Technical report: Charcoal - A causally consistent protocol for geo-distributed partial replication

