
SyncFree Technology White Paper

Bounded Counters: maintaining numeric invariants with high availability

Valter Balegas, U. Nova de Lisboa

28 October 2016

Why Bounded Counters?

Having a presence on the Internet is essential for companies
to sell theirs products and services. When events of inter-
est for a large audience occur, for instance, a new smart-
phone from a major company is available for purchase, or
a big franchise movie tickets go on sale, services often be-
come overloaded with costumers that have interest on those
things. It is in these situations that services platforms are
put to test.

It is common to use data replication to improve the scal-
ability and availability of storage systems. Many existing
storage systems already provide replication out-of-the-box,
but typically, they only provide eventual consistency across
replicas. In these systems, a read operation might not re-
flect the most recent updates executed in the system, which
might be problematic when multiple application servers ex-
ecute updates based on the state that they observe.

The Bounded counter is a new data-type that allows
improving the consistency properties that can be main-
tained in eventual consistency systems. The problem that
the bounded counter solves is to guarantee that the value
of a counter does not ever exceed some limit value, for in-
stance that the value does not become negative, when mul-
tiple updates for the same counter are executed in different
replicas.

Use of Bounded Counters

In the example of selling smartphones, the company might
only have a limited quantity of devices in different geo-
graphical regions and want to ensure that the number of
smartphones sold in each region does not exceed a certain
limit. It is impossible to guarantee that constraint in sys-
tems that only ensures eventual consistency, because dif-
ferent clients might be able to buy the last units available
concurrently: the application servers checks that the opera-
tion can execute in the local replica; the operations execute
locally and succeeds, returning immediately to the client;
when operations are propagated and execute in the remote
replica, it might occur that the value of the counter be-
comes negative, which violates the defined constraint.

It might seem that it is not problematic to oversell a
few extra units of the device, however, our experimenta-
tion shows that with an increase of clients trying to update
a counter, the diverge also increases, which translates into
having more oversold units when the number of users trying
to acquire the device increases.

The bounded counter prevents the value of the counter
from violating the constraint, by limiting the number of

operations that can execute in each replicas before syn-
chronizing the changes with other replicas. The design of
the bounded counter allows the integration of this novel
data-type in existing systems that support a convergent
data-model, with little effort from the programmer.

Bounded counters are part of the Just-Right Consis-
tency approach, ensuring availability while minimising syn-
chronisation to precisely match application requirements.
We refer the reader to the companion white paper: “ Just-
Right Consistency, or How to tailor consistency to applica-
tion requirements.”

Bounded-Counter design

The Bounded-Counter is a new CRDT that supports a nu-
meric constraint for preventing the value of the counter
from exceeding some limit. For simplicity, we assume that
the constraint ensures that the value of the counter is al-
ways greater or equal to zero, but the data-type allows to
set value. To ensure the constraint, the bounded counter
stores the number of decrement operation executions that
are allowed in different logical partitions. Typically, it is
defined one partition for each replica, but the programmer
might specify partitions with a different granularity.

The interface of the data-type supports incre-
ment(val,prtId) and decrement(val,prtId) operations, as
normal counters, and a new transfer(origId, destId) oper-
ation to transfer permissions to execute decrements from
partition with identifier origId to partition with identifier
destId. Increment operations always succeed, as they can
never violate the constraint. Decrement operations are safe
when prtId has enough permissions to execute the opera-
tion, but when prtId does not have enough permissions,
the operation fails with a error indicating that the opera-
tion is not safe. In this case, the replica that wants to exe-
cute the operation must increase the permissions of prtId,
by requesting some replica to transfer permissions to that
partition.

The data type works as any normal CRDT data-type
and has state-based and operation-based implementations.
The programmer is responsible for ensuring that operations
for each partition are executed in sequence. Many systems
already support operations serializability, which allows im-
plementing this functionality. The programmer must also
provide some policy to transfer resources between parti-
tions.

1



Bounded Counters SyncFree — U. Nova de Lisboa

Bounded-Counter implementation

We provide standalone implementations of the Bounded
Counter in Erlang and Java. We have experimented adding
the data-type to the Riak KVS, by extending the KVS with
a middleware that serializes the execution of operations for
the different partitions and handles permissions transfer-
ence between different replicas in the system. The perfor-
mance of the data-type was comparable to the performance
of the counters that are provided by Riak.

Programmers willing to support bounded counters on
their databases can use our prototype as reference for im-
plementing the data type and the transference policy.

Bounded-Counter use-cases

The bounded counter design is useful in a number of situ-
ations. Also, the same design principle can be applied to

other data-types to provide other constraints. We indicate
a few situations where bounded counters are useful:

• Ensure that the Stock of products does not become
negative;

• Ensure that tickets for an event are not oversold. Ei-
ther with assigned numbers or undistinguished;

• Ensure that the number of prints of an advertisement
does not exceed the budget that the client requested;

• Ensure that the account balance plus the credit of a
costumer does not become negative;

• Implement a generic distributed lock that can be
shared, or is exclusive, to enforce arbitrary con-
straints.

2


	Why Bounded Counters?
	Use of Bounded Counters
	Bounded-Counter design
	Bounded-Counter implementation
	Bounded-Counter use-cases

