
SyncFree Technology White Paper

BigSets: Scaling CRDTs to large sizes in Riak

Russell Brown, Torben Hoffmann
Basho, Inc.

1 September 2016

Sets Scaled to Bigsets

Bigsets [6] make CRDT [10] Sets usable at a scale. The
initial implementation of CRDTs Sets in Riak capped the
size of a set to the size of an object in Riak. 1Mb sounds
like a lot, but for some use cases it just is not enough. Cus-
tomers have had to resort to partitioning their sets into
smaller subsets to overcome this issue. Add to that a drop
in write throughput to an unacceptable level well before
the 1Mb limit and you have a real problem.

Bigset aims to make Sets scale in both size and write
throughput.

The initial transposition of the CRDT papers into Riak
was as follows:

1. Create a library of CRDTs (riak_dt [5])

2. Drop the library into Riak via a few hooks

3. Add an API to Riak for acting on CRDTs

As seen in Figure ?? this leads to having the entire
CRDT Set inside the Riak object.

This worked fine, in fact bet365 said:

. . . after some analysis we found that much
of our data could be modelled within Sets so by
leveraging CRDT’s our developers don’t have
to worry about writing bespoke merge functions
for 95% of carefully selected use cases. . .

However, as customers started to use Sets more they
found that performance degraded as cardinality grew [8].

This is partialy due to the inherent size limit, but also
due to the fact that when we map one key to one Set when a
Set is to be mutated it must be read, updated, and written.
Read-modify-write of the whole Sets leads to a problem of
quadratic bytes-in-bytes out. Even with delta-replication,
the whole set must be read-modified-written for each op-
eration. For a database, disk I/O is the most contended
resource, and this quadratic bytes-in-out behaviour is un-
acceptable.

Where to use Bigsets?

Basically all places where the exisiting Sets would be used.
Bigsets provide the same functionality as Sets, only better.

bet365 uses sets to keep track of all open bets for a
customer [7]. NHS models mailboxes with sets. Another
customer is using sets for having a pool of cryptographic
keys as well as inverted indexes.

The Tricks of Bigsets

Bigsets is a technique that has been applied to the delta-
Opitmised-Add-Wins Set which can also be implemented
to other CRDTs. The technique boils down to the de-
composition, or splitting up, of the constituent parts of
a CRDT and storing them in an ordered way on disk. This
means that only the minimum number of bytes need to be
read, written, and transmitted over the network. While
that technique itself seems fairly trivial, it engenders cer-
tain further complexities in implementation: we were deal-
ing with a single key, now we deal with many that are
related.

Bigset is an addition to the Riak Data Types [5] feature
that uses the de-composed CRDT technique to provide Sets
that can be many times larger (millions of elements) with
orders of magnitude faster write speed, and a small penalty
in read performance for small Sets. However, this cost is
vastly offset by Bigset’s ability to support a queries with-
out reading and transmitting the fullset. Queries include:
subset, range and matches. Bigset also supports stream
results, with pagination.

Using Bigsets

Bigsets have the same user experience as the current Riak
Data Type Sets. The client API is operations based. The
client sends “add” and “remove” operations to update the
set. And queries the set for subset, membership, ranges.
Results can be streamed and paginated. In summary, as
long as the subsets being merged are an equal subset of
the whole set, they can be merged correctly since the set
of events covered by the version vector is extrinisc to the
events for the subset. This means that any equal subsets
from different replicas can be merged. Opening the way for
streaming reads and other queries.

Bigsets in relation to the other
SyncFree producs

Bigsets is different to the other SyncFree projects in that
it has truly focussed only on the productisation of CRDTs.
There are no new guarantees, no new data types. We’ve
taken the technology and made it scale and perform well
enough for use in a commercial setting. And we’ve taken

1



Bigsets in Riak SyncFree — Basho Technologies

advantage of delta-replication, plus we’ve invented some
novel things:

• one sided full state merge based handoff which al-
lows us to merge one replica with another, whilst only
reading the data from one side. A huge IO saving

• incremental merge, which enables streaming, queries,
and pagination

Both, we hope, will feed into the other SyncFree
projects.

As far as semantics go this is the same
delta-replicated optimised Add Wins Set from
https://arxiv.org/abs/1210.3368 in 2012, with added deltas
from https://arxiv.org/abs/1603.01529. The innovations
are engineering “tricks” that make the set scale.

Bigsets in relation to other products

The closest by appearance to bisgets is maybe REDIS [1]?
When we shipped data types in riak 2.0 they were imme-
diately compared to REDIS, and there has been talk of
sticking a REDIS API on Riak Data Types. In terms of
performance, Cassandra might be seen as a similar well-
known product, except it uses the lossy Last Write Wins
reconciliation, where an arbitary write is chosen as the “cor-
rect” or winning value based on timestamp, and the rest
lost.

There is no Convergent Replicated Data Types backed
datastore on the market, except Riak.

Competitors to Bigsets

There still is NO commercial product backed by CRDTs ex-
cept Basho’s Riak, and Bigset is another step forward for
Riak. With this differentiator, there is no NoSQL database
that can directly compete with Riak. When comparing an-
other NoSQL database to Riak they instead fall into one of
two categories:

1. The new SQL type which trade off availability for
consistency, like LMDB.

2. The plain Key->Value data base, like Cassandra.

Riak doesn’t directly compete with the former (though
bigset maybe an enabling technology for eventually consis-
tent SQL tables), and differs from the latter in that it does
not lose concurrent writes with similar timestamps.

How does Bigsets do its magic

Previous releases of Sets in Riak Data Types mapped a
single key to a single set in a riak_object on disk.

