
SyncFree Technology White Paper

Antidote: the highly-available geo-replicated database with strongest
guarantees

Deepthi Devaki Akkoorath, Annette Bieniusa
Tech. U. Kaiserslautern

23 August 2016

Why Antidote

Cloud-scale applications need highly available, low latency
responses to serve millions of users around the world. To
meet this need, applications have to carefully choose a high
performance distributed database. Traditional databases
provide strong guarantees but are slow and unavailable un-
der failures and network partition. Hence, they are not
suitable for geo-replication. The alternatives are NoSQL-
style databases which are fast and available even under net-
work partition. They provide a low-level key-value interface
and expose data inconsistencies due to asynchronous com-
munication among the servers. It takes significant effort
and expertise from programmers to deal with these incon-
sistencies and develop correct applications on top of these
databases.

For example, consider that your application stores a
counter which counts the number of ads displayed to a user.
For scalability, the database replicates all data in different
locations. What will be the value of the counter, when it is
incremented at two locations at the same time? As an ap-
plication programmer, you have to detect such concurrent
updates and resolve conflicting modifications.

Features of Antidote

Antidote [1] provides features that aid programmers to
write correct applications, while having the same perfor-
mance and horizontal scalability as AP/NoSQL, from a sin-
gle machine to geo-replicated deployments, with the added
guarantees of Causal Highly-Available Transactions, and
provable absence of data corruption due to concurrency.

CRDT support Antidote supports high-level replicated
data types [5] such as counters, sets, maps, and se-
quences that are designed to work correctly in the
presence of concurrent updates and partial failures.

Geo-replication Antidote is designed to run on multiple
servers in geo-distributed locations. To provide fast
responses to read and write requests, Antidote au-
tomatically replicates data in different locations and
serves the requests from the nearest location without
contacting a remote server. It provides continuous
functioning even when there are failures or network
partition.

Partial replication supports smaller data centers near

the edge, supplementing the fully-replicated data cen-
ters in the network core.

Highly Available Transactions In some cases, the ap-
plication needs to maintain some relation between
updates to different objects. For example, in a social
networking application, a reply to some post should
be visible to a user only after s/he observed the post.
Antidote maintains such relations by providing causal
consistency [4] across all replicas and atomic multi-
object updates. Thus, programmers can program
their application on top of Antidote without worrying
about the inconsistencies arising due to concurrent
updates in different replicas.

Internals of Antidote

To provide fast parallel access to different data, data is
sharded among the servers within a cluster using consis-
tent hashing and organized in a ring. A read/write re-
quest is served by the server hosting a copy of the data.
A transaction that reads/writes multiple objects contacts
only those servers that have the objects accessed by the
transaction. This master-less design allows serving of re-
quests even when some servers fail.

Antidote employs Cure [3], a highly scalable protocol,
to replicate the updates from one cluster to other. The up-
dates are replicated asynchronously to provide high avail-
ability under network partitions. Cure provides causal con-
sistency [4] which is the highest consistency model compat-
ible with high availability. Causal consistency guarantees
that related events are made visible according to their or-
der of occurrence, while the unrelated events (events that
occurred concurrently) can be in different order in different
replicas. For example, in a social networking application
a wall post has happened before a reply to it. Therefore
no user must see the reply before the post itself. Causal
consistency provides these guarantees.

Cure also allows applications to pack reads and writes
to multiple objects in a transaction. The transactions to-
gether with causal consistency helps to read and update
more than one object in a consistent manner.

Using Antidote

The client libraries provide an easy to use API for connect-
ing to an Antidote instance and accessing the data. For

1

Antidote: highly-available database with strongest guarantees SyncFree

example, a replicated counter is incremented by an Erlang
client [2] as follows.

First a connection is initiated to the Antidote data cen-
ter using its address and port.
{ok , Pid} = antidotec_pb_socket : s t a r t (?ADDRESS, ?

PORT) .

Antidote supports different replicated data types. These
object can be created and updated by the client. Here we
use counter.
Obj = ant idotec_counter : new () .
Obj2 = ant idotec_counter : increment (Amount , Obj) .

BObj identifies the object in the Antidote. An object is
identified by its key and bucket.
BObj = {Key , antidote_crdt_counter , Bucket} .

Every update is wrapped in a transaction. First start a
transaction and then update the object.
{ok , TxId} = antidotec_pb : s t a r t_t ran sac t i on (Pid , {

}) ,
ok = antidotec_pb : update_objects (Pid ,

ant idotec_counter : to_ops (BObj , Obj2) , TxId) ,

We can update more objects before committing the
transaction. The stored counter can be retrieved as:
{ok , Counter} = antidotec_pb : read_objects (Pid ,

BObj , TxId) ,

After executing all updates/reads with in a transaction,
you can commit the transaction. An update is stored only
if the transaction is successfully committed.

{ok , _} = antidotec_pb : commit_transaction (Pid ,
TxId) ,

If you have no more updates the session can be terminated.

_Disconnected = antidotec_pb_socket : stop (Pid) .

References

[1] Antidote. https://github.com/SyncFree/antidote, 2016. Ac-
cessed 12 August 2016.

[2] Antidote client library. https://github.com/syncfree/
antidote_pb, 2016. Accessed 12 August 2016.

[3] D. Akkoorath, A. Z. Tomsic, M. Bravo, Z. Li, T. Crain,
A. Bieniusa, N. Preguica, and M. Shapiro. Cure: Strong se-
mantics meets high availability and low latency. In Proceed-
ings of 36th IEEE International Conference on Distributed
Computing Systems, ICDCS, June 2016.

[4] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Ander-
sen. Don’t settle for eventual: Scalable causal consistency for
wide-area storage with cops. In Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles,
SOSP ’11, pages 401–416, 2011.

[5] M. Shapiro, N. M. Preguiça, C. Baquero, and M. Zawirski.
Convergent and commutative replicated data types. Bulletin
of the EATCS, 104:67–88, 2011.

2

https://github.com/SyncFree/antidote
https://github.com/syncfree/antidote_pb
https://github.com/syncfree/antidote_pb

	Why Antidote
	Features of Antidote
	Internals of Antidote
	Using Antidote