As mentioned above the primary technique is to break
the CRDT Set into its constituent parts and store them
independantly, but co-located, on disk.

Bigsets engineers the CRDT into a database. Riak Data
Types takes a library of state-based CRDTs and stores in-
stances in a database.

Bigsets is backed by leveldb [2]. Leveldb [3] is a key-
value database that stores keys in sorted order. We hash

all Set elements by Set name and store them together, in
order, on disk.

Whereas before, in order to add or remove an element
from the set, the whole set had to be read from disk, with
this scheme only the version-vector [9] for the set needs to
be read at update time. Adding a new element only re-
quires updating the version vector to get a causal tag [4].
The new element and updated version vector are written.
Only the new element and its causal tag are replicated. For
removes, the client sends the element to be removed and
its causal tags, these are added to the clock (if unseen) and
deletes generated. Again, no need to read the whole set as
the elements are independant of one another.

This leads to insert times that depend on the size of the
Version Vector only, not the size of the whole set.

This multi-key approach also enables querying.
Whereas before to answer questions about a set (is X a
member, is [X,Y,Z] a subset etc) the whole set must be
read, with bigset, we can read the range of keys needed
to answer the query. For membership checks this is very
efficient.

As the keys for an element are stored in order in lev-
eldb for a subset query (of which a membership query is the
smallest, a subset of one) we read the clock, we seek then to
the first key in the query subset and read it, and we iterate,
seek, iterate, seek until the last key in the range. This is
significantly faster than reading the entire set and iterating
it in memory to find the set intersection. Consider asking
if [X] is a subset of a 10 million element set, for example.

To read subsets of a set across a quorum of nodes we
need to be able to merge divergent subsets. Bigsets can do
this because it operates on matching ranges of the keys set
from different replicas. For example, for membership query,
each replica reads the keys for the member and sends them
to a query co-ordinator,

The query co-ordinator performs a normal CRDT Set
merge on that subset. Since the subsets are of an identical
range the merge works even though the clocks contain infor-
mation for a much larger set, due to this extra information
being extrinsic to the subset elements.

In summary, although the scheme of playing to the
strength of the storage layer, and breaking the Set into
small consituent parts seems trivial, it is a step away from
the library apporach that has pervaded all CRDT systems
research. This step has yielded benefits of both scale and
performance,

Conclusion

Sets, not only the CRDT Sets, have always been a nice
abstraction to use in programs, but using them often re-
quires trade-off due to the nature of the underlying data
structures.

Bigsets expands the range of applications where Sets
can be used as it provides the ability for straightforward
and effective scaling. While there is a slight penalty in read
performance, the scalability and performance gains for key
Set operations such as subset, range and matches signifi-
cantly outweighs any downside making this a real positive
development for anyone dealing with these issues.

2



Bigsets in Riak SyncFree — Basho Technologies

References

[1] https://redis.io/.

[2] https://leveldb.org.

[3] https://github.com/basho/leveldb/.

[4] Paulo Sérgio Almeida, Carlos Baquero, Ricardo Gonçalves,
Nuno Preguiça, and Victor Fonte. Scalable and Accu-
rate Causality Tracking for Eventually Consistent Stores,
pages 67–81. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2014.

[5] Basho Technologies. Riak data type library, 2011–2016.
https://github.com/basho/riak_dt).

[6] Russell Brown, Zeeshan Lakhani, and Paul Place. Big(ger)
sets: decomposed delta CRDT sets in riak. In PaPoC’16:
Proceedings of the 2nd Workshop on the Principles and
Practice of Consistency for Distributed Data. ACM, 2016.
https://dl.acm.org/citation.cfm?doid=2911151.2911156.

[7] Dan Macklin. Key lessons learned from transition to nosql
at an online gambling website, 2015. https://www.infoq.
com/articles/key-lessons-learned-from-transition-to-nosql.

[8] Kyle Marek-Spartz. Benchmarking large riak data types:
A potential fix, 2014. http://kyle.marek-spartz.org/posts/
2014-12-03-benchmarking-large-riak-data-types-a-potential-fix.
html.

[9] D. S. Parker, G. J. Popek, G. Rudisin, A. Stoughton, B. J.
Walker, E. Walton, J. M. Chow, D. Edwards, S. Kiser,
and C. Kline. Detection of mutual inconsistency in dis-
tributed systems. IEEE Trans. Softw. Eng., 9(3):240–247,
May 1983.

[10] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek
Zawirski. A comprehensive study of Convergent and Com-
mutative Replicated Data Types. Research Report RR-
7506, Inria – Centre Paris-Rocquencourt ; INRIA, January
2011.

3

https://redis.io/
https://leveldb.org
https://github.com/basho/leveldb/
https://github.com/basho/riak_dt)
https://dl.acm.org/citation.cfm?doid=2911151.2911156
https://www.infoq.com/articles/key-lessons-learned-from-transition-to-nosql
https://www.infoq.com/articles/key-lessons-learned-from-transition-to-nosql
http://kyle.marek-spartz.org/posts/2014-12-03-benchmarking-large-riak-data-types-a-potential-fix.html
http://kyle.marek-spartz.org/posts/2014-12-03-benchmarking-large-riak-data-types-a-potential-fix.html
http://kyle.marek-spartz.org/posts/2014-12-03-benchmarking-large-riak-data-types-a-potential-fix.html

	Sets Scaled to Bigsets
	Where to use Bigsets?
	The Tricks of Bigsets
	Using Bigsets
	Bigsets in relation to the other SyncFree producs
	Bigsets in relation to other products
	Competitors to Bigsets
	How does Bigsets do its magic
	Conclusion

